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Foreword
Giovanni Seminara, Stefano Lanzoni, Nicoletta Tambroni

In the previous Monograph (Seminara et al., 2023) we have laid down, in a coherent fashion,
the foundations of the theory of morphodynamics of fluvial sedimentary patterns and discussed
its applications to the morphodynamics of straight channels. The knowledge we have built up is
the appropriate starting point to apply our analysis to the two main classes of river planforms,
namely meandering and braiding, encountered in nature. The present Monograph restricts its
attention to meandering rivers, leaving to a future Monograph the task to assess the available
knowledge on braiding rivers. Hereafter, any Chapter, Section, Equation, or Figure of the previous
Monograph will be distinguished from those of the present Monograph by adding the suffix (I), e.g.
Section 1.2 of the previous Monograph will be referred to as Section 1.2(I). As the contents of this
book are a follow up of the previous Monograph, we are equally indebted to the members of the
’enlarged Genoa group’ as well as to the outstanding colleagues mentioned in Acknowledgments
(I), for sharing with us ideas, friendship, and enthusiasm. We are also particularly grateful to the
several scientists who granted us their permission to use figures contained in their dissertations or
provided us with modified versions of figures contained in their published material. Let us list
them.

- Jorge Abad kindly granted us his permission to use Figure 3.8 of his PhD Dissertation;
- Giovanni Cecconi kindly made Figure 13 available to us;
- Esther Eke kindly granted her permission to use Figures 3.11 and 3.13 of her PhD Dissertation;
- Theodore Fuller kindly granted his permission to use Figure 2.9 of his PhD Dissertation;
- Kory Konsoer kindly granted us his permission to use Figures 3.1, 3.5 and 5.5 of his PhD

Dissertation;
- Rossella Luchi kindly granted her permission to use Figures 4.2, 4.6, 4.7, and 6.23 of her PhD

Dissertation. Rossella also made Figures 116 and 117 available to us;
- Jagriti Mishra kindly granted her permission to use Figures 2.1 and 2.10 of her PhD

Dissertation;
- Federico Monegaglia kindly granted his permission to use Figures 6.8 and 6.27 of his PhD

Dissertation and made Figure 120 available to us;
- Yarko Nino kindly granted his permission to use Figures 6.23 and 6.24 of his MSc Dissertation;
- Elli Papangelakis kindly made available to us Figure 132;
- Jonathan Schwenk kindly granted his permission to use Figure 4.13 of his PhD Dissertation;
- Luca Solari kindly provided Figure 81;
Thanks are also due to two anonymous Referees. Their reviews of our original manuscript

suggested splitting the book into two distinct monographs (the present monograph and the previous
one). Implementing this suggestion has largely improved readability and clarity of the contents of
the monographs.

Finally, our families have supported our efforts and fully deserve that this book be dedicated
to them.

Giovanni Seminara, University of Genoa, Italy, giovanni.seminara@unige.it, 0000-0002-0360-2029
Stefano Lanzoni, University of Padua, Italy, stefano.lanzoni@unipd.it, 0000-0002-6621-2386
Nicoletta Tambroni, University of Genoa, Italy, nicoletta.tambroni@unige.it, 0000-0002-2952-7290
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1. Introduction

1.1. Early interest in meandering

The word meander is the English version of the Latin word maeander (Mαίανδϱoς in ancient
Greek), the name of a sinuous river flowing in the southwestern region of the modern Turkey
(Figure 1).

Figura 1. Satellite image of the Büyük Menderes river, which flows in the southwestern region of the modern
Turkey. Its sinuous course and its original name (maeander in latin) are the origin of the meaning of the modern

word meander. Source: Google Earth: lat. 37◦ 49’ 04” N; lon., 27◦ 40’ 13” E.

In modern times, this river is called Büyük Menderes, it flows west through the Büyük Menderes
graben and debouches into the Aegean Sea, south of Izmir and not far from the ancient Ionian
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Stefano Lanzoni, University of Padua, Italy, stefano.lanzoni@unipd.it, 0000-0002-6621-2386
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Theoretical Morphodynamics: River Meandering

city of Miletus. Since the time of Classical Greece the word meander has then been employed to
describe sinuous rivers and winding patterns.

Various features of meandering rivers, notably their ubiquitousness and their striking regularity,
have long attracted the attention of historians (Xenophon, circa 370 B.C.; Titus Livius, 9 B.C.),
geographers (Strabo, around 10 A.D.), poets (Ovidio, 8 A.D.) and painters. Among the latter
a prominent role was played by Leonardo, who paid particular attention to the course of the
Arno River, both for scientific interest and for engineering purposes. Leonardo’s observations
of meandering patterns are reported in the form of sketches in many of his codices (e.g. Figure
2). We have not found in Leonardo’s sketches any sign suggesting that he had already captured

Figura 2. Map conserved at the Royal Collection of Windsor (RL 12279): this is one of Leonardo’s sketches showing
the planform of the Arno River downstream of Florence (Credit: Royal Collection Trust / © His Majesty King

Charles III 2023).

characteristic morphological features of river meanders (e.g. upstream skewing of meander loops)
that will be detected in modern observations. However, this aspect would deserve to be further
explored.

1.2. Meandering as one of the possible fluvial patterns in sedimentary environments

In our previous Monograph (Seminara et al., 2023), we have pointed out the ubiquitous nature
of the bar unit as the fundamental building block of fluvial sedimentary patterns. This led us to
investigate in depth the origin and development of bars in straight channels. The most striking
feature of the bar unit is that it gives rise to the winding of the thread of high velocity: hence, the
tendency of the stream to follow a meandering path is an ubiquitous feature of fluvial patterns in
straight, meandering and braiding rivers.

In particular, the presence of a single row of bars is a major ingredient of meandering rivers.
However, this feature does not tell the whole story about the nature of river meandering. In other
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words, meandering is not simply associated with a winding thalweg. What distinguishes meandering
from straight channels is the fact that in a meandering river the channel axis follows a winding
path, hence menders form and evolve in response to planform forcing.

Channel curvature adds additional features to the hydrodynamics and morphodynamics of
straight channels. In particular, an additional, curvature driven, component of secondary flow
arises and contributes to the accumulation of sediments in the inner part of the bend and to
bottom scour at the outer portion of the bend. The sequence of riffles and pools thus formed looks
very similar to the single row of bars which forms in straight channels with non-erodible banks
(Figure 3). However, a major difference exists between alternate bars and the so called point bars
observed in meandering rivers: typically alternate bars migrate slowly downstream, whereas point
bars are quasi-steady features which keep attached to the bends.

Figura 3. Sequence of point bars displayed by the meandering White River (Indiana, USA). (Credit: Google Earth:
lat 39◦ 20’ 44” N; lon. 86◦ 38’ 06” W).

The fact that alternate bars are intrinsically distinct from point bars is demonstrated by a
major observation originally made by Kinoshita and Miwa (1974): the two patterns may coexist
in weakly meandering channels where alternate bars migrating through the meandering channel
have been observed both in the field and in the laboratory (e.g. Figure 4).

The above observations suggest that the knowledge we have established on the issue of why
and when alternate bars form in straight alluvial channels does not answer the question of why and
when meanders form. We will see that the two issues are somehow related to one another but they
are distinct. The theory we will discuss in Chapters 4 and 5 provides answers to both questions
and clarifies the conceptual distinction between the formation of alternate bars and meanders.

Just like bars, meandering also arises from an instability process. However, in the meander case,
it is the occurrence of perturbations of the channel planform to trigger instability. The response of
flow and bed topography to spatially periodic perturbations of the channel alignment essentially
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Figura 4. Satellite observations of the downstream shift of alternate bars migrating through the Rio Xingu (Brazil).
Contours show the annual position of bare sediment (reproduced from Figure 6.27 of Monegaglia, 2017).

consists of the development of a sequence of point bars. Depending on the wavelength of planform
perturbations the response of the flow may, in turn, promote further erosion of the outer bends
and accretion at the inner bends, leading to meander growth and meander migration. This overall
process is intermittent but, on large time scales, it may be viewed as a continuous process which
leads from incipient meander formation (meander birth) to the disappearance of the meander loop
(meander death) and the re-initiation of the whole cycle.

Again, planform instability is the crucial mechanism but it does not tell the whole story of
meander formation. A second major ingredient is needed in order for the channel to maintain its
coherence, i.e. its ability to grossly conserve its width throughout the planform evolution process.
This ingredient is the presence of some apparent or real cohesion of the banks, brought up by the
presence of vegetation or by a bank composition comprising a significant mud-clay content. In the
absence of any of the latter features, i.e. with purely cohesionless banks, laboratory observations
show that an initial straight channel invariably evolves into a braiding pattern.

But let us go back to meander evolution. Although meanders are obviously not living organisms,
however the picture they offer in the field suggests that they typically undergo a life cycle.

1.3. The life cycle of alluvial meanders

What triggers meandering initiation in alluvial rivers is the occurrence of some initial per-
turbation of the planform configuration. Often such perturbation arises as a consequence of the
death of a previous meander (Figure 5). Meanders then grow and migrate downstream. Field
observations (e.g. Nanson and Hickin (1983)) show that, typically, as meanders develop, the
downstream migration speed of meander trains decreases monotonically down to very small values
at the late development stage. While migrating, bends amplify and the rate of bend amplification
grows up to a peak and then slowly decays. As a result, meanders lengthen continuously so that
the channel sinuosity, defined as the ratio between meander intrinsic wavelength and meander
cartesian wavelength, also increases. Values of channel sinuosity of mature meanders of alluvial
rivers fall typically in the range 2-3.

Meanders develop mature shapes (e.g. Figure 6) that display a variety of interesting features.
They may form either single or multiple loops, as well as compound bends.

A first successful mathematical representation of the shape of single loops was suggested by
Langbein and Leopold (1966) based on an analysis of the planform shape of the Mississippi at
Greenville. These Authors called such a representation a sine generated shape. Essentially, they
noted that it is the curvature rather than the lateral coordinate of the channel axis to exhibit
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Figura 5. Typical examples of meandering pattern: the Alatna River (Alaska) showing juvenile meanders arising
after the abandonment of mature loops (Google maps, lat. 67◦ 21 ’18.4" N; lon. 153◦ 40’ 04.2" W).

a) b)

d)

c)

e) f)

g)

c)

h)

Figura 6. Typical examples of bend shapes observed in meandering rivers. (a) Upstream- and (b) downstream-
skewed bends, (c-f) compound bends, and (g,h) multiple loops. The river locations are: northern Papua New

Guinea (a-c), Alaska (Porcupine River) (d,e), Peru (Rio Madre de Dios) (f), western Canada (g), and Peru (h).
The images have been obtained from the Landsat mosaic image Web sites: https:// zulu.ssc.nasa.gov/mrsid/

(a,b,c,g, and h) and http://glcfapp.umiacs.umd.edu/ (Figures d-f). The arrows indicate flow direction (reproduced
from Frascati and Lanzoni, 2009).
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a sinusoidal dependence on the longitudinal intrinsic coordinate. More precisely, Langbein and
Leopold (1966) suggest that single meander loops are generated by a sine curve defined by the
following equation:

ϑ = ϑ1 sinλ(s− s0). (1)

Here ϑ is the angle that the tangent to the channel axis forms with the axis of the valley, s is the

Figura 7. Langbein and Leopold’s fitting of the sine generated curve on the shape of a meander of the Mississippi
River at Greenville (modified from Langbein and Leopold, 1966).

intrinsic longitudinal coordinate and λ (≡ 2π/Ls) is the intrinsic meander wavenumber, with Ls

intrinsic meander wavelength. Moreover, ϑ1 is an amplitude parameter which controls the amount
of horseshoe looping. Recalling that the curvature of the channel axis C(s) is defined as −∂ϑ/∂s,
it follows that channel curvature also obeys the sine generated shape suggested by Langbein and
Leopold (1966). There are, of course, plenty of irregular meanders in nature (see Figure 6d-h)
but those that are fairly regular do conform reasonably to the sine generated shape, as shown by
Figure 7.

The above fit is overall fairly satisfactory but fails to reproduce two important features that
meanders develop as they evolve, namely fattening and skewing of their shape. This was noted
long before Langbein and Leopold (1966)’s paper by Kinoshita (1961) who suggested a slightly
modified form of the sine generated curve which is now known as Kinoshita curve. It reads:

ϑ = ϑ1 sin(λ s) + ϑ3r cos(3λ s) + ϑ3i sin(3λ s). (2)

Here, corrections of the sine generated shape include terms proportional to the third harmonics of
the fundamental spatial oscillation. Fattening and skewing of the meander loop do arise from these
third harmonics. Fattening is associated with negative values of ϑ3r (Figure 8 c,d) and upstream
(downstream) skewing with positive (negative) values of ϑ3i (Figure 8 e-h).

It is sometimes stated that one can infer from an aerial photo what is the flow direction of a
meandering river, simply assuming that meanders are upstream skewed. While this statement
certainly applies to the regular meander train depicted in figure 7, Figures 6 and 9 show that river
patterns may develop multiple loops, comprising single loops that may display both downstream
and upstream skewing. Figure 9 also shows that the final stage of meander development, which
closes the meander cycle, is meander death. Death typically occurs as the meander loop is
abandoned in favor of a hydraulically more efficient fluvial path through a process called neck
cutoff. The abandoned loop forms a so called oxbow lake, i.e. a pond separated from the river,
which is eventually buried into the valley plain.

An alternative way meander loops may choose to die is through the mechanism of the so called
chute cutoff. In this case the meander loop is bypassed by a new channel that cuts through the

12

Introduction

Figura 8. Typical shapes of meander bends generated through the Kinoshita curve (2). The curves have been
computed setting ϑ1 = 4/π and using the following couples of values for the skewing and fattening coefficients,

ϑ3r, ϑ3i: (a) 0.13,0.5; (b) 0.13,0.25; (c) 0.13,-0.25; (d) 0.13,-0.5; (e) -0.4,0; (f) -0.2,0; (g) 0.2,0; (h) 0.4,0.

Figura 9. Typical example of meandering patterns: Chinchaga River, Alberta (Canada) showing several features of
mature meandering, namely skewing, fattening, multiple loops, oxbow lakes, incipient neck cutoff and abandoned

loops. (Credit: Google Earth. lat., 58◦ 46’ 29.24” N; lon., 118◦ 23’ 35.04” O)

portion of the floodplain enclosed by the loop (Figure 10). For this process to occur, unlike in
the case of neck cutoff, the floodplain adjacent to the channel must be inundated. The chute
incision leads to channel shortening, enhanced downstream sediment delivery, and a consequent
rearrangement of the meandering pattern. The original meander loop is usually filled with sediments
and disappears but it may also survive.

The picture depicted above applies whenever the alluvial river is able to develop without any
geological constraint. A striking example of the effects of a geological constraint is the presence of
confining valley walls that reduce the lateral degree of freedom of meander evolution. Preventing
free meander amplification, lateral constraints lead to a sort of highly skewed equilibrium meander
train like the one observed in the Beaver river (Canada) (Figure 11).

Note that, in the absence of geological constraint, no equilibrium meandering pattern has ever
been detected and theoretical arguments do support the latter observations.

Each stage of meander development outlined above has distinct characteristics and poses
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Figura 10. Formation of chute cutoffs in a meandering river. Yukon River, Alaska. (Google Earth, lat. 61◦ 59’ 50.9"
N; lon. 160◦ 01’ 37.5" W).

Figura 11. The equilibrium meander train formed in the Beaver river (Canada) whose planform evolution is
constrained by the valley walls. (Credit: Google Earth. lat. 54◦ 22’ 49.6" N; lon. 110◦ 15’ 36.9" W).

challenging problems of physical and mathematical interpretation that will be dealt with in the
various chapters of the present Monograph. However, before we outline our program, let us make
a short digression to emphasize how general is the occurrence of meander patterns in terrestrial
and even in planetary environments.

1.4. Ubiquitousness of meandering patterns in nature

In the previous section we have invariably referred to alluvial rivers, which is undoubtedly the
environment which our collective imagination associates most frequently to meandering patterns.
However, meandering is an ubiquitous feature in many other environments. Let us have a brief
glance at some interesting examples.

Incised meanders in bedrock

As discussed in Chapter 7 of Seminara et al. (2023), river channels grossly fall into two main
categories, namely alluvial and bedrock channels. In spite of the absence of an alluvial bed and of
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Figura 12. The spectacular sequence of meanders of the San Juan River in southeast Utah. This river incised
straight down for several hundred feet while maintaining a highly sinuous and regular pattern. Elevation increases

from dark to light. (Google Maps, lat. 37◦ 09’ 39.2" N; lon. 109◦ 55’ 31.6" W).

the bedform patterns associated with it, bedrock channels display some of the most spectacular
meandering patterns observed in nature (Figure 12).

The available knowledge on bedrock meanders, including the known attempts to understand
their origin, will be discussed in Section 6.2.1. It suffices here to note that meanders in rock are
purely erosional features, hence the essential process governing river incision is the mechanism
of bedrock erosion. As discussed in Chapter 7 of Seminara et al. (2023), a variety of erosion
mechanisms have been explored in recent years and the subject has progressed significantly. This
notwithstanding, attempts at modeling the actual process whereby the spectacular meandering
patterns depicted in Figure 12 develop from an initially flat floodplain, are still in their infancy.

Tidal meanders

Transitional environments (estuaries and lagoons) host equally fascinating meandering patterns
(Figure 13). The characteristics of tidal meanders are similar to those of fluvial meanders, with
tidal bars and bank cohesion playing a similar role. However, tidal meanders also exhibit features
distinct from those of alluvial rivers. This is not surprising as tidal flow, unlike fluvial flow, is
oscillatory and, in tide dominated environments, its direction changes every half a cycle. Moreover,
the longitudinal characteristics of tidal channels vary on a spatial scale which is much smaller than
in the fluvial case.

In spite of an apparently striking dissimilarity of the governing processes, planform dimensions
of tidal and fluvial meanders consistently scale with local channel width. Moreover, once normalized
by channel width, observed migration rates of tidal and fluvial meanders are remarkably similar.
Indeed, also tidal meanders may be obliterated by neck cutoffs (Figure 14). Essentially, meandering
tidal channels recapitulate many fluvial counterparts owing to large gradients of tidal prisms across
meander wavelengths (Finotello et al., 2018).
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various chapters of the present Monograph. However, before we outline our program, let us make
a short digression to emphasize how general is the occurrence of meander patterns in terrestrial
and even in planetary environments.

1.4. Ubiquitousness of meandering patterns in nature

In the previous section we have invariably referred to alluvial rivers, which is undoubtedly the
environment which our collective imagination associates most frequently to meandering patterns.
However, meandering is an ubiquitous feature in many other environments. Let us have a brief
glance at some interesting examples.

Incised meanders in bedrock

As discussed in Chapter 7 of Seminara et al. (2023), river channels grossly fall into two main
categories, namely alluvial and bedrock channels. In spite of the absence of an alluvial bed and of
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Figura 12. The spectacular sequence of meanders of the San Juan River in southeast Utah. This river incised
straight down for several hundred feet while maintaining a highly sinuous and regular pattern. Elevation increases

from dark to light. (Google Maps, lat. 37◦ 09’ 39.2" N; lon. 109◦ 55’ 31.6" W).

the bedform patterns associated with it, bedrock channels display some of the most spectacular
meandering patterns observed in nature (Figure 12).

The available knowledge on bedrock meanders, including the known attempts to understand
their origin, will be discussed in Section 6.2.1. It suffices here to note that meanders in rock are
purely erosional features, hence the essential process governing river incision is the mechanism
of bedrock erosion. As discussed in Chapter 7 of Seminara et al. (2023), a variety of erosion
mechanisms have been explored in recent years and the subject has progressed significantly. This
notwithstanding, attempts at modeling the actual process whereby the spectacular meandering
patterns depicted in Figure 12 develop from an initially flat floodplain, are still in their infancy.

Tidal meanders

Transitional environments (estuaries and lagoons) host equally fascinating meandering patterns
(Figure 13). The characteristics of tidal meanders are similar to those of fluvial meanders, with
tidal bars and bank cohesion playing a similar role. However, tidal meanders also exhibit features
distinct from those of alluvial rivers. This is not surprising as tidal flow, unlike fluvial flow, is
oscillatory and, in tide dominated environments, its direction changes every half a cycle. Moreover,
the longitudinal characteristics of tidal channels vary on a spatial scale which is much smaller than
in the fluvial case.

In spite of an apparently striking dissimilarity of the governing processes, planform dimensions
of tidal and fluvial meanders consistently scale with local channel width. Moreover, once normalized
by channel width, observed migration rates of tidal and fluvial meanders are remarkably similar.
Indeed, also tidal meanders may be obliterated by neck cutoffs (Figure 14). Essentially, meandering
tidal channels recapitulate many fluvial counterparts owing to large gradients of tidal prisms across
meander wavelengths (Finotello et al., 2018).
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Figura 13. A fascinating image of a network of meandering channels in Venice lagoon. Courtesy of G. Cecconi.

Figura 14. Neck cutoffs of two meander loops in the Pagliaga salt marsh of Venice lagoon are clearly detected
comparing a picture taken in (a) 1954 with the corresponding picture taken in (b) 2010.

However, statistical analysis of meandering patterns extracted from satellite images indicate
that tidal and fluvial meanders disclose fingerprints of the different physical processes they are
shaped by (Marani et al., 2002; Finotello et al., 2020). Specifically, the Kinoshita shape does not fit
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tidal meanders due to the presence of even harmonics and skewness of meander loops is not clearly
detectable. Overall tidal meanders are less morphologically complex and display more spatially
homogeneous characteristics as compared to fluvial meanders. This finding can be explained by
the quite regular action exerted by repeated tides in carving tidal meanders, as well as by the
higher lithological homogeneity of the substrates they typically cut through.

The above findings are based on the analysis of planform geometries and, at the moment, lack
a well established theoretical explanation. Tidal Morphodynamics is thus an important chapter of
Theoretical Morphodynamics that will deserve a specific Monograph of the present Series.

Meanders of turbidity currents

As discussed in the Introductory Monograph (Blondeaux et al., 2018), turbidity currents are
sediment-laden flows that transport large amounts of sediments from the coastal region into and
across the continental shelf, where they incise the submarine hillslopes and form giant submarine
fans at the foot of the shelf. The fans are cut by extensive submarine channels where billions of
tonnes of sediment may be transported. Typically, submarine channels are highly sinuous (Figure

Figura 15. The giant turbidity current cutting the submarine fan of the Congo River (Congo Democratic Republic)
displays a meandering planform (reproduced from Azpiroz-Zabala et al., 2017, open access under the terms of the

Creative Commons CC BY license).

15) and channel curvature drives significant secondary currents. The structure of these secondary
flows is affected by an effect that is not present in the fluvial case, namely a lateral pressure
gradient due to cross-flow variations in flow stratification. The complexity of the flow-sediment
field leaves several unsettled issues, still subject to intense debate (Azpiroz-Zabala et al., 2017).

The formation of meandering turbidity currents is also affected by their ability to build up
self-formed levees through flow-sediment exchange with the surrounding submarine fan. Self
confinement prevents spreading and contributes to determine the ability of turbidity currents to
persist over enormous longitudinal distances. Erosion of the outer bank and deposition at the
inner bank are also observed and may lead to significant lateral channel migration.
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Supraglacial Meanders

The ablation zone of glaciers and ice sheets exhibits the presence of networks of channels cut
by surface meltwater during the summer season. The resulting supraglacial streams typically
follow meandering paths. Supraglacial meandering is due to a mechanism of lateral melting and
consequent lateral channel migration, driven by channel curvature which enhances heat transfer to
the surrounding ice at outer bends. Supraglacial meanders have characteristics similar to those
of alluvial meanders (Parker, 1975). Their wavelengths scale with channel width, with a rough
estimate for meander wavelength as equal to eight times channel width. They also experience

Figura 16. Supraglacial meanders on the Mendenhall Glacier, Alaska (credit: Mendenhall glacier streams-Bing
images).

downstream migration (Karlstrom et al., 2013) and neck cutoffs (Knighton, 1981).

Planetary Meanders

The occurrence of sedimentary patterns, and in particular of fluvial meanders, has also been
discovered in other planets of the solar system. This is a topic of major interest as it may contribute
to clarifying the distribution in space and time of liquid water in other planets. The discovery
of landform complexes whose characteristics (planform and altimetry, structure, and erosional
features) are suggestive of materials deposited within an aqueous sedimentary environment, have
been reported in the recent literature. Figure 17 shows a sequence of tight meander bends at the
Edge of the Aeolis Planum region of the Mars planet. Matsubara et al. (2014) note the presence of
apparent cutoffs and parallel lineations that resemble scroll bar deposits in terrestrial meandering.
The formation of multiple loops is also notable. Matsubara et al. (2014) point out that the
above observations substantiate the idea that meandering channels can develop in the absence of
vegetation. From an analysis of terrestrial rivers that show little vegetation cover, they conclude
that bank cohesion, required to promote meandering, may be provided by an unusually high
content of mud (silt/clay) (41% in the meandering Quinn River, Nevada, USA) whose flocculation
and deposition may be induced by the presence of dissolved salts in river waters. On the contrary,
the role of permafrost in promoting cohesion did not emerge from observations of the sinuous
Usuktuk River near Barrow, Alaska, which exhibited no exposed permafrost on its stream banks.

18

Introduction

Figura 17. Fossil highly sinuous inverted meandering channel and floodplain at the Edge of Aeolis Planum of the
Mars planet. Relief inversion is the effect of wind erosion, whereby finer sediments are removed from the floodplain
and the channel bed turns into a ridge. Note the remnants of previous meander loops and the neck cutoff possibly

occurred shortly before flow ceased (Howard, 2009) (Credit: NASA/JPL-Caltech/UArizona, HIRISE image
PSP_006683_1740).

The Authors conclude that the former mechanism was likely responsible for the formation of Aeolis
Dorsa Martian meanders.

Many issues arise when one attempts to understand what geophysical conditions were in place
when sedimentary patterns so strikingly similar to terrestrial ones formed. This makes the subject
of Planetary Morphodynamics extremely fascinating and, not surprisingly, such to attract the
interest of some of the best scientists in the morphological community.

1.5. Plan of the Monograph

The present Monograph is intended for a reader at the postgraduate level who has been exposed
to the content of the previous Monograph (Seminara et al., 2023). There, we have assessed the
available knowledge on the hydrodynamics and morphodynamics of straight channels, exploring
the notion of equilibrium channels and their response to large scale perturbations of the bed
topography leading to the development of free and forced bars.

In the present Monograph, we move to analyze the response of channels to perturbations
of the planform shape. This is a complex issue that requires various preliminary steps. The
first step is to analyze the flow perturbations induced by the curvature of the channel axis in
channels with assigned bed topography. This analysis is presented in Chapter 2 and can be
pursued analytically in mildly curved bends, which are frequently encountered in nature. The main
outcome of this analysis is the prediction of the 3D structure of the two components of secondary
flow. The curvature driven component arises from the need to compensate for the in-balance
between vertically increasing centrifugal force and constant lateral pressure gradient acting on
fluid particles; the topographically driven component arises from pure continuity requirements.
The case of sharp bends is not amenable to simple analytical treatment and displays a number of
novel features, most notably the possibility of flow separation at the inner bends and the formation
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fluid particles; the topographically driven component arises from pure continuity requirements.
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of secondary cells at the outer bends.
The second step is to understand the morphodynamic consequences of the occurrence of

secondary flows, namely the formation of forced bars, consisting in the accumulation of sediments
at the inner bends, coupled with the bed scour experienced by the outer bends. This analysis,
pursued in Chapter 3, is again analytically feasible in the case of mildly curved bends, whilst
numerical analysis, laboratory and field observations are the appropriate tools for the case of sharp
bends.

At this stage, the reader has acquired some understanding of flow and bed topography in
curved channels. This is the appropriate starting point to proceed to the planform stability
analysis discussed in Chapter 4. Essentially, one looks at flow-topography response of the initially
equilibrium channel to harmonic perturbations of the channel alignment and seeks conditions such
that bank erosion reinforces the planform perturbation. This will require to establish some erosion
rule coupling bank erosion to perturbations of the flow field relative to the basic equilibrium state.
A number of interesting features arise. In particular, planform perturbations may resonate with
the natural bar response of the channel. Moreover, the presence of a meandering channel reach
may be morphodynamically felt either downstream or upstream, through forced bar oscillations.
Finally, the theory allows for the analysis of the interaction between free and forced bars and
shows that alternate bars are unable to migrate through meandering channels when their curvature
exceeds some threshold value.

The reasonable success achieved with the help of the general formulation proposed above has
encouraged various Authors to extend it to the prediction of the planform evolution of meandering
rivers. This is discussed in Chapter 5. We first derive an integro-differential equation of planform
evolution in intrinsic coordinates, that requires to be coupled with some erosion rule relating the
intensity and location of bank erosion to the perturbation of the flow field. The solution of this
equation in the linear regime confirms the nature of meander formation as an instability process. A
complete analytical solution is then obtained to describe the nonlinear evolution of the meandering
channel from incipient meandering to neck cutoff, displaying the fattened and skewed shape of
mature meander bends associated with Kinoshita shape and even compound loops of the kind
displayed in Figure 9. The only feature that does not naturally emerge from those numerical
simulations is the occurrence of chute cutoffs: they are then discussed separately at the end of the
chapter. Theory also shows that meanders of permanent form do not exist. To proceed beyond
neck cutoff and investigate the long-term evolution of meandering, numerical simulations are
needed. They show that in the long term the reach averaged channel sinuosity tends asymptotically
to a dynamical stationary state characterized by fluctuations around a constant value, essentially
controlled by the occurrence of neck cutoffs. The existence of seemingly universal features of
meander behavior has stimulated several attempts to apply modern paradigms of complexity to
meander evolution, that are critically reviewed. This completes the theory of fluvial meandering
in the alluvial case and for uniform sediments.

The latter two constraints are relaxed in Chapter 6.
We know from Chapter 7(I) that the heterogeneous character of fluvial sediments gives rise to a

number of so called sorting effects. In particular, in Section 6.1.1 we will see that field observations
show that point bars on the inside of bends tend to be finer than the pools at the outer bends.
Moreover, the upper parts of point bars display a tendency to be coarser upstream and finer
downstream. We will review few contributions aimed at providing a theoretical explanation of the
latter observations. It turns out that sorting in meandering rivers has so far been interpreted in
terms of the dependence of the lateral tangential component of particle weight on particle size.
However, available models do not appear to be fully satisfactory, even if one restricts oneself to
the case of dominant bedload.

In Section 6.2 we then relax the alluvial constraint and discuss the morphodynamics of meanders
in mixed bedrock-alluvial channels, in the light of the general formulation for the morphodynamics
of mixed alluvial-bedrock channels discussed in Chapter 7(I). The Section ends with some thoughts
on the open issue of how meanders incise bedrocks.

The final Chapter of the Monograph is devoted to a glance at the future.
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2. Hydrodynamics of sinuous channels

In this Chapter we concentrate on the hydrodynamics of fixed bed bends and introduce the
reader to the variety of physical mechanisms which arise when an incompressible fluid flows in a
curved open channel, at sufficiently large Reynolds numbers for the flow to be fully turbulent.

2.1. Dimensional formulation

2.1.1 Curved channels

We consider a curved open channel with the following characteristics (Figure 18).

- The channel axis is a curved line in the 3-D space. Below, we refer the flow to an orthogonal
system of coordinates (s, n and z, respectively). The longitudinal s axis is curvilinear and is
the projection of the channel axis onto a horizontal plane. The transverse rectilinear axis n is
horizontal and orthogonal to the s axis. The s, n, z system is characterized by the following
metric coefficients:

hs =
r0(s) + n

r0(s)
, hn = 1, hz = 1. (3a,b,c)

Note that hs accounts mathematically for the fact that if one walks in the longitudinal
direction along the s coordinate line, the distance he travels increases as the lateral coordinate
increases. Indeed, hs measures the ratio between the longitudinal arc length at the lateral
coordinate n and the corresponding arc length at the channel axis (Figure 18c).

- The radius of curvature of the longitudinal axis is a function of the longitudinal coordinate:
hence r0 = r0(s).

- The channel cross sections, defined as the intersections of the channel with planes orthogonal
to the channel axis, are assumed to have constant width (2B).

- The channel bed as well as the channel banks are non erodible.

These assumptions require some comments in order to fully appreciate a few subtle implications.
The first note concerns the channel axis. In nature, the axis is a line which does not lie on a
plane, hence, besides exhibiting a bending curvature, it is also characterized by some (albeit fairly
weak) degree of torsion. We have chosen an orthogonal coordinate system defined on a horizontal
plane, thus avoiding the formal complications that would arise adopting an intrinsic coordinate
system tied to the channel axis. As discussed below, this approach is definitely much simpler.
However, a small complication arises: since the longitudinal axis lies on a horizontal plane, the
basic uniform state, besides a dominant longitudinal component, will include a small vertical
component. The second note refers to the notion of channel width. A stage independent channel
width is unambiguously defined for rectangular channels. In nature, the notion of channel width is
less obvious: if it is identified with the width of the free surface at the given cross section, then it
is in general a stage dependent quantity. We will come back to this issue further on, whilst, for the
time being, we restrict ourselves to the case of rectangular channels.
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of secondary cells at the outer bends.
The second step is to understand the morphodynamic consequences of the occurrence of
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Figura 18. Sketch of a sinuous open channel and notations.

2.1.2 Governing equations

The mathematical formulation of the hydrodynamic problem is obtained, as discussed in
Chapter 2(I), imposing the mass conservation and the momentum principle for the fluid phase,
along with appropriate boundary conditions at the free surface, at the channel bottom and at
the channel banks. Moreover, the initial state of the system must be assigned. The choice of
the governing equations depends on how detailed we wish the description of the turbulent flow
field to be. Although the use of LES (Large Eddy Simulation) techniques have been proposed for
detailed simulations of morphodynamic processes (van Balen et al., 2009; Nabi et al., 2012), for
the purposes of bend morphodynamics it is most often sufficient to rely on a Reynolds averaged
formulation.
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Conservation equations of mass and momentum of the fluid phase.

Let us write the dimensional form of the Reynolds averaged mass and momentum conservation
equations for the fluid phase in the orthogonal curvilinear coordinates introduced in Section 2.1.1:
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Here, us, un, uz are the longitudinal, lateral and vertical components of the Reynolds averaged
velocity vector, respectively. Moreover, P is the average pressure, including the isotropic contribu-
tion −(2/3) ρK arising from the Boussinesq linear closure (see eq. 2.44(I)). Finally, the quantities
T t
ij (i, j = s, n, z) are the deviatoric components of the Reynolds stress tensor.

Vorticity transport equation

In curvilinear coordinates, the components of the instantaneous vorticity vector have the form:
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Similar expressions (with vs, vn, vz replaced by us, un, uz, respectively) hold for the mean vorticity
vector Ω ≡ (Ωs,Ωn,Ωz) in turbulent flows.

For the present purposes, it is useful to report the dimensional form of the governing equation for
the longitudinal component ωs of the instantaneous vorticity vector. Using the present curvilinear
coordinates, from equation (2.10)(I) one finds:
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Figura 18. Sketch of a sinuous open channel and notations.

2.1.2 Governing equations

The mathematical formulation of the hydrodynamic problem is obtained, as discussed in
Chapter 2(I), imposing the mass conservation and the momentum principle for the fluid phase,
along with appropriate boundary conditions at the free surface, at the channel bottom and at
the channel banks. Moreover, the initial state of the system must be assigned. The choice of
the governing equations depends on how detailed we wish the description of the turbulent flow
field to be. Although the use of LES (Large Eddy Simulation) techniques have been proposed for
detailed simulations of morphodynamic processes (van Balen et al., 2009; Nabi et al., 2012), for
the purposes of bend morphodynamics it is most often sufficient to rely on a Reynolds averaged
formulation.
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Conservation equations of mass and momentum of the fluid phase.

Let us write the dimensional form of the Reynolds averaged mass and momentum conservation
equations for the fluid phase in the orthogonal curvilinear coordinates introduced in Section 2.1.1:
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Here, us, un, uz are the longitudinal, lateral and vertical components of the Reynolds averaged
velocity vector, respectively. Moreover, P is the average pressure, including the isotropic contribu-
tion −(2/3) ρK arising from the Boussinesq linear closure (see eq. 2.44(I)). Finally, the quantities
T t
ij (i, j = s, n, z) are the deviatoric components of the Reynolds stress tensor.

Vorticity transport equation

In curvilinear coordinates, the components of the instantaneous vorticity vector have the form:
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Similar expressions (with vs, vn, vz replaced by us, un, uz, respectively) hold for the mean vorticity
vector Ω ≡ (Ωs,Ωn,Ωz) in turbulent flows.

For the present purposes, it is useful to report the dimensional form of the governing equation for
the longitudinal component ωs of the instantaneous vorticity vector. Using the present curvilinear
coordinates, from equation (2.10)(I) one finds:
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Similarly, one may derive from equation (2.43)(I) the governing equation for the longitudinal
component Ωs of the mean vorticity vector, to find:
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In Section 2.6.2, this equation will be used to analyze the variety of mechanisms that control
the generation of secondary flows in sharply curved channels.

2.1.3 Closure of the governing equations

As discussed in Section 2.2.8(I), Reynolds averaging requires some closure relationships for
the Reynolds stresses. In the present context, a least complex closure able to capture the main
ingredients of the process can be obtained taking advantage of the slowly varying character of the
flow field typical of fluvial hydrodynamics at sufficiently large scales. This approach is commonly
and successfully employed in 1-D hydraulic modeling where the flow is treated as a slowly varying
sequence of locally and instantaneously uniform flows. This idea can reasonably be pursued also in
curvilinear flows, provided sinuosity is weak and the channel is sufficiently wide that the boundary
layers at the channel banks play a passive role. If we exclude for the time being the case of sharp,
narrow bends, we may rely on the Boussinesq closure and model the eddy viscosity νT using its
uniform form (see eq. 2.84(I)), expressed in terms of the local and instantaneous flow field. Under
these assumptions we may write:

νT = uτ D(s, n, t)N (ζ). (9)

Here, D(s, n, t) is the local instantaneous value of flow depth, where the word ’instantaneous’
refers to the possibility that the Reynolds averaged flow may undergo temporal variations due,
e.g. to the propagation of a flood. Also, N (ζ) is a function describing the shape of the vertical
distribution of the eddy viscosity expressed in terms of the normalized vertical coordinate ζ. This
variable, which maps the physical z-domain [η,H] into the ζ-range [0, 1], is defined as follows:

ζ =
z − η

H − η
=

z − η

D
. (10)

Finally, uτ is the local instantaneous value of the friction velocity. We recall that the friction
velocity is defined as the square of the ratio between the modulus τη of the flow shear stress acting
on the bed and the flow density ρ. For a general flow field, denoting by T the stress tensor, by t
the stress vector (≡ T · n̂) and by n̂ the unit vector in the outer normal direction (Figure 19), one
may write:

τη =
∣∣tη − (tη · n̂η) n̂η

∣∣. (11)

The Boussinesq closure for T t
ij (i, j = s, n, z) reads:

T t
ij

ρ
= 2 νT Dij , (12)
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Figura 19. Sketch illustrating the decomposition of the stress vector acting at the bed interface into its normal and
tangential components

with νT eddy viscosity expressed in the slowly varying form (9) and Dij Reynolds averaged strain
rate tensor. In our curvilinear orthogonal system, one finds:
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2.1.4 Boundary conditions

The boundary conditions to be associated with the above conservation equations are obtained
from those presented in Section 2.2.6(I) (equations 2.35(I), 2.36(I) and 2.40(I)), written in the
present curvilinear coordinates. They read as follows.

No slip at the solid boundaries:

us = un = uz = 0 [−B < n < B, z = η + z0(n)] , (14a)
us = un = uz = 0 [η(n) < z < H(n), n = ±B ∓ n0(z)] , (14b)

with z0(n) and n0(z) conventional distances from the bed and channel banks, respectively, where
no slip must be imposed in the turbulent flow.

The free surface is a material surface:

At the free surface:

[
−∂H
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− us

hs
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= 0. (15)
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Similarly, one may derive from equation (2.43)(I) the governing equation for the longitudinal
component Ωs of the mean vorticity vector, to find:
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In Section 2.6.2, this equation will be used to analyze the variety of mechanisms that control
the generation of secondary flows in sharply curved channels.

2.1.3 Closure of the governing equations

As discussed in Section 2.2.8(I), Reynolds averaging requires some closure relationships for
the Reynolds stresses. In the present context, a least complex closure able to capture the main
ingredients of the process can be obtained taking advantage of the slowly varying character of the
flow field typical of fluvial hydrodynamics at sufficiently large scales. This approach is commonly
and successfully employed in 1-D hydraulic modeling where the flow is treated as a slowly varying
sequence of locally and instantaneously uniform flows. This idea can reasonably be pursued also in
curvilinear flows, provided sinuosity is weak and the channel is sufficiently wide that the boundary
layers at the channel banks play a passive role. If we exclude for the time being the case of sharp,
narrow bends, we may rely on the Boussinesq closure and model the eddy viscosity νT using its
uniform form (see eq. 2.84(I)), expressed in terms of the local and instantaneous flow field. Under
these assumptions we may write:

νT = uτ D(s, n, t)N (ζ). (9)

Here, D(s, n, t) is the local instantaneous value of flow depth, where the word ’instantaneous’
refers to the possibility that the Reynolds averaged flow may undergo temporal variations due,
e.g. to the propagation of a flood. Also, N (ζ) is a function describing the shape of the vertical
distribution of the eddy viscosity expressed in terms of the normalized vertical coordinate ζ. This
variable, which maps the physical z-domain [η,H] into the ζ-range [0, 1], is defined as follows:

ζ =
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H − η
=
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Finally, uτ is the local instantaneous value of the friction velocity. We recall that the friction
velocity is defined as the square of the ratio between the modulus τη of the flow shear stress acting
on the bed and the flow density ρ. For a general flow field, denoting by T the stress tensor, by t
the stress vector (≡ T · n̂) and by n̂ the unit vector in the outer normal direction (Figure 19), one
may write:

τη =
∣∣tη − (tη · n̂η) n̂η

∣∣. (11)

The Boussinesq closure for T t
ij (i, j = s, n, z) reads:
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Figura 19. Sketch illustrating the decomposition of the stress vector acting at the bed interface into its normal and
tangential components

with νT eddy viscosity expressed in the slowly varying form (9) and Dij Reynolds averaged strain
rate tensor. In our curvilinear orthogonal system, one finds:
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2.1.4 Boundary conditions

The boundary conditions to be associated with the above conservation equations are obtained
from those presented in Section 2.2.6(I) (equations 2.35(I), 2.36(I) and 2.40(I)), written in the
present curvilinear coordinates. They read as follows.

No slip at the solid boundaries:

us = un = uz = 0 [−B < n < B, z = η + z0(n)] , (14a)
us = un = uz = 0 [η(n) < z < H(n), n = ±B ∓ n0(z)] , (14b)

with z0(n) and n0(z) conventional distances from the bed and channel banks, respectively, where
no slip must be imposed in the turbulent flow.

The free surface is a material surface:

At the free surface:
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The free surface is stress free.

Employing eq. 2.17(I), the unit vector orthogonal to the free surface n̂H is found to have the form:
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The dynamic condition at the free surface (equation 2.37(I)), projected into the longitudinal,
lateral and vertical directions then reads:
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]
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Open boundaries

Open boundaries are the end cross sections, located at s = 0 and s = Lr, with Lr the intrinsic
length of the curved channel reach under consideration. The specification of suitable conditions at
these boundaries is a delicate issue that will be discussed in various specific cases.

2.2. Dimensionless formulation

In order to seek simplifications of the above mathematical problem, appropriate to the variety
of contexts that can be found in nature, it is useful to reformulate it in dimensionless form. We
then need to choose appropriate scales for the independent and dependent variables.

2.2.1 Scaling

The reference uniform flow

Flows in curved channels can be thought of as curvature driven perturbations of flows in straight
channels. It is thus natural to refer the flow quantities to those corresponding to a uniform flow in
a straight open channel with width equal to that of the curved channel and slope equal to some
suitably defined measure of the average slope of the channel. The reader should again appreciate
the subtlety of this concept. In the field, a curved channel can hardly be characterized by a
constant slope (−dηa/ds in Figure 18). Hence, at least in general, one has to choose a characteristic
channel reach and define an average channel slope in that reach, that may be used to calculate the
characteristics of the reference uniform flow.

Following the notations employed in Section 2.3.3(I), we denote by Du, Uu, Cfu, Fru and uτu

the flow depth, the cross sectionally averaged flow speed, the friction coefficient, the Froude number
and the friction velocity (averaged over the boundary) of the reference uniform flow, respectively.
We recall that the above quantities satisfy the following relationships:

u2
τu =

τ̄u
ρ

= Cfu U
2
u = g S Ru =

g S Du

1 +
1

βu

, (18a)

F 2
ru =

U2
u

g Du
. (18b)
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Here, τ̄u is the uniform shear stress averaged over the wet boundary and Ru is the hydraulic radius
of the reference flow. Moreover, 2βu is the width to depth ratio of the uniform stream, hence:

βu =
B

Du
. (19)

Finally, the kinematic eddy viscosity of the reference flow has the form (84)(I):

νTu = uτu Du N (ζ). (20)

Dimensionless variables

Let us make the independent variables dimensionless. The natural scales for the lateral and vertical
coordinates are the channel half-width B and the reference uniform flow depth Du, respectively.
The scale of spatial variations of the flow field in the longitudinal direction may be externally
forced (e.g. some meander wavelength in meandering channels) or internally generated (e.g. the
spatial scale of flow adjustment to entrance conditions). Let us denote this scale by L. Similarly,
the scale of temporal variations of the flow field may be externally forced (e.g. the time scale of a
forced hydrograph) or internally generated (e.g. the temporal scale of flow adjustment to initial
conditions). Let us denote this scale by T0.

We then introduce the following dimensionless variables:

t̃ =
t

T0
, s̃ =

s

L
, ñ =

n

B
, (z̃, D̃, η̃) =

(z,D, η)

Du
. (21)

One further geometric property of the channel needs appropriate scaling. Let R0 denote some
appropriate measure of the radius of curvature of the channel axis, say its minimum value in the
reach under consideration. Let us then write:

r̃0 =
r0
R0

, hs =
r̃0(ŝ) + ν0 ñ

r̃0(s̃)
= 1 + ν0 C(s̃) ñ, (22)

Here, C and ν0 are the dimensionless curvature of the channel axis and a dimensionless curvature
parameter respectively, such that

C(s̃) = 1

r̃0(s̃)
, ν0 =

B

R0
. (23)

Let us finally make the stresses and the eddy viscosity νT dimensionless. The natural scale of
pressure is the hydrostatic pressure associated with the reference flow depth Du. Reynolds stresses
are conveniently scaled by the average shear stress of the reference uniform flow ρu2

τu. Hence,
recalling (18a), we write:

P̃ =
P

ρ gDu
, T̃ t

ij =
T t
ij

ρ u2
τu

(i, j = s̃, ñ, z̃). (24)

The definition of eddy viscosity determines its natural scale as the ratio between the scale of
Reynolds stress ρ u2

τu and the scale of the vertical velocity gradient Uu/Du of the reference flow,
namely:

ν̃T =
νT

uτu Du
. (25)

Next, let us examine the scales of the longitudinal, lateral and vertical components of the flow
velocity. While Uu is a correct measure of the size of the basic uniform flow field, it does not
necessarily measure the sizes of the longitudinal, lateral and vertical perturbations of the flow
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The free surface is stress free.

Employing eq. 2.17(I), the unit vector orthogonal to the free surface n̂H is found to have the form:

n̂H =

(
− 1

hs

∂H

∂s
;−∂H

∂n
; 1

)

√
1 +

(
1

hs

∂H

∂s

)2

+

(
∂H

∂n

)2
. (16)

The dynamic condition at the free surface (equation 2.37(I)), projected into the longitudinal,
lateral and vertical directions then reads:

[
(−P + T t

ss)n̂Hs + T t
nsn̂Hn + T t

zsn̂Hz

]
H

= 0, (17a)
[
T t
snn̂Hs + (−P + T t

nn)n̂Hn + T t
znn̂Hz

]
H

= 0, (17b)
[
T t
szn̂Hs + T t

nzn̂Hn + (−P + T t
zz)n̂Hz

]
H

= 0. (17c)

Open boundaries

Open boundaries are the end cross sections, located at s = 0 and s = Lr, with Lr the intrinsic
length of the curved channel reach under consideration. The specification of suitable conditions at
these boundaries is a delicate issue that will be discussed in various specific cases.

2.2. Dimensionless formulation

In order to seek simplifications of the above mathematical problem, appropriate to the variety
of contexts that can be found in nature, it is useful to reformulate it in dimensionless form. We
then need to choose appropriate scales for the independent and dependent variables.

2.2.1 Scaling

The reference uniform flow

Flows in curved channels can be thought of as curvature driven perturbations of flows in straight
channels. It is thus natural to refer the flow quantities to those corresponding to a uniform flow in
a straight open channel with width equal to that of the curved channel and slope equal to some
suitably defined measure of the average slope of the channel. The reader should again appreciate
the subtlety of this concept. In the field, a curved channel can hardly be characterized by a
constant slope (−dηa/ds in Figure 18). Hence, at least in general, one has to choose a characteristic
channel reach and define an average channel slope in that reach, that may be used to calculate the
characteristics of the reference uniform flow.

Following the notations employed in Section 2.3.3(I), we denote by Du, Uu, Cfu, Fru and uτu

the flow depth, the cross sectionally averaged flow speed, the friction coefficient, the Froude number
and the friction velocity (averaged over the boundary) of the reference uniform flow, respectively.
We recall that the above quantities satisfy the following relationships:

u2
τu =

τ̄u
ρ

= Cfu U
2
u = g S Ru =

g S Du

1 +
1

βu

, (18a)

F 2
ru =

U2
u

g Du
. (18b)
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Here, τ̄u is the uniform shear stress averaged over the wet boundary and Ru is the hydraulic radius
of the reference flow. Moreover, 2βu is the width to depth ratio of the uniform stream, hence:

βu =
B

Du
. (19)

Finally, the kinematic eddy viscosity of the reference flow has the form (84)(I):

νTu = uτu Du N (ζ). (20)

Dimensionless variables

Let us make the independent variables dimensionless. The natural scales for the lateral and vertical
coordinates are the channel half-width B and the reference uniform flow depth Du, respectively.
The scale of spatial variations of the flow field in the longitudinal direction may be externally
forced (e.g. some meander wavelength in meandering channels) or internally generated (e.g. the
spatial scale of flow adjustment to entrance conditions). Let us denote this scale by L. Similarly,
the scale of temporal variations of the flow field may be externally forced (e.g. the time scale of a
forced hydrograph) or internally generated (e.g. the temporal scale of flow adjustment to initial
conditions). Let us denote this scale by T0.

We then introduce the following dimensionless variables:

t̃ =
t

T0
, s̃ =

s

L
, ñ =

n

B
, (z̃, D̃, η̃) =

(z,D, η)

Du
. (21)

One further geometric property of the channel needs appropriate scaling. Let R0 denote some
appropriate measure of the radius of curvature of the channel axis, say its minimum value in the
reach under consideration. Let us then write:

r̃0 =
r0
R0

, hs =
r̃0(ŝ) + ν0 ñ

r̃0(s̃)
= 1 + ν0 C(s̃) ñ, (22)

Here, C and ν0 are the dimensionless curvature of the channel axis and a dimensionless curvature
parameter respectively, such that

C(s̃) = 1

r̃0(s̃)
, ν0 =

B

R0
. (23)

Let us finally make the stresses and the eddy viscosity νT dimensionless. The natural scale of
pressure is the hydrostatic pressure associated with the reference flow depth Du. Reynolds stresses
are conveniently scaled by the average shear stress of the reference uniform flow ρu2

τu. Hence,
recalling (18a), we write:

P̃ =
P

ρ gDu
, T̃ t

ij =
T t
ij

ρ u2
τu

(i, j = s̃, ñ, z̃). (24)

The definition of eddy viscosity determines its natural scale as the ratio between the scale of
Reynolds stress ρ u2

τu and the scale of the vertical velocity gradient Uu/Du of the reference flow,
namely:

ν̃T =
νT

uτu Du
. (25)

Next, let us examine the scales of the longitudinal, lateral and vertical components of the flow
velocity. While Uu is a correct measure of the size of the basic uniform flow field, it does not
necessarily measure the sizes of the longitudinal, lateral and vertical perturbations of the flow
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velocity, which depend on what drives them. These sizes can be estimated analyzing the balances
between the various contributions to the continuity and momentum equations. Let us clarify this
point.

Consider the lateral component of the momentum equation (4c) and assume that the dominant
frictional term

(
∂
∂z [νT

∂un

∂z ]
)

is balanced by the centrifugal term
(

u2
s

hs

∂hs

∂n

)
: then, adopting the

scales (21) and using R0 as scale for the radius of curvature of the channel axis and uτu Du as
scale for the eddy viscosity, one readily finds that:

un ∼ O(δ Uu), (26)

where δ is the following dimensionless parameter:

δ =
Du

R0

√
Cfu

. (27)

A second mechanism driving the development of secondary flow is the so called topographic steering :
variations of flow depth due to variations of bed elevation give rise to longitudinal variations
of longitudinal velocity, which produce lateral variations of lateral velocity by simple continuity
requirements (recall eq. (4a)). Assuming that variations of longitudinal velocity are of the order of
the velocity itself, say Uu, the required balance between the latter two effects in eq. (4a) implies
that:

un ∼ O(
B

L
Uu). (28)

As discussed below, both dimensionless parameters δ and B/L are typically small in natural
meanders, which implies that secondary flows are typically an order of magnitude smaller than the
primary flow.

Similar arguments may be pursued when seeking the appropriate scale of the perturbations of
the longitudinal velocity us. The reader will readily show that, balancing the dominant frictional
term ∂

∂z [
∂us

∂z ] in (4b) with longitudinal convection us

hs

∂us

∂s the perturbation of longitudinal velocity
∆us satisfies the following scaling relationship:

∆us ∼ O(L Uu) (29)

where

L =
Du

L
√

Cfu

. (30)

Balancing lateral convection un
∂us

∂n one finds a similar scale for ∆us if topography dominates, i.e.
if the scale (28) is employed for un. Alternatively, using the centrifugal scaling (26), one finds:

∆us ∼ O(b δ Uu) (31)

where

b =
Du

B
√

Cfu

. (32)

Finally, balancing the dominant frictional term ∂
∂z [

∂us

∂z ] in (4b) with the local inertia ∂us

∂t the
perturbation of longitudinal velocity ∆us satisfies the following scaling relationship:

∆us ∼ O(σ Uu). (33)
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where

σ =
Du

LT0

√
Cfu

. (34)

Here LT0 is a convective length scale, defined as the path length of a particle moving with the
reference uniform speed Uu in the reference time T0.

The scale of the vertical velocity component uz is determined by flow continuity. Balancing
∂uz

∂z with 1
hs

∂(hs un)
∂n , one readily finds that uz ∼ O(V/βu), having denoted by V the scale of un.

The above analysis suggests that perturbations of the flow velocity scale with the reference
uniform speed Uu multiplied by various dimensionless parameters each associated with one of
the mechanisms driving the flow perturbations. Below, we will then adopt the choice to scale
the longitudinal and lateral components of velocity by Uu and the vertical component by Uu/βu.
Hence, we write:

ũs =
us

Uu
, ũn =

un

Uu
, ũz =

uz

Uu/βu
. (35)

This choice implies that the various dimensionless parameters presented above will appear in the
dimensionless form of the governing equations.

Finally, the scale ∆H of longitudinal perturbations of the free surface elevation H is typically
determined by a balance between the perturbation of the longitudinal pressure gradient ( 1

ρ
∂∆P
∂s )

and the perturbation of longitudinal convection (us
∂us

∂s ) in the momentum equation. Assuming a
hydrostatic distribution of the mean pressure, the former scales with (g∆H/L), whilst convection
scales with (Uu∆U/L), where ∆U is the scale of perturbations of longitudinal velocity associated
with the assumed perturbation of the free surface elevation. Assuming that ∆U ∼ Uu, one finds
that ∆H ∼ F 2

ru Du. Note that this scaling is consistent with the well known observation that
perturbations of the free surface in subcritical flows are typically much weaker than perturbations
experienced in supercritical flows. It is then convenient to write:

H̃ =
H

F 2
ru Du

. (36)

2.2.2 Formulation of the hydrodynamic problem in dimensionless form

Governing equations

Let us first examine the vertical component of the Reynolds equations. With the help of (21), (25)
and (35), it takes the following dimensionless form:

∂P̃

∂z̃
= −1− bF 2

ru Cfu

[
σ
∂ũz

∂t̃
+

L

hs
ũs

∂ũz

∂s̃
+ b

(
ũn

∂ũz

∂ñ
+ ũz

∂ũz

∂z̃

)]

+ F 2
ru Cfu

[
∂T̃ t

zz

∂z̃
+
√

Cfu

(
b
∂T̃ t

nz

∂ñ
+

L

hs

∂T̃ t
sz

∂s̃
+

δ

hs
CT̃ t

nz

)]

= −1 +O(Cfu) (37)

Noting that the friction coefficient Cfu takes values typically in the range 10−2-10−3 and the aspect
ratio is large, the above equation reduces to the hydrostatic approximation for the mean pressure
field P̃ (s, n, z). Moreover, as shown below (equation (47)), at the free surface the condition of
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velocity, which depend on what drives them. These sizes can be estimated analyzing the balances
between the various contributions to the continuity and momentum equations. Let us clarify this
point.

Consider the lateral component of the momentum equation (4c) and assume that the dominant
frictional term

(
∂
∂z [νT

∂un

∂z ]
)

is balanced by the centrifugal term
(

u2
s

hs

∂hs

∂n

)
: then, adopting the

scales (21) and using R0 as scale for the radius of curvature of the channel axis and uτu Du as
scale for the eddy viscosity, one readily finds that:

un ∼ O(δ Uu), (26)

where δ is the following dimensionless parameter:

δ =
Du

R0

√
Cfu

. (27)

A second mechanism driving the development of secondary flow is the so called topographic steering :
variations of flow depth due to variations of bed elevation give rise to longitudinal variations
of longitudinal velocity, which produce lateral variations of lateral velocity by simple continuity
requirements (recall eq. (4a)). Assuming that variations of longitudinal velocity are of the order of
the velocity itself, say Uu, the required balance between the latter two effects in eq. (4a) implies
that:

un ∼ O(
B

L
Uu). (28)

As discussed below, both dimensionless parameters δ and B/L are typically small in natural
meanders, which implies that secondary flows are typically an order of magnitude smaller than the
primary flow.

Similar arguments may be pursued when seeking the appropriate scale of the perturbations of
the longitudinal velocity us. The reader will readily show that, balancing the dominant frictional
term ∂

∂z [
∂us

∂z ] in (4b) with longitudinal convection us

hs

∂us

∂s the perturbation of longitudinal velocity
∆us satisfies the following scaling relationship:

∆us ∼ O(L Uu) (29)

where

L =
Du

L
√

Cfu

. (30)

Balancing lateral convection un
∂us

∂n one finds a similar scale for ∆us if topography dominates, i.e.
if the scale (28) is employed for un. Alternatively, using the centrifugal scaling (26), one finds:

∆us ∼ O(b δ Uu) (31)

where

b =
Du

B
√

Cfu

. (32)

Finally, balancing the dominant frictional term ∂
∂z [

∂us

∂z ] in (4b) with the local inertia ∂us

∂t the
perturbation of longitudinal velocity ∆us satisfies the following scaling relationship:

∆us ∼ O(σ Uu). (33)
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where

σ =
Du

LT0

√
Cfu

. (34)

Here LT0 is a convective length scale, defined as the path length of a particle moving with the
reference uniform speed Uu in the reference time T0.

The scale of the vertical velocity component uz is determined by flow continuity. Balancing
∂uz

∂z with 1
hs

∂(hs un)
∂n , one readily finds that uz ∼ O(V/βu), having denoted by V the scale of un.

The above analysis suggests that perturbations of the flow velocity scale with the reference
uniform speed Uu multiplied by various dimensionless parameters each associated with one of
the mechanisms driving the flow perturbations. Below, we will then adopt the choice to scale
the longitudinal and lateral components of velocity by Uu and the vertical component by Uu/βu.
Hence, we write:

ũs =
us

Uu
, ũn =

un

Uu
, ũz =

uz

Uu/βu
. (35)

This choice implies that the various dimensionless parameters presented above will appear in the
dimensionless form of the governing equations.

Finally, the scale ∆H of longitudinal perturbations of the free surface elevation H is typically
determined by a balance between the perturbation of the longitudinal pressure gradient ( 1

ρ
∂∆P
∂s )

and the perturbation of longitudinal convection (us
∂us

∂s ) in the momentum equation. Assuming a
hydrostatic distribution of the mean pressure, the former scales with (g∆H/L), whilst convection
scales with (Uu∆U/L), where ∆U is the scale of perturbations of longitudinal velocity associated
with the assumed perturbation of the free surface elevation. Assuming that ∆U ∼ Uu, one finds
that ∆H ∼ F 2

ru Du. Note that this scaling is consistent with the well known observation that
perturbations of the free surface in subcritical flows are typically much weaker than perturbations
experienced in supercritical flows. It is then convenient to write:

H̃ =
H

F 2
ru Du

. (36)

2.2.2 Formulation of the hydrodynamic problem in dimensionless form

Governing equations

Let us first examine the vertical component of the Reynolds equations. With the help of (21), (25)
and (35), it takes the following dimensionless form:

∂P̃

∂z̃
= −1− bF 2

ru Cfu

[
σ
∂ũz

∂t̃
+

L

hs
ũs

∂ũz

∂s̃
+ b

(
ũn

∂ũz

∂ñ
+ ũz

∂ũz

∂z̃

)]

+ F 2
ru Cfu

[
∂T̃ t

zz

∂z̃
+
√

Cfu

(
b
∂T̃ t

nz

∂ñ
+

L

hs

∂T̃ t
sz

∂s̃
+

δ

hs
CT̃ t

nz

)]

= −1 +O(Cfu) (37)

Noting that the friction coefficient Cfu takes values typically in the range 10−2-10−3 and the aspect
ratio is large, the above equation reduces to the hydrostatic approximation for the mean pressure
field P̃ (s, n, z). Moreover, as shown below (equation (47)), at the free surface the condition of
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vanishing normal stress reduces to the condition of vanishing mean pressure. Hence, P̃ is the
solution of the following differential problem:

∂P̃

∂z̃
= −1, (38a)

P̃
∣∣
F 2

ruH̃
= 0. (38b)

The dimensionless mean pressure is then solved in terms of the free surface elevation as follows:

P̃ = F 2
ru H̃(s, n)− z̃. (39)

With the help of (39) the mean pressure can be removed from the longitudinal and the lateral
components of the Reynolds equations, and the pressure gradient can be replaced by the slope of
the free surface. The resulting dimensionless mass and momentum conservation equations (along s
and n) then become:

L

b

1

hs

∂ũs

∂s̃
+

∂ũn

∂ñ
+

∂ũz

∂z̃
= − δ

bhs
C(s̃) ũn, (40a)

σ
∂ũs

∂t̃
+

L

hs
ũs

∂ũs

∂s̃
+ b

(
ũn

∂ũs

∂ñ
+ ũz

∂ũs

∂z̃

)
+

δ C
hs

ũs ũn = − L

hs

∂H̃

∂s̃

+
√

Cfu
∂T̃ t

zs

∂z̃
+ Cfu

( L

hs

∂T̃ t
ss

∂s̃
+ b

∂T̃ t
ns

∂ñ
+ 2 δ

C
hs

T̃ t
ns

)
, (40b)

σ
∂ũn

∂t̃
+

L

hs
ũs

∂ũn

∂s̃
+ b

(
ũn

∂ũn

∂ñ
+ ũz

∂ũn

∂z̃

)
− δ C

hs
ũ2
s = −b

∂H̃

∂ñ

+
√

Cfu
∂T̃ t

zn

∂z̃
+ Cfu

[
b
∂T̃ t

nn

∂ñ
+

L

hs

∂T̃ t
ns

∂s̃
+

δ C
hs

(
T̃ t
nn − T̃ t

ss

)]
. (40c)

Closure relationships

The closure relationships adopted for weakly sinuous wide channels (13) are also readily made
dimensionless.

Recalling (20) and (25), the dimensionless form of the eddy viscosity of the reference uniform
flow reads:

ν̃Tu = N (ζ). (41)

The dimensionless closure relationships take the form

T̃ t
zs =

ν̃T√
Cfu

(∂ũs

∂z̃
+ bCfu

L

hs

∂ũz

∂s̃

)
, (42a)

T̃ t
zn =

ν̃T√
Cfu

(∂ũn

∂z̃
+ b2 Cfu

∂ũz

∂ñ

)
, (42b)

T̃ t
sn = ν̃T

(
b
∂ũs

∂ñ
+

L

hs

∂ũn

∂s̃
− ũs

hs
δ C

)
, (42c)

T̃ t
ss = 2

ν̃T
hs

(
L
∂ũs

∂s̃
+ δ C ũn

)
, (42d)

T̃ t
nn = 2 ν̃T b

∂ũn

∂ñ
, (42e)

T̃ t
zz = 2 ν̃T b

∂ũz

∂z̃
. (42f)
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Boundary conditions

- No slip at the solid boundaries:

ũs = ũn = ũz = 0
[
− 1 < n̂ < 1, z̃ = η̃ + z̃0(ñ)

]
, (43a)

ũs = ũn = ũz = 0
[
η̂ < z̃ < F 2

ruH̃, ñ = ±1
]
. (43b)

- Kinematic condition at the free surface.

b ũz

∣∣
F 2

ruH̃
= F 2

ru

[
σ
∂H̃

∂t̃
+

L

hs
ũs

∂H̃

∂s̃
+ b ũn

∂H̃

∂ñ

]
F 2

ruH̃
. (44)

- Vanishing normal stress at the free surface.

[
− P̃ n̂z + F 2

ru Cfu

(
T̃sz n̂s + T̃nz n̂n + T̃zz n̂z

)]
F 2

ruH̃
= 0, (45)

where the components of the unit vector n̂H have the following dimensionless forms:

n̂s = −F 2
ru Cfu

hs
L
∂H̃

∂s̃
n̂z, (46a)

n̂n = −F 2
ru

√
Cfu b

∂H̃

∂ñ
n̂z, (46b)

n̂z =
1√

1 + F 4
ru Cfu

[( L

hs

∂H̃

∂s̃

)2

+ b2
(∂H̃
∂ñ

)2]
. (46c)

With the help of (46), neglecting terms of order O(C
1/2
fu ) or smaller, the condition (45) may

be approximated by the much simpler condition:

P̃
∣∣
F 2

ruH̃
= 0. (47)

- Vanishing tangential stress at the free surface.

[
− P̃ n̂s + F 2

ru Cfu

(
T̃ t
ss n̂s + T̃ t

ns n̂n + T̃ t
zs n̂z

)]
F 2

ruH̃
= 0, (48a)

[
− P̃ n̂n + F 2

ru Cfu

(
T̃ t
sn n̂s + T̃ t

nn n̂n + T̃ t
zn n̂z

)]
F 2

ruH̃
= 0. (48b)

The general form of (48) appears to be quite complicated. However, the reader will readily
check that terms proportional to n̂hz are dominant and the above relationships reduce to the
simplest conditions:

T̃ t
zs

∣∣
F 2

ruH̃
= 0, T̃ t

zn

∣∣
F 2

ruH̃
= 0. (49)
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vanishing normal stress reduces to the condition of vanishing mean pressure. Hence, P̃ is the
solution of the following differential problem:

∂P̃

∂z̃
= −1, (38a)

P̃
∣∣
F 2

ruH̃
= 0. (38b)

The dimensionless mean pressure is then solved in terms of the free surface elevation as follows:

P̃ = F 2
ru H̃(s, n)− z̃. (39)

With the help of (39) the mean pressure can be removed from the longitudinal and the lateral
components of the Reynolds equations, and the pressure gradient can be replaced by the slope of
the free surface. The resulting dimensionless mass and momentum conservation equations (along s
and n) then become:

L

b

1

hs

∂ũs

∂s̃
+

∂ũn

∂ñ
+

∂ũz

∂z̃
= − δ

bhs
C(s̃) ũn, (40a)

σ
∂ũs

∂t̃
+

L

hs
ũs

∂ũs

∂s̃
+ b

(
ũn

∂ũs

∂ñ
+ ũz

∂ũs

∂z̃

)
+

δ C
hs

ũs ũn = − L

hs

∂H̃

∂s̃

+
√

Cfu
∂T̃ t

zs

∂z̃
+ Cfu

( L

hs

∂T̃ t
ss

∂s̃
+ b

∂T̃ t
ns

∂ñ
+ 2 δ

C
hs

T̃ t
ns

)
, (40b)

σ
∂ũn

∂t̃
+

L

hs
ũs

∂ũn

∂s̃
+ b

(
ũn

∂ũn

∂ñ
+ ũz

∂ũn

∂z̃

)
− δ C

hs
ũ2
s = −b

∂H̃

∂ñ

+
√

Cfu
∂T̃ t

zn

∂z̃
+ Cfu

[
b
∂T̃ t

nn

∂ñ
+

L

hs

∂T̃ t
ns

∂s̃
+

δ C
hs

(
T̃ t
nn − T̃ t

ss

)]
. (40c)

Closure relationships

The closure relationships adopted for weakly sinuous wide channels (13) are also readily made
dimensionless.

Recalling (20) and (25), the dimensionless form of the eddy viscosity of the reference uniform
flow reads:

ν̃Tu = N (ζ). (41)

The dimensionless closure relationships take the form

T̃ t
zs =

ν̃T√
Cfu

(∂ũs

∂z̃
+ bCfu

L

hs

∂ũz

∂s̃

)
, (42a)

T̃ t
zn =

ν̃T√
Cfu

(∂ũn

∂z̃
+ b2 Cfu

∂ũz

∂ñ

)
, (42b)

T̃ t
sn = ν̃T

(
b
∂ũs

∂ñ
+

L

hs

∂ũn

∂s̃
− ũs

hs
δ C

)
, (42c)

T̃ t
ss = 2

ν̃T
hs

(
L
∂ũs

∂s̃
+ δ C ũn

)
, (42d)

T̃ t
nn = 2 ν̃T b

∂ũn

∂ñ
, (42e)

T̃ t
zz = 2 ν̃T b

∂ũz

∂z̃
. (42f)
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Boundary conditions

- No slip at the solid boundaries:

ũs = ũn = ũz = 0
[
− 1 < n̂ < 1, z̃ = η̃ + z̃0(ñ)

]
, (43a)

ũs = ũn = ũz = 0
[
η̂ < z̃ < F 2

ruH̃, ñ = ±1
]
. (43b)

- Kinematic condition at the free surface.

b ũz

∣∣
F 2

ruH̃
= F 2

ru

[
σ
∂H̃

∂t̃
+

L

hs
ũs

∂H̃

∂s̃
+ b ũn

∂H̃

∂ñ

]
F 2

ruH̃
. (44)

- Vanishing normal stress at the free surface.

[
− P̃ n̂z + F 2

ru Cfu

(
T̃sz n̂s + T̃nz n̂n + T̃zz n̂z

)]
F 2

ruH̃
= 0, (45)

where the components of the unit vector n̂H have the following dimensionless forms:

n̂s = −F 2
ru Cfu

hs
L
∂H̃

∂s̃
n̂z, (46a)

n̂n = −F 2
ru

√
Cfu b

∂H̃

∂ñ
n̂z, (46b)

n̂z =
1√

1 + F 4
ru Cfu

[( L

hs

∂H̃

∂s̃

)2

+ b2
(∂H̃
∂ñ

)2]
. (46c)

With the help of (46), neglecting terms of order O(C
1/2
fu ) or smaller, the condition (45) may

be approximated by the much simpler condition:

P̃
∣∣
F 2

ruH̃
= 0. (47)

- Vanishing tangential stress at the free surface.

[
− P̃ n̂s + F 2

ru Cfu

(
T̃ t
ss n̂s + T̃ t

ns n̂n + T̃ t
zs n̂z

)]
F 2

ruH̃
= 0, (48a)

[
− P̃ n̂n + F 2

ru Cfu

(
T̃ t
sn n̂s + T̃ t

nn n̂n + T̃ t
zn n̂z

)]
F 2

ruH̃
= 0. (48b)

The general form of (48) appears to be quite complicated. However, the reader will readily
check that terms proportional to n̂hz are dominant and the above relationships reduce to the
simplest conditions:

T̃ t
zs

∣∣
F 2

ruH̃
= 0, T̃ t

zn

∣∣
F 2

ruH̃
= 0. (49)
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We also perform the coordinate transformation (10). In general, H̃ and D̃ are both functions
of t̃, s̃ and ñ, hence the temporal and spatial derivatives must be replaced as follows:

∂

∂t̃
→ ∂

∂t̃
−
(F 2

ru

D̃

∂H̃

∂t̃
+
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) ∂

∂ζ
, (50a)

∂
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→ ∂

∂s̃
−
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∂ζ
, (50b)
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∂ñ
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, (50c)

∂

∂z̃
→ 1

D̃

∂

∂ζ
, (50d)

With the help of all the above assumptions, and neglecting the higher order contributions (O(Cfu)

or smaller) of all the Reynolds stresses except for T̃ t
zs and T̃ t

zn, we may rewrite the governing
equations (40a), (40b) and (40c) in the following form:
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∂ũs

∂s̃
−
(F 2

ru

D̃

∂H̃

∂s̃
+

ζ − 1

D̃

∂D̃

∂s̃

)∂ũs
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)∂ũn

∂ζ

]
+

L

hs
ũs
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∂ñ
+

ζ − 1

D̃

∂D̃

∂ñ
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. (51c)

Moreover the metric coefficient hs reads:

hs = 1 + ν0 C ñ = 1 +
δ

b
C ñ. (52)

The boundary conditions associated with the above equations are also simplified and read:

ũs = ũn = ũz = 0
(
ζ = ζ0(ñ), −1 < ñ < 1

)
, (53a)

ũs = ũn = ũz = 0
(
0 < ζ < 1, ñ = ±1

)
, (53b)

b ũz = F 2
ru

[
σ
∂H̃

∂t̃
+

L

hs
ũs

∂H̃

∂s̃
+ b ũn

∂H̃
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] (
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)
, (53c)

T̃ t
zs = T̃ t

zn = 0 ⇒ ∂ũs

∂ζ
=

∂ũn

∂ζ
= 0

(
ζ = 1

)
. (53d)
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Summary of the relevant dimensionless parameters

From the above formulation a number of dimensionless parameters emerge.
Two of them, the aspect ratio βu and the curvature ratio ν0, are of purely geometric nature.

The friction coefficient Cfu and the Froude number Fru, control the hydrodynamics of the basic
uniform flow.

Flow perturbations driven by the forcing effects of curvature and bed topography involve four
further dimensionless parameters:

σ =
Du

LT0

√
Cfu

, L =
Du

L
√

Cfu

, δ =
Du

R0

√
Cfu

, b =
Du

B
√

Cfu

, (54)

As discussed in Section 2.2.1, their physical meaning is straightforward: each of them measures
the ratio between friction and one of the inertial effects, namely local inertia in σ, longitudinal
convection in L, centrifugal inertia in δ and lateral convection in b.

We also point out that an alternative choice of dimensionless parameters would be:

σ

b
=

B

LT0

,
L

b
=

B

L
,

δ

b
= ν0 =

B

R0
. (55)

Since, for meandering rivers, b is often O(1) (see the next Section), the above two choices are
equivalent. The former parameters (54) will be employed in this Chapter and the next one, whereas,
for convenience, the latter parameters (55) will be used in Chapter 4 and Chapter 5.

2.3. Classification of meander bends

It is useful at this stage to analyze the range of values attained by the above dimensionless
parameters. This analysis will help us introduce a mechanistic classification of meander bends to
be exploited in the formulation of appropriate models of the hydrodynamics and morphodynamics
of meandering channels. Below, we follow the lead of Bolla Pittaluga and Seminara (2011) who
analyzed the database by Lagasse et al. (2004), referring to roughly 1500 meander bends of 139
rivers in the USA. The dataset contains aerial photos, detailed historical data, information on the
mean daily and annual peak discharge for the gage nearest to the site. Using these data, Bolla
Pittaluga and Seminara (2011) calculated the values of various dimensionless parameters for each
meander bend and determined the hystograms and the cumulative frequency curves reported in
Figure 20. Based on the above estimates, we can classify bends according to a variety of criteria.

Mild versus sharp bends: the δ parameter

The parameter δ plays a central role in the lateral momentum equation (51c), where it multiplies
the centripetal acceleration term. Indeed, as discussed later in this Chapter, bend hydrodynamics
is controlled by the development of a lateral slope of the free surface. This slope, in turn, gives rise
to a lateral pressure gradient that provides the centripetal force acting on fluid particles moving
along curvilinear trajectories. However, the lateral pressure gradient is constant along the vertical
direction, whereas the required centripetal force increases from zero at the bed to a maximum at
the free surface. As a result of this unbalance, a secondary circulation arises, directed outward
close to the free surface and inward close to the bed. The intensity of this centrifugally driven
secondary flow is O(δ). It is then reasonable to define a bend as mildly curved provided δ ≪ 1, and
sharp if δ ∼ O(1). A mildly curved bend is thus a bend with a fairly weak centrifugally induced
secondary flow, while a sharp bend is characterized by a strong centrifugally induced circulation.
Figure 20a suggests that mildly curved bends are fairly common in nature, as 50% of the meander
bends analyzed in the considered dataset are characterized by a value of the parameter δ below
0.18. As mentioned in the previous Section, similar arguments would apply to ν0. Hence a small
ν0 is also associated with mild meandering.
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We also perform the coordinate transformation (10). In general, H̃ and D̃ are both functions
of t̃, s̃ and ñ, hence the temporal and spatial derivatives must be replaced as follows:
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∂

∂z̃
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∂ζ
, (50d)

With the help of all the above assumptions, and neglecting the higher order contributions (O(Cfu)

or smaller) of all the Reynolds stresses except for T̃ t
zs and T̃ t

zn, we may rewrite the governing
equations (40a), (40b) and (40c) in the following form:
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∂ũn

∂s̃
−
(F 2

ru

D̃

∂H̃

∂s̃
+

ζ − 1

D̃

∂D̃

∂s̃

)∂ũn
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∂ũn

∂ñ
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∂ũn

∂ζ

}
− δ C

hs
ũ2
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Moreover the metric coefficient hs reads:

hs = 1 + ν0 C ñ = 1 +
δ

b
C ñ. (52)

The boundary conditions associated with the above equations are also simplified and read:

ũs = ũn = ũz = 0
(
ζ = ζ0(ñ), −1 < ñ < 1

)
, (53a)

ũs = ũn = ũz = 0
(
0 < ζ < 1, ñ = ±1

)
, (53b)
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. (53d)
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Summary of the relevant dimensionless parameters

From the above formulation a number of dimensionless parameters emerge.
Two of them, the aspect ratio βu and the curvature ratio ν0, are of purely geometric nature.

The friction coefficient Cfu and the Froude number Fru, control the hydrodynamics of the basic
uniform flow.

Flow perturbations driven by the forcing effects of curvature and bed topography involve four
further dimensionless parameters:

σ =
Du

LT0

√
Cfu

, L =
Du

L
√

Cfu

, δ =
Du

R0

√
Cfu

, b =
Du

B
√

Cfu

, (54)

As discussed in Section 2.2.1, their physical meaning is straightforward: each of them measures
the ratio between friction and one of the inertial effects, namely local inertia in σ, longitudinal
convection in L, centrifugal inertia in δ and lateral convection in b.

We also point out that an alternative choice of dimensionless parameters would be:

σ

b
=

B

LT0

,
L

b
=

B

L
,

δ

b
= ν0 =

B

R0
. (55)

Since, for meandering rivers, b is often O(1) (see the next Section), the above two choices are
equivalent. The former parameters (54) will be employed in this Chapter and the next one, whereas,
for convenience, the latter parameters (55) will be used in Chapter 4 and Chapter 5.

2.3. Classification of meander bends

It is useful at this stage to analyze the range of values attained by the above dimensionless
parameters. This analysis will help us introduce a mechanistic classification of meander bends to
be exploited in the formulation of appropriate models of the hydrodynamics and morphodynamics
of meandering channels. Below, we follow the lead of Bolla Pittaluga and Seminara (2011) who
analyzed the database by Lagasse et al. (2004), referring to roughly 1500 meander bends of 139
rivers in the USA. The dataset contains aerial photos, detailed historical data, information on the
mean daily and annual peak discharge for the gage nearest to the site. Using these data, Bolla
Pittaluga and Seminara (2011) calculated the values of various dimensionless parameters for each
meander bend and determined the hystograms and the cumulative frequency curves reported in
Figure 20. Based on the above estimates, we can classify bends according to a variety of criteria.

Mild versus sharp bends: the δ parameter

The parameter δ plays a central role in the lateral momentum equation (51c), where it multiplies
the centripetal acceleration term. Indeed, as discussed later in this Chapter, bend hydrodynamics
is controlled by the development of a lateral slope of the free surface. This slope, in turn, gives rise
to a lateral pressure gradient that provides the centripetal force acting on fluid particles moving
along curvilinear trajectories. However, the lateral pressure gradient is constant along the vertical
direction, whereas the required centripetal force increases from zero at the bed to a maximum at
the free surface. As a result of this unbalance, a secondary circulation arises, directed outward
close to the free surface and inward close to the bed. The intensity of this centrifugally driven
secondary flow is O(δ). It is then reasonable to define a bend as mildly curved provided δ ≪ 1, and
sharp if δ ∼ O(1). A mildly curved bend is thus a bend with a fairly weak centrifugally induced
secondary flow, while a sharp bend is characterized by a strong centrifugally induced circulation.
Figure 20a suggests that mildly curved bends are fairly common in nature, as 50% of the meander
bends analyzed in the considered dataset are characterized by a value of the parameter δ below
0.18. As mentioned in the previous Section, similar arguments would apply to ν0. Hence a small
ν0 is also associated with mild meandering.
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.

Figura 20. Typical frequency distributions and cumulative frequency curves of the parameters δ, 4L/b, 4L/(bδ) and
ν0 extracted by Bolla Pittaluga and Seminara (2011) from the database of Lagasse et al. (2004). Also shown are

median values as well as standard deviations (modified from Bolla Pittaluga and Seminara, 2011)

Long versus short bends: topographic steering and the L parameter

In cohesionless channels the bed is erodible. As a result, the secondary flow transports sediment
towards the inner bank where point bars build up, while pools develop at the outer bank. Note
that the perturbations of bottom topography thus established are by no means necessarily small
relative to the average flow depth. What may be expected to keep small is the lateral slope of the
bed. However, a small lateral slope may build up a finite perturbation of bed elevation provided
the channel is not too narrow. In other words, the flow depth in the cross section of mildly curved
bends may undergo variations of the order of the average flow depth.

Note that the development of bed topography drives an additional source of secondary flow
through the mechanism that was called topographic steering by Dietrich and Smith (1983) and was
outlined in Section 2.2.1. Essentially, the bar-pool pattern generated by the action of centrifugally
driven secondary flow in meandering channels is associated with longitudinal variations of flow
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depth and flow velocity that, by simple continuity requirements, give rise to the development of a
further contribution to the lateral component of the flow velocity, i.e. a topographical component
of the secondary flow.

In Section 2.2.1 we showed that, balancing the orders of magnitude of the first two terms in
equation (51a) topographic steering is found to satisfy the scaling un ∼ O(us B/L). We then
describe a bend as long or short depending on the parameter B/L = L/b being small or O(1). In
other words, a long bend generates a fairly weak topographically induced secondary flow, while
in a short bend the latter contribution is strong. Figure 20b suggests that long bends are fairly
common in nature, as the median value of the parameter 4B/L is roughly equal to 0.124. Note
that the factor 4 is included because the spatial scale on which the amplitude of the secondary
flow varies in the longitudinal direction is a quarter wavelength. Again, one should appreciate
that, in a long bend, the perturbations of bottom elevation driven by the action of topographic
steering are not necessarily small relative to the average flow depth.

The mathematical problem formulated in the previous sections can be solved numerically and
various solutions have indeed been presented in the literature. However, in order to introduce the
reader to the full complexity of bend hydrodynamics, it is instructive to investigate analytically a
sequence of simple configurations illustrating the variety of physical mechanisms operating in the
process. This is the goal we will pursue in the next two sections.

2.4. Flow in constant curvature wide channels

2.4.1 Formulation for the steady state

We start with the simplest configuration, consisting of a sufficiently wide (large βu) rectangular
channel consisting of an upstream straight reach connected downstream to a long bend (small L)
with constant curvature 1/R0 (Figure 21a). Under these conditions, the reference uniform flow is
unambiguously defined in the straight upstream reach. Moreover, we assume that the channel axis
of the bend is a circular helix, i.e. a curve in three-dimensional space such that the tangent line at
any point makes a constant angle with the axis of the helix (the z-axis in Figure 21b). In other
words, with this special assumption, the longitudinal slope S of the channel axis in the curved
reach is a constant, that we may take to coincide with the slope of the straight channel located
upstream.

The mathematical advantage of the assumption that the channel has a wide section is that
we may neglect contributions proportional to powers of 1/βu. Clearly, this scheme has important
physical limitations that must be fully appreciated. Essentially, the approach does not hold in the
boundary layers adjacent to the channel banks. There, the flow properties vary much faster than
we assumed when we scaled the lateral coordinate by the channel half width B (recall equation
(21)c). In mathematical terms, a straightforward expansion of the flow field in inverse powers of βu

(implicit in our approach) is not uniformly valid. It applies only to the outer region, namely the
region outside the boundary layers forming at the banks. The formulation in the boundary layers
differs from that in the outer region and could be obtained by rescaling the lateral coordinate by
the characteristic thickness of the boundary layer which is O(Du). It is within these boundary
layers that the flow field adjusts to the requirement of no slip at the side walls. Fortunately, for
the present purposes, we do not need to include the solution in the side wall boundary layers. We
then restrict ourselves to the outer region and do not enforce no slip at the channel banks.

The dimensionless formulation of the problem for the steady state is readily obtained from the
general formulation presented in the previous section by stipulating that:

C = 1,
∂

∂t
≡ 0, βu ≫ 1. (56)

Note that, for the sake of simplicity, the tilde will be removed and variables will implicitly be
assumed dimensionless throughout. Moreover, we set L = B as, in constant curvature channels, no
external longitudinal scale can be identified. As a result, we will replace the parameter L with b
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Figura 20. Typical frequency distributions and cumulative frequency curves of the parameters δ, 4L/b, 4L/(bδ) and
ν0 extracted by Bolla Pittaluga and Seminara (2011) from the database of Lagasse et al. (2004). Also shown are

median values as well as standard deviations (modified from Bolla Pittaluga and Seminara, 2011)

Long versus short bends: topographic steering and the L parameter

In cohesionless channels the bed is erodible. As a result, the secondary flow transports sediment
towards the inner bank where point bars build up, while pools develop at the outer bank. Note
that the perturbations of bottom topography thus established are by no means necessarily small
relative to the average flow depth. What may be expected to keep small is the lateral slope of the
bed. However, a small lateral slope may build up a finite perturbation of bed elevation provided
the channel is not too narrow. In other words, the flow depth in the cross section of mildly curved
bends may undergo variations of the order of the average flow depth.

Note that the development of bed topography drives an additional source of secondary flow
through the mechanism that was called topographic steering by Dietrich and Smith (1983) and was
outlined in Section 2.2.1. Essentially, the bar-pool pattern generated by the action of centrifugally
driven secondary flow in meandering channels is associated with longitudinal variations of flow
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depth and flow velocity that, by simple continuity requirements, give rise to the development of a
further contribution to the lateral component of the flow velocity, i.e. a topographical component
of the secondary flow.

In Section 2.2.1 we showed that, balancing the orders of magnitude of the first two terms in
equation (51a) topographic steering is found to satisfy the scaling un ∼ O(us B/L). We then
describe a bend as long or short depending on the parameter B/L = L/b being small or O(1). In
other words, a long bend generates a fairly weak topographically induced secondary flow, while
in a short bend the latter contribution is strong. Figure 20b suggests that long bends are fairly
common in nature, as the median value of the parameter 4B/L is roughly equal to 0.124. Note
that the factor 4 is included because the spatial scale on which the amplitude of the secondary
flow varies in the longitudinal direction is a quarter wavelength. Again, one should appreciate
that, in a long bend, the perturbations of bottom elevation driven by the action of topographic
steering are not necessarily small relative to the average flow depth.

The mathematical problem formulated in the previous sections can be solved numerically and
various solutions have indeed been presented in the literature. However, in order to introduce the
reader to the full complexity of bend hydrodynamics, it is instructive to investigate analytically a
sequence of simple configurations illustrating the variety of physical mechanisms operating in the
process. This is the goal we will pursue in the next two sections.

2.4. Flow in constant curvature wide channels

2.4.1 Formulation for the steady state

We start with the simplest configuration, consisting of a sufficiently wide (large βu) rectangular
channel consisting of an upstream straight reach connected downstream to a long bend (small L)
with constant curvature 1/R0 (Figure 21a). Under these conditions, the reference uniform flow is
unambiguously defined in the straight upstream reach. Moreover, we assume that the channel axis
of the bend is a circular helix, i.e. a curve in three-dimensional space such that the tangent line at
any point makes a constant angle with the axis of the helix (the z-axis in Figure 21b). In other
words, with this special assumption, the longitudinal slope S of the channel axis in the curved
reach is a constant, that we may take to coincide with the slope of the straight channel located
upstream.

The mathematical advantage of the assumption that the channel has a wide section is that
we may neglect contributions proportional to powers of 1/βu. Clearly, this scheme has important
physical limitations that must be fully appreciated. Essentially, the approach does not hold in the
boundary layers adjacent to the channel banks. There, the flow properties vary much faster than
we assumed when we scaled the lateral coordinate by the channel half width B (recall equation
(21)c). In mathematical terms, a straightforward expansion of the flow field in inverse powers of βu

(implicit in our approach) is not uniformly valid. It applies only to the outer region, namely the
region outside the boundary layers forming at the banks. The formulation in the boundary layers
differs from that in the outer region and could be obtained by rescaling the lateral coordinate by
the characteristic thickness of the boundary layer which is O(Du). It is within these boundary
layers that the flow field adjusts to the requirement of no slip at the side walls. Fortunately, for
the present purposes, we do not need to include the solution in the side wall boundary layers. We
then restrict ourselves to the outer region and do not enforce no slip at the channel banks.

The dimensionless formulation of the problem for the steady state is readily obtained from the
general formulation presented in the previous section by stipulating that:

C = 1,
∂

∂t
≡ 0, βu ≫ 1. (56)

Note that, for the sake of simplicity, the tilde will be removed and variables will implicitly be
assumed dimensionless throughout. Moreover, we set L = B as, in constant curvature channels, no
external longitudinal scale can be identified. As a result, we will replace the parameter L with b
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Figura 21. (a) Sketch of a constant curvature rectangular channel. (b) Sketch and equation of a helix: S is the
slope of the channel, p is the pitch of the helix.

in the governing equations (51a)-(51c), which can be rewritten as follows:
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The metric coefficient hs reads:

hs = 1 + ν0 n = 1 +
δ

b
n. (58)

The boundary conditions associated with the above governing equations are also simplified and
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read:

us = un = uz = 0 (ζ = ζ0), (59a)

uz = F 2
ru

[
us

hs

∂H

∂s
+ un

∂H

∂n

]
(ζ = 1), (59b)

∂us

∂ζ
=

∂un

∂ζ
= 0 (ζ = 1). (59c)

Finally, an integral condition must be satisfied, such to ensure that the flow discharge does not
vary in the longitudinal direction, hence:

∫ 1

−1

(
D

∫ 1

ζ0

us dζ
)
dn = 2. (60)

In constant curvature bends with rectangular cross section, the bend hydrodynamics is do-
minated by two effects: the so called free vortex effect and the generation of a curvature driven
secondary flow. The first is related to the fact that, entering the bend, the fluid feels a variation
of the longitudinal bed slope in the lateral direction. Indeed, the length of the circular path
connecting two cross sections increases proceeding from the inner to the outer channel bank, hence
the bed-slope decreases outwards (Figure 22). This is a metric effect which tends to accelerate the
inner flow and retard the outer flow (like in a free vortex). The second effect is due to the curvature
of the channel banks that forces fluid particles to follow curved streamlines. This is only possible
provided particles are able to develop a centripetal acceleration. The mechanism to provide such an
acceleration is the establishment of an inward directed pressure gradient, which requires that the
free surface develops a lateral slope. This leads to the generation of a secondary flow controlled by
the imbalance between the required centripetal acceleration (which is proportional to the square of
the local velocity) and the available lateral pressure gradient. More precisely, the lateral pressure
gradient is insufficient for the high momentum fluid located in the upper part of the cross section,
which is then displaced from the inner to the outer channel bank. On the contrary, the lateral
pressure gradient exceeds the centripetal acceleration required by the low momentum fluid located
in the lower part of the cross section, which is then forced to move in the inward direction close
to the bed (Figure 22). The curvature driven secondary circulation develops in space starting

.

Figura 22. Sketch of the mechanism of generation of the free vortex effect and curvature driven secondary flow
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Figura 21. (a) Sketch of a constant curvature rectangular channel. (b) Sketch and equation of a helix: S is the
slope of the channel, p is the pitch of the helix.

in the governing equations (51a)-(51c), which can be rewritten as follows:
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The metric coefficient hs reads:

hs = 1 + ν0 n = 1 +
δ

b
n. (58)

The boundary conditions associated with the above governing equations are also simplified and

36

Hydrodynamics of sinuous channels

read:

us = un = uz = 0 (ζ = ζ0), (59a)
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(ζ = 1), (59b)
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Finally, an integral condition must be satisfied, such to ensure that the flow discharge does not
vary in the longitudinal direction, hence:

∫ 1

−1

(
D

∫ 1

ζ0

us dζ
)
dn = 2. (60)

In constant curvature bends with rectangular cross section, the bend hydrodynamics is do-
minated by two effects: the so called free vortex effect and the generation of a curvature driven
secondary flow. The first is related to the fact that, entering the bend, the fluid feels a variation
of the longitudinal bed slope in the lateral direction. Indeed, the length of the circular path
connecting two cross sections increases proceeding from the inner to the outer channel bank, hence
the bed-slope decreases outwards (Figure 22). This is a metric effect which tends to accelerate the
inner flow and retard the outer flow (like in a free vortex). The second effect is due to the curvature
of the channel banks that forces fluid particles to follow curved streamlines. This is only possible
provided particles are able to develop a centripetal acceleration. The mechanism to provide such an
acceleration is the establishment of an inward directed pressure gradient, which requires that the
free surface develops a lateral slope. This leads to the generation of a secondary flow controlled by
the imbalance between the required centripetal acceleration (which is proportional to the square of
the local velocity) and the available lateral pressure gradient. More precisely, the lateral pressure
gradient is insufficient for the high momentum fluid located in the upper part of the cross section,
which is then displaced from the inner to the outer channel bank. On the contrary, the lateral
pressure gradient exceeds the centripetal acceleration required by the low momentum fluid located
in the lower part of the cross section, which is then forced to move in the inward direction close
to the bed (Figure 22). The curvature driven secondary circulation develops in space starting

.

Figura 22. Sketch of the mechanism of generation of the free vortex effect and curvature driven secondary flow
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from the bend inlet until the flow reaches a new (fully developed) uniform state, albeit no longer
unidirectional.

