<table>
<thead>
<tr>
<th>Elemento</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cesio</td>
<td></td>
</tr>
<tr>
<td>Sodio</td>
<td></td>
</tr>
<tr>
<td>Potassio</td>
<td></td>
</tr>
<tr>
<td>Berillio</td>
<td></td>
</tr>
<tr>
<td>Magnesio</td>
<td></td>
</tr>
<tr>
<td>Calcio</td>
<td></td>
</tr>
<tr>
<td>Stroncio</td>
<td></td>
</tr>
<tr>
<td>Bario</td>
<td></td>
</tr>
<tr>
<td>Aluminio</td>
<td></td>
</tr>
<tr>
<td>Cadmio</td>
<td></td>
</tr>
<tr>
<td>Piombo</td>
<td></td>
</tr>
<tr>
<td>Stagno</td>
<td></td>
</tr>
<tr>
<td>Rame</td>
<td></td>
</tr>
<tr>
<td>Argento</td>
<td></td>
</tr>
<tr>
<td>Mercurio</td>
<td></td>
</tr>
<tr>
<td>Oro</td>
<td></td>
</tr>
<tr>
<td>Platino</td>
<td></td>
</tr>
<tr>
<td>Ferro</td>
<td></td>
</tr>
<tr>
<td>Nitrogeno</td>
<td></td>
</tr>
<tr>
<td>Carburo</td>
<td></td>
</tr>
<tr>
<td>Boro</td>
<td></td>
</tr>
<tr>
<td>Jodo</td>
<td></td>
</tr>
<tr>
<td>Bromo</td>
<td></td>
</tr>
<tr>
<td>Cloro</td>
<td></td>
</tr>
<tr>
<td>Fluoro</td>
<td></td>
</tr>
<tr>
<td>Tellurio</td>
<td></td>
</tr>
<tr>
<td>Zolfo</td>
<td></td>
</tr>
<tr>
<td>Ossigeno</td>
<td></td>
</tr>
</tbody>
</table>

Fig. 1
Dal Gabinetto di Mineralogia al Museo di Storia Naturale

From Gabinetto di Mineralogia to Museum of Natural History

Luciana Fantoni, Luisa Poggi

Dopo la nascita dell’Istituto di Studi Superiori, Antinori mantiene la carica di Direttore del Museo e dispone che le collezioni siano affidate ai professori delle singole discipline; prosegue così il processo di indebolimento dell’unità del Museo, di fatto iniziato con l’istituzione del «Liceo». Nel 1865, Cosimo Ridolfi viene nominato nuovo Direttore, ma lo rimarrà solo pochi mesi. Alla sua morte, la direzione del Museo, insieme alla presidenza della sezione di Scienze dell’Istituto di Studi Superiori, viene affidata, per breve tempo, al decano Parlatore. Gli succede il fisico Carlo Matteucci, già ministro della Pubblica Istruzione, che sostiene l’abolizione dell’Istituto di Studi Superiori causando non poche difficoltà alla vita del Museo. Infatti, in virtù della sua formazione, Matteucci è portato a tenere in alta considerazione solo le discipline sperimentali, osteggiando quelle naturalistiche e soprattutto le collezioni.

Nel 1866, al termine della III guerra di indipendenza, nell’ambito dei trattati fra Italia e Austria, i Lorena chiedono la restituzione dei loro beni privati e fra questi inseriscono le collezioni del Museo. Fortunatamente la richiesta non ebbe seguito.

In questi anni l’attività del Museo consiste principalmente nella partecipazione alle grandi mostre, come quelle nel 1861 presso la stazione Leopolda di Firenze e nel 1862 a Londra (Fig. 2). Spesso, non tutto quanto esposto torna in Museo; tuttavia, siccome da altri espositori vengono donati esemplari, il depauperamento delle collezioni risultò contenuto.

