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Abstract: Recently general definitions of marginal interactions and marginal
models have been introduced by Bergsma, Rudas (2002), Colombi, Forcina (2001)
and by Bartolucci, Colombi, Forcina (2004) that considerably improved the flex-
ibility and interpretability of standard hierarchical log-linear models by allow-
ing interactions to be contrasts of four types of Logits defined within different
marginal distributions. This paper reviews these recent contributions and shows
their relevance in the context of categorical time series analysis.
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1 Introduction

In section two of this paper we review the definition of generalized marginal
interactions introduced by Bartolucci, Colombi, Forcina (2004) and we
show how these interactions are used to build a class of models which gener-
alizes the Hierarchical Marginal Models previously introduced by Bergsma,
Rudas (2002). In section three of this paper the proposed marginal models
are used to specify a class of dynamic models for multi-categorical time
series and in section four some examples are given. The aim of the work
is to show that marginal parameterizations can be easily adapted to the
context of categorical time series modelling.

2 Marginal interaction parameters and marginal
models

Consider the joint probability function of q response variables A1, . . . , Aq,
with Aj taking values xj in {1, 2, . . . , aj}. The set of response variables
that defines a given marginal distribution will be denoted by the set M
of indices of the corresponding variables and Q = {1, . . . , q} will refer to
the joint distribution. The vector of the

∏q
1 aj joint probabilities will be

denoted by π.
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2.1 Generalized Marginal Interactions

We now introduce the Bartolucci, Colombi, Forcina (2004) definition of
interaction parameters which includes the four well known types of logits:
local (l), global (g), continuation (c) and reverse continuation (r) and the
sixteen types of log-odds ratios discussed by Douglas et al. (1990). Note
that it makes sense to use logits of type local both with ordinal and non-
ordinal variables but that logits of type global and continuation can be used
only with ordinal variables.
For any category xj < aj , define the event B(xj , 0) to be equal to {xj} if
the logit is of type local or continuation and to {1, . . . , xj} for global or
reverse continuation logits; similarly, the event B(xj , 1) is equal to {xj +1}
if the logit is of type local or reverse continuation and to {xj + 1, . . . , aj}
for global or continuation logits. Finally define the marginal probabilities:

pM(xM;hM) = p(Aj ∈ B(xj , hj), ∀j ∈ M),

where xM is a row vector of categories xj , j ∈ M, and hM is a row vector
whose elements, hj , j ∈ M, are equal to zero or to one. These marginal
probabilities are probabilities of a table where the variables Aj ,∀j ∈ M,
have been dichotomized according to the categories: B(xj , 0), B(xj , 1). The
marginal generalized interactions are log-linear contrasts of the previous
probabilities and are so defined:

ηH;M(xH | xM\H;hM\H) =
∑
K⊆H

(−1)|H\K| log pM(xM;hM\H,0H\K,1K).

(1)
Note that any interaction is defined by the interaction set H of the variables
involved, by the marginal distributionM where it is defined and by the logit
type assigned to each variable of M. According to this definition the kind
of dichotomy implied by the type of logit adopted for each variable should
carry over when defining higher order interactions within the same marginal
distribution. As an example consider the bivariate case, q = 2, where the
continuation logit type is assigned to each variable and the marginals of
interest are: M1 = {1}, M2 = {2} and M3 = {1, 2}. Let πij , πi· and π·j
denote the joint and marginal probabilities, then

η{1};{1}(i) = ln
p(A1 ∈ B(i, 1))
p(A1 ∈ B(i, 0)) = ln

∑a1
n=i+1 πn·
πi·

,

η{2};{2}(j) = ln
p(A2 ∈ B(j, 1))
p(A2 ∈ B(j, 0) = ln

∑a2
n=j+1 π·n
π·j

,

and

η{1,2};{1,2}(ij) =
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= ln p(A1∈B(i,1),A2∈B(j,1))

p(A1∈B(i,0),A2∈B(j,1))
− ln p(A1∈B(i,1),A2∈B(j,0))

p(A1∈B(i,0),A2∈B(j,0)
=

= ln
∑a2

m=j+1

∑a1
n=i+1

πnm∑a2
m=j+1

πim
− ln

∑a1
n=i+1

πnj

πij
,

are continuation log-odds ratios.