It is instructive to start investigating this fully developed flow field.

2.4.2 Fully developed steady flow in mildly curved channels: free vortex effect and the role of curvature

In the fully developed case, the formulation is obtained from that presented in the previous
section by simply assuming that the velocity field and the gradient of free surface elevation, i.e. the
flow properties in the governing momentum equations, do not vary in the longitudinal direction.
Note that the governing equations of the problem, even in the case of wide channels, retain their
nonlinear character, hence they are non amenable to simple analytical treatment in general. A
fully analytical approach is, however, possible in a particular, yet non trivial, case, namely for
weakly curved bends, which is discussed in detail below starting from the case of flat laterally
horizontal bottom. Let us then employ the mildly curved approximation and assume:

ν0 ≪ 1, δ ≪ 1. (61)

Note that these two constraints are essentially equivalent, as discussed in Section 2.3.
Let us then get advantage from (61) to seek a solution for the flow field expanded in powers of

the small parameter δ in a neighborhood of the uniform solution as follows:
[
us, un, uz, H, D, νT

]
=

δ0
[
us0(ζ), 0, uz0(ζ), Hu(s) + h0, D0, νT0(ζ)

]
+

δ
[
us1(n, ζ), un1(ζ), uz1(n, ζ), h1(n), D1(n), νT1(n, ζ)

]
+O(δ2), (62)

where, due to the fixed character of the bed, the flow depth is expressed in terms of free surface
elevation as follows:

D0 = 1 + F 2
ru h0, D1(n) = F 2

ru h1(n). (63)

At the leading order of approximation us0 and uz0 are only functions of the normalized vertical
coordinate ζ. We also allow for the possibility that an s-independent correction (h0) of the uniform
free surface elevation (Hu(s)) be needed to satisfy the integral constraint (60).

Moreover, a simple closure for νT is justified by the assumptions of wide cross section and
mildly curved bend. We assume that the eddy viscosity retains the same vertical dependence
it experiences in a straight channel but its amplitude varies in the lateral direction in direct
proportion to the local values of the friction velocity and flow depth. Hence we write:

νT =

√
Cf

Cfu
U(n)D(n)N (ζ), (64)

where N (ζ) is the dimensionless form of the eddy viscosity of the reference uniform flow (see Section
2.3.4(I)) and U(n) denotes the vertically averaged longitudinal component of the dimensionless
flow velocity defined in the form:
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Using Strickler relationship for Cf , with the channel roughness taken to be laterally constant,
such that (Cf )

− 1
2 = ks√
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1/6 (in dimensional form), then, in dimensionless form, one finds that√

Cf =
√

Cfu D
−1/6 and eq. (64) becomes:
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5
6 (n)N (ζ), (66)
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We now substitute from (62) into (66) and, with the help of simple algebra, find:

νT = νT0 + δ νT1 +O(δ2) (67)

where

νT0 = N (ζ)U0 D
5/6
0 , νT1 = νT0

(U1

U0
+

5

6

D1

D0

)
. (68a,b)

We may now substitute from the expansions (62) and (67) into the governing equations (57) and
the related boundary conditions (59), to obtain the following problems at the various orders of
approximation in δ.

O(δ0)

Let us first consider the continuity equation (57a) which shows that at the leading order, a small
vertical component of velocity must be allowed, such that:
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and the kinematic boundary condition (59b), which reads:
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The above differential equation is readily solved to obtain:

uz0(ζ) = F 2
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ds
us0(ζ). (71)

The reader will readily appreciate that uz0 is needed in order for the vectorial composition of us0

and uz0 to generate a longitudinal component of the flow velocity aligned with the channel axis.
Indeed, recalling the different scales used for us and uz, the requirement that the vector u0 be
aligned with the channel axis implies that the ratio uz0/us0 must be equal to −βuS (see sketch in
Figure 23). Indeed, in a uniform flow and with the present scaling, one may write:
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Equating the O(δ0) terms in (57b), one finds the following problem:
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1
= 0, (74)

where use has been made of (71) that shows that the term in square brackets in the right hand
side of (73) vanishes. Hence, at the leading order of approximation, the longitudinal flow of weakly
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from the bend inlet until the flow reaches a new (fully developed) uniform state, albeit no longer
unidirectional.

It is instructive to start investigating this fully developed flow field.

2.4.2 Fully developed steady flow in mildly curved channels: free vortex effect and the role of curvature

In the fully developed case, the formulation is obtained from that presented in the previous
section by simply assuming that the velocity field and the gradient of free surface elevation, i.e. the
flow properties in the governing momentum equations, do not vary in the longitudinal direction.
Note that the governing equations of the problem, even in the case of wide channels, retain their
nonlinear character, hence they are non amenable to simple analytical treatment in general. A
fully analytical approach is, however, possible in a particular, yet non trivial, case, namely for
weakly curved bends, which is discussed in detail below starting from the case of flat laterally
horizontal bottom. Let us then employ the mildly curved approximation and assume:

ν0 ≪ 1, δ ≪ 1. (61)

Note that these two constraints are essentially equivalent, as discussed in Section 2.3.
Let us then get advantage from (61) to seek a solution for the flow field expanded in powers of

the small parameter δ in a neighborhood of the uniform solution as follows:
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+
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where, due to the fixed character of the bed, the flow depth is expressed in terms of free surface
elevation as follows:

D0 = 1 + F 2
ru h0, D1(n) = F 2

ru h1(n). (63)

At the leading order of approximation us0 and uz0 are only functions of the normalized vertical
coordinate ζ. We also allow for the possibility that an s-independent correction (h0) of the uniform
free surface elevation (Hu(s)) be needed to satisfy the integral constraint (60).

Moreover, a simple closure for νT is justified by the assumptions of wide cross section and
mildly curved bend. We assume that the eddy viscosity retains the same vertical dependence
it experiences in a straight channel but its amplitude varies in the lateral direction in direct
proportion to the local values of the friction velocity and flow depth. Hence we write:

νT =

√
Cf

Cfu
U(n)D(n)N (ζ), (64)

where N (ζ) is the dimensionless form of the eddy viscosity of the reference uniform flow (see Section
2.3.4(I)) and U(n) denotes the vertically averaged longitudinal component of the dimensionless
flow velocity defined in the form:

U(n) =
1
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Using Strickler relationship for Cf , with the channel roughness taken to be laterally constant,
such that (Cf )
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We now substitute from (62) into (66) and, with the help of simple algebra, find:

νT = νT0 + δ νT1 +O(δ2) (67)

where

νT0 = N (ζ)U0 D
5/6
0 , νT1 = νT0
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+
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)
. (68a,b)

We may now substitute from the expansions (62) and (67) into the governing equations (57) and
the related boundary conditions (59), to obtain the following problems at the various orders of
approximation in δ.

O(δ0)

Let us first consider the continuity equation (57a) which shows that at the leading order, a small
vertical component of velocity must be allowed, such that:
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and the kinematic boundary condition (59b), which reads:
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The above differential equation is readily solved to obtain:

uz0(ζ) = F 2
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us0(ζ). (71)

The reader will readily appreciate that uz0 is needed in order for the vectorial composition of us0

and uz0 to generate a longitudinal component of the flow velocity aligned with the channel axis.
Indeed, recalling the different scales used for us and uz, the requirement that the vector u0 be
aligned with the channel axis implies that the ratio uz0/us0 must be equal to −βuS (see sketch in
Figure 23). Indeed, in a uniform flow and with the present scaling, one may write:
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Equating the O(δ0) terms in (57b), one finds the following problem:
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where use has been made of (71) that shows that the term in square brackets in the right hand
side of (73) vanishes. Hence, at the leading order of approximation, the longitudinal flow of weakly
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Figura 23. Sketch illustrating the physical interpretation of the component uz0 of the vertical velocity

curved wide bends does neither feel the metric effect nor the lateral momentum transfer driven by
the secondary flow. Moreover, recalling (68a), one readily shows that it is convenient to set:

us0 = U0 F0(ζ), U0 = D
7/12
0 . (75)

With the help of (75), the differential problem given by (73), (74) becomes identical with that
governing the undisturbed uniform turbulent flow in infinitely wide straight open channels (see
Section 2.3.4(I)) which admits of the following solution:

F0(ζ) =
[√Cfu

k
ln
( ζ

ζ0

)
+Wf (ζ)

]
. (76)

Here k is the Von Karman constant, ζ0 is the scaled distance from the bed where no-slip is
conventionally enforced and Wf (ζ) is the so called wake function (2.66(I)), the specific form of
which depends on the particular choice made for the vertical distribution of eddy viscosity N (ζ)
(see Section 2.3.4(I)). Note that, as a result of scaling, the vertical average of F0(ζ) is equal to one.

Let us finally check whether a correction of the flow depth is required to satisfy the integral
constraint (60) at the open boundary. At O(δ0) it leads to the following condition:

D0

∫ 1

ζ0

(∫ 1

−1

us0 dn
)
dζ =

(
1 + F 2

ru h0

)19/12 ∫ 1

ζ0

F0(ζ) dζ

∫ 1

−1

dn = 2, (77)

which is satisfied by the simplest requirement:

h0 = 0. (78)

Hence, at the leading order, no correction of the free surface elevation is needed and the solution
is identical to the straight channel solution, i.e. D0 = 1, U0 = 1.

O(δ)

Proceeding to the next order, i.e. equating the O(δ) terms in the governing equations and boundary
conditions, one finds a sequence of differential problems for us1, un1 and uz1.
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Let us then analyze flow continuity, which reads:

∂un1
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vanishing by (71)

)
= 0. (79)

This equation allows one to determine the vertical component of velocity once its lateral and
longitudinal components are known. Indeed, integration of (79) with the help of (70a) and recalling
that the no slip condition is enforced at ζ0, gives:

uz1(ζ) = − ∂

∂n

∫ ζ

ζ0

un1 dζ
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ru
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ds

(
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n

b
us0

)
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On the other hand, the kinematic boundary condition at the free surface (59b) at O(δ) provides
the following constraint:

uz1 = F 2
ru

dHu

ds

[
us1 −

n

b
us0

]
(ζ = 1). (81)

Computing (80) for ζ=1 and using (81), we end up with the condition that the integral
∫ 1

ζ0
un1 dζ

must keep constant in the lateral direction. This constant must however vanish owing to no-flux
constraint at the channel banks. The lateral velocity must thus satisfy the following requirement:

∫ 1

ζ0

un1 dζ = 0. (82)

We can next solve the lateral component of the momentum equation which, at O(δ), reads:
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N (ζ)

∂un1
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2
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dHu
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vanishing by (71)
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= b
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− u2

s0, (83)

where use has again been made of (71). This equation represents the mathematical expression of
the mechanism of generation of secondary flow illustrated in Figure 22. The differential system
given by (83) and the associated boundary conditions

un1

∣∣
ζ0

= 0,
∂un1

∂ζ

∣∣∣
1
= 0, (84)

is readily solved in the form:

un1(ζ) = b
dh1

dn
G10(ζ)− G11(ζ). (85)

Here,

G10(ζ) = − 1√
Cfu

F0(ζ), (86)

while the function G11(ζ) is the solution of the following boundary value problem:

d

dζ

[
N (ζ)

dG11

dζ

]
= F2

0 , (87)
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Figura 23. Sketch illustrating the physical interpretation of the component uz0 of the vertical velocity

curved wide bends does neither feel the metric effect nor the lateral momentum transfer driven by
the secondary flow. Moreover, recalling (68a), one readily shows that it is convenient to set:

us0 = U0 F0(ζ), U0 = D
7/12
0 . (75)

With the help of (75), the differential problem given by (73), (74) becomes identical with that
governing the undisturbed uniform turbulent flow in infinitely wide straight open channels (see
Section 2.3.4(I)) which admits of the following solution:

F0(ζ) =
[√Cfu

k
ln
( ζ

ζ0

)
+Wf (ζ)

]
. (76)

Here k is the Von Karman constant, ζ0 is the scaled distance from the bed where no-slip is
conventionally enforced and Wf (ζ) is the so called wake function (2.66(I)), the specific form of
which depends on the particular choice made for the vertical distribution of eddy viscosity N (ζ)
(see Section 2.3.4(I)). Note that, as a result of scaling, the vertical average of F0(ζ) is equal to one.
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F0(ζ) dζ

∫ 1

−1

dn = 2, (77)

which is satisfied by the simplest requirement:

h0 = 0. (78)

Hence, at the leading order, no correction of the free surface elevation is needed and the solution
is identical to the straight channel solution, i.e. D0 = 1, U0 = 1.

O(δ)

Proceeding to the next order, i.e. equating the O(δ) terms in the governing equations and boundary
conditions, one finds a sequence of differential problems for us1, un1 and uz1.
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Let us then analyze flow continuity, which reads:
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This equation allows one to determine the vertical component of velocity once its lateral and
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must keep constant in the lateral direction. This constant must however vanish owing to no-flux
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where use has again been made of (71). This equation represents the mathematical expression of
the mechanism of generation of secondary flow illustrated in Figure 22. The differential system
given by (83) and the associated boundary conditions
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= 0, (84)

is readily solved in the form:

un1(ζ) = b
dh1

dn
G10(ζ)− G11(ζ). (85)

Here,

G10(ζ) = − 1√
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F0(ζ), (86)

while the function G11(ζ) is the solution of the following boundary value problem:
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G11

∣∣
ζ0

= 0,
dG11

dζ

∣∣∣
1
= 0. (88)

Requiring that the solution (85) satisfies the integral constraint (82), one eventually determines
the lateral slope of the free surface dh1/dn required for the net lateral flux to vanish:

dh1

dn
= a1 = −βu Cfu IG11

, (89)

having denoted by If the integral
∫ 1

ζ0
f dζ. Hence,

h1 = h10 + h11(n) = h10 + a1 n, (90)

with h10 lateral average of h1.
The final form of un1 then reads:

un1 = F0(ζ) IG11
− G11(ζ). (91)

The Figure 24 shows the vertical distribution of the secondary flow velocity un1(ζ) predicted
for a given value of the friction coefficient.
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Figura 24. Left: The vertical distribution of the secondary flow velocity un1(ζ) predicted for the value 0.01 of the
unperturbed friction coefficient Cfu and for the N distribution proposed by Rattray and Mitsuda (1974). Right:

The function G11(ζ).

The governing equation for us1 reads:

∂

∂ζ

[
N (ζ)

∂us1

∂ζ

]
− 2F 2

ru h1
d

dζ

[
N (ζ)

dus0

dζ

]
+

∂

∂ζ

[(5
6
F 2
ru h1 + U1

)
N (ζ)

dus0

dζ

]
=

− n
dHu

ds
+ b

(∂us1

∂ζ
− F 2

ru h1
dus0

dζ

)(
uz0 − us0 F

2
ru

dHu

ds︸ ︷︷ ︸
vanishing by (71)

)

+
dus0

dζ

[
F 2
ru

dHu

ds

(
nus0 − bus1

)
+ buz1

︸ ︷︷ ︸
vanishing by (80)

]
(92)

us1

∣∣
ζ0

= 0,
∂us1

∂ζ

∣∣∣
1
= 0, (93)

where we have again assumed that dh10/ds ≡ 0.
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This system can be largely simplified using (71) and (80) to find:

∂

∂ζ

[
N (ζ)

∂us1

∂ζ

]
=
(
− 7

6
F 2
ru h1 + U1 +

n

b

)√
Cfu, (94)

us1

∣∣
ζ0

= 0,
∂us1

∂ζ

∣∣∣
1
= 0. (95)

Hence, it turns out that the O(δ) correction of the longitudinal component of velocity us1 is
driven by three effects associated with the three terms on the right handside of equation (94). The
first is a topographic contribution associated with variations of the local flow depth. The second
is driven by the perturbation of the friction velocity which affects the eddy viscosity. The last
term accounts for the metric effect whereby the flow in the inner region is faster than in the outer
region.

By analogy to the O(δ0) problem, this differential system is immediately solved in the form:

us1 = F0(ζ)
(
− n

b
− U1 +

7

6
F 2
ru h1

)
. (96)

In order to determine the depth averaged value U1(n), we simply apply its definition (65) to find:

U1(n) =

∫ 1

ζ0

us1 dζ ⇒ U1 =
1

2

(
− n

b
+

7

6
F 2
ru h1

)
. (97)

At last, the integral constraint (60), expanded in powers of δ, at first order gives:

∫ 1

ζ0

dζ

∫ 1

−1

(
us1 + us0 F

2
ru h1

)
dn =

∫ 1

−1

U1(n) dn+ 2F 2
ru h10 =

19

6
F 2
ru h10 = 0. (98)

Hence, we end up with the trivial conclusion that h10 must vanish, i.e. the average flow depth
is not perturbed by the effect of curvature. Note that this result is strictly connected to the
linear nature of the analysis and to the horizontal configuration of the bed. Indeed, the lateral
dependence of us1 has vanishing mean, hence no correction of the average flow depth is needed.
Recalling the solution (90) for h1(n), it follows that the complete solution for the longitudinal
component of the flow velocity up to O(δ2) reads:

us = F0(ζ)
[
1 +

1

2
δ
(
− n

b
+

7

6
F 2
ru h11

)
+O(δ2)

]

= F0(ζ)
[
1− 1

2

δ

b

(
1 +

7

6

√
Cfu F

2
ru IG11

)
n+O(δ2)

]
. (99)

The above solution predicts that, in the fully developed regime, the thread of high velocity is
still located at the inner bend (where n < 0). This is the so called free vortex effect and arises from
the fact that in wide and weakly curved bends with laterally horizontal bed the lateral transfer of
longitudinal momentum arises only at second order. As a consequence, it is a fairly weak effect, so
that the outward metric reduction of the bed slope, which is the origin of the free vortex effect,
prevails. The solution also shows that the free vortex contribution is corrected by the effect of the
lateral slope of the free surface whereby the flow depth increases outward and the flow experiences
an acceleration. However, the latter mechanism is typically small in subcritical flows (recall Figure
24b which suggests that IG11

is negative and the modulus of the quantity
√

Cfu IG11
/b is smaller

than one). Hence, the free vortex effect prevails. This is clearly illustrated by Figure 25 which
shows that the effect of increasing the value of δ is to enhance the flow acceleration at the inner
bend relative to the outer bend.

These results confirm also the pioneering observations of Rozovskij (1957) reported in Figure 26.
The reader will note that the fluid speed, starting from the entrance of the 180◦ bend, accelerates
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Requiring that the solution (85) satisfies the integral constraint (82), one eventually determines
the lateral slope of the free surface dh1/dn required for the net lateral flux to vanish:
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, (89)

having denoted by If the integral
∫ 1
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f dζ. Hence,

h1 = h10 + h11(n) = h10 + a1 n, (90)

with h10 lateral average of h1.
The final form of un1 then reads:

un1 = F0(ζ) IG11
− G11(ζ). (91)

The Figure 24 shows the vertical distribution of the secondary flow velocity un1(ζ) predicted
for a given value of the friction coefficient.
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The governing equation for us1 reads:
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us1
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where we have again assumed that dh10/ds ≡ 0.
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This system can be largely simplified using (71) and (80) to find:
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Hence, it turns out that the O(δ) correction of the longitudinal component of velocity us1 is
driven by three effects associated with the three terms on the right handside of equation (94). The
first is a topographic contribution associated with variations of the local flow depth. The second
is driven by the perturbation of the friction velocity which affects the eddy viscosity. The last
term accounts for the metric effect whereby the flow in the inner region is faster than in the outer
region.

By analogy to the O(δ0) problem, this differential system is immediately solved in the form:
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U1(n) =

∫ 1

ζ0

us1 dζ ⇒ U1 =
1

2

(
− n

b
+

7

6
F 2
ru h1

)
. (97)
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Hence, we end up with the trivial conclusion that h10 must vanish, i.e. the average flow depth
is not perturbed by the effect of curvature. Note that this result is strictly connected to the
linear nature of the analysis and to the horizontal configuration of the bed. Indeed, the lateral
dependence of us1 has vanishing mean, hence no correction of the average flow depth is needed.
Recalling the solution (90) for h1(n), it follows that the complete solution for the longitudinal
component of the flow velocity up to O(δ2) reads:
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The above solution predicts that, in the fully developed regime, the thread of high velocity is
still located at the inner bend (where n < 0). This is the so called free vortex effect and arises from
the fact that in wide and weakly curved bends with laterally horizontal bed the lateral transfer of
longitudinal momentum arises only at second order. As a consequence, it is a fairly weak effect, so
that the outward metric reduction of the bed slope, which is the origin of the free vortex effect,
prevails. The solution also shows that the free vortex contribution is corrected by the effect of the
lateral slope of the free surface whereby the flow depth increases outward and the flow experiences
an acceleration. However, the latter mechanism is typically small in subcritical flows (recall Figure
24b which suggests that IG11

is negative and the modulus of the quantity
√

Cfu IG11
/b is smaller

than one). Hence, the free vortex effect prevails. This is clearly illustrated by Figure 25 which
shows that the effect of increasing the value of δ is to enhance the flow acceleration at the inner
bend relative to the outer bend.

These results confirm also the pioneering observations of Rozovskij (1957) reported in Figure 26.
The reader will note that the fluid speed, starting from the entrance of the 180◦ bend, accelerates
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Figura 25. Vertical distribution of the dimensionless longitudinal component of the velocity us in the fully
developed flow in a curved rectangular channel with constant curvature at different lateral positions

(n=-1,-0.5,0,0.5 and 1), for the N (ζ) distribution proposed by Rattray and Mitsuda (1974), with Cfu = 0.01, b=2,
Fru=0.37 and different values of the curvature parameter δ.

Figura 26. Spatial development of the flow speed at the free surface of a constant curvature channel bend with
rectangular cross section, hence with laterally horizontal bed (reproduced from Rozovskij, 1957).

at the inner bank and decelerates close to the outer bank. The thread of high velocity shifts
towards the outer bank only close to the bend exit and persists in the downstream rectilinear
reach where the uniform distribution is slowly recovered.

2.4.3 Fully developed steady flow in mildly curved channels: the role of bed topography

The secondary flow investigated in the previous Section was driven by a single mechanism,
namely, streamline curvature. However, in meandering rivers a second component of the secondary
flow plays a major role. Essentially, the bed undergoes longitudinal variations of bed elevation
that force, by simple continuity requirements, the generation of a topographically driven secondary
flow. This mechanism, called topographic steering, is illustrated in Figure 27 and its importance
was originally pointed out by Yen (1970) and Dietrich and Smith (1983). The latter Authors state
that: "Forces arising from topographically induced spatial accelerations are of the same order of
magnitude as the downstream boundary shear stress and water surface slope force components, so
they must be modeled as zero-order, not first- or second-order, effects".

Below, we illustrate the role of bed topography by analyzing the fully developed flow in wide
rectangular channels with constant weak curvature and prescribed laterally sloping bed. The
analysis thus requires small adjustments of that pursued in the previous section.

We again assume that the channel axis is the circular helix determined by the intersection of
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Figura 27. Sketch of the mechanism of topographic steering.

the bottom with the curved surface n = 0. Again, the longitudinal slope of the channel axis is
constant and will be taken to coincide with the slope S of the straight upstream channel. Let
us also adopt the same scaling employed in the previous section and assume that the lateral
distribution of the dimensionless bed elevation η at a cross section located in the fully developed
region of the flow can be written in the form (Figure 28):

η(s, n) = ηa(s) + ηd(n), −dηa
ds

=
B

Du
S, (100)

with ηa(s) dimensionless bed elevation at the channel axis and ηd(n) local deviation of dimensionless
bed elevation from the flat horizontal configuration considered in the previous section. Also, the
longitudinal scale L has again been taken to coincide with the channel half-width B, given the
fully developed nature of the flow field.

Let us express the dimensionless free surface elevation H in the form:

H = Hu(s) + h(n), (101)

having denoted by h its perturbation relative to the undisturbed straight uniform value Hu(s).
Note that, due to the fully developed nature of the examined configuration, h can only be a
function of the lateral coordinate. As a result, the flow depth is immediately expressed in terms of
the perturbation of free surface elevation as follows:

D(n) = F 2
ru H − η = 1− ηd(n) + F 2

ru h(n), (102)

as F 2
ru Hu(s)− ηa(s) = 1 (see Figure 28). In other words, the flow depth varies laterally due to the

fixed prescribed shape of the bottom and undergoes further variations driven by the perturbation
of free surface elevation.

Having restricted ourselves to the case of wide weakly curved bends, satisfying the conditions
(61), we adapt the expansion (62) to the new channel configuration and write it in the form:

[
us, un, uz, h, D, νT

]
=

[
us0(n, ζ), 0, uz0(n, ζ), h0, D0(n), νT0(n, ζ)

]
+

δ
[
us1(n, ζ), un1(n, ζ), uz1(n, ζ), h1(n), D1(n), νT1(n, ζ)

]
+O(δ2). (103)
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Figura 25. Vertical distribution of the dimensionless longitudinal component of the velocity us in the fully
developed flow in a curved rectangular channel with constant curvature at different lateral positions

(n=-1,-0.5,0,0.5 and 1), for the N (ζ) distribution proposed by Rattray and Mitsuda (1974), with Cfu = 0.01, b=2,
Fru=0.37 and different values of the curvature parameter δ.

Figura 26. Spatial development of the flow speed at the free surface of a constant curvature channel bend with
rectangular cross section, hence with laterally horizontal bed (reproduced from Rozovskij, 1957).

at the inner bank and decelerates close to the outer bank. The thread of high velocity shifts
towards the outer bank only close to the bend exit and persists in the downstream rectilinear
reach where the uniform distribution is slowly recovered.

2.4.3 Fully developed steady flow in mildly curved channels: the role of bed topography

The secondary flow investigated in the previous Section was driven by a single mechanism,
namely, streamline curvature. However, in meandering rivers a second component of the secondary
flow plays a major role. Essentially, the bed undergoes longitudinal variations of bed elevation
that force, by simple continuity requirements, the generation of a topographically driven secondary
flow. This mechanism, called topographic steering, is illustrated in Figure 27 and its importance
was originally pointed out by Yen (1970) and Dietrich and Smith (1983). The latter Authors state
that: "Forces arising from topographically induced spatial accelerations are of the same order of
magnitude as the downstream boundary shear stress and water surface slope force components, so
they must be modeled as zero-order, not first- or second-order, effects".

Below, we illustrate the role of bed topography by analyzing the fully developed flow in wide
rectangular channels with constant weak curvature and prescribed laterally sloping bed. The
analysis thus requires small adjustments of that pursued in the previous section.

We again assume that the channel axis is the circular helix determined by the intersection of
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Figura 27. Sketch of the mechanism of topographic steering.

the bottom with the curved surface n = 0. Again, the longitudinal slope of the channel axis is
constant and will be taken to coincide with the slope S of the straight upstream channel. Let
us also adopt the same scaling employed in the previous section and assume that the lateral
distribution of the dimensionless bed elevation η at a cross section located in the fully developed
region of the flow can be written in the form (Figure 28):

η(s, n) = ηa(s) + ηd(n), −dηa
ds

=
B

Du
S, (100)

with ηa(s) dimensionless bed elevation at the channel axis and ηd(n) local deviation of dimensionless
bed elevation from the flat horizontal configuration considered in the previous section. Also, the
longitudinal scale L has again been taken to coincide with the channel half-width B, given the
fully developed nature of the flow field.

Let us express the dimensionless free surface elevation H in the form:

H = Hu(s) + h(n), (101)

having denoted by h its perturbation relative to the undisturbed straight uniform value Hu(s).
Note that, due to the fully developed nature of the examined configuration, h can only be a
function of the lateral coordinate. As a result, the flow depth is immediately expressed in terms of
the perturbation of free surface elevation as follows:

D(n) = F 2
ru H − η = 1− ηd(n) + F 2

ru h(n), (102)

as F 2
ru Hu(s)− ηa(s) = 1 (see Figure 28). In other words, the flow depth varies laterally due to the

fixed prescribed shape of the bottom and undergoes further variations driven by the perturbation
of free surface elevation.

Having restricted ourselves to the case of wide weakly curved bends, satisfying the conditions
(61), we adapt the expansion (62) to the new channel configuration and write it in the form:

[
us, un, uz, h, D, νT

]
=

[
us0(n, ζ), 0, uz0(n, ζ), h0, D0(n), νT0(n, ζ)

]
+

δ
[
us1(n, ζ), un1(n, ζ), uz1(n, ζ), h1(n), D1(n), νT1(n, ζ)

]
+O(δ2). (103)
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Figura 28. Constant curvature rectangular channel with laterally sloping bed: sketch and notations in terms of
dimensionless variables.

where, recalling (102), we may write:

D0(n) = 1 + F 2
ru h0 − ηd(n), D1(n) = F 2

ru h1(n). (104a,b)

The quantity h0 is independent of the lateral and longitudinal coordinates and represents a
correction of the average flow depth that is needed in order to satisfy the integral constraint (60)
at the open boundary.

The closure (66) must also be adapted, as D(n) and U(n) must now be expanded according to
(103). Again, adopting the Strickler’s formula for Cf , one finds:

νT0 = N (ζ)D
5/6
0 (n)U0(n), νT1 = νT0

[
U1(n)

U0(n)
+

5

6

F 2
ru h1(n)

D0(n)

]
. (105a,b)

Substituting from (103) into the governing equations (57) and related boundary conditions, the
analysis proceeds along the lines of the corresponding analysis described in the previous section.

O(δ0)

At the leading order of approximation, one finds:

1

D2
0

∂

∂ζ

(
νT0

∂us0

∂ζ

)
= b

dHu

ds
+

b

D0

∂us0

∂ζ

(
uz0 − us0 F

2
ru

dHu

ds︸ ︷︷ ︸
vanishing by (71)

)
= −

√
Cfu, (106)

us0

∣∣
ζ0

= 0,
∂us0

∂ζ

∣∣∣
1
= 0, (107)

where use has been made of the relationship (71), that the reader will readily show applies also
in the present case. Setting us0 = U0(n)F0(ζ) and recalling equation (105a), one finds that the
lateral coordinate can be scaled out of (106) provided one sets U0 = D

7/12
0 .
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The complete solution for us0 then reads:

us0 = D0(n)
7/12 F0(ζ). (108)

Hence, the first (and largest) effect of bed topography is that the lateral variations of the flow
depth give rise to O(1) variations of the longitudinal velocity us0 whereby the flow speed increases
in the direction of increasing flow depth.

As mentioned above, this solution must also satisfy the integral constraint (60) at any order of
approximation. At the leading order, the following relationship is readily obtained:

∫ 1

−1

D
19/12
0 dn = 2. (109)

Recalling (104a), it turns out that for any given function ηd(n), this is an implicit equation for
h0. Hence: at the leading order of approximation, the longitudinal slope of the free surface in the
curved reach is equal to its value in the straight reach and the flow satisfies the integral constraint
by simply varying uniformly its average flow depth.

O(δ)

At first order, the problem for the lateral component of velocity un1 is found to read:

1

D2
0

∂

∂ζ

(
νT0

∂un1

∂ζ

)
= b

dh1

dn
− u2

s0 +
b

D0

∂un1

∂ζ

(
uz0 − us0 F

2
ru

dHu

ds︸ ︷︷ ︸
vanishing by (71)

)

= b
dh1

dn
−D

7/6
0 F2

0 , (110)

un1

∣∣
ζ0

= 0,
∂un1

∂ζ

∣∣∣
1
= 0. (111)

The problem for the lateral component of velocity is forced by a centripetal acceleration which
is now proportional to D0(n)

7/6, i.e. it depends on the lateral coordinate n. Again, setting

un1 = U1(n)G1(ζ), (112)

the reader will readily verify that the lateral coordinate can be scaled out of the governing equation
for un1 provided one sets:

un1 = D0(n)
7/4 G1(ζ),

dh1

dn
= a1 D0(n)

7/6, (113a,b)

The above assumption implies that:
- the differential problem for the function G1(ζ) is identical to that given by (83) and (84);

- with the use of the equivalent of the integral constraint (82), derived below, the constant a1 is
shown to be given by a relationship identical to (89);

- the function h1 is readily obtained from the integration of (113b) and reads:

h1 = a1

∫
D

7/6
0 dn+ h10. (114)
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Figura 28. Constant curvature rectangular channel with laterally sloping bed: sketch and notations in terms of
dimensionless variables.

where, recalling (102), we may write:

D0(n) = 1 + F 2
ru h0 − ηd(n), D1(n) = F 2

ru h1(n). (104a,b)

The quantity h0 is independent of the lateral and longitudinal coordinates and represents a
correction of the average flow depth that is needed in order to satisfy the integral constraint (60)
at the open boundary.

The closure (66) must also be adapted, as D(n) and U(n) must now be expanded according to
(103). Again, adopting the Strickler’s formula for Cf , one finds:

νT0 = N (ζ)D
5/6
0 (n)U0(n), νT1 = νT0

[
U1(n)

U0(n)
+

5

6

F 2
ru h1(n)

D0(n)

]
. (105a,b)

Substituting from (103) into the governing equations (57) and related boundary conditions, the
analysis proceeds along the lines of the corresponding analysis described in the previous section.

O(δ0)

At the leading order of approximation, one finds:

1

D2
0

∂

∂ζ

(
νT0

∂us0

∂ζ

)
= b

dHu

ds
+

b

D0

∂us0

∂ζ

(
uz0 − us0 F

2
ru

dHu

ds︸ ︷︷ ︸
vanishing by (71)

)
= −

√
Cfu, (106)

us0

∣∣
ζ0

= 0,
∂us0

∂ζ

∣∣∣
1
= 0, (107)

where use has been made of the relationship (71), that the reader will readily show applies also
in the present case. Setting us0 = U0(n)F0(ζ) and recalling equation (105a), one finds that the
lateral coordinate can be scaled out of (106) provided one sets U0 = D

7/12
0 .
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The complete solution for us0 then reads:

us0 = D0(n)
7/12 F0(ζ). (108)

Hence, the first (and largest) effect of bed topography is that the lateral variations of the flow
depth give rise to O(1) variations of the longitudinal velocity us0 whereby the flow speed increases
in the direction of increasing flow depth.

As mentioned above, this solution must also satisfy the integral constraint (60) at any order of
approximation. At the leading order, the following relationship is readily obtained:

∫ 1

−1

D
19/12
0 dn = 2. (109)

Recalling (104a), it turns out that for any given function ηd(n), this is an implicit equation for
h0. Hence: at the leading order of approximation, the longitudinal slope of the free surface in the
curved reach is equal to its value in the straight reach and the flow satisfies the integral constraint
by simply varying uniformly its average flow depth.

O(δ)

At first order, the problem for the lateral component of velocity un1 is found to read:

1

D2
0

∂

∂ζ

(
νT0

∂un1

∂ζ

)
= b

dh1

dn
− u2

s0 +
b

D0

∂un1

∂ζ

(
uz0 − us0 F

2
ru

dHu

ds︸ ︷︷ ︸
vanishing by (71)

)

= b
dh1

dn
−D

7/6
0 F2

0 , (110)

un1

∣∣
ζ0

= 0,
∂un1

∂ζ

∣∣∣
1
= 0. (111)

The problem for the lateral component of velocity is forced by a centripetal acceleration which
is now proportional to D0(n)

7/6, i.e. it depends on the lateral coordinate n. Again, setting

un1 = U1(n)G1(ζ), (112)

the reader will readily verify that the lateral coordinate can be scaled out of the governing equation
for un1 provided one sets:

un1 = D0(n)
7/4 G1(ζ),

dh1

dn
= a1 D0(n)

7/6, (113a,b)

The above assumption implies that:
- the differential problem for the function G1(ζ) is identical to that given by (83) and (84);

- with the use of the equivalent of the integral constraint (82), derived below, the constant a1 is
shown to be given by a relationship identical to (89);

- the function h1 is readily obtained from the integration of (113b) and reads:

h1 = a1

∫
D

7/6
0 dn+ h10. (114)
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Having determined un1 we can then calculate the O(δ) component of the vertical velocity uz1

from the continuity equation (57a), which can be written in the form:

1

D0

∂uz1

∂ζ
=

F 2
ru h1

D2
0

( ∂uz0

∂ζ
− ∂us0

∂ζ
F 2
ru

dHu

ds︸ ︷︷ ︸
vanishing by (71)

)
+

F 2
ru

D0

dHu

ds

(∂us1

∂ζ
− n

b

∂us0

∂ζ

)

− ∂un1

∂n
+

(ζ − 1)

D0

dD0

dn

∂un1

∂ζ
. (115)

This is immediately solved, using (71) and imposing the no slip condition for uz1 at the bed. One
finds:

uz1 = F 2
ru

dHu

ds

(
us1 −

n

b
us0

)
+
(
ζ − 1

) dD0

dn
un1 −

∂

∂n

(
D0

∫ ζ

ζ0

un1 dζ
′
)
. (116)

The kinematic boundary condition at the free surface (53c), evaluated at O(δ) gives:

uz1 = F 2
ru

dHu

ds

[
us1 −

n

b
us0

]
(ζ = 1). (117a)

With the latter condition, the solution (116) leads to the constraint:

∂

∂n

(
D0

∫ ζ

ζ0

un1 dζ
′
)
= 0. (118)

This is readily integrated imposing the boundary condition of vanishing lateral flux at the channel
banks. Since D0(±1) ̸= 0, a constraint for G1(ζ) identical to (82) is finally obtained.

The O(δ) correction for the longitudinal velocity us1 is the solution of the following differential
system:

1

D2
0

∂

∂ζ

(
νT0

∂us1

∂ζ

)
=

1

D2
0

(
2
F 2
ru h1

D0
− U1

U0
− 5

6

F 2
ru h1

D0

) ∂

∂ζ

(
νT0

∂us0

∂ζ

)
− b

dHu

ds

n

b
+

[ b

D0

∂us1

∂ζ
− b

F 2
ru h1

D2
0

∂us0

∂ζ

](
uz0 − us0 F

2
ru

dHu

ds︸ ︷︷ ︸
vanishing by (71)

)
+

b

D0

∂us0

∂ζ

[
uz1 + F 2

ru

dHu

ds

(n
b
us0 − us1

)]
+

bun1

[∂us0

∂n
− ζ − 1

D0

dD0

dn

∂us0

∂ζ

]
, (119)

us1

∣∣
ζ0

= 0,
∂us1

∂ζ

∣∣∣
1
= 0. (120)

With the help of (71), (116) and some algebra, this system reduces to the form:

1

D
7/12
0

∂

∂ζ

[
N (ζ)

∂us1

∂ζ

]
=

√
Cfu

(U1

U0
− 7

6

F 2
ru h1

D0
+

n

b

)

+ bD
4/3
0

dD0

dn

( 7

12
G1 F0 −

11

4

dF0

dζ

∫ ζ

ζ0

G1 dζ
′
)
, (121)

us1

∣∣
ζ0

= 0,
∂us1

∂ζ

∣∣∣
1
= 0, (122)
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showing that the correction of longitudinal velocity is driven not only by the free vortex (metric)
effect and the O(δ) corrections of the eddy viscosity as in the case of a laterally horizontal bed
(see equation (94)), but also by the convective effect of secondary flow, which plays a major role.

The solution of (121) and (122), reads:

us1 =
(7
6
F 2
ru h1D

−5/12
0 −D

7/12
0

n

b
− U1

)
F0(ζ) + bD

23/12
0

dD0

dn
F11(ζ), (123)

where the function F11(ζ) satisfies the following boundary value problem:

d

dζ

[
N (ζ)

dF11

dζ

]
=

7

12
G1 F0 −

11

4

dF0

dζ

∫ ζ

ζ0

G1 dζ
′, (124)

F11

∣∣
ζ0

= 0,
dF11

dζ

∣∣∣
1
= 0. (125)

The depth averaged velocity at O(δ) is found integrating in ζ the solution (123) to find:

U1 =
1

2
D

7/12
0

(7
6
F 2
ru

h1

D0
− n

b

)
+

1

2
bD

23/12
0

dD0

dn
IF11

. (126)

Substituting from (126) into (123) one ends up with the following relationship for the first order
correction of the longitudinal velocity:

us1 = D
7/12
0

(7
6
F 2
ru

h1

D0
− n

b

) F0

2
+ bD

23/12
0

dD0

dn

(
F11 −F0

IF11

2

)
. (127)

This solution clarifies that topographic steering has additional hydrodynamic effects besides
that found at leading order where the outer flow was deeper, hence faster than the inner shallower
flow. At first order, three contributions emerge. A correction associated with the perturbation of
free surface elevation, a metric effect that accelerates the inner flow relative to the outer flow, and
the effect of the lateral transfer of longitudinal momentum which is strongly dependent on the
lateral distribution of the flow depth.

In order to complete the solution, we need to determine the O(δ) correction of the average free
surface elevation F 2

ru h10. The constraint (60), imposed at O(δ), leads to the following relationship:

∫ 1

ζ0

[∫ 1

−1

(
F 2
ru h1 us0 +D0 us1

)
dn

]
dζ = 0. (128)

Substituting from (127), (108) and (114) into (128) and performing the integration, one finds the
following equation for h10:

N(7/12) F
2
ru h10 =

6

19 b

∫ 1

−1

nD
19/12
0 dn− a1 F

2
ru

∫ 1

−1

D
7/12
0 dn

(∫
D

7/6
0 dn

)

− 72

893
b IF11

[
D

47/12
0

]1
−1

, (129)

where we have used the following notation:

N(a) ≡
∫ 1

−1

(D0)
a dn. (130)
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Having determined un1 we can then calculate the O(δ) component of the vertical velocity uz1

from the continuity equation (57a), which can be written in the form:

1

D0

∂uz1

∂ζ
=

F 2
ru h1

D2
0

( ∂uz0

∂ζ
− ∂us0

∂ζ
F 2
ru

dHu

ds︸ ︷︷ ︸
vanishing by (71)

)
+

F 2
ru

D0

dHu

ds

(∂us1

∂ζ
− n

b

∂us0

∂ζ

)

− ∂un1

∂n
+

(ζ − 1)

D0

dD0

dn

∂un1

∂ζ
. (115)

This is immediately solved, using (71) and imposing the no slip condition for uz1 at the bed. One
finds:

uz1 = F 2
ru

dHu

ds

(
us1 −

n

b
us0

)
+
(
ζ − 1

) dD0

dn
un1 −

∂

∂n

(
D0

∫ ζ

ζ0

un1 dζ
′
)
. (116)

The kinematic boundary condition at the free surface (53c), evaluated at O(δ) gives:

uz1 = F 2
ru

dHu

ds

[
us1 −

n

b
us0

]
(ζ = 1). (117a)

With the latter condition, the solution (116) leads to the constraint:

∂

∂n

(
D0

∫ ζ

ζ0

un1 dζ
′
)
= 0. (118)

This is readily integrated imposing the boundary condition of vanishing lateral flux at the channel
banks. Since D0(±1) ̸= 0, a constraint for G1(ζ) identical to (82) is finally obtained.

The O(δ) correction for the longitudinal velocity us1 is the solution of the following differential
system:

1

D2
0

∂

∂ζ

(
νT0

∂us1

∂ζ

)
=

1

D2
0

(
2
F 2
ru h1

D0
− U1

U0
− 5

6

F 2
ru h1

D0

) ∂

∂ζ

(
νT0

∂us0

∂ζ

)
− b

dHu

ds

n

b
+

[ b

D0

∂us1

∂ζ
− b

F 2
ru h1

D2
0

∂us0

∂ζ

](
uz0 − us0 F

2
ru

dHu

ds︸ ︷︷ ︸
vanishing by (71)

)
+

b

D0

∂us0

∂ζ

[
uz1 + F 2

ru

dHu

ds

(n
b
us0 − us1

)]
+

bun1

[∂us0

∂n
− ζ − 1

D0

dD0

dn

∂us0

∂ζ

]
, (119)

us1

∣∣
ζ0

= 0,
∂us1

∂ζ

∣∣∣
1
= 0. (120)

With the help of (71), (116) and some algebra, this system reduces to the form:

1

D
7/12
0

∂

∂ζ

[
N (ζ)

∂us1

∂ζ

]
=

√
Cfu

(U1

U0
− 7

6

F 2
ru h1

D0
+

n

b

)

+ bD
4/3
0

dD0

dn

( 7

12
G1 F0 −

11

4

dF0

dζ

∫ ζ

ζ0

G1 dζ
′
)
, (121)

us1

∣∣
ζ0

= 0,
∂us1

∂ζ

∣∣∣
1
= 0, (122)
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showing that the correction of longitudinal velocity is driven not only by the free vortex (metric)
effect and the O(δ) corrections of the eddy viscosity as in the case of a laterally horizontal bed
(see equation (94)), but also by the convective effect of secondary flow, which plays a major role.

The solution of (121) and (122), reads:

us1 =
(7
6
F 2
ru h1D

−5/12
0 −D

7/12
0

n

b
− U1

)
F0(ζ) + bD

23/12
0

dD0

dn
F11(ζ), (123)

where the function F11(ζ) satisfies the following boundary value problem:

d

dζ

[
N (ζ)

dF11

dζ

]
=

7

12
G1 F0 −

11

4

dF0

dζ

∫ ζ

ζ0

G1 dζ
′, (124)

F11

∣∣
ζ0

= 0,
dF11

dζ

∣∣∣
1
= 0. (125)

The depth averaged velocity at O(δ) is found integrating in ζ the solution (123) to find:

U1 =
1

2
D

7/12
0

(7
6
F 2
ru

h1

D0
− n

b

)
+

1

2
bD

23/12
0

dD0

dn
IF11

. (126)

Substituting from (126) into (123) one ends up with the following relationship for the first order
correction of the longitudinal velocity:

us1 = D
7/12
0

(7
6
F 2
ru

h1

D0
− n

b

) F0

2
+ bD

23/12
0

dD0

dn

(
F11 −F0

IF11

2

)
. (127)

This solution clarifies that topographic steering has additional hydrodynamic effects besides
that found at leading order where the outer flow was deeper, hence faster than the inner shallower
flow. At first order, three contributions emerge. A correction associated with the perturbation of
free surface elevation, a metric effect that accelerates the inner flow relative to the outer flow, and
the effect of the lateral transfer of longitudinal momentum which is strongly dependent on the
lateral distribution of the flow depth.

In order to complete the solution, we need to determine the O(δ) correction of the average free
surface elevation F 2

ru h10. The constraint (60), imposed at O(δ), leads to the following relationship:

∫ 1

ζ0

[∫ 1

−1

(
F 2
ru h1 us0 +D0 us1

)
dn

]
dζ = 0. (128)

Substituting from (127), (108) and (114) into (128) and performing the integration, one finds the
following equation for h10:

N(7/12) F
2
ru h10 =

6

19 b

∫ 1

−1

nD
19/12
0 dn− a1 F

2
ru

∫ 1

−1

D
7/12
0 dn

(∫
D

7/6
0 dn

)

− 72

893
b IF11

[
D

47/12
0

]1
−1

, (129)

where we have used the following notation:

N(a) ≡
∫ 1

−1

(D0)
a dn. (130)
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Particular cases

The first particular case is the laterally horizontal bed case considered in the previous section. The
reader will readily check that, setting D0 = 1 in the above solution, one recovers immediately the
solution obtained in Section 2.4.2.

Let us next consider a less trivial particular case. Let bed elevation be linearly decreasing in
the outer lateral direction, such that:

η = ηa − Sn n ⇒ D0 = 1 + F 2
ru h0 + Sn n = D̄0 + Sn n, (131)

with ηa dimensionless bed elevation at the centerline, Sn the lateral bed slope an O(1) quantity,
and D̄0 (≡ 1 + F 2

ru h0) the laterally averaged dimensionless flow depth at leading order.
With the latter assumptions the quantity N(a) is readily expressed in the following form:

N(a) =
1

Sn(a+ 1)

[
(D̄0 + Sn)

a+1 − (D̄0 − Sn)
a+1

]
, (132)

An implicit equation for D̄0, or equivalently for h0, is obtained from the constraint (109), which
reads:

N(19/12) = 2. (133)

Using (132) and using a trial and error procedure one finds the solution plotted in Figure 29.
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Figura 29. Relationship between the lateral slope of the bed profile in a constant curvature bend and reduction of
the mean flow depth relative to its value in the straight upstream reach.

Note that, as the lateral slope of the bed profile increases, the mean flow depth in the curved
reach D̄0 decreases relative to its value in the upstream straight reach. This is a consequence of the
fact that the flow discharge per unit width is nonlinearly dependent on the local flow depth with
exponent larger than one. As a result the faster flow in the outer half of the cross section prevails
on the slower flow in the inner half. A flow depth lower than in the straight reach is thus needed
to allow the flow of the prescribed discharge. Also, note that a threshold value for Sn exists, above
which the flow in the curved reach can no longer fill the entire channel width. This is an obvious
corollary of the previous observation. As Sn increases, the minimum flow depth decreases and
the lowering of the free surface increases, until the free surface emerges at the inner wall and,
consequently, D̄0 = Sn = 0.5 (31/12)12/19 = 0.9105.
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Figura 30. Left panel: The function F11(ζ) contributing to the O(δ) correction for the longitudinal velocity us1 is
plotted for a given value of the friction coefficient Cfu = 0.01 and for the N (ζ) distribution proposed by Rattray

and Mitsuda (1974). Right panel: Distribution of us1(ζ, n) for Sn=0.5, b=2, and Fru=0.37.

Next, we can solve (124), (125) for F11. The function F11(ζ) is plotted in the left panel of
Figure 30.

We then derive the function h1(n) from the integration of (114), to find:

h1(n) =
6 a1
13Sn

D
13/6
0 + h10, (134)

where the quantity h10 is determined as a function of Sn, solving (129) to find:

h10 = − 6

13

a1
Sn

N(33/12)

N(7/12)
− 6

19
bSn

IF11

F 2
ru

N(35/12)

N(7/12)

+
72

589

1

bSn F 2
ru

[(
D̄0 + Sn

)31/12
+
(
D̄0 − Sn

)31/12
N(7/12)

−
N(31/12)

N(7/12)

]
. (135)

Finally, we substitute from (134) into (127) and derive the solution for the first order correction
of the longitudinal velocity us1. The distribution of us1(ζ, n) is plotted in the right panel of Figure
30 for given values of the relevant physical parameters.

Results for the main properties of the flow and topography fields are plotted in Figure 31.
Figure 31a and Figure 31b show the lateral distributions of the flow depth at the lowest order D0

and the coefficient h1 of the first order perturbation, respectively. Note that the latter quantity
increases strongly with the slope Sn such to make the perturbation expansion progressively invalid.
The same argument applies to the contribution of the lateral transfer of longitudinal momentum
(last term in the right hand side of (127)) which is proportional both to Sn and to a power of D0

close to two. As a result, the present expansion is expected to hold for values of δ decreasing as
Sn increases.

For a low value of δ (0.1) Figure 31g shows that the longitudinal velocity peaks at the outer
wall and is minimum at the inner wall, i.e. the effect of topography is to reverse the pattern found
in the horizontal bed case (Sn = 0) for values of the lateral slope Sn as large as 0.75. Increasing
the value of δ (0.2), Figure 31h shows that the trend is similar, though, increasing Sn, the velocity
peak tends to be displaced towards the central region.

The three contributions to the order δ correction of the depth averaged longitudinal velocity
(equation (126) are shown in Figure 32. Note that the lateral transfer contribution is everywhere
negative and dominant.

2.5. Steady flow in weakly meandering channels
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Particular cases

The first particular case is the laterally horizontal bed case considered in the previous section. The
reader will readily check that, setting D0 = 1 in the above solution, one recovers immediately the
solution obtained in Section 2.4.2.

Let us next consider a less trivial particular case. Let bed elevation be linearly decreasing in
the outer lateral direction, such that:

η = ηa − Sn n ⇒ D0 = 1 + F 2
ru h0 + Sn n = D̄0 + Sn n, (131)

with ηa dimensionless bed elevation at the centerline, Sn the lateral bed slope an O(1) quantity,
and D̄0 (≡ 1 + F 2

ru h0) the laterally averaged dimensionless flow depth at leading order.
With the latter assumptions the quantity N(a) is readily expressed in the following form:

N(a) =
1

Sn(a+ 1)

[
(D̄0 + Sn)

a+1 − (D̄0 − Sn)
a+1

]
, (132)

An implicit equation for D̄0, or equivalently for h0, is obtained from the constraint (109), which
reads:

N(19/12) = 2. (133)

Using (132) and using a trial and error procedure one finds the solution plotted in Figure 29.
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Figura 29. Relationship between the lateral slope of the bed profile in a constant curvature bend and reduction of
the mean flow depth relative to its value in the straight upstream reach.

Note that, as the lateral slope of the bed profile increases, the mean flow depth in the curved
reach D̄0 decreases relative to its value in the upstream straight reach. This is a consequence of the
fact that the flow discharge per unit width is nonlinearly dependent on the local flow depth with
exponent larger than one. As a result the faster flow in the outer half of the cross section prevails
on the slower flow in the inner half. A flow depth lower than in the straight reach is thus needed
to allow the flow of the prescribed discharge. Also, note that a threshold value for Sn exists, above
which the flow in the curved reach can no longer fill the entire channel width. This is an obvious
corollary of the previous observation. As Sn increases, the minimum flow depth decreases and
the lowering of the free surface increases, until the free surface emerges at the inner wall and,
consequently, D̄0 = Sn = 0.5 (31/12)12/19 = 0.9105.
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plotted for a given value of the friction coefficient Cfu = 0.01 and for the N (ζ) distribution proposed by Rattray

and Mitsuda (1974). Right panel: Distribution of us1(ζ, n) for Sn=0.5, b=2, and Fru=0.37.

Next, we can solve (124), (125) for F11. The function F11(ζ) is plotted in the left panel of
Figure 30.

We then derive the function h1(n) from the integration of (114), to find:

h1(n) =
6 a1
13Sn

D
13/6
0 + h10, (134)

where the quantity h10 is determined as a function of Sn, solving (129) to find:

h10 = − 6

13

a1
Sn
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N(7/12)
− 6

19
bSn

IF11

F 2
ru

N(35/12)

N(7/12)

+
72

589

1

bSn F 2
ru

[(
D̄0 + Sn

)31/12
+
(
D̄0 − Sn

)31/12
N(7/12)

−
N(31/12)

N(7/12)

]
. (135)

Finally, we substitute from (134) into (127) and derive the solution for the first order correction
of the longitudinal velocity us1. The distribution of us1(ζ, n) is plotted in the right panel of Figure
30 for given values of the relevant physical parameters.

Results for the main properties of the flow and topography fields are plotted in Figure 31.
Figure 31a and Figure 31b show the lateral distributions of the flow depth at the lowest order D0

and the coefficient h1 of the first order perturbation, respectively. Note that the latter quantity
increases strongly with the slope Sn such to make the perturbation expansion progressively invalid.
The same argument applies to the contribution of the lateral transfer of longitudinal momentum
(last term in the right hand side of (127)) which is proportional both to Sn and to a power of D0

close to two. As a result, the present expansion is expected to hold for values of δ decreasing as
Sn increases.

For a low value of δ (0.1) Figure 31g shows that the longitudinal velocity peaks at the outer
wall and is minimum at the inner wall, i.e. the effect of topography is to reverse the pattern found
in the horizontal bed case (Sn = 0) for values of the lateral slope Sn as large as 0.75. Increasing
the value of δ (0.2), Figure 31h shows that the trend is similar, though, increasing Sn, the velocity
peak tends to be displaced towards the central region.

The three contributions to the order δ correction of the depth averaged longitudinal velocity
(equation (126) are shown in Figure 32. Note that the lateral transfer contribution is everywhere
negative and dominant.

2.5. Steady flow in weakly meandering channels
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Figura 31. (a) and (b) lateral distributions of the flow depth at the lowest order D0 and the coefficient h1 of the
first order perturbation, respectively. (c) and (d) lateral distributions of the flow depth D for δ = 0.1 and δ = 0.2.
(e) and (f) lateral distributions of the leading order and first order longitudinal component of the depth averaged
velocity, respectively. (g) and (h) lateral distributions of the longitudinal component of the depth averaged velocity
U for δ = 0.1 and δ = 0.2. Calculations have been performed employing the N (ζ) distribution proposed by Rattray

and Mitsuda (1974) and assuming Cfu = 0.01, b=1.2, Fru=0.37 and different values of Sn.

We now extend our analysis to the case of a weakly meandering channel with spatially variable
topography. The novel feature is the fact that the channel is now characterized by curvature of
the channel axis that varies along the longitudinal coordinate s. Let C(s) denote the dimensionless
curvature of the longitudinal coordinate line, with s dimensionless and scaled by the meander
length L. Below, we still employ dimensionless variables and remove the tilde for simplicity.

The scaling quantities, denoted by the subscript u, will be the properties of the uniform flow of
the given fluid discharge in a rectangular channel with constant width 2B, laterally horizontal bed
and constant longitudinal bed slope S, equal to the constant slope of the channel axis. The latter is

52

Hydrodynamics of sinuous channels

Figura 32. Lateral distribution of the three terms contributing to U1 in equation (126) for the N (ζ) distribution
proposed by Rattray and Mitsuda (1974), Cfu = 0.01, b=1.2, Fru=0.37 and Sn = 0.5.

the curved three-dimensional line η = ηa(s) lying on the vertical (z − s) surface and characterized
by constant slope S = −(Du/L) dηa/ds. The effect of a spatially variable topography will be
included assuming that the dimensionless elevation of the channel bottom η reads:

η(s, n) = ηa(s) + ηd(n) C(s− φ). (136)

Hence, superimposed on its constant longitudinal average slope S, the bed displays a lateral
slope which undergoes longitudinal harmonic oscillations with wavelength equal to the meander
wavelength and spatial lag φ relative to curvature (Figure 33). These oscillations generate a
harmonic sequence of fixed riffles and pools out of phase relative to curvature as observed in
meandering rivers.

Let us employ the usual notations and set:

H(s, n) = Hu(s) + h(s, n). (137)

The dimensionless flow depth D(s, n) can then be written in the form:

D(s, n) = 1− ηd(n) C(s− φ) + F 2
ru h(s, n). (138)

The formulation of the hydrodynamic problem in dimensionless form is obtained from the
general formulation presented in Section 2.2 by setting:

∂

∂t
≡ 0, βu ≫ 1. (139)

Again we seek a fully analytical approach for weakly meandering channels, such that the parameter
δ may be taken to be small (see equation 61). The further parameter L (recall the definition (54b))
accounts for the spatial forcing arising from the longitudinally varying curvature. We assume that
the rate of longitudinal variations is slow, i.e. the meander wavelength L is sufficiently large to set:

L = Λ δ ≪ 1, (140)
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Figura 31. (a) and (b) lateral distributions of the flow depth at the lowest order D0 and the coefficient h1 of the
first order perturbation, respectively. (c) and (d) lateral distributions of the flow depth D for δ = 0.1 and δ = 0.2.
(e) and (f) lateral distributions of the leading order and first order longitudinal component of the depth averaged
velocity, respectively. (g) and (h) lateral distributions of the longitudinal component of the depth averaged velocity
U for δ = 0.1 and δ = 0.2. Calculations have been performed employing the N (ζ) distribution proposed by Rattray

and Mitsuda (1974) and assuming Cfu = 0.01, b=1.2, Fru=0.37 and different values of Sn.

We now extend our analysis to the case of a weakly meandering channel with spatially variable
topography. The novel feature is the fact that the channel is now characterized by curvature of
the channel axis that varies along the longitudinal coordinate s. Let C(s) denote the dimensionless
curvature of the longitudinal coordinate line, with s dimensionless and scaled by the meander
length L. Below, we still employ dimensionless variables and remove the tilde for simplicity.

The scaling quantities, denoted by the subscript u, will be the properties of the uniform flow of
the given fluid discharge in a rectangular channel with constant width 2B, laterally horizontal bed
and constant longitudinal bed slope S, equal to the constant slope of the channel axis. The latter is
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Figura 32. Lateral distribution of the three terms contributing to U1 in equation (126) for the N (ζ) distribution
proposed by Rattray and Mitsuda (1974), Cfu = 0.01, b=1.2, Fru=0.37 and Sn = 0.5.

the curved three-dimensional line η = ηa(s) lying on the vertical (z − s) surface and characterized
by constant slope S = −(Du/L) dηa/ds. The effect of a spatially variable topography will be
included assuming that the dimensionless elevation of the channel bottom η reads:

η(s, n) = ηa(s) + ηd(n) C(s− φ). (136)

Hence, superimposed on its constant longitudinal average slope S, the bed displays a lateral
slope which undergoes longitudinal harmonic oscillations with wavelength equal to the meander
wavelength and spatial lag φ relative to curvature (Figure 33). These oscillations generate a
harmonic sequence of fixed riffles and pools out of phase relative to curvature as observed in
meandering rivers.

Let us employ the usual notations and set:

H(s, n) = Hu(s) + h(s, n). (137)

The dimensionless flow depth D(s, n) can then be written in the form:

D(s, n) = 1− ηd(n) C(s− φ) + F 2
ru h(s, n). (138)

The formulation of the hydrodynamic problem in dimensionless form is obtained from the
general formulation presented in Section 2.2 by setting:

∂

∂t
≡ 0, βu ≫ 1. (139)

Again we seek a fully analytical approach for weakly meandering channels, such that the parameter
δ may be taken to be small (see equation 61). The further parameter L (recall the definition (54b))
accounts for the spatial forcing arising from the longitudinally varying curvature. We assume that
the rate of longitudinal variations is slow, i.e. the meander wavelength L is sufficiently large to set:

L = Λ δ ≪ 1, (140)
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Figura 33. Sketch of a meandering channel with fixed bed and lateral bed slope subject to spatial oscillations
lagging ahead of curvature. Quantities in the figure are dimensional.

with
Λ =

R0

L
∼ O(1). (141)

With the above assumptions, the analysis for this problem follows the lines of the approach
employed in the previous Sections and is reported below.

We seek a solution for the flow field expanded in powers of the small parameter δ as follows:
[
us, un, uz, H, D, νT

]
=

+ δ−1
[
0, 0, 0, hu(s), 0, 0

]

+ δ0
[
us0(s, n, ζ), 0, uz0(s, n, ζ), h0(s), D0(s, n), νT0(s, n, ζ)

]

+ δ
[
us1(s, n, ζ), un1(s, n, ζ), uz1(s, n, ζ), h1(s, n), D1(s, n), νT1(s, n, ζ)

]

+O(δ2). (142)

A few comments are in order.
In the present context, the free surface elevation associated with the basic uniform state gives

rise to an O(δ−1) contribution to the free surface slope. This is readily explained noting that:

F 2
ruHu(s) = ηa(0) + 1− L

Du
S s ⇒ Hu(s) = Hu(0)−

√
Cfu

Λ δ
s = Hu(0) +

hu(s)

δ
. (143)

This feature is a consequence of the scaling employed for the longitudinal coordinate, that
involves the slow longitudinal scale L.

The closure for νT is identical to (105) except for the fact that the flow depth D and the depth
averaged speed U are now functions of both s and n.

Finally, the presence of a leading order term in the expansion for the vertical component of the
flow velocity arises from the usual argument already clarified in the previous sections.

We may now substitute from (136), (139), (142), (105), (143), (144) into the governing equations
and related boundary conditions presented in Section 2.2. Equating likewise powers of δ, we find a
sequence of differential problems.
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O(δ0)

The flow depth D0(s, n) reads:

D0(s, n) = 1− ηd(n) C(s− φ) + F 2
ruh0(s), (144)

where F 2
ru h0(s) is the leading order perturbation of the free surface elevation, to be determined.

The continuity equation, at the leading order, reads:

1

D0

[
− ΛF 2

ru

b

dhu

ds

∂us0

∂ζ
+

∂uz0

∂ζ

]
= 0. (145)

This may immediately be integrated with the help of the kinematic boundary condition (53c) to
give an expression for uz0 similar to (71), namely

uz0(s, n, ζ) =
Λ

b
F 2
ru

dhu

ds
us0(s, n, ζ). (146)

At the leading order of approximation, the longitudinal momentum equation leads to a differen-
tial problem similar to the corresponding problem for the case treated in Section 2.4.3. A similar
solution is thus found:

us0(s, n, ζ) = U0(s, n)F0(ζ) = D0(s, n)
7/12 F0(ζ). (147)

Again, the first (and largest) effect of the laterally and longitudinally varying topography is the
onset of O(1) lateral and longitudinal variations of us0 described by the function D

7/12
0 . Note that

variations of us0 are not in phase with variations of D0 in spite of the large wavelength assumption
(140) whereby longitudinal derivatives of us0 do not appear at leading order. Indeed, a phase lag
arises from the nonlinear dependence of us0 from D0.

The integral constraint (60), at leading order, leads to the following relationship:

∫ 1

−1

D
19/12
0 dn =

∫ 1

−1

[
1− ηd(n) C(s− φ) + F 2

ru h0(s)
]19/12

dn = 2. (148)

This is an equation for h0(s) which can be solved, for given values of the parameters Fru and φ,
once the lateral structure of bed elevation is assigned. Below we will examine the particular case
of linearly sloping beds.

O(δ)

Let us move to the lateral component of the momentum equation which, at O(δ), reads:

D
−7/12
0

∂

∂ζ

[
N (ζ)

∂un1

∂ζ

]
= b

∂h1

∂n
− C(s)D7/6

0 F2
0 (ζ)+

b

D0

∂un1

∂ζ

[
uz0 −

Λ

b
us0 F

2
ru

dhu

ds︸ ︷︷ ︸
vanishing by (145)

]

= b
∂h1

∂n
− C(s)D7/6

0 F2
0 (ζ), (149)

un1

∣∣
ζ0

= 0,
∂un1

∂ζ

∣∣∣
1
= 0. (150)
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Figura 33. Sketch of a meandering channel with fixed bed and lateral bed slope subject to spatial oscillations
lagging ahead of curvature. Quantities in the figure are dimensional.

with
Λ =

R0

L
∼ O(1). (141)

With the above assumptions, the analysis for this problem follows the lines of the approach
employed in the previous Sections and is reported below.

We seek a solution for the flow field expanded in powers of the small parameter δ as follows:
[
us, un, uz, H, D, νT

]
=

+ δ−1
[
0, 0, 0, hu(s), 0, 0

]

+ δ0
[
us0(s, n, ζ), 0, uz0(s, n, ζ), h0(s), D0(s, n), νT0(s, n, ζ)

]

+ δ
[
us1(s, n, ζ), un1(s, n, ζ), uz1(s, n, ζ), h1(s, n), D1(s, n), νT1(s, n, ζ)

]

+O(δ2). (142)

A few comments are in order.
In the present context, the free surface elevation associated with the basic uniform state gives

rise to an O(δ−1) contribution to the free surface slope. This is readily explained noting that:

F 2
ruHu(s) = ηa(0) + 1− L

Du
S s ⇒ Hu(s) = Hu(0)−

√
Cfu

Λ δ
s = Hu(0) +

hu(s)

δ
. (143)

This feature is a consequence of the scaling employed for the longitudinal coordinate, that
involves the slow longitudinal scale L.

The closure for νT is identical to (105) except for the fact that the flow depth D and the depth
averaged speed U are now functions of both s and n.

Finally, the presence of a leading order term in the expansion for the vertical component of the
flow velocity arises from the usual argument already clarified in the previous sections.

We may now substitute from (136), (139), (142), (105), (143), (144) into the governing equations
and related boundary conditions presented in Section 2.2. Equating likewise powers of δ, we find a
sequence of differential problems.
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O(δ0)

The flow depth D0(s, n) reads:

D0(s, n) = 1− ηd(n) C(s− φ) + F 2
ruh0(s), (144)

where F 2
ru h0(s) is the leading order perturbation of the free surface elevation, to be determined.

The continuity equation, at the leading order, reads:

1

D0

[
− ΛF 2

ru

b

dhu

ds

∂us0

∂ζ
+

∂uz0

∂ζ

]
= 0. (145)

This may immediately be integrated with the help of the kinematic boundary condition (53c) to
give an expression for uz0 similar to (71), namely

uz0(s, n, ζ) =
Λ

b
F 2
ru

dhu

ds
us0(s, n, ζ). (146)

At the leading order of approximation, the longitudinal momentum equation leads to a differen-
tial problem similar to the corresponding problem for the case treated in Section 2.4.3. A similar
solution is thus found:

us0(s, n, ζ) = U0(s, n)F0(ζ) = D0(s, n)
7/12 F0(ζ). (147)

Again, the first (and largest) effect of the laterally and longitudinally varying topography is the
onset of O(1) lateral and longitudinal variations of us0 described by the function D

7/12
0 . Note that

variations of us0 are not in phase with variations of D0 in spite of the large wavelength assumption
(140) whereby longitudinal derivatives of us0 do not appear at leading order. Indeed, a phase lag
arises from the nonlinear dependence of us0 from D0.

The integral constraint (60), at leading order, leads to the following relationship:

∫ 1

−1

D
19/12
0 dn =

∫ 1

−1

[
1− ηd(n) C(s− φ) + F 2

ru h0(s)
]19/12

dn = 2. (148)

This is an equation for h0(s) which can be solved, for given values of the parameters Fru and φ,
once the lateral structure of bed elevation is assigned. Below we will examine the particular case
of linearly sloping beds.

O(δ)

Let us move to the lateral component of the momentum equation which, at O(δ), reads:

D
−7/12
0

∂

∂ζ

[
N (ζ)

∂un1

∂ζ

]
= b

∂h1

∂n
− C(s)D7/6

0 F2
0 (ζ)+

b

D0

∂un1

∂ζ

[
uz0 −

Λ

b
us0 F

2
ru

dhu

ds︸ ︷︷ ︸
vanishing by (145)

]

= b
∂h1

∂n
− C(s)D7/6

0 F2
0 (ζ), (149)

un1

∣∣
ζ0

= 0,
∂un1

∂ζ

∣∣∣
1
= 0. (150)
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where use has been made of (145). The solution for un1 is readily obtained in the form:

un1 = − b√
Cfu

D
7/12
0 F0(ζ)

∂h1

∂n
− C(s)D7/4

0 G11(ζ), (151)

where the function G11(ζ) is identical to the solution of the differential problem (87), (88) and the
quantity ∂h1/∂n is yet to be determined.

Let us next consider the continuity equation at O(δ), which reads:

1

D0

∂uz1

∂ζ
+

Λ

b

{
∂us0

∂s
−
[F 2

ru

D0

dh0

ds
+

ζ − 1

D0

∂D0

∂s

]∂us0

∂ζ

}

+
∂un1

∂n
− ζ − 1

D0

∂D0

∂n

∂un1

∂ζ
− Λ

b

F 2
ru

D0

dhu

ds

[
− n

b
C(s) ∂us0

∂ζ
+

∂us1

∂ζ

]

− D1

D2
0

[
−Λ

b
F 2
ru

dhu

ds

∂us0

∂ζ
+

∂uz0

∂ζ︸ ︷︷ ︸
vanishing by (145)

]
= 0, (152)

where the last term in the left hand side vanishes due to the relationship (145). Imposing the no
slip condition at the bed, with the help of (147) and (151), some algebra allows us to solve this
equation for uz1 to give:

uz1 = −Λ

b
IF0

∂(U0 D0)

∂s
+

Λ

b
us0

[
F 2
ru

dh0

ds
+
(
ζ − 1

) ∂D0

∂s

]

− ∂

∂n

(
D0 Iun1

)
+
(
ζ − 1

) ∂D0

∂n
un1

− F 2
ru

b

√
Cfu

[
us1 −

n

b
C(s)us0

]
, (153)

having denoted by If the integral
∫ ζ

ζ0
fdζ ′.

We next expand the kinematic boundary condition at the free surface (53c). At O(δ) one finds:

uz1

∣∣
1
=

Λ

b
us0

∣∣
1
F 2
ru

dh0

ds
−

√
Cfu

b
F 2
ru

[
us1

∣∣
1
− n

b
C(s)us0

∣∣
1

]
. (154)

Evaluating uz1

∣∣
1

from (153), substituting into (154) one finds the following differential equation:

Λ

b
IF0

∂(U0 D0)

∂s
+

∂

∂n

(
D0Iun1

)
= 0 (155)

The reader will readily show that (155) is simply the depth integrated version of the continuity
equation in dimensionless form at O(δ). Using the solution (151) for un1, the latter equation
transforms into a differential equation for h1, which reads:

b√
Cfu

∂

∂n

(
U0 D0

∂h1

∂n

)
+ IG11

∂D
11/4
0

∂n
C(s)− Λ

b

∂(U0 D0)

∂s
= 0, (156)

and must be solved along with the no lateral flux condition at the walls. Recalling (151), the
latter condition reads:

[∫ 1

ζ0

un1 dζ

]

s,−1

= 0 ⇒ ∂h1

∂n

∣∣∣
s,−1

= −
√

Cfu IG11

b
C(s)D7/6

0

∣∣
s,−1

. (157)
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We may next define:
h1(s, n) = h10(s) + h11(s, n), (158)

with h11(s, n) obtained from direct integration of (156, 157) and an arbitrary choice for h11|n=−1,
say h11|n=−1 = 0. Indeed, it is the function h10(s) which ultimately sets the value of h1 in n = −1.
In order to enforce the integral constraint at the open boundary which determines the function
h10(s), we need to know the solution for the longitudinal component of the secondary flow us1.

Evaluating the equation (57b) at O(δ) it is found that the correction us1 of the longitudinal
velocity satisfies the following differential problem:

1

U0

∂

∂ζ

[
N (ζ)

∂us1

∂ζ

]
=

√
Cfu

(
− 7

6

D1

D0
+

U1

U0
+

n

b
C(s)

)
+ Λ

dh0

ds
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Using the solutions for uz0, un1, uz1 and the equation (156), with the help of a considerable
amount of algebra, the latter equation reduces to the form:
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This system is solved to give:

us1 = u10(s, n)F0(ζ) +
∑
j=1,2

u1j(s, n)F1j(ζ). (163)

Here, the coefficients u10(s, n) and u1j(s, n)(j = 1− 2) read:
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u11 =
7

12
D

3/4
0

[
Λ
∂D0

∂s
− b2√

Cfu

∂D0

∂n

∂h1

∂n

]
, (164b)

u12 = bD
23/12
0

∂D0

∂n
C(s). (164c)
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where use has been made of (145). The solution for un1 is readily obtained in the form:
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0 G11(ζ), (151)

where the function G11(ζ) is identical to the solution of the differential problem (87), (88) and the
quantity ∂h1/∂n is yet to be determined.

Let us next consider the continuity equation at O(δ), which reads:
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where the last term in the left hand side vanishes due to the relationship (145). Imposing the no
slip condition at the bed, with the help of (147) and (151), some algebra allows us to solve this
equation for uz1 to give:

uz1 = −Λ

b
IF0

∂(U0 D0)

∂s
+

Λ

b
us0

[
F 2
ru

dh0

ds
+
(
ζ − 1

) ∂D0

∂s

]

− ∂

∂n

(
D0 Iun1

)
+
(
ζ − 1

) ∂D0

∂n
un1

− F 2
ru

b

√
Cfu

[
us1 −

n

b
C(s)us0

]
, (153)

having denoted by If the integral
∫ ζ

ζ0
fdζ ′.

We next expand the kinematic boundary condition at the free surface (53c). At O(δ) one finds:
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Evaluating uz1
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1

from (153), substituting into (154) one finds the following differential equation:
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The reader will readily show that (155) is simply the depth integrated version of the continuity
equation in dimensionless form at O(δ). Using the solution (151) for un1, the latter equation
transforms into a differential equation for h1, which reads:
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and must be solved along with the no lateral flux condition at the walls. Recalling (151), the
latter condition reads:
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We may next define:
h1(s, n) = h10(s) + h11(s, n), (158)

with h11(s, n) obtained from direct integration of (156, 157) and an arbitrary choice for h11|n=−1,
say h11|n=−1 = 0. Indeed, it is the function h10(s) which ultimately sets the value of h1 in n = −1.
In order to enforce the integral constraint at the open boundary which determines the function
h10(s), we need to know the solution for the longitudinal component of the secondary flow us1.

Evaluating the equation (57b) at O(δ) it is found that the correction us1 of the longitudinal
velocity satisfies the following differential problem:
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Using the solutions for uz0, un1, uz1 and the equation (156), with the help of a considerable
amount of algebra, the latter equation reduces to the form:
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This system is solved to give:

us1 = u10(s, n)F0(ζ) +
∑
j=1,2

u1j(s, n)F1j(ζ). (163)

Here, the coefficients u10(s, n) and u1j(s, n)(j = 1− 2) read:
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Moreover, the functions F1j(ζ) (j = 1, 2) satisfy the following differential systems:
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with the functions Φ1j (j = 1, 2) having the following form:
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Finally, let us determine the quantity h10(s) needed to satisfy the integral constraint (60) at
any cross section. At O(δ) this constraint takes again the form (128). Substituting from (147),
(158), (163) and (164) into (128) and performing the integration, one ends up with an expression
for h10(s) that may be written in the compact form:
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where we have employed the following notations:
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In summary, the main physical features of the solution are as follows.
At leading order the flow is purely longitudinal. It retains the form (108) though the amplitude

D
7/12
0 is now a function of both the longitudinal and lateral coordinates (see equation (138)). Hence,

the first (and major) effect of topography is again to give rise to O(1) lateral and longitudinal
variations of us0. Note that variations of us0 are not in phase with variations of D0 in spite of
the large wavelength assumption (140) as a phase lag arises from the nonlinear dependence of us0

from D0. This nonlinear dependence of the longitudinal velocity on the flow depth has a second
major implication. In order to satisfy the integral constraint (60) the longitudinal slope of the free
surface must undergo O(1) spatial variations described by the function −dh0/ds.

At O(δ) one finds the usual corrections of the main longitudinal flow. The lateral component
of the flow velocity un1 is again forced by two effects. The first is the lateral slope of the free
surface ∂h1/∂n, which is here an oscillating function of the longitudinal coordinate. The second
is the centripetal acceleration associated with the curvilinear character of the longitudinal flow,
which drives a contribution proportional to the local curvature of the channel axis C(s). However,
unlike the constant curvature case, the lateral slope of the free surface is not determined by the
condition that the secondary flow must have vanishing mean. Indeed, a topographically driven
component of the secondary flow with non vanishing depth-average arises from the longitudinal
dependence of the flow depth.

Similarly, continuity suggests that the vertical correction uz1 of the flow velocity also involves
topographically driven contributions associated with the spatial variations of the longitudinal and
lateral fluxes.

The longitudinal correction us1, besides the metric effect and the corrections of eddy viscosity
due to perturbations of the flow depth and average flow velocity, feels the effects of convection of
longitudinal momentum by the secondary flow. This is due to the spatially varying topography
which determines O(1) lateral variations of the longitudinal velocity.
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Finally, an s-dependent correction of the laterally averaged free surface elevation, h10, is needed
in order to satisfy the integral constraint (60) at any cross section.

Pictures of the spatial distribution of the secondary flow and of the dependence of the lateral
slope on the longitudinal coordinate for different values of the relevant parameters are given below
for the particular case of sine generated meanders.

The particular case of sine generated meanders

Let us now consider a particular case. Let the dimensionless curvature of the channel axis read:

C(s) = cos(2π s) =
1

2
exp(2π i s) + c.c. . (169)

This is the so called sine generated curve that Langbein and Leopold (1966) have suggested to be
a good fit of observed shapes of meandering channels. With the above choice, the scaling curvature
R−1

0 is the peak curvature at the bend apex and the scaling length L is the intrinsic meander
wavelength (i.e. the wavelength defined along the channel axis).

Next, let us assume that the lateral slope of the bed is constant and write:

ηd(n) = −Sn n. (170)

Thus, bed oscillations have peak dimensionless scour-deposit equal to ±Sn. The constant lateral
slope assumed for the bed profile is obviously the simplest choice to investigate the role of bed
topography. The actual profile established in cohesionless meandering channels is determined by
their morphodynamics and will be investigated in the next Chapter.

Figura 34. The leading order correction of the free surface elevation h0(s) in a meandering channel with fixed bed
and lateral bed slope subject to sine generated spatial oscillations. The function h0(s) is plotted for Fru = 0.04 and

various values of the lateral bed slope Sn and of its phase lag φ relative to curvature.

Substituting from (170) into (148) one finds:

31

6
Sn cos 2π (s− φ) =

[
1 + Sn cos 2π (s− φ) + F 2

ru h0(s)
]31/12

−
[
1− Sn cos 2π (s− φ) + F 2

ru h0(s)
]31/12

. (171)

This is an algebraic equation for h0(s) to be solved for given values of the parameters Fru, Sn

and φ which is readily shown to reduce to (133) in the particular case of fully developed flow and
constant curvature. Moreover, the reader will readily show that expanding (171) in a neighborhood
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Moreover, the functions F1j(ζ) (j = 1, 2) satisfy the following differential systems:
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with the functions Φ1j (j = 1, 2) having the following form:
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Finally, let us determine the quantity h10(s) needed to satisfy the integral constraint (60) at
any cross section. At O(δ) this constraint takes again the form (128). Substituting from (147),
(158), (163) and (164) into (128) and performing the integration, one ends up with an expression
for h10(s) that may be written in the compact form:

h10(s) = −
(∫ 1

−1

D
7/12
0 dn

)−1
[∫ 1
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where we have employed the following notations:

U1 = Ius1
=
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ru h1 + U11, (168a)
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+
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In summary, the main physical features of the solution are as follows.
At leading order the flow is purely longitudinal. It retains the form (108) though the amplitude

D
7/12
0 is now a function of both the longitudinal and lateral coordinates (see equation (138)). Hence,

the first (and major) effect of topography is again to give rise to O(1) lateral and longitudinal
variations of us0. Note that variations of us0 are not in phase with variations of D0 in spite of
the large wavelength assumption (140) as a phase lag arises from the nonlinear dependence of us0

from D0. This nonlinear dependence of the longitudinal velocity on the flow depth has a second
major implication. In order to satisfy the integral constraint (60) the longitudinal slope of the free
surface must undergo O(1) spatial variations described by the function −dh0/ds.

At O(δ) one finds the usual corrections of the main longitudinal flow. The lateral component
of the flow velocity un1 is again forced by two effects. The first is the lateral slope of the free
surface ∂h1/∂n, which is here an oscillating function of the longitudinal coordinate. The second
is the centripetal acceleration associated with the curvilinear character of the longitudinal flow,
which drives a contribution proportional to the local curvature of the channel axis C(s). However,
unlike the constant curvature case, the lateral slope of the free surface is not determined by the
condition that the secondary flow must have vanishing mean. Indeed, a topographically driven
component of the secondary flow with non vanishing depth-average arises from the longitudinal
dependence of the flow depth.

Similarly, continuity suggests that the vertical correction uz1 of the flow velocity also involves
topographically driven contributions associated with the spatial variations of the longitudinal and
lateral fluxes.

The longitudinal correction us1, besides the metric effect and the corrections of eddy viscosity
due to perturbations of the flow depth and average flow velocity, feels the effects of convection of
longitudinal momentum by the secondary flow. This is due to the spatially varying topography
which determines O(1) lateral variations of the longitudinal velocity.
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Finally, an s-dependent correction of the laterally averaged free surface elevation, h10, is needed
in order to satisfy the integral constraint (60) at any cross section.

Pictures of the spatial distribution of the secondary flow and of the dependence of the lateral
slope on the longitudinal coordinate for different values of the relevant parameters are given below
for the particular case of sine generated meanders.

The particular case of sine generated meanders

Let us now consider a particular case. Let the dimensionless curvature of the channel axis read:

C(s) = cos(2π s) =
1

2
exp(2π i s) + c.c. . (169)

This is the so called sine generated curve that Langbein and Leopold (1966) have suggested to be
a good fit of observed shapes of meandering channels. With the above choice, the scaling curvature
R−1

0 is the peak curvature at the bend apex and the scaling length L is the intrinsic meander
wavelength (i.e. the wavelength defined along the channel axis).

Next, let us assume that the lateral slope of the bed is constant and write:

ηd(n) = −Sn n. (170)

Thus, bed oscillations have peak dimensionless scour-deposit equal to ±Sn. The constant lateral
slope assumed for the bed profile is obviously the simplest choice to investigate the role of bed
topography. The actual profile established in cohesionless meandering channels is determined by
their morphodynamics and will be investigated in the next Chapter.

Figura 34. The leading order correction of the free surface elevation h0(s) in a meandering channel with fixed bed
and lateral bed slope subject to sine generated spatial oscillations. The function h0(s) is plotted for Fru = 0.04 and

various values of the lateral bed slope Sn and of its phase lag φ relative to curvature.

Substituting from (170) into (148) one finds:

31

6
Sn cos 2π (s− φ) =

[
1 + Sn cos 2π (s− φ) + F 2

ru h0(s)
]31/12

−
[
1− Sn cos 2π (s− φ) + F 2

ru h0(s)
]31/12

. (171)

This is an algebraic equation for h0(s) to be solved for given values of the parameters Fru, Sn

and φ which is readily shown to reduce to (133) in the particular case of fully developed flow and
constant curvature. Moreover, the reader will readily show that expanding (171) in a neighborhood
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of Sn = 0, equation (171) reduces to (77), i.e. the particular case of fully developed flow and
constant curvature and h0(s) identically vanishes. The function h0(s) is plotted in Figure 34 for
various values of parameters Sn and φ. It turns out that h0(s) is invariably negative. Hence the
flow depth required to let the given discharge flow steadily in a meandering channel with laterally
sloping bed is everywhere lower than the flow depth needed to allow for the uniform flow of the same
discharge in an equivalent meandering channel with laterally horizontal bed. This is not surprising:
since the speed is nonlinearly dependent on flow depth, the increase of water flux driven by the
outer deepening of the cross section prevails on the decrease of water flux associated with the
inner depth reduction, hence the average flow depth must decrease. Also, the spatial oscillations of
the lateral bed slope drive analogous spatial oscillations of the average free surface elevation. Note
that the frequency of the spatial oscillations of h0(s) is twice the fundamental meander frequency.
Indeed, as the balance of the water flux is insensitive to the sign of the lateral bed slope. These
results confirm qualitatively the earlier observations of Hooke (1974) (see Figure 3 of Hooke, 1974).

Similarly, substituting from (170) into (156) and its associated boundary conditions, the solution
for h11(s, n) is readily obtained numerically at each cross section

Having determined the functions h0(s) and h11(s, n) we can then solve for un1(s, n, ζ) using (151).
In Figure 35 we plot the spatial distribution of the depth averaged lateral velocity V1(s, n) = Iun1
and the dependence of its peak in a meander wavelength on the lateral bed slope Sn and on the
dimensionless meander wavelength Du/L, for given values of the relevant physical parameters
(note that ds is the relative roughness d/Du).
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Figura 35. (a) The spatial distribution of the depth averaged first order component of the lateral velocity V1(s, n)
for a meandering channel with meander wavelength L = 102 Du, fixed bed and lateral bed slope Sn = 0.3 subject
to spatial oscillations η(s, n) = ηa − Sn n cos(2π s). (b) The peak of V1(s, n) in a meander wavelength is plotted
versus Du/L for various values of the lateral slope Sn. In both plots the relevant dimensionless parameters take the

following values: φ = 0, Cfu = 0.01, δ = 0.06, b = 1.23, Fru=0.4, corresponding to
ν0 = 0.05, βu = 8, τ∗u = 0.1, ds = 0.01.

We can then proceed to solve (156), (157) for h11(s, n) with the boundary condition h11|n=−1 =
0. Next, we evaluate the function h10(s) from (167). Finally, we use (158) to evaluate the function
h1(s, n). The lateral average h1avg(s, n) of the function h1(s, n) and the function h1(s, n)−h1avg(s)
are plotted in Figure 36, for given values of the relevant parameters.
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Figura 36. The lateral average h1avg(s, n) of the function h1(s, n) (left panels) and the function h1(s, n)− h1avg(s)
(right panels) are plotted for given values of the relevant parameters: φ = 0, Cfu = 0.01, δ=0.06, b=1.23, Fru=0.4,

corresponding to ν0 = 0.05, βu = 8, τ∗u = 0.1, ds = 0.01. Top: Sn = 0, Bottom: Sn = 0.3. Note that the
dimensionless Cartesian coordinates x and y are scaled by half the channel width B, with x = 0 corresponding to

s = 0 and x = 15 to s = 0.25.

In the case of laterally horizontal bottom (upper plots) the lateral slope of the free surface
is in phase with curvature. Moreover, no O(δ) correction of the laterally averaged free surface
elevation is needed in order to satisfy the constraint of constant flow discharge. In the case of
laterally sloping bottom (lower plots) an O(δ) correction of the laterally averaged free surface
elevation is needed and is found to undergo periodic oscillations with spatial frequency twice the
meander frequency.

Finally, from the differential systems (165a)-(165b) we can derive the solution for the O(δ)
correction of the longitudinal velocity. The resulting depth averaged velocity field U(s, n) is plotted
in Figure 37. Note the distinct behavior of the longitudinal velocity field in the cases of laterally
horizontal and laterally sloping topographies. In the former case, the metric effect dominates such
that the thread of high velocity lies close to the inner bank at the bend apex and the velocity
pattern is in phase with curvature. In the latter case, topography dominates and the thread of high
velocity moves towards the outer bank. Moreover, topography drives a phase lag between velocity
pattern and channel curvature, the former lags behind the latter, the more so as φ increases. These
results are in qualitative agreement with the early model of Smith and McLean (1984).

2.6. Sharp bends

As discussed in Section 2.3, sharp bends are characterized by values of channel curvature large
enough for both the δ and ν0 parameters to attain finite values. Figure 20 shows that a small
fraction of bends observed in nature are indeed sharp. In the last decade, the hydrodynamics of
sharp bends has received considerable attention in a sequence of papers of Blanckaert and his
coworkers. Let us examine what novel features are brought up when channel curvature assumes
large value.

2.6.1 Enhancement and saturation of the centrifugally driven secondary flow
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of Sn = 0, equation (171) reduces to (77), i.e. the particular case of fully developed flow and
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various values of parameters Sn and φ. It turns out that h0(s) is invariably negative. Hence the
flow depth required to let the given discharge flow steadily in a meandering channel with laterally
sloping bed is everywhere lower than the flow depth needed to allow for the uniform flow of the same
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Similarly, substituting from (170) into (156) and its associated boundary conditions, the solution
for h11(s, n) is readily obtained numerically at each cross section

Having determined the functions h0(s) and h11(s, n) we can then solve for un1(s, n, ζ) using (151).
In Figure 35 we plot the spatial distribution of the depth averaged lateral velocity V1(s, n) = Iun1
and the dependence of its peak in a meander wavelength on the lateral bed slope Sn and on the
dimensionless meander wavelength Du/L, for given values of the relevant physical parameters
(note that ds is the relative roughness d/Du).
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Figura 35. (a) The spatial distribution of the depth averaged first order component of the lateral velocity V1(s, n)
for a meandering channel with meander wavelength L = 102 Du, fixed bed and lateral bed slope Sn = 0.3 subject
to spatial oscillations η(s, n) = ηa − Sn n cos(2π s). (b) The peak of V1(s, n) in a meander wavelength is plotted
versus Du/L for various values of the lateral slope Sn. In both plots the relevant dimensionless parameters take the

following values: φ = 0, Cfu = 0.01, δ = 0.06, b = 1.23, Fru=0.4, corresponding to
ν0 = 0.05, βu = 8, τ∗u = 0.1, ds = 0.01.

We can then proceed to solve (156), (157) for h11(s, n) with the boundary condition h11|n=−1 =
0. Next, we evaluate the function h10(s) from (167). Finally, we use (158) to evaluate the function
h1(s, n). The lateral average h1avg(s, n) of the function h1(s, n) and the function h1(s, n)−h1avg(s)
are plotted in Figure 36, for given values of the relevant parameters.

60

Hydrodynamics of sinuous channels

-6

-4

-2

 0

 2

 4

 6

 8

 0  0.2  0.4  0.6  0.8  1

sn=0.3

h1
av

g(
s)

s

-6

-4

-2

 0

 2

 4

 6

 8

 0  0.2  0.4  0.6  0.8  1

sn=0

h1
av

g(
s)

s

-6
-5
-4
-3
-2
-1
 0
 1

-20 -15 -10 -5  0  5  10  15  20

sn=0.3

y

x

h1(s,n)-h1avg(s)

-1

-0.5

 0

 0.5

 1

-6
-5
-4
-3
-2
-1
 0
 1

-20 -15 -10 -5  0  5  10  15  20

sn=0

y

x

h1(s,n)-h1avg(s)

-1

-0.5

 0

 0.5

 1

Figura 36. The lateral average h1avg(s, n) of the function h1(s, n) (left panels) and the function h1(s, n)− h1avg(s)
(right panels) are plotted for given values of the relevant parameters: φ = 0, Cfu = 0.01, δ=0.06, b=1.23, Fru=0.4,

corresponding to ν0 = 0.05, βu = 8, τ∗u = 0.1, ds = 0.01. Top: Sn = 0, Bottom: Sn = 0.3. Note that the
dimensionless Cartesian coordinates x and y are scaled by half the channel width B, with x = 0 corresponding to

s = 0 and x = 15 to s = 0.25.
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elevation is needed in order to satisfy the constraint of constant flow discharge. In the case of
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elevation is needed and is found to undergo periodic oscillations with spatial frequency twice the
meander frequency.
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correction of the longitudinal velocity. The resulting depth averaged velocity field U(s, n) is plotted
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that the thread of high velocity lies close to the inner bank at the bend apex and the velocity
pattern is in phase with curvature. In the latter case, topography dominates and the thread of high
velocity moves towards the outer bank. Moreover, topography drives a phase lag between velocity
pattern and channel curvature, the former lags behind the latter, the more so as φ increases. These
results are in qualitative agreement with the early model of Smith and McLean (1984).
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enough for both the δ and ν0 parameters to attain finite values. Figure 20 shows that a small
fraction of bends observed in nature are indeed sharp. In the last decade, the hydrodynamics of
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Figura 37. Longitudinal and lateral distributions of the dimensionless longitudinal component of the depth averaged
velocity U(s, n) for the following values of the relevant physical parameters: Cfu = 0.01, δ=0.06, b=1.23, Fru=0.4,
corresponding to ν0=0.05, βu=8, τ∗u=0.1, ds=0.01. Upper plot : laterally horizontal bed (Sn = 0); middle plot :

Sn = 0.3 φ = 0; lower plot : Sn = 0.3 φ = 1/16

The first effect to be considered is the failure of the linear framework. This has some obvious
consequences. Consider first the case of constant curvature channels under fully developed
conditions. A glance at the equations (57) suggests that various contributions to the continuity
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and momentum equations are no longer negligible. In particular, the lateral component of the
secondary flow un is now an O(1) quantity forced not only by the centripetal acceleration and
the lateral pressure gradient (last and second term on the right hand side of equation (57c)), but
also by the convective contributions. Similarly, the longitudinal flow component us is no longer
slightly perturbed with respect to the primary uniform flow. Rather, it feels the metric effect (first
term in the right hand side of equation (57b)) as an O(1) perturbation whereby the longitudinal
flow experiences non negligible lateral variations even in the case of flat horizontal bed. The
longitudinal flow is further deformed by the convective transport of longitudinal momentum (last
two terms in the right hand side of equation (57b)). This effect has already emerged in the context
of the linear analysis of laterally tilted bed discussed in Section 2.4.3. However, for weakly curved
bends, convection is an O(δ) effect because the longitudinal velocity has O(1) lateral variations
(associated with D

7/12
0 ) but the secondary flow (un) is small, whilst in sharp bends, convection is

an O(1) effect because the secondary flow is no longer small. Finally, modifications of the turbulent
closure might be needed because the turbulence characteristics are likely altered with respect to
the straight channel case.

