
Chapter 4

Equations of elasticity

Chapters 2 and 3 of these notes do not speci�cally concern with the
elastic media, in fact they can be understood for a generic continuum and
studied independently. In this section we shall combine the previous results
in order to to investigate the response of elastic bodies under the action
of forces.

A body is called elastic if it has the property of recovering its original

shape when the forces which produce the deformations are removed. This

property can be characterized mathematically by certain relationships con-

necting force and displacement, that are also called constitutive laws. In

particular we will analyze the linear constitutive law as a generalization

of the Hooke's law.

4.1 The material law

It was Robert Hooke1 who in 1676 gave the �rst rough law
of proportionality between forces and displacements for an elastic
body. In order to understand the key features of elasticity, let us
consider a thin rod with an initial cross section A0, which is sub-
jected to a variable tensile force F . We suppose that the stress is dis-
tributed uniformly over the area A0 and the initial cross�sectional
area stays constant. The stress is obtained by dividing the force at
any stage by the area A0. So, σ = F/A0. The relationship between
F and the axial strain ε is plotted in �gure 4.1 on the next page.

Figure 4.1 shows that until the point P the relationship σ − ε

1Robert Hooke (July 18, 1635 Freshwater (Isle of Wight) - March 3, 1703
London) was an English scientist.

Source: http://turnbull.mcs.st-and.ac.uk/history/Biographies/Hooke.html.

Claudio Borri, Michele Betti, Enzo Marino (a cura di), Lectures on Solid Mechanics, ISBN 978-88-8453-
854-3 (online), ISBN 978-88-8453-853-6 (print), © 2008 Firenze University Press



90 EQUATIONS OF ELASTICITY

Figure 4.1: Hooke's law.

is nearly a straight line with the following equation

σ = Eε (4.1)

where the constant of proportionality E is known as modulus of

elasticity or Young's modulus.

The greatest stress that can be applied to the rod without pro-
ducing a permanent deformation is called elastic limit of the mate-
rial. When the force F is increased beyond this limit the material
goes in the elastic-plastic �eld. Namely, �rstly the material reaches
the yield�point Y at which the rod suddenly stretches, then the ma-
terial reaches the ultimate stress at U where it o�ers the maximum
stress. If the elongation increases again both the cross sectional area
A0 and the stress decrease until the rod breaks at B.

From now on we shall study only the elastic range.

4.1.1 Generalized Hooke's law

Here we want to extend the results of Hooke's law to a multidi-
mensional state of stress and strain. So, in accordance with equation
(4.1), let us write a linear relation

σij = Cijhkεhk i, j, h, k = 1, 2, 3 (4.2)

The coe�cients Cijhk are independent from the position of the
reference point in the continuous medium, in other words we require
the homogeneity of the body, that means uniformity in structure
and composition. It can also be shown that the elastic constants
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Cijhk are 81 components of a fourth order tensor which is termed
elasticity tensor .

Since the stress tensor σij is symmetric, an interchange of the
�rst two indices in (4.2) does not alter its meaning. In addition to
that, the symmetry of the strain tensor ensures also the symmetry
of the last two indices, so that

Cijhk = Cjihk (4.3)

Cijhk = Cijkh (4.4)

That means that the 34 components of C reduce to 36 indepen-
dent constants. Let us show the expansion of a generic component
of the stress tensor, that is

σ11 =C1111ε11 + C1112ε12 + C1113ε13+
C1121ε21 + C1122ε22 + C1123ε23+ (4.5)

C1131ε31 + C1132ε32 + C1133ε33

Equations (4.3) and (4.4) allow (4.5) to be rewritten as follows

σ11 =C1111ε11 + C1122ε22 + C1133ε33+
2C1112ε12 + 2C1113ε13 + 2C1123ε23

Thus, the whole elastic matrix can be written as
σ11

σ22

σ33

σ12

σ23

σ31

=


C1111 C1122 C1133 2C1112 2C1123 2C1131

C2222 C2233 2C2212 2C2223 2C2231

C3333 2C3312 2C3323 2C3331

2C1212 2C1223 2C1231

sym. 2C2323 2C2331

2C3131




ε11
ε22
ε33
ε12
ε23
ε31


which, making use of the symmetry relationships expressed in (4.3)
and (4.4), simpli�es as follows

σ11

σ22

σ33

σ12

σ23

σ31

 =



c11 c12 c13 c14 c15 c16

c22 c23 c24 c25 c26

c33 c34 c35 c36

c44 c45 c46

sym. c55 c56

c66





ε11

ε22

ε33

ε12

ε23

ε31


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Later on, see equation (6.10), we will also introduce another
symmetry condition that has been assumed in the above. Namely,
the condition

Cijhk = Chkij (4.6)

that further reduces the independent elastic constant from 36 to
21. So, the latter material equation represents the constitutive law
for an anisotropic elastic material. However, most of the engineer-
ing materials have some symmetry properties which allow further
reductions of the elastic constants.