Per quanto riguarda la Mineralogia, ancora non esiste una cattedra specifica e le collezioni sono affidate, insieme a quelle geologiche, a Igino Cocchi, nel «Gabinetto di Geologia». Infatti il Museo di Storia Naturale di fatto non esiste più; al suo posto sono nati i vari Gabinetti disciplinari, che però restano nella sede di via Romana. Solo nel...

Aster the establishment of the Istituto di Studi Superiori, Antinori maintained the position of Museum director and decided that the collections should be entrusted to the professors of the single disciplines. Thus, the weakening of the Museum’s unity that had begun with the institution of the «Liceo» continued. In 1865, Cosimo Ridolfi was appointed as new director, but he remained only a few months. Upon his death, the directorship of the Museum, together with the presidenza of the Sciences Section of the Istituto di Studi Superiori, was briefly entrusted to the dean Parlatore. He was succeeded by physicist Carlo Matteucci, former Minister of Public Education, who supported the abolition of the Istituto di Studi Superiori, bringing serious difficulties to the life of the Museum. Indeed, because of his education, Matteucci tended to hold only the experimental disciplines in high regard, opposing the naturalistic ones and especially collections.

At the end of the Third War of Italian Independence in 1866, as part of the treaties between Italy and Austria, the House of Lorraine requested the restitution of their private property, including the collections of the Museum. Fortunately the request was unsuccessful.

The Museum’s activity in these years consisted mainly in participating in large exhibitions, such as those in 1861 at Florence’s Leopolda station and in 1862 in London (Fig. 2). Some of the exhibited specimens often failed to return to the Museum; however, since specimens were donated by other exhibitors, the impoverishment of the collections was limited.

For Mineralogy, there was still no specific chair and the collections were entrusted, along with the geological ones, to Igino Cocchi in the «Gabinetto di Geologia». In fact, the Museum of Natural History no longer exists; its place is taken by the Laboratories of the various disciplines, which

Fig. 1 Scatola per sagg chirici per il riconoscimento dei minerali (part.).

Fig. 1 Box for chemical assays to mineral recognition (detail).
1870 viene chiamato come aiuto di Cocchi, l’ingegnere minerario Giuseppe Grattarola (Fig. 3), che si dimostra molto attivo, non solo per la didattica ma anche per le collezioni mineralogiche che, peraltro, continuano a registrare importanti acquisizioni (Fig. 4). Nel 1873 Cocchi lascia la cattedra e a lui subentrano Grattarola per la mineralogia e D’Ancona per la geo-paleontologia. Anche per le altre discipline, la specializzazione e il maggior peso della didattica causano un aumento delle persone che gravitano su palazzo Torrigiani, portando, in qualche caso, a screzi personali che daranno una spinta decisiva alla separazione, anche fisica, delle collezioni.

In questo periodo, difficile anche dal punto di vista economico, Grattarola, grazie alle sue conoscenze professionali con colleghi ingegneri, ottiene una serie di doni; entrano così circa mille campioni, testimonianza di una rete di amicizie molto ampia. Ovviamente sono prevalenti gli ingegneri, ma non mancano i nobili, come i marchesi Strozzi e Chigi Zandonai, i militari come il capitano Giuseppe Pisi (elbano) e il maggiore Pietro Grisanti. Anche i colleghi docenti contribuiscono ad arricchire le collezioni: Cocchi, Parlatore, Giglioli, Bechiri, De Stefani, Beccari sono infatti registrati fra i donatori.

Grattarola inoltre riesce, nel 1877, a concretizzare l’acquisto della ricchissima raccolta di...
Raffaello Foresi, comprendente minerali e rocce, oltre a reperti etnologici, provenienti dall’Isola d’Elba, per un totale di oltre 8000 esemplari. Insieme alla collezione, priva di un catalogo dettagliato, giunge a Firenze il registro dei visitatori del Museo Foresi di Portoferraio, frequen-

colleagues. This brought in about a thousand specimens, evidence of a vast network of friendships. This network mainly included engineers, but there were also noblemen, such as the marquises Strozzi and Chigi Zandonai, and military men such as Captain Giuseppe Pisani (an Elban) and Major Pietro Grisanti. Grattarola’s colleagues also helped enrich the collections: Professors Cocchi, Parlatore, Giglioli, Bechi, De Stefani and Beccari are listed as donors.