An attempt to quantify the above effects was made in a series of papers of Blanckaert and
coworkers (Blanckaert et al., 2008; Zeng et al., 2008b; Duarte, 2008; Blanckaert, 2009, 2011). They
performed a series of 12 laboratory experiments in a 1.3 m wide laboratory flume, consisting
of a 193◦ constant curvature bend (radius of curvature of the centerline R0 = 1.7 m) and two
straight reaches, 9m and 5m long, located upstream and downstream, respectively. Here, we refer
to three of the five fixed bed experiments (F119000, F169000, F219000) reviewed in Blanckaert
(2011), where the bed was flat and roughened by glueing 2mm sand. The values of the relevant
dimensionless parameters in the various runs fell in the following ranges: ν0 = 0.31-0.38; δ =
0.94-1.9; F 2

ru = 0.068-0.17; b = 0.21-0.41. Recalling Figure 20 and the definitions introduced in
Section 2.3, the above values of ν0 and δ fall in the upper range of values observed in nature and
are definitely characteristic of sharp bends. The main outcomes of the laboratory observations are
summarized below.

Spatial evolution and saturation of the secondary flow

As we know, the generation of the secondary flow is associated with the development of a lateral
slope of the free surface. Figure 38 shows that the slope starts developing upstream of the bend

Figura 38. Lateral slope of the free surface ∂h/∂n scaled by U2
u/(gR0), estimated by Blanckaert (2009) through a

linear interpolation of the values measured in experiments F119000, F169000 and F219000 (reproduced from
Blanckaert, 2009, under the permission of JGR, license number 5718281385915).

entrance, then increases to reach its peak (≃ 1.4) between 60◦ and 90◦. The water surface slope
then decreases down to about half its peak at the bend exit. Blanckaert (2009) notes that this
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Figura 37. Longitudinal and lateral distributions of the dimensionless longitudinal component of the depth averaged
velocity U(s, n) for the following values of the relevant physical parameters: Cfu = 0.01, δ=0.06, b=1.23, Fru=0.4,
corresponding to ν0=0.05, βu=8, τ∗u=0.1, ds=0.01. Upper plot : laterally horizontal bed (Sn = 0); middle plot :

Sn = 0.3 φ = 0; lower plot : Sn = 0.3 φ = 1/16

The first effect to be considered is the failure of the linear framework. This has some obvious
consequences. Consider first the case of constant curvature channels under fully developed
conditions. A glance at the equations (57) suggests that various contributions to the continuity
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and momentum equations are no longer negligible. In particular, the lateral component of the
secondary flow un is now an O(1) quantity forced not only by the centripetal acceleration and
the lateral pressure gradient (last and second term on the right hand side of equation (57c)), but
also by the convective contributions. Similarly, the longitudinal flow component us is no longer
slightly perturbed with respect to the primary uniform flow. Rather, it feels the metric effect (first
term in the right hand side of equation (57b)) as an O(1) perturbation whereby the longitudinal
flow experiences non negligible lateral variations even in the case of flat horizontal bed. The
longitudinal flow is further deformed by the convective transport of longitudinal momentum (last
two terms in the right hand side of equation (57b)). This effect has already emerged in the context
of the linear analysis of laterally tilted bed discussed in Section 2.4.3. However, for weakly curved
bends, convection is an O(δ) effect because the longitudinal velocity has O(1) lateral variations
(associated with D
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0 ) but the secondary flow (un) is small, whilst in sharp bends, convection is

an O(1) effect because the secondary flow is no longer small. Finally, modifications of the turbulent
closure might be needed because the turbulence characteristics are likely altered with respect to
the straight channel case.

An attempt to quantify the above effects was made in a series of papers of Blanckaert and
coworkers (Blanckaert et al., 2008; Zeng et al., 2008b; Duarte, 2008; Blanckaert, 2009, 2011). They
performed a series of 12 laboratory experiments in a 1.3 m wide laboratory flume, consisting
of a 193◦ constant curvature bend (radius of curvature of the centerline R0 = 1.7 m) and two
straight reaches, 9m and 5m long, located upstream and downstream, respectively. Here, we refer
to three of the five fixed bed experiments (F119000, F169000, F219000) reviewed in Blanckaert
(2011), where the bed was flat and roughened by glueing 2mm sand. The values of the relevant
dimensionless parameters in the various runs fell in the following ranges: ν0 = 0.31-0.38; δ =
0.94-1.9; F 2

ru = 0.068-0.17; b = 0.21-0.41. Recalling Figure 20 and the definitions introduced in
Section 2.3, the above values of ν0 and δ fall in the upper range of values observed in nature and
are definitely characteristic of sharp bends. The main outcomes of the laboratory observations are
summarized below.

Spatial evolution and saturation of the secondary flow

As we know, the generation of the secondary flow is associated with the development of a lateral
slope of the free surface. Figure 38 shows that the slope starts developing upstream of the bend

Figura 38. Lateral slope of the free surface ∂h/∂n scaled by U2
u/(gR0), estimated by Blanckaert (2009) through a

linear interpolation of the values measured in experiments F119000, F169000 and F219000 (reproduced from
Blanckaert, 2009, under the permission of JGR, license number 5718281385915).

entrance, then increases to reach its peak (≃ 1.4) between 60◦ and 90◦. The water surface slope
then decreases down to about half its peak at the bend exit. Blanckaert (2009) notes that this
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suggests that overshooting of its equilibrium value occurs in the first part of the bend. The
transverse slope finally decays rapidly within 1 m downstream of the bend exit.

Figura 39. (a-f) Intensity of the zero-average component un − V of the secondary flow, scaled by the undisturbed
cross-sectionally averaged speed U and measured along the centerline in the experiments (a,b) F119000 (δ=0.94),
(c,d) F169000 (δ=1.39) and (e,f) F219000 (δ=1.9) of Blanckaert (2009). (a,b,c) Isovels; (f,g,h) Vertical distributions.

V is the depth average of the lateral velocity component. Plots are distorted by a factor 10. (d,e) Streamwise
distribution of (d) the root mean square intensity of the zero-average component of the secondary flow and (h) of
the depth-averaged lateral component of the secondary flow, both scaled by U and measured along the centerline

(reproduced from Blanckaert, 2009, under the permission of JGR, license number 5718281385915).

Figure 39 shows three examples of the spatial evolution along the channel centerline of the
depth-averaged component V and the zero-average component (un − V ) of the lateral velocity,
both scaled by the undisturbed cross-sectionally averaged speed Uu. In all cases the secondary flow
develops at the bend entrance, then increases, reaches a peak at a cross section between 60◦ and
135◦ to decrease in the downstream portion of the bend. In the straight reach following the bend
the secondary flow rapidly decays. Note that the intensity of the secondary flow is not sensitive
to the increase of the δ parameter in the range 0.94-1.9. Moreover, significant inward (outward)
values of V are observed near the bend entrance (exit).

The observation that secondary flow does no longer vary in the upper range of δ values was
described as a saturation effect. This is also illustrated in Figure 40, plotting the streamwise
component of the dimensionless mean flow vorticity Ωs, scaled by (Uu/Du). The values of the
maximum vertically averaged values of Ωs observed in the three experiments (0.35, 0.45 and 0.39)
do confirm that the intensity of the secondary flow did not increase with δ (taking the values 0.94,
1.39 and 1.9, respectively), at least within the experimental uncertainty that was estimated as less
than 20 %.
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Figura 40. Values of the streamwise component of the dimensionless mean flow vorticity Ωs (scaled by Uu/Du) in
the experiments F119000 (δ = 0.94, Ωs =-0.35), F169000 (δ = 1.39, Ωs =-0.45) and F219000 (δ = 1.9, Ωs =-0.39)
reported by Blanckaert (2011) emphasizing the presence of a main circulation cell (red area). Measurements refer
to the cross sections where the secondary flow reached its peak intensity according to the centerline measurements
of Blanckaert (2009). The minimum vertically averaged values of Ωs observed for the three runs are -0.35, -0.45 and
-0.39, respectively. The vorticity patterns also show the formation of two outer bank secondary cells (grey area) and

an inner bank flow separation (green area) (reproduced from Blanckaert, 2011, under the permission of JGR,
license number 5718280961502).

Shape of the vertical profile of the streamwise velocity

The shape of the vertical profile of the streamwise velocity is deformed with respect to the
logarithmic shape of a straight channel. This is shown in Figure 41 plotting the streamwise
velocity us scaled by the local depth-averaged velocity U , observed along the centerline in the three
experiments. The profile shape varies from the classical logarithmic distribution in the straight
reach upstream of the bend to a slightly perturbed shape with velocity increasing (decreasing)
near the surface (bed) in the initial part of the bend. The shape is then progressively and strongly
deformed such to exhibit its maximum close to the bed and a progressively lower minimum close
to the free surface. This mechanism was first pointed out by de Vriend (1981) and was further
analyzed by Blanckaert and Graf (2004) and Blanckaert and de Vriend (2003) in terms of a
feedback between streamwise and cross-stream velocities whereby the deformation of the secondary
flow damps the driving mechanism of the latter. It is this feedback that ultimately generates the
saturation of the secondary flow in very sharp bends.

Turbulence characteristics

Energy losses are enhanced relative to the case of straight channels (about 40% higher in the sharp
bends investigated by Blanckaert, 2009). This observation is associated with the observed increase
of turbulent kinetic energy (more than twice its straight value) due to an increased production
rate, which is also displayed by the increased velocity gradient in the near bed region driven by
the deformation of the velocity profile. And again, energy losses and turbulence intensity do
not increase linearly with the δ parameter and saturate in the very high curvature range. The
interested reader is referred to the quoted papers for further details of the relevant processes.
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Figura 40. Values of the streamwise component of the dimensionless mean flow vorticity Ωs (scaled by Uu/Du) in
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reported by Blanckaert (2011) emphasizing the presence of a main circulation cell (red area). Measurements refer
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of Blanckaert (2009). The minimum vertically averaged values of Ωs observed for the three runs are -0.35, -0.45 and
-0.39, respectively. The vorticity patterns also show the formation of two outer bank secondary cells (grey area) and

an inner bank flow separation (green area) (reproduced from Blanckaert, 2011, under the permission of JGR,
license number 5718280961502).
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logarithmic shape of a straight channel. This is shown in Figure 41 plotting the streamwise
velocity us scaled by the local depth-averaged velocity U , observed along the centerline in the three
experiments. The profile shape varies from the classical logarithmic distribution in the straight
reach upstream of the bend to a slightly perturbed shape with velocity increasing (decreasing)
near the surface (bed) in the initial part of the bend. The shape is then progressively and strongly
deformed such to exhibit its maximum close to the bed and a progressively lower minimum close
to the free surface. This mechanism was first pointed out by de Vriend (1981) and was further
analyzed by Blanckaert and Graf (2004) and Blanckaert and de Vriend (2003) in terms of a
feedback between streamwise and cross-stream velocities whereby the deformation of the secondary
flow damps the driving mechanism of the latter. It is this feedback that ultimately generates the
saturation of the secondary flow in very sharp bends.

Turbulence characteristics

Energy losses are enhanced relative to the case of straight channels (about 40% higher in the sharp
bends investigated by Blanckaert, 2009). This observation is associated with the observed increase
of turbulent kinetic energy (more than twice its straight value) due to an increased production
rate, which is also displayed by the increased velocity gradient in the near bed region driven by
the deformation of the velocity profile. And again, energy losses and turbulence intensity do
not increase linearly with the δ parameter and saturate in the very high curvature range. The
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Figura 41. Streamwise velocity us, scaled by the local depth-averaged streamwise velocity U observed along the
centerlines in the experiments (a,e) F119000, (b,f) F169000 and (c,g) F219000 reported by Blanckaert (2009).

(a,b,c) Isovels of us/U ; (e,f,g) Vertical profiles of us/U . Black line: location where us displays its maximum. Plots
are distorted by a factor 10. (d) Streamwise distribution along the channel centerline of the depth-averaged

streamwise velocity U scaled by the cross-sectional averaged streamwise velocity, U (see legend) (reproduced from
Blanckaert, 2009, under the permission of JGR, license number 5718281385915).

The conclusion of Blanckaert (2009) is that the dominant mechanism emerged from the
considered experiments is the role of the curvature-induced secondary flow directly or indirectly
responsible for the processes mentioned above. However, as noted by the Author himself, this
conclusion is strongly dependent on the fixed bed and the rectangular cross section adopted in
the laboratory experiments. These features prevent the occurrence of the effect associated with
bed deformation driven by the mobile character of the bottom in meandering real rivers. These
aspects will be dealt with in the next Chapter.

2.6.2 Outer bank secondary cells

Figure (40) shows that, besides the main secondary cell that forms in the core region of the
flow, two additional secondary cells are present close to the outer bank. The formation of these
cells in open channel flows has been known for a long time since the early laboratory observations
of Mockmore (1943), the field observations of Bathurst et al. (1977) and Bridge and Jarvis (1977),
followed by a number of later contributions (see references quoted in Blanckaert et al., 2012).

This phenomenon deserves some attention because it may directly affect the stress acting on
the outer bank, although its effect on the mechanism of bank erosion is not agreed. On one hand,
Bathurst et al. (1979) emphasize the destabilizing effect of the advection of high momentum fluid
towards the bed, on the other hand Christensen et al. (1999) and others suggest that the outer
cells protect the bank from the action of the high speed fluid displaced towards the bank by the
secondary flow in the core region. The extensive work performed by Blanckaert and his coworkers
on this subject has addressed various issues, as outlined below.
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Dependence of the strength of outer cells on channel curvature

Although outer cells are known to exist also in mildly curved bends, Figure 40 shows that their
strength does increase rapidly with curvature intensity, measured by the parameter δ.

Spatial evolution of outer cells

Observations performed by Markham and Thorne (1992) in a natural meander bend, as well as
those made by Blanckaert (2009) in a laboratory flume, identified the separation between the
central region and the outer cells as marked by the existence of vertical spiral vortices (Figure 42).
The formation of the outer cells starts at the bend inlet. Their width increases in the initial part
of the bend where the curvature of the outer bank increases and tends to a nearly constant value
starting from a cross section at about 60◦.

Figura 42. The picture shows the strip where the outer cell was confined in the F169000 experiment reported by
Blanckaert (2011). Separation from the central region is marked by the presence of vertical spiral vortices. Also

shown is the inner separation zone (reproduced from Blanckaert, 2011, under the permission of JGR, license
number 5718280961502).

Occurrence of the outer cells and their dependence on the roughness and inclination of the outer bank

This aspect of the problem was treated by Blanckaert et al. (2012). In this paper, the assumption
that outer bank cells would occur near steep banks but not near shelving ones (Bathurst et al.,
1977, 1979; Thorne and Hey, 1979), was shown to be incorrect. However, the strength of the outer
cells nearly halved as the bank inclination was reduced from 90◦ to 30◦. This suggests that the
relevance of the phenomenon is limited to steep banks, that are known to be characteristic of
sharp bends (Leopold and Wolman, 1960; Thorne et al., 1995).

Moreover, Blanckaert et al. (2012) observations showed that the width and intensity of the
outer cell as well as its protective effect are enhanced if the bank roughness increases.

Why do outer cells form?

This process has similarities with the formation of Görtler vortices (Görtler, 1955) in laminar flow
past concave walls (Figure 43a). It is well known that Görtler vortices arise from a centrifugal
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Figura 41. Streamwise velocity us, scaled by the local depth-averaged streamwise velocity U observed along the
centerlines in the experiments (a,e) F119000, (b,f) F169000 and (c,g) F219000 reported by Blanckaert (2009).

(a,b,c) Isovels of us/U ; (e,f,g) Vertical profiles of us/U . Black line: location where us displays its maximum. Plots
are distorted by a factor 10. (d) Streamwise distribution along the channel centerline of the depth-averaged

streamwise velocity U scaled by the cross-sectional averaged streamwise velocity, U (see legend) (reproduced from
Blanckaert, 2009, under the permission of JGR, license number 5718281385915).
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Figure (40) shows that, besides the main secondary cell that forms in the core region of the
flow, two additional secondary cells are present close to the outer bank. The formation of these
cells in open channel flows has been known for a long time since the early laboratory observations
of Mockmore (1943), the field observations of Bathurst et al. (1977) and Bridge and Jarvis (1977),
followed by a number of later contributions (see references quoted in Blanckaert et al., 2012).

This phenomenon deserves some attention because it may directly affect the stress acting on
the outer bank, although its effect on the mechanism of bank erosion is not agreed. On one hand,
Bathurst et al. (1979) emphasize the destabilizing effect of the advection of high momentum fluid
towards the bed, on the other hand Christensen et al. (1999) and others suggest that the outer
cells protect the bank from the action of the high speed fluid displaced towards the bank by the
secondary flow in the core region. The extensive work performed by Blanckaert and his coworkers
on this subject has addressed various issues, as outlined below.
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Dependence of the strength of outer cells on channel curvature

Although outer cells are known to exist also in mildly curved bends, Figure 40 shows that their
strength does increase rapidly with curvature intensity, measured by the parameter δ.

Spatial evolution of outer cells

Observations performed by Markham and Thorne (1992) in a natural meander bend, as well as
those made by Blanckaert (2009) in a laboratory flume, identified the separation between the
central region and the outer cells as marked by the existence of vertical spiral vortices (Figure 42).
The formation of the outer cells starts at the bend inlet. Their width increases in the initial part
of the bend where the curvature of the outer bank increases and tends to a nearly constant value
starting from a cross section at about 60◦.

Figura 42. The picture shows the strip where the outer cell was confined in the F169000 experiment reported by
Blanckaert (2011). Separation from the central region is marked by the presence of vertical spiral vortices. Also

shown is the inner separation zone (reproduced from Blanckaert, 2011, under the permission of JGR, license
number 5718280961502).

Occurrence of the outer cells and their dependence on the roughness and inclination of the outer bank

This aspect of the problem was treated by Blanckaert et al. (2012). In this paper, the assumption
that outer bank cells would occur near steep banks but not near shelving ones (Bathurst et al.,
1977, 1979; Thorne and Hey, 1979), was shown to be incorrect. However, the strength of the outer
cells nearly halved as the bank inclination was reduced from 90◦ to 30◦. This suggests that the
relevance of the phenomenon is limited to steep banks, that are known to be characteristic of
sharp bends (Leopold and Wolman, 1960; Thorne et al., 1995).

Moreover, Blanckaert et al. (2012) observations showed that the width and intensity of the
outer cell as well as its protective effect are enhanced if the bank roughness increases.

Why do outer cells form?

This process has similarities with the formation of Görtler vortices (Görtler, 1955) in laminar flow
past concave walls (Figure 43a). It is well known that Görtler vortices arise from a centrifugal
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instability of the boundary layer flow, similar to the better known Taylor instability that leads to
the formation of counter-rotating vortices in Couette flow between rotating circular cylinders.

An even closer analogy may be drawn between the development of secondary flows in open
channels and the laminar flow in curved pipes. This flow was investigated in the early work of
Dean (1927) who showed that, for weakly curved bends, the unbalance between the lateral pressure
gradient and the required centripetal force gives rise to a secondary motion, superposed on the
primary flow. The secondary circulation consists of a pair of counter-rotating cells, called Dean
vortices (Figure 43b). The dimensionless parameter controlling the onset and the intensity of
secondary flow is the so called Dean number De = U a

ν

√
a/R, i.e. the product of the Reynolds

number times the square root of the ratio of the pipe radius a to the radius of curvature R of the
pipe axis. The Dean number can be shown to measure the ratio between the square root of the
product of inertial to centripetal forces (which promote secondary flows) and viscous forces (that
tend to suppress secondary flows).

Figura 43. (a) Sketch of Görtler vortices generated by an instability of the boundary layer flow over concave walls.
(b) Sketch of secondary laminar flow in curved pipes, according to the solution obtained by Dean (1927).

For laminar flows in curved open channels with rectangular cross sections, numerical (Cheng
et al., 1976; de Vriend, 1981; Winters, 1987) and experimental (Hille et al., 1985) studies exhibit a
notable feature. Besides the main secondary cell that forms in the central region, an outer-bank
cell appears as the Dean number exceeds a critical value. This suggests the occurrence of a flow
instability and a bifurcation process. The works of de Vriend (1981) and Blanckaert and de Vriend
(2004) have identified a possible origin of the instability. In brief, the main action driving the
formation of secondary cells is the centripetal force. Moreover, the evolution equation of the
longitudinal component of the vorticity vector, which is expression of the secondary flow (Figure
44), shows that the driving centripetal term in this equations reads:

−vs ωn

hs r0
, (172)

where ωn ≡ −∂vs/∂z.
Indeed, under steady and fully developed conditions, the equation (6) for the longitudinal

component of the vorticity ωs, becomes:
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Figura 44. Sketch illustrating the change of direction of the centripetal term −vs ωn/(r0 hs) in the vorticity
equation. The profile of longitudinal velocity vs deforms owing to the momentum redistribution associated with the

action of the secondary flow.

Hence, the centripetal term is significantly affected by the momentum redistribution associated
with the action of the secondary flow that deforms the shape of the vs-profile. Most notable, in this
respect, is the fact that the lateral component of the vorticity ωn, hence the driving centripetal
term changes sign in the upper part of the water column as the peak of vs is displaced towards
the lower part of the water column. According to Blanckaert and de Vriend (2004) this change of
sign is a triggering condition for the formation of the outer-bank cell (Figure 44).

In turbulent flows, besides the mechanism of secondary flow generation discussed so far
(secondary flow of first kind according to Prandtl, 1942), an additional mechanism (secondary
flow of the second kind) exists. As discussed in Section 2.3.6(I), this is caused by the anisotropy
of turbulent normal stresses and, unlike the former type, is obviously a feature only observed in
turbulent flows.

The centrifugal mechanism and the turbulent straight mechanisms coexist in curved turbulent
flows. Blanckaert and de Vriend (2004) have analyzed experimentally this issue in detail by
measuring the size of different terms appearing in the evolution equation (6) for the longitudinal
component of vorticity Ωs. In summary, results show that the sign of the centrifugal term
−us Ωn/(r0 hs) in the Reynolds-avegared counterpart of equation (173) is consistent with the sense
of rotation of the outer-bank cell. In other words, centrifugal effects do contribute to the intensity
of outer bank secondary cell. Moreover, it appears that the anisotropy of the cross-stream turbulent
normal stresses T t

nn and T t
zz and the cross-stream turbulent shear stress T t

nz play the same role in
the Reynolds-averaged vorticity equation (8). Finally, the anisotropy of normal stresses driven by
the free surface does not differ significantly from that generated by the banks.

The above picture has been confirmed by detailed numerical tests performed with the help of
the LES technique by Booij (2003) (see also van Balen et al., 2009; Constantinescu et al., 2011)
on open-channel turbulent flow in a mildly curved (ν0 =0.06, δ =0.26) 180◦ bend with laterally
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instability of the boundary layer flow, similar to the better known Taylor instability that leads to
the formation of counter-rotating vortices in Couette flow between rotating circular cylinders.

An even closer analogy may be drawn between the development of secondary flows in open
channels and the laminar flow in curved pipes. This flow was investigated in the early work of
Dean (1927) who showed that, for weakly curved bends, the unbalance between the lateral pressure
gradient and the required centripetal force gives rise to a secondary motion, superposed on the
primary flow. The secondary circulation consists of a pair of counter-rotating cells, called Dean
vortices (Figure 43b). The dimensionless parameter controlling the onset and the intensity of
secondary flow is the so called Dean number De = U a
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number times the square root of the ratio of the pipe radius a to the radius of curvature R of the
pipe axis. The Dean number can be shown to measure the ratio between the square root of the
product of inertial to centripetal forces (which promote secondary flows) and viscous forces (that
tend to suppress secondary flows).

Figura 43. (a) Sketch of Görtler vortices generated by an instability of the boundary layer flow over concave walls.
(b) Sketch of secondary laminar flow in curved pipes, according to the solution obtained by Dean (1927).

For laminar flows in curved open channels with rectangular cross sections, numerical (Cheng
et al., 1976; de Vriend, 1981; Winters, 1987) and experimental (Hille et al., 1985) studies exhibit a
notable feature. Besides the main secondary cell that forms in the central region, an outer-bank
cell appears as the Dean number exceeds a critical value. This suggests the occurrence of a flow
instability and a bifurcation process. The works of de Vriend (1981) and Blanckaert and de Vriend
(2004) have identified a possible origin of the instability. In brief, the main action driving the
formation of secondary cells is the centripetal force. Moreover, the evolution equation of the
longitudinal component of the vorticity vector, which is expression of the secondary flow (Figure
44), shows that the driving centripetal term in this equations reads:
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Figura 44. Sketch illustrating the change of direction of the centripetal term −vs ωn/(r0 hs) in the vorticity
equation. The profile of longitudinal velocity vs deforms owing to the momentum redistribution associated with the

action of the secondary flow.

Hence, the centripetal term is significantly affected by the momentum redistribution associated
with the action of the secondary flow that deforms the shape of the vs-profile. Most notable, in this
respect, is the fact that the lateral component of the vorticity ωn, hence the driving centripetal
term changes sign in the upper part of the water column as the peak of vs is displaced towards
the lower part of the water column. According to Blanckaert and de Vriend (2004) this change of
sign is a triggering condition for the formation of the outer-bank cell (Figure 44).

In turbulent flows, besides the mechanism of secondary flow generation discussed so far
(secondary flow of first kind according to Prandtl, 1942), an additional mechanism (secondary
flow of the second kind) exists. As discussed in Section 2.3.6(I), this is caused by the anisotropy
of turbulent normal stresses and, unlike the former type, is obviously a feature only observed in
turbulent flows.

The centrifugal mechanism and the turbulent straight mechanisms coexist in curved turbulent
flows. Blanckaert and de Vriend (2004) have analyzed experimentally this issue in detail by
measuring the size of different terms appearing in the evolution equation (6) for the longitudinal
component of vorticity Ωs. In summary, results show that the sign of the centrifugal term
−us Ωn/(r0 hs) in the Reynolds-avegared counterpart of equation (173) is consistent with the sense
of rotation of the outer-bank cell. In other words, centrifugal effects do contribute to the intensity
of outer bank secondary cell. Moreover, it appears that the anisotropy of the cross-stream turbulent
normal stresses T t

nn and T t
zz and the cross-stream turbulent shear stress T t

nz play the same role in
the Reynolds-averaged vorticity equation (8). Finally, the anisotropy of normal stresses driven by
the free surface does not differ significantly from that generated by the banks.

The above picture has been confirmed by detailed numerical tests performed with the help of
the LES technique by Booij (2003) (see also van Balen et al., 2009; Constantinescu et al., 2011)
on open-channel turbulent flow in a mildly curved (ν0 =0.06, δ =0.26) 180◦ bend with laterally
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horizontal bed. Results confirm many of the findings of linear theories. In particular, the secondary
flow in the core region of the cross-section is fairly weak (about 10% of the bulk velocity). Also,
a counter rotating secondary cell forms at the outer bank, its strength is weaker than that of
the primary helical motion and centrifugal terms play a crucial role in the process controlling
its formation. Turbulence anisotropy is significant close to the side walls, negligible in the core
region. Finally, simulations confirm the analysis of the transfer of kinetic energy proposed by
Blanckaert and de Vriend (2004). Essentially, mean flow kinetic energy is dominantly transferred
to turbulence, especially in the boundary layers near the bottom. However, a small negative
contribution (i.e. from turbulence to the mean motion) occurs via the cross-stream turbulent
stresses in the region where the outer bank circulation cells form. According to Blanckaert and
de Vriend (2004), this contribution, although negligible when compared with the total kinetic
energy transferred from the mean flow to turbulence, plays an essential role in the formation of the
circulation cells. It is the actual reason why linear turbulence closure models (e.g. the standard
K-ϵ model with an isotropic eddy viscosity), fail to reproduce the formation of the outer bank
cells, as noted by Demuren and Rodi (1986) and confirmed by Booij (2003).

2.6.3 Flow separation

The interest in the process of flow separation with the consequent formation of a recirculation
zone at the (convex) inner bank of meandering rivers arose in the 1960, when Bagnold (1960)
proposed some theoretical speculations to explain the observation that the flow resistance of
sinuous open channels displays a minimum for values of the curvature ratio (ν0) in the range
0.25-0.33. This issue was also investigated in the laboratory by Leopold et al. (1960). The latter
paper provided experimental evidence of a discontinuous increase in resistance occurring in sharply
sinuous channels with fairly small wavelength when the flow Froude number exceeded a threshold
value dependent on the curvature ratio. This discontinuity was associated with the formation of
a recirculating flow driven by the high curvature of the inner bends, producing a dead zone of
weak reverse flow immediately past the apex. The main effect of this macro-eddy was to restrict
the primary flow to a narrower cross section.

The problem was then left unexplored for longer than a decade, until Leeder and Bridges (1975)
performed some field observations of flow separation in natural meander bends and attempted to
define an empirical criterion for predicting the onset of separation. These Authors also suggested
that flow separation at the inner bank is likely to favor meander migration as it reduces the
effective width of the flow and moves the thread of high velocity towards the outer bank.

Further attention on the process had to wait nearly three decades, when Ferguson et al. (2003)
investigated flow separation along the inner banks of two sharp meander bends combining field
measurements of flow velocity with three-dimensional CFD simulations. The main feature pointed
out in the conclusions of this investigation was that, in contrast with suggestion by Leeder and
Bridges (1975), the reduction of the effective width of the primary flow is counterbalanced by an
increase in flow depth, such that the flow decelerates along the outer bank from the bend inlet to its
apex. Moreover, the helicoidal secondary flow at the outer bank was only present in the upstream
portion of the bend, where peak bottom stresses (and consequently potential peak erosion) were
experienced. This is in contrast with what is commonly observed in most weakly curved bends.
Detailed analysis of the three-dimensional structure of the flow field in the recirculating eddy was
also reported.

More recently, as discussed in the previous section, detailed laboratory observations of the
flow in a very sharp bend were performed by Blanckaert and coworkers. Results were reported in
several papers. In particular, an interesting comparison between the flow separation observed at
the (convex) inner bank under fixed and mobile bed conditions was made by Blanckaert (2010) (but
see also Blanckaert, 2011). Although the morphodynamics of sinuous channels with cohesionless
bed will be treated in the next Chapter, it is appropriate to anticipate the main outcome of the
above comparison. Indeed, as expected, the characteristics of flow separation in the two cases turn
out to be fundamentally different (Figure 45). In the fixed bed case, separation is induced by the
high curvature of the inner bank slightly upstream of the bend apex, in the high speed region
induced by the free vortex effect. In the mobile bed case, the free vortex effect is superseded by
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Figura 45. Longitudinal mean flow velocity u at the free surface, scaled by the cross sectionally averaged speed U in
the (a) F169000 fixed bed experiment and (b) the M169000 mobile bed experiment of Blanckaert (2011)

(reproduced from Blanckaert, 2011, under the permission of JGR, license number 5718280961502).

the formation of a point bar close to the inner bend. This leads to the formation of a low velocity
recirculation bubble that traps sediments promoting the accretion of the inner bank. The point bar
and the separation zone also have the effect to move the thread of high velocity towards the outer
bank. The effective width of the flow is thus sharply reduced, with the primary and secondary
flows concentrated in the outer half of the cross section. This promotes outer bank erosion, which
is further enhanced by the observed peaking of the longitudinal velocity near the toe of the outer
bank. This is roughly the state of the art, summarized in the conclusions of Blanckaert (2011):
“The control parameters of inner-bank separation remain unknown, but the results suggest that
inner-bank flow separation enhances meander migration”.

2.6.4 Modeling the hydrodynamics of sharp bends

The above discussion suggests that, in order to model all the features characteristic of the
turbulent flow in sharp bends, one needs to employ fairly sophisticated turbulent models. Possible
choices encompass the DNS simulations, the LES approach or a RANS nonlinear closure model.
None of these approaches is appropriate to morphodynamic investigations of large scale fluvial
processes. However, besides their scientific value, the information provided by these investigations
may help in the formulation of simplified models more suitable to fluvial morphodynamics.

We are aware of no DNS simulation of turbulent flow in curved open channels, whilst LES
simulations referring to weakly curved bends have been discussed in Section 2.6.2. LES simulations
of a sharply curved meandering open channel flow have been reported by Stoesser et al. (2010),
who compared their output with results obtained with the help of standard RANS closures. They
are discussed below, along with results of a few further RANS numerical investigations listed in
Figure 46.

The first application of advanced RANS modeling to the turbulent flow in curved bends is due
to Demuren and Rodi (1986), who developed a previous work of Leschziner and Rodi (1979). They
solved numerically the three-dimensional Reynolds averaged Navier-Stokes equations, closed by the
classical K-ϵ turbulence model (Launder and Spalding, 1974) with the following approximations:
(i) molecular diffusion terms were neglected, hence the viscous sublayer was not resolved and
empirical wall functions were employed; (ii) a shear-layer approximation was adopted such that
turbulent diffusion of momentum in the streamwise direction was neglected; (iii) the influence
of curvature on turbulence was ignored. Results of simulations were tested by comparison with
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horizontal bed. Results confirm many of the findings of linear theories. In particular, the secondary
flow in the core region of the cross-section is fairly weak (about 10% of the bulk velocity). Also,
a counter rotating secondary cell forms at the outer bank, its strength is weaker than that of
the primary helical motion and centrifugal terms play a crucial role in the process controlling
its formation. Turbulence anisotropy is significant close to the side walls, negligible in the core
region. Finally, simulations confirm the analysis of the transfer of kinetic energy proposed by
Blanckaert and de Vriend (2004). Essentially, mean flow kinetic energy is dominantly transferred
to turbulence, especially in the boundary layers near the bottom. However, a small negative
contribution (i.e. from turbulence to the mean motion) occurs via the cross-stream turbulent
stresses in the region where the outer bank circulation cells form. According to Blanckaert and
de Vriend (2004), this contribution, although negligible when compared with the total kinetic
energy transferred from the mean flow to turbulence, plays an essential role in the formation of the
circulation cells. It is the actual reason why linear turbulence closure models (e.g. the standard
K-ϵ model with an isotropic eddy viscosity), fail to reproduce the formation of the outer bank
cells, as noted by Demuren and Rodi (1986) and confirmed by Booij (2003).

2.6.3 Flow separation

The interest in the process of flow separation with the consequent formation of a recirculation
zone at the (convex) inner bank of meandering rivers arose in the 1960, when Bagnold (1960)
proposed some theoretical speculations to explain the observation that the flow resistance of
sinuous open channels displays a minimum for values of the curvature ratio (ν0) in the range
0.25-0.33. This issue was also investigated in the laboratory by Leopold et al. (1960). The latter
paper provided experimental evidence of a discontinuous increase in resistance occurring in sharply
sinuous channels with fairly small wavelength when the flow Froude number exceeded a threshold
value dependent on the curvature ratio. This discontinuity was associated with the formation of
a recirculating flow driven by the high curvature of the inner bends, producing a dead zone of
weak reverse flow immediately past the apex. The main effect of this macro-eddy was to restrict
the primary flow to a narrower cross section.

The problem was then left unexplored for longer than a decade, until Leeder and Bridges (1975)
performed some field observations of flow separation in natural meander bends and attempted to
define an empirical criterion for predicting the onset of separation. These Authors also suggested
that flow separation at the inner bank is likely to favor meander migration as it reduces the
effective width of the flow and moves the thread of high velocity towards the outer bank.

Further attention on the process had to wait nearly three decades, when Ferguson et al. (2003)
investigated flow separation along the inner banks of two sharp meander bends combining field
measurements of flow velocity with three-dimensional CFD simulations. The main feature pointed
out in the conclusions of this investigation was that, in contrast with suggestion by Leeder and
Bridges (1975), the reduction of the effective width of the primary flow is counterbalanced by an
increase in flow depth, such that the flow decelerates along the outer bank from the bend inlet to its
apex. Moreover, the helicoidal secondary flow at the outer bank was only present in the upstream
portion of the bend, where peak bottom stresses (and consequently potential peak erosion) were
experienced. This is in contrast with what is commonly observed in most weakly curved bends.
Detailed analysis of the three-dimensional structure of the flow field in the recirculating eddy was
also reported.

More recently, as discussed in the previous section, detailed laboratory observations of the
flow in a very sharp bend were performed by Blanckaert and coworkers. Results were reported in
several papers. In particular, an interesting comparison between the flow separation observed at
the (convex) inner bank under fixed and mobile bed conditions was made by Blanckaert (2010) (but
see also Blanckaert, 2011). Although the morphodynamics of sinuous channels with cohesionless
bed will be treated in the next Chapter, it is appropriate to anticipate the main outcome of the
above comparison. Indeed, as expected, the characteristics of flow separation in the two cases turn
out to be fundamentally different (Figure 45). In the fixed bed case, separation is induced by the
high curvature of the inner bank slightly upstream of the bend apex, in the high speed region
induced by the free vortex effect. In the mobile bed case, the free vortex effect is superseded by
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Figura 45. Longitudinal mean flow velocity u at the free surface, scaled by the cross sectionally averaged speed U in
the (a) F169000 fixed bed experiment and (b) the M169000 mobile bed experiment of Blanckaert (2011)

(reproduced from Blanckaert, 2011, under the permission of JGR, license number 5718280961502).

the formation of a point bar close to the inner bend. This leads to the formation of a low velocity
recirculation bubble that traps sediments promoting the accretion of the inner bank. The point bar
and the separation zone also have the effect to move the thread of high velocity towards the outer
bank. The effective width of the flow is thus sharply reduced, with the primary and secondary
flows concentrated in the outer half of the cross section. This promotes outer bank erosion, which
is further enhanced by the observed peaking of the longitudinal velocity near the toe of the outer
bank. This is roughly the state of the art, summarized in the conclusions of Blanckaert (2011):
“The control parameters of inner-bank separation remain unknown, but the results suggest that
inner-bank flow separation enhances meander migration”.

2.6.4 Modeling the hydrodynamics of sharp bends

The above discussion suggests that, in order to model all the features characteristic of the
turbulent flow in sharp bends, one needs to employ fairly sophisticated turbulent models. Possible
choices encompass the DNS simulations, the LES approach or a RANS nonlinear closure model.
None of these approaches is appropriate to morphodynamic investigations of large scale fluvial
processes. However, besides their scientific value, the information provided by these investigations
may help in the formulation of simplified models more suitable to fluvial morphodynamics.

We are aware of no DNS simulation of turbulent flow in curved open channels, whilst LES
simulations referring to weakly curved bends have been discussed in Section 2.6.2. LES simulations
of a sharply curved meandering open channel flow have been reported by Stoesser et al. (2010),
who compared their output with results obtained with the help of standard RANS closures. They
are discussed below, along with results of a few further RANS numerical investigations listed in
Figure 46.

The first application of advanced RANS modeling to the turbulent flow in curved bends is due
to Demuren and Rodi (1986), who developed a previous work of Leschziner and Rodi (1979). They
solved numerically the three-dimensional Reynolds averaged Navier-Stokes equations, closed by the
classical K-ϵ turbulence model (Launder and Spalding, 1974) with the following approximations:
(i) molecular diffusion terms were neglected, hence the viscous sublayer was not resolved and
empirical wall functions were employed; (ii) a shear-layer approximation was adopted such that
turbulent diffusion of momentum in the streamwise direction was neglected; (iii) the influence
of curvature on turbulence was ignored. Results of simulations were tested by comparison with
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Figura 46. Summary of numerical investigations on the hydrodynamics of sharply curved bends appeared in the
literature.

measurements of Chang (1971) and Fukuoka (1971). Comparison was reasonably successful except
for the inability of the model to predict the occurrence of the small counter-rotating outer bank
cells.

Few years later Shimizu et al. (1990) performed a similar exercise using a much simpler closure
model, namely a zero-order closure achieved by simply assuming a structure for the eddy viscosity.
Comparison with the experiments of Rozovskij (1957) for a fixed-bed rectangular cross-section
was fairly reasonable in spite of the relative simplicity of the closure adopted (which obviously
prevented the generation of the outer bank cell) and the quite sharp nature of the bend (Figure
47). In particular, the dominance of the free vortex effect in the initial portion of the bend and the
progressive shift of the thread of high velocity towards the outer bend were successfully reproduced.

More recently, Khosronejad et al. (2007) employed a low-turbulence Reynolds number version
of the K-ω closure model of Wilcox (1994), as well as the classical K-ϵ model, and adopted the
rigid lid approximation. The latter consists of assuming that the kinematic boundary condition
at the free surface may be reduced to a condition of vanishing normal component of the flow
velocity. The validation of the model was based on the experimental observations of Ghanmi
(1999), performed on a S-shaped sharply curved and very narrow flume with an horizontal fixed
bed.

A step forward was made in the investigation of Zeng et al. (2008b), who extended a previous
version of Zeng et al. (2008a). The novel features of this work were: (i) the mathematical
formulation was expressed in terms of generalized curvilinear coordinates such that the code was
potentially suitable to irregular geometries; (ii) the turbulent closure relied on the low-Reynolds
number versions of either the K-ω Shear Stress Transport (SST) model (Menter, 1994) or the
Spalart-Almaras (SA) model (Spalart, 2000). These turbulence closure models can account for
the effects of bed roughness using a mesh fine enough in the direction normal to the bed such
that wall functions were no longer needed. The model was applied to the flat bed configuration of
experiment H89 by Blanckaert (2002). A summary of the comparison between simulated results
and observations is plotted in Figure 48.

In particular, Figure 48a shows that the displacement of the thread of high streamwise velocity
in the outward direction and its persistence in the straight outflow reach are reproduced in the
simulation, though some differences emerge in the region where the fast flow detaches from the inner
wall. A second feature observed in the experiment is reproduced. The cross-stream circulation
increases in the first half of the bend, it reaches a peak in the cross section at 90◦, it then decreases
to about half its peak value at the bend exit and decays in the straight outflow reach. As expected,
the formation of weaker counter-rotating cells of cross-stream circulation at the outer bank is
not captured by the simulation. A related deficiency is the inability of simulations to capture
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Figura 47. Comparison between three-dimensional simulations of Shimizu et al. (1990) and observations of
Rozovskij (1957). (a) Depth averaged longitudinal velocity; (b) water-surface elevation (modified from Shimizu

et al., 1990)

the decrease of streamwise velocities toward the water surface and the reversal of the measured
vertical gradient of the lateral velocity close to the outer bank.

The last numerical investigation is due to Stoesser et al. (2010), who modeled the experimental
configuration tested by Siebert (1982). This consisted of a sequence of two 180◦ bends bridged
by a short straight reach. A distinct feature of the apparatus was the very small width to depth
ratio of the channel (βu =1.45), that was hardly representative of natural rivers. Three numerical
approaches were employed by Stoesser et al. (2010): RANS with either K-ω or K-ϵ closure models,
and LES. Moreover, wall functions and rigid lid approximation were used as boundary conditions at
the solid wall and free surface, respectively. Results of the calculations showed that the performance
of the two RANS approaches was quite similar, whilst LES simulations displayed some distinct
differences. A surprising feature of simulated secondary flows was the presence of an outer bank
cell in the output of RANS simulations, an unexpected result given the isotropic character of the
closures employed. However, the degree of generality of these findings is not clear and may only be
ascertained extending the simulations to the case of wider bends, where the interaction between
core flow and side wall boundary layers is not as strong as in the present context.

2.7. Modeling the hydrodynamics of natural meanders: rational approximations or empirical modeling?

The discussion proposed in the last section has shown that fully three-dimensional flow models
can capture most of the important features of the turbulent flow field observed in fairly sharp
bends. Moreover, recently, large efforts have been made to develop so called hybrid RANS-LES
methods, new promising approaches whereby the computationally heavy eddy resolving approach
can be switched on or off depending on local flow conditions (Keylock et al., 2012). Unfortunately,
these models are still too difficult and computationally time consuming to be implemented in the
context of morphodynamic applications of relevance to engineering and geomorphological practice,
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Figura 46. Summary of numerical investigations on the hydrodynamics of sharply curved bends appeared in the
literature.
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Figura 48. Summary of simulation results of Zeng et al. (2008b) (right) compared with observations of Blanckaert
(2002). (a) Spatial development of the depth averaged longitudinal velocity U , scaled by the cross-sectionally
averaged speed U . Cross sectional distributions of (b) normalized streamwise velocity us/U , (c) normalized

streamwise vorticity ωs/(U/Du). Plots (b,c) refer to the cross-section at 90◦ (reproduced from Zeng et al., 2008b,
under the permission of WRR, license number 5704690904617).

a state of affairs that will likely last for many years to go. This has motivated efforts to formulate
simpler models able to incorporate in some approximate way the knowledge made available by the
scientific investigations.

The main physical effects, ignored or under-represented in models for weakly meandering
channels, that were found to play a significant role in sharp bends are the lateral redistribution of
longitudinal flow momentum by the secondary flow and turbulence anisotropy which controls the
formation of the outer bank secondary cell and flow separation. However, outer bank secondary
cells affect morphological calculations indirectly through their possible effect on the mechanism of
bank erosion, which still awaits to be fully understood. Flow separation is a characteristic of very
sharp bends with fixed beds, but is a fairly minor feature of natural bends. Indeed, even in sharp
bends the formation of a separation bubble drives sediment settling which weakens the strength of
the recirculating bubble.

The only remaining factor that needs to be properly addressed is the lateral momentum
redistribution. In this respect one should note that, unlike stated sometimes in the literature, this
effect is not ignored in perturbation approaches, that are too often and inappropriately described
as linear. Let us clarify this point referring to our analysis of flow in constant curvature channels
discussed in Section 2.4. The effect of lateral momentum redistribution is associated with the term
bun ∂us/∂n in the right hand side of equation (57b). This term is significant provided the lateral
velocity component is large and the longitudinal velocity component experiences non negligible
variations in the transverse direction. In weakly curved bends, we have seen that un ∼ O(δ). In
wide bends with flat horizontal beds (see Section 2.4.2) transverse variations of us are also O(δ).
Hence, in weakly curved bends with flat horizontal bed, the lateral momentum redistribution is a
very weak (O(δ2)) process, a finding in qualitative agreement with Rozovskij (1957) observations.
On the other hand, in the presence of topographic steering (see Section 2.4.3) transverse variations
of us are O(1) quantities, hence the lateral redistribution is a less weak (O(δ)) process. One would
then like to know up to what values of (δ) the perturbation approach may be taken as a reasonable
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approximation of the full solution. In other words, to what extent can we push the validity of the
weakly nonlinear approach in the field of moderately sharp bends?

An attempt to answer this question has been carried out by Blanckaert and de Vriend (2003). In
order to account for nonlinear effects on the vertical flow structure, they developed a semi-empirical
model based on the flow equations for curved flow, evaluated at the bend centerline and reduced
to their simplest form.

We do not discuss this model, which relies on a number of empirical approximations. It
suffices to point out that the Authors identify a parameter which would allow to distinguish bends
for which a linear approach is appropriate from those for which it is moderately acceptable or
fails. Unfortunately this parameter is not readily estimated in terms of external dimensionless
parameters like those introduced in this chapter. Indeed, it also depends on the lateral derivative
of the longitudinal depth averaged velocity evaluated at the channel centerline, a quantity which
is not known a priori.
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Figura 48. Summary of simulation results of Zeng et al. (2008b) (right) compared with observations of Blanckaert
(2002). (a) Spatial development of the depth averaged longitudinal velocity U , scaled by the cross-sectionally
averaged speed U . Cross sectional distributions of (b) normalized streamwise velocity us/U , (c) normalized

streamwise vorticity ωs/(U/Du). Plots (b,c) refer to the cross-section at 90◦ (reproduced from Zeng et al., 2008b,
under the permission of WRR, license number 5704690904617).
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3. Forced bars in sinuous channels

In this Chapter we focus on the morphodynamics of a curved channel with the characteristics
described in Section 2.1.1 except for the additional feature of the channel bed being now cohesionless.

3.1. Formulation of the problem of morphodynamics of sinuous channels

The problem is readily formulated adding to the hydrodynamic framework discussed in the
previous Chapter (Section 2.1) the governing equations, closures and boundary conditions for
the motion of the solid phase introduced in Chapter 4I. They will be rewritten employing the
curvilinear coordinate system appropriate to sinuous channels introduced in Section 2.1.1.

3.1.1 The motion of the solid phase in sinuous channels: dimensional formulation

Governing equations

Referring the motion to the orthogonal curvilinear coordinates (s, n, z) and adopting the notations
introduced in Chapter 4(I), the evolution equation of the bed interface (equation 245(I)) takes the
form:

∂(DC)

∂t
+ cM

∂η

∂t
+

1

hs

∂Qss

∂s
+

1

hs

∂(hs Qsn)
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= 0. (174)

with C depth averaged concentration of the sediment contained in the water column and Qs depth
integrated total sediment flux per unit width. These quantities are defined in the form:

DC =

∫ h

η

⟨c⟩ dz, Qsj =

∫ h

η

⟨qsj⟩ dz (j = s, n). (175)

Here, ⟨c⟩ is the Reynolds (macroscopically) averaged local sediment concentration and ⟨qss⟩, ⟨qsn⟩
are the longitudinal and lateral components of the local Reynolds averaged total sediment flux,
respectively. Moreover, we recall that:

Qsj = Qb
sj +Qs

sj (j = s, n), (176)

where Qb
sj and Qs

sj are the bedload and suspended load components of the depth integrated sediment
flux Qsj , respectively. The evolution equation of the bed interface must then be associated with
appropriate mathematical tools to evaluate C, Qb

sj and Qs
sj .
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Evaluating the suspended load

The macroscopically averaged form of the equation of continuity of the solid phase (equation
221(I)), in curvilinear coordinates, reads:
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This conservation equation must be solved with the boundary conditions listed in Chapter 4(I),
i.e. the impermeability condition for the free surface (eq. 255(I)) and the constraint (eq. 257(I))
at the bed interface. In curvilinear coordinates and with the help of (16) they read:
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where appropriate conditions at the open boundary will have to be included.
Finally, the differential system (177), (178a), (178b) will require a closure for the turbulent

diffusive flux ⟨u′c′⟩. Following the classical approach introduced in Section 3.5.4(I), we employ a
gradient-diffusion assumption, that in curvilinear coordinates takes the form:
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, (179)

where Dj (j = s, n, z) is the j-th component of the turbulent diffusivity vector, usually estimated
using the Reynolds analogy (i.e., Dj = νT ). We recall that the rational framework underlying
the above formulation holds for suspensions sufficiently dilute to allow neglecting the effect of
fluid-solid particles and particle-particle interactions. Moreover, the associated hydrodynamic
equations do not feel the presence of solid particles, that must then be small enough to induce
negligible disturbances of the turbulence field down to its smallest scales (one way coupling). Once
the solutions for ⟨c⟩, ⟨us⟩ and ⟨un⟩ have been obtained, the depth integrated components of the
suspended sediment flux are immediately calculated from the following relationships:
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Qs
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∂⟨c⟩
∂n

dz (180b)

Evaluating the bed load

In Chapter 4(I) we have presented a generalized bedload transport relationship and examined the
particular case of weakly sloping beds (|∇hη| → 0), which is of special interest to morphodynamics.
The outcome of the analysis was the set of relationships (equations 334a(I), 334b(I), 350(I) and
351(I)). However, as already pointed out in the treatment of fluvial bars in straight channels
(Chapter 6(I)), those relationships refer to a cartesian coordinate system with x aligned with
the tangential stress τ at the bottom. As illustrated in Figure 49, in the present context, the
longitudinal coordinate s lies on a horizontal plane and is aligned with the longitudinal component
of flow velocity. Hence, the above relationships must be adapted to include the effect of rotation
of the (x, y) coordinate axes by an angle equal to the angle χ that the bottom stress forms with
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Figura 49. Sketch illustrating the deviation (measured by the angle χ) of the bed shear stress vector τ from the
longitudinal direction induced by the secondary flow. Also shown is the deviation of the bedload flux vector Qb

s

from the bed shear stress vector. Deviation is measured by the angle ψ and is associated with the action of gravity
on sediment particles in motion on the lateral sloping bed.

the longitudinal axis. In the context of the weakly sloping approximation adopted herein, the
following closures for Qb

ss and Qb
sn, written in curvilinear coordinates, are found:
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where we have set cosχ ≃ cosαs ≃ 1. Moreover, the angle χ will be evaluated through the
following relationship:
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. (182)

Note that we have taken advantage of the weak longitudinal channel slope to assume that the
components of the shear stress vector τ acting on the bottom can be approximated by Tzs|z0
and Tzn|z0: this approximation is a direct consequence of the assumption cosχ ≃ cosαs ≃ 1.
Furthermore, notations are again those employed in Chapter 4(I). In particular, Qb

s0 is the
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Evaluating the suspended load

The macroscopically averaged form of the equation of continuity of the solid phase (equation
221(I)), in curvilinear coordinates, reads:
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This conservation equation must be solved with the boundary conditions listed in Chapter 4(I),
i.e. the impermeability condition for the free surface (eq. 255(I)) and the constraint (eq. 257(I))
at the bed interface. In curvilinear coordinates and with the help of (16) they read:
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where appropriate conditions at the open boundary will have to be included.
Finally, the differential system (177), (178a), (178b) will require a closure for the turbulent

diffusive flux ⟨u′c′⟩. Following the classical approach introduced in Section 3.5.4(I), we employ a
gradient-diffusion assumption, that in curvilinear coordinates takes the form:
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where Dj (j = s, n, z) is the j-th component of the turbulent diffusivity vector, usually estimated
using the Reynolds analogy (i.e., Dj = νT ). We recall that the rational framework underlying
the above formulation holds for suspensions sufficiently dilute to allow neglecting the effect of
fluid-solid particles and particle-particle interactions. Moreover, the associated hydrodynamic
equations do not feel the presence of solid particles, that must then be small enough to induce
negligible disturbances of the turbulence field down to its smallest scales (one way coupling). Once
the solutions for ⟨c⟩, ⟨us⟩ and ⟨un⟩ have been obtained, the depth integrated components of the
suspended sediment flux are immediately calculated from the following relationships:
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Evaluating the bed load

In Chapter 4(I) we have presented a generalized bedload transport relationship and examined the
particular case of weakly sloping beds (|∇hη| → 0), which is of special interest to morphodynamics.
The outcome of the analysis was the set of relationships (equations 334a(I), 334b(I), 350(I) and
351(I)). However, as already pointed out in the treatment of fluvial bars in straight channels
(Chapter 6(I)), those relationships refer to a cartesian coordinate system with x aligned with
the tangential stress τ at the bottom. As illustrated in Figure 49, in the present context, the
longitudinal coordinate s lies on a horizontal plane and is aligned with the longitudinal component
of flow velocity. Hence, the above relationships must be adapted to include the effect of rotation
of the (x, y) coordinate axes by an angle equal to the angle χ that the bottom stress forms with

78

Forced bars in sinuous channels

Figura 49. Sketch illustrating the deviation (measured by the angle χ) of the bed shear stress vector τ from the
longitudinal direction induced by the secondary flow. Also shown is the deviation of the bedload flux vector Qb

s

from the bed shear stress vector. Deviation is measured by the angle ψ and is associated with the action of gravity
on sediment particles in motion on the lateral sloping bed.

the longitudinal axis. In the context of the weakly sloping approximation adopted herein, the
following closures for Qb

ss and Qb
sn, written in curvilinear coordinates, are found:
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where we have set cosχ ≃ cosαs ≃ 1. Moreover, the angle χ will be evaluated through the
following relationship:
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Note that we have taken advantage of the weak longitudinal channel slope to assume that the
components of the shear stress vector τ acting on the bottom can be approximated by Tzs|z0
and Tzn|z0: this approximation is a direct consequence of the assumption cosχ ≃ cosαs ≃ 1.
Furthermore, notations are again those employed in Chapter 4(I). In particular, Qb

s0 is the
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equilibrium dimensional bedload flux per unit width evaluated for the local and instantaneous
hydrodynamic conditions, namely the local value of the Shields stress

τ∗ =

∣∣τ ∣∣
(ρs − ρ) g ds

. (183)

3.1.2 The motion of the solid phase in sinuous channels: dimensionless formulation

Let us make the mathematical formulation for the motion of the solid phase dimensionless
adopting the following scaling:

(s̃, ñ, z̃) =
( s

L
,
n

B
,
z

Du

)
, t̃ =

t

Du/Uu
, (184a)

(D̃, H̃, η̃) =
( D

Du
,

H

F 2
ru Du

,
η

Du

)
,

(
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Note that the lateral coordinate has been scaled by the channel half width B, the longitudinal
coordinate by some reference length L (e.g. meander wavelength), the vertical coordinate by
some reference flow depth Du, time by a hydrodynamic temporal scale associated with flow depth
Du/Uu, namely the time required by the reference uniform flow to travel a distance equal to the
vertical scale Du with the reference speed Uu. Moreover, the eddy diffusivity Dj has been scaled
by uτu Du, with uτu friction velocity. Finally, the Reynolds averaged concentration and its depth
averaged value have been scaled by some reference value Cu (e.g., the equilibrium concentration
at the bed), the Einstein scale has been adopted for the components of the bedload flux and the
components of the depth integrated suspended sediment flux have been scaled by the reference flux
Cu Uu Du. Note that the suffix u suggests that, just like in the previous Chapter, the reference
state is a uniform flow in equilibrium with its cohesionless bed, to be precisely defined in each case.

With the help of the above scalings, the complete dimensionless form of the evolution equation
of the bed interface in curvilinear coordinates reads:
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∂ñ
+ rsb

∂(hs Q̃
s
sn)

∂ñ
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= 0. (185)

Here, t̃m = ϵm t̃ with ϵm

(
≡

√
(s− 1) g d3/(cM B Uu)

)
a small parameter that represents the

ratio between the chosen hydrodynamic and morphological time scales. Moreover, rsb (≡
Cu Du Uu/

√
(s− 1) g d3) is the dimensionless parameter measuring the ratio between the scales of

suspended load and bed load. Hence, the role of suspended load is negligible compared with that
of bed load if rsb ≪ 1 and viceversa. Finally, L and b are the dimensionless parameters defined in
the previous Chapter (equations 54) and their ratio is also the ratio B/L between the lateral and
longitudinal spatial scales.

Note that, just like in the straight case discussed in Section 6.2(I), the first (storage) term
present in (185) is often negligible because Cu/cM is typically O(10−4) or smaller. However, this
estimate is based on the choice we made for the hydrodynamic time scale (Du/Uu), that is typically
much smaller than the morphodynamic time scale. In general, other hydrodynamic time scales
may play an important role. In particular, a flood time scale may be externally imposed if the
flow discharge supplied to the channel reach varies in time. Flood and morphological time scales
are often comparable with each other. Under these circumstances the flow field may no longer be
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assumed to adapt instantaneously to temporal variations of supply and morphological changes
and the first (storage) term in (185) is no longer negligible.

The evolution equation (185) requires closures in dimensionless forms.
The dimensionless forms of the relationships (181a) and (181b) for the components of the

bedload flux read:
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. (186b)

Here Φb
s0 is the equilibrium dimensionless bedload flux per unit width evaluated for the local and

instantaneous hydrodynamic conditions, namely the local value of the Shields stress
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with

τ∗u =
u2
τu

(s− 1) g d
(188)

the Shields stress under uniform flow conditions. Moreover, Rx and Ry are the parameters defined
by equations (484a,b)(I).

It is convenient at this stage to neglect the diffusive contributions of suspended load in the
longitudinal and lateral directions, as they are found to be proportional to the friction coefficient
Cfu, a typically small quantity. The dimensionless versions of (180) for the components of the
depth integrated suspended flux then read:
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Finally, the dimensionless form of the macroscopically averaged equation of continuity of the
solid phase (177), written in curvilinear coordinates, takes the form:
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The boundary conditions associated with (190) are:
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η̃+ã

= 0. (191b)

The above formulation must be completed imposing appropriate boundary conditions at the open
boundaries that will be made explicit in each of the cases examined in the next sections.
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equilibrium dimensional bedload flux per unit width evaluated for the local and instantaneous
hydrodynamic conditions, namely the local value of the Shields stress
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3.1.2 The motion of the solid phase in sinuous channels: dimensionless formulation

Let us make the mathematical formulation for the motion of the solid phase dimensionless
adopting the following scaling:
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Note that the lateral coordinate has been scaled by the channel half width B, the longitudinal
coordinate by some reference length L (e.g. meander wavelength), the vertical coordinate by
some reference flow depth Du, time by a hydrodynamic temporal scale associated with flow depth
Du/Uu, namely the time required by the reference uniform flow to travel a distance equal to the
vertical scale Du with the reference speed Uu. Moreover, the eddy diffusivity Dj has been scaled
by uτu Du, with uτu friction velocity. Finally, the Reynolds averaged concentration and its depth
averaged value have been scaled by some reference value Cu (e.g., the equilibrium concentration
at the bed), the Einstein scale has been adopted for the components of the bedload flux and the
components of the depth integrated suspended sediment flux have been scaled by the reference flux
Cu Uu Du. Note that the suffix u suggests that, just like in the previous Chapter, the reference
state is a uniform flow in equilibrium with its cohesionless bed, to be precisely defined in each case.

With the help of the above scalings, the complete dimensionless form of the evolution equation
of the bed interface in curvilinear coordinates reads:
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Here, t̃m = ϵm t̃ with ϵm
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a small parameter that represents the

ratio between the chosen hydrodynamic and morphological time scales. Moreover, rsb (≡
Cu Du Uu/
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(s− 1) g d3) is the dimensionless parameter measuring the ratio between the scales of

suspended load and bed load. Hence, the role of suspended load is negligible compared with that
of bed load if rsb ≪ 1 and viceversa. Finally, L and b are the dimensionless parameters defined in
the previous Chapter (equations 54) and their ratio is also the ratio B/L between the lateral and
longitudinal spatial scales.

Note that, just like in the straight case discussed in Section 6.2(I), the first (storage) term
present in (185) is often negligible because Cu/cM is typically O(10−4) or smaller. However, this
estimate is based on the choice we made for the hydrodynamic time scale (Du/Uu), that is typically
much smaller than the morphodynamic time scale. In general, other hydrodynamic time scales
may play an important role. In particular, a flood time scale may be externally imposed if the
flow discharge supplied to the channel reach varies in time. Flood and morphological time scales
are often comparable with each other. Under these circumstances the flow field may no longer be
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assumed to adapt instantaneously to temporal variations of supply and morphological changes
and the first (storage) term in (185) is no longer negligible.

The evolution equation (185) requires closures in dimensionless forms.
The dimensionless forms of the relationships (181a) and (181b) for the components of the

bedload flux read:
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Here Φb
s0 is the equilibrium dimensionless bedload flux per unit width evaluated for the local and

instantaneous hydrodynamic conditions, namely the local value of the Shields stress
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the Shields stress under uniform flow conditions. Moreover, Rx and Ry are the parameters defined
by equations (484a,b)(I).

It is convenient at this stage to neglect the diffusive contributions of suspended load in the
longitudinal and lateral directions, as they are found to be proportional to the friction coefficient
Cfu, a typically small quantity. The dimensionless versions of (180) for the components of the
depth integrated suspended flux then read:
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Finally, the dimensionless form of the macroscopically averaged equation of continuity of the
solid phase (177), written in curvilinear coordinates, takes the form:
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The boundary conditions associated with (190) are:
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The above formulation must be completed imposing appropriate boundary conditions at the open
boundaries that will be made explicit in each of the cases examined in the next sections.

81



Theoretical Morphodynamics: River Meandering

Below, we will replace z̃ by the transformed coordinate ζ = (z̃ − η̃)/D̃.

3.2. Forced (point) bars in single bends of cohesionless channels with constant curvature

The case of a single bend can be treated extending the approach adopted in the previous
Chapter to include the effects associated with the mobile nature of the bed. Essentially, the bed
elevation η will no longer be assigned and the flow depth D will no longer vary only as a result of
variations of the free surface elevation, but will feel the much stronger effect of variations of bed
elevation. The physical mechanism that we wish to describe in the following is the formation of a
point bar at the inner bend and of a pool at the outer bend. The driving effect is the occurrence of
secondary flow at the bend entrance. This generates an inward directed lateral component of the
bottom stress that drives an inward lateral component of sediment transport, whereby sediment
particles are displaced from the outer region of the bend towards the inner region where they
progressively build up the point bar. The process develops downstream until a new fully developed
state is reached. As pointed out by Engelund (1974), equilibrium in this state is ensured by a
balance between the inward directed tangential force acting on sediment particles as a result of the
secondary flow and the outward directed tangential force resulting from the projection of gravity
onto the tangent plane (Figure 50). Thus, in the fully developed state, the lateral component of
the bedload flux vanishes, i.e. the bedload flux is a vector aligned with the longitudinal direction.
Note that the distance required for the bed to achieve its fully developed equilibrium state will
exceed, in general, the distance required for the hydrodynamics to fully develop.

Figura 50. Sketch illustrating the physical mechanism that controls the establishment of a lateral slope of the
channel under fully developed conditions and dominant bedload.

The dimensionless formulation of the problem follows the lines presented in the previous Section.
However, note that, in the constant curvature case, there is no external longitudinal scale, hence
we set L = B and replace the dimensionless parameter L with b throughout.

3.2.1 Fully developed point bar in mildly curved bends: linear theory
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Let us start examining the case of mildly curved bends, assuming:

δ ≪ 1. (192)

This assumption allows us to employ the perturbation approach presented in the previous Chapter.
We will examine the fully developed state and leave to the reader the investigation of the spatial
transition from the straight configuration to the fully developed state asymptotically reached as
s → ∞. Below, for the sake of simplicity, we will remove the tilde from notations for dimensionless
quantities.

The hydrodynamics of the steady state (in particular in the fully developed case) is governed
by the equations and boundary conditions introduced in Section 2.4.1 and will not be repeated
here. The only novel feature to be introduced in that formulation concerns the flow depth that
will have to be considered as an unknown variable rather than a given quantity. In order to set
up the appropriate perturbation expansion, let us consider the bedload dominated case and note
that, under equilibrium conditions (Qb

sn = 0), the order of magnitude of the lateral bed slope
established in the cross section is controlled by a balance between the lateral stress contribution
(∝ sinχ) and the gravitational term in the closure relationship (186b). The former is proportional
to the lateral component of the secondary flow un which is O(δ) for weakly curved bends. The size
of the latter is O(Ryu∂η/∂n). Hence, the magnitude of the lateral slope depends on the parameter
Ryu. If the latter is O(1), then the above balance implies that the lateral slope ∂η/∂n is O(δ), i.e.
perturbations of bottom elevation are small and a linear theory is appropriate. This is the case
most commonly examined in the literature and will be discussed in this Section. We will see in
Section 3.2.2 that a rational approach can be set up also for mildly curved bends characterized by
small values of the parameter Ryu (as typically found in nature), in which case the perturbations
of bed elevation are finite (O(1)) although the secondary flow keeps small.

In the linear case, the perturbation expansion reads:[
us, un, uz, H, D, νT , Qss, Qsn

]
=

δ0
[
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]
+

O(δ2), (193)

Here, as usual, Hu is the dimensionless free surface elevation of the unperturbed uniform flow in a
straight channel with constant slope S of the channel axis. Moreover, in a linear context the flow
depth at the leading order is the unperturbed uniform flow depth, but we allow for a dimensionless
perturbation F 2

ru h0, i.e. a correction of the free surface elevation and, possibly, of the free surface
slope. This correction is required to satisfy the two integral constraints to be imposed at the open
boundaries, entailing a constant water flux (equation (60)) and a constant sediment flux, namely

∫ 1

−1

Qssdn = 2Qssu, (194)

with Qssu depth integrated sediment flux per unit width in the straight channel upstream of the
bend.

Substituting from (193) into the differential problem governing the flow hydrodynamics (Section
2.4.1), one again finds a sequence of differential problems at the various orders of approximation
which are nearly identical with their fixed bed counterparts. The reader will readily verify that
the solution up to O(δ) reads:
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Below, we will replace z̃ by the transformed coordinate ζ = (z̃ − η̃)/D̃.

3.2. Forced (point) bars in single bends of cohesionless channels with constant curvature

The case of a single bend can be treated extending the approach adopted in the previous
Chapter to include the effects associated with the mobile nature of the bed. Essentially, the bed
elevation η will no longer be assigned and the flow depth D will no longer vary only as a result of
variations of the free surface elevation, but will feel the much stronger effect of variations of bed
elevation. The physical mechanism that we wish to describe in the following is the formation of a
point bar at the inner bend and of a pool at the outer bend. The driving effect is the occurrence of
secondary flow at the bend entrance. This generates an inward directed lateral component of the
bottom stress that drives an inward lateral component of sediment transport, whereby sediment
particles are displaced from the outer region of the bend towards the inner region where they
progressively build up the point bar. The process develops downstream until a new fully developed
state is reached. As pointed out by Engelund (1974), equilibrium in this state is ensured by a
balance between the inward directed tangential force acting on sediment particles as a result of the
secondary flow and the outward directed tangential force resulting from the projection of gravity
onto the tangent plane (Figure 50). Thus, in the fully developed state, the lateral component of
the bedload flux vanishes, i.e. the bedload flux is a vector aligned with the longitudinal direction.
Note that the distance required for the bed to achieve its fully developed equilibrium state will
exceed, in general, the distance required for the hydrodynamics to fully develop.

Figura 50. Sketch illustrating the physical mechanism that controls the establishment of a lateral slope of the
channel under fully developed conditions and dominant bedload.

The dimensionless formulation of the problem follows the lines presented in the previous Section.
However, note that, in the constant curvature case, there is no external longitudinal scale, hence
we set L = B and replace the dimensionless parameter L with b throughout.

3.2.1 Fully developed point bar in mildly curved bends: linear theory
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Let us start examining the case of mildly curved bends, assuming:

δ ≪ 1. (192)

This assumption allows us to employ the perturbation approach presented in the previous Chapter.
We will examine the fully developed state and leave to the reader the investigation of the spatial
transition from the straight configuration to the fully developed state asymptotically reached as
s → ∞. Below, for the sake of simplicity, we will remove the tilde from notations for dimensionless
quantities.

The hydrodynamics of the steady state (in particular in the fully developed case) is governed
by the equations and boundary conditions introduced in Section 2.4.1 and will not be repeated
here. The only novel feature to be introduced in that formulation concerns the flow depth that
will have to be considered as an unknown variable rather than a given quantity. In order to set
up the appropriate perturbation expansion, let us consider the bedload dominated case and note
that, under equilibrium conditions (Qb

sn = 0), the order of magnitude of the lateral bed slope
established in the cross section is controlled by a balance between the lateral stress contribution
(∝ sinχ) and the gravitational term in the closure relationship (186b). The former is proportional
to the lateral component of the secondary flow un which is O(δ) for weakly curved bends. The size
of the latter is O(Ryu∂η/∂n). Hence, the magnitude of the lateral slope depends on the parameter
Ryu. If the latter is O(1), then the above balance implies that the lateral slope ∂η/∂n is O(δ), i.e.
perturbations of bottom elevation are small and a linear theory is appropriate. This is the case
most commonly examined in the literature and will be discussed in this Section. We will see in
Section 3.2.2 that a rational approach can be set up also for mildly curved bends characterized by
small values of the parameter Ryu (as typically found in nature), in which case the perturbations
of bed elevation are finite (O(1)) although the secondary flow keeps small.

In the linear case, the perturbation expansion reads:[
us, un, uz, H, D, νT , Qss, Qsn

]
=

δ0
[
us0(ζ), 0, uz0(ζ), Hu(s) + h0, 1 + F 2

ru h0, νT0(ζ), Qss0, 0
]
+

δ
[
us1(n, ζ), un1(ζ), uz1(n, ζ), h1(n), D1(n), νT1(n, ζ), Qss1(n), Qsn1(n)

]
+

O(δ2), (193)

Here, as usual, Hu is the dimensionless free surface elevation of the unperturbed uniform flow in a
straight channel with constant slope S of the channel axis. Moreover, in a linear context the flow
depth at the leading order is the unperturbed uniform flow depth, but we allow for a dimensionless
perturbation F 2

ru h0, i.e. a correction of the free surface elevation and, possibly, of the free surface
slope. This correction is required to satisfy the two integral constraints to be imposed at the open
boundaries, entailing a constant water flux (equation (60)) and a constant sediment flux, namely

∫ 1

−1

Qssdn = 2Qssu, (194)

with Qssu depth integrated sediment flux per unit width in the straight channel upstream of the
bend.

Substituting from (193) into the differential problem governing the flow hydrodynamics (Section
2.4.1), one again finds a sequence of differential problems at the various orders of approximation
which are nearly identical with their fixed bed counterparts. The reader will readily verify that
the solution up to O(δ) reads:

us0 = F0(ζ), uz0 = F 2
ru

dHu

ds
us0, h0 = 0, U0 = 1, D0 = 1, (195a)

un1 = F0(ζ) IG11
− G11(ζ), h1 = −

√
Cfu

b
IG11

n, (195b)

us1 =
1

2

(
7

6
D1 −

n

b

)
F0(ζ), uz1 = F 2

ru

dHu

ds
F0(ζ)

(
7

12
D1 −

3

2

n

b

)
, (195c)
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where notations are those employed in the fixed bed case. In particular, we recall that IG11 =∫ 1

ζ0
G11dζ. Note that the procedure to prove that h0 vanishes is identical to that used in the fixed

bed case. A similar procedure allows one to show that h10 must also vanish in order to satisfy the
integral constraint (60). Finally, D1 must satisfy the integral constraint (60). With the help of
(195), one finds that the latter becomes:

∫ 1

−1

D1 dn = 0. (196)

In order to proceed with the evaluation of the flow depth perturbation D1 (and of the associated
bottom pattern) we need to examine the consequences of the mobile character of the bed. In
the fully developed region of the bend, the steady Exner equation (185) reduces to the simple
statement:

∂(hs Qsn)

∂n
= 0. (197)

Imposing the boundary condition that constrains the lateral component of the sediment flux to
vanish at the channel banks, the latter relationship leads to the following solution:

Qsn = 0. (198)

It is instructive, at this stage, to distinguish between the case when sediment transport is
dominated by bedload and the general case where suspended load is also significant.

The bedload dominated case

In the bedload dominated case, with the help of (186b) and (182) the equation (198) at O(δ)
becomes:

Qb
sn1 = Φb

s0

[(
dun1

dζ

/dus0

dζ

)

ζ0

−Ryu
dη1
dn

]
= 0, (199)

and, consequently, the solution for the bottom elevation is:

η1 =
1

Ryu

[
dun1

dζ

/dus0

dζ

]

ζ0

n. (200)

Observing that η1 = F 2
ru h1 −D1, and using (195b) for h1, one finds:

D1 = −
(
F 2
ru

√
Cfu

b
IG11

+
1

Ryu

[
dun1

dζ

/dus0

dζ

]

ζ0

)
n. (201)

This result is quite instructive. Noting that
[
dun1/dζ

]
ζ0

is a negative quantity, (200) predicts
the formation of a point bar at the inner bend, where η1 is maximum, and a pool at the outer
bend, where η1 is minimum. Moreover, it suggests that the amplitude of the perturbation of bed
elevation scales with the parameter γ defined as follows:

γ =
δ

Ryu
=

ν0
√
τ∗u

r
√

Cfu

. (202)

Hence, as pointed out by Seminara and Solari (1998), scour increases linearly with the curvature
ratio ν0 and with the square root of the average Shields stress τ∗u. Notice that the parameter
γ controls the intensity of bottom scour and attains typically O(1) values. In other words, the
maximum scour may be a finite quantity in spite of the fact that curvature (and the associated
secondary flow) is small, an observation that restricts the formal validity of the linear approach
proposed above to bends characterized by small values of the γ parameter. In the next Section,
we show that a rational approach may be readily formulated for mildly curved bends with finite
perturbations of the bottom topography, where the latter restriction is removed.

84

Forced bars in sinuous channels

The additional effect of suspended load

If suspended load is also significant, then the average concentration field as well as the suspended
flux must also be expanded in powers of the small parameter δ in the form

[
⟨c⟩, Qs

ss, Q
s
sn

]
=

[
⟨c⟩0(ζ), Qs

ss0, 0
]
+ δ

[
⟨c⟩1(n, ζ), Qs

ss1(n), Q
s
sn1

]
+O(δ2), (203)

where ⟨c⟩0(ζ) and Qs
ss0 are the vertical distribution of the average concentration and the suspended

sediment flux per unit width in the straight basic configuration, respectively. However, a glance at
the advection diffusion equation (190) for ⟨c⟩ immediately suggests that, in the present linear fully
developed case, no forcing is induced on ⟨c⟩ by the secondary flow, at least up to O(δ). Hence
⟨c⟩1 = 0. Indeed, neither ⟨c⟩0 nor un1 depend on n and the term describing the transverse diffusion
can be neglected being proportional to b2 Cfu. Moreover, in the fully developed case, one readily
appreciates that the longitudinal component of the suspended sediment flux does not affect the
solution of the Exner equation (198) that, at O(δ), becomes:

Qb
sn1 + rsb Q

s
sn1 = Φb

s0

[(
dun1

dζ

/dus0

dζ

)

ζ0

−Ryu
dη1
dn

]
+ rsb

∫ 1

ζ0

⟨c⟩0 un1 dζ = 0. (204)

Here, the lateral component of the suspended sediment flux Qs
sn1 has been obtained from the

definition (189b) and consists of the advective contribution only. Indeed, the diffusive contribution
vanishes, as the leading order average concentration ⟨c⟩0 is independent of the lateral coordinate
and ⟨c⟩1 vanishes. One ends up with the following solution for the perturbation of bed elevation:

η1 =
1

Ryu

{[
dun1

dζ

/dus0

dζ

]

ζ0

+
rsb

Φb
s0

∫ 1

ζ0

⟨c⟩0(ζ)un1(ζ) dζ
}
n. (205)

Figura 51. Sketch illustrating the physical mechanism that determines the negative sign of the net lateral
component of the suspended sediment flux.

Note that the lateral component of the suspended flux (i.e. the integral in the right hand side
of equation 205) is a negative quantity as the sediment concentration is higher close to the bed,
where the secondary flow is directed inward and lower close to the free surface, where the secondary
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where notations are those employed in the fixed bed case. In particular, we recall that IG11 =∫ 1

ζ0
G11dζ. Note that the procedure to prove that h0 vanishes is identical to that used in the fixed

bed case. A similar procedure allows one to show that h10 must also vanish in order to satisfy the
integral constraint (60). Finally, D1 must satisfy the integral constraint (60). With the help of
(195), one finds that the latter becomes:

∫ 1

−1

D1 dn = 0. (196)

In order to proceed with the evaluation of the flow depth perturbation D1 (and of the associated
bottom pattern) we need to examine the consequences of the mobile character of the bed. In
the fully developed region of the bend, the steady Exner equation (185) reduces to the simple
statement:

∂(hs Qsn)

∂n
= 0. (197)

Imposing the boundary condition that constrains the lateral component of the sediment flux to
vanish at the channel banks, the latter relationship leads to the following solution:

Qsn = 0. (198)

It is instructive, at this stage, to distinguish between the case when sediment transport is
dominated by bedload and the general case where suspended load is also significant.

The bedload dominated case

In the bedload dominated case, with the help of (186b) and (182) the equation (198) at O(δ)
becomes:

Qb
sn1 = Φb

s0

[(
dun1

dζ

/dus0

dζ

)

ζ0

−Ryu
dη1
dn

]
= 0, (199)

and, consequently, the solution for the bottom elevation is:

η1 =
1

Ryu

[
dun1

dζ

/dus0

dζ

]

ζ0

n. (200)

Observing that η1 = F 2
ru h1 −D1, and using (195b) for h1, one finds:

D1 = −
(
F 2
ru

√
Cfu

b
IG11

+
1

Ryu

[
dun1

dζ

/dus0

dζ

]

ζ0

)
n. (201)

This result is quite instructive. Noting that
[
dun1/dζ

]
ζ0

is a negative quantity, (200) predicts
the formation of a point bar at the inner bend, where η1 is maximum, and a pool at the outer
bend, where η1 is minimum. Moreover, it suggests that the amplitude of the perturbation of bed
elevation scales with the parameter γ defined as follows:

γ =
δ

Ryu
=

ν0
√
τ∗u

r
√

Cfu

. (202)

Hence, as pointed out by Seminara and Solari (1998), scour increases linearly with the curvature
ratio ν0 and with the square root of the average Shields stress τ∗u. Notice that the parameter
γ controls the intensity of bottom scour and attains typically O(1) values. In other words, the
maximum scour may be a finite quantity in spite of the fact that curvature (and the associated
secondary flow) is small, an observation that restricts the formal validity of the linear approach
proposed above to bends characterized by small values of the γ parameter. In the next Section,
we show that a rational approach may be readily formulated for mildly curved bends with finite
perturbations of the bottom topography, where the latter restriction is removed.
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The additional effect of suspended load

If suspended load is also significant, then the average concentration field as well as the suspended
flux must also be expanded in powers of the small parameter δ in the form

[
⟨c⟩, Qs

ss, Q
s
sn

]
=

[
⟨c⟩0(ζ), Qs

ss0, 0
]
+ δ

[
⟨c⟩1(n, ζ), Qs

ss1(n), Q
s
sn1

]
+O(δ2), (203)

where ⟨c⟩0(ζ) and Qs
ss0 are the vertical distribution of the average concentration and the suspended

sediment flux per unit width in the straight basic configuration, respectively. However, a glance at
the advection diffusion equation (190) for ⟨c⟩ immediately suggests that, in the present linear fully
developed case, no forcing is induced on ⟨c⟩ by the secondary flow, at least up to O(δ). Hence
⟨c⟩1 = 0. Indeed, neither ⟨c⟩0 nor un1 depend on n and the term describing the transverse diffusion
can be neglected being proportional to b2 Cfu. Moreover, in the fully developed case, one readily
appreciates that the longitudinal component of the suspended sediment flux does not affect the
solution of the Exner equation (198) that, at O(δ), becomes:

Qb
sn1 + rsb Q

s
sn1 = Φb

s0

[(
dun1

dζ

/dus0

dζ

)

ζ0

−Ryu
dη1
dn

]
+ rsb

∫ 1

ζ0

⟨c⟩0 un1 dζ = 0. (204)

Here, the lateral component of the suspended sediment flux Qs
sn1 has been obtained from the

definition (189b) and consists of the advective contribution only. Indeed, the diffusive contribution
vanishes, as the leading order average concentration ⟨c⟩0 is independent of the lateral coordinate
and ⟨c⟩1 vanishes. One ends up with the following solution for the perturbation of bed elevation:

η1 =
1

Ryu

{[
dun1

dζ

/dus0

dζ

]

ζ0

+
rsb

Φb
s0

∫ 1

ζ0

⟨c⟩0(ζ)un1(ζ) dζ
}
n. (205)

Figura 51. Sketch illustrating the physical mechanism that determines the negative sign of the net lateral
component of the suspended sediment flux.

Note that the lateral component of the suspended flux (i.e. the integral in the right hand side
of equation 205) is a negative quantity as the sediment concentration is higher close to the bed,
where the secondary flow is directed inward and lower close to the free surface, where the secondary
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flow is directed outward (Figure 51). As a result, at equilibrium the lateral slope of the bed must
increase relative to the bedload dominated case, such to generate a positive contribution of the
lateral component of the bedload flux able to balance the negative contribution of the suspended
sediment flux.

The output of the analysis can be summarized by the following relationship for the magnitude
of the maximum scour at the outer bank. Recalling that η is the bed elevation relative to the
undisturbed horizontal bed, the magnitude of the maximum scour coincides with the magnitude of
the minimum bed elevation of the cross section ηmin:

∣∣ηmin

∣∣ = γ

(
s1 +

rsb

Φb
s0

s2

)
, (206)

where the coefficients s1 and s2 are plotted in Figure 52 (a),(b).

Figura 52. (a),(b) The coefficients s1 and s2 of the relationship (206) yielding the magnitude of maximum scour at
the outer bank, |ηmin|, are plotted as functions of the friction coefficient Cfu for uniform flow conditions. Different

values of the Rouse number Z have been considered to account for the intensity of suspended load.

For pure bedload conditions, the maximum scour at the outer bank increases as the friction
coefficient of the undisturbed uniform flow increases (Figure 52a). The contribution of suspended
load to the maximum scour increases with Cfu and with the Rouse number Z (Figure 52b).
Application of the above theory is reported in Figure 53 for the Po and Magdalena Rivers, note
that results agree satisfactorily in the case of Magdalena River (Figures 53(c) and 54).

3.2.2 Finite amplitude fully developed point bars in mildly constant curvature bends

We have seen in Section 3.2.1 that perturbations of bed elevation driven by curvature in weakly
curved channels may be finite quantities although the secondary flow is small. We now illustrate a
rational theory originally proposed by Seminara and Solari (1998), that is able to account for finite
amplitude perturbations of bed topography (and flow depth) within the context of a perturbation
approach still valid in the limit of small δ.

Two basic novel ideas underlie this theory:

- we treat the flow field at the leading order of approximation as a slowly varying sequence of
locally uniform flows characterized by the local values of flow depth;
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Figura 53. Uniform flow depth (black line); minimum bed elevation at the outer bank for pure bedload conditions,
ηbmin (magenta line) and suspended sediment contribution to the minimum bed elevation at the outer bank, ηsmin

(green line) as functions of the flow discharge, for (a) an upstream reach of the Po River (S=0.001, d=5 mm,
B=100 m, R0=1 km), (b) a downstream reach of the Po River (S=0.0001, d=0.15 mm, B=150 m, R0= 1 km) and
(c) the Magdalena River (S=0.00038, d=0.55 mm, B=150 m, R0= 1.3 km). Dots refer to field data (see Figure 54).

- we take advantage of the fact that the coefficient of the lateral slope term in the closure
relationship for the lateral bedload flux (186b) is typically small, and set:

Ryu = cls δ, (207)

with cls an O(1) quantity.

The former assumption is formally justified for weakly curved sufficiently wide bends and has
an important physical consequence. The solutions for both the flow depth and the longitudinal
flow velocity are allowed to vary in the lateral direction at the leading order of approximation,
hence the important mechanism of lateral redistribution of flow momentum that leads to distortion
of the longitudinal flow operates at first order (rather than at second order as in the linear theory
of Section 3.2.1).

The latter assumption applies commonly in the field where the product βu
√
τ∗u is sufficiently

large.
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flow is directed outward (Figure 51). As a result, at equilibrium the lateral slope of the bed must
increase relative to the bedload dominated case, such to generate a positive contribution of the
lateral component of the bedload flux able to balance the negative contribution of the suspended
sediment flux.

The output of the analysis can be summarized by the following relationship for the magnitude
of the maximum scour at the outer bank. Recalling that η is the bed elevation relative to the
undisturbed horizontal bed, the magnitude of the maximum scour coincides with the magnitude of
the minimum bed elevation of the cross section ηmin:

∣∣ηmin
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where the coefficients s1 and s2 are plotted in Figure 52 (a),(b).

Figura 52. (a),(b) The coefficients s1 and s2 of the relationship (206) yielding the magnitude of maximum scour at
the outer bank, |ηmin|, are plotted as functions of the friction coefficient Cfu for uniform flow conditions. Different

values of the Rouse number Z have been considered to account for the intensity of suspended load.

For pure bedload conditions, the maximum scour at the outer bank increases as the friction
coefficient of the undisturbed uniform flow increases (Figure 52a). The contribution of suspended
load to the maximum scour increases with Cfu and with the Rouse number Z (Figure 52b).
Application of the above theory is reported in Figure 53 for the Po and Magdalena Rivers, note
that results agree satisfactorily in the case of Magdalena River (Figures 53(c) and 54).

3.2.2 Finite amplitude fully developed point bars in mildly constant curvature bends

We have seen in Section 3.2.1 that perturbations of bed elevation driven by curvature in weakly
curved channels may be finite quantities although the secondary flow is small. We now illustrate a
rational theory originally proposed by Seminara and Solari (1998), that is able to account for finite
amplitude perturbations of bed topography (and flow depth) within the context of a perturbation
approach still valid in the limit of small δ.

Two basic novel ideas underlie this theory:

- we treat the flow field at the leading order of approximation as a slowly varying sequence of
locally uniform flows characterized by the local values of flow depth;
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Figura 53. Uniform flow depth (black line); minimum bed elevation at the outer bank for pure bedload conditions,
ηbmin (magenta line) and suspended sediment contribution to the minimum bed elevation at the outer bank, ηsmin

(green line) as functions of the flow discharge, for (a) an upstream reach of the Po River (S=0.001, d=5 mm,
B=100 m, R0=1 km), (b) a downstream reach of the Po River (S=0.0001, d=0.15 mm, B=150 m, R0= 1 km) and
(c) the Magdalena River (S=0.00038, d=0.55 mm, B=150 m, R0= 1.3 km). Dots refer to field data (see Figure 54).

- we take advantage of the fact that the coefficient of the lateral slope term in the closure
relationship for the lateral bedload flux (186b) is typically small, and set:

Ryu = cls δ, (207)

with cls an O(1) quantity.

The former assumption is formally justified for weakly curved sufficiently wide bends and has
an important physical consequence. The solutions for both the flow depth and the longitudinal
flow velocity are allowed to vary in the lateral direction at the leading order of approximation,
hence the important mechanism of lateral redistribution of flow momentum that leads to distortion
of the longitudinal flow operates at first order (rather than at second order as in the linear theory
of Section 3.2.1).

The latter assumption applies commonly in the field where the product βu
√
τ∗u is sufficiently

large.
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Figura 54. Cross section of Magdalena River downstream of Pto. Triumfo (data from Jansen et al., 1979).

Under the above assumptions, we may set up a perturbation expansion similar to that employed
in the fixed bed case discussed in Section 2.4.3:

[
us, un, uz, H, D, νT , Q

b
ss, Q

b
sn

]
=

= δ0
[
us0(n, ζ), 0, uz0(n, ζ), Hu(s) + h0(s), D0(s, n), νT0(n, ζ), Q

b
ss0(n), Q

b
sn0(n)

]

+ δ
[
us1(n, ζ), un1(n, ζ), uz1(n, ζ), h1(s, n), D1(s, n), νT1(n, ζ), Q

b
ss1(n), Q

b
sn1(n)

]

+ δ2
[
un2(n, ζ), h2(s, n)

]
+O(δ2). (208)

The main novel feature with respect to that formulation concerns the flow depth components,
D0 and D1, which are unknown variables rather than given quantities. A second feature that needs
be accounted for is the correction of the longitudinal slope (S) of the unperturbed free surface,
due to the perturbation of the free surface elevation h(s, n) relative to its unperturbed uniform
configuration Hu(s). As a result, the forcing term in the dimensionless form of the longitudinal
momentum equation (−

√
Cfu) must be replaced by (−

√
CfuR) where:

R =

∂H

∂s
dHu

ds

= − b√
Cfu

∂H

∂s
. (209)
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The quantity R represents the ratio between the free surface slope in the curved bend and its
unperturbed value in the straight reach. R may also be expanded in powers of δ as follows:

R = R0(s) + δR1(s, n) +O(δ2). (210)

Substituting from (208) and (210) into the governing differential problem for the flow hydrodyna-
mics, one finds a sequence of differential problems at the various orders of approximation quite
similar to their fixed bed counterparts.

The only difference is related to the term dHu/ds that is now replaced by

∂H

∂s
= −

R0


Cfu

b


1 + δ

R1

R0
+ δ2

R2

R0
+O(δ3)


. (211)

where
R0 = 1− b

Cfu

dh0

ds
, R1 = − b

Cfu

∂h1

∂s
, R2 = − b

Cfu

∂h2

∂s
(212)

Bottom pattern at the leading order

In order to determine the lowest order approximation for the bed profile, it is sufficient to determine
the solution for us0, un1 and h1. The reader will readily find that:

us0 = R
1/2
0 D

7/12
0 F0(ζ), uz0 = us0 F

2
ruR0

dHu

ds
, (213a)

un1 = R
1/2
0 D

7/4
0 G1(ζ), G1(ζ) = IG11

F0(ζ)− G11(ζ), (213b)

h1 = h10(s)−


Cfu

b
IG11

R0

 n

−1

D
7/6
0 dn′, (213c)

where notations are those employed in the fixed bed case.
A major difference between the present nonlinear slowly varying solution (213) and the linear

solution (195) is the dependence of the former on the as yet unknown distribution of flow depth
D0 that displays O(1) lateral variations. Also, note that IG1

vanishes like in the fixed bed case,
a constraint arising again from flow continuity. Indeed, integrating the continuity equation and
imposing the kinematic boundary condition at the free surface, one ends up with the following
relationship:

d

dn

�
D0 Iun1


= 0. (214)

Hence, recalling that the lateral flux must vanish at the walls, it follows that the lateral water flux
must vanish identically.

In order to complete the analysis to determine the function D0(n) we must solve the Exner
equation. We limit ourselves to the case of dominant bedload, leaving to the reader the task to
evaluate the additional effect of suspended load. In the bedload dominated case, with the help of
(182), (186b) and (207), the equation (198) at O(δ) becomes:

Qb
sn1 = Φb

s0




∂un1/∂ζ

∂us0


∂ζ



ζ0

+


τ∗u
τ∗0

cls
dD0

dn


 = 0. (215)

From the definition of Shields stress (187), one readily finds that

τ∗0 =
τ∗u
Cfu

1

D0


νT0

∂us0

∂ζ


ζ0
, (216)
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Figura 54. Cross section of Magdalena River downstream of Pto. Triumfo (data from Jansen et al., 1979).

Under the above assumptions, we may set up a perturbation expansion similar to that employed
in the fixed bed case discussed in Section 2.4.3:

[
us, un, uz, H, D, νT , Q

b
ss, Q

b
sn

]
=

= δ0
[
us0(n, ζ), 0, uz0(n, ζ), Hu(s) + h0(s), D0(s, n), νT0(n, ζ), Q

b
ss0(n), Q

b
sn0(n)

]

+ δ
[
us1(n, ζ), un1(n, ζ), uz1(n, ζ), h1(s, n), D1(s, n), νT1(n, ζ), Q

b
ss1(n), Q

b
sn1(n)

]

+ δ2
[
un2(n, ζ), h2(s, n)

]
+O(δ2). (208)

The main novel feature with respect to that formulation concerns the flow depth components,
D0 and D1, which are unknown variables rather than given quantities. A second feature that needs
be accounted for is the correction of the longitudinal slope (S) of the unperturbed free surface,
due to the perturbation of the free surface elevation h(s, n) relative to its unperturbed uniform
configuration Hu(s). As a result, the forcing term in the dimensionless form of the longitudinal
momentum equation (−

√
Cfu) must be replaced by (−

√
CfuR) where:

R =

∂H

∂s
dHu

ds

= − b√
Cfu

∂H

∂s
. (209)
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The quantity R represents the ratio between the free surface slope in the curved bend and its
unperturbed value in the straight reach. R may also be expanded in powers of δ as follows:

R = R0(s) + δR1(s, n) +O(δ2). (210)

Substituting from (208) and (210) into the governing differential problem for the flow hydrodyna-
mics, one finds a sequence of differential problems at the various orders of approximation quite
similar to their fixed bed counterparts.

