Table of Contents

Part I
Introduction

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Motivation: the brain challenge</td>
<td>13</td>
</tr>
<tr>
<td>2</td>
<td>The neuron</td>
<td>17</td>
</tr>
</tbody>
</table>

Chapter 3
Fluorescence theory

3.1 Two-photon excitation fluorescence | 24

Chapter 4
The Green Fluorescent Protein | 27

Chapter 5
Genetically encoded Ca²⁺ indicators | 31
5.1 GCaMP6s | 35

Chapter 6
Fluorescence microscopy | 37
6.1 Wide-field fluorescence microscopy | 38
6.2 Light-sheet fluorescence microscopy | 39
6.2.1 Light-sheet fluorescence microscopy: drawbacks and solutions | 44
6.2.1.1 Bessel beams illumination | 45

Chapter 7
Zebrafish in neurosciences | 47
7.1 Zebrafish and epilepsy | 54

Part II
Methods

Chapter 8

Real-time whole-brain functional imaging of zebrafish neuronal activity

Generation of the GCaMP6s transgenic zebrafish line

8.1 Amplification of plasmid tol2-elavl3:H2B-GCaMP6s
 8.1.1 Bacterial transformation with tol2-elavl3:H2B-GCaMP6s plasmid
 8.1.2 tol2-elavl3:H2B-GCaMP6s plasmid extraction
8.2 In vitro transcription of tol2 plasmid
8.3 Microinjection
8.4 Transgenic line selection

Chapter 9
Microscopes
9.1 Wide-field fluorescence microscope
9.2 Dual-illumination light-sheet fluorescence microscope
9.3 Two-photon light-sheet microscope

Chapter 10
Zebrafish husbandry

Chapter 11
Sample mounting
11.1 Wide-field fluorescence microscopy imaging
11.2 Dual-illumination light-sheet fluorescence microscopy imaging
11.3 Two-photon light-sheet fluorescence microscopy imaging

Chapter 12
Chemicals preparation

Chapter 13
Optical measurements
13.1 Wide-field optical mapping measurements
 13.1.1 Combined electrographic and fluorescence recordings
 13.1.2 High-throughput measurements
13.2 Dual-illumination light-sheet fluorescence microscopy measurements
13.3 Two-photon light-sheet fluorescence microscopy measurements

Chapter 14
Data analysis
14.1 Wide-field optical mapping measurements analysis
 14.1.1 High-throughput measurements analysis
14.2 Dual-illumination light-sheet fluorescence microscopy measurements analysis
 14.2.1 Haemodynamic artefacts measurements analysis
Lapo Turrini

14.2.2 Bessel beam illumination light-sheet microscopy 3D optical mapping analysis 87
14.3 Two-photon light-sheet fluorescence microscopy whole-brain measurements analysis 88

Part III
Results

Chapter 15
Optical mapping of zebrafish neuronal activity in a pharmacological model of epilepsy 93
15.1 GCaMP6s optical measurements show basal and PTZ-altered activity in the zebrafish brain 93
15.2 GCaMP6s fluorescence measurements are sensitive to different PTZ concentrations 95
15.3 Correlation analysis among brain regions and locomotor activity 97
15.4 High-throughput combined fluorescence and behavioural recordings 102

Chapter 16
Bessel beam illumination as a means to reduce artefacts in quantitative functional studies using light-sheet microscopy 105
16.1 Streaking artefacts obscure microscopic features of interest 105
16.2 Flickering quantification 108
16.3 Impact of flickering on neuronal activity measurements 110
16.4 Flickering artefacts mask neuronal correlations 111

Chapter 17
3D optical mapping of zebrafish neuronal activity with single cell resolution by Bessel beam illumination light-sheet microscopy 115

Chapter 18
Fast whole-brain functional imaging by two-photon light-sheet fluorescence microscopy 119

Part IV
Discussion

Chapter 19
Optical mapping of neuronal activity during PTZ-induced seizures 131

Chapter 20
Bessel beam illumination reduces haemodynamic artefacts in functional lightsheet fluorescence microscopy 135