The highest degree of symmetry leads to the so called isotropic

material. We de�ne an isotropic material an elastic continuum which
has the same response in any direction, so that the elastic tensor is
not in�uenced by any rotation of the references axes.

Let the elastic tensor be represented by Cijhk with respect to
the cartesian coordinate {xi} whose basis is B = {ēi}. With respect
to a rotated system {x′i} with basis B′ = {ē′i} the elasticity tensor
is C ′ijhk. By the de�nition of isotropic material, we expect that the
elasticity tensor does not change. In order to show this, let us recall
the transformation relations (1.36) on chapter 1. Here we are dealing
with a Cartesian coordinate system, hence it does not matter if the
indices are all subscripts. So, we have

C ′ijhk = a′ila
′
jmClmnoaohank

= a′ila
′
jma

′
hoa
′
knClmno (4.7)

but to ensure the immunity against the rotation of the reference
system, we impose

C ′ijhk = Clmno (4.8)

that is only satis�ed if the elasticity tensor assumes the following
form

Clmno = λδlmδno + µδlnδmo + κδloδmn (4.9)

where λ, µ, κ are elastic constants2.

2This can be proved by replacing equation (4.9) into (4.7), as follows

C′ijhk = a′ila
′
jma

′
hoa
′
kn (λδlmδno + µδlnδmo + κδloδmn) =

= λa′ima
′
jma

′
hoa
′
ko + µa′ina

′
joa
′
hna
′
ko + κa′ioa

′
jna
′
hna
′
ko =

λδijδhk + µδihδjk + κδikδjh

that is exactly the expression (4.9). Note that we have used the identity a′psa
′
qs =

δpq provided by equations (1.21) and (1.24) on page 7.
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In equations (4.3) and (4.4) we have already noticed the sym-
metry of C in relation to the two front and two back indices, let us
show now that one more reduction is possible

Cijhk = λδijδhk + µδihδjk + κδikδjh (4.10)

Cijkh = λδijδkh + µδikδjh + κδihδjk (4.11)

where, subtracting term by term and considering the symmetry of
the unit tensor δij , equations (4.10) and (4.11) lead to the only
possible condition

µ (δihδjk − δikδjh) + κ (δikδjh − δihδjk) = 0⇒
µ (δihδjk − δikδjh)− κ (δihδjk − δikδjh) = 0⇒

(µ− κ) (δihδjk − δikδjh) = 0 (4.12)

which is only true if (µ− κ) = 0. So, the relationship between κ
and µ further reduces the number of elastic constants to 2. Namely,
we have

Cijhk = λδijδhk + µ (δihδjk + δikδjh) (4.13)

The Hooke's law becomes

σij = Cijhkεhk = λδijδhkεhk + µ (δihδjk + δikδjh) εhk =
= · · ·
= λδijεhh + 2µεij (4.14)

where we have used δhkεhk = εhh = trεhk.

Equation (4.14) is the generalized form of Hooke's law, valid
for homogeneous, isotropic, elastic bodies. λ and µ are called Lamé

constants3.

3Gabriel Lamé (July 22, 1795 Tours - May 1, 1870 Paris) was a French
mathematician and engineer.

Source: http://turnbull.mcs.st-and.ac.uk/history/Mathematicians/Lame.html.
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The trace of the stress tensor is readily computed by contracting
the indices, so that

σii = 3λεhh + 2µεii ⇒ (4.15)

σii = (2µ+ 3λ) εhh ⇒ (4.16)

εhh =
σii

(2µ+ 3λ)
(4.17)

where we can put trσij = σii = Σ and trεij = εii = Θ.

The above expression (4.17) is useful if we solve (4.14) for εij .
In fact, we have

εij =
1

2µ
σij −

λ

2µ
δijΘ (4.18)

and in observance of (4.17) we obtain

εij =
1

2µ
σij −

λ

2µ (3λ+ 2µ)
δijΣ (4.19)

Now, let us consider an axial state of stress. The stress tensor is

σij =

 σ11 0 0
0 0 0
0 0 0


form (4.19) we have

ε11 =
1

2µ

(
1− λ

(3λ+ 2µ)

)
σ11 =

= · · ·

=
λ− µ

µ (3λ+ 2µ)
σ11 (4.20)

ε22 = ε33 = − λ

2µ (3λ+ 2µ)
σ11 (4.21)

(4.22)

Let us de�ne Poisson's ratio ν as follows

ν = −ε11

ε22
= −ε11

ε33
=

λ

2 (µ+ λ)
(4.23)
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λ µ ≡ G E ν

λ, µ - - µ(3λ+2µ)
λ+µ

λ
2(λ+µ)

λ, ν - λ(1−2ν)
2ν

λ(1+ν)(1−2ν)
ν -

µ,E µ(E−2µ)
3µ−E - - E−2µ

2µ

µ, ν 2µν
1−2ν - 2µ (1 + ν) -

E, ν Eν
(1+ν)(1−2ν)

E
2(1+ν) - -

Table 4.1: Relationships between the main elastic constants.