The only difference is related to the term dHu/ds that is now replaced by

∂H

∂s
= −

R0


Cfu

b


1 + δ

R1

R0
+ δ2

R2

R0
+O(δ3)


. (211)

where
R0 = 1− b

Cfu

dh0

ds
, R1 = − b

Cfu

∂h1

∂s
, R2 = − b

Cfu

∂h2

∂s
(212)

Bottom pattern at the leading order

In order to determine the lowest order approximation for the bed profile, it is sufficient to determine
the solution for us0, un1 and h1. The reader will readily find that:

us0 = R
1/2
0 D

7/12
0 F0(ζ), uz0 = us0 F

2
ruR0

dHu

ds
, (213a)

un1 = R
1/2
0 D

7/4
0 G1(ζ), G1(ζ) = IG11

F0(ζ)− G11(ζ), (213b)

h1 = h10(s)−


Cfu

b
IG11

R0

 n

−1

D
7/6
0 dn′, (213c)

where notations are those employed in the fixed bed case.
A major difference between the present nonlinear slowly varying solution (213) and the linear

solution (195) is the dependence of the former on the as yet unknown distribution of flow depth
D0 that displays O(1) lateral variations. Also, note that IG1

vanishes like in the fixed bed case,
a constraint arising again from flow continuity. Indeed, integrating the continuity equation and
imposing the kinematic boundary condition at the free surface, one ends up with the following
relationship:

d

dn

�
D0 Iun1


= 0. (214)

Hence, recalling that the lateral flux must vanish at the walls, it follows that the lateral water flux
must vanish identically.

In order to complete the analysis to determine the function D0(n) we must solve the Exner
equation. We limit ourselves to the case of dominant bedload, leaving to the reader the task to
evaluate the additional effect of suspended load. In the bedload dominated case, with the help of
(182), (186b) and (207), the equation (198) at O(δ) becomes:

Qb
sn1 = Φb

s0




∂un1/∂ζ

∂us0


∂ζ



ζ0

+


τ∗u
τ∗0

cls
dD0

dn


 = 0. (215)

From the definition of Shields stress (187), one readily finds that

τ∗0 =
τ∗u
Cfu

1

D0


νT0

∂us0

∂ζ


ζ0
, (216)
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or, recalling the differential problem for us0, integrating over the depth and assuming that
(1− ζ0) ≃ 1:

τ∗0 =
τ∗u√
Cfu

(
D0R0

√
Cfu

)
= τ∗u D0R0. (217)

Hence: √
τ∗u
τ∗0

= D
−1/2
0 R

−1/2
0 . (218)

Substituting from (213) and (218) into (215) the following nonlinear ordinary differential
equation for D0 is found;

dD0

dn
=

([
dG11/dζ

dF0/dζ

]

ζ0

− IG11

)
R

1/2
0

cls
D

5/3
0 . (219)

This is immediately solved to give:

D0 =
(
d01R

1/2
0 n+D00

)−3/2

, d01 =
2

3 cls

(
IG11 −

[
dG11

/
dζ

dF0

/
dζ

]

ζ0

)
. (220)

with D00 constant to be determined. Thus, we are left with a solution that depends on two
constants, namely R0 and D00. They are determined imposing two integral conditions that
constrain the water and sediment longitudinal fluxes to keep constant and equal to the values
experienced in the straight reach upstream. The former condition is the integral constraint (60)
that, with the help of (213a), takes the form:

R
1/2
0

∫ 1

−1

D
19/12
0 dn = 2. (221)

Using the solution (220) and some algebra, one finds:

(
− d01R

1/2
0 +D00

)−11/8

−
(
d01R

1/2
0 +D00

)−11/8

=
11

4
d01, (222)

The second condition may be written in the form:

∫ 1

−1

Qb
ss0 dn =

∫ 1

−1

Φb
s0(τ∗0) dn = 2Φu, (223)

Adopting Meyer-Peter and Müller (1948) formula for Φb
s0 and recalling the relationships (217) and

(220), some algebra finally leads to the following form of the latter constraint:

∫ 1

−1

[
R0 τ∗u

(
d01R

1/2
0 n+D00

)−3/2

− τ∗c

]3/2

dn = 2
(
τ∗u − τ∗c

)3/2
. (224)

The two relationships (222) and (224) can be solved by a trial and error procedure for the two
unknown constants R0 and D00.
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Bottom pattern at first order

A supplement of analysis is needed if one wishes to determine the distortion of the longitudinal
velocity profile driven by the lateral redistribution of flow momentum. We then need to determine
the solutions for uz1 and us1, that depend on the first order correction for the flow depth (D1).
To determine the latter quantity one needs to find the solution of Exner equation at O(δ2), which
requires the availability of the solutions for un2 and h2. The algebraic work needed to determine
uz1 and us1 is similar to that pursued in the fixed bed case and is left to the reader, who will show
that these quantities read:

us1 =
1

2
us0

[
7

6

D1

D0
− n

b
+

R1

R0

]
+ bR

1/2
0 D

23/12
0

dD0

dn

(
F11 −

1

2
IF11

F0

)
. (225a)

uz1 = R
1/2
0 D

7/4
0

dD0

dn

[
−11

4
IG1

+
(
ζ − 1

)
G1

]
−R0

√
Cfu

b
F 2
ru

[
us1 −

n

b
us0 +

R1

R0
us0

]
, (225b)

Here, the second major difference with respect to the linear solution (195c) emerges. The O(δ)
correction of the longitudinal velocity is now affected by the momentum redistribution driven by
the secondary flow, that in the present context occurs at O(δ) (see the second term in the right
hand side of equation (225a)). Note that a similar effect of momentum redistribution was obtained
in the fixed bed case (Section 2.4.3). The only difference between the fixed bed solution (equation
(127)) and the present one is the fact that the flow depth was assigned in Section 2.4.3, while it is
an unknown in the mobile bed case. The solution for us1 depends on the unknown quantities D1

and R1 that are related to each other through the integral constraint (60) that, at O(δ) reads:

∫ 1

ζ0

dζ

∫ 1

−1

(
us0 D1 + us1 D0

)
dn = 0, (226)

or, recalling the solutions for us0 and us1:

R1

R0
=

1
b

∫ 1

−1
nD

19/12
0 dn− 19

6

∫ 1

−1
D

7/12
0 D1 dn− 12

47 b IF11

[
D0

∣∣47/12
1

−D0

∣∣47/12
−1

]

N19/12
, (227)

In order to evaluate D1 we must solve the Exner equation at O(δ2), which, in turn, involves
the second order component of the lateral velocity un2. Let us then substitute from (208) and
(105) into the governing differential problem for un, and equate terms of O(δ2) to find:

1

D2
0

∂

∂ζ

(
νT0

∂un2

∂ζ

)
= − 1

D2
0

(U1

U0
− 7

6

D1

D0

) ∂

∂ζ

(
νT0

∂un1

∂ζ

)
+

b

D0
uz1

∂un1

∂ζ

+ b
∂h2

∂n
+

n

b
u2
s0 − 2us0 us1 −

b

D0

∂un1

∂ζ
F 2
ru

dh0

ds

(
us1 −

n

b
us0

)

− b

D0
us0

∂un1

∂ζ
F 2
ru

dh1

ds
+ b

[
un1

∂un1

∂n
− un1

D0

(
ζ − 1

) dD0

dn

∂un1

∂ζ

]

+
b

D0

[
∂un2

∂ζ
− D1

D0

∂un1

∂ζ

] [
uz0 − us0 F

2
ru

dh0

ds

]
, (228a)

un2

∣∣
ζ0

= 0,
∂un2

∂ζ

∣∣∣
1
= 0, (228b)
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or, recalling the differential problem for us0, integrating over the depth and assuming that
(1− ζ0) ≃ 1:

τ∗0 =
τ∗u√
Cfu

(
D0R0

√
Cfu

)
= τ∗u D0R0. (217)

Hence: √
τ∗u
τ∗0

= D
−1/2
0 R

−1/2
0 . (218)

Substituting from (213) and (218) into (215) the following nonlinear ordinary differential
equation for D0 is found;

dD0

dn
=

([
dG11/dζ

dF0/dζ

]

ζ0

− IG11

)
R

1/2
0

cls
D

5/3
0 . (219)

This is immediately solved to give:

D0 =
(
d01R

1/2
0 n+D00

)−3/2

, d01 =
2

3 cls

(
IG11 −

[
dG11

/
dζ

dF0

/
dζ

]

ζ0

)
. (220)

with D00 constant to be determined. Thus, we are left with a solution that depends on two
constants, namely R0 and D00. They are determined imposing two integral conditions that
constrain the water and sediment longitudinal fluxes to keep constant and equal to the values
experienced in the straight reach upstream. The former condition is the integral constraint (60)
that, with the help of (213a), takes the form:

R
1/2
0

∫ 1

−1

D
19/12
0 dn = 2. (221)

Using the solution (220) and some algebra, one finds:

(
− d01R

1/2
0 +D00

)−11/8

−
(
d01R

1/2
0 +D00

)−11/8

=
11

4
d01, (222)

The second condition may be written in the form:

∫ 1

−1

Qb
ss0 dn =

∫ 1

−1

Φb
s0(τ∗0) dn = 2Φu, (223)

Adopting Meyer-Peter and Müller (1948) formula for Φb
s0 and recalling the relationships (217) and

(220), some algebra finally leads to the following form of the latter constraint:

∫ 1

−1

[
R0 τ∗u

(
d01R

1/2
0 n+D00

)−3/2

− τ∗c

]3/2

dn = 2
(
τ∗u − τ∗c

)3/2
. (224)

The two relationships (222) and (224) can be solved by a trial and error procedure for the two
unknown constants R0 and D00.
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Bottom pattern at first order

A supplement of analysis is needed if one wishes to determine the distortion of the longitudinal
velocity profile driven by the lateral redistribution of flow momentum. We then need to determine
the solutions for uz1 and us1, that depend on the first order correction for the flow depth (D1).
To determine the latter quantity one needs to find the solution of Exner equation at O(δ2), which
requires the availability of the solutions for un2 and h2. The algebraic work needed to determine
uz1 and us1 is similar to that pursued in the fixed bed case and is left to the reader, who will show
that these quantities read:

us1 =
1

2
us0

[
7

6

D1

D0
− n

b
+

R1

R0

]
+ bR

1/2
0 D

23/12
0

dD0

dn

(
F11 −

1

2
IF11

F0

)
. (225a)

uz1 = R
1/2
0 D

7/4
0

dD0

dn

[
−11

4
IG1

+
(
ζ − 1

)
G1

]
−R0

√
Cfu

b
F 2
ru

[
us1 −

n

b
us0 +

R1

R0
us0

]
, (225b)

Here, the second major difference with respect to the linear solution (195c) emerges. The O(δ)
correction of the longitudinal velocity is now affected by the momentum redistribution driven by
the secondary flow, that in the present context occurs at O(δ) (see the second term in the right
hand side of equation (225a)). Note that a similar effect of momentum redistribution was obtained
in the fixed bed case (Section 2.4.3). The only difference between the fixed bed solution (equation
(127)) and the present one is the fact that the flow depth was assigned in Section 2.4.3, while it is
an unknown in the mobile bed case. The solution for us1 depends on the unknown quantities D1

and R1 that are related to each other through the integral constraint (60) that, at O(δ) reads:

∫ 1

ζ0

dζ

∫ 1

−1

(
us0 D1 + us1 D0

)
dn = 0, (226)

or, recalling the solutions for us0 and us1:

R1

R0
=

1
b

∫ 1

−1
nD

19/12
0 dn− 19

6

∫ 1

−1
D

7/12
0 D1 dn− 12

47 b IF11

[
D0

∣∣47/12
1

−D0

∣∣47/12
−1

]

N19/12
, (227)

In order to evaluate D1 we must solve the Exner equation at O(δ2), which, in turn, involves
the second order component of the lateral velocity un2. Let us then substitute from (208) and
(105) into the governing differential problem for un, and equate terms of O(δ2) to find:

1

D2
0

∂

∂ζ

(
νT0

∂un2

∂ζ

)
= − 1

D2
0

(U1

U0
− 7

6

D1

D0

) ∂

∂ζ

(
νT0

∂un1

∂ζ

)
+

b

D0
uz1

∂un1

∂ζ

+ b
∂h2

∂n
+

n

b
u2
s0 − 2us0 us1 −

b

D0

∂un1

∂ζ
F 2
ru

dh0

ds

(
us1 −

n

b
us0

)

− b

D0
us0

∂un1

∂ζ
F 2
ru

dh1

ds
+ b

[
un1

∂un1

∂n
− un1

D0

(
ζ − 1

) dD0

dn

∂un1

∂ζ

]

+
b

D0

[
∂un2

∂ζ
− D1

D0

∂un1

∂ζ

] [
uz0 − us0 F

2
ru

dh0

ds

]
, (228a)

un2

∣∣
ζ0

= 0,
∂un2

∂ζ

∣∣∣
1
= 0, (228b)
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or, using the solutions for uz0 and uz1:

1

D2
0

∂

∂ζ

(
νT0

∂un2

∂ζ

)
=

(
− U1

U0
+

7

6

D1

D0

)(
b
∂h1

∂n
− u2

s0

)
+ b

∂h2

∂n
+

n

b
u2
s0

− 2us0 us1 −
b

D0

∂un1

∂ζ

∂
(
D0 Iun1

)
∂n

+ bun1
∂un1

∂n
(229a)

un2

∣∣
ζ0

= 0,
∂un2

∂ζ

∣∣∣
1
= 0, (229b)

Let us next define:

un2 = R
1/2
0

{[
U20 + U21

D1

D0
+ a2(n)U22

]
F0(ζ)+

[
U23

D1

D0
+ U24

]
G11(ζ) + U25 G21(ζ)

}
, (230a)

∂h2

∂n
= R0 a2(n). (230b)

With the help of the latter definitions and of the solutions for us0, un1 and us1, the system (229)
can be solved to find:

U20 = −IG11
D

7/4
0

[
− n

2 b
+

R1

2R0
+ bD

4/3
0

dD0

dn

IF11

2

]
, U21 =

7

12
IG11

D
7/4
0 (231a)

U22 = − b√
Cfu

D
7
12
0 , U23 = −7

4
D

7/4
0 , (231b)

U24 = D
7/4
0

[
3n

2 b
− R1

2R0

]
+

3

2
bD

37/12
0

dD0

dn
IF11 U25 = bD

37/12
0

dD0

dn
, (231c)

and the function G21 is the solution of the following differential system:

d

dζ

[
N (ζ)

dG21

∂ζ

]
= −2F0 F11 +

7

4
G2
1 − 11

4

dG1

dζ

∫ ζ

ζ0

G1 dζ, (232a)

G21

∣∣
ζ0

= 0,
dG21

dζ

∣∣∣
1
= 0. (232b)

Moreover, a2(n) is obtained imposing the constraint of vanishing depth integrated lateral flux
at second order, to find:

a2 = −
√

Cfu

b

(
a20 + a21

D1

D0

)
, (233a)

a20 = IG11
D

7/6
0

(
− 2n

b
+

R1

R0

)
− bD

5/2
0

dD0

dn

(
IF11

IG11
+ IG21

)
, (233b)

a21 =
7

6
IG11 D

7/6
0 . (233c)

We can now determine the O(δ) correction for the flow depth D1 solving at O(δ)2 the Exner
equation that reads:

Qb
sn2 = 0, (234)
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hence:
[
∂un2

/
∂ζ

∂us0

/
∂ζ

]

ζ0

−

[
∂us1

/
∂ζ

∂us0

/
∂ζ

∂un1

/
∂ζ

∂us0

/
∂ζ

]

ζ0

− cls

√
τ∗u
τ∗0

[
−dD1

dn
+ F 2

ru

∂h1

∂n
+

1

2

τ∗1
τ∗0

dD0

dn

]
= 0. (235)

Recalling the relationship (187) that expresses τ∗ in terms of the velocity field, and using the
available solutions for us0 and us1, with the help of some algebra one eventually finds:

τ∗1 = τ∗0

[
D1

D0
+ t10

]
, (236)

where τ∗0 is given by (217) and t10 reads:

t10 = −n

b
+

R1

R0
+

b√
Cfu

D
4/3
0

dD0

dn

[
N dF11

dζ

]

ζ0

(237)

We can finally employ (237) and (236) and the solutions for us1, un1 and un2 to reduce the Exner
equation at O(δ2) (235) to the following form:

dD1

dn
+ d11(n)D1 = d10(n), (238)

where

d10(n) =
1

2

dD0

dn
t10 + F 2

ru

∂h1

∂n
− R

1/2
0

cls

{
D

5/3
0

n

b

( dG11

dζ

∣∣
ζ0

dF0

dζ

∣∣
ζ0

− IG11

)

+ b
dD0

dn
D3

0

[( dG21

dζ

∣∣
ζ0

dF0

dζ

∣∣
ζ0

− IG21

)
+
( dG11

dζ

∣∣
ζ0

dF0

dζ

∣∣
ζ0

− IG11

)( dF11

dζ

∣∣
ζ0

dF0

dζ

∣∣
ζ0

+ IF11

)]}
, (239a)

d11(n) = −1

2

1

D0

dD0

dn
+

7

6

R
1/2
0

cls
D

2/3
0

(
IG11

−
dG11

dζ

∣∣
ζ0

dF0

dζ

∣∣
ζ0

)
. (239b)

The numerical solution of the ordinary differential equation (238) for D1 is obtained numerically,
but depends on two unknowns: the value of D1 at a side wall and the unknown slope correction
R1. They can be determined with the help of two integral constraints arising from the conditions
of constant water and sediment fluxes.

The former constraint, at O(δ) was derived before and has the form of equation (227). The
constraint on sediment flux, at O(δ), reads:

∫ 1

−1

Qb
ss1 dn = 0. (240)

Expanding the formula for the bed load flux in powers of δ, we find:

Qb
ss1 =

∂Φb
s0

∂τ∗

∣∣∣
τ∗0

τ∗1, (241)

where τ∗0 and τ∗1 have the forms (217) and (236), respectively.
We can finally substitute from (241), (217) and (236) into (240) to find:

∫ 1

−1

(
D1 +D0 t10

) ∂Φb
s0

∂τ∗

∣∣∣
τ∗0

dn = 0. (242)
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or, using the solutions for uz0 and uz1:

1

D2
0

∂

∂ζ

(
νT0

∂un2

∂ζ

)
=

(
− U1

U0
+

7

6

D1

D0

)(
b
∂h1

∂n
− u2

s0

)
+ b

∂h2

∂n
+

n

b
u2
s0

− 2us0 us1 −
b

D0

∂un1

∂ζ

∂
(
D0 Iun1

)
∂n

+ bun1
∂un1

∂n
(229a)

un2

∣∣
ζ0

= 0,
∂un2

∂ζ

∣∣∣
1
= 0, (229b)

Let us next define:

un2 = R
1/2
0

{[
U20 + U21

D1

D0
+ a2(n)U22

]
F0(ζ)+

[
U23

D1

D0
+ U24

]
G11(ζ) + U25 G21(ζ)

}
, (230a)

∂h2

∂n
= R0 a2(n). (230b)

With the help of the latter definitions and of the solutions for us0, un1 and us1, the system (229)
can be solved to find:

U20 = −IG11
D

7/4
0

[
− n

2 b
+

R1

2R0
+ bD

4/3
0

dD0

dn

IF11

2

]
, U21 =

7

12
IG11

D
7/4
0 (231a)

U22 = − b√
Cfu

D
7
12
0 , U23 = −7

4
D

7/4
0 , (231b)

U24 = D
7/4
0

[
3n

2 b
− R1

2R0

]
+

3

2
bD

37/12
0

dD0

dn
IF11 U25 = bD

37/12
0

dD0

dn
, (231c)

and the function G21 is the solution of the following differential system:

d

dζ

[
N (ζ)

dG21

∂ζ

]
= −2F0 F11 +

7

4
G2
1 − 11

4

dG1

dζ

∫ ζ

ζ0

G1 dζ, (232a)

G21

∣∣
ζ0

= 0,
dG21

dζ

∣∣∣
1
= 0. (232b)

Moreover, a2(n) is obtained imposing the constraint of vanishing depth integrated lateral flux
at second order, to find:

a2 = −
√

Cfu

b

(
a20 + a21

D1

D0

)
, (233a)

a20 = IG11
D

7/6
0

(
− 2n

b
+

R1

R0

)
− bD

5/2
0

dD0

dn

(
IF11

IG11
+ IG21

)
, (233b)

a21 =
7

6
IG11 D

7/6
0 . (233c)

We can now determine the O(δ) correction for the flow depth D1 solving at O(δ)2 the Exner
equation that reads:

Qb
sn2 = 0, (234)
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hence:
[
∂un2

/
∂ζ

∂us0

/
∂ζ
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/
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−dD1
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+ F 2

ru

∂h1

∂n
+

1

2

τ∗1
τ∗0

dD0

dn

]
= 0. (235)

Recalling the relationship (187) that expresses τ∗ in terms of the velocity field, and using the
available solutions for us0 and us1, with the help of some algebra one eventually finds:

τ∗1 = τ∗0

[
D1

D0
+ t10

]
, (236)

where τ∗0 is given by (217) and t10 reads:

t10 = −n

b
+

R1

R0
+

b√
Cfu

D
4/3
0

dD0

dn

[
N dF11

dζ

]

ζ0

(237)

We can finally employ (237) and (236) and the solutions for us1, un1 and un2 to reduce the Exner
equation at O(δ2) (235) to the following form:

dD1

dn
+ d11(n)D1 = d10(n), (238)

where
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1

2

dD0

dn
t10 + F 2
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− R
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0
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0

n
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dF0

dζ
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ζ0

− IG11

)

+ b
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dn
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dF0
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− IG21

)
+
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− IG11

)( dF11
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dF0
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ζ0

+ IF11
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, (239a)

d11(n) = −1

2

1

D0

dD0

dn
+

7

6

R
1/2
0

cls
D

2/3
0

(
IG11

−
dG11

dζ

∣∣
ζ0

dF0

dζ

∣∣
ζ0

)
. (239b)

The numerical solution of the ordinary differential equation (238) for D1 is obtained numerically,
but depends on two unknowns: the value of D1 at a side wall and the unknown slope correction
R1. They can be determined with the help of two integral constraints arising from the conditions
of constant water and sediment fluxes.

The former constraint, at O(δ) was derived before and has the form of equation (227). The
constraint on sediment flux, at O(δ), reads:

∫ 1

−1

Qb
ss1 dn = 0. (240)

Expanding the formula for the bed load flux in powers of δ, we find:

Qb
ss1 =

∂Φb
s0

∂τ∗

∣∣∣
τ∗0

τ∗1, (241)

where τ∗0 and τ∗1 have the forms (217) and (236), respectively.
We can finally substitute from (241), (217) and (236) into (240) to find:

∫ 1

−1

(
D1 +D0 t10

) ∂Φb
s0

∂τ∗

∣∣∣
τ∗0

dn = 0. (242)
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In particular, using the Meyer-Peter and Müller (1948) formula, the above integral becomes:

∫ 1

−1

(
τ∗uR0 D0 − τ∗c

)1/2 (
D1 +D0 t10

)
dn = 0. (243)

The dependence of the quantities D0(n = ±1) and D1(n = ±1) on the parameter γ is plotted
in Figure 55. Figure 55a) also shows the same dependence as predicted by the linear theory. Note
that the curve obtained by the nonlinear theory tends to the linear curve as the parameter γ tends
to zero. Furthermore nonlinear predictions for the maximum depth significantly exceed the linear
values for large values of γ.

Figura 55. Maximum scour and deposit predicted by the present theory at (a) the leading and (b) the first order.
Values of dimensionless parameters: Cfu = 0.004, ν0 = 0.1 and βu = 20.

3.3. Finite amplitude morphodynamics in meandering channels

3.3.1 Finite amplitude bars in slowly varying meandering channels with constant width

We now extend to the mobile bed case the analysis of the hydrodynamics of meandering channels
with fixed bed performed in Section 2.5. We consider a rectangular channel with constant width
2B and axis consisting of a curved 3D line η = ηa(s), lying on the vertical (z−s) coordinate surface
and characterized by constant slope S = −dηa/ds (recall the sketch in Figure 33). Moreover, C(s)
will denote the dimensionless curvature of the longitudinal coordinate line s, with s dimensionless
and scaled by the meander wavelength L. Again, we assume that the channel is weakly meandering
such that δ ≪ 1. Also, the rate of longitudinal variations of channel curvature is slow, such that
Λ = R0/L ∼ O(1) and, consequently, L = Λ δ ≪ 1 (recall equation (140)).

Formulation

We employ the same notations as in the fixed bed case and simply update the dimensionless
formulation to include the only novel feature of the mobile bed case. The bed elevation η(s, n),
rather than a given fixed quantity, is an unknown function that must be determined solving the
Exner equation coupled with the governing equations. As a consequence, the flow depth D(s, n)
does no longer satisfy the equation (138).

The hydrodynamic problem in dimensionless form, with the steady (139a) and wide channel
(139b) assumptions, is formulated in terms of the (s, n, ζ) coordinates by the governing equations
(51a), (51b), (51c), with the closure relationships and boundary conditions presented in Section
2.2.

The hydrodynamic equations need be complemented by the steady form of the Exner equation.
Recalling that, hs = 1 + ν0 C(s)n = 1 + δ C(s)n/b, in the case of dominant bed load, with the
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present notations and in dimensionless form, from equation (185) we obtain:

δΛ

b+ δ C(s)n
∂Qb

ss

∂s
+

∂Qb
sn

∂n
= − δ C(s)

b+ δ C(s)n
Qb

sn. (244)

The closure relationships associated with (244) are obtained from (186a) and (186b). Just like in
the constant curvature case, we take advantage of the smallness of the coefficient of the lateral
slope term in the closure relationship for the lateral bedload flux and employ the assumption (207).
Moreover, we neglect the O(δ) sloping effect on the longitudinal component of sediment transport.
With these assumptions, (186a) and (186b) become:

Qb
ss = Φb

s0(τ∗), Qb
sn = Φb

s0(τ∗)

[
∂un

∂ζ

∣∣
ζ0

∂us

∂ζ

∣∣
ζ0

+ δ

√
τ∗u
τ∗

cls
∂
(
F 2
ru H −D

)
∂n

]
, (245)

where the tilde has again been removed. The above formulation is completed enforcing the usual
constraints whereby the flow discharge and the total sediment flux must keep constant at any
cross section through the meandering channel.

Derivation

We seek a fully analytical approach following essentially the framework of Seminara and Solari
(1998), extended to meandering channels by Bolla et al. (2009), with some formal modifications
already introduced in the fixed bed case, mainly related to a different closure relationship for the
friction coefficient Cf .

The solution for the flow field is expanded in powers of the small parameter δ according to
(142), with the only exceptions of the free surface elevation H(s, n) and the flow depth D that are
now expanded in the form:[

H(s, n), D(s, n)
]
=

[
H−1(s), 0

]
δ−1 +

[
H0(s), D0(s, n)

]

+ δ
[
H1(s, n), D1(s, n)

]
+O(δ2) (246)

Note that, an O(δ−1) contribution to the free surface elevation, H−1(s), is now present in the
expansion. However, unlike in the fixed bed case treated in Section 2.5, this contribution is not
only associated with the basic uniform solution, hence it does not have the form (143). As shown
below, a correction is required in the mobile case in order to satisfy the constraint of constant
total sediment flux in the cross section. Also, the closure for νT is again obtained from (105) with
D and U functions of both s and n.

The usual perturbation machinery allows to determine the solution at the various orders of
approximation.

O(δ0)

The continuity equation, at the leading order has a form identical to the fixed case (equation 145).
However, unlike Hu(s), the quantity H−1(s) is now unknown, and the solution for uz0 becomes:

uz0 =
Λ

b
F 2
ru

dH−1

ds
us0. (247)

At the same order, the longitudinal momentum equation leads to a differential problem that differs
from the fixed bed case and reads:

1

D2
0

∂

∂ζ

(
νT0

∂us0

∂ζ

)
= Λ

dH−1

ds
+

1

D0

∂us0

∂ζ

(
− ΛF 2

ru

dH−1

ds
us0 + buz0

)

= Λ
dH−1

ds
= −R0(s)

√
Cfu, (248a)

us0

∣∣
ζ0

= 0,
dus0

dζ

∣∣∣
1
= 0, (248b)
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In particular, using the Meyer-Peter and Müller (1948) formula, the above integral becomes:

∫ 1

−1
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τ∗uR0 D0 − τ∗c

)1/2 (
D1 +D0 t10

)
dn = 0. (243)

The dependence of the quantities D0(n = ±1) and D1(n = ±1) on the parameter γ is plotted
in Figure 55. Figure 55a) also shows the same dependence as predicted by the linear theory. Note
that the curve obtained by the nonlinear theory tends to the linear curve as the parameter γ tends
to zero. Furthermore nonlinear predictions for the maximum depth significantly exceed the linear
values for large values of γ.

Figura 55. Maximum scour and deposit predicted by the present theory at (a) the leading and (b) the first order.
Values of dimensionless parameters: Cfu = 0.004, ν0 = 0.1 and βu = 20.

3.3. Finite amplitude morphodynamics in meandering channels

3.3.1 Finite amplitude bars in slowly varying meandering channels with constant width

We now extend to the mobile bed case the analysis of the hydrodynamics of meandering channels
with fixed bed performed in Section 2.5. We consider a rectangular channel with constant width
2B and axis consisting of a curved 3D line η = ηa(s), lying on the vertical (z−s) coordinate surface
and characterized by constant slope S = −dηa/ds (recall the sketch in Figure 33). Moreover, C(s)
will denote the dimensionless curvature of the longitudinal coordinate line s, with s dimensionless
and scaled by the meander wavelength L. Again, we assume that the channel is weakly meandering
such that δ ≪ 1. Also, the rate of longitudinal variations of channel curvature is slow, such that
Λ = R0/L ∼ O(1) and, consequently, L = Λ δ ≪ 1 (recall equation (140)).

Formulation

We employ the same notations as in the fixed bed case and simply update the dimensionless
formulation to include the only novel feature of the mobile bed case. The bed elevation η(s, n),
rather than a given fixed quantity, is an unknown function that must be determined solving the
Exner equation coupled with the governing equations. As a consequence, the flow depth D(s, n)
does no longer satisfy the equation (138).

The hydrodynamic problem in dimensionless form, with the steady (139a) and wide channel
(139b) assumptions, is formulated in terms of the (s, n, ζ) coordinates by the governing equations
(51a), (51b), (51c), with the closure relationships and boundary conditions presented in Section
2.2.

The hydrodynamic equations need be complemented by the steady form of the Exner equation.
Recalling that, hs = 1 + ν0 C(s)n = 1 + δ C(s)n/b, in the case of dominant bed load, with the
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present notations and in dimensionless form, from equation (185) we obtain:

δΛ

b+ δ C(s)n
∂Qb

ss

∂s
+

∂Qb
sn
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= − δ C(s)

b+ δ C(s)n
Qb

sn. (244)

The closure relationships associated with (244) are obtained from (186a) and (186b). Just like in
the constant curvature case, we take advantage of the smallness of the coefficient of the lateral
slope term in the closure relationship for the lateral bedload flux and employ the assumption (207).
Moreover, we neglect the O(δ) sloping effect on the longitudinal component of sediment transport.
With these assumptions, (186a) and (186b) become:

Qb
ss = Φb

s0(τ∗), Qb
sn = Φb

s0(τ∗)

[
∂un

∂ζ
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ζ0
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ζ0
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√
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τ∗
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∂
(
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)
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]
, (245)

where the tilde has again been removed. The above formulation is completed enforcing the usual
constraints whereby the flow discharge and the total sediment flux must keep constant at any
cross section through the meandering channel.

Derivation

We seek a fully analytical approach following essentially the framework of Seminara and Solari
(1998), extended to meandering channels by Bolla et al. (2009), with some formal modifications
already introduced in the fixed bed case, mainly related to a different closure relationship for the
friction coefficient Cf .

The solution for the flow field is expanded in powers of the small parameter δ according to
(142), with the only exceptions of the free surface elevation H(s, n) and the flow depth D that are
now expanded in the form:[

H(s, n), D(s, n)
]
=

[
H−1(s), 0

]
δ−1 +

[
H0(s), D0(s, n)

]

+ δ
[
H1(s, n), D1(s, n)

]
+O(δ2) (246)

Note that, an O(δ−1) contribution to the free surface elevation, H−1(s), is now present in the
expansion. However, unlike in the fixed bed case treated in Section 2.5, this contribution is not
only associated with the basic uniform solution, hence it does not have the form (143). As shown
below, a correction is required in the mobile case in order to satisfy the constraint of constant
total sediment flux in the cross section. Also, the closure for νT is again obtained from (105) with
D and U functions of both s and n.

The usual perturbation machinery allows to determine the solution at the various orders of
approximation.

O(δ0)

The continuity equation, at the leading order has a form identical to the fixed case (equation 145).
However, unlike Hu(s), the quantity H−1(s) is now unknown, and the solution for uz0 becomes:

uz0 =
Λ

b
F 2
ru

dH−1

ds
us0. (247)

At the same order, the longitudinal momentum equation leads to a differential problem that differs
from the fixed bed case and reads:

1

D2
0

∂

∂ζ

(
νT0

∂us0

∂ζ

)
= Λ

dH−1

ds
+

1

D0

∂us0

∂ζ

(
− ΛF 2

ru

dH−1

ds
us0 + buz0

)

= Λ
dH−1

ds
= −R0(s)

√
Cfu, (248a)

us0

∣∣
ζ0

= 0,
dus0

dζ

∣∣∣
1
= 0, (248b)
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where use has been made of (247) and we have introduced the following definition:

R0(s) = − Λ√
Cfu

dH−1

ds
. (249)

The function R0(s) is clearly related to the ratio between the local slope of the free surface at
each cross section and its average uniform value. Recalling (105a), the governing equation (248) is
readily solved in the form

us0 = R
1/2
0 (s)D

7/12
0 (s, n)F0(ζ). (250)

This solution again displays O(1) lateral and longitudinal variations of the flow speed. A
difference with the respect to the fixed bed case is the form taken by the integral constraint (60),
that now involves the quantity dH−1/ds, through the function R0 (see equation (249)), rather
than the correction H0(s) of the uniform flow depth required to ensure the flow discharge keeps
constant along the channel. The constraint (60) now reads:

∫ 1

−1

U0 D0 dn = R
1/2
0 (s)

∫ 1

−1

D
19/12
0 dn = 2. (251)

The leading order component of the flow depth D0(s, n) remains unknown at this order. Indeed,
at the leading order, the Exner equation does not involve D0(s, n) and is automatically satisfied
as H−1 is independent of the lateral coordinate.

O(δ)

Let us move to the lateral component of the momentum equation which, at O(δ), reads:

R
1/2
0 D

−7/12
0

∂

∂ζ

[
N (ζ)

∂un1

∂ζ

]
= b

∂H1

∂n
−R0 C(s)D7/6

0 F2
0 (ζ), (252a)

un1

∣∣
ζ=ζ0

= 0,
∂un1

∂ζ

∣∣∣
ζ=1

= 0. (252b)

The solution for un1 is readily obtained in the form:

un1 = R
1/2
0

[
−D

7/12
0 F0(ζ) a1(s, n)− C(s)D7/4

0 G11(ζ)
]
, (254)

where the function G11(ζ) is given by a relationship identical to (87) and we have set:

∂H1

∂n
=

√
Cfu

b
R0 a1(s, n), (255)

with a1(s, n) a function to be determined through the continuity equation.
At O(δ), the latter may be written in a form identical to that obtained for the fixed bed case

(see equation 152). Imposing the no slip condition at the bed, with the help of (250) and (254),
the equation is again solved for uz1. Expanding the kinematic boundary condition at the free
surface at O(δ) one finds a relationship for uz1|ζ=1. Imposing consistency with the solution for
uz1, one ends up with an equation for a1 similar to (156) except for the presence of the unknown
function R0(s). It reads:

R
1/2
0

∂
(
D

19/12
0 a1

)
∂n

= −IG11

∂
(
D

11/4
0

)
∂n

C(s)R1/2
0 +

Λ

b

∂(R
1/2
0 (s)D

19/12
0 )

∂s
(256)
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With the help of some algebra (256) can again be solved for a1 to give:

a1 = −IG11
D

7/6
0 C(s) + Λ

b
R

−1/2
0 D

−19/12
0

∫ n

−1

∂
(
R

1/2
0 (s)D

19/12
0

)
∂s

dn′ + c1(s)D
−19/12
0 (257)

with c1(s) function determined imposing the no lateral flux condition at the walls. Indeed, recalling
(254) we find:

[∫ 1

ζ0

un1 dζ

]

n=−1

= 0 ⇒ a1
∣∣
n=−1

= −IG11
D

7/6
0 |n=−1 C(s) (258)

Using this condition, one also finds that the function c1(s) must vanish and the solution for a1
becomes:

a1 = −IG11
D

7/6
0 C(s) + Λ

b
R

−1/2
0 D

−19/12
0

∫ n

−1

∂
(
R

1/2
0 (s)D

19/12
0 )

∂s
dn′. (259)

The last step required to complete the derivation of the leading order solution is the analysis
of the Exner equation at O(δ) that reads:

Λ

b

∂Qb
ss0

∂s
+

∂Qb
sn1

∂n
= 0, (260)

where:

Qb
ss0 = Φb

s0(τ∗0), (261a)

Qb
sn1 = Φb

s0(τ∗0)

(
∂un1

∂ζ

∣∣
ζ0

∂us0

∂ζ
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ζ0

+D
−1/2
0 R

−1/2
0 cls

∂D0

∂n

)
. (261b)

Substituting from (261) into (260), one ends up with the following nonlinear partial differential
equation for the unknown function D0(s, n):

n1
∂2D0

∂n2
+ n2

(∂D0

∂n

)2

+ n3
∂D0

∂n
+ n4 + n5

∂D0

∂s
+ n6 = 0, (262)

where

n1 = cls
R

1/2
0 D

1/2
0

τ∗0

Φb
s0

∂Φb
s0

/
∂τ∗
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τ∗0

, (263a)
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1/2
0 cls D

−1/2
0

(
1− 1

2 τ∗0

Φb
s0

∂Φb
s0

/
∂τ∗
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τ∗0
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, (263b)

n3 = −R0 a1 −

(
1 +

7

6 τ∗0
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∂Φb
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/
∂τ∗
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τ∗0
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, (263c)

n4 = − Φb
s0

∂Φb
s0/∂τ∗

∣∣∣∣∣
τ∗0

1

τ∗u

∂a1
∂n

, n5 =
Λ

b
R0, n6 =

Λ

b

dR0

ds
D0 (263d)

The solution of (262) is coupled with the solution for a1(s, n) (equation (259)) and must satisfy
the hydrodynamic constraint (251) and the morhodynamic constraint. The latter imposes that the
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where use has been made of (247) and we have introduced the following definition:
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. (249)

The function R0(s) is clearly related to the ratio between the local slope of the free surface at
each cross section and its average uniform value. Recalling (105a), the governing equation (248) is
readily solved in the form

us0 = R
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0 (s, n)F0(ζ). (250)

This solution again displays O(1) lateral and longitudinal variations of the flow speed. A
difference with the respect to the fixed bed case is the form taken by the integral constraint (60),
that now involves the quantity dH−1/ds, through the function R0 (see equation (249)), rather
than the correction H0(s) of the uniform flow depth required to ensure the flow discharge keeps
constant along the channel. The constraint (60) now reads:

∫ 1
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U0 D0 dn = R
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∫ 1
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D
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The leading order component of the flow depth D0(s, n) remains unknown at this order. Indeed,
at the leading order, the Exner equation does not involve D0(s, n) and is automatically satisfied
as H−1 is independent of the lateral coordinate.
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Let us move to the lateral component of the momentum equation which, at O(δ), reads:
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The solution for un1 is readily obtained in the form:
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, (254)

where the function G11(ζ) is given by a relationship identical to (87) and we have set:
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R0 a1(s, n), (255)

with a1(s, n) a function to be determined through the continuity equation.
At O(δ), the latter may be written in a form identical to that obtained for the fixed bed case

(see equation 152). Imposing the no slip condition at the bed, with the help of (250) and (254),
the equation is again solved for uz1. Expanding the kinematic boundary condition at the free
surface at O(δ) one finds a relationship for uz1|ζ=1. Imposing consistency with the solution for
uz1, one ends up with an equation for a1 similar to (156) except for the presence of the unknown
function R0(s). It reads:

R
1/2
0

∂
(
D

19/12
0 a1

)
∂n

= −IG11

∂
(
D

11/4
0

)
∂n

C(s)R1/2
0 +

Λ

b

∂(R
1/2
0 (s)D

19/12
0 )

∂s
(256)

96

Forced bars in sinuous channels

With the help of some algebra (256) can again be solved for a1 to give:
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with c1(s) function determined imposing the no lateral flux condition at the walls. Indeed, recalling
(254) we find:
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Using this condition, one also finds that the function c1(s) must vanish and the solution for a1
becomes:
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The last step required to complete the derivation of the leading order solution is the analysis
of the Exner equation at O(δ) that reads:
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Substituting from (261) into (260), one ends up with the following nonlinear partial differential
equation for the unknown function D0(s, n):
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The solution of (262) is coupled with the solution for a1(s, n) (equation (259)) and must satisfy
the hydrodynamic constraint (251) and the morhodynamic constraint. The latter imposes that the
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total sediment flux in the cross section must keep constant and equal to the given sediment supply
associated with the average reach slope. Recalling equation (261a), at leading order one finds:
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The procedure followed by Bolla et al. (2009) to calculate the solution was as follows. They employed
the Meyer-Peter and Müller (1948) formula for the sediment flux and solved the differential problem
formulated above numerically, marching in n for every single cross section. In particular, at each
cross section j, trial values of the flow depth at the inner bank D0j
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slope correction R0j were chosen. With the latter choices, the quantity ∂D0j

∂n

∣∣
n=−1

was evaluated
from (261b) imposing the condition of vanishing lateral sediment flux at the inner wall. The
Exner equation, coupled with (259), could then be solved numerically in the whole domain. The
differences between the values of the liquid and solid discharges associated with the computed
solution and the assigned values were then computed and the trial initial values of D0j

∣∣
n=−1

and
R0j were modified correspondingly. Iterations were then pursued until residual errors reduced
below some chosen value. The implementation of this trial and error procedure allowed Bolla et al.
(2009) to determine the sought functions D0(s, n) and R0(s). The Authors also checked whether
non unique solutions of the problems might exist. The numerical tests performed by the Authors
suggested that this is not the case, at least provided sediment transport occurs in the entire cross
section.

Bolla et al. (2009) pursued the perturbation approach further and evaluated the O(δ) component
of the longitudinal velocity and flow depth, as well as the O(δ2) component of the lateral velocity
and lateral slope. The analysis is conceptually straightforward. The interested reader may usefully
refer to the above paper for details. Below, we provide an overview of some of the main results.

The test case investigated in depth concerned the so called sine generated meanders (Langbein
and Leopold, 1966) already discussed in the fixed bed case. The dimensionless curvature of the
channel axis C was then assumed to read cos(2π s) (recall equation 280). Two periodic sequences
of sine generated meanders characterized by different dimensionless wave numbers were analyzed.
The dimensionless wavenumber, λBS in Bolla et al. (2009) notations, was equal to 2π B L in the
present notations. The first wavenumber considered was fairly small (λBS = 0.07), the latter was
fairly large (λBS = 0.185). As we know, the degree of smallness of this parameter measures the
degree to which the longitudinal variations of the flow field may be considered as slowly varying. For
very long meanders the spatial scale over which variations occur, namely the meander wavelength,
are much larger than the adaptation length required for the flow to adjust to the varying curvature.
The consequences emerge clearly from Figure (56). Indeed, the phase lag of bed topography
relative to channel curvature is fairly small when convective effects play a negligible role, i.e., for
small wave numbers (Figure (56a). As the wavenumber increases, the maximum scour moves
from downstream to upstream of the bend apex and the pattern of scour and deposits displays
oscillations larger than those found for smaller wave numbers (Figure (56b). The high-velocity
core of the vertically averaged longitudinal velocity (Figures 56c and 56d) shifts from one side to
the other side of the channel through the meander length and peaks just downstream to the bend
apex.

Figure 57 shows the complete flow field at four cross sections along the shorter meander
(λBS = 0.185). The contour lines represent the values of the dimensionless longitudinal velocity.
The vectors visualize the secondary flow, whilst the arrowed lines are the projection of a few
streamlines on the cross section. The first important observation is that the values of the secondary
flow velocity are typically one order of magnitude smaller than those of the longitudinal motion, in
spite of the fact that the perturbation of the bottom elevation are not small. At the inflection point
(Figure 57a) the secondary flow is nearly uniform in the cross section and is directed from the left
to the right bank except close to the banks. There, the curvature driven component gives rise to
secondary cells such to satisfy the boundary conditions of vanishing transverse component of the
flow rate at the side walls. Moving downstream, the secondary flow driven by both streamline
curvature and topography is initially enhanced near the bottom and close to the outer bank (Figure
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Figura 56. Patterns of bed topography and vertically averaged longitudinal velocity in two periodic sequences of
sine generated meanders, characterized by different dimensionless wave numbers. (a,b) Dimensionless bed elevation
relative to the undisturbed bed; (c,d) dimensionless value of the vertically averaged longitudinal velocity. Values of

dimensionless parameters: dsu = 5 · 10−3 (hence
√

Cfu = 0.059), ν0 = 0.04 and βu = 7 (hence δ = 0.097 and
b = 2.42), λBS = 0.07 (corresponding to L = 0.027) and λBS = 0.185 (corresponding to L = 0.071), τ∗u = 0.1.
Green arrows show the locations of maximum scour and maximum velocity (modified from Bolla et al., 2009).

57b). Further downstream it spreads towards the outer deeper region of the cross section (Figure
57c); in the shallower inner region it is directed inwards except close to the inner bank where the
secondary flow with vanishing depth average again prevails. Downstream of the bend apex (Figure
57d) the bed elevation is nearly constant in the lateral direction and the secondary flow is driven

99



Theoretical Morphodynamics: River Meandering

total sediment flux in the cross section must keep constant and equal to the given sediment supply
associated with the average reach slope. Recalling equation (261a), at leading order one finds:
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differences between the values of the liquid and solid discharges associated with the computed
solution and the assigned values were then computed and the trial initial values of D0j
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non unique solutions of the problems might exist. The numerical tests performed by the Authors
suggested that this is not the case, at least provided sediment transport occurs in the entire cross
section.

Bolla et al. (2009) pursued the perturbation approach further and evaluated the O(δ) component
of the longitudinal velocity and flow depth, as well as the O(δ2) component of the lateral velocity
and lateral slope. The analysis is conceptually straightforward. The interested reader may usefully
refer to the above paper for details. Below, we provide an overview of some of the main results.

The test case investigated in depth concerned the so called sine generated meanders (Langbein
and Leopold, 1966) already discussed in the fixed bed case. The dimensionless curvature of the
channel axis C was then assumed to read cos(2π s) (recall equation 280). Two periodic sequences
of sine generated meanders characterized by different dimensionless wave numbers were analyzed.
The dimensionless wavenumber, λBS in Bolla et al. (2009) notations, was equal to 2π B L in the
present notations. The first wavenumber considered was fairly small (λBS = 0.07), the latter was
fairly large (λBS = 0.185). As we know, the degree of smallness of this parameter measures the
degree to which the longitudinal variations of the flow field may be considered as slowly varying. For
very long meanders the spatial scale over which variations occur, namely the meander wavelength,
are much larger than the adaptation length required for the flow to adjust to the varying curvature.
The consequences emerge clearly from Figure (56). Indeed, the phase lag of bed topography
relative to channel curvature is fairly small when convective effects play a negligible role, i.e., for
small wave numbers (Figure (56a). As the wavenumber increases, the maximum scour moves
from downstream to upstream of the bend apex and the pattern of scour and deposits displays
oscillations larger than those found for smaller wave numbers (Figure (56b). The high-velocity
core of the vertically averaged longitudinal velocity (Figures 56c and 56d) shifts from one side to
the other side of the channel through the meander length and peaks just downstream to the bend
apex.

Figure 57 shows the complete flow field at four cross sections along the shorter meander
(λBS = 0.185). The contour lines represent the values of the dimensionless longitudinal velocity.
The vectors visualize the secondary flow, whilst the arrowed lines are the projection of a few
streamlines on the cross section. The first important observation is that the values of the secondary
flow velocity are typically one order of magnitude smaller than those of the longitudinal motion, in
spite of the fact that the perturbation of the bottom elevation are not small. At the inflection point
(Figure 57a) the secondary flow is nearly uniform in the cross section and is directed from the left
to the right bank except close to the banks. There, the curvature driven component gives rise to
secondary cells such to satisfy the boundary conditions of vanishing transverse component of the
flow rate at the side walls. Moving downstream, the secondary flow driven by both streamline
curvature and topography is initially enhanced near the bottom and close to the outer bank (Figure
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Figura 56. Patterns of bed topography and vertically averaged longitudinal velocity in two periodic sequences of
sine generated meanders, characterized by different dimensionless wave numbers. (a,b) Dimensionless bed elevation
relative to the undisturbed bed; (c,d) dimensionless value of the vertically averaged longitudinal velocity. Values of

dimensionless parameters: dsu = 5 · 10−3 (hence
√

Cfu = 0.059), ν0 = 0.04 and βu = 7 (hence δ = 0.097 and
b = 2.42), λBS = 0.07 (corresponding to L = 0.027) and λBS = 0.185 (corresponding to L = 0.071), τ∗u = 0.1.
Green arrows show the locations of maximum scour and maximum velocity (modified from Bolla et al., 2009).

57b). Further downstream it spreads towards the outer deeper region of the cross section (Figure
57c); in the shallower inner region it is directed inwards except close to the inner bank where the
secondary flow with vanishing depth average again prevails. Downstream of the bend apex (Figure
57d) the bed elevation is nearly constant in the lateral direction and the secondary flow is driven
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by convective effects.

Figura 57. Isocontours of dimensionless downstream velocity at different cross sections of the sine generated
meander of Figure (56) for λBS = 0.185. (a), s = 0.25; (b), s = 0.375; (c), s = 0.5; (d), s = 0.625). Vectors

visualize the secondary flow velocity; arrowed lines represent the projection of some streamlines on the cross section.
Values of the relevant dimensionless parameters are the same as in the Figure 56 (modified from Bolla et al., 2009).

Note that the secondary cells present close to the banks in these computations have nothing to
do with the turbulence-driven secondary flows discussed in the previous Chapter. The present
model ignores the side wall boundary layers and our simple turbulence closures would be unable
to predict their formation. However, the wide character of our channels make their role negligible
anyway.

3.3.2 Extension to the case of meandering channels undergoing spatial variations of channel width

Luchi et al. (2012) extended the nonlinear analysis of flow and bed topography in meandering
channels with constant width discussed in the previous section to allow for spatial variations of the
channel width. The analysis of Luchi et al. (2012) was aimed at explaining the field observations
that suggest that spatially periodic variations of channel width are indeed a common characteristics
of fluvial channels (see Section 5.6.1). It is of interest to note that the constant width model of
Bolla et al. (2009) showed that an equilibrium configuration of flow and bed topography does exist
for given flow discharge and associated sediment flux. However, in order to achieve equilibrium,
spatial variations of the longitudinal free surface slope must be allowed. In the development of
Luchi et al. (2012) the channel width undergoes spatial oscillations. Under these conditions, the
meandering channel is able to accommodate prescribed values of flow and sediment discharges
with the longitudinal free-surface slope kept constant.

The latter paper was also able to show that, in a meandering channel, the equilibrium width
oscillates with a frequency twice the frequency of channel curvature and experiences the maximum
width close to inflection points. This pattern is typically observed in so called canaliform rivers.
Luchi et al. (2012) also point out that a similar behavior is readily understood to be characteristic
of so called sinuous point bar rivers, provided one recognizes that, in this case, the hydrodynamic
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width (width of the free surface) must be replaced by the active width, namely the width of the
portion of the cross section where sediment transport occurs at formative conditions.

3.4. Further approaches to the morphodynamics of sinuous channels

The theoretical framework set in the previous sections provides a description of the physical
processes which govern the bed topography in sinuous channels and the key controlling factors. The
solutions for the flow field and the bed topography obtained at the various degrees of approximation
have also a practical relevance, inasmuch as the assumptions entailed in their derivation are satisfied
in many real cases. Moreover, rational perturbation approaches allow one to restrict the analysis
to the essential physical processes, leading to a reduction of the large computational effort required
by detailed numerical simulations. They also ensure a simpler analysis of sensitivity to parameter
uncertainties, changes in geometry and boundary conditions of the computational domain (Lanzoni,
2022).

Needless to say, perturbation approaches have their own limits, in particular:
- perturbation parameters in the real world are not always as ’small’ as theory would require;
- complex river geometries are not readily accommodated.
In order to overcome these limitations one may resort to one of the following tools: laboratory

measurements, field observations, numerical simulations. However, the reader should immediately
appreciate the major difference between analytical models and laboratory-field-numerical approa-
ches: the former ones apply to a wide class of fluvial configurations, the latter concern a single
specific configuration. Moreover, the effort required in the former case is much smaller than in the
latter case.

This notwithstanding, in the last few decades, we have witnessed a considerable, technologically
driven progress in research based on each of the three mentioned approaches.

Additional tools, besides those presented in this Monograph, are needed to implement them.
In particular, Computational Morphodynamics may well be taken as a fairly mature branch of
Morphodynamics, that will deserve a specific attention. It falls outside our scopes to cover these
aspects in the present Monograph. Below, we then limit ourselves to briefly present few examples
of how particular features of sinuous channels can be investigated complementing theoretical
analysis with experimental observations and numerical simulations.

3.4.1 Laboratory observations: bed topography in movable bed meandering channels with a Kinoshita
planform

The first example concerns the experimental investigation carried out by Abad (2008) in a
laboratory flume, which was integrated with three-dimensional numerical simulations (but see also
Abad and García, 2009; Abad et al., 2013). The experiments were carried out in a movable bed
meandering flume reproducing a sequence of three upstream skewed bends shaped according to
the classical configuration suggested by Kinoshita (1961). The bed topography that developed in
the presence of bed load was characterized by the formation of progressive dune-type bedforms
superimposed on point bars.

The bed elevation was measured by sonar transducers while the velocity measurements were
carried out by means of Acoustic Doppler Velocimeters (ADVs). Because of the intrinsic difficulties
encountered in the measurements (migration of bed forms and ADVs limitations) only the structure
of the mean flow field was quantified. Numerical simulations, carried out solving the incompressible
RANS equations with the help of a k-ϵ closure model, were employed to obtain a detailed
characterization of flow velocities and shear stresses after a calibration based on measured values
of water surface elevations and mean velocities.

Results reported in Figure 58 show that, not surprisingly, the erosion peak in the upstream-
skewed case is located upstream of the bend apex, while in the downstream-skewed case it is
located downstream of the bend apex. Moreover, numerical simulations of the flow field associated
with the measured topographies show that the presence and location of bedforms on a bend may
strongly affect secondary circulations. The highest modification of the flow field is observed when
a dune crest crosses a given cross section. This modification creates the highest near-bed and
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by convective effects.

Figura 57. Isocontours of dimensionless downstream velocity at different cross sections of the sine generated
meander of Figure (56) for λBS = 0.185. (a), s = 0.25; (b), s = 0.375; (c), s = 0.5; (d), s = 0.625). Vectors

visualize the secondary flow velocity; arrowed lines represent the projection of some streamlines on the cross section.
Values of the relevant dimensionless parameters are the same as in the Figure 56 (modified from Bolla et al., 2009).

Note that the secondary cells present close to the banks in these computations have nothing to
do with the turbulence-driven secondary flows discussed in the previous Chapter. The present
model ignores the side wall boundary layers and our simple turbulence closures would be unable
to predict their formation. However, the wide character of our channels make their role negligible
anyway.

3.3.2 Extension to the case of meandering channels undergoing spatial variations of channel width

Luchi et al. (2012) extended the nonlinear analysis of flow and bed topography in meandering
channels with constant width discussed in the previous section to allow for spatial variations of the
channel width. The analysis of Luchi et al. (2012) was aimed at explaining the field observations
that suggest that spatially periodic variations of channel width are indeed a common characteristics
of fluvial channels (see Section 5.6.1). It is of interest to note that the constant width model of
Bolla et al. (2009) showed that an equilibrium configuration of flow and bed topography does exist
for given flow discharge and associated sediment flux. However, in order to achieve equilibrium,
spatial variations of the longitudinal free surface slope must be allowed. In the development of
Luchi et al. (2012) the channel width undergoes spatial oscillations. Under these conditions, the
meandering channel is able to accommodate prescribed values of flow and sediment discharges
with the longitudinal free-surface slope kept constant.

The latter paper was also able to show that, in a meandering channel, the equilibrium width
oscillates with a frequency twice the frequency of channel curvature and experiences the maximum
width close to inflection points. This pattern is typically observed in so called canaliform rivers.
Luchi et al. (2012) also point out that a similar behavior is readily understood to be characteristic
of so called sinuous point bar rivers, provided one recognizes that, in this case, the hydrodynamic
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width (width of the free surface) must be replaced by the active width, namely the width of the
portion of the cross section where sediment transport occurs at formative conditions.

3.4. Further approaches to the morphodynamics of sinuous channels

The theoretical framework set in the previous sections provides a description of the physical
processes which govern the bed topography in sinuous channels and the key controlling factors. The
solutions for the flow field and the bed topography obtained at the various degrees of approximation
have also a practical relevance, inasmuch as the assumptions entailed in their derivation are satisfied
in many real cases. Moreover, rational perturbation approaches allow one to restrict the analysis
to the essential physical processes, leading to a reduction of the large computational effort required
by detailed numerical simulations. They also ensure a simpler analysis of sensitivity to parameter
uncertainties, changes in geometry and boundary conditions of the computational domain (Lanzoni,
2022).

Needless to say, perturbation approaches have their own limits, in particular:
- perturbation parameters in the real world are not always as ’small’ as theory would require;
- complex river geometries are not readily accommodated.
In order to overcome these limitations one may resort to one of the following tools: laboratory

measurements, field observations, numerical simulations. However, the reader should immediately
appreciate the major difference between analytical models and laboratory-field-numerical approa-
ches: the former ones apply to a wide class of fluvial configurations, the latter concern a single
specific configuration. Moreover, the effort required in the former case is much smaller than in the
latter case.

This notwithstanding, in the last few decades, we have witnessed a considerable, technologically
driven progress in research based on each of the three mentioned approaches.

Additional tools, besides those presented in this Monograph, are needed to implement them.
In particular, Computational Morphodynamics may well be taken as a fairly mature branch of
Morphodynamics, that will deserve a specific attention. It falls outside our scopes to cover these
aspects in the present Monograph. Below, we then limit ourselves to briefly present few examples
of how particular features of sinuous channels can be investigated complementing theoretical
analysis with experimental observations and numerical simulations.

3.4.1 Laboratory observations: bed topography in movable bed meandering channels with a Kinoshita
planform

The first example concerns the experimental investigation carried out by Abad (2008) in a
laboratory flume, which was integrated with three-dimensional numerical simulations (but see also
Abad and García, 2009; Abad et al., 2013). The experiments were carried out in a movable bed
meandering flume reproducing a sequence of three upstream skewed bends shaped according to
the classical configuration suggested by Kinoshita (1961). The bed topography that developed in
the presence of bed load was characterized by the formation of progressive dune-type bedforms
superimposed on point bars.

The bed elevation was measured by sonar transducers while the velocity measurements were
carried out by means of Acoustic Doppler Velocimeters (ADVs). Because of the intrinsic difficulties
encountered in the measurements (migration of bed forms and ADVs limitations) only the structure
of the mean flow field was quantified. Numerical simulations, carried out solving the incompressible
RANS equations with the help of a k-ϵ closure model, were employed to obtain a detailed
characterization of flow velocities and shear stresses after a calibration based on measured values
of water surface elevations and mean velocities.

Results reported in Figure 58 show that, not surprisingly, the erosion peak in the upstream-
skewed case is located upstream of the bend apex, while in the downstream-skewed case it is
located downstream of the bend apex. Moreover, numerical simulations of the flow field associated
with the measured topographies show that the presence and location of bedforms on a bend may
strongly affect secondary circulations. The highest modification of the flow field is observed when
a dune crest crosses a given cross section. This modification creates the highest near-bed and
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Figura 58. Average bed elevation relative to the unperturbed topography and scaled by the unperturbed flow depth
in a Kinoshita channel: (a) upstream-skewed. (b) downstream-skewed. Positive values denote deposition while

negative values imply erosion (modified from Abad, 2008).

near-bank shear velocities, thus enhancing (as much as 50%) fluvial erosion and possibly stream
bank scour.

3.4.2 Field observations: three-dimensional flow structure and bed morphology in large elongated meander
loops

Theoretical models do not readily accommodate the effects of heterogeneities, notably those
associated with a non uniform roughness distribution. Under these circumstances, field observations
may shed some light. In particular, we know (Section 4.5.6(I)) that the presence of macroscopic
roughness (e.g. topographic undulations) on the banks leads to a form drag which can strongly
affect the flow field and the boundary shear stresses close to the banks. This was indeed confirmed
by the field observations collected by Konsoer (2014) (but see also Konsoer et al., 2016) within
two elongated meander loops of the Wabash River (Figure 59).

Detailed channel bathymetry was surveyed in the two meander loops using a multibeam echo
sounder (MBES), while the three-dimensional velocity field was measured in various cross sections
using a boat-mounted Acoustic Doppler Current Profiler (ADCP). An interesting observation
was that the depth-averaged near-bank velocities observed for a near-bankfull discharge were, in
general, greater than those measured for overbank flow.

The Authors suggest that observations confirm that the point bars forced by the curvature of
the channel axis induce a strong topographic steering which adds to the curvature-driven secondary
motion. A glance at Figures 59b and 59c shows that the flow velocity peaks well downstream of
the bend apex, unlike scour, which displays a maximum ahead of the apex. This effect is driven by
flow acceleration in a reach where bedrock is exposed along the outer bank (area delimited by the
white-dashed line in Figure 59b). Furthermore, the presence of abundant large woody debris along
the outer bank of the Horseshoe bend increases the flow resistance, leading to the development of
a zone of low velocities adjacent to the bank and inhibiting there the effects of secondary flow
circulations.
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3.4.3 Coupled hydro-morphodynamic simulations at the meander reach scale

As mentioned above, the recent advances in numerical techniques coupled with a continuous
growth of computing power are nowadays leading to an increasing number of high-resolution
morphodynamic simulations for complex river bathymetry (Sotiropoulos, 2015). The detailed
information provided by these simulations can then be used in conjunction with comprehensive
experimental observations to further unravel specific details of sinuous channel morphodynamics
not covered or only approximately envisaged by theoretical analyses.

While an assessment of the state of the art in Computational Morphodynamics will have to
await a forthcoming Monograph, here we limit ourselves to provide an interesting example of
such efforts, namely the numerical hydro-morphodynamic simulation of large dune dynamics in
meandering streams carried out by Khosronejad et al. (2015). In the simulation the unsteady
RANS equations (URANS) with a k-ϵ turbulence closure were solved. The free water surface
was treated using the rigid-lid approximation (Struiksma et al., 1985). A Curvilinear Immersed
Boundary (CURVIB) method (Ge and Sotiropoulos, 2007) was used to deal with the geometric
complexity of the channel banks and the channel bed. The temporal variation of the bed elevation
was computed by solving the Exner equation. The bedload flux was related to the sediment
concentration in the bedload layer following the method of van Rijn (1984a). The contribution of
suspended load to the bed variation rate was accounted for in terms of the difference between the
rates of net sediment deposition on the bed and net sediment entrainment from the bed. This
difference was taken to be proportional to the difference between the concentration immediately
above the bedload layer and the equilibrium (Rouse) concentration. Periodic boundary conditions
were used, i.e. the sediment flux was numerically recirculated through the simulated meandering
reach. A dual time stepping approach was used to account for the different time scales controlling
bedform dynamics and turbulent eddies, i.e. adopting a morphodynamic time step significantly
greater than the time step used to advance the hydrodynamic equations.

Khosronejad et al. (2015) applied their model to a small meandering gravel-bed river (d50 =32
mm, width= 27 m and depth= 1 m).

While it appears that URANS simulations are reasonably successful in predicting the quasi-
equilibrium bed topography at the meander scale, it is hard to evaluate their ability to reproduce
the onset and development of dunes. No comparison with experimental observations is reported in
the paper of Khosronejad et al. (2015), which contains also a discussion of the intrinsic difficulties
encountered in this type of simulations.

Finally, it is worthwhile to mention that numerical results correspond to a physical time of
nearly two months and have been carried out on 160 CPUs for about 15 days of CPU clock-time
(Sotiropoulos, 2015). This computational cost is likely to increase significantly when simulating a
river with size similar to those typical of the Wabash River (average bankfull depth in the range
4-8 m and a bankfull width between 200 and 350 m).

3.4.4 Field observations through remote sensing

The use of remotely sensed imagery for high spatio-temporal resolution of river morphodynamics
has lately enjoyed an increasing popularity. Indeed, the massive availability of satellite imagery
(e.g. Landsat, http://landsat.usgs.gov/) and processing tools has greatly expanded the spatial
and temporal scales on which river morphology and dynamics can be investigated. A growing
number of studies (Gautier et al., 2007; Rowland et al., 2016; Schwenk, 2016; Schwenk et al.,
2017; Monegaglia, 2017; Monegaglia et al., 2018) have thus leveraged Landsat imagery in order to
estimate planform changes, bank migration and sediment bar dynamics of large meandering rivers
(much wider than the typical resolution (30 m) of actual satellite images). A much finer spatial
resolution (up to 2 m) can be achieved using aerial photographs.

Satellite images can be easily extracted using the Google Earth Engine or the USGS’s Earth
Explorer website. Images first need to be classified using suitable algorithms for identifying the
pixels corresponding to sediment, water, land, or cloud cover. Images are then combined into
annual composites and bankfull-resolving channel masks are eventually obtained.
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Figura 58. Average bed elevation relative to the unperturbed topography and scaled by the unperturbed flow depth
in a Kinoshita channel: (a) upstream-skewed. (b) downstream-skewed. Positive values denote deposition while

negative values imply erosion (modified from Abad, 2008).

near-bank shear velocities, thus enhancing (as much as 50%) fluvial erosion and possibly stream
bank scour.

3.4.2 Field observations: three-dimensional flow structure and bed morphology in large elongated meander
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the outer bank of the Horseshoe bend increases the flow resistance, leading to the development of
a zone of low velocities adjacent to the bank and inhibiting there the effects of secondary flow
circulations.
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3.4.3 Coupled hydro-morphodynamic simulations at the meander reach scale
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While it appears that URANS simulations are reasonably successful in predicting the quasi-
equilibrium bed topography at the meander scale, it is hard to evaluate their ability to reproduce
the onset and development of dunes. No comparison with experimental observations is reported in
the paper of Khosronejad et al. (2015), which contains also a discussion of the intrinsic difficulties
encountered in this type of simulations.

Finally, it is worthwhile to mention that numerical results correspond to a physical time of
nearly two months and have been carried out on 160 CPUs for about 15 days of CPU clock-time
(Sotiropoulos, 2015). This computational cost is likely to increase significantly when simulating a
river with size similar to those typical of the Wabash River (average bankfull depth in the range
4-8 m and a bankfull width between 200 and 350 m).

3.4.4 Field observations through remote sensing

The use of remotely sensed imagery for high spatio-temporal resolution of river morphodynamics
has lately enjoyed an increasing popularity. Indeed, the massive availability of satellite imagery
(e.g. Landsat, http://landsat.usgs.gov/) and processing tools has greatly expanded the spatial
and temporal scales on which river morphology and dynamics can be investigated. A growing
number of studies (Gautier et al., 2007; Rowland et al., 2016; Schwenk, 2016; Schwenk et al.,
2017; Monegaglia, 2017; Monegaglia et al., 2018) have thus leveraged Landsat imagery in order to
estimate planform changes, bank migration and sediment bar dynamics of large meandering rivers
(much wider than the typical resolution (30 m) of actual satellite images). A much finer spatial
resolution (up to 2 m) can be achieved using aerial photographs.

Satellite images can be easily extracted using the Google Earth Engine or the USGS’s Earth
Explorer website. Images first need to be classified using suitable algorithms for identifying the
pixels corresponding to sediment, water, land, or cloud cover. Images are then combined into
annual composites and bankfull-resolving channel masks are eventually obtained.
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User friendly toolboxes (e.g SCREAM (Rowland et al., 2016), RivMAP (Schwenk et al., 2017),
PyRIS (Monegaglia et al., 2018)) have been developed taking advantage of the image-processing
functions available in languages as IDL (SCREAM), MATLAB (RivMAP) and Python (PyRIS).
These toolboxes allow one to extract centerline and bankline, widths, lengths, and properties of
the channel axis (e.g. curvatures) from channel masks. Changes in channel widths, rates of bank
migration, accretion and erosion areas, as well as spatio-temporal characteristics of cutoff dynamics
can then be retrieved by comparison of multitemporal images. The information provided by these
outputs can then be exploited to compute morphodynamic metrics needed for the application of
theoretical and numerical models, as well as for comparing observed and predicted river planforms.

Figure 60 provides an example which shows the annually resolved centerline for a reach of
the Ucayali River (1500 km) in the period 1985-2015, created using RivMAP. As pointed out by
Schwenk et al. (2017), the observed patterns reveal a variety of features of channel migration.
Quantitative analysis of such features may provide a useful benchmark for theoretical investigations
like those presented in the next Chapters.
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Figura 59. (a) Location of the two meander bends (Horseshore and Maier) of the Wabash River surveyed by
Konsoer (2014), with indication of the locations of the ADCP cross sections. (b) Bathymetric map derived from
2008 and 2013 multibeam surveys for Horseshoe bend. The white-dashed line marks the boundary of the region of
bedrock outcrop within the channel. (c) Depth-averaged velocity vectors at Horseshoe Bend for campaign 1. Black

arrows denote the direction of the flow (reproduced from Figures 3.1, 3.5 and 5.5 of Konsoer, 2014).
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Figura 60. Centerlines of meandering patterns along the Ucayali River (Peru) obtained from the analysis of Landsat
images using the RivMAP toolbox by Schwenk (2016). North arrows indicate the flow direction which travels from
R6 to R3. Zoom views highlight some of the complex migration patterns and cutoffs (reproduced from Figure 4.13

of Schwenk, 2016).
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4. The theory of river meanders

4.1. Introduction

The analysis developed in the previous two Chapters have hopefully clarified how curvature
driven forcing mechanisms contribute to determining the flow field and the bed topography pattern
in meandering channels. However, forcing effects do not tell the whole story.

Indeed, so far we have ignored the possible role that the free morphodynamic response of the
channel may play in the process. Mathematically, we have not accounted for the fact that the
homogeneous component of the governing differential problem admits of free solutions. They are
the free bars that we have investigated in Chapter 6I for straight channels. Removing the straight
channel assumption turns out to be quite instructive as it allows to tackle and clarify a number of
important issues.

A first major issue arises from the fact that the spatial periodicity of forcing associated with
channel curvature may resonate with the natural free response of the channel. To grasp this
concept, one must recall that the spectrum of free bars allowed by a straight channel comprises
also a class of non migrating and non amplifying bars characterized by wavenumber λR and aspect
ratio of the channel βR. As already pointed out in Section 6.3I, they do not form spontaneously as
their growth rate vanishes, but they may be forced by external effects. In essence, a meandering
channel with aspect ratio βR and wavenumber λR would resonate with the natural non migrating
and non amplifying free bar. This was first discovered by Blondeaux and Seminara (1985). Of
course, such ideal coincidence never occurs in practice, but the flow field and bed topography of
meandering channels is strongly influenced by resonance within a wide neighborhood of the exact
resonance conditions. This will be discussed in Section 4.3.

A second related issue concerns another fundamental aspect of the problem that may be
understood if one considers a curved channel connected to straight reaches both upstream and
downstream. Curvature gives rise to a deformation of the bed in the bend. One may then
reasonably wonder whether the effects of this deformation are felt in the downstream and/or
upstream straight reaches. This is a general problem that was posed by Zolezzi and Seminara
(2001), who described it as the problem of morphodynamic influence. The reader should not be
surprised that morphodynamic influence may be felt not only downstream but also upstream.
Indeed, influence is essentially the propagation of morphodynamic information which occurs
through bottom waves consisting of migrating bars. We know from Section 6.3I that a class of
bars able to migrate upstream exists for values of the aspect ratio of the channel exceeding the
resonant value βR. Again, they do not form spontaneously as they are not the fastest growing
perturbations, but may be excited by some forcing mechanism, like e.g. bed deformation in curved
bends. The problem of morphodynamic influence will be discussed in Section 4.4.

A third major issue can be intuitively grasped noting that the periodic sequence of point bars
and pools that form in a meandering channel have characteristics that resemble quite closely those
of free bars in straight channels. However, a major difference between point bars and free bars
is that the former are steady (except for possible oscillations driven by temporal variations of
the flow and sediment supply) whilst the latter are usually migrating features even under steady
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Figura 60. Centerlines of meandering patterns along the Ucayali River (Peru) obtained from the analysis of Landsat
images using the RivMAP toolbox by Schwenk (2016). North arrows indicate the flow direction which travels from
R6 to R3. Zoom views highlight some of the complex migration patterns and cutoffs (reproduced from Figure 4.13

of Schwenk, 2016).
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supply conditions. Moreover, free migrating bars are typically shorter than meanders. One may
then wonder whether free bars may coexist with point bars. And, indeed, the early fundamental
observations of Kinoshita (1961) and Kinoshita and Miwa (1974) clarified that coexistence is
possible as long as meander sinuosity is sufficiently small. In other words, alternate bars can
migrate through mildly meandering channels. We will discuss these observations and provide their
theoretical explanation in Section 4.5.

It turns out that all the above issues can be investigated adopting a depth averaged model. In
Tubino and Seminara (1990) and Zolezzi and Seminara (2001) a version of the depth averaged
model including the memory of the secondary flow with zero depth average was employed. Indeed,
nonlinearity of convective acceleration implies that the zero depth average contribution to secondary
flow does induce a non vanishing (dispersive) contribution to the lateral transport of longitudinal
momentum, as first pointed out by Kalkwijk and De Vriend (1980). In Chapters 2 and 3 we
have clarified the effects of this contribution on the hydrodynamics and morphodynamics of river
bends, respectively. However, in the present Chapter, where our goal is to illustrate a number
of fundamental mechanisms controlling the morphodynamics of meandering rivers, we ignore
dispersive effects as they complicate the analysis considerably without modifying the main features
of the relevant processes.

4.2. Depth averaged model of meander morphodynamics

Below, for the sake of generality, we derive a depth averaged model of meander hydrodynamics
including the role of dispersive contributions.

Let us represent the flow field in the following form:

us = U(s, n) + u(s, n, ζ), un = V (s, n) + v(s, n, ζ) (265)

where U and V are the longitudinal and lateral depth averaged components of the flow velocity
whilst u and v are the corresponding components of the secondary flow with zero depth average, i.e.
such that Iu = Iv ≡ 0 (recall that If =

∫ 1

ζ0
f dζ). In principle, one could obtain a formally justified

form of the fluctuations u and v using the general solution obtained in Section 2.5. This approach
would retain the memory of the zero average component of the secondary flow through velocity
fluctuations with the same structure they exhibit in the case of slowly meandering channels.

The differential problem for the steady flow in wide sinuous channels with dimensionless
curvature distribution C(s) is obtained from (51a, 51b, 51c), setting ∂/∂t ≡ 0. Moreover, in order
to allow for a simple comparison with the free bar treatment presented in Chapter 6I, we will not
distinguish between the lateral spatial scale B and the longitudinal spatial scale L. We thus set
L = B or, in dimensionless terms, L = b. Finally, we neglect the effect of normal stresses and note
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that ν0 = δ/b, to find:
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where the tilde (denoting dimensionless quantities) has been dropped for the sake of simplicity.
Next, we substitute from the decomposition (265) into (266a,266b,266c) and perform a depth
integration. This operation generates five types of contributions:

i) terms that depend on depth averaged quantities: they give rise to corresponding terms in the
classical shallow water equations;

ii) terms which involve the 3-D solution evaluated at the bed: those containing the flow velocity
vanish in order to satisfy the no slip condition at the bed; those involving the stress at the
bed do not vanish and give rise to the frictional terms of the shallow water equations;

iii) terms which involve the 3-D solution evaluated at the free surface: their sum vanishes in order
to satisfy the kinematic and dynamic conditions at the free surface;

iv) terms which involve linearly fluctuations with respect to the depth-average: they vanish by
definition of zero average fluctuations;

v) terms which involve fluctuations nonlinearly: they do not vanish in general and represent
the memory of the effect of zero average secondary flow in the context of a depth averaged
formulation (dispersive terms).

We now illustrate the procedure in detail for the continuity equation (266a) whilst analogous
derivations for the momentum equation are left to the reader.

The depth integration of (266a) gives:
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supply conditions. Moreover, free migrating bars are typically shorter than meanders. One may
then wonder whether free bars may coexist with point bars. And, indeed, the early fundamental
observations of Kinoshita (1961) and Kinoshita and Miwa (1974) clarified that coexistence is
possible as long as meander sinuosity is sufficiently small. In other words, alternate bars can
migrate through mildly meandering channels. We will discuss these observations and provide their
theoretical explanation in Section 4.5.

It turns out that all the above issues can be investigated adopting a depth averaged model. In
Tubino and Seminara (1990) and Zolezzi and Seminara (2001) a version of the depth averaged
model including the memory of the secondary flow with zero depth average was employed. Indeed,
nonlinearity of convective acceleration implies that the zero depth average contribution to secondary
flow does induce a non vanishing (dispersive) contribution to the lateral transport of longitudinal
momentum, as first pointed out by Kalkwijk and De Vriend (1980). In Chapters 2 and 3 we
have clarified the effects of this contribution on the hydrodynamics and morphodynamics of river
bends, respectively. However, in the present Chapter, where our goal is to illustrate a number
of fundamental mechanisms controlling the morphodynamics of meandering rivers, we ignore
dispersive effects as they complicate the analysis considerably without modifying the main features
of the relevant processes.

4.2. Depth averaged model of meander morphodynamics

Below, for the sake of generality, we derive a depth averaged model of meander hydrodynamics
including the role of dispersive contributions.

Let us represent the flow field in the following form:

us = U(s, n) + u(s, n, ζ), un = V (s, n) + v(s, n, ζ) (265)

where U and V are the longitudinal and lateral depth averaged components of the flow velocity
whilst u and v are the corresponding components of the secondary flow with zero depth average, i.e.
such that Iu = Iv ≡ 0 (recall that If =

∫ 1

ζ0
f dζ). In principle, one could obtain a formally justified

form of the fluctuations u and v using the general solution obtained in Section 2.5. This approach
would retain the memory of the zero average component of the secondary flow through velocity
fluctuations with the same structure they exhibit in the case of slowly meandering channels.

The differential problem for the steady flow in wide sinuous channels with dimensionless
curvature distribution C(s) is obtained from (51a, 51b, 51c), setting ∂/∂t ≡ 0. Moreover, in order
to allow for a simple comparison with the free bar treatment presented in Chapter 6I, we will not
distinguish between the lateral spatial scale B and the longitudinal spatial scale L. We thus set
L = B or, in dimensionless terms, L = b. Finally, we neglect the effect of normal stresses and note
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that ν0 = δ/b, to find:
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where the tilde (denoting dimensionless quantities) has been dropped for the sake of simplicity.
Next, we substitute from the decomposition (265) into (266a,266b,266c) and perform a depth
integration. This operation generates five types of contributions:

i) terms that depend on depth averaged quantities: they give rise to corresponding terms in the
classical shallow water equations;

ii) terms which involve the 3-D solution evaluated at the bed: those containing the flow velocity
vanish in order to satisfy the no slip condition at the bed; those involving the stress at the
bed do not vanish and give rise to the frictional terms of the shallow water equations;

iii) terms which involve the 3-D solution evaluated at the free surface: their sum vanishes in order
to satisfy the kinematic and dynamic conditions at the free surface;

iv) terms which involve linearly fluctuations with respect to the depth-average: they vanish by
definition of zero average fluctuations;

v) terms which involve fluctuations nonlinearly: they do not vanish in general and represent
the memory of the effect of zero average secondary flow in the context of a depth averaged
formulation (dispersive terms).

We now illustrate the procedure in detail for the continuity equation (266a) whilst analogous
derivations for the momentum equation are left to the reader.

The depth integration of (266a) gives:
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Terms of the second type are proportional to us
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, hence they vanish. No stress
contribution arises in the continuity equation. Terms of the third type give rise to the following
contribution:

1

D

[
− 1

1 + ν0 C(s)n
F 2
ru

∂H

∂s
us

∣∣
1
− F 2

ru

∂H

∂n
un

∣∣
1
+ uz

∣∣
1

]
, (268)

which vanishes identically due to the constraint imposed by the steady dimensionless form of the
kinematic boundary condition (53c) with L = b.

Terms of the fourth type are those proportional to Iu or Iv (or their derivatives) and vanish.
Finally, no term of the fifth type arises as the continuity equation is linear. Under the assumption
that ζ0 does not depend on s and n, the continuity equation then reads:

1
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(DV ) = 0, (269)

Performing a similar analysis for the momentum equation, with the help of some algebra, one
ends up with the following form of the sought depth averaged governing equations:
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where τs and τn are the dimensionless longitudinal and lateral components of the bottom stress,
respectively. They may be expressed through the following classical closure relationships:

τs =
Cf

Cfu
U
√

U2 + V 2, τn =
Cf

Cfu
V
√

U2 + V 2. (272)

The reader should note that the right hand sides of (270) and (271) contain terms of the fifth
type (Iu2 , Iv2 , Iuv) which provide the depth averaged effect of the zero average secondary flow
on momentum transfer. Note that such dispersive terms are in principle always present in depth
averaged models of shallow flows. In practice, they are usually neglected, but they may play some
role in curvilinear flows. This notwithstanding, as pointed out above, as a first approximation, in
what follows we will neglect their contributions.

With the help of the continuity equation (269) the depth averaged momentum equations can
then be simplified and read:
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The reader should note that, setting C(s) = 0, the above equations reduce to the classical steady
shallow water equations valid for straight channels (see equations 470(I), 471(I) and 472(I)).

To complete the hydrodynamic formulation, appropriate boundary conditions must be specified.
The no flux condition at the side walls reads:

V = 0, (n = ±1) (274)

The conditions appropriate to the upstream and downstream open boundaries will be formulated
in Section 4.4.

The hydrodynamic equations are coupled to the Exner equation and related closures presented
in Section 3.1.2. Below, for the sake of simplicity, we restrict ourselves to the bedload dominated
case. Removing the tilde as usual, setting L = b and recalling that βu

√
Cfu = 1/b, the governing

equation (185) then becomes:
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where:
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∂n

]
. (276)

Here we have neglected the weak effect of perturbations of the longitudinal slope on sediment
transport and closure is needed for the angle χ according to the definition (182). In this respect,
although we have neglected the dispersive effects of secondary flows with zero depth average in
the governing momentum equations, following the lead of Blondeaux and Seminara (1985), we
wish to preserve the memory of the latter in the closure adopted for χ. This is not essential for
the development of the theory of river meandering presented in this Chapter, but it has some
quantitative effect on the prediction of the lateral bed slope and can be accounted for at very low
computational cost.

We then assume the following closure for sin(χ):

sinχ =
V√

U2 + V 2
+ ν0 C(s)D7/4 cχ, cχ =
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)
(277)

where the first contribution in the right hand side of the expression for sinχ is associated with the
depth averaged component and the second contribution is an estimate of the effect of the zero
average component of secondary flow.

Let us clarify the latter result. The estimate of the second contribution to sinχ is based on
the expression valid, at the linear level, for fully developed flow in constant curvature channels
with topography (Section 2.4.3), assumed to hold locally in channels with arbitrary distribution
of curvature. We recall that, in the context of weakly sloping beds, the angle χ that the bottom
stress forms with the longitudinal axis can be expressed as in Section 3.1.1, equation (182). On
the other hand, in the case of steady flow in weakly meandering channels with non-flat topography
(Section 2.5), the longitudinal and lateral velocity components (equations 147, 151) take the form

us(s, n, ζ) = U0(s, n)F0(ζ) +O(δ), (278a)

un(s, n, ζ) = δ
{
V1(s, n)F0(ζ) + U0(s, n) C(s)

[
IG11 F0(ζ)− G11(ζ)

]}
. (278b)

As a consequence, recalling equation (182) and assuming for the calculation of sinχ U ≃ U0 and
V ≃ δV1, the closure for sinχ takes the form (277).

Note that the latter appears to be the simplest approximation one may envisage. Although it
is not fully justified in the context of rational perturbation schemes, it is sufficient for the present
purposes.
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Terms of the second type are proportional to us
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which vanishes identically due to the constraint imposed by the steady dimensionless form of the
kinematic boundary condition (53c) with L = b.

Terms of the fourth type are those proportional to Iu or Iv (or their derivatives) and vanish.
Finally, no term of the fifth type arises as the continuity equation is linear. Under the assumption
that ζ0 does not depend on s and n, the continuity equation then reads:
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+
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Performing a similar analysis for the momentum equation, with the help of some algebra, one
ends up with the following form of the sought depth averaged governing equations:
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where τs and τn are the dimensionless longitudinal and lateral components of the bottom stress,
respectively. They may be expressed through the following classical closure relationships:

τs =
Cf

Cfu
U
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U2 + V 2, τn =
Cf

Cfu
V
√

U2 + V 2. (272)

The reader should note that the right hand sides of (270) and (271) contain terms of the fifth
type (Iu2 , Iv2 , Iuv) which provide the depth averaged effect of the zero average secondary flow
on momentum transfer. Note that such dispersive terms are in principle always present in depth
averaged models of shallow flows. In practice, they are usually neglected, but they may play some
role in curvilinear flows. This notwithstanding, as pointed out above, as a first approximation, in
what follows we will neglect their contributions.

With the help of the continuity equation (269) the depth averaged momentum equations can
then be simplified and read:
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The reader should note that, setting C(s) = 0, the above equations reduce to the classical steady
shallow water equations valid for straight channels (see equations 470(I), 471(I) and 472(I)).

To complete the hydrodynamic formulation, appropriate boundary conditions must be specified.
The no flux condition at the side walls reads:

V = 0, (n = ±1) (274)

The conditions appropriate to the upstream and downstream open boundaries will be formulated
in Section 4.4.

The hydrodynamic equations are coupled to the Exner equation and related closures presented
in Section 3.1.2. Below, for the sake of simplicity, we restrict ourselves to the bedload dominated
case. Removing the tilde as usual, setting L = b and recalling that βu

√
Cfu = 1/b, the governing

equation (185) then becomes:
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where:
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Here we have neglected the weak effect of perturbations of the longitudinal slope on sediment
transport and closure is needed for the angle χ according to the definition (182). In this respect,
although we have neglected the dispersive effects of secondary flows with zero depth average in
the governing momentum equations, following the lead of Blondeaux and Seminara (1985), we
wish to preserve the memory of the latter in the closure adopted for χ. This is not essential for
the development of the theory of river meandering presented in this Chapter, but it has some
quantitative effect on the prediction of the lateral bed slope and can be accounted for at very low
computational cost.

We then assume the following closure for sin(χ):

sinχ =
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where the first contribution in the right hand side of the expression for sinχ is associated with the
depth averaged component and the second contribution is an estimate of the effect of the zero
average component of secondary flow.

Let us clarify the latter result. The estimate of the second contribution to sinχ is based on
the expression valid, at the linear level, for fully developed flow in constant curvature channels
with topography (Section 2.4.3), assumed to hold locally in channels with arbitrary distribution
of curvature. We recall that, in the context of weakly sloping beds, the angle χ that the bottom
stress forms with the longitudinal axis can be expressed as in Section 3.1.1, equation (182). On
the other hand, in the case of steady flow in weakly meandering channels with non-flat topography
(Section 2.5), the longitudinal and lateral velocity components (equations 147, 151) take the form

us(s, n, ζ) = U0(s, n)F0(ζ) +O(δ), (278a)

un(s, n, ζ) = δ
{
V1(s, n)F0(ζ) + U0(s, n) C(s)

[
IG11 F0(ζ)− G11(ζ)

]}
. (278b)

As a consequence, recalling equation (182) and assuming for the calculation of sinχ U ≃ U0 and
V ≃ δV1, the closure for sinχ takes the form (277).

Note that the latter appears to be the simplest approximation one may envisage. Although it
is not fully justified in the context of rational perturbation schemes, it is sufficient for the present
purposes.
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Finally, under steady conditions, the usual integral constraints impose that the water flux and
the sediment discharge must keep constant in the longitudinal direction, hence:

∫ 1

−1

U D dn = 2,

∫ 1

−1

Qb
ss dn = 2Qb

s0
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τ∗=τ∗u

= 2Qsu. (279)

4.3. Resonance in meandering channels

We can now investigate the morphodynamics of meandering channels based on the above depth
averaged formulation, that will allow us to disclose its subtle relationship to the morphodynamics
of free bars in straight channels. We will start with the simplest approach where we assume
that meanders are in their infancy, hence characterized by small amplitudes and small curvatures
(Section 4.3.1). Resonance will then emerge naturally as a process occurring under fairly special
conditions, but such to influence the response of the channel also when these conditions are not
exactly met. We will next investigate how nonlinearities damp the resonance mechanism under
weakly nonlinear conditions (i.e., not too far from resonance) (Section 4.3.2) and complete our
analysis discussing how the effects of resonance are felt under fully nonlinear conditions (Section
4.3.3).

4.3.1 Linear theory and the resonance mechanism

Following the usual notations and recalling that in this Chapter we will employ the half-width
of the channel (B) as scale for both the longitudinal and lateral coordinates, we consider a channel
characterized by longitudinal axis such that its projection onto the horizontal plane (s, n) is a sine
generated curve characterized by dimensionless channel curvature C(s) (Figure 61):

C(s) = exp(i λm s) + c.c., (280)

where λm = 2π B/Lm is the intrinsic meander wavenumber, with Lm intrinsic meander wavelength.
The word intrinsic implies that lengths are measured along the s axis.

Let us assume that ν0 is a small parameter, hence:

ν0 ≪ 1, (281)

and use this assumption to linearize the governing equations and the related boundary and integral
conditions around the uniform straight channel solution.

Figura 61. Cartesian reference frame for a sinuous channel and notations

We then look for linear periodic solutions of the depth averaged equations and set:

(U, V,H,D) = (1, 0, H0, 1) + ν0 (U1, V1, H1, D1) e1 + c.c.+O(ν20) (282)
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where we have employed the following notation:

e1 = exp(i λm s) (283)

Note that the quantities U1, V1, H1, D1 are in general complex quantities such that we could also
write

U1 e1 + c.c. = 2Re(U1) cos(λm s)− 2 Im(U1) sin(λm s) = 2
∣∣U1

∣∣ cos(λm s+ φ), (284)

where φ is the phase lag of the longitudinal velocity relative to curvature, and reads:

φ = arctan
Im(U1)

Re(U1)
. (285)

The latter expansion is closely related to, but differs slightly from the one originally employed
by Blondeaux and Seminara (1985). The small parameter employed by Blondeaux and Seminara
(1985) was the meander amplitude ϵ which appears in the cartesian equivalent of (280) that reads:

ya = ϵ exp(i km x) + c.c.. (286)

Here, ya is the lateral cartesian coordinate of the channel axis, x is a cartesian longitudinal
coordinate aligned with the valley, km = 2π B/Lx is a cartesian meander wavenumber (with Lx

the cartesian meander wavelength) and ϵ is a small meander amplitude (Figure 61).
The cartesian scheme is appropriate when the analysis is adopted to investigate the process of

incipient meander formation (see Chapter 5). As pointed out by Blondeaux and Seminara (1985),
the cartesian and intrinsic approaches are related to each other as channel curvature in cartesian
coordinates reads:

ν0C =
d2ya

/
dx2

[
1 +

(
dya

/
dx

)2]3/2 = −ϵ k2m exp(i km x) + c.c.+O(ϵ2 k2m). (287)

Moreover, as the element of the s-coordinate line ds is related to the corresponding cartesian

element dx through the relationship ds =

√
1 +

(
dya

/
dx

)2
dx, it follows that ds coincides with dx

(and correspondingly λm with κm) except for higher order contributions of O(ϵ2 k2m). Hence, it
follows that:

ν0 = ϵ k2m ≃ ϵ λ2
m. (288)

This relationship implies that the forcing terms associated with curvature in Blondeaux and
Seminara (1985) analysis include a factor λ2

m that is absent in the present approach.
Let us then return to our perturbation analysis, which follows closely the lines of the linear

stability analysis for free bars (Section 6.3I), except for the steady character of the present
perturbations and for the presence of forcing (non homogeneous) terms driven by curvature. Using
the same notations as in the free bar case, the reader will readily show that the perturbation
amplitudes U1, V1, H1 and D1 satisfy the following linear ordinary differential system:

a1j U1 + a2j V1 + a3j H1 + a4j D1 = a5j (j = 1, 4), (289)

Moreover, the coefficients of the above linear system of differential equations read:

a11 = i λm, a21 =
d

dn
, a31 = 0, a41 = i λm, (290a)

a12 = i λm + 2βu Cfu, a22 = 0, a32 = i λm, a42 = βu Cfu(cfD − 1), (290b)

a13 = 0, a23 = i λm + βu Cfu, a33 =
d

dn
, a43 = 0, (290c)

a14 = 2 i λm Φb
T , a24 =

d

dn
, a34 = −F 2

ru Rnu
d2

dn2
, a44 = − a34

F 2
ru

+ a′44, (290d)

a51 = 0, a52 = −na′52 = −nβu Cfu, a53 = 1, a54 = 0. (290e)
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Finally, under steady conditions, the usual integral constraints impose that the water flux and
the sediment discharge must keep constant in the longitudinal direction, hence:
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∫ 1
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= 2Qsu. (279)

4.3. Resonance in meandering channels

We can now investigate the morphodynamics of meandering channels based on the above depth
averaged formulation, that will allow us to disclose its subtle relationship to the morphodynamics
of free bars in straight channels. We will start with the simplest approach where we assume
that meanders are in their infancy, hence characterized by small amplitudes and small curvatures
(Section 4.3.1). Resonance will then emerge naturally as a process occurring under fairly special
conditions, but such to influence the response of the channel also when these conditions are not
exactly met. We will next investigate how nonlinearities damp the resonance mechanism under
weakly nonlinear conditions (i.e., not too far from resonance) (Section 4.3.2) and complete our
analysis discussing how the effects of resonance are felt under fully nonlinear conditions (Section
4.3.3).

4.3.1 Linear theory and the resonance mechanism

Following the usual notations and recalling that in this Chapter we will employ the half-width
of the channel (B) as scale for both the longitudinal and lateral coordinates, we consider a channel
characterized by longitudinal axis such that its projection onto the horizontal plane (s, n) is a sine
generated curve characterized by dimensionless channel curvature C(s) (Figure 61):

C(s) = exp(i λm s) + c.c., (280)

where λm = 2π B/Lm is the intrinsic meander wavenumber, with Lm intrinsic meander wavelength.
The word intrinsic implies that lengths are measured along the s axis.

Let us assume that ν0 is a small parameter, hence:

ν0 ≪ 1, (281)

and use this assumption to linearize the governing equations and the related boundary and integral
conditions around the uniform straight channel solution.