In 1877, Grattarola succeeded in purchasing the very rich collection of Raffaello Foresi, including minerals, rocks and ethnological specimens from Elba Island for a total of over 8000 pieces. The collection, lacking a detailed catalogue, was accompanied by the visitor’s book of the Foresi Museum in Portoferraio. This museum had been visited by the most important mineralists of the time, an indication of its importance.

Firenze è una città profondamente segnata dal ruolo di capitale d’Italia e dal suo rapido trasferimento a Roma; dal punto di vista edilizio si aprono nuove prospettive. In que-

In 1877, Grattarola succeeded in purchasing the very rich collection of Raffaello Foresi, including minerals, rocks and ethnological specimens from Elba Island for a total of over 8000 pieces. The collection, lacking a detailed catalogue, was accompanied by the visitor’s book of the Foresi Museum in Portoferraio. This museum had been visited by the most important mineralists of the time, an indication of its importance.
Fig. 5 Frontespizio della Guida e pianta del Museo e laboratorio di Mineralogia pubblicata da Grattarola nel 1881.

Fig. 6 Grattarola (a destra) intento alla messa a punto dell’elioscopio, insieme ai suoi collaboratori.

Fig. 5 Title page of the Guida e pianta del Museo e Laboratorio di Mineralogia published by Grattarola in 1881.

Fig. 6 Grattarola (right) adjusting a heliostat, along with his collaborators.

The city of Florence was profoundly marked by its role as Italian capital and by the sudden transfer of this status to Rome, and new perspectives were opened in terms of construction works. In this context, part of the museum collections were moved from Via Romana to the buildings of the ancient Studium in Piazza San Marco. The grand organizer of the move of the mineralogical collections was Grattarola, while there was a hot dispute concerning the botanical collections. Mineralogy and Geo-paleontology left Via Romana and Grattarola dispensed adesio of his own Museum and Laboratory, with local decisamente più ampi e confortevoli in cui creare un nuovo allestimento. L’inaugurazione avviene nel 1881, in occasione della gita dei partecipanti al congresso geologico internazionale di Bologna. Ovviamente la disposizione delle collezioni non corrisponde più a quanto descritto nel catalogo del 1844, ma viene pubblicata una «Guida e pianta del Museo e Laboratorio di Mineralogia» (Fig. 5), dove è riportato in dettaglio il nuovo allestimento.

Nel 1888 un ulteriore successo: l’acquisto della pregevolissima collezione Roster di circa 1500 esemplari di minerali elbani. Giorgio Roster, collega e amico di Grattarola e grande conoscitore dell’Elba, già aveva dato un fondamentale contributo per il completamento dei dati relativi alla collezione Foresi, ma per la sua raccolta stende esaurienti cataloghi manoscritti, che giungono al Museo unitamente ai campioni.
Superate le convulse fasi di trasloco, allestimento e sistemazione delle nuove acquisizioni, Grattarola può ora dedicare più tempo alla didattica, a cui riserva molta attenzione, cogliendo prontamente ogni novità, sia per quanto riguarda i principi teorici, sia per le nuove strumentazioni (Fig. 6), che acquista e, talvolta, modifica nell'officina del Laboratorio. Contemporaneamente assume l'incarico di presidente della Sezione di Scienze dell'Istituto di Studi Superiori.

Il Museo conserva, ancora oggi, i carteggi tra Grattarola e la Soprintendenza e la Presidenza della Sezione di Scienze, oltre a lettere con fornitori e corrispondenza con colleghi mineralisti, come Groth, Hintze, Lacroix, Rammelsberg, Scacchi, Sella (Fig. 7), Spezia, Strüver, Tschermak. È a questo periodo che risalgono i primi studi sulle collezioni, principalmente sui campioni elbani, portati avanti da Grattarola e dai suoi aiuti e assistenti.