2.2 Complete and Hierarchical Families of Interaction Sets

We now examine the problem of allocating the interaction sets among the
marginals within which they may be defined.
Denote by Fm the family of interaction sets defined within the marginal
distribution Mm. Let also P(J ) be the family of all non empty subsets of
J and Pm be a short-hand notation for P(Mm).
Given a non-decreasing sequence of marginals M1, . . . ,Ms, a family of
interactions sets is called complete and hierarchical if (i) any interaction
set is defined in one marginal distribution Mm, (ii) F1 = P1 and Fm =
Pm\⋃h<m Fh.
The previous definition implies that Ms = Q, that Mm ∈ Fm, for every
m, that every family Fm is a non-empty ascending class of subsets of Mm

and that every interaction is defined within only one marginal distribution.
In the following, for every interaction set I ∈ Mm of a complete hierarchical
family of interactions sets, we will consider only the interactions:

ηI;Mm
(xI) = ηI;Mm

(xI | 1Mm\I ;0Mm\I)

where the conditioning variables of Mm \ I are fixed to their first cate-
gory. When all the conditioning variables in Mm \ I have assigned logits
of type local Bartolucci, Colombi, Forcina (2004) showed that the inter-
actions ηI;Mm

(xI | xMm\I ;hMm\I) are linear functions of the interactions
ηH;Mm

(xH), H ⊇ I, so that at least in this case there is no restriction in
limiting the attention to these parameters.

2.3 Complete and Hierarchical Marginal Parametrizations

The interactions ηI;Mm
(xI) associated to a complete hierarchical family

of interactions may be arranged into the vector η which may be explicitly
written in matrix form as

η = C log(Mπ), (2)

where the rows of C are contrasts and M is a matrix of zeros and ones
which sums the probabilities of appropriate cells to obtain the necessary
marginal probabilities of the type described by (2.1). A detailed descrip-
tion of these matrices is given by Colombi, Forcina (2001). Bartolucci,
Colombi, Forcina (2004) showed that (2) is invertible. The result extends
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the Bergsma, Rudas (2002) important contribution on marginal models
and earlier works of Lang, Agresti (1994), Glonek, McCullagh (1995) and
Glonek (1996). Parameters defined by a function of the joint probabilities
of the type (2) have a long history starting from the seminal works of Griz-
zle et al. (1969) and of Forthofer, Koch (1973) and here we stress the fact
that the representation of the link function (2) is important, in the context
of maximum likelihood estimation, both from the theoretical point of view
and from the computational point of view. The importance of the repre-
sentation will carry over also to the context of categorical time series as it
will be shown in the next section.
A parameterization of the joint probabilities in term of the generalized
marginal interactions ηI;Mm

(xI) defined as above will be called complete
hierarchical marginal parameterization.
The advantages of a marginal parameterization with respect to the log-
linear one come from the flexibility in the choice of the interactions and from
the interpretability of the parameters. Marginal parametrizations allow a
direct and straightforward parameterization of the marginal probabilities
of interest and in the framework of a marginal parameterization it is easier
to state that a given marginal distribution is stochastically larger than an-
other or that the strength of the dependence between two variables increase
with a third variable or that two variables are marginally independent or
positively associated. In fact these hypotheses can be defined by linear
inequality and equality constraints on generalized marginal interactions
as shown in Dardanoni, Forcina (1998), Bartolucci, Forcina, Dardanoni
(2001), Colombi, Forcina (2001) and Bartolucci, Colombi, Forcina (2004).
Moreover complete hierarchical marginal parameterizations are very useful
in parametrizing block recursive models as shown by Bartolucci, Colombi,
Forcina (2004).
As an example consider the seemeengly unrelated logit regressions repre-
sented by the dashed edges graph of figure 5.3(a) of Cox, Wermuth (1996);
under this model the variables A3 and A4 are explanatory for the vari-
ables A1 and A2, A2 is independent from A3 given A4 and A1 is indepen-
dent from A4 given A3. The model can be parametrized choosing the com-
plete hierarchical parameterization defined by the marginals M1 = {3, 4},
M2 = {1, 3, 4}, M3 = {2, 3, 4}, M4 = {1, 2, 3, 4}, and the constraints:

η{2,3};{2,3,4}(i{2,3}) = 0, η{2,3,4};{2,3,4}(i{2,3,4}) = 0,

η{1,4};{1,3,4}(i{1,4}) = 0, η{1,3,4};{1,3,4}(i{1,3,4}) = 0.

If the four categorical variables are ordinal it is sensible to choose logits of
type global for A3 and A4 within M1 and for A1 and A2 within M2, M3

and M4. As explained in Bartolucci, Colombi, Forcina (2004), who gave a
general description of block recursive models of this type, it is convenient
to use logits of type local for the explanatory variables A3 and A4 within
M2, M3 and M4.
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Furthermore together with the previous equality constraints the following
inequality constraints:

η{2,4};{2,3,4}(i{2,4}) ≥ 0, η{1,3};{1,3,4}(i{1,3}) ≥ 0,

state that the distributions of A2 conditioned by the explanatory variables
are stochastically increasing with the categories of A4 and that the condi-
tional distributions of A1 are stochastically increasing with the categories
of A3. The problem of testing linear inequality constraints on marginal
parameters has been discussed by Dardanoni, Forcina (1998), Colombi,
Forcina (2001) and by Bartolucci, Colombi, Forcina (2004).

3 Multinomial State Space Models

In this section marginal models are used to introduce a class of dynamic
models for multicategorical time series. For a survey of the state of art
on categorical time series analysis see Fahrmeir, Tutz (1994), MacDonald,
Zucchini (1997), Davis, Wang (1999) and Kedem, Fokianos (2002). Let
πt be the vector of the joint probabilities of the categories of q categorical
variables given the information set Ft−1 available at time t. We parametrize
the joint probabilities πt by inverting at time t the link function:

ηt = C lnMπt, (3)

where the vector of marginal parameters is a linear function of time vary-
ing regressors: ηt = Xtβt and where βt changes according to a standard
normal transition model:

βt = Fβt−1 + Hεt. (4)

Here εt are independent multinormal random variables with null expected
value and unknown diagonal variance matrix Q. For a discussion of state
space models for categorical data and count data see Kedem, Fokianos
(2002), Durbin, Koopmann (1997) and Fahrmeir, Tutz (1996). Special cases
of the previous general model (for example Xt = I, H = I and F = I)
are easily obtained and the advantage of defining the transition model in
function of the marginal parameters rather than the log-linear ones come
from the fact that the normal transition model applied to log-linear param-
eters is often difficult to interpret. On the contrary the transition model
applied to marginal interactions and in first place to marginal Logits is
very easy to interpret and a more natural and direct modelling strategy.
Moreover in the context of categorical time series many important non-
Granger causality type hypotheses, which state that a set of categorical
variables doesn’t depend on the past of another set of variables, given F t,
are equivalent to linear hypotheses on marginal interactions and this fact
enhances the importance of marginal models in this context. Finally in the
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context of marginal models it is easier to distinguish between hypotheses
of simultaneous independence between categorical variables and hypotheses
of independence of a categorical variable from the past of the others. These
advantages of marginal modelling have been firstly pinpointed by Giordano
(2003) in the context of models for the joint transition probabilities of mul-
tivariate Markov Chains and the problem of testing Granger non-causality
under Markov assumptions was firstly considered by Bouissou et al (1986).
The important topic of modelling multivariate Markov Chain was started
by the works of Fahrmeir, Kaufmann (1987) and Kaufmann (1987) and
generalized to a less stringent assumption than the one of Markovianity by
Fokianos, Kedem (1998). Hidden Markov models (MacDonald, Zucchini,
1997) can also be considered in this context by substituting the normal
transition model (4) with the following one:

βt = Stδ1 + (1− St)δ2

where the binary variable St indicates the state at time t of a two state
markov Chain.
In this last case the maximum likelihood estimates are easily computed
(MacDonald, Zucchini 1997, Krolzig 1997) and in the case of a normal
transition model maximum likelihood estimation of the unknown parame-
ters of the multivariate normal distribution of εt can be performed by the
Montecarlo likelihood method of Durbin, Koopman (1997, 2001) or by the
Montecarlo EM algorithm of Chan, Ledolter (1995). Less computationally
demanding methods are the EM-type algorithm of Fahrmeir, Wagenpfeil
(1997) and the method based on the maximization of an approximation
of the log-likelihood of Durbin, Koopman (1997, 2001). Note that in the
case of marginal models all the previous methods are more computation-
ally demanding, than in the cases previously considered, because at every
iteration the relation ηt = C lnMπt must be inverted for every t.
The asymptotic properties of the M.L. estimator of the unknown parame-
ters in the case of a latent Markov Chain with time homogeneous transition
probabilities follow from the results of Bickel, Ritov, Ryden (1998) on Hid-
den Markov Models. The asymptotic normality of the M.L. estimators for
non-normal state-space model is discussed in Jensen, Petersen (1999).

3.1 Bivariate Markov Driven Marginal Models

Often multi-categorical time series exhibit two different regimes. The start-
ing time and the length of the spells in the regimes are random. To model
the different behavior of the time series under the two regimes the param-
eters of a Marginal Model can be let to depend on the state of an unob-
servable Markov Chain which models the transitions between the regimes.
A latent variable problem arises because the regime is not an observable
variable. More precisely the model must consist of two parts:
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I) a Marginal Model which specifies the joint probabilities of the categories
of the variables at time t given the categories of the variables at the previous
lag times t− 1, t− 2, ..., t− lag, given the values (at time t− 1) of a vector
of regressors xt−1 and given the regime St at time t (St = 1 or St = 0 in
the case of two regimes).
II) a two states Markov Chain that models the history of the unobservable
regimes St.
According to this model the observed multi-categorical time series is not
Markovian, however conditionally on the series {St} of the regimes it is a
Markov Chain of order lag.
Here we examine the case of a bivariate categorical time series {A1,t, A2,t}.
The joint probability function of A1,t and A2,t conditionally on the past can
be specified by a log-linear model. Let Zt be the vector of predetermined
variables at time t and of the unobservable regime St. Then, the log-linear
model:

lnπij,t = λt + λA1
i,t + λA2

j,t + λA1A2
ij,t ,

i = 1, 2, ..., a1, j = 1, 2, ..., a2,

could be introduced by allowing the interaction parameters lambda to de-
pend on the vector Zt of predetermined variables. This approach doesn’t
allow a direct parameterization of the marginal probabilities πi.,t, π.j,t. For
this reason we prefer to parametrize the marginal probabilities directly with
univariate logit Models. For example the Continuation logit Parameteriza-
tion (Colombi, Forcina 1999) for the marginal probabilities is given by the
following formulae:

πi.,t =
exp {−η1,t(i)}∏i

m=1 [1 + exp {−η1,t(m)}] , i = 1, 2, ..., a1 − 1,

π.j,t =
exp {−η2,t(j)}∏j

m=1 [1 + exp {−η2,t(m)}] , j = 1, 2, ..., a2 − 1.