Figura 61. Cartesian reference frame for a sinuous channel and notations

We then look for linear periodic solutions of the depth averaged equations and set:

(U, V,H,D) = (1, 0, H0, 1) + ν0 (U1, V1, H1, D1) e1 + c.c.+O(ν20) (282)
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where we have employed the following notation:

e1 = exp(i λm s) (283)

Note that the quantities U1, V1, H1, D1 are in general complex quantities such that we could also
write

U1 e1 + c.c. = 2Re(U1) cos(λm s)− 2 Im(U1) sin(λm s) = 2
∣∣U1

∣∣ cos(λm s+ φ), (284)

where φ is the phase lag of the longitudinal velocity relative to curvature, and reads:

φ = arctan
Im(U1)

Re(U1)
. (285)

The latter expansion is closely related to, but differs slightly from the one originally employed
by Blondeaux and Seminara (1985). The small parameter employed by Blondeaux and Seminara
(1985) was the meander amplitude ϵ which appears in the cartesian equivalent of (280) that reads:

ya = ϵ exp(i km x) + c.c.. (286)

Here, ya is the lateral cartesian coordinate of the channel axis, x is a cartesian longitudinal
coordinate aligned with the valley, km = 2π B/Lx is a cartesian meander wavenumber (with Lx

the cartesian meander wavelength) and ϵ is a small meander amplitude (Figure 61).
The cartesian scheme is appropriate when the analysis is adopted to investigate the process of

incipient meander formation (see Chapter 5). As pointed out by Blondeaux and Seminara (1985),
the cartesian and intrinsic approaches are related to each other as channel curvature in cartesian
coordinates reads:

ν0C =
d2ya

/
dx2

[
1 +

(
dya

/
dx

)2]3/2 = −ϵ k2m exp(i km x) + c.c.+O(ϵ2 k2m). (287)

Moreover, as the element of the s-coordinate line ds is related to the corresponding cartesian

element dx through the relationship ds =

√
1 +

(
dya

/
dx

)2
dx, it follows that ds coincides with dx

(and correspondingly λm with κm) except for higher order contributions of O(ϵ2 k2m). Hence, it
follows that:

ν0 = ϵ k2m ≃ ϵ λ2
m. (288)

This relationship implies that the forcing terms associated with curvature in Blondeaux and
Seminara (1985) analysis include a factor λ2

m that is absent in the present approach.
Let us then return to our perturbation analysis, which follows closely the lines of the linear

stability analysis for free bars (Section 6.3I), except for the steady character of the present
perturbations and for the presence of forcing (non homogeneous) terms driven by curvature. Using
the same notations as in the free bar case, the reader will readily show that the perturbation
amplitudes U1, V1, H1 and D1 satisfy the following linear ordinary differential system:

a1j U1 + a2j V1 + a3j H1 + a4j D1 = a5j (j = 1, 4), (289)

Moreover, the coefficients of the above linear system of differential equations read:

a11 = i λm, a21 =
d

dn
, a31 = 0, a41 = i λm, (290a)

a12 = i λm + 2βu Cfu, a22 = 0, a32 = i λm, a42 = βu Cfu(cfD − 1), (290b)

a13 = 0, a23 = i λm + βu Cfu, a33 =
d

dn
, a43 = 0, (290c)

a14 = 2 i λm Φb
T , a24 =

d

dn
, a34 = −F 2

ru Rnu
d2

dn2
, a44 = − a34

F 2
ru

+ a′44, (290d)

a51 = 0, a52 = −na′52 = −nβu Cfu, a53 = 1, a54 = 0. (290e)
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and
a′44 = Φb

T i λm cfD, a′52 = βu Cfu, (291)

Note that the homogeneous part of the above differential system reduces exactly to the algebraic
system (equations 505(I) and 506(I)) with vanishing growth rate (ω = 0) if the lateral dependence
of the perturbations (U1, V1, H1 and D1) is given the normal form of free bar perturbations
adopted in the linear stability analysis of Section 6.3.1I, and longitudinal slope effect on bedload is
neglected.

The differential system (289) is solved with the following boundary conditions:

V1

∣∣
n=±1

= 0, Qb
sn1

∣∣
n=±1

= 0 →
[
F 2
ru

dH1

dn
− dD1

dn

]

n=±1

=
cχ
Rnu

. (292)

Some algebraic manipulations are needed to reduce the system of four first order differential
equations (289) to a single non-homogeneous fourth order ordinary differential equation with
constant coefficients1. The outcome of this procedure is as follows:

d4V1

dn4
+ Γ1

d2V1

dn2
+ Γ2 V1 = Γ0, (293a)

V1

∣∣
n=±1

= 0,
d2V1

dn2

∣∣∣
n=±1

= Γ3, (293b)

where:

Γ1 =
a′44 − a14

Rnu
+

a32 a23 a11
a12

− 1 + F 2
ruRnua23

a12Rnu
(a41a12 − a42a11) + a14

a12 − a42
a12Rnu

,

(294a)

Γ2 =
a32 a23
a12 Rnu

(a′44 a11 − a14 a41), Γ0 =
a′44 a11 − a14 a41

a12 Rnu
(a′52 + a32 a53), (294b)

Γ3 =
a41 a12 − a11 a42

a12

(
− cχ
Rnu

+ F 2
ru a53

)
+

a11
a12

(a′52 + a32 a53). (294c)

The equation (293) is readily solved in closed form to find:

V1 =
Γ0

Γ2
+ γ1 cosh(µ1 n) + γ2 cosh(µ2 n). (295)

where

µ1 =

√
1

2

(
−Γ1 +

√
Γ2
1 − 4Γ2

)
, µ2 =

√
1

2

(
−Γ1 −

√
Γ2
1 − 4Γ2

)
, (296a)

γ1 =
µ2
2 Γ0/Γ2 + Γ3(

µ2
1 − µ2

2

)
coshµ1

, γ2 =
µ2
1 Γ0/Γ2 + Γ3(

µ2
2 − µ2

1

)
coshµ2

. (296b)

Similar solutions can be obtained for the remaining unknowns U1, H1 and D1 (see Blondeaux and
Seminara, 1985). This exercise is left to the reader.

In Figure 62 we plot the real part of U1, i.e. the amplitude of the component of the longitudinal
perturbation velocity in phase with curvature, as a function of the meander wavenumber λm for
n = 1 and given values of the unperturbed Shields stress τ∗u, the friction coefficient Cfu and the
unperturbed aspect ratio βu. The plot suggests that, for some values of λm and βu with given τ∗u
and Cfu, the morphodynamic response displays a very high peak. A glance at the solution (295,
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Figura 62. The amplitude of the longitudinal component of the perturbation velocity in phase with curvature
Re(U1), evaluated at the outer bank, is plotted versus the meander wavenumber λm. Calculations were performed
according to the theory of Blondeaux and Seminara (1985), modified as discussed in the text, and assuming the

absence of small scale bedforms (i.e. plane bed conditions).

296b) clarifies that, indeed, it becomes unbounded for values of the dimensionless parameters such
that

µ2
1 = µ2

2. (297)

Under these conditions curvature forces a natural solution of the system and resonance occurs.
To understand the origin of resonance the reader should appreciate that the forcing terms

associated with curvature in the system (289) can be thought of as the sum of lateral Fourier
modes identical with those characterizing free bars. This is immediately understood noting that
the coefficient a52 can be expanded in Fourier series (Churchill and Brown, 1987), observing that,
in the interval −1 ≤ n ≤ 1,

n =

∞∑
m=0

Am sin(Mn), Am =

∫ 1

−1

n sin(Mn) dn = (−1)m
2

M2
, M =

(2m+ 1)π

2
. (298)

This expansion thus generate terms proportional to Sm(n) or Cm(n) with m odd or even (recall
the definitions (6.34I)). And we know that, for given τ∗u and Cfu the first lateral mode associated
with the homogeneous part of the system (289) is characterized by vanishing growth rate (ω = 0)
if the aspect ratio βu and the wavenumber λ take the values βR and λR, respectively (see Section
6.3I). It is then clear that a sine generated meander with λm = λR and βu = βR would force a
natural steady and non-amplifying free bar solution.

It is a well-known feature of linear resonators (Kevorkian and Cole, 1981, p. 141) that the
phase of the response of the system to the oscillatory forcing changes quadrant on crossing the
resonance conditions. In order to fully understand this concept, the interested reader may find

1 Use eq. (289) (j = 3) to express dH1/dn in terms of V1. Substitute this expression into eq. (289) (j = 2)
differentiated with respect to n to express dU1/dn in terms of dD1/dn. Substitute this expression into eq.
(289) (j = 1) differentiated with respect to n, to express dD1/dn (and consequently dU1/dn) in terms of V1

and its second derivative. Finally, differentiate with respect to n the eq. (289) (j = 4) and use the previously
derived relationships to express dU1/dn, d3H1/dn3, d3D1/dn3 and dD1/dn in terms of V1 and its second and
fourth derivative.
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and
a′44 = Φb

T i λm cfD, a′52 = βu Cfu, (291)

Note that the homogeneous part of the above differential system reduces exactly to the algebraic
system (equations 505(I) and 506(I)) with vanishing growth rate (ω = 0) if the lateral dependence
of the perturbations (U1, V1, H1 and D1) is given the normal form of free bar perturbations
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equations (289) to a single non-homogeneous fourth order ordinary differential equation with
constant coefficients1. The outcome of this procedure is as follows:

d4V1

dn4
+ Γ1

d2V1

dn2
+ Γ2 V1 = Γ0, (293a)

V1

∣∣
n=±1

= 0,
d2V1

dn2

∣∣∣
n=±1

= Γ3, (293b)

where:

Γ1 =
a′44 − a14

Rnu
+

a32 a23 a11
a12

− 1 + F 2
ruRnua23

a12Rnu
(a41a12 − a42a11) + a14

a12 − a42
a12Rnu

,

(294a)

Γ2 =
a32 a23
a12 Rnu

(a′44 a11 − a14 a41), Γ0 =
a′44 a11 − a14 a41

a12 Rnu
(a′52 + a32 a53), (294b)

Γ3 =
a41 a12 − a11 a42

a12

(
− cχ
Rnu

+ F 2
ru a53

)
+

a11
a12

(a′52 + a32 a53). (294c)

The equation (293) is readily solved in closed form to find:
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Similar solutions can be obtained for the remaining unknowns U1, H1 and D1 (see Blondeaux and
Seminara, 1985). This exercise is left to the reader.

In Figure 62 we plot the real part of U1, i.e. the amplitude of the component of the longitudinal
perturbation velocity in phase with curvature, as a function of the meander wavenumber λm for
n = 1 and given values of the unperturbed Shields stress τ∗u, the friction coefficient Cfu and the
unperturbed aspect ratio βu. The plot suggests that, for some values of λm and βu with given τ∗u
and Cfu, the morphodynamic response displays a very high peak. A glance at the solution (295,
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Figura 62. The amplitude of the longitudinal component of the perturbation velocity in phase with curvature
Re(U1), evaluated at the outer bank, is plotted versus the meander wavenumber λm. Calculations were performed
according to the theory of Blondeaux and Seminara (1985), modified as discussed in the text, and assuming the

absence of small scale bedforms (i.e. plane bed conditions).

296b) clarifies that, indeed, it becomes unbounded for values of the dimensionless parameters such
that

µ2
1 = µ2

2. (297)

Under these conditions curvature forces a natural solution of the system and resonance occurs.
To understand the origin of resonance the reader should appreciate that the forcing terms

associated with curvature in the system (289) can be thought of as the sum of lateral Fourier
modes identical with those characterizing free bars. This is immediately understood noting that
the coefficient a52 can be expanded in Fourier series (Churchill and Brown, 1987), observing that,
in the interval −1 ≤ n ≤ 1,

n =
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m=0

Am sin(Mn), Am =

∫ 1

−1

n sin(Mn) dn = (−1)m
2

M2
, M =
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This expansion thus generate terms proportional to Sm(n) or Cm(n) with m odd or even (recall
the definitions (6.34I)). And we know that, for given τ∗u and Cfu the first lateral mode associated
with the homogeneous part of the system (289) is characterized by vanishing growth rate (ω = 0)
if the aspect ratio βu and the wavenumber λ take the values βR and λR, respectively (see Section
6.3I). It is then clear that a sine generated meander with λm = λR and βu = βR would force a
natural steady and non-amplifying free bar solution.

It is a well-known feature of linear resonators (Kevorkian and Cole, 1981, p. 141) that the
phase of the response of the system to the oscillatory forcing changes quadrant on crossing the
resonance conditions. In order to fully understand this concept, the interested reader may find

1 Use eq. (289) (j = 3) to express dH1/dn in terms of V1. Substitute this expression into eq. (289) (j = 2)
differentiated with respect to n to express dU1/dn in terms of dD1/dn. Substitute this expression into eq.
(289) (j = 1) differentiated with respect to n, to express dD1/dn (and consequently dU1/dn) in terms of V1

and its second derivative. Finally, differentiate with respect to n the eq. (289) (j = 4) and use the previously
derived relationships to express dU1/dn, d3H1/dn3, d3D1/dn3 and dD1/dn in terms of V1 and its second and
fourth derivative.
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Figura 63. The dimensionless quantity ∆s/(Lm/2), is plotted versus (a) the aspect ratio of the channel βu for
different values of the meander wavenumber λm and versus (b) the meander wavenumber λm for given values of the
aspect ratio of the channel βu. Here, ∆s is the longitudinal distance of the peak scour from the bend apex in the

experiments of Colombini et al. (1991) (modified from Colombini et al., 1991).

it useful to read Section 8.1 of the Mathematical Appendix, where we outline the behavior of
forced oscillatory systems in a neighborhood of resonant conditions for a simple toy model. For the
present meandering problem it is sufficient to point out a major implication of the above feature.
On crossing resonance (i.e. as the meander wavenumber λm increases for given aspect ratio βu

or, viceversa, as the aspect ratio increases for given meander wavenumber), the location where
the peak flow occurs crosses the bend apex. This theoretical prediction has been experimentally
confirmed (see Figure 6 of Colombini et al. (1991) and Garcia and Niño (1993)). In particular,
the former Authors have located the position of the peak scour in a sequence of experimental
tests carried out for trains of sine generated meanders characterized by different values of meander
wavenumber and aspect ratio. Results are plotted in Figure 63 in terms of the dimensionless
quantity ∆s/(Lm/2), where ∆s is the longitudinal distance of the peak scour from the bend apex.
The latter ratio may range from −0.5 (peak scour located Lm/4 upstream of the bend apex) to
0.5 (peak scour located Lm/4 downstream of the bend apex). Figure 63 shows a fairly regular
behavior for ∆s/(Lm/2) which decreases with βu (the peak scour moves upstream as discharge
decreases) and increases with λm (the peak scour moves downstream as the meander wavelength
decreases).

The importance of the above results is related to the problem of planform evolution of
meandering rivers, that is extensively discussed in the next Chapter. We will see that theoretical
predictions (Seminara et al., 2001a) and numerical simulations (Lanzoni and Seminara, 2006)
suggest that sub-resonant trains of periodic meanders migrate downstream while super-resonant
trains migrate upstream. This feature is precisely related to the observation that the location of
the peak scour crosses the meander apex as the resonant conditions are crossed.

Before we proceed, it is worth mentioning that the reason why the existence of the resonance
phenomenon disclosed by Blondeaux and Seminara (1985) had been overlooked in the previous
important contribution of Ikeda et al. (1981) was the fact that, in that paper, bed topography was
not determined through the solution of Exner equation coupled with the hydrodynamic equations.
It was related to the flow field only empirically thus preventing the effects of the free bar response
of the system to emerge. This shortcoming was later recognized and corrected by Johannesson
and Parker (1989) in a paper that has enjoyed a great popularity and confirmed all the findings of
Blondeaux and Seminara (1985).

4.3.2 Weakly nonlinear theory of near resonant meanders

Results discussed in the previous Section call for the need of a number of important develop-
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ments.
Linear theory predicts an infinite response of flow and bed topography at resonant conditions.

This is obviously an un-physical behavior that can be removed accounting for nonlinear effects.
Such a development will also allow us to answer a related question: how wide is the range of
meander wave-numbers and aspect ratios of the channel cross section where the effects of resonance
are significantly felt?

These issues are discussed in detail in the Mathematical Appendix, Section 8.1 for a toy model
of nonlinear resonator. The reader not familiar with the subject is advised to read that Section
before proceeding. There, it is shown that nonlinearity turns out to widen the resonant range and
leads to further interesting features like non-uniqueness of the nonlinear response.

Below, we simply discuss the main outcomes of the weakly nonlinear analysis of Seminara and
Tubino (1992), which is based on a perturbation expansion valid in a neighborhood of resonance
following the lines of the approach discussed in the Mathematical Appendix. Results suggest that
nonlinear nearly resonant meanders do behave like other classical nonlinear resonators. Their
response differs significantly from the linear response within a fairly wide range of meander
wave-numbers of practical significance and may be non-unique.

The approach followed by Seminara and Tubino (1992) is based on the recognition that, at
lowest order in the sought expansion in powers of the small parameter ν0, the leading order
contribution must have the structure of the natural solution of the homogeneous linear problem
describing marginally stable non-migrating and non-amplifying free bars, with an amplitude A to
be determined at higher order. In other words, at lowest order, the near resonant solution for any
relevant variable, say the longitudinal component of the velocity U , reads:

U =
[
Au11 e

R
1 S1(n)

]
νξ0 + c.c., (299)

where ξ is an exponent to be determined and eR1 denotes the function e1 evaluated for λm = λR.
The classical argument employed in the analysis of weakly nonlinear resonant oscillations (see
Section 8.1.5) shows that the singular resonant behavior occurring at the linear level is suppressed
by nonlinear effects provided ξ = 1/3. This suggests to set up the following expansion:

U =
[
Au11 e

R
1 S1(n) + c.c.

]
ν
1/3
0 +

+
[
A2 eR2

(
u22 C2(n) + u20

)
+AĀ

(
u02 C2(n) + u00

)
+ c.c.

]
ν
2/3
0

+
(
u31 e

R
1 S1(n) + c.c.

)
ν0 +O(eR3 ν0, ν

4/3
0 ), (300)

with similar expansions envisaged for V , H and D.
Moreover, we expand the width to depth ratio βu and the meander wavenumber λm in

neighborhoods of their resonant values βR and λR, respectively, such that we may explore the
width of the resonant range where the effects of resonance are felt. The usual argument suggests
the following expansion:

βu = βR (1 + b ν
2/3
0 ), λm = λR + λ1 ν

2/3
0 . (301)

Finally, the time variable appropriate to describe the transient evolution of the amplitude function
A is the slow variable T defined as:

T = ν
2/3
0 t. (302)

On substituting from the above expansions into the governing equations and equating terms of
order O(ν

1/3
0 ) one recovers the unforced linear algebraic problem governing spatial free modes

presented in Section 6.3I. Similarly, equating terms of order O(ν
2/3
0 ) we recover problems for

the harmonics 22, 20, 02 and 00 of weakly nonlinear spatial modes which are still unaffected by
curvature (see Section 6.5.2I). At order O(ν0) the differential problem governing the fundamental
reproduced by nonlinear interactions includes non-homogeneous terms associated with curvature.
Since the homogeneous part of this differential problem admits of a non-trivial solution, one must
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Figura 63. The dimensionless quantity ∆s/(Lm/2), is plotted versus (a) the aspect ratio of the channel βu for
different values of the meander wavenumber λm and versus (b) the meander wavenumber λm for given values of the
aspect ratio of the channel βu. Here, ∆s is the longitudinal distance of the peak scour from the bend apex in the

experiments of Colombini et al. (1991) (modified from Colombini et al., 1991).

it useful to read Section 8.1 of the Mathematical Appendix, where we outline the behavior of
forced oscillatory systems in a neighborhood of resonant conditions for a simple toy model. For the
present meandering problem it is sufficient to point out a major implication of the above feature.
On crossing resonance (i.e. as the meander wavenumber λm increases for given aspect ratio βu

or, viceversa, as the aspect ratio increases for given meander wavenumber), the location where
the peak flow occurs crosses the bend apex. This theoretical prediction has been experimentally
confirmed (see Figure 6 of Colombini et al. (1991) and Garcia and Niño (1993)). In particular,
the former Authors have located the position of the peak scour in a sequence of experimental
tests carried out for trains of sine generated meanders characterized by different values of meander
wavenumber and aspect ratio. Results are plotted in Figure 63 in terms of the dimensionless
quantity ∆s/(Lm/2), where ∆s is the longitudinal distance of the peak scour from the bend apex.
The latter ratio may range from −0.5 (peak scour located Lm/4 upstream of the bend apex) to
0.5 (peak scour located Lm/4 downstream of the bend apex). Figure 63 shows a fairly regular
behavior for ∆s/(Lm/2) which decreases with βu (the peak scour moves upstream as discharge
decreases) and increases with λm (the peak scour moves downstream as the meander wavelength
decreases).

The importance of the above results is related to the problem of planform evolution of
meandering rivers, that is extensively discussed in the next Chapter. We will see that theoretical
predictions (Seminara et al., 2001a) and numerical simulations (Lanzoni and Seminara, 2006)
suggest that sub-resonant trains of periodic meanders migrate downstream while super-resonant
trains migrate upstream. This feature is precisely related to the observation that the location of
the peak scour crosses the meander apex as the resonant conditions are crossed.

Before we proceed, it is worth mentioning that the reason why the existence of the resonance
phenomenon disclosed by Blondeaux and Seminara (1985) had been overlooked in the previous
important contribution of Ikeda et al. (1981) was the fact that, in that paper, bed topography was
not determined through the solution of Exner equation coupled with the hydrodynamic equations.
It was related to the flow field only empirically thus preventing the effects of the free bar response
of the system to emerge. This shortcoming was later recognized and corrected by Johannesson
and Parker (1989) in a paper that has enjoyed a great popularity and confirmed all the findings of
Blondeaux and Seminara (1985).

4.3.2 Weakly nonlinear theory of near resonant meanders

Results discussed in the previous Section call for the need of a number of important develop-
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ments.
Linear theory predicts an infinite response of flow and bed topography at resonant conditions.

This is obviously an un-physical behavior that can be removed accounting for nonlinear effects.
Such a development will also allow us to answer a related question: how wide is the range of
meander wave-numbers and aspect ratios of the channel cross section where the effects of resonance
are significantly felt?

These issues are discussed in detail in the Mathematical Appendix, Section 8.1 for a toy model
of nonlinear resonator. The reader not familiar with the subject is advised to read that Section
before proceeding. There, it is shown that nonlinearity turns out to widen the resonant range and
leads to further interesting features like non-uniqueness of the nonlinear response.

Below, we simply discuss the main outcomes of the weakly nonlinear analysis of Seminara and
Tubino (1992), which is based on a perturbation expansion valid in a neighborhood of resonance
following the lines of the approach discussed in the Mathematical Appendix. Results suggest that
nonlinear nearly resonant meanders do behave like other classical nonlinear resonators. Their
response differs significantly from the linear response within a fairly wide range of meander
wave-numbers of practical significance and may be non-unique.

The approach followed by Seminara and Tubino (1992) is based on the recognition that, at
lowest order in the sought expansion in powers of the small parameter ν0, the leading order
contribution must have the structure of the natural solution of the homogeneous linear problem
describing marginally stable non-migrating and non-amplifying free bars, with an amplitude A to
be determined at higher order. In other words, at lowest order, the near resonant solution for any
relevant variable, say the longitudinal component of the velocity U , reads:

U =
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where ξ is an exponent to be determined and eR1 denotes the function e1 evaluated for λm = λR.
The classical argument employed in the analysis of weakly nonlinear resonant oscillations (see
Section 8.1.5) shows that the singular resonant behavior occurring at the linear level is suppressed
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with similar expansions envisaged for V , H and D.
Moreover, we expand the width to depth ratio βu and the meander wavenumber λm in

neighborhoods of their resonant values βR and λR, respectively, such that we may explore the
width of the resonant range where the effects of resonance are felt. The usual argument suggests
the following expansion:

βu = βR (1 + b ν
2/3
0 ), λm = λR + λ1 ν

2/3
0 . (301)

Finally, the time variable appropriate to describe the transient evolution of the amplitude function
A is the slow variable T defined as:

T = ν
2/3
0 t. (302)

On substituting from the above expansions into the governing equations and equating terms of
order O(ν

1/3
0 ) one recovers the unforced linear algebraic problem governing spatial free modes

presented in Section 6.3I. Similarly, equating terms of order O(ν
2/3
0 ) we recover problems for

the harmonics 22, 20, 02 and 00 of weakly nonlinear spatial modes which are still unaffected by
curvature (see Section 6.5.2I). At order O(ν0) the differential problem governing the fundamental
reproduced by nonlinear interactions includes non-homogeneous terms associated with curvature.
Since the homogeneous part of this differential problem admits of a non-trivial solution, one must
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impose a solvability condition. We omit details of the analysis and refer the reader to the original
paper of Seminara and Tubino (1992). The fundamental result of this theory is the following
amplitude equation:

dA

dT
=

[
i λ1 α

R + b βR

(
µR
β + i νRβ

)]
A+ aR A

∣∣A∣∣2 + αR
3 , (303)

where αR, µR
β , νRβ and aR are identical to the corresponding complex coefficients of the amplitude

equation (548(I)), describing the finite-amplitude development of spatially growing bars. Moreover,
αR
3 is the non-homogeneous term associated with the forcing effect of curvature. The solution of

(303) gives the dependence of the complex amplitude A on time for given values of the dimensionless
parameters of the problem. Through the expansions (300) and (301), it then completely determines
the solution for the flow and bottom topography in weakly meandering channels up to third order.

Figura 64. The weakly nonlinear steady-state solution for the amplitude function of near-resonant meanders is
plotted versus the perturbations of the meander wavenumber λm (λ1) and of the width ratio βu (b βR) with

respect to their resonant values, for Shield stress τ∗u = 0.1, and grain roughness ds = 0.01. Solid and dashed lines
denote stable and unstable solutions, respectively (modified from Seminara and Tubino, 1992).

Under steady state conditions (dA/dT = 0) equation (303) admits of equilibrium solutions
Ae that are discussed in some detail in Seminara and Tubino (1992). A simpler treatment for
a model problem is given in Section 8.1. The steady state equation exhibits in general one real
and two complex-conjugate solutions. Hence, under these conditions, the complex solutions being
meaningless, the steady response of the channel is unique. This is shown in Figure 64. However,
the same figure shows that, for given τ∗u and ds, ranges of Ae exist in which the three solutions
of (303) are all real. Hence, the response of the channel may not be unique, a feature typical of
nonlinear oscillators close to resonance. One is then led to investigate which of the three real
solutions is appropriate for a given set of initial conditions. The issue is resolved investigating
the stability of the three solutions. Numerical solutions of the full amplitude equation, performed
following the approach outlined in Section 8.1, reveal that the upper branch of the solution (solid
line in Figure 64) is invariably stable. Conversely, the lower branch and the loop joining the upper
branch to the lower branch (dashed line in Figure 64) are invariably unstable. Moreover, further
analysis allows one to show that the unstable steady solution corresponding to the lower branch
bifurcates into a time-periodic solution, while the unstable solution corresponding to the loop
bifurcates into the steady upper-branch solution. Hence, theory predicts that, as the wavenumber
increases, the solution abruptly shifts from the steady upper-branch behavior to a time-periodic
behavior. In other words, two different types of behavior arise for sub- or super-resonant meanders.
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This can be physically understood noting that, close to resonance, two distinct responses of free
migrating bars exist. Below resonance they do not amplify (hence no homogeneous solution of the
linear unsteady problem exists); above resonance they do amplify. Hence, under super-resonant
conditions, the linearly unstable homogeneous part of the solution interacts nonlinearly with the
steady forced part giving rise to the time-periodic pattern detected in the numerical solution of
(303).

Figura 65. The linear solution and the fundamental component of the weakly nonlinear solution for the
perturbation of the longitudinal velocity at the outer wall (U |n=1) are plotted versus meander wavenumber λm for
different values of the curvature ratio ν0 (τ∗u = 0.08, ds = 0.05, βu = 12). Thin curves: linear theory [ν0U1]n=1,

thick curves: nonlinear theory
[
ν
1/3
0 Au11

]
n=1

. Solid and dashed curves denote real and imaginary parts
respectively. (a) ν0 = 0.01 ; (b) ν0 = 0.025 (modified from Seminara and Tubino, 1992).

It is also instructive to compare the weakly nonlinear resonant solution developed here with the
linear forced solution. This is shown in Figure 65. Notice that in the plots only the contribution
associated with the fundamental harmonic in the longitudinal direction eR1 , i.e. the O(ν

1/3
0 )

component of the weakly nonlinear expansion (300), has been kept. The figure shows that, the
sharp linear peak at resonance is smoothed out and the system response follows a fairly smooth
trend with a relatively weak maximum for values of meander wavenumber larger than the resonant
value. In other words, not only do nonlinear effects suppress the singularity exhibited by the linear
solutions at (λR, βR), but they also control the bed response within a fairly wide range of values
of meander wavenumber whose amplitude depends on the curvature ratio ν0 through (301).

Experimental verification of the resonant response of meandering channels

Systematic laboratory experiments aimed at providing some substantiation to the picture emerging
from theoretical efforts were performed by Colombini et al. (1991) and, few years later, by Garcia
and Niño (1993). Detailed descriptions and discussions of the experimental procedure can be found
in those papers. Let us summarize their main results.

The sinuous channel in each of the experiments of Colombini et al. (1991) consisted of at
least 3.5 meanders, and was characterized by a channel axis following a sine curve. The values
of the curvature ratio ν0, the average slope S and the grain size were kept constant through all
the experiments, whilst the channel wavenumber and the width ratio were varied in a range as
broad as possible close to their resonant values. The value chosen for ν0 was 0.05, large enough
to expect that free migrating bars would be suppressed (see Section 4.5), but small enough for
the perturbation approach to be expected to be sufficiently valid. This value of ν0 corresponds
typically to natural meanders in the initial-intermediate stage of development. The Cartesian
wavenumber km, fell in the range 0.15− 0.30, and the width ratio in the range 11− 20. Sediment
consisted of coarse sand (d50 = 0.76 mm) and small-scale bedforms (ripples, dunes) did not form.
In each experiment forced bars reached an equilibrium configuration, sometimes disturbed by small
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impose a solvability condition. We omit details of the analysis and refer the reader to the original
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Under steady state conditions (dA/dT = 0) equation (303) admits of equilibrium solutions
Ae that are discussed in some detail in Seminara and Tubino (1992). A simpler treatment for
a model problem is given in Section 8.1. The steady state equation exhibits in general one real
and two complex-conjugate solutions. Hence, under these conditions, the complex solutions being
meaningless, the steady response of the channel is unique. This is shown in Figure 64. However,
the same figure shows that, for given τ∗u and ds, ranges of Ae exist in which the three solutions
of (303) are all real. Hence, the response of the channel may not be unique, a feature typical of
nonlinear oscillators close to resonance. One is then led to investigate which of the three real
solutions is appropriate for a given set of initial conditions. The issue is resolved investigating
the stability of the three solutions. Numerical solutions of the full amplitude equation, performed
following the approach outlined in Section 8.1, reveal that the upper branch of the solution (solid
line in Figure 64) is invariably stable. Conversely, the lower branch and the loop joining the upper
branch to the lower branch (dashed line in Figure 64) are invariably unstable. Moreover, further
analysis allows one to show that the unstable steady solution corresponding to the lower branch
bifurcates into a time-periodic solution, while the unstable solution corresponding to the loop
bifurcates into the steady upper-branch solution. Hence, theory predicts that, as the wavenumber
increases, the solution abruptly shifts from the steady upper-branch behavior to a time-periodic
behavior. In other words, two different types of behavior arise for sub- or super-resonant meanders.
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This can be physically understood noting that, close to resonance, two distinct responses of free
migrating bars exist. Below resonance they do not amplify (hence no homogeneous solution of the
linear unsteady problem exists); above resonance they do amplify. Hence, under super-resonant
conditions, the linearly unstable homogeneous part of the solution interacts nonlinearly with the
steady forced part giving rise to the time-periodic pattern detected in the numerical solution of
(303).

Figura 65. The linear solution and the fundamental component of the weakly nonlinear solution for the
perturbation of the longitudinal velocity at the outer wall (U |n=1) are plotted versus meander wavenumber λm for
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It is also instructive to compare the weakly nonlinear resonant solution developed here with the
linear forced solution. This is shown in Figure 65. Notice that in the plots only the contribution
associated with the fundamental harmonic in the longitudinal direction eR1 , i.e. the O(ν
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component of the weakly nonlinear expansion (300), has been kept. The figure shows that, the
sharp linear peak at resonance is smoothed out and the system response follows a fairly smooth
trend with a relatively weak maximum for values of meander wavenumber larger than the resonant
value. In other words, not only do nonlinear effects suppress the singularity exhibited by the linear
solutions at (λR, βR), but they also control the bed response within a fairly wide range of values
of meander wavenumber whose amplitude depends on the curvature ratio ν0 through (301).

Experimental verification of the resonant response of meandering channels

Systematic laboratory experiments aimed at providing some substantiation to the picture emerging
from theoretical efforts were performed by Colombini et al. (1991) and, few years later, by Garcia
and Niño (1993). Detailed descriptions and discussions of the experimental procedure can be found
in those papers. Let us summarize their main results.

The sinuous channel in each of the experiments of Colombini et al. (1991) consisted of at
least 3.5 meanders, and was characterized by a channel axis following a sine curve. The values
of the curvature ratio ν0, the average slope S and the grain size were kept constant through all
the experiments, whilst the channel wavenumber and the width ratio were varied in a range as
broad as possible close to their resonant values. The value chosen for ν0 was 0.05, large enough
to expect that free migrating bars would be suppressed (see Section 4.5), but small enough for
the perturbation approach to be expected to be sufficiently valid. This value of ν0 corresponds
typically to natural meanders in the initial-intermediate stage of development. The Cartesian
wavenumber km, fell in the range 0.15− 0.30, and the width ratio in the range 11− 20. Sediment
consisted of coarse sand (d50 = 0.76 mm) and small-scale bedforms (ripples, dunes) did not form.
In each experiment forced bars reached an equilibrium configuration, sometimes disturbed by small
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propagating sand waves born within the pool at the concave bank and disappearing downstream.
For the smallest wavenumber (km = 0.15), migrating alternate bars with amplitude smaller than
that of the forced bars did also form.

The typical spectrum of the amplitudes of bottom harmonics found by Colombini et al. (1991)
clearly supported the weakly nonlinear nature of the response of bed topography, as the fundamental
11 harmonic was dominant and higher harmonics decayed. Moreover, a nonlinear resonance effect
was indeed operating in the experimental process. In the absence of resonance, a straightforward
perturbation scheme in integer powers of ν0 would be appropriate. As extensively discussed
for the model problem in Section 8.1.5, such an expansion predicts a decay of the intensity of
higher harmonics produced by nonlinear interactions much faster than the one observed. In
particular, second-order harmonics should have an intensity of the order of 5% of the intensity of
the fundamental, very far from observed values of roughly 30%.

Figure 66 shows a comparison between the amplitude of the first harmonic of the solution for
the bottom elevation as predicted by linear and weakly nonlinear theories and the values observed
for the two set of experiments with km = 0.2 and km = 0.15, respectively. The comparison seems
to be fairly satisfactory if account is taken of the fact that the weakly nonlinear solution strictly
applies only within a neighborhood O(ν

2/3
0 ) of the resonant values λR and βR (the resonant range

roughly sketched in the figures). Note that βR in the experiments was close to 13 and λR fell
in the range 0.165 − 0.175 for the values of Shields and roughness parameters typical of these
experiments.

Figura 66. The dimensionless amplitude of the first harmonic of bottom elevation η11 predicted by the weakly
nonlinear theory of Seminara and Tubino (1992) (solid curve) and by the linear theory (dashed curve) is plotted
versus the width ratio of the channel βu and compared with the experimental findings of Colombini et al. (1991) for
two values of the meander wavenumber. The resonant range is defined by (301) with b βR = ±1. (a) km = 0.2; (b)

km = 0.15 (modified from Seminara and Tubino, 1992).

4.3.3 The nonlinear response far from resonance

Let us finally analyze how the effects of resonance decay as we move farther from the resonant
conditions. To fulfill this aim, we employ the model developed by Bolla et al. (2009) and discussed
in Section 3.3.1, which applies to meandering channels with constant widths and slowly varying
weak curvature, but is not restricted to small amplitude perturbations of the bottom topography.

The Figure 67 reports the peak value (Figure 67a) and relative phase lag (Figure 67b) of the
vertically averaged dimensionless longitudinal velocity in a sine generated meander characterized
by different values of βu and given values of the relevant dimensionless parameters (ds, ν0 and τ∗u).
It is noticeable that, for each value of βu, the curves representing the intensity of the maximum
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Figura 67. Maximum value (a) and relative phase lag (b) of the vertically averaged dimensionless longitudinal
velocity computed in sine generated meanders for different values of βu far from resonance (ds = 5 · 10−3,

ν0 = 0.04, and τ∗u = 0.1) (modified from Bolla et al., 2009).

velocity exhibit a peak except for βu = 5. In this case, the curve is interrupted because the value
of the Shields stress falls below the threshold of motion somewhere along the meander. Also,
note that, for increasing values of βu and keeping ν0 constant, the perturbation parameter δ in
the expansion of Bolla et al. (2009) decreases, hence smaller values of the maximum speed are
experienced. Moreover, Figure 67 indicates that, for small values of βu, as the wave number
increases the cross section where the maximum velocity is located moves from downstream (positive
phase lag) to upstream (negative phase lag) relative to the bend apex. For larger values of βu the
trend is similar but the maximum speed is located upstream of the bend apex even for small wave
numbers.

In conclusion, similarly to the weakly nonlinear case, the channel response exhibits a peak of
the longitudinal velocity even for values of the aspect ratios far from its resonant value, but the
intensity of the peak decays. This concludes our overview of the linear and nonlinear aspects of
the resonance mechanism discovered by Blondeaux and Seminara (1985).

4.4. Morphodynamic influence

Let us now investigate the fundamental issue of morhodynamic influence, i.e. the question of
whether the perturbation of bottom topography driven by channel curvature is able to affect the
river morphodynamics downstream and/or upstream of the curved reach.

4.4.1 What influence?

Let us first clarify that the type of influence we will discuss here does not concern one-
dimensional perturbations of bottom topography. Indeed, it has been known since the work of de
Vries (1969) that an upstream 1-D influence may indeed occur in supercritical streams (where
hydrodynamic influence is prevented) through the slow upstream propagation of 1-D bottom waves.

We are concerned here with two-dimensional, bar-type, perturbations of bottom topography.
This problem can be illustrated at best considering the experimental configuration examined by
Struiksma et al. (1985): a curved reach with constant curvature of the channel axis connected to
two straight reaches located upstream and downstream of the curved reach, respectively (Figure 68).
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in Section 3.3.1, which applies to meandering channels with constant widths and slowly varying
weak curvature, but is not restricted to small amplitude perturbations of the bottom topography.
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velocity exhibit a peak except for βu = 5. In this case, the curve is interrupted because the value
of the Shields stress falls below the threshold of motion somewhere along the meander. Also,
note that, for increasing values of βu and keeping ν0 constant, the perturbation parameter δ in
the expansion of Bolla et al. (2009) decreases, hence smaller values of the maximum speed are
experienced. Moreover, Figure 67 indicates that, for small values of βu, as the wave number
increases the cross section where the maximum velocity is located moves from downstream (positive
phase lag) to upstream (negative phase lag) relative to the bend apex. For larger values of βu the
trend is similar but the maximum speed is located upstream of the bend apex even for small wave
numbers.

In conclusion, similarly to the weakly nonlinear case, the channel response exhibits a peak of
the longitudinal velocity even for values of the aspect ratios far from its resonant value, but the
intensity of the peak decays. This concludes our overview of the linear and nonlinear aspects of
the resonance mechanism discovered by Blondeaux and Seminara (1985).

4.4. Morphodynamic influence

Let us now investigate the fundamental issue of morhodynamic influence, i.e. the question of
whether the perturbation of bottom topography driven by channel curvature is able to affect the
river morphodynamics downstream and/or upstream of the curved reach.

4.4.1 What influence?

Let us first clarify that the type of influence we will discuss here does not concern one-
dimensional perturbations of bottom topography. Indeed, it has been known since the work of de
Vries (1969) that an upstream 1-D influence may indeed occur in supercritical streams (where
hydrodynamic influence is prevented) through the slow upstream propagation of 1-D bottom waves.

We are concerned here with two-dimensional, bar-type, perturbations of bottom topography.
This problem can be illustrated at best considering the experimental configuration examined by
Struiksma et al. (1985): a curved reach with constant curvature of the channel axis connected to
two straight reaches located upstream and downstream of the curved reach, respectively (Figure 68).
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Under such conditions, Struiksma et al. (1985) showed that, at the entrance region of the curved
reach, bottom topography adjusts to the new equilibrium through a sequence of damped steady
oscillations of transverse bed slope occurring downstream of the abrupt change of channel curvature.
The development of such non-migrating spatially decaying bars at the bend entrance represents
the clearest example of downstream influence in river morphodynamics as the morphodynamic
effects of the discontinuity in channel curvature is felt downstream. This phenomenon was called
overdeepening, it was numerically reproduced by Struiksma et al. (1985) and later confirmed by
Johannesson and Parker (1989).

The reader should note that the non-migrating spatially decaying bars associated with
overdeepening represent the free contribution to the entrance flow and bed topography.

Figura 68. The dimensionless bed elevation at the outer bank in the experiment T2 of Struiksma et al. (1985)
shows the phenomenon of over-deepening. At the entrance region of a curved channel issuing from a straight reach,
bottom topography adapts through a sequence of damped steady oscillations of transverse bed slope that represent
an example of morphodynamic influence. Also shown are the predictions of Zolezzi and Seminara (2001) using two

different closures for sediment transport, namely Meyer-Peter & Müller (MPM) and Engelund & Hansen (EH)
(modified from Zolezzi and Seminara, 2001).

Yet, a natural question arises: are there any conditions such that the morphodynamics of
meandering rivers is characterized by upstream influence? This is a reasonable question. Indeed
we recall that in Section 6.4I we pointed out that spatially oscillatory free perturbations which
decay fairly slowly are possible solutions of the homogeneous problem. Their influence is felt
over a considerable channel length and grow exponentially in the linear regime downstream or
upstream under sub- or super-resonant conditions, respectively. In other words, it is reasonable
to expect that super-resonant channels may exhibit upstream influence. In the experimental
configuration considered by Struiksma et al. (1985), upstream influence would manifest itself
through the formation of a periodic sequence of bars in the upstream straight reach.

The occurrence of upstream influence has an obvious implication. In order for the upstream
reach to receive the morphodynamic information required to give rise to the bottom modifications,
sufficiently long two-dimensional bed perturbations of the alternate bar type must be able to
migrate upstream. And we know that this is an established property of super-resonant free bars
(see Section 6.3.1I).
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4.4.2 The exact solution of the linear problem of meander morphodynamics

The concepts outlined above can be mathematically framed seeking the exact solution of the
linear problem of meander morphodynamics, i.e. the solution for flow and bed topography in
a meandering channel with arbitrary, albeit mildly, curvature distribution. We then look for
solutions of the depth averaged equations of the form:

(U, V,H,D) = (1, 0, H0, 1) + ν0 (U1, V1, H1, D1) +O(ν20) (304)

Substituting from (304) into ( 273a, 273b, 273c, 275, 276, 277) and equating terms of order O(ν0),
we obtain the following non-homogeneous, linear differential problem, describing the linear response
of the flow field and of the bed configuration to the forcing induced by an arbitrary distribution of
channel curvature:

∂U1

∂s
+

∂V1

∂n
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satisfying the non-homogeneous boundary conditions

V1 = 0 (n = ±1), (306a)
d(F 2

ruH1 −D1)

dn
= b3 C(s) (n = ±1), (306b)

where:

a1 = 2βu Cfu, a2 = (cfD − 1)βu Cfu, a3 = βu Cfu, (307a)
a4 = 2QsT , a5 = QsT cfD, a6 = Rnu (307b)

b1 = −βu Cfu, b2 = 1, b3 =
cχ
Rnu

. (307c)

The linear partial differential problem (305, 306, 307), governs the morphodynamics of weakly
meandering wide rivers with constant width and arbitrary distribution of curvature of the channel
axis. It was derived in a quite similar, but not identical form by Zolezzi and Seminara (2001).
More precisely, for the sake of simplicity, in the present case we have assumed plane bed conditions,
such that the friction coefficient depends only on the relative roughness, and the sediment flux on
the Shields stress.

Moreover, we have ignored all the effects related to dispersive terms. As a result, forcing, i.e.
non-homogeneous, terms in (305b) and (305c) arise from purely metric effects. The forcing term in
(306b) drives a non-vanishing local lateral bed slope at the walls, required for gravity to balance
the lateral bottom stress associated with secondary flow with zero depth average.

In order to allow for the role of the free component of the solution to emerge clearly, it is
convenient to expand (U1, V1, H1, D1) in Fourier series in the lateral direction and remove the
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different closures for sediment transport, namely Meyer-Peter & Müller (MPM) and Engelund & Hansen (EH)
(modified from Zolezzi and Seminara, 2001).

Yet, a natural question arises: are there any conditions such that the morphodynamics of
meandering rivers is characterized by upstream influence? This is a reasonable question. Indeed
we recall that in Section 6.4I we pointed out that spatially oscillatory free perturbations which
decay fairly slowly are possible solutions of the homogeneous problem. Their influence is felt
over a considerable channel length and grow exponentially in the linear regime downstream or
upstream under sub- or super-resonant conditions, respectively. In other words, it is reasonable
to expect that super-resonant channels may exhibit upstream influence. In the experimental
configuration considered by Struiksma et al. (1985), upstream influence would manifest itself
through the formation of a periodic sequence of bars in the upstream straight reach.

The occurrence of upstream influence has an obvious implication. In order for the upstream
reach to receive the morphodynamic information required to give rise to the bottom modifications,
sufficiently long two-dimensional bed perturbations of the alternate bar type must be able to
migrate upstream. And we know that this is an established property of super-resonant free bars
(see Section 6.3.1I).
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4.4.2 The exact solution of the linear problem of meander morphodynamics

The concepts outlined above can be mathematically framed seeking the exact solution of the
linear problem of meander morphodynamics, i.e. the solution for flow and bed topography in
a meandering channel with arbitrary, albeit mildly, curvature distribution. We then look for
solutions of the depth averaged equations of the form:

(U, V,H,D) = (1, 0, H0, 1) + ν0 (U1, V1, H1, D1) +O(ν20) (304)

Substituting from (304) into ( 273a, 273b, 273c, 275, 276, 277) and equating terms of order O(ν0),
we obtain the following non-homogeneous, linear differential problem, describing the linear response
of the flow field and of the bed configuration to the forcing induced by an arbitrary distribution of
channel curvature:

∂U1

∂s
+

∂V1

∂n
+

∂D1

∂s
= 0, (305a)

( ∂

∂s
+ a1

)
U1 +

∂H1

∂s
+ a2 D1 = b1 n C(s), (305b)

( ∂

∂s
+ a3

)
V1 +

∂H1

∂n
= b2 C(s), (305c)

a4
∂U1

∂s
+ a5

∂D1

∂s
+

∂V1

∂n
− a6

∂2H1

∂n2
+ a6

∂2D1

∂n2
= 0, (305d)

satisfying the non-homogeneous boundary conditions

V1 = 0 (n = ±1), (306a)
d(F 2

ruH1 −D1)

dn
= b3 C(s) (n = ±1), (306b)

where:

a1 = 2βu Cfu, a2 = (cfD − 1)βu Cfu, a3 = βu Cfu, (307a)
a4 = 2QsT , a5 = QsT cfD, a6 = Rnu (307b)

b1 = −βu Cfu, b2 = 1, b3 =
cχ
Rnu

. (307c)

The linear partial differential problem (305, 306, 307), governs the morphodynamics of weakly
meandering wide rivers with constant width and arbitrary distribution of curvature of the channel
axis. It was derived in a quite similar, but not identical form by Zolezzi and Seminara (2001).
More precisely, for the sake of simplicity, in the present case we have assumed plane bed conditions,
such that the friction coefficient depends only on the relative roughness, and the sediment flux on
the Shields stress.

Moreover, we have ignored all the effects related to dispersive terms. As a result, forcing, i.e.
non-homogeneous, terms in (305b) and (305c) arise from purely metric effects. The forcing term in
(306b) drives a non-vanishing local lateral bed slope at the walls, required for gravity to balance
the lateral bottom stress associated with secondary flow with zero depth average.

In order to allow for the role of the free component of the solution to emerge clearly, it is
convenient to expand (U1, V1, H1, D1) in Fourier series in the lateral direction and remove the
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effect of the non homogeneous terms of the boundary conditions by setting:

U1(s, n) =

∞∑
m=0

um(s) sin(M n)

V1(s, n) =

∞∑
m=0

vm(s) cos(M n)

D1(s, n) = d1 C n+

∞∑
m=0

dm(s) sin(M n)

H1(s, n) = h1 C n+

∞∑
m=0

hm(s) sin(M n)

(308)

where M = (2m+ 1)π/2 (m = 0, 1, 2, . . . ). Note that the expansion (308) respects the symmetric
character of V1 and the antisymmetric character of U1, H1 and D1. Moreover, we choose the
quantities d1 and h1 such that the lateral momentum equation (305c) and the boundary conditions
for (um, vm, dm, hm) become homogeneous. We thus set:

h1 = b2, d1 = F 2
ru b2 − b3. (309)

Substituting from (308) and (309) into (305a), (305b), (305c) and (305d), and expanding n in
Fourier series (see equation 298), one ends up with the following linear system of four first order
ordinary differential equations:

dum

ds
−M vm +

ddm
ds

= −Am d1
dC
ds

, (310a)
( d

ds
+ a1

)
um +

dhm

ds
+ a2 dm = Am

[
(b1 − a2 d1) C(s)− h1

dC
ds

]
, (310b)

( d

ds
+ a3

)
vm +M hm = 0 , (310c)

a4
dum

ds
+ a5

ddm
ds

−M vm + a6 M
2 (F 2

ru hm − dm) = −a5 d1 Am
dC
ds

. (310d)

A large amount of algebra allows one to reduce the above system to a single fourth order
ordinary differential equation with constant coefficients for um, that may be expressed in the
following form:

(
σ4

d4

ds4
+ σ3

d3

ds3
+ σ2

d2

ds2
+ σ1

d

ds
+ σ0

)
um = −Am

6∑
j=0

ρj+1
dj C
dsj

(311)

where the m-th Fourier terms Am are given by (298) while the coefficients σj (j = 0− 4) and ρj
(j = 0− 6) are expressions involving the coefficients of the differential system.

Once um is known, the remaining unknowns vm, hm and dm are obtained from the following
relationships:

(vm, dm, hm) =

4∑
j=0

(vmj , dmj , hmj)
dj−1 um

dsj−1
+Am

9∑
j=5

(vmj , dmj , hmj)
dj−1 C
dsj−1

(312)

Note that the presence of the coefficient Am ensures that the role of higher harmonics decays
fairly rapidly, whilst the coefficients vmj , dmj , hmj are again given by expressions in terms of
the coefficients of the differential system and depend on the relevant dimensionless parameters
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(βu, ds, τ∗u). The above coefficients, as well as the coefficients σj and ρj , will be provided to the
interested reader on request to the Authors.

In the case of a periodic sequence of sine generated meanders, equation (311) reduces to the
periodic forced equation (293a) which admits of the solution (295).

For channels with arbitrary curvature distributions, the general solution is obtained as the sum
of the homogeneous solution and of a particular solution of the full non homogeneous ordinary
differential equation (311). Hence, the general solution for um(s) may be written in the form:

um(s) = uh
m(s) + up

m(s). (313)

The homogeneous solution has the usual form

uh
m(s) =

4∑
j=1

cmj e
λmjs (314)

where λmj (j = 1, 4) are the characteristic exponents of the homogeneous differential equation and
cmj are integration constants to be determined imposing the boundary conditions at the channel
ends. It is of great relevance to note that the characteristic exponents λmj (j = 1, 4) coincide
with the complex wavenumbers that define the spatial bar modes discussed in Section 6.4.1I. This
implies that a suitable mix of spatial bars is needed in order for the river morhodynamics forced
by channel curvature to adapt to the conditions assigned at the end sections of the river reach
under investigation.

Let us recall the main properties of the above characteristic exponents which emerge from
Figure 96(I):

- one of the exponents is invariably real and positive, one is real and negative, the last two are
complex conjugates;

- the real part of the complex exponents is negative, provided the dimensionless parameter βu

does not exceed a threshold value that, for the first mode (m = 1) coincides with the resonant
value βR;

- for higher order modes (m > 1), the following relationships hold:

βm
R = mβR, λmj(βu; τ∗u, ds) = mλ1j

(βu

m
; τ∗u, ds

)
. (315)

Hence, for sub resonant modes (βu < βm
R ) the complex exponents describe spatial bars whose

amplitudes decay exponentially downstream; viceversa, for super-resonant modes (βu > βm
R ) the

bar amplitudes decay exponentially upstream.
To clarify the effect of the above findings, we first consider the case of a meandering reach

connected both upstream and downstream to infinitely long straight reaches (Figure 69). Under
these conditions, the perturbations driven by channel curvature progressively vanish in both the
upstream and downstream straight reaches such that the homogeneous solution is not needed
to adapt to the end conditions, i.e. the integration constants cmj vanish identically. For this
configuration, the solution for the amplitude um(s) of the m-th mode reduces to the particular
solution up

m(s), which accounts for the forcing effect associated with channel curvature. A classical
approach to derive up

m(s) is the so called method of variation of parameters (see e.g. Coddington and
Levinson, 1955, p. 75). Here, we only report the structure of up

m(s) and its physical interpretation,
referring to Zolezzi and Seminara (2001) for details.
For all sub-resonant modes, i.e. for values of m such that βu < βm

R the solution for up
m(s) has the
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effect of the non homogeneous terms of the boundary conditions by setting:

U1(s, n) =

∞∑
m=0

um(s) sin(M n)

V1(s, n) =

∞∑
m=0

vm(s) cos(M n)

D1(s, n) = d1 C n+

∞∑
m=0

dm(s) sin(M n)

H1(s, n) = h1 C n+

∞∑
m=0

hm(s) sin(M n)

(308)

where M = (2m+ 1)π/2 (m = 0, 1, 2, . . . ). Note that the expansion (308) respects the symmetric
character of V1 and the antisymmetric character of U1, H1 and D1. Moreover, we choose the
quantities d1 and h1 such that the lateral momentum equation (305c) and the boundary conditions
for (um, vm, dm, hm) become homogeneous. We thus set:

h1 = b2, d1 = F 2
ru b2 − b3. (309)

Substituting from (308) and (309) into (305a), (305b), (305c) and (305d), and expanding n in
Fourier series (see equation 298), one ends up with the following linear system of four first order
ordinary differential equations:

dum

ds
−M vm +

ddm
ds

= −Am d1
dC
ds

, (310a)
( d

ds
+ a1

)
um +

dhm

ds
+ a2 dm = Am

[
(b1 − a2 d1) C(s)− h1

dC
ds

]
, (310b)

( d

ds
+ a3

)
vm +M hm = 0 , (310c)

a4
dum

ds
+ a5

ddm
ds

−M vm + a6 M
2 (F 2

ru hm − dm) = −a5 d1 Am
dC
ds

. (310d)

A large amount of algebra allows one to reduce the above system to a single fourth order
ordinary differential equation with constant coefficients for um, that may be expressed in the
following form:

(
σ4

d4

ds4
+ σ3

d3

ds3
+ σ2

d2

ds2
+ σ1

d

ds
+ σ0

)
um = −Am

6∑
j=0

ρj+1
dj C
dsj

(311)

where the m-th Fourier terms Am are given by (298) while the coefficients σj (j = 0− 4) and ρj
(j = 0− 6) are expressions involving the coefficients of the differential system.

Once um is known, the remaining unknowns vm, hm and dm are obtained from the following
relationships:

(vm, dm, hm) =

4∑
j=0

(vmj , dmj , hmj)
dj−1 um

dsj−1
+Am

9∑
j=5

(vmj , dmj , hmj)
dj−1 C
dsj−1

(312)

Note that the presence of the coefficient Am ensures that the role of higher harmonics decays
fairly rapidly, whilst the coefficients vmj , dmj , hmj are again given by expressions in terms of
the coefficients of the differential system and depend on the relevant dimensionless parameters
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(βu, ds, τ∗u). The above coefficients, as well as the coefficients σj and ρj , will be provided to the
interested reader on request to the Authors.

In the case of a periodic sequence of sine generated meanders, equation (311) reduces to the
periodic forced equation (293a) which admits of the solution (295).

For channels with arbitrary curvature distributions, the general solution is obtained as the sum
of the homogeneous solution and of a particular solution of the full non homogeneous ordinary
differential equation (311). Hence, the general solution for um(s) may be written in the form:

um(s) = uh
m(s) + up

m(s). (313)

The homogeneous solution has the usual form

uh
m(s) =

4∑
j=1

cmj e
λmjs (314)

where λmj (j = 1, 4) are the characteristic exponents of the homogeneous differential equation and
cmj are integration constants to be determined imposing the boundary conditions at the channel
ends. It is of great relevance to note that the characteristic exponents λmj (j = 1, 4) coincide
with the complex wavenumbers that define the spatial bar modes discussed in Section 6.4.1I. This
implies that a suitable mix of spatial bars is needed in order for the river morhodynamics forced
by channel curvature to adapt to the conditions assigned at the end sections of the river reach
under investigation.

Let us recall the main properties of the above characteristic exponents which emerge from
Figure 96(I):

- one of the exponents is invariably real and positive, one is real and negative, the last two are
complex conjugates;

- the real part of the complex exponents is negative, provided the dimensionless parameter βu

does not exceed a threshold value that, for the first mode (m = 1) coincides with the resonant
value βR;

- for higher order modes (m > 1), the following relationships hold:

βm
R = mβR, λmj(βu; τ∗u, ds) = mλ1j

(βu

m
; τ∗u, ds

)
. (315)

Hence, for sub resonant modes (βu < βm
R ) the complex exponents describe spatial bars whose

amplitudes decay exponentially downstream; viceversa, for super-resonant modes (βu > βm
R ) the

bar amplitudes decay exponentially upstream.
To clarify the effect of the above findings, we first consider the case of a meandering reach

connected both upstream and downstream to infinitely long straight reaches (Figure 69). Under
these conditions, the perturbations driven by channel curvature progressively vanish in both the
upstream and downstream straight reaches such that the homogeneous solution is not needed
to adapt to the end conditions, i.e. the integration constants cmj vanish identically. For this
configuration, the solution for the amplitude um(s) of the m-th mode reduces to the particular
solution up

m(s), which accounts for the forcing effect associated with channel curvature. A classical
approach to derive up

m(s) is the so called method of variation of parameters (see e.g. Coddington and
Levinson, 1955, p. 75). Here, we only report the structure of up

m(s) and its physical interpretation,
referring to Zolezzi and Seminara (2001) for details.
For all sub-resonant modes, i.e. for values of m such that βu < βm

R the solution for up
m(s) has the
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Figura 69. Sketch of a meandering reach, connected both upstream and downstream to infinitely long straight
reaches, with indication of the regions of morphodynamic influence.

following structure:

up
m = Am um1

∫ ∞

s

exp [−λm1 (t− s)] C(t) dt
︸ ︷︷ ︸

upstream influence

+Am

4∑
j=2

umj

∫ s

−∞
exp [λmj (s− t)] C(t) dt

︸ ︷︷ ︸
downstream influence

+Am

8∑
j=5

umj
d(j−5) C
ds(j−5)

︸ ︷︷ ︸
local effect of curvature

(316)

where the coefficients umj (j = 1, 8) are functions of the relevant dimensionless parameters. The
upstream distribution of channel curvature is felt downstream through the three convolution
integrals corresponding to j = 2, 3, 4. As λm2 is a real order-one number, its influence decays
along a distance of the order of few channel widths. On the contrary, λm3 and λm4 are complex
conjugate and their influence decays over a much greater distance as their damping rates (Re(λm3)
and Re(λm4), respectively) are an order of magnitude smaller than λm2 (at least for the lower
modes). Moreover, they display spatial (bar-type) oscillations with frequencies Im(λm3) and
Im(λm4), respectively. The downstream distribution of channel curvature is only weakly felt
upstream through the first convolution integral (j = 1), which decays fast upstream (as λm1 is an
order-one real number). Finally, the local value of curvature and its local derivatives have a direct
effect on the particular solution through the last term of (316).
For any super-resonant mode, i.e. provided that the aspect ratio βu exceeds the resonant value
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βm
R associated with some mode m, the particular solution takes the form:

up
m = Am

∑
j=1,3,4

umj

∫ ∞

s

exp [−λmj (t− s)] C(t) dt

︸ ︷︷ ︸
upstream influence

+Am um2

∫ s

−∞
exp [λm2 (s− t)] C(t) dt

︸ ︷︷ ︸
downstream influence

+Am

8∑
j=5

umj
d(j−5) C
ds(j−5)

︸ ︷︷ ︸
local effect of curvature

. (317)

Here, the upstream distribution of channel curvature is felt downstream only through the second
convolution integral (corresponding to j = 2). This downstream influence is restricted to a short
reach upstream of the examined cross section, as λm2 is an O(1) real number. The downstream
distribution of channel curvature is now felt upstream through the three convolution integrals
corresponding to j = 1, 3, 4. The first (j = 1) decays fast downstream (λm1 = O(1) real number),
hence its effect is felt within a short reach. The other two (j = 3, 4) decay slowly and display
spatial oscillations (as λm3, λm4 are complex conjugate with fairly small real parts). Finally, the
local value of curvature and its local derivatives have again a direct effect on the particular solution
through the last term of (317). Of course, once the solution for um is known, the remaining
dependent variables are readily obtained from (312).

The above solution has been derived including only contributions that keep bounded within the
flow domain. In other words, exponentially growing contributions have been discarded as, in the
present linear context, they would be unbounded at infinity. This is an obvious limitation of the
linear approach as it does not account for the possibility that exponentially growing perturbations
may evolve in the nonlinear regime such to reach a finite equilibrium amplitude. The issue of
whether, in a nonlinear context, growing and decaying perturbations may coexist can ultimately
be resolved by means of a fully nonlinear analysis. We leave this problem aside for the time being
as the linear theory is sufficient to disclose the existence of the phenomenon of upstream influence
which is our present concern.

The picture arising from the above solution may be simply summarized by stating that the
morphodynamic influence concerning sub-resonant modes is dominantly felt downstream. In
other words, the channel curvature at a given cross section affects the amplitude and phase of
sub-resonant modes in the river reach located downstream of that cross section. On the contrary,
the channel curvature at a given cross section affects the amplitude and phase of super-resonant
modes in the river reach located upstream of that cross section.

In the case of a meandering reach of finite length L (Figure 70), the above solution must be
completed by adding homogeneous terms. These terms allow to fit the conditions imposed at the
initial cross section (s = s0) and the final cross section (s = s0 + L), respectively (Figure 70).
They read:

uh
m = cm1 exp[−λm1 (s0 + L− s)]︸ ︷︷ ︸

upstr. effect of downstr. BC

+

4∑
j=2

cmj exp [λmj (s− s0)]

︸ ︷︷ ︸
downstr. effect of upstr. BC

, (318)

for sub-resonant modes and

uh
m =

∑
j=1,3,4

cmj exp[−λmj (s0 + L− s)]

︸ ︷︷ ︸
upstr. effect of downstr. BC

+ cm2 exp[λm2 (s− s0)]︸ ︷︷ ︸
downstr. effect of upstr. BC

, (319)

127



Theoretical Morphodynamics: River Meandering

Figura 69. Sketch of a meandering reach, connected both upstream and downstream to infinitely long straight
reaches, with indication of the regions of morphodynamic influence.

following structure:

up
m = Am um1

∫ ∞
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exp [−λm1 (t− s)] C(t) dt
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upstream influence
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d(j−5) C
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local effect of curvature

(316)

where the coefficients umj (j = 1, 8) are functions of the relevant dimensionless parameters. The
upstream distribution of channel curvature is felt downstream through the three convolution
integrals corresponding to j = 2, 3, 4. As λm2 is a real order-one number, its influence decays
along a distance of the order of few channel widths. On the contrary, λm3 and λm4 are complex
conjugate and their influence decays over a much greater distance as their damping rates (Re(λm3)
and Re(λm4), respectively) are an order of magnitude smaller than λm2 (at least for the lower
modes). Moreover, they display spatial (bar-type) oscillations with frequencies Im(λm3) and
Im(λm4), respectively. The downstream distribution of channel curvature is only weakly felt
upstream through the first convolution integral (j = 1), which decays fast upstream (as λm1 is an
order-one real number). Finally, the local value of curvature and its local derivatives have a direct
effect on the particular solution through the last term of (316).
For any super-resonant mode, i.e. provided that the aspect ratio βu exceeds the resonant value
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βm
R associated with some mode m, the particular solution takes the form:

up
m = Am

∑
j=1,3,4

umj

∫ ∞

s

exp [−λmj (t− s)] C(t) dt

︸ ︷︷ ︸
upstream influence

+Am um2

∫ s

−∞
exp [λm2 (s− t)] C(t) dt
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downstream influence

+Am

8∑
j=5

umj
d(j−5) C
ds(j−5)

︸ ︷︷ ︸
local effect of curvature

. (317)

Here, the upstream distribution of channel curvature is felt downstream only through the second
convolution integral (corresponding to j = 2). This downstream influence is restricted to a short
reach upstream of the examined cross section, as λm2 is an O(1) real number. The downstream
distribution of channel curvature is now felt upstream through the three convolution integrals
corresponding to j = 1, 3, 4. The first (j = 1) decays fast downstream (λm1 = O(1) real number),
hence its effect is felt within a short reach. The other two (j = 3, 4) decay slowly and display
spatial oscillations (as λm3, λm4 are complex conjugate with fairly small real parts). Finally, the
local value of curvature and its local derivatives have again a direct effect on the particular solution
through the last term of (317). Of course, once the solution for um is known, the remaining
dependent variables are readily obtained from (312).

The above solution has been derived including only contributions that keep bounded within the
flow domain. In other words, exponentially growing contributions have been discarded as, in the
present linear context, they would be unbounded at infinity. This is an obvious limitation of the
linear approach as it does not account for the possibility that exponentially growing perturbations
may evolve in the nonlinear regime such to reach a finite equilibrium amplitude. The issue of
whether, in a nonlinear context, growing and decaying perturbations may coexist can ultimately
be resolved by means of a fully nonlinear analysis. We leave this problem aside for the time being
as the linear theory is sufficient to disclose the existence of the phenomenon of upstream influence
which is our present concern.

The picture arising from the above solution may be simply summarized by stating that the
morphodynamic influence concerning sub-resonant modes is dominantly felt downstream. In
other words, the channel curvature at a given cross section affects the amplitude and phase of
sub-resonant modes in the river reach located downstream of that cross section. On the contrary,
the channel curvature at a given cross section affects the amplitude and phase of super-resonant
modes in the river reach located upstream of that cross section.

In the case of a meandering reach of finite length L (Figure 70), the above solution must be
completed by adding homogeneous terms. These terms allow to fit the conditions imposed at the
initial cross section (s = s0) and the final cross section (s = s0 + L), respectively (Figure 70).
They read:

uh
m = cm1 exp[−λm1 (s0 + L− s)]︸ ︷︷ ︸

upstr. effect of downstr. BC

+

4∑
j=2

cmj exp [λmj (s− s0)]

︸ ︷︷ ︸
downstr. effect of upstr. BC

, (318)

for sub-resonant modes and

uh
m =

∑
j=1,3,4

cmj exp[−λmj (s0 + L− s)]

︸ ︷︷ ︸
upstr. effect of downstr. BC

+ cm2 exp[λm2 (s− s0)]︸ ︷︷ ︸
downstr. effect of upstr. BC

, (319)
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Figura 70. Sketch of a meandering reach of finite length L with indication of the regions of morphodynamic
influence.

for super-resonant modes.

4.4.3 Testing linear predictions in the sub-resonant case: downstream influence

Zolezzi and Seminara (2001) employed the exact solution derived in the previous Section to
ascertain its ability to predict the over-deepening phenomenon outlined in Section 4.4.1. They
examined the configuration depicted in Figure 68, namely a constant curvature channel reach (II)
connected to indefinitely long straight reaches located upstream (I) and downstream (III).

As the curvature of channel axis exhibits discontinuities in the two cross sections located
at s = 0 and s = sL, the solution must be obtained for the three reaches separately imposing
matching at the latter cross sections. We also note that the experiments of Struiksma et al. (1985)
considered only sub-resonant configurations for any mode. Hence, imposing that perturbations of
the flow and bottom topography keep finite as s → ±∞, the solution for um in the three regions
takes the form:

Region I

um = cIm1 exp(λm1 s), (320)

Region II

um = cIIm1 exp

[
λm1

(
s− LII

B

)]
+

4∑
j=2

cIImj exp(λmj s) +Am um5 C (321)

Region III

um =

4∑
j=2

cIIImj exp

[
λmj

(
s− LII

B

)]
, (322)

where, for each free mode m, in the infinitely long straight reaches located upstream and downstream
of the constant curvature bend we have included only the contributions that decay exponentially
at infinity. Of course, once the solution for um is known, the remaining dependent variables are
readily obtained from (312). Note that eight unknown constants arise, namely cIm1, cIImj (j = 1, 4)
and cIIImj (j = 2, 3, 4). They are readily determined imposing matching of the solutions for um, vm,
hm and dm in regions I and II at s = 0, and in regions II and III at s = sL.

Comparison with the experimental observations of Struiksma et al. (1985) was pursued by
Zolezzi and Seminara (2001) by retaining the first five modes in the expansion and good agreement
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was found as demonstrated by Figure 68. Comparison is fairly satisfactory both for the wavelength
and the amplitude of bed deformations. Downstream overdeepening does indeed occur at the
entrance of both the curved reach (II) and of the straight reach (III), induced by the discontinuities
in channel curvature. It is also fair to note that the linear model appears to work sufficiently
well. This is due to the fact that the dimensionless parameter controlling the amplitude of bed
deformations, discussed in Section 3.2.1, keeps sufficiently small in all experiments of Struiksma
et al. (1985).

4.4.4 Testing linear predictions in the super-resonant case: upstream influence

Zolezzi and Seminara (2001) examined theoretically the occurrence of upstream over-deepening
applying the super-resonant solution to a very simple channel configuration. Again with reference
to Figure 68, they considered a straight reach (I) and a curved reach (II) long enough for the effect
of the upstream and downstream ends not to be felt in the region of interest. This allowed to
isolate the upstream influence effect due to a discontinuity in channel curvature. The aspect ratio
of the channel exceeded its resonant value for the first mode only. Under these conditions, in reach
(I), the response of the system is characterized by three oscillating and exponentially growing free
modes, whereas the solution in reach (II) was obtained by adding the solution forced by curvature
to the free response consisting of an exponentially damped free mode only. Hence, the solution for
the first mode (m = 1) reads:

Region I

u1 =
∑

j=1,3,4

cI1j expλ1j s, (323)

Region II

u1 = cII12 expλ12 s+A1 u15 C, (324)

whilst solutions for higher modes (m > 1) are of the form:

Region I

um = cIm1 expλm1 s, (325)

Region II

um =

4∑
j=2

cIImj expλmj s+Am um5 C, (326)

Figure 71 shows the bed profile predicted by the linear solution close to the left bank of the
channel, i.e., at the outer bank of the bend. Notice that finite bed deformations reach a distance of
various tens channel widths in the upstream straight reach, whilst no overdeepening is experienced
in the curved reach.

In order to substantiate the above findings Zolezzi et al. (2005) performed a detailed experimental
work on a 180◦ constant curvature bend, connected upstream and downstream with straight
channel reaches. As discussed below, the main conclusion of linear theory, namely the occurrence of
downstream and upstream over-deepening under sub- and super-resonant conditions was confirmed
by these experiments. However, the picture arising from experimental observations was somewhat
more complicated than linear theory suggests. This was due to two main reasons.

Firstly, in each run free migrating alternate bars were observed to coexist with the steady
point bars forced by curvature, as well as with the steady spatially oscillating bars associated
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Figura 70. Sketch of a meandering reach of finite length L with indication of the regions of morphodynamic
influence.

for super-resonant modes.
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Region I

um = cIm1 exp(λm1 s), (320)

Region II

um = cIIm1 exp

[
λm1

(
s− LII

B

)]
+

4∑
j=2

cIImj exp(λmj s) +Am um5 C (321)

Region III

um =

4∑
j=2

cIIImj exp

[
λmj

(
s− LII

B

)]
, (322)

where, for each free mode m, in the infinitely long straight reaches located upstream and downstream
of the constant curvature bend we have included only the contributions that decay exponentially
at infinity. Of course, once the solution for um is known, the remaining dependent variables are
readily obtained from (312). Note that eight unknown constants arise, namely cIm1, cIImj (j = 1, 4)
and cIIImj (j = 2, 3, 4). They are readily determined imposing matching of the solutions for um, vm,
hm and dm in regions I and II at s = 0, and in regions II and III at s = sL.

Comparison with the experimental observations of Struiksma et al. (1985) was pursued by
Zolezzi and Seminara (2001) by retaining the first five modes in the expansion and good agreement
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was found as demonstrated by Figure 68. Comparison is fairly satisfactory both for the wavelength
and the amplitude of bed deformations. Downstream overdeepening does indeed occur at the
entrance of both the curved reach (II) and of the straight reach (III), induced by the discontinuities
in channel curvature. It is also fair to note that the linear model appears to work sufficiently
well. This is due to the fact that the dimensionless parameter controlling the amplitude of bed
deformations, discussed in Section 3.2.1, keeps sufficiently small in all experiments of Struiksma
et al. (1985).

4.4.4 Testing linear predictions in the super-resonant case: upstream influence

Zolezzi and Seminara (2001) examined theoretically the occurrence of upstream over-deepening
applying the super-resonant solution to a very simple channel configuration. Again with reference
to Figure 68, they considered a straight reach (I) and a curved reach (II) long enough for the effect
of the upstream and downstream ends not to be felt in the region of interest. This allowed to
isolate the upstream influence effect due to a discontinuity in channel curvature. The aspect ratio
of the channel exceeded its resonant value for the first mode only. Under these conditions, in reach
(I), the response of the system is characterized by three oscillating and exponentially growing free
modes, whereas the solution in reach (II) was obtained by adding the solution forced by curvature
to the free response consisting of an exponentially damped free mode only. Hence, the solution for
the first mode (m = 1) reads:

Region I

u1 =
∑

j=1,3,4

cI1j expλ1j s, (323)

Region II

u1 = cII12 expλ12 s+A1 u15 C, (324)

whilst solutions for higher modes (m > 1) are of the form:
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um = cIm1 expλm1 s, (325)

Region II

um =

4∑
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cIImj expλmj s+Am um5 C, (326)

Figure 71 shows the bed profile predicted by the linear solution close to the left bank of the
channel, i.e., at the outer bank of the bend. Notice that finite bed deformations reach a distance of
various tens channel widths in the upstream straight reach, whilst no overdeepening is experienced
in the curved reach.

In order to substantiate the above findings Zolezzi et al. (2005) performed a detailed experimental
work on a 180◦ constant curvature bend, connected upstream and downstream with straight
channel reaches. As discussed below, the main conclusion of linear theory, namely the occurrence of
downstream and upstream over-deepening under sub- and super-resonant conditions was confirmed
by these experiments. However, the picture arising from experimental observations was somewhat
more complicated than linear theory suggests. This was due to two main reasons.

Firstly, in each run free migrating alternate bars were observed to coexist with the steady
point bars forced by curvature, as well as with the steady spatially oscillating bars associated
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Figura 71. The over-deepening phenomenon occurring upstream of a 180◦ constant curvature reach under
super-resonant conditions according to linear predictions are obtained for τ∗u = 0.1 , ds = 0.01, βR = 16.5, β = 30.

Flow direction is left to right. The bed elevation η is computed at the left bank of the channel (n = 1).

with downstream or upstream overdeepening. This was not surprising as we have known since
the early work of Kinoshita (1961) and Kinoshita and Miwa (1974) that free migrating bars may
coexist with forced (stationary) bars driven by curvature in river meanders. In particular, it was
conclusively shown by Kinoshita and Miwa (1974) that a single bend is unable to suppress the
migration of free bars. The mechanism underlying free bar suppression was investigated by Tubino
and Seminara (1990) and will be discussed in the next Section.

The second reason is a consequence of an intrinsic limit of the linear theory. Indeed, within
a linear context, exponentially growing modes must be discarded as they become unbounded at
infinity, whereas in a nonlinear context perturbations may evolve from a linear exponential growth
into a finite amplitude regime reaching asymptotically an equilibrium amplitude, as clarified by
Seminara and Tubino (1992).

For both the above reasons, the pattern observed by Zolezzi et al. (2005) was much richer than
linear predictions suggest. In order to analyze the structure of the bottom perturbation, Zolezzi
et al. (2005) extracted the steady component of the signal using a filtering procedure whereby
the contribution of migrating bars to bed elevation was removed. In other words, the steady
bed topography was obtained along the whole flume by time averaging the bed elevation at any
location. As the time data set included more than one period of migrating bars, the averaging
procedure was performed either over single or multiple periods, leading to almost identical results.
This was taken as a proof that the experiments had reached an average equilibrium configuration.
Figure 72 shows the outcome of the filtering procedure for run U2, one of the three super-resonant
configurations tested in the experiment.

The theory of Zolezzi and Seminara (2001) predicts that upstream influence takes place only
under super-resonant conditions. This has invariably been confirmed by the observations of Zolezzi
et al. (2005). Indeed, steady bed deformations were detected in the upstream straight reach only
in the three super-resonant runs (U1, U2 and U3). On the contrary, in both the sub-resonant runs
(D1 and D2) no significant steady bed deformation was detected in the same reach. An example of
the above findings is reported in Figure 73.

Moreover, direct inspection of Figures 72 and 73 suggests that over-deepening was associated
with an alternate bar configuration. This is consistent with the theory of Zolezzi and Seminara
(2001), which states that upstream over-deepening is associated with super-resonant modes. And,
indeed, the experimental conditions of runs U1, U2 and U3, were such that only the first (alternate
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Figura 72. (a) Instantaneous bed topography measured at the end of run U2 (τ∗u = 0.1 , ds = 0.067, βR = 11.7,
β = 20) by Zolezzi et al. (2005); (b) steady component of bed topography obtained filtering the instantaneous signal.
Run U2 was super-resonant and indeed upstream overdeepening was observed (modified from Zolezzi et al., 2005).

Figura 73. Experimental observations of over-deepening carried out by Zolezzi et al. (2005). (a) Sub-resonant run
D2 (τ∗u = 0.133 , ds = 0.05, βR = 22.1, β = 8.6): over-deepening occurs only downstream; (b) super-resonant run
U3 (τ∗u = 0.1 , ds = 0.01, βR = 14.6, β = 15): over-deepening occurs both upstream and downstream (modified

from Zolezzi et al., 2005).

bar) mode (m = 1) was super-resonant.
These observations are confirmed by the two-dimensional Fourier analysis of the steady bed

deformation. Figure 74 refers to the steady bottom pattern occurred in the upstream reach in
run U2 and D2. For super-resonant conditions (Figure 74a) the bed shape arises essentially from
the contribution of two largely dominant harmonics, the 11 and the 02, where the ij Fourier
component corresponds to the i-th longitudinal mode and the j-th transverse mode. Thus harmonic
11 represents an alternate sequence of riffles and pools, while the 02 pattern is a longitudinally
uniform central deposit (or scour). The latter is triggered by migrating alternate bars through
nonlinear effects, as shown in Colombini et al. (1987). On the other hand, the same Fourier
analysis carried out in the same reach for the sub-resonant runs confirms the absence of significant
steady bed deformation under sub-resonant conditions in accordance with equation (316).

Although the results obtained by Zolezzi et al. (2005) do confirm the general picture of
morphodynamic influence suggested by Zolezzi and Seminara (2001), however differences arise
in the way over-deepening occurs in the curved and downstream straight reaches. As shown in
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Figura 71. The over-deepening phenomenon occurring upstream of a 180◦ constant curvature reach under
super-resonant conditions according to linear predictions are obtained for τ∗u = 0.1 , ds = 0.01, βR = 16.5, β = 30.

Flow direction is left to right. The bed elevation η is computed at the left bank of the channel (n = 1).

with downstream or upstream overdeepening. This was not surprising as we have known since
the early work of Kinoshita (1961) and Kinoshita and Miwa (1974) that free migrating bars may
coexist with forced (stationary) bars driven by curvature in river meanders. In particular, it was
conclusively shown by Kinoshita and Miwa (1974) that a single bend is unable to suppress the
migration of free bars. The mechanism underlying free bar suppression was investigated by Tubino
and Seminara (1990) and will be discussed in the next Section.

The second reason is a consequence of an intrinsic limit of the linear theory. Indeed, within
a linear context, exponentially growing modes must be discarded as they become unbounded at
infinity, whereas in a nonlinear context perturbations may evolve from a linear exponential growth
into a finite amplitude regime reaching asymptotically an equilibrium amplitude, as clarified by
Seminara and Tubino (1992).

For both the above reasons, the pattern observed by Zolezzi et al. (2005) was much richer than
linear predictions suggest. In order to analyze the structure of the bottom perturbation, Zolezzi
et al. (2005) extracted the steady component of the signal using a filtering procedure whereby
the contribution of migrating bars to bed elevation was removed. In other words, the steady
bed topography was obtained along the whole flume by time averaging the bed elevation at any
location. As the time data set included more than one period of migrating bars, the averaging
procedure was performed either over single or multiple periods, leading to almost identical results.
This was taken as a proof that the experiments had reached an average equilibrium configuration.
Figure 72 shows the outcome of the filtering procedure for run U2, one of the three super-resonant
configurations tested in the experiment.

The theory of Zolezzi and Seminara (2001) predicts that upstream influence takes place only
under super-resonant conditions. This has invariably been confirmed by the observations of Zolezzi
et al. (2005). Indeed, steady bed deformations were detected in the upstream straight reach only
in the three super-resonant runs (U1, U2 and U3). On the contrary, in both the sub-resonant runs
(D1 and D2) no significant steady bed deformation was detected in the same reach. An example of
the above findings is reported in Figure 73.

Moreover, direct inspection of Figures 72 and 73 suggests that over-deepening was associated
with an alternate bar configuration. This is consistent with the theory of Zolezzi and Seminara
(2001), which states that upstream over-deepening is associated with super-resonant modes. And,
indeed, the experimental conditions of runs U1, U2 and U3, were such that only the first (alternate
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Figura 72. (a) Instantaneous bed topography measured at the end of run U2 (τ∗u = 0.1 , ds = 0.067, βR = 11.7,
β = 20) by Zolezzi et al. (2005); (b) steady component of bed topography obtained filtering the instantaneous signal.
Run U2 was super-resonant and indeed upstream overdeepening was observed (modified from Zolezzi et al., 2005).

Figura 73. Experimental observations of over-deepening carried out by Zolezzi et al. (2005). (a) Sub-resonant run
D2 (τ∗u = 0.133 , ds = 0.05, βR = 22.1, β = 8.6): over-deepening occurs only downstream; (b) super-resonant run
U3 (τ∗u = 0.1 , ds = 0.01, βR = 14.6, β = 15): over-deepening occurs both upstream and downstream (modified

from Zolezzi et al., 2005).

bar) mode (m = 1) was super-resonant.
These observations are confirmed by the two-dimensional Fourier analysis of the steady bed

deformation. Figure 74 refers to the steady bottom pattern occurred in the upstream reach in
run U2 and D2. For super-resonant conditions (Figure 74a) the bed shape arises essentially from
the contribution of two largely dominant harmonics, the 11 and the 02, where the ij Fourier
component corresponds to the i-th longitudinal mode and the j-th transverse mode. Thus harmonic
11 represents an alternate sequence of riffles and pools, while the 02 pattern is a longitudinally
uniform central deposit (or scour). The latter is triggered by migrating alternate bars through
nonlinear effects, as shown in Colombini et al. (1987). On the other hand, the same Fourier
analysis carried out in the same reach for the sub-resonant runs confirms the absence of significant
steady bed deformation under sub-resonant conditions in accordance with equation (316).

Although the results obtained by Zolezzi et al. (2005) do confirm the general picture of
morphodynamic influence suggested by Zolezzi and Seminara (2001), however differences arise
in the way over-deepening occurs in the curved and downstream straight reaches. As shown in

131



Theoretical Morphodynamics: River Meandering

Figura 74. Two-dimensional Fourier analysis of the steady bed deformation observed in the upstream straight reach
of flume experiments (a) U2 and (b) D2 carried out by Zolezzi et al. (2005). Under super-resonant conditions of run
U2 bed deformation originated from the contribution of two largely dominant harmonics, the 11 and the 02. On the
contrary, in the sub-resonant run D2 no significant steady bed deformation was observed in the upstream straight

reach (modified from Zolezzi et al., 2005).

Figure 73, under sub-resonant conditions over-deepening occurs only in the curved and downstream
straight reaches, in agreement with linear theory and experimental observations of Struiksma et al.
(1985). Similarly, a significant steady bottom deformation is detected in the straight downstream
reach, under super-resonant conditions (for the first mode). This is also in general agreement with
the theory of Zolezzi and Seminara (2001) but with a major difference. The linear theory predicts
that in the downstream straight reach only sub-resonant transverse modes, i.e. modes higher than
the first for the conditions of runs U1, U2 and U3, should be present. On the contrary, a spectral
analysis similar to that shown in Figure 74 showed the presence of a contribution of the first
mode 11 with amplitude comparable to those associated with higher transverse modes. As already
pointed out, this feature cannot be predicted in a linear context, where the exponentially growing
first mode in the downstream reach would not keep bounded at infinity. Similar arguments explain
also the presence of the first mode in the bottom pattern of the curved reach under sub-resonant
conditions. A fully nonlinear numerical solution is then called for in order to provide a complete
reproduction of the experimentally observed patterns.

4.4.5 Morphodynamic regime in the field

The obvious question that one would like to answer at this stage is: to what extent does the
theoretical framework built in this Chapter apply to field conditions? A significant contribution
to the analysis of this important problem was made by Luchi (2009) (but see also Zolezzi et al.,
2009).

These Authors analyzed the morphodynamic regime of a set of 134 alluvial gravel bed rivers
belonging to the relatively wide and tested data set from different geographical locations employed
by Parker et al. (2007). Field data were used as input conditions to be fed into the morphodynamic
model of Zolezzi and Seminara (2001) that assumes dominant bed load and requires the knowledge
of reach-averaged representative values of flow discharge, channel width, water depth, down-channel
slope and mean sediment size. Bankfull conditions were assumed to be appropriate to characterize
the medium-long term morphodynamics. Two main subsets were employed; the North American
(NA) subset and the United Kingdom (UK) subset. The complete solution for the flow and bed
topography was then used to predict the resonant conditions for each of the 134 gravel bed river
reaches. The outcome of the analysis is reported in Figure 75, which shows that, in most cases (96
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reaches, i.e. 71% of the total), super-resonant conditions were found, while only 25 reaches (19%)
turned out to be sub-resonant and 13 reaches (10%) could be defined as near resonant (Figure 75a).
The plot of Figure 75b shows a comparison between the resonant value of βR(τ∗) and the value

Figura 75. (a) Morphodynamic regime of the gravel bed river reaches belonging to the set analyzed by Luchi (2009).
The sub- super-resonant regime is defined in the β − τ∗ plane. Triangles correspond to North American (NA) rivers,
circles to United Kingdom (UK) streams. (b) Comparison between the resonant value of βR(τ∗) and the value of
the aspect ratio β(τ∗) predicted by the quasi-universal bankfull geometry regime relationship proposed by Parker

et al. (2007) (reproduced from Figure 4.2 of Luchi, 2009).

of the aspect ratio β(τ∗) predicted by the quasi-universal bankfull geometry regime relationship
proposed by Parker et al. (2007). This comparison is quite instructive. Gravel bed rivers are
quasi-universally super-resonant at low Shields stresses, and sub-resonant in the higher τ∗ range
(with dominant bed load). A rule of thumb was then proposed by Luchi (2009) to estimate the
threshold value of β for which the transition sub-super resonant is expected to occur. Reaches
with β < 7.5 are likely to be sub-resonant, wider and shallower gravel bed streams are likely
super-resonant.

The latter work has filled a gap in our attempt to construct a rational framework to the
morphodynamics of meandering rivers. An extension of this contribution to the case of sand bed
rivers would be extremely useful to complete the picture.
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Figura 74. Two-dimensional Fourier analysis of the steady bed deformation observed in the upstream straight reach
of flume experiments (a) U2 and (b) D2 carried out by Zolezzi et al. (2005). Under super-resonant conditions of run
U2 bed deformation originated from the contribution of two largely dominant harmonics, the 11 and the 02. On the
contrary, in the sub-resonant run D2 no significant steady bed deformation was observed in the upstream straight

reach (modified from Zolezzi et al., 2005).

Figure 73, under sub-resonant conditions over-deepening occurs only in the curved and downstream
straight reaches, in agreement with linear theory and experimental observations of Struiksma et al.
(1985). Similarly, a significant steady bottom deformation is detected in the straight downstream
reach, under super-resonant conditions (for the first mode). This is also in general agreement with
the theory of Zolezzi and Seminara (2001) but with a major difference. The linear theory predicts
that in the downstream straight reach only sub-resonant transverse modes, i.e. modes higher than
the first for the conditions of runs U1, U2 and U3, should be present. On the contrary, a spectral
analysis similar to that shown in Figure 74 showed the presence of a contribution of the first
mode 11 with amplitude comparable to those associated with higher transverse modes. As already
pointed out, this feature cannot be predicted in a linear context, where the exponentially growing
first mode in the downstream reach would not keep bounded at infinity. Similar arguments explain
also the presence of the first mode in the bottom pattern of the curved reach under sub-resonant
conditions. A fully nonlinear numerical solution is then called for in order to provide a complete
reproduction of the experimentally observed patterns.

4.4.5 Morphodynamic regime in the field

The obvious question that one would like to answer at this stage is: to what extent does the
theoretical framework built in this Chapter apply to field conditions? A significant contribution
to the analysis of this important problem was made by Luchi (2009) (but see also Zolezzi et al.,
2009).

These Authors analyzed the morphodynamic regime of a set of 134 alluvial gravel bed rivers
belonging to the relatively wide and tested data set from different geographical locations employed
by Parker et al. (2007). Field data were used as input conditions to be fed into the morphodynamic
model of Zolezzi and Seminara (2001) that assumes dominant bed load and requires the knowledge
of reach-averaged representative values of flow discharge, channel width, water depth, down-channel
slope and mean sediment size. Bankfull conditions were assumed to be appropriate to characterize
the medium-long term morphodynamics. Two main subsets were employed; the North American
(NA) subset and the United Kingdom (UK) subset. The complete solution for the flow and bed
topography was then used to predict the resonant conditions for each of the 134 gravel bed river
reaches. The outcome of the analysis is reported in Figure 75, which shows that, in most cases (96
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reaches, i.e. 71% of the total), super-resonant conditions were found, while only 25 reaches (19%)
turned out to be sub-resonant and 13 reaches (10%) could be defined as near resonant (Figure 75a).
The plot of Figure 75b shows a comparison between the resonant value of βR(τ∗) and the value

Figura 75. (a) Morphodynamic regime of the gravel bed river reaches belonging to the set analyzed by Luchi (2009).
The sub- super-resonant regime is defined in the β − τ∗ plane. Triangles correspond to North American (NA) rivers,
circles to United Kingdom (UK) streams. (b) Comparison between the resonant value of βR(τ∗) and the value of
the aspect ratio β(τ∗) predicted by the quasi-universal bankfull geometry regime relationship proposed by Parker

et al. (2007) (reproduced from Figure 4.2 of Luchi, 2009).

of the aspect ratio β(τ∗) predicted by the quasi-universal bankfull geometry regime relationship
proposed by Parker et al. (2007). This comparison is quite instructive. Gravel bed rivers are
quasi-universally super-resonant at low Shields stresses, and sub-resonant in the higher τ∗ range
(with dominant bed load). A rule of thumb was then proposed by Luchi (2009) to estimate the
threshold value of β for which the transition sub-super resonant is expected to occur. Reaches
with β < 7.5 are likely to be sub-resonant, wider and shallower gravel bed streams are likely
super-resonant.

The latter work has filled a gap in our attempt to construct a rational framework to the
morphodynamics of meandering rivers. An extension of this contribution to the case of sand bed
rivers would be extremely useful to complete the picture.
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4.5. Free bar suppression in meandering channels

4.5.1 Experimental and field observations

In the late 1950s, a systematic investigation on the morphodynamics of the Ishikari River was
commissioned to a Japanese geomorphologist, R. Kinoshita, by the Natural Resources Division
of the Ministry of Science and Technology of Japan. This investigation exploited aerial surveys
as well as earlier photos taken by reconnaissance flights performed during the second world war.
The output was a monumental report (Kinoshita, 1961), rich of interesting observations and
seminal ideas parallel to the innovative ideas that were emerging from the independent work of the
great American geomorphologist Luna Leopold and his coworkers. Among the cute observations
contained in that report, was the recognition of the distinction between free migrating bars and
forced stationary bars associated with curvature in meandering rivers and the identification of
some measure of channel sinuosity as the appropriate parameter to define the threshold between
two distinct regimes. For sufficiently small sinuosities free bars coexisted with forced bars and
were able to migrate through meandering channels. Exceeding some threshold value of sinuosity,
free bars were suppressed and only forced bars were observed. In Figure 76 we report the original
plot of Kinoshita (1961). The measure of channel sinuosity adopted by Kinoshita (1961) was the
angle θ between straight segments tangent to the channel axis at two consecutive inflection points.
This figure suggests that the threshold value of θ marking the transition between the two regimes
is about 25◦ for weak river slopes, and decreases as the slope increases.

Figura 76. The plots of Kinoshita (1961), showing results of field observations in the Ishikari River. The vertical
coordinate is the inverse of the river slope. The abscissa is the angle θ formed by the straight segments tangent to
the channel axis at two consecutive inflection points, as shown in the upper sketch. Circles denote meandering
reaches where free bars coexisted with forced bars. Diamonds denote meandering reaches where free bars were

suppressed (redrawn from Kinoshita, 1961).

The above field observations were experimentally tested in the later work of Kinoshita and Miwa
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(1974), hereinafter referred to as KM, who wrote an interesting paper published in Japanese, which
remained unknown to the western scientific community until Professor Parker kindly provided
a copy of his English translation of it. The paper described the experiments carried out in an
apparatus consisting of a meandering channel formed “from straight segments at an angle α to each
other ”. Preliminary runs on a straight channel with identical flow and sediment characteristics
provided the length of free bars forming in the absence of channel curvature. The wavelength of
the meandering channel (2 ℓ in figure 77a reproduced from Kinoshita and Miwa, 1974) was chosen
to be either equal to, or a fraction of, the wavelength of free bars.

Results of the meander runs (Figure 77b) confirmed the existence of two distinct morphodynamic
regimes:

- for θ < θc, a train of free bars formed and migrated even after reaching an apparently naturally
stable state where they were perfectly in phase with steady forced bars;

- for θ > θc free bars ceased migration, i.e. temporal bed oscillations disappeared at any given
cross section.

Moreover, the threshold value θc was found to vary in the range 20◦ - 40◦, depending on the
wavelength of the meandering channel. KM’s results suggest that it is the interaction between

Figura 77. The plot of Kinoshita and Miwa (1974), showing results of laboratory observations on a schematic
meandering channel formed by straight segments at an angle θ to each other. The meandering wavelength 2ℓ was
chosen to be either equal to, or a fraction of, the wavelength of free bars formed in preliminary runs on straight

channels under similar conditions. Circles denote runs where free bars coexisted with forced bars. Diamonds denote
runs where free bars were suppressed (redrawn from Kinoshita and Miwa, 1974).

migrating free and steady forced bars which is likely responsible for the suppression of the former
perturbations. It is reasonable to infer that, for suppression to occur, the amplitude of forced bars,
which increases with channel curvature, i.e. with θ, must exceed a threshold value dependent on
meander wavelength.