Nel 1907 Grattarola muore e gli succede Federico Millosevich, romano, che nel 1915 rientra a Roma, dove diventerà Rettore dell'Università e Presidente dell'Accademia dei Lincei. Nel breve periodo fiorentino, però, lascia una traccia importante con la pubblicazione del catalogo ragionato delle collezioni elbane (Fig. 8) dal titolo «I 5000 elbani del Museo di Firenze». Fino al 1922 Ernesto...
Manasse copre la cattedra di Mineralogia e quindi la direzione del Museo: non risultano in questi anni acquisizioni di esemplari di rilievo. Sotto la direzione di Piero Aloisi si ha un radicale cambiamento nell’assetto dell’istituzione; infatti, nel 1924 l’Istituto di Studi Superiori diventa Università, la Sezione di Scienze si trasforma in Facoltà, il Museo e Laboratorio in Istituto con ammesso il Museo. Le collezioni passano decisamente in secondo piano: ora è la didattica che assume il ruolo preminente e il Museo – la cui funzione appare strumentale – viene penalizzato anche nei locali, per dare spazio a laboratori ed aule.

sostanzioso contributo e arrivano al Museo ben 5200 esemplari, numerati e corredati di cartellini ed elenco. Di eccezionale importanza e bellezza sono gli esemplari delle miniere sarde di Monteponi e Calabona.

Guido Carobbi succede ad Aloisi, alla vigilia della guerra. Una delle prime iniziative prese dal nuovo direttore è la stesura di un catalogo/inventario. Dal 1943, con intervalli dovuti agli eventi bellici, inizia la compilazione dei registri, che alla fine del 1948 raggiungeranno il numero di otto. A differenza dei cataloghi precedenti, il criterio seguito non è toponografico ma sistematico. Questo comporta lo smembramento delle collezioni, per dare vita a un nuovo ordinamento secondo i criteri classificativi su base chimica e strutturale elaborati da Strunz. Per la prima volta viene attribuito ad ogni esemplare un valore inventariale; di sicuro la valutazione della lira fra inizio e fine stesura è notevole, per cui i primi valori attribuiti risultano non confrontabili con gli ultimi. Addirittura per la collezione Ciampi il valore riportato nell’inventario corrisponde al prezzo pagato, anziché al valore di stima, comportando una fortissima sottostima del patrimonio del Museo.

Preoccupato dall’avanzare del fronte bellico, Carobbi decide di mettere al sicuro gli esemplari di maggior pregio: gli oggetti della collezione di pietre lavorate trovano posto nel caveau della Cassa di Risparmio di Firenze (Fig. 10), mentre altri campioni vengono nascosti sotto le assi del pavimento in legno del salone principale del Museo. Le collezioni torneranno al loro posto nel 1947.

Date le difficoltà economiche del dopoguerra, l’unico possibilità di acquisire nuovi campioni è data da scambi con altre istituzioni o con privati. Nel 1945 l’ingegner Luigi Magistretti di Milano, appassionato mine-
Fig. 11
ralista e collezionista, propone al Museo 46 esemplari di minerali, fra cui 17 pietre tagliate. In cambio vengono alienati dalle collezioni 13 campioni, fra cui fosgeniti, azzurriti e covelline delle miniere sardine. Alla fine della guerra Allan Caplan, in Italia con le truppe americane, da appassionato collezionista desidera vedere i famosi campioni del Museo di Firenze, ma resterà deluso perché le collezioni non sono state ancora tolte dai nascondigli. Torna nel 1947 e propone che, per un cristallo di topazio gigantesco (151 kg), il Museo ceda un impressionante numero di esemplari; si tratta, per l'appunto, di 151 campioni tra cui 60 fosgeniti, 41 anglesiti, 3 covelline appartenenti alle raccolte Racah e Ciampi, che come abbiamo visto, era stata sottovalutata. La trattativa viene conclusa e il Museo acquisisce il secondo topazio del mondo (Fig. 11), come dimensioni.