Here we have slightly simplified the notation of interactions given in section
two by omitting curly brackets and the indication of the marginal within
which the interaction is defined. The Continuation Logits η1,t(i) and η2,t(j)
depend on the vector of predetermined variables Zt according to linear
predictors of the type commonly used in the context of logit regression (see
section 4 for an example). Note that the Continuation logit of a categorical
variable may depend also on the past of the other categorical variable. The
joint probabilities πij,t are specified by the marginal continuation logits
and by the logarithms of the Continuation Odds Ratios (Colombi, Forcina
1999):

η12,t(ij) = ln
πij,t ·

∑a1
m=i+1

∑a2
n=j+1 πmn,t∑a1

m=i+1 πmj,t ·
∑a2

n=j+1 πin,t
,

i = 1, 2, ...., a1 − 1, j = 1, 2, ...., a2 − 1.
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The following hypotheses on the Continuation Odds Ratios are relevant:

η12,t(ij) = η12(ij),
η12,t(ij) = η12(ij) + ρSt.

Both are hypotheses of constant association in the sense that the Contin-
uation Odds Ratios do not depend on the past of A1 and A2 and on a
vector of regressors xt−1. In the first case, the Odds Ratios are also regime
independent, whereas in the second case the Continuation Odds Ratios de-
pend on the latent regime but the effect of the regime is the same for all i
and j (i = 1, 2, ..., a1 − 1; j = 1, 2, ..., a2 − 1). A more parsimonious model
is given by the following hypotheses of Uniform Constant association:

η12,t(ij) = η12,

η12,t(ij) = η12 + ρSt.

Finally the transition probabilities of the Hidden Markov Chain p00t =
p(St+1 = 0|St = 0) and p11t = p(St+1 = 1|St = 1) can assumed to be
function of a vector of regressors xt−1 according to the logit Models:

ln
piit

1− piit
= α0i + α′

1ixt−1, i = 0, 1. (5)

The case of a time homogeneous transition matrix is obtained by putting
α1i = 0, i = 0, 1.
Given the marginal continuation logits and the Continuation Odds Ratios
the joint probabilities πij,t can be computed with the iterative algorithm
introduced by Colombi, Forcina (1999) and described in Colombi, Zanarotti
(2002).
Let ϑ′=

[
α00,α10, α01,α11,θ

′] be the vector of the parameters to be esti-
mated where θ is the vector of the parameters of the bivariate marginal
model. Given the parameters, the BLHK filter and smoother (Krolzig, 1997)
can be used to marginalize with respect the unobservable Markov Chain
and to compute the log-likelihood at every iteration of the Fisher Scoring
algorithm.

3.2 State Space Trend Models for categorical data

Marginal State Space Models for categorical data can be specified in many
ways thanks to the flexibility of the definition of ηt and of the transition
model: ηt = Xtβt, βt = Fβt−1+Hεt. A first important and useful case
is given by the (k−1)- polynomial stochastic trend where some components
ηi,t change according to the transition model:

βi,t = Fβi,t−1 + εt ηi,t = β1,it
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and F is a k · k upper triangular matrix of ones. A second important
example is the case of k order random walk where some components ηi,t of
ηt change according to the transition model:

βi,t = Fβi,t−1 + hεi,t

ηi,t = β1,it.

here h is the first column of a k · k identity matrix and F is a k · k identity
matrix with the first row replaced by the row vector c, the i− th element

of which is ci = (−1)i−1

(
k
i

)
. These models are useful to model local-

trends for logits defined within different marginals. For example in the
Bivariate Case introduced in the previous section a local level model (k=1)
can be applied to the two marginal continuation logits:

η1,t(i) = η1,t−1(i) + ε1,t,

η2,t(i) = η2,t−1(i) + ε2,t.