4.5.2 Theoretical interpretation of the suppression mechanism
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4.5. Free bar suppression in meandering channels

4.5.1 Experimental and field observations

In the late 1950s, a systematic investigation on the morphodynamics of the Ishikari River was
commissioned to a Japanese geomorphologist, R. Kinoshita, by the Natural Resources Division
of the Ministry of Science and Technology of Japan. This investigation exploited aerial surveys
as well as earlier photos taken by reconnaissance flights performed during the second world war.
The output was a monumental report (Kinoshita, 1961), rich of interesting observations and
seminal ideas parallel to the innovative ideas that were emerging from the independent work of the
great American geomorphologist Luna Leopold and his coworkers. Among the cute observations
contained in that report, was the recognition of the distinction between free migrating bars and
forced stationary bars associated with curvature in meandering rivers and the identification of
some measure of channel sinuosity as the appropriate parameter to define the threshold between
two distinct regimes. For sufficiently small sinuosities free bars coexisted with forced bars and
were able to migrate through meandering channels. Exceeding some threshold value of sinuosity,
free bars were suppressed and only forced bars were observed. In Figure 76 we report the original
plot of Kinoshita (1961). The measure of channel sinuosity adopted by Kinoshita (1961) was the
angle θ between straight segments tangent to the channel axis at two consecutive inflection points.
This figure suggests that the threshold value of θ marking the transition between the two regimes
is about 25◦ for weak river slopes, and decreases as the slope increases.

Figura 76. The plots of Kinoshita (1961), showing results of field observations in the Ishikari River. The vertical
coordinate is the inverse of the river slope. The abscissa is the angle θ formed by the straight segments tangent to
the channel axis at two consecutive inflection points, as shown in the upper sketch. Circles denote meandering
reaches where free bars coexisted with forced bars. Diamonds denote meandering reaches where free bars were

suppressed (redrawn from Kinoshita, 1961).

The above field observations were experimentally tested in the later work of Kinoshita and Miwa
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(1974), hereinafter referred to as KM, who wrote an interesting paper published in Japanese, which
remained unknown to the western scientific community until Professor Parker kindly provided
a copy of his English translation of it. The paper described the experiments carried out in an
apparatus consisting of a meandering channel formed “from straight segments at an angle α to each
other ”. Preliminary runs on a straight channel with identical flow and sediment characteristics
provided the length of free bars forming in the absence of channel curvature. The wavelength of
the meandering channel (2 ℓ in figure 77a reproduced from Kinoshita and Miwa, 1974) was chosen
to be either equal to, or a fraction of, the wavelength of free bars.

Results of the meander runs (Figure 77b) confirmed the existence of two distinct morphodynamic
regimes:

- for θ < θc, a train of free bars formed and migrated even after reaching an apparently naturally
stable state where they were perfectly in phase with steady forced bars;

- for θ > θc free bars ceased migration, i.e. temporal bed oscillations disappeared at any given
cross section.

Moreover, the threshold value θc was found to vary in the range 20◦ - 40◦, depending on the
wavelength of the meandering channel. KM’s results suggest that it is the interaction between

Figura 77. The plot of Kinoshita and Miwa (1974), showing results of laboratory observations on a schematic
meandering channel formed by straight segments at an angle θ to each other. The meandering wavelength 2ℓ was
chosen to be either equal to, or a fraction of, the wavelength of free bars formed in preliminary runs on straight

channels under similar conditions. Circles denote runs where free bars coexisted with forced bars. Diamonds denote
runs where free bars were suppressed (redrawn from Kinoshita and Miwa, 1974).

migrating free and steady forced bars which is likely responsible for the suppression of the former
perturbations. It is reasonable to infer that, for suppression to occur, the amplitude of forced bars,
which increases with channel curvature, i.e. with θ, must exceed a threshold value dependent on
meander wavelength.

4.5.2 Theoretical interpretation of the suppression mechanism
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A successful attempt to provide a theoretical interpretation of the above observations was made
by Tubino and Seminara (1990) (but see also Seminara and Tubino (1989)). The analysis, based
on a perturbation approach, is conceptually straightforward but formally complicated. In order to
help mathematically inclined readers to fully appreciate this analysis, we have provided in Section
8.2 of the Mathematical Appendix an application of the same ideas to a simplified model as a
preliminary step to the full treatment contained in Tubino and Seminara (1990). Here, we limit
ourselves to outlining the main ideas of the mathematical approach and its physical meaning.

Let us consider a meandering channel characterized by the usual sine-generated curvature
distribution. Let λm and βu denote the meander wavenumber and the aspect ratio under uniform
conditions, respectively. Moreover, let us set ourselves within a neighborhood of the critical
conditions for the onset of free migrating bars by assuming that:

βu = βc + ϵ2 b, λ = λc, ω = ωc (327)

Here, ϵ denotes a small parameter, and b is the dummy parameter introduced in Chapter 6I
(see equation 528(I)) that allows to consider either supercritical (b = 1) or sub-critical (b = −1)
conditions; λc is the wavenumber of free bars at critical conditions and ωc the corresponding
angular frequency.

Under supercritical conditions and in the absence of curvature, we expect to observe the
development of free migrating perturbations, say of bed elevation ηf , of the form:

ηf = ϵA(τ) sin(M n)E1 + c.c. (328)

where, using notations as in Chapter 6I,

E1 = exp[i(λc s− ωc t)]. (329)

The above perturbations consist of harmonic waves with longitudinal wavenumber λc and lateral
mode m such that M = π/2m. They propagate in the s-direction with migration speed ωc/λc

and amplitude proportional to the square root of the distance (βu − βc) of the control parameter
βu from its critical value. These waves grow slowly in time, i.e. they amplify on the slow time
scale (τ = ϵ2 t). Linearly, the growth is exponential, whilst, reaching the finite amplitude regime,
growth is progressively damped until the free bar reaches an equilibrium amplitude satisfying the
solution of a Landau-Stuart amplitude equation (eq. 534(I)).

On the other hand, in the presence of curvature and in the absence of free bars, we expect to
observe the development of forced stationary perturbations of bed elevation ηm, of the form:

ηm = ν0 η1(n) e1 + c.c. (330)

where
e1 = exp(i λm s), (331)

as in Section 4.3.1. These perturbations then consist of stationary waves with longitudinal
wavenumber λm and complex amplitude proportional to the curvature ratio ν0, assumed to be
sufficiently small.

The problem we wish to solve is: does the presence of spatially forced modes prevent the
development of free temporal modes? Are there any threshold conditions in the space of the
relevant physical parameters separating regions where coexistence is possible from regions where
free modes are suppressed?

In order to answer these subtle questions, one needs to follow the cascade of interactions
arising when the O(ϵ) free temporal mode coexists with the O(ν0) forced spatial mode. The word
interaction, in a weakly nonlinear context, is simply equivalent to seeking the consequences of
taking products of free modes with themselves, forced modes with themselves and free modes with
forced modes. Then, one immediately recognizes that, at second order one finds:

- the O(ϵ2) free-free interactions already analyzed in Chapter 6I when dealing with the weakly
nonlinear stability theory (Section 6.5.1I);
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- the O(ν20) forced-forced interactions already analyzed in the present Chapter when dealing
with the weakly nonlinear forced response (Section 4.3.2).

- additional second order O(ν0 ϵ) mixed terms which account for the interactions between free
and forced modes, proportional to E1 e1 = exp[i (λc + λm) s− ω t], E1 ē1 and their complex
conjugates.

At third order, we are interested only in interactions that reproduce the fundamental free
mode, as those interactions determine the fate of the temporal evolution of free bars. It is readily
seen that the free mode is reproduced by three types of interactions: free O(ϵ)-free O(ϵ2), free
O(ϵ)-forced O(ν20) and mixed O(ν0ϵ)-forced O(ν0). These three contributions occur at the same
order of approximation provided one sets:

ν0 = kr ϵ, (332)

with kr a real O(1) quantity.
Hence, we may expect that, provided the forcing parameter ν0 is of the order of ϵ, i.e. the

amplitudes of the fundamental free and forced modes are of the same order of magnitude, then
the free-forced interaction is significant and may alter the usual picture of weakly nonlinear free
modes amplifying and reaching an equilibrium amplitude asymptotically in time.

The above intuitive arguments can be formalized seeking a solution of the governing equations
in the form of a composite expansion in terms of the two parameters ν0 and ϵ subject to the
condition (332), including free, forced and mixed interactions. The approach is described in detail
by Tubino and Seminara (1990). The outcome of the analysis is a modified amplitude equation
obtained, as usual, imposing that secular terms generated at third order must vanish. One finds:

dA

dτ
=

[
b βc

(
µβ + i νβ

)
+ k2r α11

]
A+

[
ar + i ai

]
A2 Ā. (333)

where coefficients µβ , νβ , ar and ai are identical with those found for free bars (recall equation
534(I)) and α11 is a new complex coefficient. Each of the above coefficients is a function of the
unperturbed Shields stress τ∗u and of the dimensionless grain size ds. The coefficient α11 is also a
function of the meander wavenumber λm.

Equation (333) is of Landau-Stuart type and reduces to the amplitude equation for free bars in
straight channels derived by Colombini et al. (1987) as kr → 0. For finite kr, equation (333) admits
of supercritical equilibrium solutions as T → ∞ provided the ratio

[
b βc µβ + k2r Re(α11)

]
/ar

is negative. Thus curvature does affect the presence of free bars in meandering channels. We
know from Colombini et al. (1987) that b βc µβ/ar is always negative. Hence, curvature can
suppress free alternate bars provided sgn

[
Re(α11)

]
̸= sgn

[
µβ

]
. Under the latter conditions[

b βc µβ + k2r Re(α11)
]

changes sign when the following condition is satisfied

kr = krc1 =

√
− b βc µβ

Re(α11)
. (334)

Here, the threshold value krc1 depends on the unperturbed Shields parameter τ∗u, the dimensionless
grain size ds and the meander wavenumber λm.

For values of λm/λc such that the critical value krc1 defined by (334) exists, the critical value
ν0c1 of the curvature ratio able to suppress free bars is given by the following relationship

ν0c1 = krc1

√
βu − βc

b
. (335)

Physically, equation (335) is equivalent to simply stating that, the larger the amplitude of free
bars the more sinuous the channel should be in order to suppress them. Although the dependence
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A successful attempt to provide a theoretical interpretation of the above observations was made
by Tubino and Seminara (1990) (but see also Seminara and Tubino (1989)). The analysis, based
on a perturbation approach, is conceptually straightforward but formally complicated. In order to
help mathematically inclined readers to fully appreciate this analysis, we have provided in Section
8.2 of the Mathematical Appendix an application of the same ideas to a simplified model as a
preliminary step to the full treatment contained in Tubino and Seminara (1990). Here, we limit
ourselves to outlining the main ideas of the mathematical approach and its physical meaning.

Let us consider a meandering channel characterized by the usual sine-generated curvature
distribution. Let λm and βu denote the meander wavenumber and the aspect ratio under uniform
conditions, respectively. Moreover, let us set ourselves within a neighborhood of the critical
conditions for the onset of free migrating bars by assuming that:

βu = βc + ϵ2 b, λ = λc, ω = ωc (327)

Here, ϵ denotes a small parameter, and b is the dummy parameter introduced in Chapter 6I
(see equation 528(I)) that allows to consider either supercritical (b = 1) or sub-critical (b = −1)
conditions; λc is the wavenumber of free bars at critical conditions and ωc the corresponding
angular frequency.

Under supercritical conditions and in the absence of curvature, we expect to observe the
development of free migrating perturbations, say of bed elevation ηf , of the form:

ηf = ϵA(τ) sin(M n)E1 + c.c. (328)

where, using notations as in Chapter 6I,

E1 = exp[i(λc s− ωc t)]. (329)

The above perturbations consist of harmonic waves with longitudinal wavenumber λc and lateral
mode m such that M = π/2m. They propagate in the s-direction with migration speed ωc/λc

and amplitude proportional to the square root of the distance (βu − βc) of the control parameter
βu from its critical value. These waves grow slowly in time, i.e. they amplify on the slow time
scale (τ = ϵ2 t). Linearly, the growth is exponential, whilst, reaching the finite amplitude regime,
growth is progressively damped until the free bar reaches an equilibrium amplitude satisfying the
solution of a Landau-Stuart amplitude equation (eq. 534(I)).

On the other hand, in the presence of curvature and in the absence of free bars, we expect to
observe the development of forced stationary perturbations of bed elevation ηm, of the form:

ηm = ν0 η1(n) e1 + c.c. (330)

where
e1 = exp(i λm s), (331)

as in Section 4.3.1. These perturbations then consist of stationary waves with longitudinal
wavenumber λm and complex amplitude proportional to the curvature ratio ν0, assumed to be
sufficiently small.

The problem we wish to solve is: does the presence of spatially forced modes prevent the
development of free temporal modes? Are there any threshold conditions in the space of the
relevant physical parameters separating regions where coexistence is possible from regions where
free modes are suppressed?

In order to answer these subtle questions, one needs to follow the cascade of interactions
arising when the O(ϵ) free temporal mode coexists with the O(ν0) forced spatial mode. The word
interaction, in a weakly nonlinear context, is simply equivalent to seeking the consequences of
taking products of free modes with themselves, forced modes with themselves and free modes with
forced modes. Then, one immediately recognizes that, at second order one finds:

- the O(ϵ2) free-free interactions already analyzed in Chapter 6I when dealing with the weakly
nonlinear stability theory (Section 6.5.1I);
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- the O(ν20) forced-forced interactions already analyzed in the present Chapter when dealing
with the weakly nonlinear forced response (Section 4.3.2).

- additional second order O(ν0 ϵ) mixed terms which account for the interactions between free
and forced modes, proportional to E1 e1 = exp[i (λc + λm) s− ω t], E1 ē1 and their complex
conjugates.

At third order, we are interested only in interactions that reproduce the fundamental free
mode, as those interactions determine the fate of the temporal evolution of free bars. It is readily
seen that the free mode is reproduced by three types of interactions: free O(ϵ)-free O(ϵ2), free
O(ϵ)-forced O(ν20) and mixed O(ν0ϵ)-forced O(ν0). These three contributions occur at the same
order of approximation provided one sets:

ν0 = kr ϵ, (332)

with kr a real O(1) quantity.
Hence, we may expect that, provided the forcing parameter ν0 is of the order of ϵ, i.e. the

amplitudes of the fundamental free and forced modes are of the same order of magnitude, then
the free-forced interaction is significant and may alter the usual picture of weakly nonlinear free
modes amplifying and reaching an equilibrium amplitude asymptotically in time.

The above intuitive arguments can be formalized seeking a solution of the governing equations
in the form of a composite expansion in terms of the two parameters ν0 and ϵ subject to the
condition (332), including free, forced and mixed interactions. The approach is described in detail
by Tubino and Seminara (1990). The outcome of the analysis is a modified amplitude equation
obtained, as usual, imposing that secular terms generated at third order must vanish. One finds:

dA

dτ
=

[
b βc

(
µβ + i νβ

)
+ k2r α11

]
A+

[
ar + i ai

]
A2 Ā. (333)

where coefficients µβ , νβ , ar and ai are identical with those found for free bars (recall equation
534(I)) and α11 is a new complex coefficient. Each of the above coefficients is a function of the
unperturbed Shields stress τ∗u and of the dimensionless grain size ds. The coefficient α11 is also a
function of the meander wavenumber λm.

Equation (333) is of Landau-Stuart type and reduces to the amplitude equation for free bars in
straight channels derived by Colombini et al. (1987) as kr → 0. For finite kr, equation (333) admits
of supercritical equilibrium solutions as T → ∞ provided the ratio

[
b βc µβ + k2r Re(α11)

]
/ar

is negative. Thus curvature does affect the presence of free bars in meandering channels. We
know from Colombini et al. (1987) that b βc µβ/ar is always negative. Hence, curvature can
suppress free alternate bars provided sgn

[
Re(α11)

]
̸= sgn

[
µβ

]
. Under the latter conditions[

b βc µβ + k2r Re(α11)
]

changes sign when the following condition is satisfied

kr = krc1 =

√
− b βc µβ

Re(α11)
. (334)

Here, the threshold value krc1 depends on the unperturbed Shields parameter τ∗u, the dimensionless
grain size ds and the meander wavenumber λm.

For values of λm/λc such that the critical value krc1 defined by (334) exists, the critical value
ν0c1 of the curvature ratio able to suppress free bars is given by the following relationship

ν0c1 = krc1

√
βu − βc

b
. (335)

Physically, equation (335) is equivalent to simply stating that, the larger the amplitude of free
bars the more sinuous the channel should be in order to suppress them. Although the dependence
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of ν0c1 on βu predicted by (335) is fairly strong, it could not be detected in the experiments of
Kinoshita and Miwa (1974) where βu was held constant.

A second important outcome of the modified amplitude equation (333) is the prediction of the
effect of curvature on the speed of free bars. At equilibrium, we can write

A = |Ae| exp(i ω̂ τ), (336)

with ω̂ real. Substituting from (336) into (333) one finds:

ω̂ = b βc νβ + k2r Im(α11) +
∣∣Ae

∣∣2 ai (337)

The dimensionless wavespeed of free bars in a meandering channel, cm, is affected by curvature
according to the following relationship :

cm = (ωc − ϵ2 ω̂)/λc = (ω1 + ν20 ω2)/λc (338)

where ω1 is the angular frequency of weakly nonlinear bars in a straight channel (ω1 = ωc −
ϵ2
(
b βc νβ +

∣∣Ae

∣∣2 ai
)
) and ν20 ω2 is the correction of the angular frequency of weakly nonlinear

bars in a meandering channel (ω2 = −Im(α11)). Thus curvature will slow down or speed up the
propagation of free bars depending on ω2 being negative or positive.

If the former condition is satisfied, then (338) allows one to define a second critical value of the
curvature ratio ν0c2 as the minimum value of ν0 such that cm vanishes. One finds:

ν0c2 =

√
−ω1

ω2
(339)

where ν0c2 will depend on the values of the relevant parameters τ∗u, ds, λm and βu.
Summarizing the above findings, we suggest the existence of the following regimes:

i) ν0c1 < ν0c2: free bars are damped by curvature and slow down for ν0 < ν0c1, whereas they
are suppressed for ν0 > ν0c1;

ii) ν0c1 > ν0c2:

- free bars are damped, slow down and migrate downstream for ν0 < ν0c2;
- free bars are damped and migrate upstream (possibly at a very low rate) for ν0c2 < ν0 <

ν0c1;
- free bars are suppressed for ν0 > ν0c1.

A quantitative comparison between the above theoretical predictions of the critical values of
krc1 = ν0c1/ϵ and krc2 = ν0c2/ϵ and the experimental results of Kinoshita and Miwa (1974) was
pursued by Tubino and Seminara (1990) and is reported in the figures 78a,b. The procedure followed
to perform such comparison was to evaluate ν0c1 and ν0c2, from (335) and (339), respectively,
using the experimental values of the relevant parameters. The corresponding critical values θc1
and θc2 of the angle between straight segments of the experimental channel were then estimated
using relationships obtained by modeling the channel as a sequence of meanders. The centreline of
the latter is given in Cartesian coordinates by a sinusoid with maximum curvature and intrinsic
wavenumber respectively equal to those characteristic of the equivalent sine generated curve
adopted in the theoretical model. Various observations arise from Figure 78.

The signs of Re(α11) and Im(α11) are found to be such that critical values ν0c1 and ν0c2 exist
in a wide range of values of λm/λc including those corresponding to the experiments of Kinoshita
and Miwa (1974). The distributions of ν0c1 and ν0c2 are very close to each other and both appear
to be in fairly good agreement with experimental observations. Note that the criterion employed
by Kinoshita and Miwa (1974) to define θc, was to ascertain “whether an initially formed bar train
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Figura 78. The critical values θc1 and θc2 predicted by the theory of Tubino and Seminara (1990) are compared
with the experimental observations of Kinoshita and Miwa (1974) for two different values of the slope parameter r
in the closure equation for sediment transport (276). Solid lines r = 0.5, dashed lines r = 0.3 • non migrating bars;

◦ migrating bars (modified from Tubino and Seminara, 1990).

could migrate more than one wavelength downstream" but the boundary between the migrating
and non-migrating regimes was not completely clear. Let us quote Kinoshita and Miwa (1974):
"It was sometimes observed that clearly visible bar fronts would be unable to migrate more than
one wavelength downstream and would tend to vanish . . . , but that nevertheless the point of deepest
scour along the bank would subsequently be subject to oscillations in elevation that would not fade
in time . . . ". This notwithstanding, the agreement exhibited by figures 78a and 78b appears to be
strongly supportive of the present theoretical interpretation.

A second notable feature emerging from Figure 78 is the observation that in some ranges of
values of λm it appears that ν0c1 > ν0c2. Tubino and Seminara (1990) pointed out that it should
then be possible to perform an experiment in these ranges where bars migrating upstream should
be observed, suggesting that experiments or strongly nonlinear computations might be able to
prove the actual existence of this regime.

A third feature is the existence of a minimum in the curves ν0c1(λm) and ν0c2(λm). This
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of ν0c1 on βu predicted by (335) is fairly strong, it could not be detected in the experiments of
Kinoshita and Miwa (1974) where βu was held constant.

A second important outcome of the modified amplitude equation (333) is the prediction of the
effect of curvature on the speed of free bars. At equilibrium, we can write

A = |Ae| exp(i ω̂ τ), (336)

with ω̂ real. Substituting from (336) into (333) one finds:

ω̂ = b βc νβ + k2r Im(α11) +
∣∣Ae

∣∣2 ai (337)

The dimensionless wavespeed of free bars in a meandering channel, cm, is affected by curvature
according to the following relationship :

cm = (ωc − ϵ2 ω̂)/λc = (ω1 + ν20 ω2)/λc (338)

where ω1 is the angular frequency of weakly nonlinear bars in a straight channel (ω1 = ωc −
ϵ2
(
b βc νβ +

∣∣Ae

∣∣2 ai
)
) and ν20 ω2 is the correction of the angular frequency of weakly nonlinear

bars in a meandering channel (ω2 = −Im(α11)). Thus curvature will slow down or speed up the
propagation of free bars depending on ω2 being negative or positive.

If the former condition is satisfied, then (338) allows one to define a second critical value of the
curvature ratio ν0c2 as the minimum value of ν0 such that cm vanishes. One finds:

ν0c2 =

√
−ω1

ω2
(339)

where ν0c2 will depend on the values of the relevant parameters τ∗u, ds, λm and βu.
Summarizing the above findings, we suggest the existence of the following regimes:

i) ν0c1 < ν0c2: free bars are damped by curvature and slow down for ν0 < ν0c1, whereas they
are suppressed for ν0 > ν0c1;

ii) ν0c1 > ν0c2:

- free bars are damped, slow down and migrate downstream for ν0 < ν0c2;
- free bars are damped and migrate upstream (possibly at a very low rate) for ν0c2 < ν0 <

ν0c1;
- free bars are suppressed for ν0 > ν0c1.

A quantitative comparison between the above theoretical predictions of the critical values of
krc1 = ν0c1/ϵ and krc2 = ν0c2/ϵ and the experimental results of Kinoshita and Miwa (1974) was
pursued by Tubino and Seminara (1990) and is reported in the figures 78a,b. The procedure followed
to perform such comparison was to evaluate ν0c1 and ν0c2, from (335) and (339), respectively,
using the experimental values of the relevant parameters. The corresponding critical values θc1
and θc2 of the angle between straight segments of the experimental channel were then estimated
using relationships obtained by modeling the channel as a sequence of meanders. The centreline of
the latter is given in Cartesian coordinates by a sinusoid with maximum curvature and intrinsic
wavenumber respectively equal to those characteristic of the equivalent sine generated curve
adopted in the theoretical model. Various observations arise from Figure 78.

The signs of Re(α11) and Im(α11) are found to be such that critical values ν0c1 and ν0c2 exist
in a wide range of values of λm/λc including those corresponding to the experiments of Kinoshita
and Miwa (1974). The distributions of ν0c1 and ν0c2 are very close to each other and both appear
to be in fairly good agreement with experimental observations. Note that the criterion employed
by Kinoshita and Miwa (1974) to define θc, was to ascertain “whether an initially formed bar train
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Figura 78. The critical values θc1 and θc2 predicted by the theory of Tubino and Seminara (1990) are compared
with the experimental observations of Kinoshita and Miwa (1974) for two different values of the slope parameter r
in the closure equation for sediment transport (276). Solid lines r = 0.5, dashed lines r = 0.3 • non migrating bars;

◦ migrating bars (modified from Tubino and Seminara, 1990).

could migrate more than one wavelength downstream" but the boundary between the migrating
and non-migrating regimes was not completely clear. Let us quote Kinoshita and Miwa (1974):
"It was sometimes observed that clearly visible bar fronts would be unable to migrate more than
one wavelength downstream and would tend to vanish . . . , but that nevertheless the point of deepest
scour along the bank would subsequently be subject to oscillations in elevation that would not fade
in time . . . ". This notwithstanding, the agreement exhibited by figures 78a and 78b appears to be
strongly supportive of the present theoretical interpretation.

A second notable feature emerging from Figure 78 is the observation that in some ranges of
values of λm it appears that ν0c1 > ν0c2. Tubino and Seminara (1990) pointed out that it should
then be possible to perform an experiment in these ranges where bars migrating upstream should
be observed, suggesting that experiments or strongly nonlinear computations might be able to
prove the actual existence of this regime.

A third feature is the existence of a minimum in the curves ν0c1(λm) and ν0c2(λm). This

139



Theoretical Morphodynamics: River Meandering

property is further displayed in Figure 79b showing that the dependence of krc1 on the ratio λm/λc

exhibits two minima. In addition, Figure 79a shows that the fundamental forced component of
bottom elevation has a near resonant elevation peak for a meander wavenumber corresponding to
maximum free bar suppression. Such a result clearly supports the interpretation that the minimum
values of ν0c1 and ν0c2, are attained within the resonant wavenumber range of Blondeaux and
Seminara (1985). This is not surprising as, close to resonance, the forced bar exhibits a peak,
hence lower sinuosities are sufficient to damp free bars.

Figura 79. (a) The fundamental forced component of bed elevation, η1, is plotted versus meander wavenumber, λm,
showing that the near resonant elevation peak is associated with a meander wavenumber corresponding to

maximum free bar suppression. Data as in Kinoshita and Miwa (1974). (b) The critical value of krc1 is plotted
versus the ratio λm/λc for τ∗u = 0.1 and various values of ds (modified from Tubino and Seminara, 1990).

The last noticeable feature of Figure 78 is the behavior of θc1 and θc2 as λm → 0 that clearly
suggests that free bars are no longer suppressed by curvature if meanders are long enough. This
result conforms to the field observations of Kinoshita (1961) and Whiting and Dietrich (1993) who
noticed that in tortuous bends several alternate bars may be superimposed over a primary point
bar.

An additional attempt to test the theory of Tubino and Seminara (1990) by laboratory
experiments was performed by Niño (1992), but see also Garcia and Niño (1993). Comparison
was less satisfactory than the one based on experimental observations of Kinoshita and Miwa
(1974). The Figure 80 shows that agreement required some empirical adjustment of the value of
krc1 predicted by the theory, suggesting that in Niño (1992) free bars required less sinuosity to be
suppressed.
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Figura 80. Comparison between theoretical predictions and experimental results of Niño (1992) for the suppression
of migrating bars in meandering channels (reproduced from Figures 6.23 and 6.24 of Niño, 1992).
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property is further displayed in Figure 79b showing that the dependence of krc1 on the ratio λm/λc

exhibits two minima. In addition, Figure 79a shows that the fundamental forced component of
bottom elevation has a near resonant elevation peak for a meander wavenumber corresponding to
maximum free bar suppression. Such a result clearly supports the interpretation that the minimum
values of ν0c1 and ν0c2, are attained within the resonant wavenumber range of Blondeaux and
Seminara (1985). This is not surprising as, close to resonance, the forced bar exhibits a peak,
hence lower sinuosities are sufficient to damp free bars.

Figura 79. (a) The fundamental forced component of bed elevation, η1, is plotted versus meander wavenumber, λm,
showing that the near resonant elevation peak is associated with a meander wavenumber corresponding to

maximum free bar suppression. Data as in Kinoshita and Miwa (1974). (b) The critical value of krc1 is plotted
versus the ratio λm/λc for τ∗u = 0.1 and various values of ds (modified from Tubino and Seminara, 1990).

The last noticeable feature of Figure 78 is the behavior of θc1 and θc2 as λm → 0 that clearly
suggests that free bars are no longer suppressed by curvature if meanders are long enough. This
result conforms to the field observations of Kinoshita (1961) and Whiting and Dietrich (1993) who
noticed that in tortuous bends several alternate bars may be superimposed over a primary point
bar.

An additional attempt to test the theory of Tubino and Seminara (1990) by laboratory
experiments was performed by Niño (1992), but see also Garcia and Niño (1993). Comparison
was less satisfactory than the one based on experimental observations of Kinoshita and Miwa
(1974). The Figure 80 shows that agreement required some empirical adjustment of the value of
krc1 predicted by the theory, suggesting that in Niño (1992) free bars required less sinuosity to be
suppressed.
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Figura 80. Comparison between theoretical predictions and experimental results of Niño (1992) for the suppression
of migrating bars in meandering channels (reproduced from Figures 6.23 and 6.24 of Niño, 1992).
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5. Planform evolution of meandering rivers

As discussed in Chapter 1, the picture of meander evolution emerging from field observations
shows that meanders undergo a life cycle whereby they are generated, often following the death
of a previous meander. They grow and migrate developing mature shapes displaying several
characteristic features, including skewing and fattening of single loops, as well as the formation of
multiple loops. They eventually die through the process of cutoff. The formation of an oxbow lake
buried into the flood plain is the heritage left by the abandoned meander loop. Each of theses
stages has distinct characteristics and poses challenging problems of physical and mathematical
interpretation that are the subject of the present Chapter. In order to tackle these problems, we
must preliminarily model the driving mechanism of meander evolution, i.e. the process whereby
outer banks of the meandering channel are progressively eroded, whilst sediment deposition is
experienced by inner banks.

5.1. Bank erosion and migration rules

Understanding the mechanism of bank retreat has long attracted the attention of the scientific
community. The goal of most investigations focused on the detailed processes occurring when a
bank is subjected to weak or intense flow events. Such detailed processes are not directly relevant
to our major present undertaking, namely the mechanics of long-term planform evolution of
meandering river. It is sufficient for our purposes, to formulate a migration rule able to interpret
in an averaged sense the outcome of the sequence of erosion events determined by the actual series
of flow hydrographs. The migration rule must be simple enough to be suitable to the long-term
planform evolution models required to understand the gross features of how meanders evolve from
incipient formation to cutoff and beyond.

Let us recall that banks are usually classified on the basis of their composition and their
stratigraphy, as non-cohesive, cohesive or composite. Thorne (1991) notes that strictly non-
cohesive banks are fairly rare, i.e. most alluvial bank materials exhibit cohesion either real (due to
the presence of silt and clay fractions), or apparent (due to capillary suction in unsaturated layers
or to the binding effect of vegetation). Composite banks (Figure 81) have typically a stratified
structure, with non-cohesive sandy-gravel deposits typically originating from relic channel bars
interspersed with cohesive sandy silt and clay deposited by overbank flow on emergent bars (Thorne
and Tovey, 1981).

Bank retreat is a complex process which occurs in a variety of forms that can ultimately be
attributed to two main mechanisms.

- The first is fluvial erosion, consisting of a continuous process of removal of bank material,
occurring when gravitational and hydrodynamic forces acting on bank particles exceed the
resistive forces associated with friction (in non cohesive banks) and interparticle bonds (in
cohesive banks).

- The second mechanism is that of mass failure. Bank collapse consists of sudden events
(micro-landslides) whereby a portion of the bank fails. Destabilizing effects are the action of
gravity, the effect of pore pressure of the interstitial fluid, flow erosion of the bank toe which
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Theoretical Morphodynamics: River Meandering

Figura 81. A composite bank in the Cecina river (Tuscany, Italy) (courtesy of L. Solari).

increases the bank height (Thorne, 1991) and undercutting, which increases the bank angle.
Bank failure is opposed by friction and soil cohesion that resist movement.

However, the ultimate control on the rate of bank retreat must arise from the ability of the
stream to actually remove the material stored at the bank toe. Indeed, bank-toe erosion occurs if
the rate of removal of sediment by the flow in the basal area exceeds the rate of sediment supplied
from the bank erosion process. In this case, called excess basal capacity, scour of the basal area
causes both the bank height and the bank slope to increase thus decreasing bank stability to mass
failure. On the contrary, bank-toe aggradation and berm formation (impeded removal) occurs
when the rate of sediment supply to this zone exceeds the rate of sediment removal by the flow.
Under these conditions, bank erosion leads to enhancing riverbank stability.

This is essentially the concept of basal endpoint control of bank erosion introduced by Thorne
(1991). It links the sedimentary processes occurring at the bank and channel scales. It also suggests
that the long-term rate of bank retreat at a cross-section is ultimately dominated by fluvial erosion
independently of the nature of the bank and of the detailed sequence of bank erosion events that
determine the bank retreat.

Indeed, recent numerical simulations of bank collapse, carried out using a detailed finite element
model (Zhao et al., 2021), have shown that as a river bend evolves from a small amplitude sinusoidal
configuration, the initially scattered bank collapse events progressively concentrate at the outer
bank and converge toward the section where the bed shear stress attains a maximum, implying a
transition from a bank-stability-dominated state (controlled by the ratio between near-bank water
depth and bank height) to a hydraulically-dominated state (dictated by the near-bank distribution
of bed shear stress). Moreover, the intermittent outer bank collapse and the continuous inner bank
accretion lead to a catch-up behavior, whereby the channel maintains a nearly constant channel
width.

Bank migration rule

Outer bend erosion and inner bend deposition determine the progressive planform migration of
the river. We recall that, as discussed in Chapter 2, the channel axis of a meandering river is
a curved line in the 3-D space. Nevertheless, it is convenient to refer the flow to an orthogonal
system of coordinates (s, n and z, respectively, in Figure 82) such that the longitudinal s axis
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is the projection of the channel axis onto a horizontal plane, the transverse rectilinear axis n is
horizontal and orthogonal to the s axis, while z is the vertical axis pointing upward.

Figura 82. Sketch of a sinuous channel showing the lateral migration of the channel axis.

The planform evolution of the river channel can be conveniently described in terms of the
continuous deformation of the coordinate line s driven by the lateral migration of the river. Let us
denote by ζ(s, t) the average bank erosion rate, i.e. the rate of displacement of the coordinate line
s in the direction normal to the line. In general, ζ will depend on the characteristics of the flow
field, of bed topography and of the geological texture of the banks.

In the early kinematical models proposed by geomorphologists (e.g. Howard and Knutson, 1984;
Howard, 1996), the lateral migration speed was empirically assigned. A major development of the
subject was achieved when bank erosion was coupled to some measure of the deviations of the
flow field from some equilibrium state of the meandering reach. Essentially, this approach assumes
that any perturbation of the flow field at equilibrium drives bank erosion, which in turn leads to
planform evolution and consequently to further modification of the flow field.

This novel idea was first introduced in the cornerstone paper of Ikeda et al. (1981) (which built
upon the previous Japanese contribution of Ikeda et al., 1976) where a dynamic approach was
proposed. Bank erosion was assumed to be driven by an excess flow speed at the outer bank while
bank deposition was conversely associated with a defect of flow speed at the inner bank, excess or
defect being referred to the reach-averaged flow velocity. Hence, the erosion law reads:

ζ = E (U |out − U |inn). (340)

Here, U is the depth-averaged longitudinal velocity, the subscript out (inn) indicates that the
velocity is evaluated at the outer (inner) bank and E is a dimensionless long-term erosion coefficient.
The above linear rule has received some substantiation from field observations on rivers with
fairly uniform cohesive banks (Pizzuto and Meckelnburg, 1989). The erosion law (340) has an
important feature: it preserves channel width throughout the process of meander development.
Indeed, pure width variations would lead to identical values of the perturbations of flow velocities
at the inner and outer banks (i.e. U |out − U |inn = 0) such that (340) predicts vanishing value of
the displacement of the channel centreline.

A number of alternative erosion laws have been proposed in the literature. In particular,
proportionality between bank erosion rate and excess shear stress has been suggested by Blondeaux
and Seminara (1985). These Authors implicitly assumed that the unperturbed straight channel
configuration is in equilibrium, i.e. erosion is only caused by secondary flow associated with
curvature. The rate of bank retreat can also be expected to be correlated with bank height.
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Figura 81. A composite bank in the Cecina river (Tuscany, Italy) (courtesy of L. Solari).
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However, note that an increase of water depth is associated with an increase of longitudinal
velocity, which leads to increasing longitudinal bed shear stress. Hence, as pointed out by
Blondeaux and Seminara (1985), the former assumption does implicitly account for the expected
deepening of the cross-section close to the outer bank. Models in which the bank erosion rate is
assumed to be explicitly proportional to the excess near-bank water depth have also been proposed
(see Mosselman (1998) and references therein).

It is worth pointing out at this stage that, in the context of a linear theory of meander
hydrodynamics, perturbations of the flow velocity, flow depth and bottom shear stress are simply
proportional to each other. Hence, in planform evolution models adopting a linear hydrodynamics,
the above erosion laws are essentially equivalent and different choices simply correspond to a
change of the erosion coefficient. This conclusion does not hold if one adopts a nonlinear model of
meander hydrodynamics. However, the computational effort associated with the latter choice is still
prohibitive if long-term simulations are pursued. Hence, as we will see in the next Sections, these
type of simulations have mostly been based on hydrodynamic linear models. Anyhow, as discussed
in the next section, the kinematics of planform evolution of meandering rivers is intrinsically
geometrically nonlinear, independently of the linear or nonlinear character of the hydrodynamic
model. As a result, the shape of river meanders will be shown to exhibit a number of features
typical of nonlinear systems even using a linear hydrodynamic model.

Below, we start adopting the erosion law (340) and show that a lot can be learned on the
fundamental mechanisms of meander evolution with the help of this simple assumption. More
recent developments on bank erosion rules allowing to decouple the dynamics of the outer bank
from that of the inner bank will be discussed in the Section 5.6.2.

5.2. The integro-differential equation of planform evolution

On the fairly large timescale characterizing the planform evolution of meandering rivers, the
equation governing the process of continuous deformation of meander shape can be derived by
purely kinematic arguments applied to the migration of the longitudinal coordinate line, along
with some erosion law coupling the lateral rate of migration ζ to the flow hydrodynamics. The first
attempt in this direction was pursued by Ikeda et al. (1981) who referred the channel centreline to
a cartesian reference frame. Moreover, the meander model employed by these Authors was based
on a major approximation whereby the bed topography was assigned rather than derived with
the help of a morphodynamic model. This was pointed out by Blondeaux and Seminara (1985)
who showed that the missing coupling between hydrodynamics and morphodynamics rules out
a number of important features of the process (resonance, upstream influence), that have been
extensively discussed in Chapter 4.

Later, Seminara et al. (1994) and Seminara et al. (2001b) derived a form of the planform
evolution equation in intrinsic coordinates which displays a nonlinear and integro-differential
character and is coupled through the erosion rate ζ to the governing equations of meander
morphodynamics. This form of the evolution equation proves quite instructive. In particular, it is
amenable to analytical solutions in the geometrically nonlinear regime, i.e. when meanders have
developed large amplitudes.

Before we proceed with the derivation of this important equation, it is appropriate to quote
a recent contribution of Camporeale et al. (2007). These Authors, revisiting the models of river
meandering proposed in the literature, quoted an important paper of Brower et al. (1984) where
the kinematics of moving interfaces in two or more dimensions was investigated in terms of their
intrinsic geometric properties. The interest of Brower et al. (1984) focused on the "motion of a
boundary between time-dependent phase domains in which the interface itself satisfies an equation
of motion". Moreover, "competing stabilizing and destabilizing forces act on the phase boundary
to produce irregular or patterned structures, such as those which occur in solidification". The
planform evolution of river meanders turns out to be a particular case of the class of processes
analyzed there. This paper was not known to Seminara et al. (1994) and Seminara et al. (2001b).
The Authors adopted an independent physical approach which led to an identical form of the
evolution equation. Below, we will then follow the latter approach.
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As mentioned above, the river planform (Figure 83) is represented through the coordinate line
s, which lies on a horizontal plane. At a given time t, this line can be described by the distribution
θ(s, t) of the angle that the local tangent to the line forms with the direction of a Cartesian axis
x. This angle is related to the radius of curvature r0(s, t) of the line through the geometrical
relationship:

r0(s, t) dθ = −ds, (341)

where the sign of r0(s, t) is negative or positive depending on whether the line is locally convex or
concave. In dimensionless form and recalling the definition of dimensionless curvature C introduced
in Section 2.2 (see equations (22) and (23)) the latter relationship becomes:

ν0 C(s̃, t̃) = −dθ

ds̃
. (342)

Here, ν0 is the curvature ratio, defined as the ratio of half channel width B to some characteristic
value of the radius of curvature R0, say its minimum value in the meandering reach, whilst s̃ and t̃
are dimensionless longitudinal coordinate and time scaled by B and B/U0, respectively, with U0

some reference velocity scale.

Figura 83. Sketch of the planform evolution of the coordinate line s defined as the projection of the axis of a
meandering channel onto a horizontal plane.

We then stipulate that each point of this coordinate line moves in the normal direction n
with a lateral migration speed ζ driven by bank erosion. Let us express this simple statement in
mathematical terms.

Firstly, we introduce the function s = s(s0, t) which maps the longitudinal coordinate s of the
channel cross section at time t onto its location s0 at the initial time t0. Hence, we can write
θ = θ[s(s0, t), t], i.e. the angle θ is a function of time both explicitly and implicitly, through the
map s(s0, t). We can now calculate the material derivative dθ/dt, which reads

dθ

dt
=

∂θ

∂t
+

∂θ

∂s

ds

dt
(343)

and is seen to involve the material derivative of the arc length ds/dt.
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=

∂θ

∂t
+

∂θ

∂s

ds

dt
(343)

and is seen to involve the material derivative of the arc length ds/dt.
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The next step is to evaluate the latter quantity. This is obtained observing that, in the time
interval dt, simple geometrical reasoning shows that each infinitesimal portion of the channel axis
varies its initial length ds by an amount

d(ds) =
ζ dt

r
ds. (344)

Recalling that the local radius of curvature is defined in the form 1/r = −∂θ/ds, integration in s
gives

ds

dt
= −

∫ s

0

ζ
∂θ

∂s′
ds′, (345)

where s′ is a dummy variable and the integral accounts for the spatial distribution of the channel
deformation process.

Finally, kinematical arguments illustrated in Figure 83 imply that the relative displacement of
two adjacent points of the coordinate line s in a time interval dt drives a temporal variation of the
angle θ associated with the material element ds, such that

∂ζ

∂s
ds dt =

dθ

dt
dt ds. (346)

Substituting from (345) and (346) into (343) we end up with the following planform evolution
equation of river meanders (Seminara et al., 1994; Seminara et al., 2001b):

∂ζ

∂s
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∂θ

∂t
− ∂θ

∂s

∫ s

0

ζ
∂θ

∂s′
ds′ (347)

or, in dimensionless form:
∂ζ̃

∂s̃
=

∂θ

∂t̃
− ∂θ

∂s̃

∫ s̃

0

ζ̃
∂θ

∂s̃′
ds̃′. (348)

Here, the dimensionless lateral migration rate ζ̃ is scaled by U0. Three major observations on the
form of (347) are in order.

- The evolution equation is nonlinear. A first source of nonlinearity is present in the integral
term and arises from purely geometrical constraints.

- The evolution equation is integro-differential and, as such, it accounts for the spatial history
of the deformation process, including upstream and downstream influence.

- Finally, the evolution equation is coupled to the morphodynamics of the channel through the
erosion law (340) (or alternative forms). Hence, besides geometric nonlinearities, also flow
nonlinearity may affect the planform evolution of the river channel through the dependence of
the lateral migration rate ζ on the flow field.

5.3. Meander formation: an instability process

The question of why and when meanders form has long puzzled the scientific community.
However, in spite of the ubiquitousness of river meandering, few field observations of meandering
initiation have been reported and they have not supported any conclusive interpretation of the
initiation mechanism. On the other hand, as discussed in the next section, laboratory observations
have also proven rather elusive until recently.

5.3.1 Modern field and laboratory observations

The starting point of the modern understanding of river channel patterns may possibly be
associated with the seminal work of Leopold and Wolman (1957). Various major observations are
reported in that paper. They can be summarized as follows:

148

Planform evolution of meandering rivers

- Channel patterns were defined as belonging to three main categories, straight, sinuous-
meandering, or braided, with gradual merging of one pattern into another.

- Reaches that keep straight for distances exceeding ten times the channel width are rare.
Moreover, “although the channel itself is straight, the thalweg wanders back and forth from
positions near one bank and then the other". The Authors note explicitly that: “In an
idealized sense, this plan view of straight channels appears to bear a remarkable resemblance
to a meander".

- Another characteristic of natural streams even in straight reaches is the occurrence of pools
and riffles, but the Authors do not mention the possible migrating character of this pattern.

More recently, the data collected from aerial photos and topographic maps allowed the analysis
of a large number of meandering bends (Lagasse et al., 2004) and let to the mechanistically
based classification reported in Section 2.3. Here, as an additional information, we recall that
the sinuosity of observed meandering bends, defined as the ratio of the intrinsic to the cartesian
meander wavelenghts can reach values up to about 3 before neck cutoff (Figure 84). Moreover,
according to the database collected by Lagasse et al. (2004), the median sinuosity takes the value
1.69, with a standard deviation of 0.399.

Figura 84. Typical frequency distribution and cumulative frequency curve of the mean meander bend sinuosity σ,
computed for the alluvial river reaches contained in the database of Lagasse et al. (2004) (reproduced from Bolla

Pittaluga and Seminara, 2011).

As discussed in Chapter 6(I), Leopold and Wolman (1957) identify the characteristics of bars
in nature but do not detect the difference between free and forced bars. On the contrary, they
tend to consider the bar pattern as a unique feature, emphasizing that the observed wavelengths
in both straight and meandering channels correlate clearly with channel width. Note that meander
wavelength was defined as twice the distance between successive points of inflection, hence a sort
of cartesian (rather than intrinsic) wavelength. Figure 3(I) shows a celebrated plot, that has had
significant influence on the development of the subject. Based on flume and field data of various
Authors, it shows a clear correlation between channel width and wavelengths of either meanders or
pool-riffle sequences in straight channels. Wavelength turns out to be proportional to the 1.1-power
of channel width, with coefficient equal to 6.5.

The above observations have led geomorphologists to speculate on alternate bars being precur-
sors of river meandering. However, this suggestion has various major shortcomings. Before we
clarify this important point, let us first give an overview of the outcome of laboratory observations
and clarify why, rather surprisingly, laboratory observations have for long been unable to provide
crucial insight on the mechanism of meander formation. The main reason for this failure is now
clear: cohesionless sediments were most often employed in these experiments. Typically, an initially
straight channel was incised through a flat layer of cohesionless material. When flow was allowed
into the channel, a sequence of processes were then observed. They were reported by Friedkin
(1945) and Wolman and Brush (1961) among others, but a clearest illustration was made in the
more recent contribution of Federici (1999) (but see also Federici and Paola, 2003; Eaton and
Church, 2004). Briefly
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Here, the dimensionless lateral migration rate ζ̃ is scaled by U0. Three major observations on the
form of (347) are in order.

- The evolution equation is nonlinear. A first source of nonlinearity is present in the integral
term and arises from purely geometrical constraints.

- The evolution equation is integro-differential and, as such, it accounts for the spatial history
of the deformation process, including upstream and downstream influence.

- Finally, the evolution equation is coupled to the morphodynamics of the channel through the
erosion law (340) (or alternative forms). Hence, besides geometric nonlinearities, also flow
nonlinearity may affect the planform evolution of the river channel through the dependence of
the lateral migration rate ζ on the flow field.

5.3. Meander formation: an instability process

The question of why and when meanders form has long puzzled the scientific community.
However, in spite of the ubiquitousness of river meandering, few field observations of meandering
initiation have been reported and they have not supported any conclusive interpretation of the
initiation mechanism. On the other hand, as discussed in the next section, laboratory observations
have also proven rather elusive until recently.

5.3.1 Modern field and laboratory observations

The starting point of the modern understanding of river channel patterns may possibly be
associated with the seminal work of Leopold and Wolman (1957). Various major observations are
reported in that paper. They can be summarized as follows:
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- Channel patterns were defined as belonging to three main categories, straight, sinuous-
meandering, or braided, with gradual merging of one pattern into another.

- Reaches that keep straight for distances exceeding ten times the channel width are rare.
Moreover, “although the channel itself is straight, the thalweg wanders back and forth from
positions near one bank and then the other". The Authors note explicitly that: “In an
idealized sense, this plan view of straight channels appears to bear a remarkable resemblance
to a meander".

- Another characteristic of natural streams even in straight reaches is the occurrence of pools
and riffles, but the Authors do not mention the possible migrating character of this pattern.

More recently, the data collected from aerial photos and topographic maps allowed the analysis
of a large number of meandering bends (Lagasse et al., 2004) and let to the mechanistically
based classification reported in Section 2.3. Here, as an additional information, we recall that
the sinuosity of observed meandering bends, defined as the ratio of the intrinsic to the cartesian
meander wavelenghts can reach values up to about 3 before neck cutoff (Figure 84). Moreover,
according to the database collected by Lagasse et al. (2004), the median sinuosity takes the value
1.69, with a standard deviation of 0.399.
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computed for the alluvial river reaches contained in the database of Lagasse et al. (2004) (reproduced from Bolla
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As discussed in Chapter 6(I), Leopold and Wolman (1957) identify the characteristics of bars
in nature but do not detect the difference between free and forced bars. On the contrary, they
tend to consider the bar pattern as a unique feature, emphasizing that the observed wavelengths
in both straight and meandering channels correlate clearly with channel width. Note that meander
wavelength was defined as twice the distance between successive points of inflection, hence a sort
of cartesian (rather than intrinsic) wavelength. Figure 3(I) shows a celebrated plot, that has had
significant influence on the development of the subject. Based on flume and field data of various
Authors, it shows a clear correlation between channel width and wavelengths of either meanders or
pool-riffle sequences in straight channels. Wavelength turns out to be proportional to the 1.1-power
of channel width, with coefficient equal to 6.5.

The above observations have led geomorphologists to speculate on alternate bars being precur-
sors of river meandering. However, this suggestion has various major shortcomings. Before we
clarify this important point, let us first give an overview of the outcome of laboratory observations
and clarify why, rather surprisingly, laboratory observations have for long been unable to provide
crucial insight on the mechanism of meander formation. The main reason for this failure is now
clear: cohesionless sediments were most often employed in these experiments. Typically, an initially
straight channel was incised through a flat layer of cohesionless material. When flow was allowed
into the channel, a sequence of processes were then observed. They were reported by Friedkin
(1945) and Wolman and Brush (1961) among others, but a clearest illustration was made in the
more recent contribution of Federici (1999) (but see also Federici and Paola, 2003; Eaton and
Church, 2004). Briefly
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Figura 85. The sequence of processes observed in the experiments of Federici (1999) (reproduced from Federici and
Seminara, 2003).

- The width of the initial channel is not in equilibrium, hence the channel banks are progressively
eroded, the flow depth decreases and the aspect ratio of the cross section increases.

- Channel widening leads to the formation and downstream migration of alternate bars (Figure
85b).

- However, widening of the channel does not stop. Rather, after a while, preferential widening
occurs at bar pools leading to the formation of a “rhythmic sequence of indentations. . . on
both banks, while the stream displays a tendency to meander" (Figure 85c). Note that, at this
stage, the cohesionless character of the floodplain plays a crucial role. Pools may represent
preferential sites for bank erosion in spite of the migrating character of alternate bars because
in the laboratory experiments the time scale of bank erosion is not larger than that associated
with bottom erosion.
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- The consequence of the onset of a periodic variation of channel width and channel curvature
is the suppression of alternate bar migration. This mechanism is similar to that discussed in
Section 4.5 and was given a theoretical interpretation by Repetto and Tubino (1999), who
showed that bar migration may indeed be suppressed in channels with periodic variations of
channel width of sufficiently large amplitude.

- The fixed character of the pools and the development of curvature of the stream do enhance
bank erosion leading the bank indentations to grow and migrate downstream. As the stream
undergoes further widening, chute cutoffs form and they drive the development of central
bars.

- As the channel continues to widen, irregular smaller scale bars form in the central part of the
channel (Figure 85d), showing the tendency of the stream to develop a multibar pattern that,
eventually, transforms into a multichannel pattern induced by the emergence of bars.

In conclusion, the formation of a braided channel is the fate of any such experiment if the
floodplain is modeled as cohesionless.

The idea that the persistence of a coherent meandering pattern requires a cohesive floodplain
was investigated by Schumm and Khan (1972). In the latter experiments, after an initial phase when
sand was supplied to the stream and submerged bars formed, the addition of a 3 % concentration
of kaolinite, along with a decrease in sand supply led to enhanced bank stability, channel deepening
and bar emergence until erosion ceased. The resulting channel pattern kept straight, though with
a sinuous thalweg. Later, Jin and Schumm (1987) employed a two layer setting, with a lower
sand layer and a thicker upper layer consisting of over 50 % kaolinite. The resulting pattern was
sinuous with active point bars, but, as pointed out by Paola (2001), its inability to reform the ad
hoc substrata suggests that the single thread meandering pattern was a transient feature. In other
words, if these experiments had lasted long enough, the upper clay layer would have been removed
by lateral migration and the stream would have eventually produced a braided pattern.

A similar attempt was more recently made by Smith (1998) using a variety of granular materials
mixed with kaolinite. The effort was successful in that high sinuosity channels were actually
produced with active point bars and chute channels. However, migration ceased once sinuosity
developed such that the final equilibrium state of the channel was static.

A significant step forward was made by Gran (2000) (but see also Gran and Paola, 2001) and
Tal and Paola (2007). They performed a series of ingenious experiments where the goal to give
strength to the banks of the laboratory channel was achieved seeding the flume with alfaalfa
(Medicago sativa) and allowing the seeds to grow. It turned out that, starting from an initial
braided network formed in the absence of vegetation, the growth of vegetation led to drastic
modification of the channel pattern. In particular, the Authors note: “In the run with the highest
vegetation density, width-to-depth ratios approached those of natural single-thread channels and in
plan view the model resembled a wandering river, with one to two main channels flowing around
larger vegetated islands . . . vegetation plays an important role in stabilizing the banks, constraining
channel migration, and allowing deeper and narrower channels to develop. These are all effects
that move the channel pattern in the direction of meandering" (Figure 86).

As pointed out by Braudrick et al. (2009), the alfalfa experiments reproduced many features of
natural meanders, including avulsions and cutoffs, but the meandering character of the channel
pattern was not stable and it was only present in part of the flume.

Two further laboratory experiments (Peakall et al. (2007), Braudrick et al. (2009)) tried to
overcome the apparent inability of previous attempts to generate self-maintaining laterally migrating
channels with cutoffs. In particular, Braudrick et al. (2009) point out that the key challenge is
to allow both outer bank erosion and inner bank deposition at the same rate, discouraging the
flow from occupying and enlarging chute channels which would typically lead to flow diversion
down the chute and the development of multiple channels. More precisely, they suggested that
laboratory experiments need the following ingredients:

- “bank strength greater than that due to deposited bedload (to slow outer bank erosion rate)", a
goal they achieved using alfalfa sprouts in analogy with the approach of Tal and Paola (2007);
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Figura 85. The sequence of processes observed in the experiments of Federici (1999) (reproduced from Federici and
Seminara, 2003).
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stage, the cohesionless character of the floodplain plays a crucial role. Pools may represent
preferential sites for bank erosion in spite of the migrating character of alternate bars because
in the laboratory experiments the time scale of bank erosion is not larger than that associated
with bottom erosion.
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showed that bar migration may indeed be suppressed in channels with periodic variations of
channel width of sufficiently large amplitude.
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In conclusion, the formation of a braided channel is the fate of any such experiment if the
floodplain is modeled as cohesionless.
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sand was supplied to the stream and submerged bars formed, the addition of a 3 % concentration
of kaolinite, along with a decrease in sand supply led to enhanced bank stability, channel deepening
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sand layer and a thicker upper layer consisting of over 50 % kaolinite. The resulting pattern was
sinuous with active point bars, but, as pointed out by Paola (2001), its inability to reform the ad
hoc substrata suggests that the single thread meandering pattern was a transient feature. In other
words, if these experiments had lasted long enough, the upper clay layer would have been removed
by lateral migration and the stream would have eventually produced a braided pattern.

A similar attempt was more recently made by Smith (1998) using a variety of granular materials
mixed with kaolinite. The effort was successful in that high sinuosity channels were actually
produced with active point bars and chute channels. However, migration ceased once sinuosity
developed such that the final equilibrium state of the channel was static.

A significant step forward was made by Gran (2000) (but see also Gran and Paola, 2001) and
Tal and Paola (2007). They performed a series of ingenious experiments where the goal to give
strength to the banks of the laboratory channel was achieved seeding the flume with alfaalfa
(Medicago sativa) and allowing the seeds to grow. It turned out that, starting from an initial
braided network formed in the absence of vegetation, the growth of vegetation led to drastic
modification of the channel pattern. In particular, the Authors note: “In the run with the highest
vegetation density, width-to-depth ratios approached those of natural single-thread channels and in
plan view the model resembled a wandering river, with one to two main channels flowing around
larger vegetated islands . . . vegetation plays an important role in stabilizing the banks, constraining
channel migration, and allowing deeper and narrower channels to develop. These are all effects
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natural meanders, including avulsions and cutoffs, but the meandering character of the channel
pattern was not stable and it was only present in part of the flume.
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overcome the apparent inability of previous attempts to generate self-maintaining laterally migrating
channels with cutoffs. In particular, Braudrick et al. (2009) point out that the key challenge is
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Figura 86. Image of the channel pattern observed in run 5 of Gran (2000). The run was characterized by the
highest spatial vegetation density. A wandering stream developed, consisting of one to two main channels separated

by large, vegetated islands (reproduced from Gran, 2000, courtesy of Karen Gran).

- “the addition of suspended load (to both settle out in the chutes, reducing the tendency for a
low sinuosity cutoff, and to become deposited on the bar top, raising the surface to floodplain
level)". Hence, both a coarse (sand) and fine (lightweight plastic) sediment were fed separately
at the upstream end of the flume.

A third ingredient, namely the occurrence of “periodic overbank flow (to raise the depositional
surface of the point bar and to disperse suspended sediment into nearby low areas)" turned out
not to be actually necessary. The main results of the experiments may be summarized as follows
(Figure 87).

- The experiment, lasting 136 h, led to the formation of a meandering channel composed of five
bends that experienced both lateral and longitudinal migration, as well as five distinct cutoff
events. Fine sediment was crucial for connecting bars to the floodplain.

- No migrating alternate bars were observed in spite of the fact that morphodynamic conditions
would have been favorable for alternate bar development.

- Migration rates were fastest in the initial stage of bend growth, as well as immediately after
cutoffs.

- The channel width increased during the experiment, reaching asymptotically a fairly stable
value.

- The channel sinuosity increased throughout the experiment to a maximum value of 1.19.

In conclusion, “increasing the bank strength relative to noncohesive sediment and promoting
deposition of fine sediment in troughs between point bars and the floodplain", turned out to be
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Figura 87. Planform evolution of the meandering channel formed in the experiments of Braudrick et al. (2009). (a)
The first 71 h of the experiment: discharge included both a bankfull and flood flow; (b) planform evolution from
71− 136 h under steady bankfull flow (reproduced from Braudrick et al., 2009, under the CC BY-NC-ND license).

necessary and sufficient conditions for the generation of a self-sustaining meandering channel in a
laboratory flume. In order to achieve meander sinuosities closer to natural values (hence larger
than 1.19, see Figure 84), Braudrick et al. (2009) note that it would be necessary to reduce the
migration rates of laboratory channels to field values. This would likely allow for an increase of the
amount of fine sediment deposited in the chutes and a decrease of the frequency of chute cutoff.
However, the time required for the experiments would significantly increase, which leaves this as
the next challenge for experimentalists.

One further laboratory investigation (Schuurman et al., 2016) deserves to be mentioned. The
viewpoint adopted by these Authors is different from the previous ones and originates from the
consideration that meander instability has been shown (Lanzoni and Seminara, 2006) to have
convective nature (Section 9.3.5(I)). This issue and its experimental substantiation will be discussed
in the next Section.

In summary, the picture emerging from the laboratory observations suggests that the driving
mechanism of meandering initiation is bank erosion, which occurs whenever an initial perturbation
of channel alignment is present. In most experiments an initial bend was carved at the inlet to
hasten the onset of meandering. Hence, the original speculation of geomorphologists on alternate
bars being precursors of river meandering is not confirmed. This is not surprising as alternate bars
are migrating feature, hence they can hardly be responsible for the localized erosion of cohesive
banks driving meander formation, unless the time scales of bottom erosion and bank erosion are
comparable, a condition satisfied only in laboratory experiments where cohesionless sediments
are employed. And, indeed, alternate bars did not form in many of the laboratory experiments
discussed above (Smith, 1998; Peakall et al., 2007; Braudrick et al., 2009).

Moreover, as discussed in Section 4.5, alternate bars are observed to coexist with and migrate
through weakly meandering channels, an observation which contradicts the idea that they would
evolve into the fixed-point bars of river meanders.
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Figura 86. Image of the channel pattern observed in run 5 of Gran (2000). The run was characterized by the
highest spatial vegetation density. A wandering stream developed, consisting of one to two main channels separated

by large, vegetated islands (reproduced from Gran, 2000, courtesy of Karen Gran).
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than 1.19, see Figure 84), Braudrick et al. (2009) note that it would be necessary to reduce the
migration rates of laboratory channels to field values. This would likely allow for an increase of the
amount of fine sediment deposited in the chutes and a decrease of the frequency of chute cutoff.
However, the time required for the experiments would significantly increase, which leaves this as
the next challenge for experimentalists.

One further laboratory investigation (Schuurman et al., 2016) deserves to be mentioned. The
viewpoint adopted by these Authors is different from the previous ones and originates from the
consideration that meander instability has been shown (Lanzoni and Seminara, 2006) to have
convective nature (Section 9.3.5(I)). This issue and its experimental substantiation will be discussed
in the next Section.

In summary, the picture emerging from the laboratory observations suggests that the driving
mechanism of meandering initiation is bank erosion, which occurs whenever an initial perturbation
of channel alignment is present. In most experiments an initial bend was carved at the inlet to
hasten the onset of meandering. Hence, the original speculation of geomorphologists on alternate
bars being precursors of river meandering is not confirmed. This is not surprising as alternate bars
are migrating feature, hence they can hardly be responsible for the localized erosion of cohesive
banks driving meander formation, unless the time scales of bottom erosion and bank erosion are
comparable, a condition satisfied only in laboratory experiments where cohesionless sediments
are employed. And, indeed, alternate bars did not form in many of the laboratory experiments
discussed above (Smith, 1998; Peakall et al., 2007; Braudrick et al., 2009).

Moreover, as discussed in Section 4.5, alternate bars are observed to coexist with and migrate
through weakly meandering channels, an observation which contradicts the idea that they would
evolve into the fixed-point bars of river meanders.
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In conclusion, the bend mechanism, that we analyze in the next Section, appears to be the
only rational scheme able to explain various features of the meandering initiation process.

5.3.2 Bend instability: linear theory

The concept of bend instability was first introduced by Ikeda et al. (1981). Essentially, it is
the process whereby a sinuous perturbation of channel alignment relative to an initially straight
configuration, generates an alternate sequence of pools and point bars, which lead to outer bank
erosion, that in turn amplifies the perturbation. This process leads eventually to the development
of a meandering pattern. The linear theory of Ikeda et al. (1981) was based on a flow model
that neglected the coupling between hydrodynamics and bed deformation. As a result, various
aspects of the phenomenon were unavoidably overlooked. The later contribution of Blondeaux
and Seminara (1985) did account for coupling and, as a result, the mechanisms of resonance and
morphodynamic influence discussed in Section 4.4, emerged from the analysis.

Here, we follow the lead of Seminara (2006) who employs an instructive classical normal mode
approach. We then consider a perturbed state consisting of a sinuous channel formed by a sequence
of so called sine-generated bends (Langbein and Leopold, 1966). Let us use dimensionless variables
(dropping the tilde for the sake of simplicity) and express the inclination angle θ as follows:

θ = θ1 exp i(λ s− ω t) + c.c., (349)

with θ1 small initial amplitude of the perturbation, λ the intrinsic meander wavenumber, scaled by
half the channel width B, and ω the complex angular frequency, scaled by U0/B. The temporal
growth rate of perturbations is the imaginary part Im(ω) of the complex angular frequency, the
dimensionless wavespeed is given by c = Re(ω)/λ while the complex group velocity reads ∂ω/∂λ.

Let us illustrate the mechanism of bend instability analyzing two cases.

Bank erosion in phase with curvature

Let us arbitrarily assume that the dimensionless lateral migration speed ζ is proportional to and
in phase with local curvature, i.e.

ζ = −ζ1
∂θ

∂s
, (350)

with ζ1 real constant, taken to be sufficiently small to justify linearizing the planform evolution
equation (348). Substituting from (350) and (349) into the linearized form of (348), one finds

−i ω θ = −ζ1 (i λ)
2 θ, (351)

hence
ω = i ζ1 λ

2. (352)
This leaves us with an unsatisfactory picture of the process, as:

- Im(ω) would be equal to ζ1 λ
2, i.e. meanders would amplify with a rate increasing indefinitely

as the wavenumber increases;

- moreover, Re(ω) would vanish, i.e. meanders would not migrate (c = 0).

Bank erosion out of phase relative to curvature

Let us next add an important ingredient, namely a phase lag of the lateral migration speed ζ
relative to the local curvature (−∂θ/∂s). Let the dimensional spatial lag be δ B, and write

ζ = −ζ1
∂θ

∂s
exp(−i λ δ). (353)

Substituting from (349) and (353) into the linearized form of (348), one finds

Im(ω) = ζ1 λ
2 cos(λ δ), c = ζ1 λ sin(λ δ). (354)

This is quite a satisfactory picture of the process. Indeed (Figure 88):
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- meanders grow for values of meander wavenumbers falling in the range −π/2 < λδ < π/2,
with the growth rate peaking at some preferred wavenumber;

- moreover, unstable meanders migrate downstream if the erosion peak is located downstream
of the bend apex (positive c, Figure 88a) and conversely they migrate upstream (negative c,
Figure 88b) if the erosion peak is located upstream of the bend apex.

Figura 88. Dependence of growth rate (Im(ω), continuous lines) and migration speed (c, dashed lines) of meanders
obeying the erosion law (353) on meander wavenumber for (a) positive or (b) negative value of the phase lag δ
between bank erosion and curvature. Both ζ1 and |δ| have been conventionally set equal to one (modified from

Seminara, 2006).

As discussed below, in nature, the phase lag δ is not a constant but rather a function of the
flow hydrodynamics and the erosion rule. This notwithstanding, the above picture is quite close to
the real one and provides the simplest mathematical illustration of the basic mechanism of bend
instability. The occurrence of a phase lag between flow perturbations (hence bank erosion) and
curvature is the crucial ingredient to allow meander growth.

In order to refine the picture we must now replace the arbitrary assumption on the lateral
migration speed with an appropriate erosion rule mimicking the coupling between bank erosion
and flow field.

Hydrodynamic control on the phase lag δ

Let us employ the erosion rule (340), which couples lateral migration to meander hydrodynamics.
We may then make use of the exact solution of the linear problem of meander morphodynamics
discussed in Section 4.4.2, with C(s) replaced by the following relationship, immediately derived
from (349),

ν0 C(s, t) = −∂θ

∂s
= −i λ θ1 exp i(λ s− ω t) + c.c. (355)

Note that we can still treat the flow as steady (albeit parametrically dependent on time) as the
time scale associated with planform evolution is much larger than the hydrodynamic time scale.

As usual, we take advantage of the typically weak curvature of many river bends and assume
that the curvature ratio ν0 is a small quantity. The equations governing the flow field can then be
linearized and their solution obtained through the expansions (304, 308) presented in Section 4.4.2.
With the help of those expansions and the migration rule (340), one readily finds

ζ = 2 ν0 E

∞∑
m=0

(−1)m um. (356)
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growth rate of perturbations is the imaginary part Im(ω) of the complex angular frequency, the
dimensionless wavespeed is given by c = Re(ω)/λ while the complex group velocity reads ∂ω/∂λ.
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in phase with local curvature, i.e.
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- moreover, Re(ω) would vanish, i.e. meanders would not migrate (c = 0).
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Let us next add an important ingredient, namely a phase lag of the lateral migration speed ζ
relative to the local curvature (−∂θ/∂s). Let the dimensional spatial lag be δ B, and write
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- meanders grow for values of meander wavenumbers falling in the range −π/2 < λδ < π/2,
with the growth rate peaking at some preferred wavenumber;

- moreover, unstable meanders migrate downstream if the erosion peak is located downstream
of the bend apex (positive c, Figure 88a) and conversely they migrate upstream (negative c,
Figure 88b) if the erosion peak is located upstream of the bend apex.

Figura 88. Dependence of growth rate (Im(ω), continuous lines) and migration speed (c, dashed lines) of meanders
obeying the erosion law (353) on meander wavenumber for (a) positive or (b) negative value of the phase lag δ
between bank erosion and curvature. Both ζ1 and |δ| have been conventionally set equal to one (modified from

Seminara, 2006).

As discussed below, in nature, the phase lag δ is not a constant but rather a function of the
flow hydrodynamics and the erosion rule. This notwithstanding, the above picture is quite close to
the real one and provides the simplest mathematical illustration of the basic mechanism of bend
instability. The occurrence of a phase lag between flow perturbations (hence bank erosion) and
curvature is the crucial ingredient to allow meander growth.

In order to refine the picture we must now replace the arbitrary assumption on the lateral
migration speed with an appropriate erosion rule mimicking the coupling between bank erosion
and flow field.

Hydrodynamic control on the phase lag δ

Let us employ the erosion rule (340), which couples lateral migration to meander hydrodynamics.
We may then make use of the exact solution of the linear problem of meander morphodynamics
discussed in Section 4.4.2, with C(s) replaced by the following relationship, immediately derived
from (349),

ν0 C(s, t) = −∂θ

∂s
= −i λ θ1 exp i(λ s− ω t) + c.c. (355)

Note that we can still treat the flow as steady (albeit parametrically dependent on time) as the
time scale associated with planform evolution is much larger than the hydrodynamic time scale.

As usual, we take advantage of the typically weak curvature of many river bends and assume
that the curvature ratio ν0 is a small quantity. The equations governing the flow field can then be
linearized and their solution obtained through the expansions (304, 308) presented in Section 4.4.2.
With the help of those expansions and the migration rule (340), one readily finds
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Figura 89. Dependence of the temporal growth rate Im(ω) and migration speed c (= Re(ω)/λ) on the (real)
meander wave number λ. Three lateral Fourier modes have been used to describe the flow field as the effect of
further modes proves quantitatively negligible. (a) and (b) refer to plane bed conditions (τ∗0 = 0.1, ds = 0.01)

while (c) and (d) were obtained assuming a dune-covered bed (τ∗0 = 0.3, ds = 0.005). Thin lines denote
sub-resonant conditions (plots a and b, β = 10; plots c and d, β = 5); thick lines denote super-resonant conditions

(plots a and b, β = 25; Plots (c) and (d), β = 15); dotted lines denote resonant conditions (plots (a) and (b),
βR = 20; plots (c) and (d), βR = 10). (e) Dependence of the dimensionless wavenumber λ selected by bend

instability on the aspect ratio β for a few values of the Shields stress τ∗0, ds = 0.001, and a dune-covered bed.

Substituting this expression and (349) into the linearized form of the bend evolution equation
(348) leads to

−i ω θ = 2 ν0 E

∞∑
m=0

(−1)m
dum

ds
. (357)

The dispersion relationship for bend instability is thus readily obtained using the solution of
the linear problem of meander morphodynamics developed in Section 4.4.2. Multiplying equation
(311) by (−1)m, differentiating it, summing over m and making use of (355) eventually yields the
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following relation (Seminara et al., 2001b; Seminara, 2006)

ω = 2E

∞∑
m=0

(−1)m+1Am λ

7∑
j=1

ρj(i λ)
j

4∑
j=0

σj(i λ)
j

, (358)

where Am is the coefficient of the m-th term of the Fourier expansion of the function n in the
lateral direction, given by the relation (298), while ρj and σj (see Section 4.4.2) are functions of
the aspect ratio β, the Shields parameter τ∗0 and the average friction coefficient Cf0 of the basic
uniform flow in the initially straight channel.

Figure 89 shows the dispersion relationship (358) for realistic values of the relevant parameters.
Various features arise:

- A peak in the growth rate is observed at a value of the dimensionless wavenumber ranging
about 0.1− 0.3 (corresponding to wavelengths of about 30− 10 channel widths, respectively)
(Figure 89a,c);

- The meandering pattern migrates while amplifying and, indeed, the migration speed may
change sign (Figure 89b,d).

According to our previous discussion, this implies that the erosion peak may shift from
downstream to upstream of the bend apex. One would then like to know what mechanism controls
the occurrence of a clear peak in meander growth as well as the predicted shift of the location of
the erosion peak.

Resonance, selection of meander wavelength and migration speed

The answer to the first of the above questions is straightforward if one recalls the theory of linear
meanders discussed in Section 4.3.1. There, we have shown that linear meanders behave as linear
oscillators which resonate at specific values λR and βR of the meander wavenumber and of the
aspect ratio of the channel, respectively. Moreover, we know that λR and βR depend on the
intensity of sediment transport (through τ∗0) and friction (through the relative roughness ds). The
plots of the functions λR(τ∗0) and βR(τ∗0) for given values of ds, reported in Seminara and Tubino
(1992), are reproduced in the Figure 90 and Figure 91, respectively. Of course, in nature, the
aspect ratio of the channel is determined by the equilibrium arguments discussed in Chapter 5(I)
and will differ in general from the exact resonant values. However, we know from Section 4.3.3
that the effects of resonance are felt within a fairly wide range of values in a neighborhood of βR.
In other words, a peak in the bend growth rate (albeit a finite rather than an infinite peak) occurs
for any value of β not too far from βR and selects a meander wavenumber λm not too far from λR.
This is clearly demonstrated in Figure 89.

The answer to the second question, concerning the change in sign of meander migration speed
is also related to the resonance phenomenon. Indeed, the migration speed changes sign as the
resonance conditions are crossed. This feature is related to the property of linear resonators already
discussed in Section 4.3.1, whereby the phase of the response changes quadrant (i.e. the location of
peak flow crosses the bend apex) as the resonance conditions are crossed. As a result, sub-resonant
(super-resonant) trains of periodic meanders migrate downstream (upstream).

The convective nature of bend instability

Let us complete our analysis of bend instability with some discussion of its fundamental nature:
are we dealing with a convective or absolute type of instability? We have already clarified the
physical aspects of this distinction when we discussed free bar instability (Section 6.3.3(I)).
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Figura 89. Dependence of the temporal growth rate Im(ω) and migration speed c (= Re(ω)/λ) on the (real)
meander wave number λ. Three lateral Fourier modes have been used to describe the flow field as the effect of
further modes proves quantitatively negligible. (a) and (b) refer to plane bed conditions (τ∗0 = 0.1, ds = 0.01)

while (c) and (d) were obtained assuming a dune-covered bed (τ∗0 = 0.3, ds = 0.005). Thin lines denote
sub-resonant conditions (plots a and b, β = 10; plots c and d, β = 5); thick lines denote super-resonant conditions

(plots a and b, β = 25; Plots (c) and (d), β = 15); dotted lines denote resonant conditions (plots (a) and (b),
βR = 20; plots (c) and (d), βR = 10). (e) Dependence of the dimensionless wavenumber λ selected by bend

instability on the aspect ratio β for a few values of the Shields stress τ∗0, ds = 0.001, and a dune-covered bed.

Substituting this expression and (349) into the linearized form of the bend evolution equation
(348) leads to
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∞∑
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(−1)m
dum

ds
. (357)

The dispersion relationship for bend instability is thus readily obtained using the solution of
the linear problem of meander morphodynamics developed in Section 4.4.2. Multiplying equation
(311) by (−1)m, differentiating it, summing over m and making use of (355) eventually yields the
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following relation (Seminara et al., 2001b; Seminara, 2006)
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ρj(i λ)
j
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σj(i λ)
j
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where Am is the coefficient of the m-th term of the Fourier expansion of the function n in the
lateral direction, given by the relation (298), while ρj and σj (see Section 4.4.2) are functions of
the aspect ratio β, the Shields parameter τ∗0 and the average friction coefficient Cf0 of the basic
uniform flow in the initially straight channel.

Figure 89 shows the dispersion relationship (358) for realistic values of the relevant parameters.
Various features arise:

- A peak in the growth rate is observed at a value of the dimensionless wavenumber ranging
about 0.1− 0.3 (corresponding to wavelengths of about 30− 10 channel widths, respectively)
(Figure 89a,c);

- The meandering pattern migrates while amplifying and, indeed, the migration speed may
change sign (Figure 89b,d).

According to our previous discussion, this implies that the erosion peak may shift from
downstream to upstream of the bend apex. One would then like to know what mechanism controls
the occurrence of a clear peak in meander growth as well as the predicted shift of the location of
the erosion peak.

Resonance, selection of meander wavelength and migration speed

The answer to the first of the above questions is straightforward if one recalls the theory of linear
meanders discussed in Section 4.3.1. There, we have shown that linear meanders behave as linear
oscillators which resonate at specific values λR and βR of the meander wavenumber and of the
aspect ratio of the channel, respectively. Moreover, we know that λR and βR depend on the
intensity of sediment transport (through τ∗0) and friction (through the relative roughness ds). The
plots of the functions λR(τ∗0) and βR(τ∗0) for given values of ds, reported in Seminara and Tubino
(1992), are reproduced in the Figure 90 and Figure 91, respectively. Of course, in nature, the
aspect ratio of the channel is determined by the equilibrium arguments discussed in Chapter 5(I)
and will differ in general from the exact resonant values. However, we know from Section 4.3.3
that the effects of resonance are felt within a fairly wide range of values in a neighborhood of βR.
In other words, a peak in the bend growth rate (albeit a finite rather than an infinite peak) occurs
for any value of β not too far from βR and selects a meander wavenumber λm not too far from λR.
This is clearly demonstrated in Figure 89.

The answer to the second question, concerning the change in sign of meander migration speed
is also related to the resonance phenomenon. Indeed, the migration speed changes sign as the
resonance conditions are crossed. This feature is related to the property of linear resonators already
discussed in Section 4.3.1, whereby the phase of the response changes quadrant (i.e. the location of
peak flow crosses the bend apex) as the resonance conditions are crossed. As a result, sub-resonant
(super-resonant) trains of periodic meanders migrate downstream (upstream).

The convective nature of bend instability

Let us complete our analysis of bend instability with some discussion of its fundamental nature:
are we dealing with a convective or absolute type of instability? We have already clarified the
physical aspects of this distinction when we discussed free bar instability (Section 6.3.3(I)).
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Figura 90. The resonant values of the meander wavenumber λR are plotted versus the Shields stress τ∗0 for given
values of the dimensionless grain roughness ds. (a) plane bed; (b) dune-covered bed (modified from Seminara and

Tubino, 1992).

Figura 91. The resonant values of the aspect ratio of the channel βR, are plotted versus the Shields stress τ∗0 for
given values of the dimensionless grain roughness (ds values are those of figure 90). (a) plane bed; (b) dune-covered

bed (modified from Seminara and Tubino, 1992).

Here, it suffices to recall that the convective/absolute nature of bend instability can be
assessed by investigating the response of the channel planform in response to a spatially localized
perturbation of the initially straight configuration, imposed at some cross section at the initial
time. Such a response has typically the form of a wave packet in the (s, t) plane and, in order to
distinguish between convective and absolute instability, one must examine its long-term behavior
along the ray s/t = 0 at a fixed spatial location (Figure 93(I)). The theory explained in Section
9.3.5(I) shows that such a behavior is imprinted in the structure of the dispersion relationship. An
application of the theory to bend instability was pursued by Camporeale and Ridolfi (2006) and
Lanzoni and Seminara (2006). Results suggest the existence of two typical scenarios. The first
scenario arises for low values of β: under such conditions, at a linear level, bend instability turns
out to be invariably convective. The second scenario is associated with higher Fourier modes and
suggests a transition to absolute instability for large values of β, dune covered bed and large values
of τ∗0. In the absence of dunes this behavior is found for unrealistically high values of β. A further
interesting feature emerging from the analysis concerns the group velocity [∂Re(ω)/∂λ]λmax , with
λmax the wavenumber characterized by the maximum growth rate. It is found that the group
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velocity changes sign as resonance is crossed. In other words, under super-resonant conditions the
meander pattern propagates upstream. These results will be more clearly illustrated in Section
5.4.5 where we will report results of numerical simulations performed by Lanzoni and Seminara
(2006).

It is appropriate at this stage to mention the laboratory investigations of van Dijk et al.
(2012) and Schuurman et al. (2016) which were designed to experimentally test the importance
of a persisting upstream perturbation in the process of meander formation and development.
In the experiment, the initially straight channel had a transversely moving upstream inlet and
silt-sized silica flour was added to the sediment feed to allow for floodplain formation. A dynamic
meandering river with scroll bars, chute cutoffs and floodplain building was reproduced and the
Authors concluded that “the necessary and sufficient conditions for dynamic meandering gravel
bed river are a sustained dynamic upstream perturbation and floodplain formation”. The latter
conclusion lends experimental support to the theoretical predictions of the convective nature of
meander instability discussed above.

5.4. Nonlinear evolution from incipient meandering to neck cutoff: the origin of fattening and skewing of
meander bends

5.4.1 Formulation

Let us next investigate the nonlinear planform evolution of river meanders. Our major goal is
to provide a theoretical explanation of a number of field observations described in Chapter 1. In
particular, we wish to answer the following questions.

- Can we clarify why single meanders develop typically the regular forms described by the
fattened and skewed Kinoshita shape (Kinoshita, 1961)?

- Can we actually infer from an aerial photo what is the flow direction of a meandering river,
on the ground that meanders would be invariably upstream skewed?

- Can we predict the observations according to which the amplitude of single bends increases
up to a peak and then decreases while their migration speeds decrease monotonically (Nanson
and Hickin, 1983)?

- Is the model formulated in the previous Section able to reproduce the fact that the continuous
evolution of river meanders leads to neck cutoff, at least in the absence of geological constraints
(like the confining valley walls of the Beaver river (Figure 11)?

To answer these questions, let us investigate the spatial-temporal evolution of a periodic
sequence of fluvial meanders with the help of the theoretical model formulated above. The flow
field evolves on a time scale much smaller than that characterizing the planform evolution of the
channel, which is driven by the average bank erosion. In other words, the flow field is assumed to
adapt instantaneously to planform changes and, hence, at any time t of the evolutionary process
we can assume steady flow conditions within the channel.

Substituting from (356) into the dimensionless form of the evolution equation of the channel
axis (348) yields:

2 ν0 E

∞∑
m=0

(−1)m
∂um

∂s
=

∂θ

∂t
− 2 ν0 E

∂θ

∂s

∞∑
m=0

∫ s

0

(−1)m um
∂θ

∂s′
ds′. (359)

In Section 5.3.2 we have analyzed the linear approximation of the latter equation and shown
that it admits of a simplest solution consisting of a periodic sequence of sine generated meanders
(equation (355)). The amplitude of these meanders grows exponentially in time within specific
wavenumber ranges depending on the parameters of the problem (equation (358)). Moreover, these
planform shapes migrate either downstream or upstream depending on the sub- super-resonant
character of the channel. Clearly, this linear solution is no more valid as the meander amplitude
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Figura 90. The resonant values of the meander wavenumber λR are plotted versus the Shields stress τ∗0 for given
values of the dimensionless grain roughness ds. (a) plane bed; (b) dune-covered bed (modified from Seminara and

Tubino, 1992).

Figura 91. The resonant values of the aspect ratio of the channel βR, are plotted versus the Shields stress τ∗0 for
given values of the dimensionless grain roughness (ds values are those of figure 90). (a) plane bed; (b) dune-covered

bed (modified from Seminara and Tubino, 1992).

Here, it suffices to recall that the convective/absolute nature of bend instability can be
assessed by investigating the response of the channel planform in response to a spatially localized
perturbation of the initially straight configuration, imposed at some cross section at the initial
time. Such a response has typically the form of a wave packet in the (s, t) plane and, in order to
distinguish between convective and absolute instability, one must examine its long-term behavior
along the ray s/t = 0 at a fixed spatial location (Figure 93(I)). The theory explained in Section
9.3.5(I) shows that such a behavior is imprinted in the structure of the dispersion relationship. An
application of the theory to bend instability was pursued by Camporeale and Ridolfi (2006) and
Lanzoni and Seminara (2006). Results suggest the existence of two typical scenarios. The first
scenario arises for low values of β: under such conditions, at a linear level, bend instability turns
out to be invariably convective. The second scenario is associated with higher Fourier modes and
suggests a transition to absolute instability for large values of β, dune covered bed and large values
of τ∗0. In the absence of dunes this behavior is found for unrealistically high values of β. A further
interesting feature emerging from the analysis concerns the group velocity [∂Re(ω)/∂λ]λmax , with
λmax the wavenumber characterized by the maximum growth rate. It is found that the group
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velocity changes sign as resonance is crossed. In other words, under super-resonant conditions the
meander pattern propagates upstream. These results will be more clearly illustrated in Section
5.4.5 where we will report results of numerical simulations performed by Lanzoni and Seminara
(2006).

It is appropriate at this stage to mention the laboratory investigations of van Dijk et al.
(2012) and Schuurman et al. (2016) which were designed to experimentally test the importance
of a persisting upstream perturbation in the process of meander formation and development.
In the experiment, the initially straight channel had a transversely moving upstream inlet and
silt-sized silica flour was added to the sediment feed to allow for floodplain formation. A dynamic
meandering river with scroll bars, chute cutoffs and floodplain building was reproduced and the
Authors concluded that “the necessary and sufficient conditions for dynamic meandering gravel
bed river are a sustained dynamic upstream perturbation and floodplain formation”. The latter
conclusion lends experimental support to the theoretical predictions of the convective nature of
meander instability discussed above.

5.4. Nonlinear evolution from incipient meandering to neck cutoff: the origin of fattening and skewing of
meander bends

5.4.1 Formulation

Let us next investigate the nonlinear planform evolution of river meanders. Our major goal is
to provide a theoretical explanation of a number of field observations described in Chapter 1. In
particular, we wish to answer the following questions.

- Can we clarify why single meanders develop typically the regular forms described by the
fattened and skewed Kinoshita shape (Kinoshita, 1961)?

- Can we actually infer from an aerial photo what is the flow direction of a meandering river,
on the ground that meanders would be invariably upstream skewed?

- Can we predict the observations according to which the amplitude of single bends increases
up to a peak and then decreases while their migration speeds decrease monotonically (Nanson
and Hickin, 1983)?

- Is the model formulated in the previous Section able to reproduce the fact that the continuous
evolution of river meanders leads to neck cutoff, at least in the absence of geological constraints
(like the confining valley walls of the Beaver river (Figure 11)?

To answer these questions, let us investigate the spatial-temporal evolution of a periodic
sequence of fluvial meanders with the help of the theoretical model formulated above. The flow
field evolves on a time scale much smaller than that characterizing the planform evolution of the
channel, which is driven by the average bank erosion. In other words, the flow field is assumed to
adapt instantaneously to planform changes and, hence, at any time t of the evolutionary process
we can assume steady flow conditions within the channel.

Substituting from (356) into the dimensionless form of the evolution equation of the channel
axis (348) yields:

2 ν0 E

∞∑
m=0

(−1)m
∂um

∂s
=

∂θ

∂t
− 2 ν0 E

∂θ

∂s

∞∑
m=0

∫ s

0

(−1)m um
∂θ

∂s′
ds′. (359)

In Section 5.3.2 we have analyzed the linear approximation of the latter equation and shown
that it admits of a simplest solution consisting of a periodic sequence of sine generated meanders
(equation (355)). The amplitude of these meanders grows exponentially in time within specific
wavenumber ranges depending on the parameters of the problem (equation (358)). Moreover, these
planform shapes migrate either downstream or upstream depending on the sub- super-resonant
character of the channel. Clearly, this linear solution is no more valid as the meander amplitude
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increases too much and, in particular, it fails under near resonant conditions. In the latter case, a
nonlinear solution for the flow field of the type discussed in Section 4.3.2 must replace the linear
solution.

Below, we restrict our attention to non-resonant conditions and consider the geometric nonli-
nearity embodied by the integral term appearing in the planform evolution equation (359). To
account for this spatial memory effect we introduce a modified Fourier expansion of the form:

θ(s, t) =

∞∑
k=1

θk(t) e
i λk(t) s + c.c. (360)

The peculiar character of this expansion consists of the fact that both the coefficients θk and the
wavenumbers λk = (2 k − 1)λ(t) depend on time. Also, note that, the expansion of equation (359)
involves only odd harmonics. This is due to the fact that the unknown function θ occurs in cubic
form in the planform evolution equation (359) (recall that um ∝ τ ∝ dθ/ds). Similarly, we account
for the dependence of the coefficients um on s by similar Fourier series expansions of the form:

um =
1

ν0

∞∑
k=1

umk θk(t) e
i λk(t) s + c.c. (361)

Recalling that um satisfy the equation (311), it is easily demonstrated that

umk = Am

7∑
j=1

ρj(i λk)
j

4∑
j=0

σj(i λk)
j

. (362)

We can then rewrite the channel lateral migration rate (356) as

ζ =

∞∑
k=1

ζk e
iλk(t)s + c.c., (363)

with

ζk = 2E

∞∑
m=0

(−1)mumk (364)

Substituting from (360) and (363) into the integro-differential equation (359), and equating terms
proportional to exp(i λk s) (k = 0, 1, 2, . . . , N), we obtain a coupled system of N nonlinear ordinary
differential equations for the amplitudes θk(t) (k = 1, 3, 5, . . . , N) and an equation for the meander
wavenumber λ(t) of the form:

dθ1
dt

= i λF1(θ1, θ3, θ5, . . . )

dθ3
dt

= i λF3(θ1, θ3, θ5, . . . )

dθ5
dt

= i λF5(θ1, θ3, θ5, . . . )

. . .

dλ

dt
= λ2 [i (ζ̄1 θ1 θ̄1 + 3 ζ̄3 θ3 θ̄3 + 5 ζ̄5 θ5 θ̄5 + . . . ) + c.c.],

(365)
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where Fk (k = 1, 3, 5, . . . ) are nonlinear functions of the amplitudes θk (Seminara et al., 2001b) and,
as usual, an overbar denotes the complex conjugate of a complex number. This set of equations
describes the nonlinear planform development of periodic trains of river meanders starting from
an initial sine-generated shape with wavenumber λ(t)

∣∣
t=0

.
It is appropriate to note that the above formulation was first presented in a national meeting

(Seminara et al., 1994) and in a paper invited at an international conference (Seminara, 1995). An
expansion identical to that formulated above (albeit relying on the model of Ikeda et al., 1981),
was employed by Edwards and Smith (2002) in a paper published one year after Seminara et al.
(2001b) and seventeen years after Blondeaux and Seminara (1985). We will come back to the
latter paper below.

5.4.2 A Landau-Stuart amplitude equation for the fundamental harmonic

Let us now consider a particular case of the system (365). Assume that all the harmonics higher
than the first can be neglected. This approximation is not extreme as it may appear. Indeed, the
numerical solution of the planform evolution equation that will be discussed below shows that,
under sub-resonant conditions, even at the late stage of meander development, third harmonics
remain usually much smaller than the fundamental. Under these conditions, the full system (365)
reduces to the following form:

dθ1
dt

= i λ [ζ1 θ1 −
1

2
ζ1 θ

3
1 −

1

2
(ζ1 θ

2
1 θ̄1 + c.c.)], (366)

dλ

dt
= λ2 [i ζ̄1 θ1 θ̄1 + c.c.]. (367)

The reader will note that (366) bears a superficial similarity with the classical Landau-Stuart
(LS) equation governing the weakly nonlinear evolution of a linear Fourier mode excited by the
instability of steady basic states in a neighborhood of the critical conditions (see equation 534(I))
in Section 6.5.1(I)). However, (366) has a few distinct features:

- the second and fourth terms in the right-hand side of (366) are not present in Landau-Stuart
equation;

- furthermore, the coefficients of the linear and cubic terms of (366) depend on time through
their dependence on the fundamental wavenumber λ and on the coefficient ζ1(λ). This feature
arises from the integrodifferential nature of the original planform evolution equation. Indeed,
the history of channel deformation is accounted for through the progressive channel elongation
associated with the temporal development of the fundamental wavenumber λ.

5.4.3 Can meanders of permanent form exist?

Equation (366) can be used to investigate whether meanders of permanent form exist. Such
meanders, migrating in the longitudinal direction with no growth or decay in the absence of
geological constraints have never emerged from the available field observations. We now show that
equation (367) strongly tends to exclude this possibility.

Note that the above issue was first raised by Parker et al. (1983), who found a nonlinear
solution of permanent form in a neighborhood of the wavenumber characterized by vanishing
growth rate. However, such a solution was later shown to be unstable by Parker and Andrews
(1986). The theoretical model described in Section 5.4.1 allows us to revisit this problem fairly
easily using the LS-type amplitude equation. In fact, subtracting the complex conjugate of (366)
multiplied by θ1 from (366) multiplied by θ̄1, we find:

2
d

dt

∣∣θ1
∣∣2 = i λ (ζ1 − ζ̄1)

∣∣θ1|2 (2− |θ1|2), (368)

where |θ1| denotes the modulus of the complex number θ1. This equation clarifies that, in order to
achieve equilibrium, the meander amplitude, expressed in terms of the real quantity |θ1|, should
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increases too much and, in particular, it fails under near resonant conditions. In the latter case, a
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wavenumber λ(t) of the form:
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where Fk (k = 1, 3, 5, . . . ) are nonlinear functions of the amplitudes θk (Seminara et al., 2001b) and,
as usual, an overbar denotes the complex conjugate of a complex number. This set of equations
describes the nonlinear planform development of periodic trains of river meanders starting from
an initial sine-generated shape with wavenumber λ(t)
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It is appropriate to note that the above formulation was first presented in a national meeting

(Seminara et al., 1994) and in a paper invited at an international conference (Seminara, 1995). An
expansion identical to that formulated above (albeit relying on the model of Ikeda et al., 1981),
was employed by Edwards and Smith (2002) in a paper published one year after Seminara et al.
(2001b) and seventeen years after Blondeaux and Seminara (1985). We will come back to the
latter paper below.

5.4.2 A Landau-Stuart amplitude equation for the fundamental harmonic

Let us now consider a particular case of the system (365). Assume that all the harmonics higher
than the first can be neglected. This approximation is not extreme as it may appear. Indeed, the
numerical solution of the planform evolution equation that will be discussed below shows that,
under sub-resonant conditions, even at the late stage of meander development, third harmonics
remain usually much smaller than the fundamental. Under these conditions, the full system (365)
reduces to the following form:
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The reader will note that (366) bears a superficial similarity with the classical Landau-Stuart
(LS) equation governing the weakly nonlinear evolution of a linear Fourier mode excited by the
instability of steady basic states in a neighborhood of the critical conditions (see equation 534(I))
in Section 6.5.1(I)). However, (366) has a few distinct features:

- the second and fourth terms in the right-hand side of (366) are not present in Landau-Stuart
equation;

- furthermore, the coefficients of the linear and cubic terms of (366) depend on time through
their dependence on the fundamental wavenumber λ and on the coefficient ζ1(λ). This feature
arises from the integrodifferential nature of the original planform evolution equation. Indeed,
the history of channel deformation is accounted for through the progressive channel elongation
associated with the temporal development of the fundamental wavenumber λ.