Nuovamente, nel 1951, la necessità di fare spazio a laboratori e aule sacrifica il Museo (Fig. 12) – sempre più neglecto – lasciando per le collezioni solo il salone e portando alla cessione in comodato all'Istituto e Museo di Storia della Scienza della collezione Targioni Tozzetti, offered the Museum 46 mineral specimens, of which 17 cut stones. In exchange, he received 13 specimens from the museum collections, including phosgenites, azurites and covellite from the Sardinian mines. At the end of the war, Allan Caplan, a passionate collector who found himself in Italy with the American troops, wished to see the famous specimens of the Florentine Museum, but was disappointed because the collections had still not been recovered from their hiding places. He returned in 1947 and offered the Museum a gigantic topaz crystal (151 kg) in exchange for 151 specimens, including 60 phosgenites, 41 anglesites and 3 covellines belonging to the Racah and Ciampi collections, which as mentioned before had been underestimated. The negotiation was concluded and the Museum acquired the second largest topaz in the world (Fig. 11).

In 1951, the need to make space once again for laboratories and lecture rooms sacrificed the increasingly neglected Museum (Fig. 12), leaving only the main hall for the collections. This led to the transfer of the Targioni Tozetti collection on loan to the Istituto e Museo di Storia della Scienza; it only returned to the University in 1989. Thus began the Museum’s period of stasis: visitors were lacking,
During the work to replace the hall’s wooden furnishings with metal ones (1960s).

Carobbi left teaching in 1971, replaced by Cipriani as head of the Institute and the Museum. In the same year, the University’s Board of Directors assigned an endowment of 30 million lire and specific personnel to the scientific museums. The increasing attention to the environment and its protection created new interest in naturalistic collections and their uses. Hence, the exhibits were revised and a series of educational display cases was planned and constructed in the limited space available. Various acquisitions were made for this purpose, such as the 28 kg iron meteorite from Chuapberos and various cut precious and semi-precious stones together with synthetic or artificial material widely used in jewellery. From the first half of the 1980s, museum staff members began to attend various courses and training sessions.
temporaneamente la ricerca (ma non sulle collezioni) gode di un momento felice, grazie all'attivo impegno di Carobbi, che crea di fatto la scuola fiorentina, impegnata su svariati fronti, quali ad esempio geochimica, cristallografia, mineralogia sistematica.

Nel 1971 Carobbi lascia l'insegnamento, sostituito da Cipriani alla guida dell'Istituto e del Museo. Nello stesso anno il Consiglio di Amministrazione dell'Università assegna una dotazione di 30 milioni di lire e personale specifico ai musei scientifici. La crescente attenzione all'ambiente e alla sua tutela crea un nuovo interesse nei confronti delle collezioni naturalistiche e della loro fruizione; si rivede quindi l'allestimento, progettando e realizzando, nel poco spazio disponibile, una serie di vetrine a carattere didattico. E proprio a questo scopo vengono fatte acquisizioni, come la meteorite ferrosa di Chupaderos di 28 kg o svariate pietre tagliate – preziose e non – insieme a materiale sintetico o artistico usato diffusamente in gioielleria. Dalla prima metà degli anni '80 il personale del Museo comincia a frequentare varie mostre dell'ambito scientifico, impegnandosi su svariati fronti, quali ad esempio geochimica, cristallografia, mineralogia sistematica.