4 Ground O3 and CO data analysis

The Hidden Markov models described in section 3.1 are used to analyze
daily levels of ground O3 (variable A1t) and CO concentration (variable
A2t) both with three categories (low (1), normal(2) and high(3)). Data
are taken by San Giorgio (Bergamo-Italy) measurement unit from 1997 to
1999. In this application the covariates that affect the continuation Logits
are: temperature and solar radiation.
The general effects of the linear predictors are assumed to change according
to the hidden regime and the other parameters (additive effects, interac-
tions, regression coefficients) are regime independent. More precisely the
most general linear predictor used for the η1,t(i), i = 1, 2, ..., a1 − 1 is:

η1,t(i) =
(
µ

(0)
j + δjSt

)
+

+

(
lag∑
l=1

2∑
m=1

θA1
mlI{A1,t−l=m} +

lag∑
l=1

2∑
m=1

θA2
mlI{A2,t−l=m}

)
+

+

(
lag∑
l=2

2∑
m=1

δA1
ml

t−1∏
k=t−l

I{A1,k=m} +
lag∑
l=2

2∑
m=1

δA2
ml

t−1∏
k=t−l

I{A2,k=m}

)
+

+β1x1t + β2x2t.

A similar predictor is used for the η2,t(j), j = 1, 2, ..., a2 − 1. In the first
column of Table 1 it is given the number LAG of past pollutant levels that
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TABLE 1. Switching Bivariate Marginal Models (O3 and CO )

lag link association log-lik. n. par.
1 add. η12,t(ij) = 0 -919.08 18
2 add. η12,t(ij) = 0 -894.08 26
3 add. η12,t(ij) = 0 -873.49 34
4 add. η12,t(ij) = 0 -858.88 42
4 add.+int. η12,t(ij) = 0 -846.27 78
4 add.+int. η12,t(ij) = η12 -846.26 79
4 add.+int. η12,t(ij) = η12(ij) -845.22 82
4 add.+int.+reg. η12,t(ij) = η12(ij) -842.52 86

TABLE 2. One step forecasts-O3
predicted→
observed↓ low normal high. tot.

low 704 61 0 765
normal 86 189 3 278
high. 0 12 5 17
tot. 790 262 8 1060

TABLE 3. One step forecasts-CO
predicted→
observed↓ low normal high tot.

low 152 102 0 254
normal 56 709 5 770
high 0 23 13 36
tot. 208 834 18 1060

affects the current one. In the second column the linear predictor used is
described (add. means that the effect of the LAG previous levels is additive
and add.+int. means that interactions between time adjacent past levels
of the same pollutant are also allowed and add.+int.+reg. is the general
case where also the effects of the covariates temperature and solar radiation
are introduced). In the third column the type of association between CO
and O3, given the past levels and the hidden regime, is described. In the
fourth column the value of the log-likelihood is reported and in the last
column the number of parameters is given. For all the models considered
the transition probabilities of the Hidden Markov Chain are time invariant.
In the last two tables the one-step predicted levels are crossed with the
actual ones, using the model in the last row of Table 1.
In Table 4 the results obtained by using some State Space Trend Models
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TABLE 4. Bivariate State Space Models (O3 and CO)

model number of states log-lik.
M1 8 -117.558
M2 5 -118.444
M3 12 -115.358
M4 9 -116.771

introduced in section 3.2 are reported. In this case only the first 100 obser-
vations were used, covariates effects were not included and local logits and
local odds-ratios were used instead of the continuation ones. In the case of
the first model M1 the four local logits and the four local odds-ratios that
parametrize the joint distribution at time t changes according to a random
walk. In model M2 the four odds ratios are assumed to be equal and the
five parameters still changes according to a random walk. According to
model M3 the four odds ratios changes according to a random walk and
the four logits changes according to a local level local trend model (local
polynomial of order one). In modelM4 the transition equation for the logits
is as in model M3 and the four odds-ratios are equal and change according
to a random walk. Initial states have been treated as unknown parameters
so that the number of parameters to be estimated is twice the number of
states. The method based on the maximization of the approximate log-
likelihood of Durbin, Koopman (2001) were used but after convergence
the log-likelihood was computed with the importance-sampling method of
Durbin, Koopman (2001).
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