5.4.3 Can meanders of permanent form exist?

Equation (366) can be used to investigate whether meanders of permanent form exist. Such
meanders, migrating in the longitudinal direction with no growth or decay in the absence of
geological constraints have never emerged from the available field observations. We now show that
equation (367) strongly tends to exclude this possibility.

Note that the above issue was first raised by Parker et al. (1983), who found a nonlinear
solution of permanent form in a neighborhood of the wavenumber characterized by vanishing
growth rate. However, such a solution was later shown to be unstable by Parker and Andrews
(1986). The theoretical model described in Section 5.4.1 allows us to revisit this problem fairly
easily using the LS-type amplitude equation. In fact, subtracting the complex conjugate of (366)
multiplied by θ1 from (366) multiplied by θ̄1, we find:
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where |θ1| denotes the modulus of the complex number θ1. This equation clarifies that, in order to
achieve equilibrium, the meander amplitude, expressed in terms of the real quantity |θ1|, should
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Figura 92. Theoretical shape predicted by equation (366) for the finite amplitude equilibrium of single harmonic
meanders, such that |θ1| =

√
2 (reproduced from Seminara et al., 2001b).

reach the value
√
2. Figure 92 shows the shape that such a meander in equilibrium would attain.

Such a shape is obviously non-realistic as a train of sine-generated meander bends would undergo
cutoff before reaching this stage. Moreover, equilibrium is incompatible with the lenghtening
process predicted by equation (367), that would continue even if

∣∣θ1
∣∣ had reached a constant value.

This result relies on the assumption that the dominant contribution to meander shape arises
from the fundamental in our expansion (360) and is strongly suggestive of the absence of any
equilibrium configuration of meander evolution in the absence of geological constraints. However,
as pointed out by Seminara et al. (2001b), “it does not conclusively rule out the possibility
that equilibrium might be achieved through the development of more complex shapes with higher
harmonics playing a non-negligible role”. The numerical experiments discussed below have not
shown any such tendency.

5.4.4 General features of the planform development of river meanders in the sub-resonant and super-
resonant cases

Seminara et al. (2001b) investigated the short-term planform evolution of meandering rivers
solving numerically the differential system (365), neglecting the contribution of harmonics higher
than the fifth. Note, that by short term we mean that simulations have been stopped at incipient
cutoff conditions.

First the sub-resonant case was investigated starting from the initial condition Re(θ1) = 0.001,
Re(θ3) = Re(θ5) = Im(θ1) = Im(θ3) = Im(θ5) = 0. Results are described in Figure 93, which
clearly shows that the sub-resonant evolution is characterized by two distinct phases. A linear
growth of the fundamental harmonic, θ1, followed by a slower nonlinear growth in which the
third harmonic reaches values of the order of 20 % of the fundamental, while the fifth harmonic
remains always negligible (Figure 93a). As a consequence, the meander length, that increases quite
slowly during the initial linear phase, grows quite rapidly in the nonlinear stage (Figure 93b). In
particular, the growth of the third harmonic induces a progressive fattening and upstream skewing
of the meander shape (Figure 94a). Predicted meander shapes thus develop the classical regular
forms suggested by Kinoshita (1961). This is not surprising as the expansion (360), truncated at
second order, coincides with Kinoshita shape. The fact that spatial harmonics higher than the
third do not play a significant role as suggested by Kinoshita (1961), is simply due to the fact
that neck cutoff typically occurs before higher harmonics have had a chance to amplify. Under
sub-resonant conditions meanders are skewed upstream and migrate downstream. The migration
speed decreases monotonically throughout meander development and tends to vanish prior to
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Figura 93. Time evolution of (a) the amplitude of the first and third harmonics, and (b) of the normalized intrinsic
wavelength under sub-resonant conditions (β = 10 < βR, τ∗ = 0.2, ds = 0.01, plane bed conditions). The T time

variable is defined as T = 2E t/ν0 (reproduced from Seminara et al., 2001b).

Figura 94. (a) Sub-resonant evolution of periodic meanders; (b) downstream migration rate; (c) bend amplification
as functions of dimensionless time T of meander evolution (β = 10 < βR, τ∗ = 0.2, ds = 0.01, plane bed conditions)

(reproduced from Seminara et al., 2001b).

cutoff (Figure 94b). On the contrary, the rate of bend amplification does not show a monotonic
behavior, it grows to a peak and then slowly decays (Figure 94c). Both these results agree with
field observations (e.g. Nanson and Hickin, 1983).

A different scenario has been found in the super-resonant case. Figure 95a shows the planimetric
development of meander shape for the same set of parameters employed for the sub-resonant case,
except for the width ratio which now exceeds βR. In this case meanders are skewed downstream
and migrate upstream. This result differs drastically from that emerging from the model of Ikeda
et al. (1981), which is shown in Figure 95b.

This feature is associated with a variation of the phase of the third harmonics relative to the
fundamental as explained in Seminara et al. (2001b). More precisely, classical upstream skewing
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Figura 92. Theoretical shape predicted by equation (366) for the finite amplitude equilibrium of single harmonic
meanders, such that |θ1| =

√
2 (reproduced from Seminara et al., 2001b).

reach the value
√
2. Figure 92 shows the shape that such a meander in equilibrium would attain.

Such a shape is obviously non-realistic as a train of sine-generated meander bends would undergo
cutoff before reaching this stage. Moreover, equilibrium is incompatible with the lenghtening
process predicted by equation (367), that would continue even if

∣∣θ1
∣∣ had reached a constant value.

This result relies on the assumption that the dominant contribution to meander shape arises
from the fundamental in our expansion (360) and is strongly suggestive of the absence of any
equilibrium configuration of meander evolution in the absence of geological constraints. However,
as pointed out by Seminara et al. (2001b), “it does not conclusively rule out the possibility
that equilibrium might be achieved through the development of more complex shapes with higher
harmonics playing a non-negligible role”. The numerical experiments discussed below have not
shown any such tendency.

5.4.4 General features of the planform development of river meanders in the sub-resonant and super-
resonant cases

Seminara et al. (2001b) investigated the short-term planform evolution of meandering rivers
solving numerically the differential system (365), neglecting the contribution of harmonics higher
than the fifth. Note, that by short term we mean that simulations have been stopped at incipient
cutoff conditions.

First the sub-resonant case was investigated starting from the initial condition Re(θ1) = 0.001,
Re(θ3) = Re(θ5) = Im(θ1) = Im(θ3) = Im(θ5) = 0. Results are described in Figure 93, which
clearly shows that the sub-resonant evolution is characterized by two distinct phases. A linear
growth of the fundamental harmonic, θ1, followed by a slower nonlinear growth in which the
third harmonic reaches values of the order of 20 % of the fundamental, while the fifth harmonic
remains always negligible (Figure 93a). As a consequence, the meander length, that increases quite
slowly during the initial linear phase, grows quite rapidly in the nonlinear stage (Figure 93b). In
particular, the growth of the third harmonic induces a progressive fattening and upstream skewing
of the meander shape (Figure 94a). Predicted meander shapes thus develop the classical regular
forms suggested by Kinoshita (1961). This is not surprising as the expansion (360), truncated at
second order, coincides with Kinoshita shape. The fact that spatial harmonics higher than the
third do not play a significant role as suggested by Kinoshita (1961), is simply due to the fact
that neck cutoff typically occurs before higher harmonics have had a chance to amplify. Under
sub-resonant conditions meanders are skewed upstream and migrate downstream. The migration
speed decreases monotonically throughout meander development and tends to vanish prior to
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Figura 93. Time evolution of (a) the amplitude of the first and third harmonics, and (b) of the normalized intrinsic
wavelength under sub-resonant conditions (β = 10 < βR, τ∗ = 0.2, ds = 0.01, plane bed conditions). The T time

variable is defined as T = 2E t/ν0 (reproduced from Seminara et al., 2001b).

Figura 94. (a) Sub-resonant evolution of periodic meanders; (b) downstream migration rate; (c) bend amplification
as functions of dimensionless time T of meander evolution (β = 10 < βR, τ∗ = 0.2, ds = 0.01, plane bed conditions)

(reproduced from Seminara et al., 2001b).

cutoff (Figure 94b). On the contrary, the rate of bend amplification does not show a monotonic
behavior, it grows to a peak and then slowly decays (Figure 94c). Both these results agree with
field observations (e.g. Nanson and Hickin, 1983).

A different scenario has been found in the super-resonant case. Figure 95a shows the planimetric
development of meander shape for the same set of parameters employed for the sub-resonant case,
except for the width ratio which now exceeds βR. In this case meanders are skewed downstream
and migrate upstream. This result differs drastically from that emerging from the model of Ikeda
et al. (1981), which is shown in Figure 95b.

This feature is associated with a variation of the phase of the third harmonics relative to the
fundamental as explained in Seminara et al. (2001b). More precisely, classical upstream skewing
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Figura 95. (a) Super-resonant evolution of periodic meanders. (b) Ikeda et al. (1981) model (τ∗0 = 0.2, β =30,
ds =0.01, plane bed conditions, reproduced from Seminara et al., 2001b).

occurs when the phase lag lies in the range (0, π) whereas values in the range (π, 2π) determine
downstream skewing. Downstream skewing is often observed in nature, as shown in the examples
reported by Lanzoni and Seminara (2006) and reproduced in Figure 96.

Can the morphodynamic regime change during the planform evolution process?

Luchi (2009) investigated if the channel lengthening associated with the planform evolution of
meandering rivers prior to neck cutoff may drive a transition of the morphodynamic regime of
alluvial single-thread channels. Indeed, channel lengthening implies a progressive increase of
channel sinuosity, hence a continuous variation of the down-channel slope at the timescale of
planform evolution. As a consequence, the reach-averaged characteristics, that affect both β and
βR, vary and may induce a variation of the regime of morphodynamic influence. Channel width
also adjusts to gradual variations of channel slope. This effect has so far been neglected (but see
the recent developments discussed in Section 5.6).

In order to ascertain whether the above mechanism do lead to variations of the morphodynamic
regime, Luchi (2009) performed a series of simulations of planform evolution from incipient meander
formation to cutoff. Input data were the reference dimensionless parameters of the data set already
considered in Section 4.4.5, concerning gravel bed rivers. Results of the simulations are plotted
in Figure 97. Essentially, almost half (49%) of the examined river reaches kept within the initial
morphodynamic regime (either sub-resonant or super-resonant), the remaining transitional streams
almost invariably moved from the super-resonant to the sub-resonant regime due to the progressive
decrease of β and increase of βR as channel elongates and its slope decreases.

Compound and multiple loops

Another peculiar feature of the super-resonant case is the formation of compound meander shapes
prior to neck cutoff. This is a consequence of the faster amplification of higher harmonics, a
mechanism that was pointed out by Seminara et al. (2001b) and clarified by Luchi (2009) (but see
also Zolezzi et al., 2009). The role of the fifth harmonic θ5 usually remains negligible before cutoff.
However, relatively rapid growth of θ5 is observed to occur when β approaches βR. The mechanism
responsible for this growth can be explained analyzing the effects of channel elongation. Indeed, at
the beginning of each simulation, the fundamental meander wavelength coincides with the linearly
most unstable meander wavelength for the initial values of the relevant parameters, whilst the
third and fifth harmonic fall within the linearly stable range, i.e. they are associated with shorter
and non-amplifying meander modes. As the meander elongates, the wavelengths associated with
the third and fifth harmonics progressively increase and move toward the linearly unstable range.
The relatively fast growth of θ5 starts around T/Tcutoff ≃ 0.8, when β approaches βR. This is
illustrated in Figure 98

We may conclude this section noting that the theoretical framework built up above, which
accounts for the geometric nonlinearities intrinsic in the meander deformation process, appears
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Figura 96. A few examples of planform patterns of meandering rivers exhibiting downstream skewed meandering
loops. The rivers are located in (a, b, c) the southern part of Papua New Guinea (in particular, (a) and (b) refer to
some reaches of lower and middle Fly River), (d, h, g) the northeastern coast of Papua New Guinea, (e) Namibia,

(f) Kenya, and (i) Tanzania. Landsat mosaic images (https://zulu.ssc.nasa.gov/mrsid/mrsid.pl). The arrows
indicate flow direction (reproduced from Lanzoni and Seminara, 2006).

to give a qualitatively satisfactory insight into the mechanics of planform evolution, reproducing
most of the features of the process emerging from field observations.

5.4.5 The nature of bend instability in the nonlinear regime

In Section 5.3.2 we have noted that linear bend instability is convective except, possibly, in the
highly super-resonant regime.

Lanzoni and Seminara (2006) have ascertained that this property persists in the (geometrically)
nonlinear regime. They solved the planform evolution equation numerically, starting from a
configuration obtained by adding small random perturbations to the straight initial state. The
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Figura 95. (a) Super-resonant evolution of periodic meanders. (b) Ikeda et al. (1981) model (τ∗0 = 0.2, β =30,
ds =0.01, plane bed conditions, reproduced from Seminara et al., 2001b).

occurs when the phase lag lies in the range (0, π) whereas values in the range (π, 2π) determine
downstream skewing. Downstream skewing is often observed in nature, as shown in the examples
reported by Lanzoni and Seminara (2006) and reproduced in Figure 96.
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planform evolution. As a consequence, the reach-averaged characteristics, that affect both β and
βR, vary and may induce a variation of the regime of morphodynamic influence. Channel width
also adjusts to gradual variations of channel slope. This effect has so far been neglected (but see
the recent developments discussed in Section 5.6).

In order to ascertain whether the above mechanism do lead to variations of the morphodynamic
regime, Luchi (2009) performed a series of simulations of planform evolution from incipient meander
formation to cutoff. Input data were the reference dimensionless parameters of the data set already
considered in Section 4.4.5, concerning gravel bed rivers. Results of the simulations are plotted
in Figure 97. Essentially, almost half (49%) of the examined river reaches kept within the initial
morphodynamic regime (either sub-resonant or super-resonant), the remaining transitional streams
almost invariably moved from the super-resonant to the sub-resonant regime due to the progressive
decrease of β and increase of βR as channel elongates and its slope decreases.

Compound and multiple loops

Another peculiar feature of the super-resonant case is the formation of compound meander shapes
prior to neck cutoff. This is a consequence of the faster amplification of higher harmonics, a
mechanism that was pointed out by Seminara et al. (2001b) and clarified by Luchi (2009) (but see
also Zolezzi et al., 2009). The role of the fifth harmonic θ5 usually remains negligible before cutoff.
However, relatively rapid growth of θ5 is observed to occur when β approaches βR. The mechanism
responsible for this growth can be explained analyzing the effects of channel elongation. Indeed, at
the beginning of each simulation, the fundamental meander wavelength coincides with the linearly
most unstable meander wavelength for the initial values of the relevant parameters, whilst the
third and fifth harmonic fall within the linearly stable range, i.e. they are associated with shorter
and non-amplifying meander modes. As the meander elongates, the wavelengths associated with
the third and fifth harmonics progressively increase and move toward the linearly unstable range.
The relatively fast growth of θ5 starts around T/Tcutoff ≃ 0.8, when β approaches βR. This is
illustrated in Figure 98

We may conclude this section noting that the theoretical framework built up above, which
accounts for the geometric nonlinearities intrinsic in the meander deformation process, appears

164

Planform evolution of meandering rivers

Figura 96. A few examples of planform patterns of meandering rivers exhibiting downstream skewed meandering
loops. The rivers are located in (a, b, c) the southern part of Papua New Guinea (in particular, (a) and (b) refer to
some reaches of lower and middle Fly River), (d, h, g) the northeastern coast of Papua New Guinea, (e) Namibia,

(f) Kenya, and (i) Tanzania. Landsat mosaic images (https://zulu.ssc.nasa.gov/mrsid/mrsid.pl). The arrows
indicate flow direction (reproduced from Lanzoni and Seminara, 2006).

to give a qualitatively satisfactory insight into the mechanics of planform evolution, reproducing
most of the features of the process emerging from field observations.

5.4.5 The nature of bend instability in the nonlinear regime

In Section 5.3.2 we have noted that linear bend instability is convective except, possibly, in the
highly super-resonant regime.

Lanzoni and Seminara (2006) have ascertained that this property persists in the (geometrically)
nonlinear regime. They solved the planform evolution equation numerically, starting from a
configuration obtained by adding small random perturbations to the straight initial state. The
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Figura 97. Transitions between sub- and super-resonant regimes, as predicted by Luchi (2009) for a wide range of
conditions associated with the set of gravel bed rivers examined therein (reproduced from Figure 4.2 of Luchi, 2009).

Figura 98. Meander evolution leading to (a) the formation of compound meander planforms. As the meander
amplitude grows starting from super-resonant conditions, the progressive changes in the relevant parameters

produce (b) the transition to the sub-resonant regime. The tendency to multilobing is due to the role of the fifth
harmonic (c) which, under these conditions, attains values comparable with θ3 before the occurrence of cutoff

(reproduced from Figures 4.6 and 4.7 of Luchi, 2009).

planform was allowed to evolve freely, no constraint was imposed at the end cross-sections. The
channel morphodynamics was modeled using the complete solution for flow and bed topography
of Zolezzi and Seminara (2001) (Section 4.4) and both the sub-resonant and the super-resonant
scenarios were examined.

Results are reported in Figure 99. They confirm the picture emerged from linear theory,
including two scenarios. Convective instability leads to the development of meander groups
migrating downstream for sub-resonant values of β (Figure 99a). Under super-resonant conditions,
but not too large values of τ∗0, instability is still convective, but meander groups migrate upstream
(Figure 99b). For large values of both β and τ∗0, and dune covered beds a transition to absolute
instability is observed (Figure 99c). The physical implication of the above findings is noteworthy.
In super-resonant meanders morphodynamic information propagates upstream, a result that would
not emerge in the context of the uncoupled model of Ikeda et al. (1981), where bend instability is
also convective but wave groups can only migrate downstream.

5.5. Beyond neck cutoff: Long-term evolution
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Figura 99. Numerical simulations of the nonlinear response of a river to bend instability: wave groups develop and
migrate downstream (upstream) under sub-resonant (super-resonant) conditions. (a) Sub-resonant conditions
(τ∗0 = 0.2, β = 22, ds = 0.004, flat bed, E = 2 · 10−8): instability is convective; (b) Super-resonant conditions

(τ∗0 = 0.1, β =30, ds =0.01, flat bed, E = 2 · 10−8): instability is convective; (c) Super-resonant conditions (τ∗0 =
0.7, β = 25, ds = 0.005, dune covered bed, E = 1.85 · 10−8): instability is absolute (reproduced from Seminara

(2006).)

5.5.1 Further effects generating the complexity of meander patterns

On the long time scales (of the order of decades or centuries) typical of river meander evolution
the geometry of planform patterns is further complicated by the strongly nonlinear effects arising
from abrupt channel shortening via cutoff processes. These processes provide local mechanisms to
straighten the channel axis, thus limiting the growth of the channel sinuosity σ. Two different
types of cutoff are usually recognized in natural channels, chute and neck cutoffs. Chute cutoffs are
relatively long flow diversions which occur when a meander loop is bypassed through a new channel
which forms across the bar enclosed by the loop. This process occurs most frequently in wide
channels with large curvature bends, high discharges, poorly cohesive, weakly vegetated banks,
and high gradients (Howard and Knutson, 1984). Neck cutoffs occur when the local sinuosity
becomes so large that adjacent loops approach each other sufficiently for the stream to abruptly
choose the much shorter path which connects the upstream branch to the downstream branch
directly, thus excluding the meander loop. The latter progressively transforms into a so called
oxbow lake when sedimentation closes the ends of the abandoned loop (see Figure 100).

On the one hand, cutoff events limit the spatial evolution of meander loops, on the other
hand they generate an intermittent short noise that disturbs (in space and time) the deterministic
dynamics (Camporeale et al., 2007). Additional nonlinear effects, that sum to those associated
with the planform evolution equation (348) discussed in the previous section, are associated with
spatio-temporal heterogeneities of the floodplain, resulting in a variable bank erodibility. All these
nonlinearities concur to determine the wide range of bend shapes usually observed in nature. They
are summarized in Figure 6 and, as already pointed out, encompass downstream and upstream
skewed bends, compound bends and multiple loops.

In order to ascertain which novel features are associated with the intermittent occurrence of
cutoffs a full numerical approach is required.

5.5.2 Numerical simulations
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Figura 97. Transitions between sub- and super-resonant regimes, as predicted by Luchi (2009) for a wide range of
conditions associated with the set of gravel bed rivers examined therein (reproduced from Figure 4.2 of Luchi, 2009).
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which forms across the bar enclosed by the loop. This process occurs most frequently in wide
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directly, thus excluding the meander loop. The latter progressively transforms into a so called
oxbow lake when sedimentation closes the ends of the abandoned loop (see Figure 100).
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Figura 100. (a) and (b) Examples of incipient neck cutoffs. (c) Formation of an oxbow lake after a neck cutoff event.

Development of the subject

The semi-empirical model of Howard and Knutson (1984) was possibly the first attempt to
performing long-term numerical simulations of meander evolution, although a previous application
of Ikeda et al. (1981) model was performed by Parker (1982). The approach employed by Howard
and Knutson (1984) was purely kinematic as the lateral migration rate was assumed to be
proportional to local channel curvature. However, the Authors recognized the role played by the
spatial memory of the deformation process by introducing an adjusted migration rate obtained by
weighting the nominal migration rate calculated in the upstream reach. This assumption turns out
to be equivalent to Ikeda et al. (1981) model, i.e. it accounts for downstream influence. It thus
enabled Howard and Knutson (1984) to predict meandering patterns typical of the sub-resonant
regime (super-resonant features emerge only if upstream influence is also accounted for).

Few years later, Howard (1992) performed long-term numerical simulations of meander evolution
using the coupled version of Ikeda et al. (1981) model developed by Johannesson and Parker
(1989). The paper of Howard (1992), along with the previous pioneering contribution of Parker
(1982), represent milestones as they mark the starting point of various generations of numerical
models. Note, that this model was more advanced than many of the models that will be proposed
in the following years. Indeed, unlike the later contributions of Sun et al. (1996), Stolum (1996)
and Edwards and Smith (2002), which relied on the uncoupled Ikeda et al. (1981) approach, it
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employs a coupled morphodynamic model, hence it would have been potentially equipped to
disclose the difference between sub- and super-resonant patterns. Moreover, it accounts for the
interaction between the channel and the floodplain not only through the mechanism of bank
erosion but also allowing for overbank sediment deposition, a feature ignored in most of the later
works. This process was modeled semiempirically as a combination of settling and diffusion with
rate decreasing with the distance from the channel. It is fair to say that most (though not all)
observed features of the long-term planform evolution of meandering rivers in the sub-resonant
regime were satisfactorily predicted in this paper. In particular: fattening, upstream skewing and
downstream migration of meander bends in the initial phase of the process, neck-cutoffs, formation
of complex loops (attributed to the role of cutoffs), oxbow lakes, overbank deposits with increasing
elevation away from the channel, gradual infilling of the oxbow lakes, strongly asymmetric shape of
confined meanders. Howard (1992) also noted a sensitivity to initial conditions of the meandering
pattern generated by the simulations, an observation suggestive of the possible chaotic character
of meander morphodynamics. We will come back to this point in Section 5.5.5.

Many of the latter results will be totally or partially replicated by simulations of other members
of what may be called the first generation of numerical modelers, namely those who employed
the morphodynamic approach of Ikeda et al. (1981). In particular, Sun et al. (1996) explored
further the importance of the reduced erodibility of oxbow lake deposits in controlling confinement
as well as river diversions within the meander belt, namely the strip of the valley within which
meander activity keeps confined. Stolum (1996) also explored whether river meandering could be
interpreted in the light of the new fashionable paradigm of self organization, an issue that we will
analyze in Section 5.5.5.

A second generation of numerical models was based on the coupled theory of Blondeaux and
Seminara (1985) and Zolezzi and Seminara (2001) (or the similar theory of Johannesson and
Parker, 1989). They include the contributions of Seminara et al. (2001b), Lanzoni and Seminara
(2006), Frascati and Lanzoni (2009) and Zolezzi et al. (2009). The main novel ingredient of these
contributions was their ability to explore fully the implications of the morphodynamic regime of
the channel on the characteristics of planform evolution, relying on the theoretical framework
discussed in the last Section. Two further works (Sun et al., 2001a,b) have attempted to extend the
model of Johannesson and Parker (1989) such to allow for the sorting of sediments with different
grain sizes. They also claim to have included the effect of migrating alternate bars on the planform
evolution process. We will refer to these works in the next Chapter, where we outline the role
of sorting on meander morphodynamics. Finally, let us mention the coupled model of Crosato
(1990), based on the theory of Struiksma et al. (1985), and the later contribution (Crosato, 2007)
which devoted considerable attention to computational issues.

A different viewpoint was taken by Camporeale et al. (2005) and Camporeale et al. (2007).
Their goal was to ascertain whether one could envisage a universal character in the statistical
long-term behavior of meandering rivers. To pursue this goal they assessed the outcomes of coupled
versus uncoupled approaches in the context of long-term simulations of planform evolution. Their
conclusion was that an equilibrium state does exist and is “ largely unaffected by the details of the
fluid dynamic processes that govern the short-term river behavior ”. The latter statement was later
challenged by Frascati and Lanzoni (2009) who showed that distinct equilibria characterize the
long-term evolution of meandering rivers under sub- or super-resonant conditions.

Below, we analyze most of the above issues referring to the analysis of Frascati and Lanzoni
(2009) which appears to us the most comprehensive contribution covering all the aspects emerged
in the above works. Of course, we will refer to other results wherever appropriate.

The numerical approach

The channel axis is discretized through a sequence of equally spaced nodes Pi = (xi, yi). At every
time step ∆t, the planform evolution of the channel axis is obtained by displacing each node in the
direction orthogonal to the channel axis by an amount ζi ∆t. On the slow time scale associated
with the planform development of the channel, bank erosion is modeled as a continuous process
and described in terms of the slow temporal variable T = E t. Although the long-term evolution
of meandering rivers produces a rearrangement of the floodplain, as a first approximation we
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Figura 100. (a) and (b) Examples of incipient neck cutoffs. (c) Formation of an oxbow lake after a neck cutoff event.
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confined meanders. Howard (1992) also noted a sensitivity to initial conditions of the meandering
pattern generated by the simulations, an observation suggestive of the possible chaotic character
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assume a constant value of the erodibility coefficient (say E = 10−8, e.g. Johannesson and Parker,
1989). In other words, for the moment we neglect the heterogeneity in the spatial distribution
of the erodibility of the undisturbed floodplain that would be associated, e.g. with point bar
deposits or oxbow lake deposits (see Figure 100). In addition, differential changes in base level, as
well as possible geological constraints are neglected. Hence, the valley gradient is assumed to be
constant and no constraints at either channel end are imposed. We will discuss in Section 5.5.4
the possible role of the features neglected here. Finally, we are only able to model the formation
of neck cutoffs since the mechanics of chute cutoffs are as yet poorly understood. A brief account
of recent progress in modeling of the latter process is given in Section 5.7.

The flow field is evaluated using the linearized solution presented in Section 4.4.2. In particular,
the longitudinal velocity is obtained from the expansions (304), (308) and the solutions (316) or
(317) under sub- or super-resonant conditions, respectively. With the help of these relationships,
at each time step, we are able to evaluate the local value of the lateral migration rate ζi of the
channel axis. The local value of the dimensionless channel curvature Ci is also needed to calculate
the local velocity. This value is determined approximating the geometrical relationship (342)
through a centered finite difference scheme, with the spatial distribution of the angle θ determined
by averaging back and forth, hence:

θi =
1

2

(
arctan

yi+1 − yi
xi+1 − xi

+ arctan
yi − yi−1

xi − xi−1

)
. (369)

In order to reduce the computational effort required to evaluate the four convolution integrals
appearing in the solution (316) or (317) for the Fourier coefficients up

m, a semi-analytical integration
is carried out, assuming that the curvature varies linearly between two consecutive nodes. Moreover,
taking advantage of the exponential decay of the function to be integrated, the integration is
truncated when the function is smaller than a given tolerance (say 0.0001), with a further significant
reduction of the computational time. A predictor-corrector method (Crosato, 1990) is used to
improve the accuracy and effectiveness of the time marching procedure. The forward time step is
performed using for each node the normalized migration rate obtained as the average of its values
at the previous and present time steps. The step size ∆T is controlled by requiring that

∆T ≤ ϵstep
∆s

∆Umax
, (370)

where ∆s is the distance between two consecutive nodes, and ϵstep is an empirical parameter
defining the threshold between stable and unstable computations. The choice of this parameter
(= 0.005), is made through preliminary simulation tests. As the channel migrates, the distance ∆s
between individual nodes may increase or decrease. A standard cubic spline interpolation is used
to re-mesh the points uniformly after each time step. Moreover, new nodes are periodically added
to maintain the size of the spatial step in the range 0.8− 0.9. A discussion about the effects of
interpolation and node remesh, as well as the effects of the algorithm employed to compute the
curvature is reported in Schwenk et al. (2015).

At each time step, the presence of potential neck cutoffs is detected by controlling whether the
dimensional distance between the i-th node Pi and the (i+k)-th nodes Pi+k (with 1 < i+ k < N)
approaches some critical value (say 2.2B0). When such a distance is reached, all the points
Pi+j , j = 1, k, representing the abandoned channel loop, are removed. To recognize the nodes
(say Pi and Pi+k) at distance smaller than the selected critical value, Frascati and Lanzoni (2009)
used a matrix algorithm proposed by Camporeale et al. (2005) that allows a significant reduction
of the computational effort. Furthermore, in order to avoid the presence of physically nonrealistic
cusp-like regions with very high curvature at a reconnection, they chose to remove also three nodes
upstream of Pi and three nodes downstream of Pi+k. Such somehow artificial procedure is justified
by the fact that the rapid smoothing of sharp bends is a well-known phenomenon observed in
meandering rivers at cutoff (see, e.g. Figure 100).

5.5.3 Results of numerical simulations: sub- versus super-resonant
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The Figure 101 shows two typical examples of the simulated planform configurations obtained
by Frascati and Lanzoni (2009) under initially sub-resonant (Figure 101a) or super-resonant (Figure
101b) conditions, starting from a configuration obtained adding a small random perturbation to
the initial straight state.
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Figura 101. Examples of the long-term (2 · 106 time steps) planform evolution of a meandering river, computed
starting from a straight channel subject to random perturbations. (a) Sub-resonant conditions: β = 8.5; τ∗0 = 0.35;
ds = 0.0007. (b) Super-resonant conditions: β = 22.0; τ∗0 = 0.6; ds = 0.0025. Both simulations have been carried
out setting E = 1.5 · 10−8 and assuming a dune-covered bed. The age of oxbow lakes is measured by a grey-scale.

Darker oxbows are the most recent ones, whiter oxbows are the oldest ones.

The numerical results confirm the picture that emerged from the theoretical analysis described
in the previous section. Bend instability turns out to be generally convective and the group velocity
of bend perturbations changes sign as the resonant conditions are crossed. This implies that,
under sub-resonant conditions, non-persistent initial perturbations develop into wave groups which
amplify and migrate downstream, leaving the upstream reach unperturbed, i.e. recovering the
initial straight configuration (Figure 101a). Conversely, under super-resonant conditions wave
groups migrate upstream and the initially straight planform is recovered downstream (Figure
101b). As demonstrated by Lanzoni and Seminara (2006), absolute instability whereby wave
groups migrate upstream, but spread over the entire domain, can occur under super-resonant
conditions, for dune-covered beds and fairly high values of the Shields stress (see Figure 99c).

It is also important to observe that the mathematical model employed by Frascati and Lanzoni
(2009) is able to reproduce most of the bend shapes observed in nature (Figure 6) without invoking
changes in external controls such as formative discharge, heterogeneities in the erodibility of the
flood plain, nonlinearities of the flow field and bed topography. The Figure 102 summarizes the
typical patterns emerged from numerical computations. The similarity with natural forms is
remarkable. Simple bends (upstream or downstream skewed), compound bends, and multiple
loops (the cumuliform shapes observed by Howard, 1992) are correctly generated by the model.
Particularly remarkable is the ability of the model to reproduce the formation, often observed
in nature (Brice, 1974; Hooke and Harvey, 1983), of a compound bend evolving from a simple
bend which develops a curvature reversal along the bend itself (Figure 102c-f). This ability is
strictly related to the transition from super-resonant to sub-resonant conditions, as discussed in
Section 5.4.4 (recall Figure 98). In other words, the formation of compound bends does not need
the locking of the system around a resonant state triggered by a neck cutoff event, as suggested by
the numerical simulations of Howard (1992) and Sun et al. (2001b). Similarly, heterogeneity of
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assume a constant value of the erodibility coefficient (say E = 10−8, e.g. Johannesson and Parker,
1989). In other words, for the moment we neglect the heterogeneity in the spatial distribution
of the erodibility of the undisturbed floodplain that would be associated, e.g. with point bar
deposits or oxbow lake deposits (see Figure 100). In addition, differential changes in base level, as
well as possible geological constraints are neglected. Hence, the valley gradient is assumed to be
constant and no constraints at either channel end are imposed. We will discuss in Section 5.5.4
the possible role of the features neglected here. Finally, we are only able to model the formation
of neck cutoffs since the mechanics of chute cutoffs are as yet poorly understood. A brief account
of recent progress in modeling of the latter process is given in Section 5.7.

The flow field is evaluated using the linearized solution presented in Section 4.4.2. In particular,
the longitudinal velocity is obtained from the expansions (304), (308) and the solutions (316) or
(317) under sub- or super-resonant conditions, respectively. With the help of these relationships,
at each time step, we are able to evaluate the local value of the lateral migration rate ζi of the
channel axis. The local value of the dimensionless channel curvature Ci is also needed to calculate
the local velocity. This value is determined approximating the geometrical relationship (342)
through a centered finite difference scheme, with the spatial distribution of the angle θ determined
by averaging back and forth, hence:
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5.5.3 Results of numerical simulations: sub- versus super-resonant
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The Figure 101 shows two typical examples of the simulated planform configurations obtained
by Frascati and Lanzoni (2009) under initially sub-resonant (Figure 101a) or super-resonant (Figure
101b) conditions, starting from a configuration obtained adding a small random perturbation to
the initial straight state.
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Figura 101. Examples of the long-term (2 · 106 time steps) planform evolution of a meandering river, computed
starting from a straight channel subject to random perturbations. (a) Sub-resonant conditions: β = 8.5; τ∗0 = 0.35;
ds = 0.0007. (b) Super-resonant conditions: β = 22.0; τ∗0 = 0.6; ds = 0.0025. Both simulations have been carried
out setting E = 1.5 · 10−8 and assuming a dune-covered bed. The age of oxbow lakes is measured by a grey-scale.

Darker oxbows are the most recent ones, whiter oxbows are the oldest ones.

The numerical results confirm the picture that emerged from the theoretical analysis described
in the previous section. Bend instability turns out to be generally convective and the group velocity
of bend perturbations changes sign as the resonant conditions are crossed. This implies that,
under sub-resonant conditions, non-persistent initial perturbations develop into wave groups which
amplify and migrate downstream, leaving the upstream reach unperturbed, i.e. recovering the
initial straight configuration (Figure 101a). Conversely, under super-resonant conditions wave
groups migrate upstream and the initially straight planform is recovered downstream (Figure
101b). As demonstrated by Lanzoni and Seminara (2006), absolute instability whereby wave
groups migrate upstream, but spread over the entire domain, can occur under super-resonant
conditions, for dune-covered beds and fairly high values of the Shields stress (see Figure 99c).

It is also important to observe that the mathematical model employed by Frascati and Lanzoni
(2009) is able to reproduce most of the bend shapes observed in nature (Figure 6) without invoking
changes in external controls such as formative discharge, heterogeneities in the erodibility of the
flood plain, nonlinearities of the flow field and bed topography. The Figure 102 summarizes the
typical patterns emerged from numerical computations. The similarity with natural forms is
remarkable. Simple bends (upstream or downstream skewed), compound bends, and multiple
loops (the cumuliform shapes observed by Howard, 1992) are correctly generated by the model.
Particularly remarkable is the ability of the model to reproduce the formation, often observed
in nature (Brice, 1974; Hooke and Harvey, 1983), of a compound bend evolving from a simple
bend which develops a curvature reversal along the bend itself (Figure 102c-f). This ability is
strictly related to the transition from super-resonant to sub-resonant conditions, as discussed in
Section 5.4.4 (recall Figure 98). In other words, the formation of compound bends does not need
the locking of the system around a resonant state triggered by a neck cutoff event, as suggested by
the numerical simulations of Howard (1992) and Sun et al. (2001b). Similarly, heterogeneity of
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Figura 102. Examples of the shapes of meandering bends generated synthetically using the ZS linearized flow field
model. (a) Upstream-skewed bend, (b) downstream-skewed bend, (c)-(f) compound bends, and (g,h) multiple loops.

Flow is from left to right, (reproduced from Frascati and Lanzoni, 2009).

bank erodibility, invoked by Sun et al. (1996) to explain multiple loops (see Section 5.5.4), is not
actually needed to reproduce these bend shapes, although it may surely contribute to causing the
process.

5.5.4 Effects of floodplain heterogeneity

Various aspects of floodplain heterogeneity can be identified. The first consists of mechanisms
that make the erodibility of the floodplain much smaller than the erodibility of the point bar
deposits. Vegetated floodplains, as well as meandering rivers confined by valley walls consisting
of rocky hillslopes or earlier terraces, provide common examples. A most striking one is shown
in Figure 103 (but recall also Figure 11) and refers to the Beaver River (Saskatchewan province,
Canada). The clear effect of confinement is to give rise to a peculiar meander shape, sometimes
called rectangular meander (Sun et al., 1996).

This feature was described as a characteristic of constrained meandering rivers as early as Allen
(1985) and was first predicted in the simulations of the planform evolution of confined meandering
rivers by Howard and Knutson (1984) and Howard (1992). Similar simulations were performed by
Sun et al. (1996). These works were able to reproduce the shape of confined meanders (Figure
103) assuming a value of floodplain erodibility much smaller than the erodibility of point bar
deposits. Simulations showed that a pattern consisting of a train of regular sine generated bends
developed in the initial stage and evolved into a sequence of Beaver-type meanders when the
lateral migration led the channel to impact on the highly more resistant floodplain sediments.
It is precisely the laterally impeded development of the channel that causes the appearance of
the rectangular meander shape. Note that predicted meander loops were upstream skewed and
concave upstream.

A second aspect that has received considerable attention (Howard, 1992; Sun et al., 1996;
Frascati and Lanzoni, 2009) is the heterogeneity driven by the formation and filling of oxbow lakes.
In particular, Sun et al. (1996) were interested in ascertaining whether their model would support
the concept of meander belt, namely the existence of a strip of the valley within which meander
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Figura 103. Results of numerical simulations of planform evolution of meandering rivers under conditions of
erodibility of the floodplain much smaller than the erodibility of the point bar deposits (modified from Howard and

Knutson (1984)(a) and Sun et al. (1996)(b), respectively).

activity would keep confined. This idea was introduced by Jefferson (1902), who suggested that
the width of the meander belt would be about 18 times the width of the river. Later, Fisk (1952),
based on his field observations of the Mississippi River, emphasized the importance of the reduced
erodibility of oxbow lake deposits in controlling confinement as well as river diversions within
the belt. The assumption that oxbow lake deposits are actually responsible for the formation
of meander belts was first explicitly formulated by Allen (1965), but the issue has continued to
be investigated for decades for its obvious stratigraphic relevance and its implications for the
development of oil reservoir models.

Sun et al. (1996) examined the problem adopting two different deposition scenarios. In
the former case, they modeled the formation of oxbow lakes, their filling and consolidation as
instantaneous. Simulations showed that the continuously generated oxbow lakes merge into
resistant barriers distributed along the river. However, no stable, well-defined meander belt was
identified. The latter deposition scenario allowed for a significant delay between the formation of
an oxbow lake, its filling and consolidation into a resistant material. Indeed, as pointed out by
Gagliano and Howard (1983), filling an oxbow lake can take as long as centuries to thousands of
years. Sun et al. (1996) claim that allowing for such a delay bears an important consequence for
meander belts. Indeed according to their simulations it turns out that recently formed oxbows are
easily eroded when neighboring bends migrate into them, whereas abandoned loops located at
great distance from the river have more time to consolidate. This mechanism opposes the attempts
of the river to migrate far from its present course and leads to the development of a fairly stable
meander belt.

The role of floodplain heterogeneity was also investigated by Bogoni et al. (2017) with the
help of the model of planform evolution developed by Frascati and Lanzoni (2009). Figure 104
summarizes the migration history of the river planforms based on six scenarios obtained with
different choices for the erodibility of the pristine floodplain, of scroll bar units and infilled oxbow
lakes. The first scenario concerns a floodplain with an erodibility that is not modified by the river
evolution, i.e. the river has no memory of its own past configurations. The second scenario assumes
the formation of oxbow lakes that, after their disconnection and infilling, develop a resistance to
erosion larger than that of the pristine floodplain, while scroll bars are assumed not to modify
floodplain erodibility. The third and the fourth scenarios concern the formation of scroll bars
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Figura 102. Examples of the shapes of meandering bends generated synthetically using the ZS linearized flow field
model. (a) Upstream-skewed bend, (b) downstream-skewed bend, (c)-(f) compound bends, and (g,h) multiple loops.

Flow is from left to right, (reproduced from Frascati and Lanzoni, 2009).
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103) assuming a value of floodplain erodibility much smaller than the erodibility of point bar
deposits. Simulations showed that a pattern consisting of a train of regular sine generated bends
developed in the initial stage and evolved into a sequence of Beaver-type meanders when the
lateral migration led the channel to impact on the highly more resistant floodplain sediments.
It is precisely the laterally impeded development of the channel that causes the appearance of
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concave upstream.

A second aspect that has received considerable attention (Howard, 1992; Sun et al., 1996;
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In particular, Sun et al. (1996) were interested in ascertaining whether their model would support
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activity would keep confined. This idea was introduced by Jefferson (1902), who suggested that
the width of the meander belt would be about 18 times the width of the river. Later, Fisk (1952),
based on his field observations of the Mississippi River, emphasized the importance of the reduced
erodibility of oxbow lake deposits in controlling confinement as well as river diversions within
the belt. The assumption that oxbow lake deposits are actually responsible for the formation
of meander belts was first explicitly formulated by Allen (1965), but the issue has continued to
be investigated for decades for its obvious stratigraphic relevance and its implications for the
development of oil reservoir models.

Sun et al. (1996) examined the problem adopting two different deposition scenarios. In
the former case, they modeled the formation of oxbow lakes, their filling and consolidation as
instantaneous. Simulations showed that the continuously generated oxbow lakes merge into
resistant barriers distributed along the river. However, no stable, well-defined meander belt was
identified. The latter deposition scenario allowed for a significant delay between the formation of
an oxbow lake, its filling and consolidation into a resistant material. Indeed, as pointed out by
Gagliano and Howard (1983), filling an oxbow lake can take as long as centuries to thousands of
years. Sun et al. (1996) claim that allowing for such a delay bears an important consequence for
meander belts. Indeed according to their simulations it turns out that recently formed oxbows are
easily eroded when neighboring bends migrate into them, whereas abandoned loops located at
great distance from the river have more time to consolidate. This mechanism opposes the attempts
of the river to migrate far from its present course and leads to the development of a fairly stable
meander belt.

The role of floodplain heterogeneity was also investigated by Bogoni et al. (2017) with the
help of the model of planform evolution developed by Frascati and Lanzoni (2009). Figure 104
summarizes the migration history of the river planforms based on six scenarios obtained with
different choices for the erodibility of the pristine floodplain, of scroll bar units and infilled oxbow
lakes. The first scenario concerns a floodplain with an erodibility that is not modified by the river
evolution, i.e. the river has no memory of its own past configurations. The second scenario assumes
the formation of oxbow lakes that, after their disconnection and infilling, develop a resistance to
erosion larger than that of the pristine floodplain, while scroll bars are assumed not to modify
floodplain erodibility. The third and the fourth scenarios concern the formation of scroll bars
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Figura 104. Examples of migration history of river planforms, simulated for six erodibility scenarios by Bogoni et al.
(2017). The dimensionless parameters used for the initial straight configuration are β = 20, τ∗0 = 0.7; ds = 0.0005.
Darker regions are older, lighter are younger. Dashed lines provide a qualitative view of the active meander belt

width (reproduced from Bogoni et al., 2017).

which are more erodible than the surrounding floodplain (softening scroll bars). Oxbow lake effects
are either excluded or included. The latter two scenarios might roughly correspond to rivers which
flow over fine sediment deposits which, during the falling stage of floods, allow coarser sediment
to settle on the point bars at inner bends. These coarse sediment deposits (arranged in layers)
increase scroll bar erodibility and this effect is assumed to dominate over that given by fine layers
deposited during the falling flood stage. Alternatively, one may attempt to mimic the dynamics of
rivers where bank erosion develops on a time scale smaller than that required by the strengthening
actions of soil compaction and vegetation encroachment at point bars. The fifth and the sixth
scenarios assume that scroll bars are less erodible than the surrounding floodplain. The river then
migrates more slowly when it flows across them. Also in this case, oxbow lake effects are either
excluded or accounted for. These two scenarios might roughly correspond to a river which flows
through floodplain deposits formed by relatively coarse material and deposits mainly fine sediment
on the point bars. The effect of the finer layers of the scroll bar on bed erodibility is assumed to
be stronger than that due to the coarser layers. Alternatively, the scenarios may mimic the rapid
formation of a vegetation cover that stabilizes the point bar, leading to a bank strengthening as
the river impinges again on that area.

To summarize, numerical simulations (Sun et al., 1996; Bogoni et al., 2017) confirm that
variability in erosional resistance affects the generation of irregular planform patterns of meandering
rivers. The final channel planform, as well as the structure of the meander belt turn out to be
highly sensitive to floodplain variations in the erosional resistance. The hardening scenarios
whereby oxbow lakes and/or scroll bars are less erodible than the pristine floodplain generate a
wavy meander belt of about 50−60 river widths. The remaining two scenarios (the homogeneous
case and the softening scenario without oxbow lakes) exhibit a meander belt that is nearly straight
and has a width of about 90−100 channel widths.

The introduction of heterogeneities in the modelling framework also improves the overall
similarity between simulated and observed planforms. This is discussed in detail in Bogoni et al.
(2017), where a statistical comparison is performed among natural river shapes and simulated
planforms.
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5.5.5 Long-term meander evolution in the light of the modern paradigms of complexity

Parallel to the physically based literature discussed above, since the early 1990s, various
contributions have attempted to ascertain whether the dynamics of river meandering can be
interpreted in the light of modern paradigms of the theory of dynamical systems. The questions
they wished to answer can be summarized as follows: Are meanders fractal forms? Is meandering
a chaotic process? Can one detect the signs of self-organized criticality (SOC) in meandering
dynamics? Answering these questions requires some technicalities that cannot be discussed in
detail here. The reader with no previous knowledge of the notions of fractals, chaos and SOC are
referred to the wide literature on the subject. Just few suggestions: at undergraduate level, an
entertaining introduction can be found in Strogatz (1994), at higher level Bar-Yam (1997) and
Kantz and Schreiber (1997). A fractal theory of river networks is the subject of the treatise by
Rodriguez-Iturbe and Rinaldo (2010).

Below, after a brief introduction to the notions of fractals, chaos and SOC we will limit ourselves
to provide overview of results of applications of the above notions to answer the questions listed
above. The reader is also referred to the paper of Seminara and Bolla Pittaluga (2012), where
the same issues are discussed in the hopefully entertaining form of a Socratic dialogue between
supporters of opposite views, namely a reductionist versus a holistic view of meandering processes.

Are meanders fractal forms?

Fractals are geometrical objects investigated by the branch of Mathematics called Topology. Let us
focus on fractal curves: they are topologically one-dimensional objects. However, in simplest terms,
their fractal nature implies that they are too detailed to be one-dimensional, but too simple to be
two-dimensional (Harte, 2001). They are strange objects, which are characterized by a so called
fractal dimension, that is larger than one but smaller than two. The fractal dimension provides a
measure of the space-filling capacity of the fractal pattern. These concepts can be generalized to
higher dimensions, so that one may define a fractal surface, characterized by a fractal dimension
larger than two but smaller than three, and so on.

To clarify the above statements, let us consider a classical example of fractal curve, the Kock
snowflake (Figure 105). This object can be constructed by the following iterative procedure.
Consider an equilateral triangle, with side length equal to one (iteration 1). Then subdivide each
side into three segments of equal length (1/3) and replace the middle segments by two further
oblique segments with the same length, chosen such that, along with the middle segment, they
would form an equilateral triangle with side length 1/3 (iteration 2). The procedure can be repeated
ad libitum and, as the number of iterations tends to infinity, the geometric object emerging from
the above construction is a Koch fractal. This example exhibits some of the characteristics of
fractals. In particular: fractals are self-similar objects, which display similar patterns as one looks
at the object in increasing detail; moreover, they are usually nowhere differentiable.

A Koch fractal is still a line of the Euclidean space, i.e. a geometrical object with a topological
dimension of 1, but the length of the fractal line between any two points is infinite. Measuring
this length with the help of a finite stick then leads to a result depending on the length of the
stick. This is clarified in Figure 105 where the length L of the fractal line is clearly dependent on
the order n of the iteration, i.e. on the length of the unit segment ℓ(n), which may be interpreted
as the length of the measuring stick. This apparent paradox was resolved by Benoit Mandelbrot,
in a paper (Mandelbrot, 1967) with a suggestive title: How Long Is the Coast of Britain?. The
idea of a fractal dimension emerged there is rooted in the earlier works of great mathematicians of
the past, including Weierstrass, Cantor, Poincare, Koch, Sierpinski. It was formally introduced in
the early 1900s by Hausdorff (Hausdorff, 1919) and Besicovitch (Besicovitch, 1929; Besicovitch
and Ursell, 1937).

In very simple terms, the fractal dimension D of a line can be defined as follows:

L = a ℓ1−D, (371)

where L is the length of the line obtained by approximating the actual line by a sequence of
segments of length ℓ and a is a constant. Fractality is suggested by the existence of a sufficiently
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Figura 104. Examples of migration history of river planforms, simulated for six erodibility scenarios by Bogoni et al.
(2017). The dimensionless parameters used for the initial straight configuration are β = 20, τ∗0 = 0.7; ds = 0.0005.
Darker regions are older, lighter are younger. Dashed lines provide a qualitative view of the active meander belt

width (reproduced from Bogoni et al., 2017).

which are more erodible than the surrounding floodplain (softening scroll bars). Oxbow lake effects
are either excluded or included. The latter two scenarios might roughly correspond to rivers which
flow over fine sediment deposits which, during the falling stage of floods, allow coarser sediment
to settle on the point bars at inner bends. These coarse sediment deposits (arranged in layers)
increase scroll bar erodibility and this effect is assumed to dominate over that given by fine layers
deposited during the falling flood stage. Alternatively, one may attempt to mimic the dynamics of
rivers where bank erosion develops on a time scale smaller than that required by the strengthening
actions of soil compaction and vegetation encroachment at point bars. The fifth and the sixth
scenarios assume that scroll bars are less erodible than the surrounding floodplain. The river then
migrates more slowly when it flows across them. Also in this case, oxbow lake effects are either
excluded or accounted for. These two scenarios might roughly correspond to a river which flows
through floodplain deposits formed by relatively coarse material and deposits mainly fine sediment
on the point bars. The effect of the finer layers of the scroll bar on bed erodibility is assumed to
be stronger than that due to the coarser layers. Alternatively, the scenarios may mimic the rapid
formation of a vegetation cover that stabilizes the point bar, leading to a bank strengthening as
the river impinges again on that area.

To summarize, numerical simulations (Sun et al., 1996; Bogoni et al., 2017) confirm that
variability in erosional resistance affects the generation of irregular planform patterns of meandering
rivers. The final channel planform, as well as the structure of the meander belt turn out to be
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wavy meander belt of about 50−60 river widths. The remaining two scenarios (the homogeneous
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and has a width of about 90−100 channel widths.

The introduction of heterogeneities in the modelling framework also improves the overall
similarity between simulated and observed planforms. This is discussed in detail in Bogoni et al.
(2017), where a statistical comparison is performed among natural river shapes and simulated
planforms.
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Figura 105. The sketch shows the first three steps of the iterative procedure leading to the construction of the Koch
snowflake fractal curve. The length of the curve L increases as the number of iterations n increases. The

dependence of L on the length ℓ(n) of each segment at the n-th iteration, allows one to introduce the notion of
fractal (or Hausdorff-Besicovitch) dimension D

wide range of values of ℓ where a straight line with nonzero, non-integer slope fits closely the
pattern of data obtained by plotting logL against log ℓ. Figure 105 shows that the Koch snowflake
is indeed a fractal curve with fractal dimension D = ln 4/ ln 3 = 1.2619.

The irregularity of channel planforms has motivated the longstanding interest of geomorpholo-
gists to identify some objective measure of this property. In particular, self-similarity of meander
planforms was recognized since the early work of Leopold and Wolman (1960). Fractality of
meander centerlines was first suggested by Mandelbrot (1982). Various attempts to substantiate
this suggestion on the basis of field observations have then appeared, starting from Snow (1989)
with the following contributions of Nikora (1991), Montgomery (1996) and Stolum (1996). In
particular, Nikora (1991) analyzed the topographic maps of 41 single thread river reaches in
Moldavia and concluded that six reaches were non-fractal, whilst the remaining 35 reaches could
be interpreted as fractals over less than an order of magnitude, with fractal dimension ranging
between 1.04 and 1.33. Moreover, fractal dimension and channel sinuosity turned out to be highly
correlated. Montgomery (1996) examined 46 reaches from 42 alluvial and non-alluvial perennial
rivers of North America, characterized by average sinuosities in the range 1.2−2.7, various climates
and degrees of channel confinement. His main results can be summarized as follows: (i) the average
fractal dimension of alluvial rivers was 1.28; (ii) the eight incised meanders were non fractal; (iii)
the high correlation between fractal dimension and channel sinuosity was confirmed; (iv) fractal
dimension was uncorrelated to channel width. Finally, Stolum (1996) found fractal dimensions in
the range of 1.18− 1.47 over 1.2− 2.3 orders of magnitude for five reaches of the Central Amazon
river, long enough to justify fractal analysis with minimum external constraints 1.

Stolum (1996) also attempted to ascertain the fractal behavior of meander planforms on the
basis of numerical simulations performed with the help of the model of Howard (1992). The fractal
dimension of the numerical output was 1.28 over two orders of magnitudes. However, Montgomery
(1996) noted that, in his sinuosity versus fractal dimension plot, the point corresponding to the
simulation of Stolum (1996) result was a clear outlier, due to the excessive sinuosity and insufficient
intricacy of the numerical outputs.

From the above picture, one might be tempted to conclude that meandering patterns are likely
to be fractal over fairly short scales (say of the order of 100 channel widths, see Seminara and

1 The scaling found by Stolum (1996) was actually anisotropic. This suggests that meander planforms are
self-affine forms (see Rodriguez-Iturbe and Rinaldo, 2010).
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Bolla Pittaluga, 2012). However, the reader must be warned on the limits of the latter conclusion.
They depend on an intrinsic conflict arising when attempting to apply fractal analysis to river
patterns. On one hand, the length of the analyzed river reach should be short enough to minimize
the impact of non-homogeneities (due, e.g. to variations of flow discharge, sediment size, sediment
supply, presence of tributaries), on the other hand it should be long enough to make a fractal
analysis significant. It is uncertain whether the short length over which fractality seems to emerge
is sufficient to justify the above conclusion. These problems, in particular the issue of whether one
may actually identify morphologically homogeneous river reaches were discussed by Nikora (1991).

Is meandering a chaotic process?

Chaos is one of the great discoveries of the last century and its main feature has become popular
through the so called butterfly effect. In 1972 Edward Lorenz, a meteorologist of M.I.T., presented
to the American Association for the Advancement of Science in Washington, D.C., the paper:
Predictability: Does the flap of a butterfly’s wings in Brazil set off a tornado in Texas?. The
major concept implied by this apparently paradoxical question is the main characteristic of chaotic
processes, namely their sensitivity to initial conditions. A small change in the initial conditions of
a chaotic dynamical system (the flapping wing) moves the system dynamics into a significantly
different trajectory. As a consequence, since initial conditions are most commonly known with
some uncertainty, the exponential divergence of the trajectories issuing from slightly different
initial conditions, implies that, in spite of the deterministic character of the dynamical system,
one is unable to predict its state for sufficiently large times. This is not the only characteristic of
chaotic dynamical systems (Devaney, 1989), but it is the feature which bears the most important
practical consequences.

Ascertaining the possibly chaotic behavior of the planform evolution of meandering channels
on the basis of field data would require sufficiently long records of planform changes over historical
timescales, for sufficiently long, yet homogeneous, river reaches. Although some good historical
data are now available for some highly mobile channels (Hooke, 2004; Gautier et al., 2007; Schwenk
et al., 2015), they do not encompass a sufficiently long observation period for chaotic analysis
to be feasible. For these reasons a different approach, relying on the use of time series obtained
from physics-based mathematical models, was employed by Frascati and Lanzoni (2010). Note
that a necessary (but by no means sufficient) condition for a dynamical system to be chaotic is
its nonlinearity. This condition is satisfied by meander evolution which is known to be affected
by the, albeit fairly weak, geometric nonlinearities associated with the deformation process, as
well as by the strong nonlinearity arising from the abrupt channel shortening events due to cutoff
processes and in the case of sharp bends, by hydrodynamic nonlinearities.

Figure 106a shows the long-term synthetic planform evolution generated by Frascati and Lanzoni
(2010) for subsequent chaotic analysis. Oxbow lakes generated during the entire simulation are
highlighted. Moreover, Figure 106b plots the intrinsic length of oxbow lakes versus the time of
cutoff occurrence. Results of the simulations, that provide a continuous description of the dynamics
of the system, can be transformed into discrete maps of the forms (Frascati and Lanzoni, 2010)

xi,n+1 = F(xi,n) (i = 1, 2, 3, . . . N). (372)

Here, xi,n is a 2D vector describing the position of the projection of the i-th point of the channel
axis onto a horizontal plane at the n-th time step (T = n∆T ). The spatio-temporal patterns given
by the sequences of points xi,n identify a set of trajectories of the dynamical system: they are
uniquely determined once the initial conditions xi,0 are specified. However, the nonlinear analysis
of spatio-temporal maps of the type (372) is a yet unsettled subject and no general method to
ascertain the chaotic nature of the process is available. Hence, the various Authors who confronted
themselves with this problem were forced to simplify the problem, replacing the spatio-temporal
map (372) either by a spatial map (Perucca et al., 2005; Schwenk and Foufoula-Georgiou, 2017) of
the channel curvature at a given time or by a temporal map (Stolum, 1996; Frascati and Lanzoni,
2010) of the type

xn+1 = F (xn), (373)
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Figura 105. The sketch shows the first three steps of the iterative procedure leading to the construction of the Koch
snowflake fractal curve. The length of the curve L increases as the number of iterations n increases. The

dependence of L on the length ℓ(n) of each segment at the n-th iteration, allows one to introduce the notion of
fractal (or Hausdorff-Besicovitch) dimension D

wide range of values of ℓ where a straight line with nonzero, non-integer slope fits closely the
pattern of data obtained by plotting logL against log ℓ. Figure 105 shows that the Koch snowflake
is indeed a fractal curve with fractal dimension D = ln 4/ ln 3 = 1.2619.

The irregularity of channel planforms has motivated the longstanding interest of geomorpholo-
gists to identify some objective measure of this property. In particular, self-similarity of meander
planforms was recognized since the early work of Leopold and Wolman (1960). Fractality of
meander centerlines was first suggested by Mandelbrot (1982). Various attempts to substantiate
this suggestion on the basis of field observations have then appeared, starting from Snow (1989)
with the following contributions of Nikora (1991), Montgomery (1996) and Stolum (1996). In
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Moldavia and concluded that six reaches were non-fractal, whilst the remaining 35 reaches could
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basis of numerical simulations performed with the help of the model of Howard (1992). The fractal
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intricacy of the numerical outputs.
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1 The scaling found by Stolum (1996) was actually anisotropic. This suggests that meander planforms are
self-affine forms (see Rodriguez-Iturbe and Rinaldo, 2010).
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Bolla Pittaluga, 2012). However, the reader must be warned on the limits of the latter conclusion.
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analysis significant. It is uncertain whether the short length over which fractality seems to emerge
is sufficient to justify the above conclusion. These problems, in particular the issue of whether one
may actually identify morphologically homogeneous river reaches were discussed by Nikora (1991).

Is meandering a chaotic process?

Chaos is one of the great discoveries of the last century and its main feature has become popular
through the so called butterfly effect. In 1972 Edward Lorenz, a meteorologist of M.I.T., presented
to the American Association for the Advancement of Science in Washington, D.C., the paper:
Predictability: Does the flap of a butterfly’s wings in Brazil set off a tornado in Texas?. The
major concept implied by this apparently paradoxical question is the main characteristic of chaotic
processes, namely their sensitivity to initial conditions. A small change in the initial conditions of
a chaotic dynamical system (the flapping wing) moves the system dynamics into a significantly
different trajectory. As a consequence, since initial conditions are most commonly known with
some uncertainty, the exponential divergence of the trajectories issuing from slightly different
initial conditions, implies that, in spite of the deterministic character of the dynamical system,
one is unable to predict its state for sufficiently large times. This is not the only characteristic of
chaotic dynamical systems (Devaney, 1989), but it is the feature which bears the most important
practical consequences.

Ascertaining the possibly chaotic behavior of the planform evolution of meandering channels
on the basis of field data would require sufficiently long records of planform changes over historical
timescales, for sufficiently long, yet homogeneous, river reaches. Although some good historical
data are now available for some highly mobile channels (Hooke, 2004; Gautier et al., 2007; Schwenk
et al., 2015), they do not encompass a sufficiently long observation period for chaotic analysis
to be feasible. For these reasons a different approach, relying on the use of time series obtained
from physics-based mathematical models, was employed by Frascati and Lanzoni (2010). Note
that a necessary (but by no means sufficient) condition for a dynamical system to be chaotic is
its nonlinearity. This condition is satisfied by meander evolution which is known to be affected
by the, albeit fairly weak, geometric nonlinearities associated with the deformation process, as
well as by the strong nonlinearity arising from the abrupt channel shortening events due to cutoff
processes and in the case of sharp bends, by hydrodynamic nonlinearities.

Figure 106a shows the long-term synthetic planform evolution generated by Frascati and Lanzoni
(2010) for subsequent chaotic analysis. Oxbow lakes generated during the entire simulation are
highlighted. Moreover, Figure 106b plots the intrinsic length of oxbow lakes versus the time of
cutoff occurrence. Results of the simulations, that provide a continuous description of the dynamics
of the system, can be transformed into discrete maps of the forms (Frascati and Lanzoni, 2010)

xi,n+1 = F(xi,n) (i = 1, 2, 3, . . . N). (372)

Here, xi,n is a 2D vector describing the position of the projection of the i-th point of the channel
axis onto a horizontal plane at the n-th time step (T = n∆T ). The spatio-temporal patterns given
by the sequences of points xi,n identify a set of trajectories of the dynamical system: they are
uniquely determined once the initial conditions xi,0 are specified. However, the nonlinear analysis
of spatio-temporal maps of the type (372) is a yet unsettled subject and no general method to
ascertain the chaotic nature of the process is available. Hence, the various Authors who confronted
themselves with this problem were forced to simplify the problem, replacing the spatio-temporal
map (372) either by a spatial map (Perucca et al., 2005; Schwenk and Foufoula-Georgiou, 2017) of
the channel curvature at a given time or by a temporal map (Stolum, 1996; Frascati and Lanzoni,
2010) of the type

xn+1 = F (xn), (373)
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Figura 106. (a) Results of a long-term simulation of the planform evolution of a meandering river evolving from an
initially straight, randomly perturbed, configuration. The initial values of the parameters used in the simulation are
β = 11, ds = 0.001, τ∗ = 1.3 (dune covered bed, sub-resonant conditions). Here, T is the dimensionless slow time
variable E t appropriate to describe the planform evolution. The oxbow lakes generated during the entire simulation
are highlighted using grey-scale tones, with dark indicating recent and white old. (b) The intrinsic length of the

oxbow lakes L0 is plotted versus time of cutoff occurrence (modified from Frascati and Lanzoni, 2010).

where xn is some average measure of the intricacy of the spatial pattern of the channel axis in the
reach considered at the n-th time step. A convenient choice made in the above papers was to set
x = σ, with σ the average reach sinuosity.

Figure 107a shows the temporal sequence of σ for the simulation of Figure 106. Three stages of
the evolution process emerge: an initial monotonic growth lasting until cutoff occurs (region I); a
decay stage with fluctuations (region II); an asymptotic statistically stationary state characterized
by fluctuations around a constant value (region III). Note that some cutoff clustering is observed
only at the initial stage of the simulation and is clearly an artificial consequence of the ideal
configuration adopted for the initial state (a straight channel axis with small perturbations).
The meander train developing from such ideal configuration exhibits a high degree of regularity,
such that that adjacent meanders approach neck cutoff nearly simultaneously. However, the
latter artificial regularity is destroyed by cutoffs. Clustering then becomes much less likely and
sinuosity fluctuations are driven by single cutoff events. In addition, Figures 107a,b clarify that the
introduction of a small disturbance in the river planform at a certain instant (T = τ3 U0/B = 760)
of its evolution modifies the temporal series of sinuosity to some extent, a possible sign of the
chaotic nature of the long-term behavior of the planform pattern.

In order to ascertain whether this suggestion is real, one should resort to the various techniques
of nonlinear series analysis specifically developed for this purpose. Indeed, chaos looks like noise if
one analyzes it adopting conventional linear tools, such as Fourier transforms. On the contrary,
it turns out to exhibit well-defined structural features when analyzed in an appropriate phase
space with the help of nonlinear time series analysis (Schwenk and Foufoula-Georgiou, 2017).
These techniques were indeed employed by Frascati and Lanzoni (2010). However, as warned
by the Authors themselves, nonlinear analysis is far less established than its linear counterpart
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Figura 107. (a) Time series of the reach sinuosity σ. In the initial phase (Region I) the average reach sinuosity
progressively grows monotonically, reaching very high and unrealistic values (up to five). As cutoff conditions are
reached (Region II) sinuosity starts decreasing with oscillations and, after a sequence of cutoff events, it reaches a
stationary state (Region III) characterized by sinuosity fluctuations around a constant value. Point 3 denotes the
instant at which a small perturbation is introduced in the planform configuration after a given cutoff event. (b)
Expansion of the steady region for τ > τ3. The continuous and dashed lines denote the unperturbed and the

perturbed sinuosity time series, respectively (modified from Frascati and Lanzoni (2010))

such that the application of the various techniques may in some cases yield results that cannot be
unambiguously interpreted (Kantz and Schreiber, 1997; Sprott, 2003).

The first step in the nonlinear time series analysis is the so called phase-space reconstruction,
i.e the conversion of observed data into an appropriate state vector. The most important phase
space reconstruction technique is the so called method of delays. Starting from the scalar series
xn (n = 1, 2, . . . , NT ), one may construct m-dimensional vectors xn (n = 1, 2, . . . , NT ) in a new
space, called the embedding space, assembling time-delayed values of the scalar data as follows
(Kantz and Schreiber, 1997):

xn = {xn−(m−1)d, xn−(m−2)d, . . . , xn−d, xn} (n = 1, 2, 3, . . . , Nτ ). (374)

Here, the number m of elements of each vector is called the embedding dimension, while the
time Td = d∆T is known as the time delay (or lag). Different quantitative tools are available to
guide the choice of the optimal values of m (Frascati and Lanzoni, 2010).

The second step of the analysis is to evaluate a few parameters which provide information on
the chaotic nature of the system. The so called correlation dimension of the attractor reflects the
mean probability that the states at two different times are closer than a given distance ϵ. The
Lyapunov exponents tell us whether nearby points in the phase space do diverge exponentially, as
typical of chaotic phenomena.

The correlation dimension DC may be calculated starting from the correlation sum (Grassberger
and Procaccia, 1983a,b)

C(m, ϵ) =
2

NT (NT − 1)

NT∑
i=1

NT∑
j=1+1

H (ϵ− ∥xi − xj∥) . (375)
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Figura 106. (a) Results of a long-term simulation of the planform evolution of a meandering river evolving from an
initially straight, randomly perturbed, configuration. The initial values of the parameters used in the simulation are
β = 11, ds = 0.001, τ∗ = 1.3 (dune covered bed, sub-resonant conditions). Here, T is the dimensionless slow time
variable E t appropriate to describe the planform evolution. The oxbow lakes generated during the entire simulation
are highlighted using grey-scale tones, with dark indicating recent and white old. (b) The intrinsic length of the

oxbow lakes L0 is plotted versus time of cutoff occurrence (modified from Frascati and Lanzoni, 2010).

where xn is some average measure of the intricacy of the spatial pattern of the channel axis in the
reach considered at the n-th time step. A convenient choice made in the above papers was to set
x = σ, with σ the average reach sinuosity.

Figure 107a shows the temporal sequence of σ for the simulation of Figure 106. Three stages of
the evolution process emerge: an initial monotonic growth lasting until cutoff occurs (region I); a
decay stage with fluctuations (region II); an asymptotic statistically stationary state characterized
by fluctuations around a constant value (region III). Note that some cutoff clustering is observed
only at the initial stage of the simulation and is clearly an artificial consequence of the ideal
configuration adopted for the initial state (a straight channel axis with small perturbations).
The meander train developing from such ideal configuration exhibits a high degree of regularity,
such that that adjacent meanders approach neck cutoff nearly simultaneously. However, the
latter artificial regularity is destroyed by cutoffs. Clustering then becomes much less likely and
sinuosity fluctuations are driven by single cutoff events. In addition, Figures 107a,b clarify that the
introduction of a small disturbance in the river planform at a certain instant (T = τ3 U0/B = 760)
of its evolution modifies the temporal series of sinuosity to some extent, a possible sign of the
chaotic nature of the long-term behavior of the planform pattern.

In order to ascertain whether this suggestion is real, one should resort to the various techniques
of nonlinear series analysis specifically developed for this purpose. Indeed, chaos looks like noise if
one analyzes it adopting conventional linear tools, such as Fourier transforms. On the contrary,
it turns out to exhibit well-defined structural features when analyzed in an appropriate phase
space with the help of nonlinear time series analysis (Schwenk and Foufoula-Georgiou, 2017).
These techniques were indeed employed by Frascati and Lanzoni (2010). However, as warned
by the Authors themselves, nonlinear analysis is far less established than its linear counterpart
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Figura 107. (a) Time series of the reach sinuosity σ. In the initial phase (Region I) the average reach sinuosity
progressively grows monotonically, reaching very high and unrealistic values (up to five). As cutoff conditions are
reached (Region II) sinuosity starts decreasing with oscillations and, after a sequence of cutoff events, it reaches a
stationary state (Region III) characterized by sinuosity fluctuations around a constant value. Point 3 denotes the
instant at which a small perturbation is introduced in the planform configuration after a given cutoff event. (b)
Expansion of the steady region for τ > τ3. The continuous and dashed lines denote the unperturbed and the

perturbed sinuosity time series, respectively (modified from Frascati and Lanzoni (2010))

such that the application of the various techniques may in some cases yield results that cannot be
unambiguously interpreted (Kantz and Schreiber, 1997; Sprott, 2003).

The first step in the nonlinear time series analysis is the so called phase-space reconstruction,
i.e the conversion of observed data into an appropriate state vector. The most important phase
space reconstruction technique is the so called method of delays. Starting from the scalar series
xn (n = 1, 2, . . . , NT ), one may construct m-dimensional vectors xn (n = 1, 2, . . . , NT ) in a new
space, called the embedding space, assembling time-delayed values of the scalar data as follows
(Kantz and Schreiber, 1997):

xn = {xn−(m−1)d, xn−(m−2)d, . . . , xn−d, xn} (n = 1, 2, 3, . . . , Nτ ). (374)

Here, the number m of elements of each vector is called the embedding dimension, while the
time Td = d∆T is known as the time delay (or lag). Different quantitative tools are available to
guide the choice of the optimal values of m (Frascati and Lanzoni, 2010).

The second step of the analysis is to evaluate a few parameters which provide information on
the chaotic nature of the system. The so called correlation dimension of the attractor reflects the
mean probability that the states at two different times are closer than a given distance ϵ. The
Lyapunov exponents tell us whether nearby points in the phase space do diverge exponentially, as
typical of chaotic phenomena.

The correlation dimension DC may be calculated starting from the correlation sum (Grassberger
and Procaccia, 1983a,b)

C(m, ϵ) =
2

NT (NT − 1)

NT∑
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H (ϵ− ∥xi − xj∥) . (375)
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Here, H is the Heaviside step function and ∥xi − xj∥ is the spatial separation between two
points xi and xj of the m-dimensional embedding space. The correlation dimension DC is then
obtained from the relation

DC = lim
ϵ→0

lim
NT→∞

∂ logC(m, ϵ)

∂ log ϵ
, (376)

and can be determined by plotting log C(m, ϵ) versus log ϵ. Provided saturation of the curve
occurs, the slope of the straight line fitted through the plateau is precisely the sought value of the
correlation dimension. If the latter is non-integer then the attractor of the system is chaotic (also
called strange attractor).

The exponential divergence of the trajectories of a dynamical system is characterized by the
spectrum of so called Lyapunov exponents (Eckmann and Ruelle, 1985). However, it is common
to just refer to the maximum Lyapunov exponent (λM ) which is a simple measure of the overall
predictability of the system. A positive λM indicates that the system is chaotic. Its value allows
one to estimate the time scale over which predictability is ensured (e.g. a few days for weather
systems). A consistent and unbiased estimate of the maximum Lyapunov exponent can be obtained
from the following relationship (Kantz and Schreiber, 1997):

S(m, ϵ, T ) =

〈
ln

1∣∣I(x0)
∣∣

∑
xi∈I(x0)

(
∥x0(T )− xi(T )∥

)〉
, (377)

where x0 is the reference point in the embedding space, and I(x0) is a neighborhood of x0 with
diameter ϵ. The latter formula is implemented using the algorithm of Rosenstein et al. (1993).
If S(m, ϵ, t) exhibits a linear trend with identical slope for all m larger than some m0 and for a
reasonably wide range of values of ϵ, then this slope can be taken as an estimate of the maximum
exponent λM .

The correlation dimension calculated by Frascati and Lanzoni (2010) for the sinuosity time
series is shown in Figure 108. No saturation of the curves (plateau) is obtained varying the
embedding dimension and the delay. Hence, no scaling range exists and no unique value of the
correlation dimension can be identified. Similar results were found for the spatial series of channel
curvature.

Figura 108. Local slope estimation of the correlation dimension DC for various embedding dimensions
(m = 2, 3, . . . , 12). (a) and (b) show estimates based on sinuosity time series for time delays d = 5 and d = 60,

respectively. Similar results have been found using time delays d = 30 and d = 150. No clear saturation is detected
(modified from Frascati and Lanzoni, 2010).

Finally, the estimate of the maximum Lyapunov exponent λM for the sinuosity time series is
reported in Figure 109. A wide range of values of m and d has been examined. This notwithstanding,
no linear increase of the plotted curves can be clearly detected. Similar results were found for the
spatial series of channel curvature at a given time.
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Figura 109. Estimates of the maximum Lyapunov exponent for the sinuosity time series using a time delay (a) d =
5 and (b) d = 60. Embedding dimension varies over the range m = 2, . . . , 12. No linear increase is clearly

detectable, reflecting the lack of exponential divergence of nearby trajectories. Similar results have been found
using time delays d = 30 and d = 150 (modified from Frascati and Lanzoni, 2010).

We may conclude from the latter findings that meander planform patterns at a given time, as
well as the overall process of river meandering are not chaotic.

Does meandering show signs of self-organization?

The notion of self-organized criticality (SOC) stems from the original work of Bak et al. (1987)
who showed that “certain extended dissipative dynamical systems naturally evolve into a critical
state, with no characteristic time or length scales. The temporal fingerprint of the self-organized
critical state is the presence of flicker noise or 1/f noise; its spatial signature is the emergence of
scale invariant (fractal) structure”. The prototype of large, highly nonlinear dissipative systems
with many degrees of freedom considered by Bak et al. (1987) was a cellular automaton called
sandpile due to its superficial similarity with an actual sandpile. Indeed, this schematic system
consists of a square grid of boxes, each of which may receive or loose particles according to the
following rules:

- at each time step a particle is dropped into a randomly selected box;

- as soon as a box contains four particles, all of them are redistributed to the four adjacent
boxes leaving the original box empty;

- in the case of edge boxes, particles crossing the grid boundary are lost by the system.

The reader may readily check that the redistribution mechanism, starting when the least stable
part of the system reaches the four-particle threshold, triggers a burst of activity that propagates
through the entire system. Each sequence of redistributions, leads to a number of particles lost by
the grid and is defined as a model avalanche. Avalanches generate chain reactions of global size.
For sandpiles the state of the system may be defined by the average number of particles present
in the boxes. This state is found to fluctuate about a quasi-equilibrium value. Bak et al. (1987)
showed that the sandpile algorithm naturally evolves towards a SOC state characterized by spatial
and temporal power-law scaling behavior, i.e. the distinct feature of a SOC state is the absence of
characteristic spatial or temporal scales. Indeed, if one plots the number of avalanches nav versus
the area Aav involved (defined by the number of boxes that participate in the avalanches) one
finds a power law distribution. For a 50 × 50 grid, the distribution is shown in Figure 110. Thus
the spatial behavior of the system is scale invariant. Similarly, defining the time T as the number
of particle redistributions during an avalanche and denoting by nT the number of events with T
redistributions, then one finds that nT ∼ T−1.
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Here, H is the Heaviside step function and ∥xi − xj∥ is the spatial separation between two
points xi and xj of the m-dimensional embedding space. The correlation dimension DC is then
obtained from the relation
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and can be determined by plotting log C(m, ϵ) versus log ϵ. Provided saturation of the curve
occurs, the slope of the straight line fitted through the plateau is precisely the sought value of the
correlation dimension. If the latter is non-integer then the attractor of the system is chaotic (also
called strange attractor).

The exponential divergence of the trajectories of a dynamical system is characterized by the
spectrum of so called Lyapunov exponents (Eckmann and Ruelle, 1985). However, it is common
to just refer to the maximum Lyapunov exponent (λM ) which is a simple measure of the overall
predictability of the system. A positive λM indicates that the system is chaotic. Its value allows
one to estimate the time scale over which predictability is ensured (e.g. a few days for weather
systems). A consistent and unbiased estimate of the maximum Lyapunov exponent can be obtained
from the following relationship (Kantz and Schreiber, 1997):
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where x0 is the reference point in the embedding space, and I(x0) is a neighborhood of x0 with
diameter ϵ. The latter formula is implemented using the algorithm of Rosenstein et al. (1993).
If S(m, ϵ, t) exhibits a linear trend with identical slope for all m larger than some m0 and for a
reasonably wide range of values of ϵ, then this slope can be taken as an estimate of the maximum
exponent λM .

The correlation dimension calculated by Frascati and Lanzoni (2010) for the sinuosity time
series is shown in Figure 108. No saturation of the curves (plateau) is obtained varying the
embedding dimension and the delay. Hence, no scaling range exists and no unique value of the
correlation dimension can be identified. Similar results were found for the spatial series of channel
curvature.

Figura 108. Local slope estimation of the correlation dimension DC for various embedding dimensions
(m = 2, 3, . . . , 12). (a) and (b) show estimates based on sinuosity time series for time delays d = 5 and d = 60,

respectively. Similar results have been found using time delays d = 30 and d = 150. No clear saturation is detected
(modified from Frascati and Lanzoni, 2010).

Finally, the estimate of the maximum Lyapunov exponent λM for the sinuosity time series is
reported in Figure 109. A wide range of values of m and d has been examined. This notwithstanding,
no linear increase of the plotted curves can be clearly detected. Similar results were found for the
spatial series of channel curvature at a given time.
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Figura 109. Estimates of the maximum Lyapunov exponent for the sinuosity time series using a time delay (a) d =
5 and (b) d = 60. Embedding dimension varies over the range m = 2, . . . , 12. No linear increase is clearly

detectable, reflecting the lack of exponential divergence of nearby trajectories. Similar results have been found
using time delays d = 30 and d = 150 (modified from Frascati and Lanzoni, 2010).

We may conclude from the latter findings that meander planform patterns at a given time, as
well as the overall process of river meandering are not chaotic.

Does meandering show signs of self-organization?

The notion of self-organized criticality (SOC) stems from the original work of Bak et al. (1987)
who showed that “certain extended dissipative dynamical systems naturally evolve into a critical
state, with no characteristic time or length scales. The temporal fingerprint of the self-organized
critical state is the presence of flicker noise or 1/f noise; its spatial signature is the emergence of
scale invariant (fractal) structure”. The prototype of large, highly nonlinear dissipative systems
with many degrees of freedom considered by Bak et al. (1987) was a cellular automaton called
sandpile due to its superficial similarity with an actual sandpile. Indeed, this schematic system
consists of a square grid of boxes, each of which may receive or loose particles according to the
following rules:

- at each time step a particle is dropped into a randomly selected box;

- as soon as a box contains four particles, all of them are redistributed to the four adjacent
boxes leaving the original box empty;

- in the case of edge boxes, particles crossing the grid boundary are lost by the system.

The reader may readily check that the redistribution mechanism, starting when the least stable
part of the system reaches the four-particle threshold, triggers a burst of activity that propagates
through the entire system. Each sequence of redistributions, leads to a number of particles lost by
the grid and is defined as a model avalanche. Avalanches generate chain reactions of global size.
For sandpiles the state of the system may be defined by the average number of particles present
in the boxes. This state is found to fluctuate about a quasi-equilibrium value. Bak et al. (1987)
showed that the sandpile algorithm naturally evolves towards a SOC state characterized by spatial
and temporal power-law scaling behavior, i.e. the distinct feature of a SOC state is the absence of
characteristic spatial or temporal scales. Indeed, if one plots the number of avalanches nav versus
the area Aav involved (defined by the number of boxes that participate in the avalanches) one
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Figura 110. Avalanche-frequency versus avalanche area distribution for a sandpile model on a 50× 50 grid (modified
from Turcotte, 1999).

As soon as the SOC paradigm was put forward, a number of contributions attempting to
interpret geophysical processes as examples of SOC were published (see the review of Turcotte,
1999). In particular, an application to river meandering was attempted by Stolum (1996), who
proposed an analogy between clusterings of neck cutoffs and avalanches. This Author analyzed
the cumulative area frequency distribution of the oxbow lakes synthetically generated through
numerical simulations based on the model of Ikeda et al. (1981) and found that it follows a
power-law over nearly two orders of magnitude. However, Frascati and Lanzoni (2010) noted
that “if meandering systems really tend to SOC then not only spatial but also temporal power-law
scaling should be expected. On the contrary, the analysis of the temporal distribution of neck
cutoff occurrences,. . . reveals that the time inter-arrivals of cutoff events xT are exponentially
distributed”. Exponential distributions are an example of probability distributions describing
processes characterized by events occurring independently of each other, as typically occurs for
Poisson processes. These processes are devoid of memory effects and do not exhibit any evidence
of temporal clustering. All these features argue against the idea that meandering patterns would
tend to a dynamical SOC state. This is not surprising if one recognizes that the consequences of
a cutoff event affect a fairly short river reach. This observation, which is contrary to the chain
reaction paradigm embodied by SOC, is suggested by both the solution of the morphodynamic
problem (see Section 4.4), where upstream and downstream influence are felt through convolution
integrals decaying fairly rapidly, and by the field observations carried out by Brice (1973) on the
White River.

Seeking universality

The excursus reported above suggests that, in spite of major efforts of the scientific community
to seek universal properties in the long-term evolution of meandering rivers with the help of the
modern paradigms of complex systems, we are left with a fairly meager outcome.

Let us conclude our discussion returning to the interesting result concerning the asymptotic
behavior of the temporal evolution of the averaged sinuosity emerged from numerical simulations.
It was pointed out before that this evolution tends to a dynamical stationary state characterized by
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fluctuations around a constant value of the averaged sinuosity (Figure 107). This finding was first
reported by Howard and Knutson (1984) and Stolum (1996). Later Camporeale et al. (2005) have
revisited this issue comparing the response of various models and reached the following conclusions:

- the statistical long-term behavior of meandering rivers proves to be universal and largely
unaffected by the details of the fluid dynamic processes that govern the short-term river
behavior ;

- the long-term equilibrium conditions are essentially governed by only one spatial scale, pro-
portional to the ratio of the river depth and the friction coefficient and one temporal scale,
proportional to the square of the spatial scale divided by the river width, the mean longitudinal
velocity, and the erodibility coefficient.

The first conclusion, if totally correct, would be a bit disappointing. What the Authors call
details of the fluid dynamic processes is the morphodynamic model employed. One would then
be surprised to learn that correct (albeit linear) models (BS, Blondeaux and Seminara (1985);
JP, Johannesson and Parker (1989); ZS, Zolezzi and Seminara (2001)) and models that miss a
significant part of the solution of the problem (IPS, Ikeda et al., 1981), lead to identical results.
Camporeale et al. (2005) argue that cutoffs select the morphodynamic processes that are really
important in the long-term dynamics, thus implying that for the occurrence of cutoffs details
of the morphodynamic model would be irrelevant, in spite of the facts that planform patterns
obtained with the help of different models are substantially different (Figure 111).

However, at a more careful examination, one finds that the first conclusion depends strictly on
the choice made by Camporeale et al. (2005) to consider only rivers falling in the sub-resonant
regime. This was conclusively demonstrated by Frascati and Lanzoni (2009).

In order to clarify this point, it is convenient to examine the second conclusion, which concerns
the spatial scale of fluvial meanders. According to the celebrated diagram proposed by Leopold
and Wolman (1957), the Cartesian length of meanders observed in vastly different environments
is correlated with channel width (Figure 3(I)). Assuming that the preferred wavelength Lm is
selected by the bend instability mechanism, theoretical results show that the dimensionless meander
wavenumber (λm = 2π B/Lm) should fall in the range 0.1− 0.3, depending on the values attained
by the relevant physical parameters. Figure 3(I) shows that most experimental points do indeed
fall within the predicted range.

More recently, Edwards and Smith (2002) have repeated some of the linear and nonlinear
analyses previously developed by other Authors, employing the IPS model. One of the statements
of Edwards and Smith (2002) concerns the length scale of river meanders which they suggest, on
dimensional grounds, would coincide with the ratio between a typical flow depth and a typical
friction coefficient of the flow. But the above suggestion was not new. A decade earlier Parker
and Johannesson (1989) (p. 384) had already proposed a similar scaling for the dimensionless
meander wavenumber. However, the rescaled wavenumber varied over more than two orders of
magnitude in the 75 field cases they examined, a correlation worse than that obtained through
the classical Leopold scaling. The length suggested by Edwards and Smith (2002) is purely
hydrodynamic, owing to the decoupled character of the IPS model. It represents the unique
length over which the morphodynamic influence is felt in the context of IPS model (Sun et al.,
1996). One may then wonder how an hydrodynamic based scale can account for meandering
occurring in vastly different sedimentary environments. The exact solution of the linear problem
of meander morphodynamics presented in Section 4.4.2 shows that the morphodynamic influence
displays a more complex behavior involving four spatial scales depending on the aspect ratio of the
channel, as well as on the intensity of sediment transport (τ∗0) and friction (Cf0). This response
arises from the contributions of four convolution integrals (equation 316). Each of them involves
distinct spatial scales associated with the inverse of the exponents λmj appearing in the integrals.
Two of these exponents are complex conjugates and determine the upstream and downstream
morphodynamic influence felt through spatial bars, i.e. spatially oscillating perturbations that
decay either upstream or downstream. They allow one to define a morphodynamic length scale
Lm equal to the inverse of the imaginary parts of the two dominant complex conjugate exponents.

183



Theoretical Morphodynamics: River Meandering

Figura 110. Avalanche-frequency versus avalanche area distribution for a sandpile model on a 50× 50 grid (modified
from Turcotte, 1999).
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cutoff occurrences,. . . reveals that the time inter-arrivals of cutoff events xT are exponentially
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processes characterized by events occurring independently of each other, as typically occurs for
Poisson processes. These processes are devoid of memory effects and do not exhibit any evidence
of temporal clustering. All these features argue against the idea that meandering patterns would
tend to a dynamical SOC state. This is not surprising if one recognizes that the consequences of
a cutoff event affect a fairly short river reach. This observation, which is contrary to the chain
reaction paradigm embodied by SOC, is suggested by both the solution of the morphodynamic
problem (see Section 4.4), where upstream and downstream influence are felt through convolution
integrals decaying fairly rapidly, and by the field observations carried out by Brice (1973) on the
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- the statistical long-term behavior of meandering rivers proves to be universal and largely
unaffected by the details of the fluid dynamic processes that govern the short-term river
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- the long-term equilibrium conditions are essentially governed by only one spatial scale, pro-
portional to the ratio of the river depth and the friction coefficient and one temporal scale,
proportional to the square of the spatial scale divided by the river width, the mean longitudinal
velocity, and the erodibility coefficient.

The first conclusion, if totally correct, would be a bit disappointing. What the Authors call
details of the fluid dynamic processes is the morphodynamic model employed. One would then
be surprised to learn that correct (albeit linear) models (BS, Blondeaux and Seminara (1985);
JP, Johannesson and Parker (1989); ZS, Zolezzi and Seminara (2001)) and models that miss a
significant part of the solution of the problem (IPS, Ikeda et al., 1981), lead to identical results.
Camporeale et al. (2005) argue that cutoffs select the morphodynamic processes that are really
important in the long-term dynamics, thus implying that for the occurrence of cutoffs details
of the morphodynamic model would be irrelevant, in spite of the facts that planform patterns
obtained with the help of different models are substantially different (Figure 111).

However, at a more careful examination, one finds that the first conclusion depends strictly on
the choice made by Camporeale et al. (2005) to consider only rivers falling in the sub-resonant
regime. This was conclusively demonstrated by Frascati and Lanzoni (2009).

In order to clarify this point, it is convenient to examine the second conclusion, which concerns
the spatial scale of fluvial meanders. According to the celebrated diagram proposed by Leopold
and Wolman (1957), the Cartesian length of meanders observed in vastly different environments
is correlated with channel width (Figure 3(I)). Assuming that the preferred wavelength Lm is
selected by the bend instability mechanism, theoretical results show that the dimensionless meander
wavenumber (λm = 2π B/Lm) should fall in the range 0.1− 0.3, depending on the values attained
by the relevant physical parameters. Figure 3(I) shows that most experimental points do indeed
fall within the predicted range.

More recently, Edwards and Smith (2002) have repeated some of the linear and nonlinear
analyses previously developed by other Authors, employing the IPS model. One of the statements
of Edwards and Smith (2002) concerns the length scale of river meanders which they suggest, on
dimensional grounds, would coincide with the ratio between a typical flow depth and a typical
friction coefficient of the flow. But the above suggestion was not new. A decade earlier Parker
and Johannesson (1989) (p. 384) had already proposed a similar scaling for the dimensionless
meander wavenumber. However, the rescaled wavenumber varied over more than two orders of
magnitude in the 75 field cases they examined, a correlation worse than that obtained through
the classical Leopold scaling. The length suggested by Edwards and Smith (2002) is purely
hydrodynamic, owing to the decoupled character of the IPS model. It represents the unique
length over which the morphodynamic influence is felt in the context of IPS model (Sun et al.,
1996). One may then wonder how an hydrodynamic based scale can account for meandering
occurring in vastly different sedimentary environments. The exact solution of the linear problem
of meander morphodynamics presented in Section 4.4.2 shows that the morphodynamic influence
displays a more complex behavior involving four spatial scales depending on the aspect ratio of the
channel, as well as on the intensity of sediment transport (τ∗0) and friction (Cf0). This response
arises from the contributions of four convolution integrals (equation 316). Each of them involves
distinct spatial scales associated with the inverse of the exponents λmj appearing in the integrals.
Two of these exponents are complex conjugates and determine the upstream and downstream
morphodynamic influence felt through spatial bars, i.e. spatially oscillating perturbations that
decay either upstream or downstream. They allow one to define a morphodynamic length scale
Lm equal to the inverse of the imaginary parts of the two dominant complex conjugate exponents.
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Figura 111. Comparison performed by Camporeale et al. (2005) between the outcomes of long-term planform
simulations obtained with the help of different morphodynamic models: IP = Ikeda et al. (1981), JP =

Johannesson and Parker (1989), ZS = Zolezzi and Seminara (2001): ds = 0.004, τ∗0 = 0.4, β = 7.4, Cf0 = 0.0032
(modified from Camporeale et al., 2005).

The hydrodynamic and morphodynamic spatial scales Lh and Lm attain similar values only in the
sub-resonant regime and for a limited range of the relevant parameters. Conversely, these two
scales differ significantly (by a factor larger than 2) in the super-resonant regime.

Camporeale et al. (2005) and Frascati and Lanzoni (2009) have calculated the probability
density functions (PDF) of channel curvature based on results of simulations obtained using the
IPS and ZS models. If data are restricted to sub-resonant simulations (Camporeale et al., 2005),
the PDFs, scaled by Lh, tend to collapse into a common trend (Figure 112a). However, if data
referring to both the morphodynamic regimes are included (Frascati and Lanzoni, 2009), then the
scatter exhibited by ZS curves is significantly higher (Figure 112b). This result is not surprising
as the hydrodynamic scale Lh is a good approximation of the actual length scale only in the
sub-resonant regime. Conversely, a remarkable collapse on two distinct common trends is obtained
if Lm is adopted to scale the PDFs of curvature associated with the ZS planforms (Figure 112c).

This is reassuring. The signature of the morphodynamic regime (sub- or super-resonant), hence
the physics of the process, is not lost in the long-term behavior of planform evolution. While the
occurrence of repeated cutoffs plays an important role, however it is not sufficient to filter out the
physical complexity associated with the major process of morphodynamic influence.

An additional contribution on this issue has been recently proposed by Schwenk and Foufoula-
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Figura 112. Probability density function (PDF) of the channel axis curvature C resulting from simulations of
planform evolution performed using different models. (a) IPS model, sub-resonant simulations, PDFs scaled by Lh;

(b) ZS model, both sub- and super-resonant simulations, PDFs scaled by Lh; (c) ZS model, both sub- and
super-resonant simulations, PDFs scaled by Lm. Black lines denote sub-resonant patterns; grey lines denote

super-resonant patterns; red and blue lines denote mean PDF distributions (modified from Frascati and Lanzoni
(2009).

Georgiou (2017) who, introducing an appropriate metric, analysed the strength of planform
nonlinearities. They concluded that a nonlinear structure could be detected from trajectory
densities in phase space. This finding confirms that the nonlinearity in the underlying deterministic
dynamics of meandering river evolution indeed leaves its signature on the resulting planform.