Una svolta fondamentale arriva nel 1984, con l'unificazione (al momento solo formale) dei musei scientifici in una «confederazione» che prende il nome «Museo di Storia Naturale», ad indicare la continuità con l'istituzione che prese il nome di «Museo di Storia Naturale» a indicare la continuità con l'Istituzione. A facilitare la gestione delle collezioni – con oltre 28,000 esemplari presenti nella sola mineralogia – viene in questo periodo progettato e realizzato un programma per la catalogazione automatizzata che comporta un attento confronto dei dati (provenienza, nomenclatura, ecc.). Anche per questo motivo, a volte con la collaborazione del Dipartimento di Scienze della Terra, si realizzano numerosi studi sui campioni del Museo, verificando la correttezza delle attribuzioni e caratterizzando in modo più esaustivo alcune specie o gruppi di minerali. Questo fronte di ricerca, che continua tuttora, talvolta ha portato all'identificazione di nuove specie mineralogiche, i cui olotipi sono depositati in Museo (vedi Menchetti, in questo volume). La necessità di avere informazioni il più possibile dettagliate sul singolo esemplare ha stimolato la consultazione e lo studio dei cataloghi antiqui, portando a un conseguente lavoro di ricerca storica, esteso anche ad archivi e istituzioni extra universitarie. In questo modo, per molti esemplari è stato possibile ricostruire l'intera storia, dalle modalità di entrata in Museo, alla diversa collocazione in ostensione.

La politica di incremento delle collezioni per l'esposizione e per la ricerca – campioni con valenza estetica o esemplari rari – mette in evidenza il Museo e porta collezionisti e commercianti a offrire singoli esemplari, o, addirittura, intere collezioni.

Dopo una prima offerta del 1979, eccessiva per le possibilità economiche del Museo, nel 1987 viene riproposta la collezione Ponis – costituita da 2700 esemplari – per una cifra totale di quasi un miliardo di lire. Ovviamente la somma è proibitiva ma vengono comunque cercati finanziamenti all'esterno dell'Università, in particolare presso il Ministero e di istituti bancari locali. Inaspettatamente il Mi-
nistero concede un finanziamento straordinario. Nella collezione sono ben rappresentati i minerali del Brasile (oltre 1300 pezzi), mentre quelli italiani sono circa 550. Numerose sono le geodi di ametista, anche di dimensioni fino a 400 kg, ma si staccano sugli altri minerali le variopinte tormaline (quasi 200 esemplari) e un’acquamarina di quasi 100 kg, con alcune porzioni buone da taglio (vedi Pratesi e Bonazzi, in questo volume). L’arrivo di una tale quantità di esemplari di dimensioni così ragguardevoli, comporta una riorganizzazione dell’esposizione, che continua per anni, trovando un assetto definito nel 2003.

L’anno successivo entra in Museo un’altra raccolta, quella di Adalberto Giazotto, costituita da circa 400 campioni, essenzialmente di valore estetico. Nel 1990 vengono acquistati cir. 700 esemplari provenienti dalle miniere zaïresi dello Shaba: notevoli sono i campioni di malachite, con il caratteristico colore verde, e di sferocobaltite (Fig. 14), rosa intenso. Molti sono anche i minerali radioattivi, bellissimi, ma non collocabili in esposizione per motivi di sicurezza. Sempre nel 1990 l’attenzione del Museo è rivolta a una collezione di importanza scientifica notevolissima: è la raccolta di Nico Koekkoek, costituita da circa 3500 esemplari, in prevalenza micromount, rappresentativi di ben 2500 specie, di cui circa 1700 allora non presenti in Museo. Ancora 4600 esemplari, in massima parte italiani (soprattutto toscani e sardi), vengono donati al Museo dagli eredi di Giancarlo Brizzi, prematuramente scomparso nel 1992. Il tenente colonnello Brizzi, in venticinque anni di attività appassionata, ha riunito una splendida collezione di grande valore scientifico con esemplari perfettamente caratterizzati, anche con la collaborazione dei ricercatori del Centro CNR di Mineralogia.