According to Hooke's law in the original form, see equation (4.1),
we can see that

1
E

=
λ− µ

µ (3λ+ 2µ)
⇒ E =

µ (3λ+ 2µ)
λ− µ

(4.24)

So, we have proved that Lamé constants can be replaced by
E and ν which lead to writing the alternative expressions of the
constitutive law

εij =
1
E

((1 + ν)σij − νδijΣ) (4.25)

σij =
E

1 + ν

(
εij +

ν

1− 2ν
δijΘ

)
(4.26)

Table 4.1 shows the relationships between elastic constants.

4.2 The linear elastic problem

In this section we are going to sum up equations and unknown
quantities which de�ne the classical linear elastic problem. Then
we will estimate the distribution of stresses and strain as well as
displacements at all points of the body when certain boundary con-
ditions are given. Let us balance the unknowns and the equations,
we have �fteen unknowns (6 stress components + 6 strain compo-
nents + 3 displacement components) for all points in the continu-
ous and just �fteen equations (6 equilibrium + 6 compatibility + 3
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boundary conditions). So, for a given linear elastic body V we have

C = const. (4.27)

b̄ = b̄ (p) ∀p ∈ V (4.28)

f̄ = ˆ̄f (p) ∀p ∈ Sσ (4.29)

ū = ˆ̄u (p) ∀p ∈ Su (4.30)

In order to solve the linear elastic problem we start from the
known quantities (4.27) to (4.30), and through the following avail-
able equations

- compatibility equations

εij =
1
2

(ui,j + uj,i) on V (4.31)

- equilibrium equations

σij,j + bi = 0 on V (4.32)

- constitutive laws

σij =
E

1 + ν

(
εij +

ν

1− 2ν
δijεij

)
on V (4.33)

- boundary conditions

σijnj = f̂i onSσ (4.34)

ui = ûi on Su (4.35)

we will formulate two boundary�value problems.

4.2.1 Boundary value problem in terms of stresses

This �rst boundary value problem can be stated as follows:

Determine the distribution of stresses and displace-

ments in the interior of an elastic body in equilibrium

when the body forces are prescribed and the distribution

of the forces acting on the surface of the body is known4.

4Sokolniko� [1].
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Following the above formulation, the procedure for solving the
problem would suggest writing the available equations entirely in
terms of stress. To this aim let us start from equation (2.75)

εij,hk + εhk,ij − εih,jk − εjk,ih = 0 (4.36)

and consider the constitutive law (4.25), so that

1 + ν

E
(σij,hk + σhk,ij − σih,jk − σjk,ih) =

=
ν

E
(δijσnn,hk + δhkσnn,ij − δihσnn,jk − δjkσnn,ih) (4.37)

Equation (4.37) represents a set 34 = 81 equations since all the
four indices i, j, h, k run from 1 to 3. Not all of these equations are
independent, indeed the system (4.37) contains only 6 independent
equations. A �rst reduction of equations is due to the contraction
h = k that yields

σij,kk + σkk,ij − σik,jk − σjk,ik =

=
ν

1 + ν
(δijσnn,kk + δkkσnn,ij − δikσnn,jk − δjkσnn,ik) (4.38)

that, by denoting Σ = trσij = σii and σij,kk = ∇2σij , becomes

∇2σij + Σ,ij − σik,jk − σjk,ik =
ν

1 + ν

(
δij∇2Σ +∇2Σij

)
(4.39)

By virtue of the equilibrium equations (4.32), the above expres-
sion can be rewritten as follows

∇2σij +
1

1 + ν
Σ,ij = −

(
bi,j + bj,j −

ν

1 + ν
δij∇2Σ

)
(4.40)

which is a set of 6 independent equations.
Next, in order to express ∇2Σ as a function of the body force

b̄, we put h = i and k = j in equation (4.37), so that, after a bit of
algebra, we have

σij,ij = ∇2Σ− 2
ν

1 + ν
∇2Σ

= . . .

