# Contents

Foreword 1

Abstract 3

Part One: TOPICS IN LAGOON MORPHODYNAMICS 5

1 Introduction 7

References 12

2 Tidal meandering channels 15

2.1 Introduction 15
2.2 Field evidence 18
2.3 Formulation of the problem 21
2.4 The basic flow and concentration fields 31
2.5 Linear solution 36
   2.5.1 Linearization of eddy viscosity 49
2.6 Results for the flow and topography fields 50
2.7 The formation of tidal meanders: a ‘bend’ process? 66
2.8 Conclusions and future developments 73

References 77

3 Experimental investigation on tidal channels 81

3.1 Introduction 81
3.2 Theoretical framework 82
   3.2.1 The hydrodynamic problem 83
3.2.2 Hydrodynamics of a weakly dissipative and weakly convergent channel: linear theory 86
3.2.3 The one dimensional morphodynamic problem 89
3.3 Scaling rules of physical models of tidal morphodynamics 93
3.3.1 The case of weakly dissipative estuaries 93
3.3.2 The case of strongly dissipative estuaries 97
3.4 Experimental setup and procedure 99
3.5 Control of the wave generating system 103
3.6 Experimental observations 104
3.6.1 Tidal wave hydrodynamics: the water surface elevation 104
3.6.2 Tidal wave hydrodynamics: the water speed 110
3.6.3 Tidal channel morphodynamics: preliminary observations 113
3.6.4 Experimental observations near the channel inlet 114
3.7 Conclusions and future developments 118

References 122

Part Two: TOPICS IN FLUVIAL MORPHODYNAMICS 123

4 Bedload on arbitrarily sloping beds at low Shields stress 125
4.1 Introduction 125
4.2 The threshold condition for the motion of bedload particles on arbitrarily sloping beds 128
4.3 The direction and intensity of the velocity of saltating particles in motion on arbitrarily sloping beds 134
4.4 Estimating the average areal concentration of saltating particles by Bagnold’s hypothesis: an approach which leads to unrealistic results 136
4.5 An alternative approach: the excess residual stress as a measure of the entrainment capacity of the stream 143
4.6 Discussion and conclusions 149

References 152

Ringraziamenti 154