Nel 1998 il Museo acquisisce la collezione Piccolomini – Pratesi, costituita da 90 esemplari di rilevante valore estetico, provenienti da Italia, Marocco, USA e Messico.
Alla fine degli anni ’90 si ha un momento felice anche per quanto riguarda il personale: infatti, ma solo per pochi anni, il Museo raggiunge finalmente un sufficiente organico, potendo avvalersi dell’opera di ben sette tecnici specializzati, necessari per la corretta gestione delle collezioni in questo periodo di forte incremento.

Il Museo di Storia Naturale, a partire dal 1999, inizia a ideare e realizzare mostre tematiche (Fig. 15); per la prima – «La Natura del Colore, il Colore della Natura» – vengono acquistati in occasione delle mostre mercato, diversi esemplari, quali le splendide fette di tormalina del Madagascar e gli esemplari con spettacolare fluorescenza UV.

In seguito (nel 2002) si registra un’altra iniziativa, questa volta per mettere in evidenza esemplari e curiosità del Museo di Storia Naturale. Alla mostra «Tesori nascosti. Curiosità del Museo di Storia Naturale dell’Università di Firenze», la Mineralogia contribuisce con numerosi esemplari in genere non visibili al pubblico, quali ad esempio il tavolo piccolo a intarsi di pietra dura di epoca medicea, una testina etrusca dalla collezione Targioni Tossetti, un cofanetto in velluto contenente pietre ornamental appartenuivo a Vittorio Emanuele III di Savoia (Fig. 16).

Nel 2003 notevole è stato l’impegno per la realizzazione di un’altra mostra corale del Museo: «Il Tempo della Natura. Ciclicità e irreversibilità dei fenomeni naturali». La Mi-
Fig. 16 Cofanetto in velluto contenente pietre ornamental appartenuto a Vittorio Emanuele III di Savoia.

Fig. 16 A velvet jewel box containing ornamental stones that belonged to King Vittorio Emanuele III.

Mineralogia ha approfondito i temi della formazione delle rocce, della cristallizzazione dei minerali e del polimorfismo.

Sempre nel 2003, alla fine del mandato di Cipriani, a capo sia della Mineralogia che del Museo di Storia Naturale, si ha la conclusione del processo di unificazione che porta i Musei scientifici universitari ad essere una struttura unica ed indipendente, non più confederativa.

Dal 2004, dopo un anno di gestione commissariale condotta dal Prof. Piergiorgio Malesani (affiancato da un Comitato Scientifico composto dal Prof. Vincenzo Schettino e Prof. Guido Chelazzi), il regolamento del Museo viene modificato profondamente, seguendo i dettami del Codice dei Beni Culturali, al fine di rendere la struttura più adeguata a sostenere le sfide del nuovo millennio. Sotto la presidenza di Giovanni Pratesi tanti progetti e tante iniziative sono stati realizzati: l’adeguamento dei cataloghi informatici agli standard nazionali, la rivalutazione inventariale delle collezioni inventariate da Carobbi e, evidente anche per il pubblico, il rifacimento dell’intera parte espositiva.

(The Time of Nature. Cyclicity and irreversibility of natural phenomena). Mineralogy dealt with the subjects of rock formation, crystallization of minerals and polymorphism.

Still in 2003, at the end of Cipriani’s mandate as head of both the Mineralogy Section and the Museum of Natural History as a whole, the process of unification that made the university’s scientific museums a single independent (and no longer confederative) structure was completed. From 2004, after a year of management by a chancellor-appointed commissioner (Prof. Piergiorgio Malesani, assisted by a Scientific Committee composed by Prof. Vincenzo Schettino and Prof. Guido Chelazzi), the Museum regulations were deeply modified according to the dictates of the Codice dei Beni Culturali in order to make the structure more suitable to face the challenges of the new millennium. Many projects and initiatives were realized under the presidency of Giovanni Pratesi: the adaptation of the computerized catalogues to the national standards, the stocktaking of the collections inventoried by Carobbi, and, evident also to the public, the reconstruction of the entire display.