Contents

Introduction 11

Publications 15

Chapter 1

Making a degenerate Ytterbium gas 17

1.1 Fundamental properties of Ytterbium 18
 1.1.1 Ground state collisional properties - SU(N) symmetry 20
 1.1.2 Collisions in a $^1S_0 - ^3P_0$ mixture - the exchange interaction . 22

1.2 A quantum degenerate Yb gas 23
 1.2.1 Resonant light laser sources 23
 1.2.2 Trapping laser sources .. 26
 1.2.3 Cooling procedure .. 27
 1.2.4 Ground-state atoms - Manipulation and detection 31
 1.2.5 Metastable 3P_0 atoms - Manipulation and detection 32

1.3 Optical lattices .. 34
 1.3.1 Wannier functions and optical lattice properties 36
 1.3.2 Experimental implementation and procedures 37

Chapter 2

Quantum physics with real and synthetic magnetic fields 41

2.1 Edge currents and edge states in a Hall bar 42
 2.1.1 Connections with topology 43
 2.1.2 The role of Spin and Spin-orbit coupling 44

2.2 Hall physics on a lattice .. 46
 2.2.1 Magnetic Brillouin zone 46
 2.2.2 Tight binding model in presence of a magnetic field 48
 2.2.3 Ladder systems ... 51

2.3 Realization of synthetic magnetic fields with ultracold atoms 54
 2.3.1 Gauge fields on a lattice 55
 2.3.2 The synthetic dimension approach 56
 2.3.3 Synthetic dimension or synthetic Spin-Orbit coupling? 61
New quantum simulations with ultracold Ytterbium gases

Chapter 3
Addressing the \(|^1S_0 \rangle \rightarrow |^3P_0 \rangle \) clock transition in \(^{173}\text{Yb}\) 63

3.1 The hyperfine mixing mechanism 63
3.2 Magnetic properties of the transition 64
3.3 Spectroscopy of tightly-confined atoms in optical lattices 66
3.4 Coherent addressing of the transition 73
3.5 Fiber-link-enhanced spectroscopy 74

Chapter 4
Quantum simulation with \(^{173}\text{Yb}\) atoms exploiting the orbital d.o.f. 79

4.1 Synthetic Spin-Orbit Coupling 80
4.1.1 Implementation of synthetic SOC in optical lattices 80
4.1.2 Spectroscopic signatures of SOC 82
4.1.3 Experimental observation of SOC 83
4.2 Hall physics with a synthetic two-leg ladder 85
4.2.1 Chiral currents 85
4.2.2 Experimental observation of the chiral currents 87
4.2.3 Tuning the synthetic flux 91
4.3 Tuning the interactions in a \(^1S_0 - ^3P_0\) mixture 95
4.3.1 Orbital Feshbach resonance mechanism 96
4.3.2 Experimental realization of a strongly interacting \(^{173}\text{Yb}\) gas 98
4.4 Conclusions and Outlooks 100

Chapter 5
Synthetic dimensions with Raman 103

5.1 Nuclear spin states as synthetic dimension of a Hall ribbon 103
5.1.1 Raman couplings in the fundamental level of \(^{173}\text{Yb}\) 104
5.1.2 Two- and three-leg ladders 107
5.2 Two-leg ladders 110
5.2.1 Chiral currents 110
5.2.2 Interactions-induced effects on the chiral currents 112
5.3 Three-leg ladders 116
5.3.1 Chiral currents 116
5.3.2 Skipping orbits 117
5.4 Conclusions and outlooks 118

Chapter 6
Clock transition spectroscopy on \(^{174}\text{Yb}\) 121

6.1 Magnetic-field-induced spectroscopy 121
6.2 Clock transition spectroscopy 123
6.3 Interaction-peaks resolved spectroscopy 125
6.3.1 Measurement of the e-g scattering length 127
6.3.2 Measurement of the e-e scattering length 129
6.4 Spectroscopy of higher lattice bands 131
6.5 Coherent addressing of the transition 134
6.6 Detection of state-dependent inelastic collisions 136

Appendix A
Number of atoms in fermionic wires 143
Appendix B
Scattering length in the open channel of an orbital Feshbach resonance 145
Bibliography 147