=
1− ν
1 + ν

∇2Σ (4.41)
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and �nally, by invoking the derivative of the equilibrium equation
that provides the relationships bi,i = σij,ij , we get

∇2Σ = −1 + ν

1− ν
bi,i (4.42)

Now, going back to equation (4.40) and making use of the latter
result, it is not a di�cult task to obtain the following expression

∇2σij +
1

1 + ν
Σ,ij = −

(
bi,j + bj,i +

ν

1− ν
δijdiv b̄

)
(4.43)

Equations (4.43) were derived by Michell5 in 1900 and by Bel-

trami6 in the 1892 for the special case when the body forces are
absent. Nevertheless, it is common to refer to equation (4.43) as
Beltrami-Michell equations.

In case of missing or constant volume forces equation (4.43)
assumes the straightforward form

∇2σij +
1

1 + ν
Σij = 0 (4.44)

4.2.2 Boundary value problem in terms of displace-
ments

The second boundary value problem can be stated as follows:

Determine the distribution of stresses and displace-

ments in the interior of an elastic body in equilibrium

5John Henry Michell (October 26, 1863 - February 3, 1940) was an Australian
mathematician.

Source:http://en.wikipedia.org/wiki.
6Eugenio Beltrami (November 16, 1835 Cremona - February 18, 1900 Rome)

was an Italian mathematician.

Source: http://www-groups.dcs.st-and.ac.uk/ history/Biographies/Beltrami.html.
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when the body forces are prescribed and the displace-

ments of the points on the surface are prescribed func-

tions7.

By replacing the constitutive law in the form of (4.14) into equi-
librium equation, we obtain

(λδijεkk),j + 2µεij,j + bi = 0 (4.45)

that is

λεkk,i + 2µεij,j + bi = 0 (4.46)

and in accordance with the compatibility equations we have

λuk,ki + µ (ui,jj + uj,ij) + bi = 0 (4.47)

λuk,ki + µ∇2ui + µuk,ik + bi = 0 (4.48)

(λ+ µ)uk,ki + µ∇2ui + bi = 0 (4.49)

that in the vectorial form reads

(λ+ µ) grad div ū+ µ∇2ū+ b̄ = 0 (4.50)

Equation (4.49) (or equivalently equation (4.50)) is called Lamé-
Navier equation and together with the boundary conditions ex-
pressed by equation (4.35) de�ne the boundary problem inn terms
of displacements.

Once the �rst boundary value problem has been solved, i.e. when
the displacements are known, the state of strain and hence the
state of stress can be found though equations (4.31) and (4.33),
respectively.

Further attention should be focused on the case when body
forces do not occur or they are constant. First, consider the di-
vergence of equation (4.49)

(λ+ µ)uk,kii + µ∇2ui,i + bi,i = 0 (4.51)

that yields

λ∇2uk,k + 2µ∇2uk,k + bi,i = (λ+ 2µ)∇2uk,k + bi,i = 0 (4.52)

7Sokolniko� [1].
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which, under the hypothesis of bi = const., so that bi,i = 0, gives

∇2uk,k = ∇2Θ = 0 (4.53)

where we have set Θ = trεij = εii.

Moreover, recalling (4.17) it is also proved that

∇2σkk = 0 (4.54)

We can �nally say that if the volume forces are constant, the
boundary linear elastic problem in terms of displacements turns
into a general boundary values problem of a biharmonic di�erential
equation.

4.3 Constitutive equation for shell continuums

The Kirchho��Love hypothesis and the inextensibility of mate-
rial �bers along n̄ allows one to consider the shear stress components
N ξα unrelated to strains, so that the constitutive problem can be
solved through the plane stress model. Thus, components N ξα are
found only by means of the equilibrium equations. The analytical
derivation of the constitutive equations is beyond the scope of this
book, so we will just present the �nal equations that will be used
in the appendix A in order to solve some case studies. However,
readers can �nd thorough discussions in [3] and [16].

Suppose a membrane state of stress, the constitutive equations
are the following

Ñαβ = DHαβλµαλµ (4.55)

Mαβ = BHαβλµωλµ (4.56)

where

Hαβλµ =
1− ν

2
(
gαλgβµ + gαµgβλ +

2ν
1− ν

gαβgλµ
)

(4.57)

The fourth�order tensor Hαβλµ has the following symmetries

Hαβλµ = Hβαλµ = Hαβµλ = Hλµαβ (4.58)



LECTURES ON SOLID MECHANICS 101

Finally, coe�cients D and B are the in�plane and the bending
sti�ness, respectively, de�ned as

D =
E(2ε)
1− ν2

(4.59)

B =
E(2ε)3

12(1− ν2)
(4.60)