5.6. Planform evolution and meander width

One of the main assumptions of the models of planform evolution of meandering rivers discussed
in this Chapter is the spatially and temporally constant value of channel width. This is partly
justified by field observations (Lagasse et al., 2004). Indeed, while many rivers keep a fairly
constant mean channel width as they evolve, systematic width variations have also been reported
(see Brice, 1982).

Note that the relationship between variations of channel width and channel curvature is by
no means obvious. At a first glance, in some cases (Figure 99(I)a) channel width appears to be
maximum at, or close to bend apexes and minimum at, or close to bend crossings. Conversely, in
other cases (Figure 99(I)b) channel width appears to peak at inflection points.

The presence of distinct width patterns was used by Brice (1984) to classify meandering rivers
into two main classes. Sinuous point bar rivers are fluvial patterns that display larger widths
at bend apexes and prominent point bars, typically scrolled and visible at normal stage. On the
contrary, sinuous canaliform rivers are rivers with fairly constant width, no clear width-curvature
correlation and narrow, crescent-shaped, point bars. Moreover, sinuous canaliform rivers exhibit
typically a bank resistance higher than that experienced by sinuous point bar rivers, and, as a
result, have lower rates of lateral bend migration (Brice, 1982; Lagasse et al., 2004).

In order to ascertain what mechanisms determine the establishment of the above patterns, one
may pursue two different lines of investigation, an equilibrium approach or a dynamic analysis.
The rationale behind the equilibrium approach is to try and answer the following question: what is
the spatial distribution of channel width in a meandering channel with constant longitudinal slope
of the free surface in order to satisfy the constraints of morphodynamic equilibrium (constant flow
discharge and sediment flux)? The dynamic approach pursues a more ambitious goal: decoupling
outer bank erosion from inner bank deposition in planform evolution models, thus removing the
constant width constraint and allowing the coevolution of channel width and channel sinuosity to
emerge. Below, we briefly outline recent contributions based on each of these approaches.

5.6.1 The equilibrium approach: Spatial variations of channel width in meandering channels at equilibrium

The equilibrium approach was pursued by Luchi et al. (2012) following a previous contribution
of Solari and Seminara (2005). The first observation of Luchi et al. (2012) concerns a fundamental
aspect of the problem, namely the very definition of channel width. Luchi et al. (2012) noted that,
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Figura 111. Comparison performed by Camporeale et al. (2005) between the outcomes of long-term planform
simulations obtained with the help of different morphodynamic models: IP = Ikeda et al. (1981), JP =

Johannesson and Parker (1989), ZS = Zolezzi and Seminara (2001): ds = 0.004, τ∗0 = 0.4, β = 7.4, Cf0 = 0.0032
(modified from Camporeale et al., 2005).
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sub-resonant regime and for a limited range of the relevant parameters. Conversely, these two
scales differ significantly (by a factor larger than 2) in the super-resonant regime.

Camporeale et al. (2005) and Frascati and Lanzoni (2009) have calculated the probability
density functions (PDF) of channel curvature based on results of simulations obtained using the
IPS and ZS models. If data are restricted to sub-resonant simulations (Camporeale et al., 2005),
the PDFs, scaled by Lh, tend to collapse into a common trend (Figure 112a). However, if data
referring to both the morphodynamic regimes are included (Frascati and Lanzoni, 2009), then the
scatter exhibited by ZS curves is significantly higher (Figure 112b). This result is not surprising
as the hydrodynamic scale Lh is a good approximation of the actual length scale only in the
sub-resonant regime. Conversely, a remarkable collapse on two distinct common trends is obtained
if Lm is adopted to scale the PDFs of curvature associated with the ZS planforms (Figure 112c).

This is reassuring. The signature of the morphodynamic regime (sub- or super-resonant), hence
the physics of the process, is not lost in the long-term behavior of planform evolution. While the
occurrence of repeated cutoffs plays an important role, however it is not sufficient to filter out the
physical complexity associated with the major process of morphodynamic influence.
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Figura 112. Probability density function (PDF) of the channel axis curvature C resulting from simulations of
planform evolution performed using different models. (a) IPS model, sub-resonant simulations, PDFs scaled by Lh;

(b) ZS model, both sub- and super-resonant simulations, PDFs scaled by Lh; (c) ZS model, both sub- and
super-resonant simulations, PDFs scaled by Lm. Black lines denote sub-resonant patterns; grey lines denote

super-resonant patterns; red and blue lines denote mean PDF distributions (modified from Frascati and Lanzoni
(2009).

Georgiou (2017) who, introducing an appropriate metric, analysed the strength of planform
nonlinearities. They concluded that a nonlinear structure could be detected from trajectory
densities in phase space. This finding confirms that the nonlinearity in the underlying deterministic
dynamics of meandering river evolution indeed leaves its signature on the resulting planform.

5.6. Planform evolution and meander width

One of the main assumptions of the models of planform evolution of meandering rivers discussed
in this Chapter is the spatially and temporally constant value of channel width. This is partly
justified by field observations (Lagasse et al., 2004). Indeed, while many rivers keep a fairly
constant mean channel width as they evolve, systematic width variations have also been reported
(see Brice, 1982).

Note that the relationship between variations of channel width and channel curvature is by
no means obvious. At a first glance, in some cases (Figure 99(I)a) channel width appears to be
maximum at, or close to bend apexes and minimum at, or close to bend crossings. Conversely, in
other cases (Figure 99(I)b) channel width appears to peak at inflection points.

The presence of distinct width patterns was used by Brice (1984) to classify meandering rivers
into two main classes. Sinuous point bar rivers are fluvial patterns that display larger widths
at bend apexes and prominent point bars, typically scrolled and visible at normal stage. On the
contrary, sinuous canaliform rivers are rivers with fairly constant width, no clear width-curvature
correlation and narrow, crescent-shaped, point bars. Moreover, sinuous canaliform rivers exhibit
typically a bank resistance higher than that experienced by sinuous point bar rivers, and, as a
result, have lower rates of lateral bend migration (Brice, 1982; Lagasse et al., 2004).

In order to ascertain what mechanisms determine the establishment of the above patterns, one
may pursue two different lines of investigation, an equilibrium approach or a dynamic analysis.
The rationale behind the equilibrium approach is to try and answer the following question: what is
the spatial distribution of channel width in a meandering channel with constant longitudinal slope
of the free surface in order to satisfy the constraints of morphodynamic equilibrium (constant flow
discharge and sediment flux)? The dynamic approach pursues a more ambitious goal: decoupling
outer bank erosion from inner bank deposition in planform evolution models, thus removing the
constant width constraint and allowing the coevolution of channel width and channel sinuosity to
emerge. Below, we briefly outline recent contributions based on each of these approaches.

5.6.1 The equilibrium approach: Spatial variations of channel width in meandering channels at equilibrium

The equilibrium approach was pursued by Luchi et al. (2012) following a previous contribution
of Solari and Seminara (2005). The first observation of Luchi et al. (2012) concerns a fundamental
aspect of the problem, namely the very definition of channel width. Luchi et al. (2012) noted that,
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if the channel width is taken to coincide with the width of the free surface, then Brice classification
(Brice, 1984) becomes stage-dependent in sinuous point bar rivers. Indeed, the lateral bed profile
at point bars is quite gentle, so that small changes in water level cause relatively large changes in
channel width. On the contrary, channel width is fairly objectively identified and weakly stage
dependent for canaliform rivers.

Figura 113. (a) Channel width variation along a reach of the Bollin River at different flow stages and (b) spatial
variation of the inclination angle of the channel centerline θ in the same reach. I and B denote crossings and bends,

respectively (modified from Luchi et al., 2012).

Figure 113, which refers to the active meandering gravel river Bollin in NW England surveyed by
Luchi et al. (2010a), clarifies this concept. The 330 m river reach is composed of three bends freely
evolving in a highly erodible floodplain, with fairly uniform grain size distribution (d50 falling in
the range 26− 35 mm) and uniform riparian areas covered by grassland. These uniformities ensure
that the observed variations of channel width are independent of variations of bank resistance.
Luchi et al. (2012) substantiated the notion of the stage dependence of channel width throughout
the reach, using a 1D hydraulic numerical model to calculate the width of the free surface using the
surveyed cross sections for a set of flow discharges ranging from 1 m3s−1 (mean annual flow), to 15
m3s−1 (bankfull discharge). Results of these calculations are reported in Figure 113a, which shows
that, at low flow, the free surface width at crossings is larger than at bends. On the contrary, at
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high flow, the maximum widths occur within the regions B1, B2, and B3 whilst minimum widths
are experienced at crossings. The above observations call for a reconsideration of the mechanistic
basis of the distinction between sinuous point bar and canaliform meandering rivers proposed by
Brice (1984).

In order to clarify the latter issue, Luchi et al. (2012) extended the nonlinear analysis of flow
and bed topography in meandering channels proposed by Bolla et al. (2009) (recall Section 3.3.1)
to allow for spatial variations of channel width. It is of interest to note that the constant width
model of Bolla et al. (2009) showed that an equilibrium configuration of flow and bed topography
does exist for given flow discharge and associated sediment flux. However, in order to achieve
equilibrium, spatial variations of the longitudinal free-surface slope must be allowed. In the
development of Luchi et al. (2012), the channel width undergoes spatial oscillations. Under these
conditions, the meandering channel is able to accommodate prescribed values of flow and sediment
discharges with the longitudinal free-surface slope kept constant. In general, Luchi et al. (2012)
find that, at equilibrium, channel width attains its maximum close to the inflection points and its
minimum close to the bend apex (Figure 114). The main assumption required for this model to
be rational is that flow and bottom topography must be slowly varying in both longitudinal and
lateral directions, i.e. the channel must be wide enough and its width and channel alignment must
vary on a longitudinal scale much larger than channel width.

Figura 114. (a) Dimensionless bed elevation in a periodic sequence of sine generated meanders; (b) spatial
oscillations of the dimensionless channel width B in equilibrium with the prescribed flow rate and sediment flux.
Bed elevation and channel width are scaled by the uniform flow depth and the channel width of the equivalent
unperturbed straight channel. In both plots the longitudinal coordinate x is scaled by half channel width. The
values of the parameters adopted in the computations are: ds = 0.005, τ∗u = 0.09, β = 7, λm = 0.11, ν0 = 0.06.

Flow is from left to right (reproduced from Luchi et al., 2012).

Results of Luchi et al. (2012) fit clearly the canaliform pattern. In order to substantiate this
finding, Luchi et al. (2012) applied their model to a 1225 km long meandering reach of the Lower
Mississippi River. The morphology of this reach was investigated by Hudson (2002) who, with the
help of surveys from the late 1800s and early 1900s, showed that the bankfull channel width at
riffles was unambiguously greater than at pools. This observation was confirmed by the calculations
of Luchi et al. (2012), who obtained the following results:

- the minimum width is invariably experienced just downstream from the bend apex and the
maximum width downstream from the inflection point;

- the relative variation of the channel width increases as the curvature parameter ν0 increases;
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if the channel width is taken to coincide with the width of the free surface, then Brice classification
(Brice, 1984) becomes stage-dependent in sinuous point bar rivers. Indeed, the lateral bed profile
at point bars is quite gentle, so that small changes in water level cause relatively large changes in
channel width. On the contrary, channel width is fairly objectively identified and weakly stage
dependent for canaliform rivers.
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Luchi et al. (2012) substantiated the notion of the stage dependence of channel width throughout
the reach, using a 1D hydraulic numerical model to calculate the width of the free surface using the
surveyed cross sections for a set of flow discharges ranging from 1 m3s−1 (mean annual flow), to 15
m3s−1 (bankfull discharge). Results of these calculations are reported in Figure 113a, which shows
that, at low flow, the free surface width at crossings is larger than at bends. On the contrary, at
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high flow, the maximum widths occur within the regions B1, B2, and B3 whilst minimum widths
are experienced at crossings. The above observations call for a reconsideration of the mechanistic
basis of the distinction between sinuous point bar and canaliform meandering rivers proposed by
Brice (1984).

In order to clarify the latter issue, Luchi et al. (2012) extended the nonlinear analysis of flow
and bed topography in meandering channels proposed by Bolla et al. (2009) (recall Section 3.3.1)
to allow for spatial variations of channel width. It is of interest to note that the constant width
model of Bolla et al. (2009) showed that an equilibrium configuration of flow and bed topography
does exist for given flow discharge and associated sediment flux. However, in order to achieve
equilibrium, spatial variations of the longitudinal free-surface slope must be allowed. In the
development of Luchi et al. (2012), the channel width undergoes spatial oscillations. Under these
conditions, the meandering channel is able to accommodate prescribed values of flow and sediment
discharges with the longitudinal free-surface slope kept constant. In general, Luchi et al. (2012)
find that, at equilibrium, channel width attains its maximum close to the inflection points and its
minimum close to the bend apex (Figure 114). The main assumption required for this model to
be rational is that flow and bottom topography must be slowly varying in both longitudinal and
lateral directions, i.e. the channel must be wide enough and its width and channel alignment must
vary on a longitudinal scale much larger than channel width.

Figura 114. (a) Dimensionless bed elevation in a periodic sequence of sine generated meanders; (b) spatial
oscillations of the dimensionless channel width B in equilibrium with the prescribed flow rate and sediment flux.
Bed elevation and channel width are scaled by the uniform flow depth and the channel width of the equivalent
unperturbed straight channel. In both plots the longitudinal coordinate x is scaled by half channel width. The
values of the parameters adopted in the computations are: ds = 0.005, τ∗u = 0.09, β = 7, λm = 0.11, ν0 = 0.06.

Flow is from left to right (reproduced from Luchi et al., 2012).

Results of Luchi et al. (2012) fit clearly the canaliform pattern. In order to substantiate this
finding, Luchi et al. (2012) applied their model to a 1225 km long meandering reach of the Lower
Mississippi River. The morphology of this reach was investigated by Hudson (2002) who, with the
help of surveys from the late 1800s and early 1900s, showed that the bankfull channel width at
riffles was unambiguously greater than at pools. This observation was confirmed by the calculations
of Luchi et al. (2012), who obtained the following results:

- the minimum width is invariably experienced just downstream from the bend apex and the
maximum width downstream from the inflection point;

- the relative variation of the channel width increases as the curvature parameter ν0 increases;
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- for typical values of ν0 in the range 0.125− 0.14, appropriate to various subsets of meanders
in the Lower Mississippi River (Harmar and Clifford, 2006), the maximum width is roughly
from 12% to 14.5% larger than the minimum width, with a slight overestimation with respect
to the field observation (8.5%).

The above picture suggests that width variations driven by the constraint of morphodynamic
equilibrium do not support the distinction between canaliform and sinuous point bar meandering
rivers. The resolution of this apparent contradiction between theory and observations is immediately
understood if one notes that the equilibrium constraint does not involve the entire cross section, but
rather the active portion of it, namely the portion where transport occurs at formative conditions.
Assuming that these conditions correspond to bankfull discharge and seeking the portion of the
cross section where the Shields stress is lower than critical, Luchi et al. (2012) have obtained the
spatial distribution of the active width at bankfull conditions for the reach of the Bollin River
discussed above. Figure 115 shows the comparison between the spatial distributions of active
width and width of the free surface. It clarifies that the distinction canaliform-sinuous point bar
depends on the definition of river width adopted in the classification. The reach of the Bollin River
should be classified of sinuous point bar type if the free surface width is adopted; the same reach
has canaliform features if the active width is employed instead. In other words: the equilibrium
constraint has similar consequences for canaliform and sinuous point bar rivers if the active portion
of the cross section is taken to define the river width considered (Figure 115b).

Figura 115. (a) Spatial distributions of free-surface width (solid line) and active width (dashed line) for a
meandering reach of the River Bollin according to calculations of Luchi et al. (2012)); (b) sketch of a cross section

at a point bar (reproduced from Luchi et al., 2012).

The conclusion of Luchi et al. (2012) is then that “The difference between canaliform and
sinuous point bar rivers may be simply stated noting that, in the former case, the active width
roughly coincides with the width of the free surface, while in the latter case a nonactive portion of
the point bar exists. . . . the confining role of a high bank resistance (due to dense vegetation or clay
content) in canaliform rivers prevents the formation at high stage of the ’inactive’ part of the point
bar ”.

A complementary viewpoint to explain the occurrence of systematic variations of channel width
in meandering channels was taken by Luchi (2009) (but see also Zolezzi et al., 2012). Essentially,
these Authors investigated whether spatial oscillations in width may be due to in-stream (or
autogenic) morphodynamic processes, i.e. processes that do not arise from the effect of external
factors, like spatial variations in bank material composition. The autogenic process investigated
by Luchi (2009) is the growth of mid-channel bars diverting the flow towards the banks. This
mechanism was studied employing a perturbation approach that relies on the observations that the
2D dimensionless equations governing the morphodynamics of meandering channels with width
variations is forced by terms involving two main dimensionless parameters, the curvature ratio ν0
and a parameter δ measuring the dimensionless amplitude of width oscillations. One may then
distinguish three contributions:
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- the forcing of curvature due to both first order terms O(ν0) and second order terms O(ν20)
typical of meandering channels with constant width;

- the forcing of channel width variations, leading to an O(δ) contribution as in straight channels
with variable width (recall Section 6.4.2(I));

- the mixed forcing arising from O(ν0 δ) interactions between the effects of width and curvature
variations.

The model equations were then solved expanding the solution in powers of the two perturbation
parameters ν0 and δ. Details of the analysis are left to the mathematically inclined reader who is
referred to the original paper. The basic ideas are summarized below.

At O(ν0) one recovers the classical linear solution forced by curvature, which describes the
occurrence of an excess longitudinal velocity at one bank with respect to the reference uniform
flow, and a symmetrical defect at the opposite bank, i.e. the classical point bar morphology.

At O(δ) the spatial variations of channel width force a laterally symmetrical flow-bed topography
pattern of the central bar type. This is known to promote the growth of width oscillations in
straight channels through a planform instability mechanism analogous to that of bend instability,
as shown by Repetto et al. (2002). Luchi et al. (2010b) argue that the latter mechanism can cause
the growth of mid-channel bars also in meandering rivers when the advance rate of one bank
cannot keep pace with the rate of retreat of the opposite bank. This was documented by Hooke
(1986) and Hooke and Yorke (2011), who observed that widening preceded central bed deposition
in most of the field sites they analyzed.

Figura 116. (a) Aerial view of a meandering reach of the River Bollin. Flow is from right to left. (b,c) Pictures
showing downstream views of a region adjacent to an inflection point of the channel axis. Pictures were taken

before (April 2008) and after (July 2009) several channel-forming events (courtesy of Rossella Luchi).

The novel features of this analysis arise at a nonlinear level:

- The O(ν20) component of the solution describes a mid-channel bar component of the bed
topography, that is known may have amplitudes up to half that of the point bar (Colombini
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- for typical values of ν0 in the range 0.125− 0.14, appropriate to various subsets of meanders
in the Lower Mississippi River (Harmar and Clifford, 2006), the maximum width is roughly
from 12% to 14.5% larger than the minimum width, with a slight overestimation with respect
to the field observation (8.5%).

The above picture suggests that width variations driven by the constraint of morphodynamic
equilibrium do not support the distinction between canaliform and sinuous point bar meandering
rivers. The resolution of this apparent contradiction between theory and observations is immediately
understood if one notes that the equilibrium constraint does not involve the entire cross section, but
rather the active portion of it, namely the portion where transport occurs at formative conditions.
Assuming that these conditions correspond to bankfull discharge and seeking the portion of the
cross section where the Shields stress is lower than critical, Luchi et al. (2012) have obtained the
spatial distribution of the active width at bankfull conditions for the reach of the Bollin River
discussed above. Figure 115 shows the comparison between the spatial distributions of active
width and width of the free surface. It clarifies that the distinction canaliform-sinuous point bar
depends on the definition of river width adopted in the classification. The reach of the Bollin River
should be classified of sinuous point bar type if the free surface width is adopted; the same reach
has canaliform features if the active width is employed instead. In other words: the equilibrium
constraint has similar consequences for canaliform and sinuous point bar rivers if the active portion
of the cross section is taken to define the river width considered (Figure 115b).
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at a point bar (reproduced from Luchi et al., 2012).

The conclusion of Luchi et al. (2012) is then that “The difference between canaliform and
sinuous point bar rivers may be simply stated noting that, in the former case, the active width
roughly coincides with the width of the free surface, while in the latter case a nonactive portion of
the point bar exists. . . . the confining role of a high bank resistance (due to dense vegetation or clay
content) in canaliform rivers prevents the formation at high stage of the ’inactive’ part of the point
bar ”.

A complementary viewpoint to explain the occurrence of systematic variations of channel width
in meandering channels was taken by Luchi (2009) (but see also Zolezzi et al., 2012). Essentially,
these Authors investigated whether spatial oscillations in width may be due to in-stream (or
autogenic) morphodynamic processes, i.e. processes that do not arise from the effect of external
factors, like spatial variations in bank material composition. The autogenic process investigated
by Luchi (2009) is the growth of mid-channel bars diverting the flow towards the banks. This
mechanism was studied employing a perturbation approach that relies on the observations that the
2D dimensionless equations governing the morphodynamics of meandering channels with width
variations is forced by terms involving two main dimensionless parameters, the curvature ratio ν0
and a parameter δ measuring the dimensionless amplitude of width oscillations. One may then
distinguish three contributions:
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- the forcing of curvature due to both first order terms O(ν0) and second order terms O(ν20)
typical of meandering channels with constant width;

- the forcing of channel width variations, leading to an O(δ) contribution as in straight channels
with variable width (recall Section 6.4.2(I));

- the mixed forcing arising from O(ν0 δ) interactions between the effects of width and curvature
variations.

The model equations were then solved expanding the solution in powers of the two perturbation
parameters ν0 and δ. Details of the analysis are left to the mathematically inclined reader who is
referred to the original paper. The basic ideas are summarized below.

At O(ν0) one recovers the classical linear solution forced by curvature, which describes the
occurrence of an excess longitudinal velocity at one bank with respect to the reference uniform
flow, and a symmetrical defect at the opposite bank, i.e. the classical point bar morphology.

At O(δ) the spatial variations of channel width force a laterally symmetrical flow-bed topography
pattern of the central bar type. This is known to promote the growth of width oscillations in
straight channels through a planform instability mechanism analogous to that of bend instability,
as shown by Repetto et al. (2002). Luchi et al. (2010b) argue that the latter mechanism can cause
the growth of mid-channel bars also in meandering rivers when the advance rate of one bank
cannot keep pace with the rate of retreat of the opposite bank. This was documented by Hooke
(1986) and Hooke and Yorke (2011), who observed that widening preceded central bed deposition
in most of the field sites they analyzed.

Figura 116. (a) Aerial view of a meandering reach of the River Bollin. Flow is from right to left. (b,c) Pictures
showing downstream views of a region adjacent to an inflection point of the channel axis. Pictures were taken

before (April 2008) and after (July 2009) several channel-forming events (courtesy of Rossella Luchi).

The novel features of this analysis arise at a nonlinear level:

- The O(ν20) component of the solution describes a mid-channel bar component of the bed
topography, that is known may have amplitudes up to half that of the point bar (Colombini
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et al., 1991). Hence, mid-channel bars are not exclusively associated with preexisting spatial
width variations, but can arise from nonlinear effects in equi-width meandering channels.
Luchi (2009) substantiates this theoretical finding referring again to the field observations on
the River Bollin, whose “high lateral mobility makes it particularly suitable to study meander
processes” (Hooke, 2004). Figure 116 shows the development of a mid-channel bar in a reach
adjacent to an inflection point, monitored in the period 2008-2009. The bar growth is readily
appreciated comparing the Figures 116b and 116c, showing pictures taken before and after
several channel-forming events.

- The O(ν20) contribution suggests that curvature variations can drive a laterally symmetrical
mechanism able to promote the development of width variations. The reciprocal effect, i.e.
the effect of width variations on the evolution of channel curvature, and hence on meander
growth, is governed by the mixed O(ν0 δ) component of the solution. It turns out that, for
typical aspect ratios of meandering rivers, width variations do affect bend instability shifting
the instability region in the λ − β plane toward wavenumber values higher (λ ∼ 0.2 − 0.3)
than those found in classical linear bend theories for equi-width channels (Figure 117a).
This is good news as it is known that the latter theories lead to a systematic wavelength
overestimation. This emerges from the comparison between predicted and measured intrinsic
wave numbers of some low sinuous rivers extracted from the data set of Hey and Thorne (1986)
performed by Zolezzi et al. (2012). They suggest that this discrepancy may be corrected if
one accounts for the presence of width variations.

Figura 117. Marginal bend stability curves in the λ− β plane for different amplitudes δ of relative spatial width
variations (ds = 0.08, τ∗u = 0.1). Courtesy of Rossella Luchi.

5.6.2 The dynamic approach: Coevolution of meander width and sinuosity

The dynamic approach ultimately aims at ascertaining the mechanism whereby meandering
rivers determine their own widths through a coevolution of sinuosity and width. This is the goal
pursued by Eke (2013) (but see also Eke et al., 2014b,a), following a previous contribution of
Parker et al. (2011). More recently an alternative approach has been proposed by Lopez Dubon
and Lanzoni (2019).

The starting point of the analysis of Eke (2013) was the recognition that, if bankfull fluid
discharge Q, bedload discharge at bankfull flow Qs, grain size ds and channel-forming Shields
number τ∗f are specified in a straight channel, then the uniform flow momentum balance and a
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bedload transport relation impose three constraints of the general form:

S = S(Q,Qs, ds, τ∗f ), (378a)
2B = 2B(Q,Qs, ds, τ∗f ), (378b)
D = D(Q,Qs, ds, τ∗f ). (378c)

where S is the bed slope, D is the bankfull average flow depth and 2B is the channel width at
bankfull stage. In other words, slope, flow depth and channel width are uniquely determined.
Eke (2013) notes that, if one applies the above relationships to a sinuous channel at a given time,
with S now interpreted as reach-averaged bed slope and τ∗f assigned a constant value, then an
unrealistic consequence arises. Consider a river reach that is initially nearly straight with bed
slope Si and subsequently evolves towards a meandering pattern. Simple estimates reported by
Eke (2013) suggest that, as S drops from the straight-channel value Si to one corresponding to a
sinuosity of 2.5, the width should correspondingly drop to 40% of its initial value at the nearly
straight state. No such sharp drop in width as sinuosity increases is observed in reality.

This notwithstanding, Eke (2013) wishes to employ the relationships (378) in the context of
their planform evolution model. To avoid the above contradiction, they resort to a trick. With
the help of empirical observations of Li et al. (2014), they relax the assumption of constant value
of τ∗f and replace it by the following empirical relation for channel-forming (bankfull) Shields
number, valid across the range from silt-bed to cobble-bed rivers:

τ∗f = 1220R2/3
p S0.53. (379)

Here, Rp denotes the particle Reynolds number. According to (379), as the sinuosity of a reach
increases and the reach slope decreases, τ∗f drops and the uniform flow relationships (378) now
predict a rather modest channel narrowing. It is appropriate to point out that the latter approach
assumes that sinuosity increases in inverse proportion to channel lengthening, thus ignoring
the possible role of aggradation and degradation processes undergone by the river reach as a
consequence of planform evolution. This assumption has been recently challenged by Monegaglia
(2017) and Monegaglia and Tubino (2019), as discussed below.

The analysis of Eke (2013) proceeds as follows. With the help of (378, 379), the Authors are
able to associate a value for the channel-forming Shields number τ∗f to any sinuous configuration.
However, unlike in straight channels, in meandering rivers the bed shear stress varies both
longitudinally and laterally. As a result, adjacent to a bank, the streamwise bed shear stress may
exceed or be smaller than the channel-forming bottom stress. In the former case, the bank is
eroded, in the latter case the bank accretes. Erosion is modeled by an approach able to capture
sediment removal mitigated by armoring due to slump blocks. Accretion is treated by a submodel
capturing vegetal encroachment damped by the effect of near-bank flow. Both migration rules are
expressed in the following form:

dnb

dt
= ζ +

1

Sb

∂ηb
∂t

. (380)

Here:

- dnb/dt denotes the rate of migration of the left (nb(t) = B) or right (nb(t) = −B) bank;

- ζ denotes the lateral erosion (accretion) rate due to sediment removal from (supply to) the
bank. This process is triggered as the local Shields stress at the bank deviates from its
formative value associated with the reach averaged slope. ζ is given an empirical form in
terms of parameters measuring the effects of slump blocks, flood intermittency and vegetation.

- Sb is the bank slope, taken to be constant. Of course, the Authors are implicitly assuming
that the banks are gently sloping as the second term in (380) would be unbounded for a
vertical bank.
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et al., 1991). Hence, mid-channel bars are not exclusively associated with preexisting spatial
width variations, but can arise from nonlinear effects in equi-width meandering channels.
Luchi (2009) substantiates this theoretical finding referring again to the field observations on
the River Bollin, whose “high lateral mobility makes it particularly suitable to study meander
processes” (Hooke, 2004). Figure 116 shows the development of a mid-channel bar in a reach
adjacent to an inflection point, monitored in the period 2008-2009. The bar growth is readily
appreciated comparing the Figures 116b and 116c, showing pictures taken before and after
several channel-forming events.

- The O(ν20) contribution suggests that curvature variations can drive a laterally symmetrical
mechanism able to promote the development of width variations. The reciprocal effect, i.e.
the effect of width variations on the evolution of channel curvature, and hence on meander
growth, is governed by the mixed O(ν0 δ) component of the solution. It turns out that, for
typical aspect ratios of meandering rivers, width variations do affect bend instability shifting
the instability region in the λ − β plane toward wavenumber values higher (λ ∼ 0.2 − 0.3)
than those found in classical linear bend theories for equi-width channels (Figure 117a).
This is good news as it is known that the latter theories lead to a systematic wavelength
overestimation. This emerges from the comparison between predicted and measured intrinsic
wave numbers of some low sinuous rivers extracted from the data set of Hey and Thorne (1986)
performed by Zolezzi et al. (2012). They suggest that this discrepancy may be corrected if
one accounts for the presence of width variations.

Figura 117. Marginal bend stability curves in the λ− β plane for different amplitudes δ of relative spatial width
variations (ds = 0.08, τ∗u = 0.1). Courtesy of Rossella Luchi.
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The dynamic approach ultimately aims at ascertaining the mechanism whereby meandering
rivers determine their own widths through a coevolution of sinuosity and width. This is the goal
pursued by Eke (2013) (but see also Eke et al., 2014b,a), following a previous contribution of
Parker et al. (2011). More recently an alternative approach has been proposed by Lopez Dubon
and Lanzoni (2019).

The starting point of the analysis of Eke (2013) was the recognition that, if bankfull fluid
discharge Q, bedload discharge at bankfull flow Qs, grain size ds and channel-forming Shields
number τ∗f are specified in a straight channel, then the uniform flow momentum balance and a
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bedload transport relation impose three constraints of the general form:

S = S(Q,Qs, ds, τ∗f ), (378a)
2B = 2B(Q,Qs, ds, τ∗f ), (378b)
D = D(Q,Qs, ds, τ∗f ). (378c)

where S is the bed slope, D is the bankfull average flow depth and 2B is the channel width at
bankfull stage. In other words, slope, flow depth and channel width are uniquely determined.
Eke (2013) notes that, if one applies the above relationships to a sinuous channel at a given time,
with S now interpreted as reach-averaged bed slope and τ∗f assigned a constant value, then an
unrealistic consequence arises. Consider a river reach that is initially nearly straight with bed
slope Si and subsequently evolves towards a meandering pattern. Simple estimates reported by
Eke (2013) suggest that, as S drops from the straight-channel value Si to one corresponding to a
sinuosity of 2.5, the width should correspondingly drop to 40% of its initial value at the nearly
straight state. No such sharp drop in width as sinuosity increases is observed in reality.

This notwithstanding, Eke (2013) wishes to employ the relationships (378) in the context of
their planform evolution model. To avoid the above contradiction, they resort to a trick. With
the help of empirical observations of Li et al. (2014), they relax the assumption of constant value
of τ∗f and replace it by the following empirical relation for channel-forming (bankfull) Shields
number, valid across the range from silt-bed to cobble-bed rivers:

τ∗f = 1220R2/3
p S0.53. (379)

Here, Rp denotes the particle Reynolds number. According to (379), as the sinuosity of a reach
increases and the reach slope decreases, τ∗f drops and the uniform flow relationships (378) now
predict a rather modest channel narrowing. It is appropriate to point out that the latter approach
assumes that sinuosity increases in inverse proportion to channel lengthening, thus ignoring
the possible role of aggradation and degradation processes undergone by the river reach as a
consequence of planform evolution. This assumption has been recently challenged by Monegaglia
(2017) and Monegaglia and Tubino (2019), as discussed below.

The analysis of Eke (2013) proceeds as follows. With the help of (378, 379), the Authors are
able to associate a value for the channel-forming Shields number τ∗f to any sinuous configuration.
However, unlike in straight channels, in meandering rivers the bed shear stress varies both
longitudinally and laterally. As a result, adjacent to a bank, the streamwise bed shear stress may
exceed or be smaller than the channel-forming bottom stress. In the former case, the bank is
eroded, in the latter case the bank accretes. Erosion is modeled by an approach able to capture
sediment removal mitigated by armoring due to slump blocks. Accretion is treated by a submodel
capturing vegetal encroachment damped by the effect of near-bank flow. Both migration rules are
expressed in the following form:
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Here:

- dnb/dt denotes the rate of migration of the left (nb(t) = B) or right (nb(t) = −B) bank;

- ζ denotes the lateral erosion (accretion) rate due to sediment removal from (supply to) the
bank. This process is triggered as the local Shields stress at the bank deviates from its
formative value associated with the reach averaged slope. ζ is given an empirical form in
terms of parameters measuring the effects of slump blocks, flood intermittency and vegetation.

- Sb is the bank slope, taken to be constant. Of course, the Authors are implicitly assuming
that the banks are gently sloping as the second term in (380) would be unbounded for a
vertical bank.
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Figura 118. Adjustment of reach-averaged/reference channel characteristics over time in response to increasing
channel sinuosity. As slope S decreases, the channel half-width B decreases and the flow depth D increases. (a)

Analysis based on a constant channel-forming Shields number. (b) Analysis based on a slope-dependent
channel-forming Shields number (modified from Figures 3.11 and 3.13 of Eke, 2013).

A nonlinear depth-averaged submodel for river morphodynamics is then employed to evaluate
the spatial distribution of the bed shear stress in a meandering channel with variable width.
Moreover, a standard numerical scheme is adopted to simulate the kinematics of channel shift. The
above approach was applied to a test case. Starting from a constant width, low-amplitude meander
with an initial sine-generated waveform, the planform evolution was followed up to incipient cut-off
conditions. Data were chosen such to mimic an actively meandering sand bed stream, namely the
reach of the Pembina River investigated by Beck et al. (1983). Various results have emerged from
this application.

Firstly, assuming that the channel-forming Shields number keeps constant at its initial value
leads to a channel that becomes unacceptably narrow as sinuosity increases (Figure 118a). This
problem is fully resolved adopting the empirical relation (379) for channel-forming (bankfull)
Shields number (Figure 118b).

Secondly, simulations show that the curvature at the apex, the relative amplitude of width
variations and the maximum migration rate rapidly increase, reach a peak value and then decline
slowly. Values for the peak migration rates and width variations are within the range of values
observed for the investigated reach of the Pembina River.

Thirdly, the predicted location of the maximum width is just upstream of the bend apex and
the minimum width is found to occur around the crossings, a trend similar to that observed in the
Pembina River.

Recently, Monegaglia (2017) (but see also Monegaglia and Tubino, 2019) has taken a different
approach to simulate the co-evolution of sinuosity and channel width in meandering channels.
These Authors make use of recent progress in remote sensing analysis. Fairly detailed data on the
evolution of channel width at the bend scale for four meandering rivers of the Amazon Basin are
used to test model predictions. Figure 119a provides a detailed documentation of the planform
development of an individual meander bend of the Rio Ucayali (Perù) in the time period 1988-2009.
Also shown (Figure 119b) is the coevolution of channel width and meander sinuosity in the same
period.

The starting point of the analysis of Monegaglia (2017) is the recognition that changes of
channel geometry at bankfull conditions during the planform evolution of a meandering river are
not driven only by the reduction of channel slope due to the elongation of a channel connecting
two floodplain points (Eke et al., 2014b). Indeed, a reduction of slope implies a reduction of
the sediment transport capacity. Monegaglia (2017) then argues that the models for meander
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Figura 119. (a) Planform development of an individual meander bend of the Rio Ucayali (Perù) in the time period
1988-2009. Coevolution of channel width 2B and meander sinuosity σ in the same period (modified from Figure 6.8

of Monegaglia, 2017).

morphodynamics developed so far overlook the capability of evolving meander bends to rework the
river bed through aggradation/degradation processes such to counteract the variations of channel
slope associated with planform development. They then propose a new, physically based model for
the bankfull hydraulic geometry of a periodic train of evolving meanders based on the assumption
that the rate of sediment supply to the meandering reach keeps constant.

Briefly, the analysis proceeds as follows. Sinuosity-width coevolution is described by the
following two rules:

ζ =
1

2
E (Ubl − Ubr) , (381a)

dB

dt
= E (Ubl + Ubr − 2UR) (381b)

with ζ lateral migration rate, E bank erosion rate, Ubl (Ubr) depth averaged longitudinal velocity
at the left (right) bank and UR some cross sectionally averaged velocity threshold, above (below)
which bank erosion (accretion) occurs. Moreover, unlike Eke et al. (2014b), Monegaglia (2017)
assumes that the threshold value UR is univocally determined once the hydrology and the grain
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Figura 118. Adjustment of reach-averaged/reference channel characteristics over time in response to increasing
channel sinuosity. As slope S decreases, the channel half-width B decreases and the flow depth D increases. (a)

Analysis based on a constant channel-forming Shields number. (b) Analysis based on a slope-dependent
channel-forming Shields number (modified from Figures 3.11 and 3.13 of Eke, 2013).

A nonlinear depth-averaged submodel for river morphodynamics is then employed to evaluate
the spatial distribution of the bed shear stress in a meandering channel with variable width.
Moreover, a standard numerical scheme is adopted to simulate the kinematics of channel shift. The
above approach was applied to a test case. Starting from a constant width, low-amplitude meander
with an initial sine-generated waveform, the planform evolution was followed up to incipient cut-off
conditions. Data were chosen such to mimic an actively meandering sand bed stream, namely the
reach of the Pembina River investigated by Beck et al. (1983). Various results have emerged from
this application.

Firstly, assuming that the channel-forming Shields number keeps constant at its initial value
leads to a channel that becomes unacceptably narrow as sinuosity increases (Figure 118a). This
problem is fully resolved adopting the empirical relation (379) for channel-forming (bankfull)
Shields number (Figure 118b).

Secondly, simulations show that the curvature at the apex, the relative amplitude of width
variations and the maximum migration rate rapidly increase, reach a peak value and then decline
slowly. Values for the peak migration rates and width variations are within the range of values
observed for the investigated reach of the Pembina River.

Thirdly, the predicted location of the maximum width is just upstream of the bend apex and
the minimum width is found to occur around the crossings, a trend similar to that observed in the
Pembina River.

Recently, Monegaglia (2017) (but see also Monegaglia and Tubino, 2019) has taken a different
approach to simulate the co-evolution of sinuosity and channel width in meandering channels.
These Authors make use of recent progress in remote sensing analysis. Fairly detailed data on the
evolution of channel width at the bend scale for four meandering rivers of the Amazon Basin are
used to test model predictions. Figure 119a provides a detailed documentation of the planform
development of an individual meander bend of the Rio Ucayali (Perù) in the time period 1988-2009.
Also shown (Figure 119b) is the coevolution of channel width and meander sinuosity in the same
period.

The starting point of the analysis of Monegaglia (2017) is the recognition that changes of
channel geometry at bankfull conditions during the planform evolution of a meandering river are
not driven only by the reduction of channel slope due to the elongation of a channel connecting
two floodplain points (Eke et al., 2014b). Indeed, a reduction of slope implies a reduction of
the sediment transport capacity. Monegaglia (2017) then argues that the models for meander
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Figura 119. (a) Planform development of an individual meander bend of the Rio Ucayali (Perù) in the time period
1988-2009. Coevolution of channel width 2B and meander sinuosity σ in the same period (modified from Figure 6.8

of Monegaglia, 2017).

morphodynamics developed so far overlook the capability of evolving meander bends to rework the
river bed through aggradation/degradation processes such to counteract the variations of channel
slope associated with planform development. They then propose a new, physically based model for
the bankfull hydraulic geometry of a periodic train of evolving meanders based on the assumption
that the rate of sediment supply to the meandering reach keeps constant.

Briefly, the analysis proceeds as follows. Sinuosity-width coevolution is described by the
following two rules:

ζ =
1

2
E (Ubl − Ubr) , (381a)

dB

dt
= E (Ubl + Ubr − 2UR) (381b)

with ζ lateral migration rate, E bank erosion rate, Ubl (Ubr) depth averaged longitudinal velocity
at the left (right) bank and UR some cross sectionally averaged velocity threshold, above (below)
which bank erosion (accretion) occurs. Moreover, unlike Eke et al. (2014b), Monegaglia (2017)
assumes that the threshold value UR is univocally determined once the hydrology and the grain
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size are given. The reader will note that, according to the above rules, laterally symmetrical
components of the perturbations of the depth averaged longitudinal velocity (such that Ubl = Ubr)
do not affect the lateral channel migration but do drive width variations.

To close the problem, an evolution equation for the reach averaged channel slope is needed
to replace the common assumption whereby slope reduction would be inversely proportional to
channel lengthening. Indeed, consider the mathematical definition of reach slope S = ∆η/L, with
L reach length and ∆η drop in cross sectionally averaged bed elevation. Differentiation of this
definition immediately clarifies that, besides channel lengthening, bed aggradation-degradation
may also play a role. Temporal differentiation of the definition of reach averaged slope allows one to
express the rate of slope reduction dS/dt in terms of the rates of reach lengthening dL/dt and bed
aggradation-degradation d∆η/dt. The latter three quantities must satisfy a relationship imposing
sediment continuity at the reach scale. Essentially, this condition requires that the disequilibrium
between the rate of sediment supply, assumed to be constant, and the rate of sediment transport,
which varies as meander evolves, must be balanced by the rate at which sediment is stored in (or
subtracted from) the meander reach due to bed aggradation (degradation), lateral migration and
average width change.

Making also use of the evolution equations for channel curvature and meander length derived
by Seminara et al. (2001b), the analysis leads to a system of coupled ordinary differential equations,
for channel curvature, average meander width, meander length and drop of bed elevation. It
turns out that the response of the system depends crucially on a dimensionless parameter that
measures the ratio between the timescale of planform evolution Te and that associated with bed
aggradation-degradation TB . It reads:

RT =
Te

TB
. (383)

Here:

Te =
B0

E U0
, TB =

B0 (1− p)S0 L
2
0

Qs0
(384)

with the subscript 0 denoting an equilibrium value in the quasi-straight initial configuration and p
sediment porosity. If the value of RT is small, planform evolution is too fast for the river bed to
adapt to the evolving planform configuration. As a result, the bed slope tends to the classical
inverse dependence on meander length. On the contrary, if RT is large, then settling compensates
the slope change due to meander elongation. As a result, the sediment transport capacity balances
the sediment supply and the bankfull hydraulic geometry converges to the equilibrium conditions.

Results of the numerical simulations display a general tendency of channel slope and average
width to decrease uniformly as the sinuosity of river planform increases. On the contrary, the
average reach depth increases.

As for the role played by the parameter RT , it turns out that the larger is the value of
RT , the smaller is the departure of the bankfull hydraulic geometry from the initial equilibrium
configuration. For values of RT as large as 10, the bankfull hydraulic geometry keeps almost
constant as meander develops. In this case, the river bed maintains its slope in equilibrium with the
sediment supply. Conversely, at low values of RT , the river bed is unable to keep up with channel
elongation, hence the bankfull width and slope must decrease accordingly. Comparison with
remote sensing data (Figure 120) for the trajectory of the correlation B − σ between half-channel
width and sinuosity appears to be fairly encouraging. Monegaglia (2017) notes that the observed
values of RT are typically correlated with the average sediment concentration and their values
span the range 0.1− 10, with few values in the low range. The Authors then conclude that the
general tendency of the bankfull geometry should be to keep nearly constant or change slightly as
meanders develop.

An alternative approach to deal with the coupled evolution of river planform and channel width
has been developed by Lopez Dubon and Lanzoni (2019), who simulate the river bank evolution
through a statistically constrained physical model. The analysis of a wide sample of river planforms
extracted from Landsat images shows that the median of the half-channel width, normalized by its
mean varies within a relatively limited range (0.904 to 1.013). On the contrary the interquartile
range can differ significantly from river to river (Figure 121). For a given river, the reach averaged
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Figura 120. Comparison of the predicted trajectory of the correlation width-sinuosity for four large rivers of the
Amazon basin and remote sensing data. The important role played by the RT parameter appears to be reasonably

confirmed. Courtesy of Federico Monegaglia.

mean width Bavg can change in time as the river migrates across the floodplain. In particular,
significant variations are observed when the river undergoes important morphological changes,
such as those due to the occurrence of cutoffs. Nevertheless, these fluctuations are usually centered
around a statistically steady value. This value can be taken as a signature of the hydrological and
sedimentological regimes characterizing the river, of the overall strength of the banks, and of the
sedimentary structure of the surrounding floodplain.

A generalized extreme value (GEV) probability distribution is usually found to provide the best
fit of along-channel distribution of channel width. Even though the three parameters controlling the
GEV shape can change from year to year, the differences of the statistical distances between each
distribution keep relatively limited, thus implying an almost complete similarity of the distributions.
Meaningful variations in the GEV parameters occur when the river planform experiences important
shortening due to cutoffs. However, a few years after these changes, the GEV parameters tend to
recover the preexisting values that can thus be taken as river specific (Figure 122).

The above findings led Lopez Dubon and Lanzoni (2019) to develop the following statistically
constrained physical model. The outer bank erosion and the inner bank accretion are treated
separately, thus allowing for spatial width fluctuations with respect to the mean when the river
migrates. However, these fluctuations are constrained within a meaningful range of values using
the GEV distribution that better fits the spatio-temporal sequences of widths observed for the
investigated river. The accretion of the inner bend is computed through the deposition relation of
Mehta and Partheniades (1975), whilst the erosion rate at the outer bank is estimated through an
excess threshold linear formula of Darby et al. (2002). Note that the above approach allows to
account not only for the water and sediment inputs that, on average, control the river morphology,
but also for heterogeneities in the bank composition and in the floodplain structure that concur to
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channel lengthening. Indeed, consider the mathematical definition of reach slope S = ∆η/L, with
L reach length and ∆η drop in cross sectionally averaged bed elevation. Differentiation of this
definition immediately clarifies that, besides channel lengthening, bed aggradation-degradation
may also play a role. Temporal differentiation of the definition of reach averaged slope allows one to
express the rate of slope reduction dS/dt in terms of the rates of reach lengthening dL/dt and bed
aggradation-degradation d∆η/dt. The latter three quantities must satisfy a relationship imposing
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by Seminara et al. (2001b), the analysis leads to a system of coupled ordinary differential equations,
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sediment porosity. If the value of RT is small, planform evolution is too fast for the river bed to
adapt to the evolving planform configuration. As a result, the bed slope tends to the classical
inverse dependence on meander length. On the contrary, if RT is large, then settling compensates
the slope change due to meander elongation. As a result, the sediment transport capacity balances
the sediment supply and the bankfull hydraulic geometry converges to the equilibrium conditions.

Results of the numerical simulations display a general tendency of channel slope and average
width to decrease uniformly as the sinuosity of river planform increases. On the contrary, the
average reach depth increases.

As for the role played by the parameter RT , it turns out that the larger is the value of
RT , the smaller is the departure of the bankfull hydraulic geometry from the initial equilibrium
configuration. For values of RT as large as 10, the bankfull hydraulic geometry keeps almost
constant as meander develops. In this case, the river bed maintains its slope in equilibrium with the
sediment supply. Conversely, at low values of RT , the river bed is unable to keep up with channel
elongation, hence the bankfull width and slope must decrease accordingly. Comparison with
remote sensing data (Figure 120) for the trajectory of the correlation B − σ between half-channel
width and sinuosity appears to be fairly encouraging. Monegaglia (2017) notes that the observed
values of RT are typically correlated with the average sediment concentration and their values
span the range 0.1− 10, with few values in the low range. The Authors then conclude that the
general tendency of the bankfull geometry should be to keep nearly constant or change slightly as
meanders develop.

An alternative approach to deal with the coupled evolution of river planform and channel width
has been developed by Lopez Dubon and Lanzoni (2019), who simulate the river bank evolution
through a statistically constrained physical model. The analysis of a wide sample of river planforms
extracted from Landsat images shows that the median of the half-channel width, normalized by its
mean varies within a relatively limited range (0.904 to 1.013). On the contrary the interquartile
range can differ significantly from river to river (Figure 121). For a given river, the reach averaged
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Amazon basin and remote sensing data. The important role played by the RT parameter appears to be reasonably

confirmed. Courtesy of Federico Monegaglia.

mean width Bavg can change in time as the river migrates across the floodplain. In particular,
significant variations are observed when the river undergoes important morphological changes,
such as those due to the occurrence of cutoffs. Nevertheless, these fluctuations are usually centered
around a statistically steady value. This value can be taken as a signature of the hydrological and
sedimentological regimes characterizing the river, of the overall strength of the banks, and of the
sedimentary structure of the surrounding floodplain.

A generalized extreme value (GEV) probability distribution is usually found to provide the best
fit of along-channel distribution of channel width. Even though the three parameters controlling the
GEV shape can change from year to year, the differences of the statistical distances between each
distribution keep relatively limited, thus implying an almost complete similarity of the distributions.
Meaningful variations in the GEV parameters occur when the river planform experiences important
shortening due to cutoffs. However, a few years after these changes, the GEV parameters tend to
recover the preexisting values that can thus be taken as river specific (Figure 122).

The above findings led Lopez Dubon and Lanzoni (2019) to develop the following statistically
constrained physical model. The outer bank erosion and the inner bank accretion are treated
separately, thus allowing for spatial width fluctuations with respect to the mean when the river
migrates. However, these fluctuations are constrained within a meaningful range of values using
the GEV distribution that better fits the spatio-temporal sequences of widths observed for the
investigated river. The accretion of the inner bend is computed through the deposition relation of
Mehta and Partheniades (1975), whilst the erosion rate at the outer bank is estimated through an
excess threshold linear formula of Darby et al. (2002). Note that the above approach allows to
account not only for the water and sediment inputs that, on average, control the river morphology,
but also for heterogeneities in the bank composition and in the floodplain structure that concur to
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Figura 121. Box and whisker plots computed for the along-channel distributions of the dimensionless half-width
B(s)/Bavg , observed in various rivers across the world. The boxes represent the interquartile ranges corresponding
to 50% of the data; the horizontal line within each box denotes the median; the whiskers extend up to 1.5 times the
interquartile range. All the values outside the whiskers are considered as outliers. The numbers in the upper part of
the plot, delimited by round brackets, denote the size of the sample and the number of outliers (modified from

Lopez Dubon and Lanzoni, 2019).

Figura 122. Examples of the temporal variations experienced by the generalized extreme value (GEV) PDF
(probability density distribution) fitted to dimensionless B(s)/Bavg) distribution observed in (a) the Chixoy River

and (b) the Segovia River in different years (modified from Lopez Dubon and Lanzoni, 2019).

determine the river shape.
The value of the bank shear stress used to drive the bank evolution can be obtained using any

flow model. Figure 123 shows an example of application to the Ucayali River (Peru), carried out
by using the linearized morphodynamic model of Frascati and Lanzoni (2013), which computes
the in-channel bed topography and the corresponding flow field in meandering rivers with weakly,
but arbitrarily varying spatial distributions of channel curvature and channel width.

5.7. Mechanics of chute-cutoffs
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Figura 123. Short-term (10 years) simulations of planform evolution experienced by a reach of the Ucayali River
(Peru). Panel (a) shows a comparison between the planform observed in 2007 and that predicted starting from the
observed 1998 configuration using the statistically contrained model of Lopez Dubon and Lanzoni (2019). Panel (b)
shows a similar comparison where predictions have been obtained also without including the statistical constraint

on the temporal width evolution (modified from Lopez Dubon and Lanzoni, 2019).

Chute cutoffs are autogenic features observed in many meandering rivers (Figure 124). They
consist of relatively long flow diversions that occur when a meander loop is bypassed by a new
channel that cuts through the floodplain enclosed by the loop (Constantine et al., 2010). They
usually form in rivers with wide cross sections, large curvature bends, high discharges and high
overbank flow gradients (Howard and Knutson, 1984). Indeed, unlike neck cutoffs, chutes may
be incised only when the floodplain adjacent to the channel is inundated, thus requiring high
water levels and high rates of bed load transport. The chute incision and the consequent channel
shortening enhance the downstream sediment delivery, giving rise to sediment pulses that promote
the downstream formation of bars and an overall rearrangement of meandering bends adjacent
to that bypassed by the chute. The incision process may be very fast (Iwasaki et al., 2016) or
may last for a long period (Gay et al., 1998). The original meander loop may either be filled with
sediments or, less frequently, remain active together with the chute channel (Grenfell et al., 2012).

Even though a number of different processes concur to the formation of chute cutoffs, three main
mechanisms have been identified (Constantine et al., 2010). The first is related to the presence
of sequences of ridges and swales within the meander loop. The swales may act as preferential
paths for the flow and, consequently, they are subject to a gradual erosion due to the stronger
water surface gradient. Eventually, one of these paths becomes large enough to convey most of the
discharge, leading to the formation of a chute cutoff (Figure 125).

A second mechanism is related to the progressive incision of small embayments formed along
the channel banks by localized erosion events. These embayments can be found either upstream or
downstream of the meander loop that undergoes the chute cutoff (Figure 125). In the first case,
when the water inundates the floodplain, the embayment is subject to a progressive extension,
controlled by the inertia and the direction of the in-channel incoming flow. Conversely, in the
second case, the embayment undergoes a progressive elongation by headward incision, controlled
by surface gradient of the overbank flow and floodplain topography.

Chute extension by upstream incision can also form as a result of a natural obstruction of
the river (e.g. due to the encroachment of woody debris) that forces overbank flow. The stage
difference across the floodplain that forms upstream and downstream of this dam drives a flow
that returns into the channel and, hence, impinges on the riverbank. The bank can thus be carved,
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Figura 121. Box and whisker plots computed for the along-channel distributions of the dimensionless half-width
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and (b) the Segovia River in different years (modified from Lopez Dubon and Lanzoni, 2019).
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flow model. Figure 123 shows an example of application to the Ucayali River (Peru), carried out
by using the linearized morphodynamic model of Frascati and Lanzoni (2013), which computes
the in-channel bed topography and the corresponding flow field in meandering rivers with weakly,
but arbitrarily varying spatial distributions of channel curvature and channel width.
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(Peru). Panel (a) shows a comparison between the planform observed in 2007 and that predicted starting from the
observed 1998 configuration using the statistically contrained model of Lopez Dubon and Lanzoni (2019). Panel (b)
shows a similar comparison where predictions have been obtained also without including the statistical constraint

on the temporal width evolution (modified from Lopez Dubon and Lanzoni, 2019).

Chute cutoffs are autogenic features observed in many meandering rivers (Figure 124). They
consist of relatively long flow diversions that occur when a meander loop is bypassed by a new
channel that cuts through the floodplain enclosed by the loop (Constantine et al., 2010). They
usually form in rivers with wide cross sections, large curvature bends, high discharges and high
overbank flow gradients (Howard and Knutson, 1984). Indeed, unlike neck cutoffs, chutes may
be incised only when the floodplain adjacent to the channel is inundated, thus requiring high
water levels and high rates of bed load transport. The chute incision and the consequent channel
shortening enhance the downstream sediment delivery, giving rise to sediment pulses that promote
the downstream formation of bars and an overall rearrangement of meandering bends adjacent
to that bypassed by the chute. The incision process may be very fast (Iwasaki et al., 2016) or
may last for a long period (Gay et al., 1998). The original meander loop may either be filled with
sediments or, less frequently, remain active together with the chute channel (Grenfell et al., 2012).

Even though a number of different processes concur to the formation of chute cutoffs, three main
mechanisms have been identified (Constantine et al., 2010). The first is related to the presence
of sequences of ridges and swales within the meander loop. The swales may act as preferential
paths for the flow and, consequently, they are subject to a gradual erosion due to the stronger
water surface gradient. Eventually, one of these paths becomes large enough to convey most of the
discharge, leading to the formation of a chute cutoff (Figure 125).

A second mechanism is related to the progressive incision of small embayments formed along
the channel banks by localized erosion events. These embayments can be found either upstream or
downstream of the meander loop that undergoes the chute cutoff (Figure 125). In the first case,
when the water inundates the floodplain, the embayment is subject to a progressive extension,
controlled by the inertia and the direction of the in-channel incoming flow. Conversely, in the
second case, the embayment undergoes a progressive elongation by headward incision, controlled
by surface gradient of the overbank flow and floodplain topography.

Chute extension by upstream incision can also form as a result of a natural obstruction of
the river (e.g. due to the encroachment of woody debris) that forces overbank flow. The stage
difference across the floodplain that forms upstream and downstream of this dam drives a flow
that returns into the channel and, hence, impinges on the riverbank. The bank can thus be carved,

197



Theoretical Morphodynamics: River Meandering

�

� �����

Figura 124. Examples of chute cutoffs in the Strickland River (Papua New Guinea) about 50 km north-east of the
confluence with the Fly River (aerial photo from Google Earth, 2017, lat. 7◦ 13’ 21” S; lon., 141◦ 46’ 02” E).

Figura 125. Possible mechanisms driving chute cutoff formation in meandering rivers. 1) Downstream elongation of
a chute, controlled by inertia and direction of the in-channel incoming flow; 2) headward incision; and 3) swale

enlargement aligned to main scroll bar direction (modified from Viero et al., 2018).

creating an embayment that propagates upstream by headcut incision until it forms a chute.
Figure 126 shows an example of chute cutoff likely produced by the downstream extension of a

small embayment. These data refer to two consecutive meandering bends of the Sacramento River
(California, USA) surveyed in 1976 (continuous lines) and 1981 (dashed lines). An embayment
(delimited by a magenta line) is present in the 1976 configuration downstream of the apex of
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Figura 126. (a) Water surface elevation and (b) depth-averaged flow velocity in a bend of the Sacramento River
(California, USA) near Bend Bridge gauge station, upstream of Red Bluff. The flow has been computed with the
help of a two-dimensional finite element model considering a total discharge of 3000 m3s−1. Continuous and dotted
lines denote the 1976 and 1981 river configurations, respectively. Red arrows denote the cross-section narrowing at
the apex of the first bend; the magenta lines locate the embayment likely originating the chute cutoff; the red star
in panel a) denotes the end cross-section of the chute that will be formed across the floodplain. Flow is top-down

(modified from Viero et al., 2018).

the first bend, at the outer bank. It was possibly originated by the presence of a more erodible
portion of soil associated with the presence of a palaeo-meander, and preluded to the formation
of the chute cutoff (dashed lines) characterizing the 1981 configuration. Numerical simulations,
carried out with the help of a finite element model solving the two-dimensional shallow water
equations, suggest that the narrowing of the main channel nearby the bend apex (red arrows)
tends to concentrate the water flux and to increase the in-channel velocity. As a consequence,
a high momentum current is directed against the outer bank and impinges on the embayment.
This favours a progressive erosion of the bank material and hence meander migration, as well
as the progressive downstream extension of a chute by the overbank flow (340 m3s−1). Note
that, in this example, the directions of the initial embayment and of the final chute tend to be
aligned with that of the in-channel flow at the bend apex. This behaviour is promoted by the
sharpness of the bend and the inertia of the incoming channelized flow, which is predominant with
respect to the effects exerted by the floodplain characteristics (topography, vegetation, etc.). The
palaeo-meander present in the floodplain, rather than driving the overbank flow, provides a more
erodible portion of soil close to the outer channel bank, where shear stresses concentrate. Also,
note that the cross-section enlargement caused by the embayment tends to reduce the flow velocity
at the centre of the main channel. This reduction enhances sediment deposition, favouring the
formation of a central-bar (Seminara, 2006) or a plug-bar (Eekhout and Hoitink, 2015) and, hence,
the discharge diversion through the forming chute.

A second type of chute cutoff is depicted in Figure 127, referring to a meander of the Cecina
River (Tuscany, Italy). In this case, the free-surface gradient, the topographic irregularities and
the sedimentological composition of the floodplain area within the meander loop play a major role
in triggering a chute cutoff. When a sufficiently large discharge is conveyed by the river (Figure
127b), the presence of poorly developed point bar deposits generates a gradient advantage and,
hence, a preferential flow path (dashed lines) promoting the chute cutoff incision.
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Figura 124. Examples of chute cutoffs in the Strickland River (Papua New Guinea) about 50 km north-east of the
confluence with the Fly River (aerial photo from Google Earth, 2017, lat. 7◦ 13’ 21” S; lon., 141◦ 46’ 02” E).

Figura 125. Possible mechanisms driving chute cutoff formation in meandering rivers. 1) Downstream elongation of
a chute, controlled by inertia and direction of the in-channel incoming flow; 2) headward incision; and 3) swale

enlargement aligned to main scroll bar direction (modified from Viero et al., 2018).

creating an embayment that propagates upstream by headcut incision until it forms a chute.
Figure 126 shows an example of chute cutoff likely produced by the downstream extension of a

small embayment. These data refer to two consecutive meandering bends of the Sacramento River
(California, USA) surveyed in 1976 (continuous lines) and 1981 (dashed lines). An embayment
(delimited by a magenta line) is present in the 1976 configuration downstream of the apex of
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Figura 126. (a) Water surface elevation and (b) depth-averaged flow velocity in a bend of the Sacramento River
(California, USA) near Bend Bridge gauge station, upstream of Red Bluff. The flow has been computed with the
help of a two-dimensional finite element model considering a total discharge of 3000 m3s−1. Continuous and dotted
lines denote the 1976 and 1981 river configurations, respectively. Red arrows denote the cross-section narrowing at
the apex of the first bend; the magenta lines locate the embayment likely originating the chute cutoff; the red star
in panel a) denotes the end cross-section of the chute that will be formed across the floodplain. Flow is top-down

(modified from Viero et al., 2018).

the first bend, at the outer bank. It was possibly originated by the presence of a more erodible
portion of soil associated with the presence of a palaeo-meander, and preluded to the formation
of the chute cutoff (dashed lines) characterizing the 1981 configuration. Numerical simulations,
carried out with the help of a finite element model solving the two-dimensional shallow water
equations, suggest that the narrowing of the main channel nearby the bend apex (red arrows)
tends to concentrate the water flux and to increase the in-channel velocity. As a consequence,
a high momentum current is directed against the outer bank and impinges on the embayment.
This favours a progressive erosion of the bank material and hence meander migration, as well
as the progressive downstream extension of a chute by the overbank flow (340 m3s−1). Note
that, in this example, the directions of the initial embayment and of the final chute tend to be
aligned with that of the in-channel flow at the bend apex. This behaviour is promoted by the
sharpness of the bend and the inertia of the incoming channelized flow, which is predominant with
respect to the effects exerted by the floodplain characteristics (topography, vegetation, etc.). The
palaeo-meander present in the floodplain, rather than driving the overbank flow, provides a more
erodible portion of soil close to the outer channel bank, where shear stresses concentrate. Also,
note that the cross-section enlargement caused by the embayment tends to reduce the flow velocity
at the centre of the main channel. This reduction enhances sediment deposition, favouring the
formation of a central-bar (Seminara, 2006) or a plug-bar (Eekhout and Hoitink, 2015) and, hence,
the discharge diversion through the forming chute.

A second type of chute cutoff is depicted in Figure 127, referring to a meander of the Cecina
River (Tuscany, Italy). In this case, the free-surface gradient, the topographic irregularities and
the sedimentological composition of the floodplain area within the meander loop play a major role
in triggering a chute cutoff. When a sufficiently large discharge is conveyed by the river (Figure
127b), the presence of poorly developed point bar deposits generates a gradient advantage and,
hence, a preferential flow path (dashed lines) promoting the chute cutoff incision.
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Figura 127. Spatial distribution of the depth-averaged flow velocity in a bend of the Cecina River (Tuscany, Italy).
The flow has been computed with the help of a two-dimensional finite element model for values of river discharge
equal to (a) 40 m3/s and (b) 200 m3/s. Dashed lines denote the location of the chute occurred between 2010 and
2013. Elevations of the nodes of the numerical grid were reconstructed from a LiDAR survey carried out in 2008 and
an aerial image (shaded in background) taken in 2010. Flow is from right to left (modified from Viero et al., 2018).
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6. Additional features of fluvial meandering

Two further important features of fluvial meandering, that we have ignored so far, deserve some
attention. The first concerns the nature of natural sediments, that are known to be heterogeneous,
so the issue arises of what sorting pattern develops on the sloping beds of meander bends; conversely,
one may reasonably wonder whether sorting has any appreciable effect on bed topography. A
second aspect regards the sediment supply: throughout all the previous chapters, we have invariably
tacitly assumed that enough sediment was supplied to the channel, such to meet the transport
capacity of the stream everywhere. This assumption is typically not satisfied in the upper portions
of the watershed, where mixed alluvial-bedrock channels are often encountered.

Below, we address both issues reviewing the yet limited available knowledge on these subjects.

6.1. Sorting effects on fluvial meanders

Field observations on river meanders suggest that the heterogeneous character of sediments
results in a fairly consistent sorting pattern: point bars on the inside of bends tend to be finer
than the pools at the outer bends. Moreover, the upper parts of point bars display a tendency
to be coarser upstream and finer downstream This is illustrated in Figure 128, reporting field
observations for a stream with a mixture of sand and gravel collected by Bridge and reproduced in
Parker and Andrews (1985).

Figura 128. Pattern of sediment sorting in a bend of the South Esk River. Flow is from left to right. Field
observations of Bridge as reproduced in Parker and Andrews (1985).

More recently, detailed observations of surface sorting were performed by Clayton (2010) in
various reaches of two gravel bed rivers, namely the Colorado River at Rocky Mountain National
Park (USA) and the Fall River (USA). The main result of this investigation was to show that
increasing channel curvature enhances the degree of sorting (Figure 129a). Moreover, the standard
deviation of surface grain sizes was found to decrease with distance downstream (Figure 129c), an
effect increasing slightly with channel curvature.
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Figura 127. Spatial distribution of the depth-averaged flow velocity in a bend of the Cecina River (Tuscany, Italy).
The flow has been computed with the help of a two-dimensional finite element model for values of river discharge
equal to (a) 40 m3/s and (b) 200 m3/s. Dashed lines denote the location of the chute occurred between 2010 and
2013. Elevations of the nodes of the numerical grid were reconstructed from a LiDAR survey carried out in 2008 and
an aerial image (shaded in background) taken in 2010. Flow is from right to left (modified from Viero et al., 2018).
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6. Additional features of fluvial meandering

Two further important features of fluvial meandering, that we have ignored so far, deserve some
attention. The first concerns the nature of natural sediments, that are known to be heterogeneous,
so the issue arises of what sorting pattern develops on the sloping beds of meander bends; conversely,
one may reasonably wonder whether sorting has any appreciable effect on bed topography. A
second aspect regards the sediment supply: throughout all the previous chapters, we have invariably
tacitly assumed that enough sediment was supplied to the channel, such to meet the transport
capacity of the stream everywhere. This assumption is typically not satisfied in the upper portions
of the watershed, where mixed alluvial-bedrock channels are often encountered.

Below, we address both issues reviewing the yet limited available knowledge on these subjects.

6.1. Sorting effects on fluvial meanders

Field observations on river meanders suggest that the heterogeneous character of sediments
results in a fairly consistent sorting pattern: point bars on the inside of bends tend to be finer
than the pools at the outer bends. Moreover, the upper parts of point bars display a tendency
to be coarser upstream and finer downstream This is illustrated in Figure 128, reporting field
observations for a stream with a mixture of sand and gravel collected by Bridge and reproduced in
Parker and Andrews (1985).

Figura 128. Pattern of sediment sorting in a bend of the South Esk River. Flow is from left to right. Field
observations of Bridge as reproduced in Parker and Andrews (1985).

More recently, detailed observations of surface sorting were performed by Clayton (2010) in
various reaches of two gravel bed rivers, namely the Colorado River at Rocky Mountain National
Park (USA) and the Fall River (USA). The main result of this investigation was to show that
increasing channel curvature enhances the degree of sorting (Figure 129a). Moreover, the standard
deviation of surface grain sizes was found to decrease with distance downstream (Figure 129c), an
effect increasing slightly with channel curvature.
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Figura 129. (a) Relationship between reach averaged standard deviation of the grain size distribution of surface
sediments and radius of curvature scaled by channel width for all Colorado River and Fall River sites analyzed by
Clayton (2010). The radius of curvature R0 of the bend was obtained approximating the channel centerline with a
fraction of a circle. Note that sorting is enhanced with increasing bend sharpness. The maps on the right show the

distribution of (b) the average grain size d50 and (c) the standard deviation σ of the grain size distribution,
measured at a number of locations in bend CR2. The size of symbols is proportional to the magnitude of the

corresponding quantity. Values for d50 ranged from 7.5 to 56.9 mm. Values for σ ranged from 0.42 to 1.14. Flow is
from right to left (modified from Clayton, 2010).

A number of early attempts to obtain a mechanistic interpretation of sediment sorting in
bends appeared in the ′70s. They are reviewed by Parker and Andrews (1985). The latter paper
can be considered the first modern contribution attempting at finding a mechanistic solution of
the bend sorting problem. Let us then outline the basic physics of the sorting process in the
bedload dominated case emerging from the latter work. Recall the expression (390b(I)) for the
lateral component of the dimensional bedload flux per unit width Qb

yd in cartesian coordinates. In
the (s, n) curvilinear coordinates employed in the previous Chapters and according to the linear
approximation appropriate to weakly sloping beds, Qb

nd reads:

Qb
nd = Qb

0d

[
sinχ− r

√
τ∗g

√
d

dg
H(d/dg)

∂η
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]
. (385)

The coefficient of the lateral slope in (385) is seen to be proportional to
[
(d/dg)H

]1/2 hence,
recalling (377(I)), it is a (weakly) increasing function of the ratio d/dg. It then follows that
coarser grains feel the down-slope pull of gravity more intensely than finer grains. In other words,
sorting is accomplished as coarser grains move preferentially toward the base of transverse slopes, a
mechanism which is supported by the observations that we have just outlined. As this mechanism
was pointed out in the 1980’s, it is somewhat surprising that the above ideas have not been fully
implemented in a sound model of sorting in meandering rivers yet. Indeed, to our knowledge,
the only fairly conclusive contribution available so far concerns the case of constant curvature
bends that was analyzed by Seminara et al. (1997) modifying a previous contribution of Ikeda
et al. (1987). The analysis considers a wide rectangular bend with constant width and constant
curvature issuing from a straight channel subject to a uniform flow carrying a constant discharge
of heterogeneous sediments with a given grain size distribution. The basic idea of the analysis
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of Seminara et al. (1997) is to assume complete sorting. This means that the differential lateral
mobility of grains of different sizes has led to a lateral redistribution of sediment sizes such that,
at each lateral coordinate, sediments are characterized by only one size in equilibrium with the
local lateral slope (Figure 130). This is obviously a simplifying assumption, but it is qualitatively
supported by the field observations quoted above (Figure 128).

Figura 130. Sketch illustrating the assumption of complete sorting adopted by Seminara et al. (1997) to investigate
the process of sorting in constant curvature bends.

The second ingredient needed by Seminara et al. (1997) was the availability of a morphodynamic
model for flow and bed topography in constant curvature channels. This goal was fulfilled using a
modified version of the nonlinear model of Seminara and Solari (1998) that we have extensively
discussed in Section 3.2.2. The only modification required concerns the implementation of the
constraint of vanishing lateral component of bedload transport, expressed through equation (385).
Here, the grain diameter d appearing in the definition of the Shields stress is now an unknown
function of the lateral coordinate n. Moreover, the hiding function in the complete sorting
assumption is equal to one (sediment is effectively uniform at each lateral coordinate). The
constraint to be satisfied in order to determine the function d(n) is sediment continuity. It requires
that the sediment supply associated with any given grain size (that is transported everywhere in
the straight reach) must be equal to the flux of sediments transported through the longitudinal
strip corresponding to the lateral coordinate where that grain size concentrates as a result of
sediment sorting. Mathematically this constraint reads:

2BQb
d ∆d = Qb

0

∣∣
τ∗d

∆n, (386)

where Qb
d ∆d is the flux per unit width transported by a sediment mixture as bed load in the size

range (d, d+∆d) (recall equation 381(I)).
Note that, in the limit of infinitesimal increments, (386) becomes an ordinary differential

equation that can be solved provided the lateral distribution of the Shields stress in the cross
section is known from the hydrodynamic model, for given distribution of grain size in the lateral
direction. The problem is then solved using a trial and error approach. One starts from an initial
tentative distribution of grain size (say uniform). This allows to determine the flow and bed
topography with the help of the model of Seminara and Solari (1998). One can then solve (386)
for the distribution d(n) imposing that the finest size is located at the inner bend (d|n=−1 = dmin).
Of course, the first trial will not allow one to satisfy the further condition (d|n=+1 = dmax) at the
outer bend. One then iterates on the parameter R (recall equation 209), which represents the
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the only fairly conclusive contribution available so far concerns the case of constant curvature
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of Seminara et al. (1997) is to assume complete sorting. This means that the differential lateral
mobility of grains of different sizes has led to a lateral redistribution of sediment sizes such that,
at each lateral coordinate, sediments are characterized by only one size in equilibrium with the
local lateral slope (Figure 130). This is obviously a simplifying assumption, but it is qualitatively
supported by the field observations quoted above (Figure 128).

Figura 130. Sketch illustrating the assumption of complete sorting adopted by Seminara et al. (1997) to investigate
the process of sorting in constant curvature bends.

The second ingredient needed by Seminara et al. (1997) was the availability of a morphodynamic
model for flow and bed topography in constant curvature channels. This goal was fulfilled using a
modified version of the nonlinear model of Seminara and Solari (1998) that we have extensively
discussed in Section 3.2.2. The only modification required concerns the implementation of the
constraint of vanishing lateral component of bedload transport, expressed through equation (385).
Here, the grain diameter d appearing in the definition of the Shields stress is now an unknown
function of the lateral coordinate n. Moreover, the hiding function in the complete sorting
assumption is equal to one (sediment is effectively uniform at each lateral coordinate). The
constraint to be satisfied in order to determine the function d(n) is sediment continuity. It requires
that the sediment supply associated with any given grain size (that is transported everywhere in
the straight reach) must be equal to the flux of sediments transported through the longitudinal
strip corresponding to the lateral coordinate where that grain size concentrates as a result of
sediment sorting. Mathematically this constraint reads:
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Note that, in the limit of infinitesimal increments, (386) becomes an ordinary differential

equation that can be solved provided the lateral distribution of the Shields stress in the cross
section is known from the hydrodynamic model, for given distribution of grain size in the lateral
direction. The problem is then solved using a trial and error approach. One starts from an initial
tentative distribution of grain size (say uniform). This allows to determine the flow and bed
topography with the help of the model of Seminara and Solari (1998). One can then solve (386)
for the distribution d(n) imposing that the finest size is located at the inner bend (d|n=−1 = dmin).
Of course, the first trial will not allow one to satisfy the further condition (d|n=+1 = dmax) at the
outer bend. One then iterates on the parameter R (recall equation 209), which represents the
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ratio between the free surface slope in the curved bend and its unperturbed value in the straight
reach. Iterations then proceed until the boundary condition on the grain size at the outer bend is
also satisfied.

Figura 131. Grain size distribution (a) and bed topography (b) in a constant curvature wide rectangular bend
issuing from a straight channel subject to a uniform flow carrying a constant discharge of heterogeneous sediments
according to results of Seminara and Solari (1998). The size distribution is log-normal with diameters in the range
(0.1− 6) dgu, with dgu geometric average size and σs geometric standard deviation of the surface layer. Du denotes

the average flow depth in the upstream straight channel. Values of parameters are: dgu = 16 mm; free surface
slope of the fully developed stream in the curved reach = 5 10−4; parameter controlling the amplitude of bed

perturbations ν0 (
√
τ∗g/r)Cf = 10; average friction coefficient in the bend Cf = 0.0004.

Figure 131 shows results obtained by Seminara et al. (1997). Not surprisingly, it turns out that
sorting becomes more pronounced as the standard deviation of the sediment mixture increases.
Moreover, the geometric average grain size is found to be located close to the channel centerline.
The effect of sorting on bed topography appears to be quite weak. It remains to be ascertained
how promptly sorting at the entrance of the bend develops into its fully developed (complete)
state. To our knowledge, this problem has not been tackled yet.

The above model takes advantage of the fact that, under ideal fully developed conditions in
constant curvature channels, no lateral bedload transport occurs. This is not the case in meandering
channels where sediment continuity requires that longitudinal variations of the longitudinal
component of bedload (driven by longitudinal variations of channel curvature) must be balanced by
lateral variations of the lateral component of bedload. The only theoretical attempt known to us
to tackle the meandering case is the early attempt of Parker and Andrews (1985). Although that
work bears a major historical importance as it was the first to clarify the physics of the sorting
process, however the way those ideas were implemented (assumption of weak sorting and lowest
order treatment of the hydrodynamics) severely limits the significance of the actual results. In
particular, the Authors were forced to include in their model some effect of the side wall boundary
layers, the only regions where the longitudinal flow at lowest order exhibits lateral variations. If
the Authors had restricted their attention to the central region, their theory would have predicted
the absence of sorting.

A similar approach was later employed by Sun et al. (2001a,b), who developed a computer
model based on the hydrodynamic approach of Johannesson and Parker (1989) and the sorting
model of Parker and Andrews (1985). Sorting results again from the artificial inclusion of side
wall effects. Also, the model adopts the assumption of small amplitude of the perturbations of the
grain size distribution, which is again hardly justified.

In conclusion, mathematical modeling of sorting in meandering rivers is a still open issue even
if one restricts oneself to the case of dominant bedload. The role of suspension further complicates
the problem and is left as one of the future challenges for research.
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6.2. Meanders in mixed bedrock-alluvial channels

Let us finally investigate how the available knowledge on alluvial meandering can be extended to
the mixed bedrock-alluvial case. The very existence of meandering rivers in bedrock environments
poses a number of questions, most notably the problem of how they originated. We outline the
available knowledge on this problem in Section 6.2.2. However, preliminarily, it is appropriate to
analyze how the morphodynamics of meandering alluvial channels is modified when the sediment
supply rate is lower than the transport capacity and the thickness of the alluvial cover is finite.
We provide an overview of the latter issue in the next section.

6.2.1 Morphodynamics of mixed bedrock-alluvial meandering channels

Some progress on this subject has been made with the help of laboratory observations, as well
as theoretical modeling.

Laboratory observations

The development of point bars on the inside of bends whose outside is bare rock was reproduced in
various laboratory experiments. Some of them (Shepherd and Schumm, 1974; Mishra et al., 2018;
Fernàndez et al., 2019) were ultimately interested in understanding the mechanics of vertical and
lateral incision in bedrock-alluvial meanders, hence they will be discussed in the next subsection.

Experiments in a laboratory meandering flume aimed at addressing the development of
morphology in mixed bedrock-alluvial meanders were performed by Papangelakis et al. (2020).
These Authors analyzed the effects of sediment supply and channel curvature on the spatial
distribution and extent of the alluvial cover in a fixed-bed sinuous channel under conditions of
insufficient sediment supply (ranging between 0.3 and 1.2 times the estimated channel capacity
under constant discharge). A poorly sorted sand mixture (d10 = 0.39 mm, d50 = 1.2 mm, d90 = 3.5
mm) was employed to construct the fixed bed and feed the channel.

Experiments started from a condition of bare bed. Feeding sediments at a constant rate, the
cover fraction increased from zero to an equilibrium value, invariably lower than one, that was
found to increase with the sediment supply rate. Similar trend was displayed by the volume of the
alluvial cover stored in the channel. The Authors state explicitly that “even as the cover fraction
reached a limit with increasing sediment supply, additional increases in supply continued to be
stored as increasing cover thickness but not areal extent”. To what extent the latter statement can
be extended to higher sediment supplies is a yet unanswered question.

The development of alluvial cover led to the formation of a periodic sequence of steady forced bars
located at channel bends. The outside of bends between apexes remained bare in all experiments.
More precisely, 20% of the bed area remained bare even in the run characterized by supply rate
slightly larger than the estimated channel capacity (Figure 132). Bars developed simultaneously
in all channel bends but at different rates, the upstream bends responding faster than downstream
ones.

The heterogeneous character of the sediment led to the development of sorting patterns
associated with the morphologic features of the alluvial cover. The sorting pattern changed
depending on the feed rate. Essentially, bar deposits were fine at the top of the bars, whilst coarse
sediment deposited along the outlines of the bars and the crossover features were coarser than the
bars.

Modeling

While considerable progress has been made in understanding flow and bed topography in cur-
ved alluvial channels (see Chapters 2 and 4, the analogous problem for mixed bedrock-alluvial
meandering channels is still largely unexplored.

Some preliminary insight was gained in the recent contribution of Nelson et al. (2014) who
investigated how channel curvature affects sediment deposition and bedrock exposure in mixed
bedrock-alluvial rivers. To achieve this goal Nelson et al. (2014) extended the analytical approach
of Seminara and Solari (1998) and Bolla et al. (2009) such to account for three novel features:
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ratio between the free surface slope in the curved bend and its unperturbed value in the straight
reach. Iterations then proceed until the boundary condition on the grain size at the outer bend is
also satisfied.

Figura 131. Grain size distribution (a) and bed topography (b) in a constant curvature wide rectangular bend
issuing from a straight channel subject to a uniform flow carrying a constant discharge of heterogeneous sediments
according to results of Seminara and Solari (1998). The size distribution is log-normal with diameters in the range
(0.1− 6) dgu, with dgu geometric average size and σs geometric standard deviation of the surface layer. Du denotes

the average flow depth in the upstream straight channel. Values of parameters are: dgu = 16 mm; free surface
slope of the fully developed stream in the curved reach = 5 10−4; parameter controlling the amplitude of bed

perturbations ν0 (
√
τ∗g/r)Cf = 10; average friction coefficient in the bend Cf = 0.0004.

Figure 131 shows results obtained by Seminara et al. (1997). Not surprisingly, it turns out that
sorting becomes more pronounced as the standard deviation of the sediment mixture increases.
Moreover, the geometric average grain size is found to be located close to the channel centerline.
The effect of sorting on bed topography appears to be quite weak. It remains to be ascertained
how promptly sorting at the entrance of the bend develops into its fully developed (complete)
state. To our knowledge, this problem has not been tackled yet.

The above model takes advantage of the fact that, under ideal fully developed conditions in
constant curvature channels, no lateral bedload transport occurs. This is not the case in meandering
channels where sediment continuity requires that longitudinal variations of the longitudinal
component of bedload (driven by longitudinal variations of channel curvature) must be balanced by
lateral variations of the lateral component of bedload. The only theoretical attempt known to us
to tackle the meandering case is the early attempt of Parker and Andrews (1985). Although that
work bears a major historical importance as it was the first to clarify the physics of the sorting
process, however the way those ideas were implemented (assumption of weak sorting and lowest
order treatment of the hydrodynamics) severely limits the significance of the actual results. In
particular, the Authors were forced to include in their model some effect of the side wall boundary
layers, the only regions where the longitudinal flow at lowest order exhibits lateral variations. If
the Authors had restricted their attention to the central region, their theory would have predicted
the absence of sorting.

A similar approach was later employed by Sun et al. (2001a,b), who developed a computer
model based on the hydrodynamic approach of Johannesson and Parker (1989) and the sorting
model of Parker and Andrews (1985). Sorting results again from the artificial inclusion of side
wall effects. Also, the model adopts the assumption of small amplitude of the perturbations of the
grain size distribution, which is again hardly justified.

In conclusion, mathematical modeling of sorting in meandering rivers is a still open issue even
if one restricts oneself to the case of dominant bedload. The role of suspension further complicates
the problem and is left as one of the future challenges for research.
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poses a number of questions, most notably the problem of how they originated. We outline the
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analyze how the morphodynamics of meandering alluvial channels is modified when the sediment
supply rate is lower than the transport capacity and the thickness of the alluvial cover is finite.
We provide an overview of the latter issue in the next section.
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The development of point bars on the inside of bends whose outside is bare rock was reproduced in
various laboratory experiments. Some of them (Shepherd and Schumm, 1974; Mishra et al., 2018;
Fernàndez et al., 2019) were ultimately interested in understanding the mechanics of vertical and
lateral incision in bedrock-alluvial meanders, hence they will be discussed in the next subsection.

Experiments in a laboratory meandering flume aimed at addressing the development of
morphology in mixed bedrock-alluvial meanders were performed by Papangelakis et al. (2020).
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insufficient sediment supply (ranging between 0.3 and 1.2 times the estimated channel capacity
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mm) was employed to construct the fixed bed and feed the channel.

Experiments started from a condition of bare bed. Feeding sediments at a constant rate, the
cover fraction increased from zero to an equilibrium value, invariably lower than one, that was
found to increase with the sediment supply rate. Similar trend was displayed by the volume of the
alluvial cover stored in the channel. The Authors state explicitly that “even as the cover fraction
reached a limit with increasing sediment supply, additional increases in supply continued to be
stored as increasing cover thickness but not areal extent”. To what extent the latter statement can
be extended to higher sediment supplies is a yet unanswered question.

The development of alluvial cover led to the formation of a periodic sequence of steady forced bars
located at channel bends. The outside of bends between apexes remained bare in all experiments.
More precisely, 20% of the bed area remained bare even in the run characterized by supply rate
slightly larger than the estimated channel capacity (Figure 132). Bars developed simultaneously
in all channel bends but at different rates, the upstream bends responding faster than downstream
ones.

The heterogeneous character of the sediment led to the development of sorting patterns
associated with the morphologic features of the alluvial cover. The sorting pattern changed
depending on the feed rate. Essentially, bar deposits were fine at the top of the bars, whilst coarse
sediment deposited along the outlines of the bars and the crossover features were coarser than the
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While considerable progress has been made in understanding flow and bed topography in cur-
ved alluvial channels (see Chapters 2 and 4, the analogous problem for mixed bedrock-alluvial
meandering channels is still largely unexplored.
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of Seminara and Solari (1998) and Bolla et al. (2009) such to account for three novel features:

205



Theoretical Morphodynamics: River Meandering

Figura 132. Spatial distribution of the elevation (z) of the alluvial cover above the channel bed surveyed at the end
of the experiment of Papangelakis et al. (2020) characterized by the highest supply rate. The latter was slightly

larger than the estimated channel capacity. Inset shows details for one meander wavelength (courtesy of Elli
Papangelakis).

the alluvial layer has finite thickness, bedrock and alluvial portions of the bed have different
roughnesses, and the sediment supply is less than the local sediment transport capacity. This new
model allowed for the investigation of the mechanisms that control the bed topography as well as
the distribution of sediment and bedrock cover through the cross section.

Following Seminara and Solari (1998), Nelson et al. (2014) consider a wide channel bend with
channel centerline consisting of a circular helix with constant radius of curvature r0 large relative
to the constant channel width 2B (Figure 133). The curvature driven secondary flow generates
perturbations of the sediment transport field which ultimately lead to the development of a point
bar at the inner bank. However, in the mixed alluvial-bedrock case, the bar forms at the top of
a bedrock layer (the flat interface in Figure 133). It is thus the goal of the model to determine
whether and how much of the bedrock is exposed, as well as the shape of the bar.

We adopt the notations of Figure 133 and consider the steady flow of a constant fluid discharge
Q under fully developed conditions, i.e. such that the properties of the flow field, sediment transport
field, and bed topography do not vary in the downstream direction (∂/∂s = 0). Let us denote by
Uu, Du and Cfu the average speed, flow depth, and friction coefficient of the uniform flow field
in the upstream straight reach with constant slope Su. Let Sb denote the constant slope of the
bottom centerline in the fully developed portion of the bend. It is then convenient to model the
flow field in the bend as a perturbation of a uniform flow with average speed, flow depth, and
friction coefficient Ub, Db and Cfb, modified from the straight values by the effects of curvature,
bed topography, and roughness. We recall that from the appropriate scaling of the governing
equations for flow and bed topography, the following dimensionless parameters emerge:
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The assumptions of wide and weakly curved channel, with typical values of the friction coefficient,
imply that

ν ≪ 1, βb ≫ 1, δ ≪ 1 (388)

Following Seminara and Solari (1998), Nelson et al. (2014) set up a perturbation expansion of
the solution for flow and bed topography in powers of the small parameter δ, i.e. in a neighborhood
of the straight solution, assuming that the cross-sectional shape of the bend is described by
some unknown function D(n) to be determined. The analysis follows the lines of Seminara and
Solari (1998) with some modifications. Essentially, one derives a nonlinear ordinary differential
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Figura 133. Sketch and notations for a mixed alluvial-bedrock channel bend. (a) Fully alluvial case: the maximum
bedrock elevation is lower than the deepest point of scour. (b) Mixed bedrock-alluvial case: part of the bed surface

is exposed bedrock. The channel is wide, the curvature parameter ν being approximately 0.05. The analysis is
restricted to the central flow region spanning 2B and ignores the boundary layers at the side walls (modified from

Nelson et al., 2014).

equation for the local flow depth D as a function of the lateral coordinate at the various order of
approximations. This is solved by a trial and error procedure starting from some initial guess for
the value of D at the inner bank and iterating until the flow discharge in the whole cross section
meets the assigned value. At some stage, the computed bed elevation may locally reach values
lower than the local bedrock elevation ηbr, indicating a transition from alluvial bed conditions
to exposed bedrock. The computational approach must then recognize that the bed elevation
in the exposed bedrock region is no longer unknown. At each iteration, the bed slope in the
bend necessary to satisfy the sediment integral constraint must also be evaluated at each order of
approximation, assuming that no sediment flux occurs in the exposed area. The updated value of
the bed slope is then used to update the solution for D(n) and the procedure iterates until the
changes from one iteration to the next become negligible.

Results of Nelson et al. (2014) show that, in mixed bedrock-alluvial bends, there is a characte-
ristic relationship between the various parameters controlling the bend morphology: dimensionless
curvature, rate of sediment supply, morphology of the point bar, and amount of bedrock exposure.
The points in Figure 134a show the predicted fraction of bedrock exposed in the bend as a
function of the ratio Qsup/Qb of the rate of sediment supply to the total sediment transport
capacity in the bend, for values of dimensionless curvature in the range 0.02− 0.08. A clear, nearly
linear relationship between Qsup/Qb and the fraction of bedrock exposed emerges (point cloud as
compared to the dashed line in Figure 134a), a finding in close agreement with the exposure term
proposed by Sklar and Dietrich (2004).

In Figure 134b the dimensionless bar height (difference in elevation between the bar top and
the pool or bedrock surface, scaled by Db) is plotted as a function of the ratio Qsup/Qb and for
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Figura 132. Spatial distribution of the elevation (z) of the alluvial cover above the channel bed surveyed at the end
of the experiment of Papangelakis et al. (2020) characterized by the highest supply rate. The latter was slightly

larger than the estimated channel capacity. Inset shows details for one meander wavelength (courtesy of Elli
Papangelakis).
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approximations. This is solved by a trial and error procedure starting from some initial guess for
the value of D at the inner bank and iterating until the flow discharge in the whole cross section
meets the assigned value. At some stage, the computed bed elevation may locally reach values
lower than the local bedrock elevation ηbr, indicating a transition from alluvial bed conditions
to exposed bedrock. The computational approach must then recognize that the bed elevation
in the exposed bedrock region is no longer unknown. At each iteration, the bed slope in the
bend necessary to satisfy the sediment integral constraint must also be evaluated at each order of
approximation, assuming that no sediment flux occurs in the exposed area. The updated value of
the bed slope is then used to update the solution for D(n) and the procedure iterates until the
changes from one iteration to the next become negligible.

Results of Nelson et al. (2014) show that, in mixed bedrock-alluvial bends, there is a characte-
ristic relationship between the various parameters controlling the bend morphology: dimensionless
curvature, rate of sediment supply, morphology of the point bar, and amount of bedrock exposure.
The points in Figure 134a show the predicted fraction of bedrock exposed in the bend as a
function of the ratio Qsup/Qb of the rate of sediment supply to the total sediment transport
capacity in the bend, for values of dimensionless curvature in the range 0.02− 0.08. A clear, nearly
linear relationship between Qsup/Qb and the fraction of bedrock exposed emerges (point cloud as
compared to the dashed line in Figure 134a), a finding in close agreement with the exposure term
proposed by Sklar and Dietrich (2004).

In Figure 134b the dimensionless bar height (difference in elevation between the bar top and
the pool or bedrock surface, scaled by Db) is plotted as a function of the ratio Qsup/Qb and for
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different values of the curvature ratio. Note that, increasing either the bend curvature or the rate
of sediment supply, the point bar height increases.

Figura 134. (a) Fraction of bedrock exposed as a function of the ratio Qsup/Qb of upstream rate of sediment
supply to total sediment transport capacity in the bend. The points correspond to the results of Nelson et al.

(2014) while the dashed line shows the linear cover relationship of Sklar and Dietrich (2004). (b) Dimensionless bar
height (scaled by Db) as a function of the ratio Qsup/Qb, for different values of the dimensionless channel

curvature ν. In the computations, the bedrock elevation was assigned and the areal concentration of bed sediment
in the straight upstream channel was set equal to one (fully alluviated). Moreover, the bedrock roughness was

assumed to be equal to the roughness of the alluvial bed (modified from Nelson et al., 2014).

Nelson et al. (2014) have tested the model using data provided by Nittrouer et al. (2011) for
the lower Mississippi River, which has characteristics of a mixed bedrock-alluvial river as sand is
transported over a consolidated bedrock-like substratum, which becomes exposed at some locations
along the river (recall Figure 143(I)). Using those data, Nelson et al. (2014) varied the curvature
parameter ν from 0 to 0.08. In Figure 135 the fraction of the bedrock exposed is plotted as a
function of dimensionless curvature. The model predicts a threshold value of ν equal to 0.029
below which the bed is fully alluviated (i.e. no bedrock is exposed). This threshold nicely agrees
with the observations of Nittrouer et al. (2011). Furthermore, adopting parameters characteristic
of bends in the lower Mississippi, the model predicts the formation of point bars with a finite
amplitude height of about 25 m and sediment coverage spanning about 60% of the channel, values
falling within the range of observations reported by Nittrouer et al. (2011).

Various developments of the above model await to be pursued. In particular, its extension to
the case of arbitrary curvature is the next obvious step (see, the slowly varying model of Bolla et
al. (2009) for the alluvial case). The assumption of uniform sediment also needs to be relaxed in
order to explore the effects of sorting on finite amplitude morphology.

6.2.2 How do meanders incise bedrock?

An ambitious goal of investigations concerning incised meandering rivers is settling a long-
standing issue (Leopold et al., 1964, p. 313), namely that of ascertaining which fundamental
mechanism underlies their formation.

Entrenched vs incised meanders

Due to its complexity, the state of the art on this problem does not seem to have progressed much
from the picture outlined in Shepherd and Schumm (1974). The ongoing debate at that time,
based on early contributions by Davis (1893a,b) and Winslow (1893), identified two distinct types
of bedrock meanders, sometimes referred to as entrenched and incised, respectively.
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Figura 135. Fraction of bedrock exposed in a constant curvature bend of a mixed bedrock-alluvial channel as a
function of dimensionless curvature for values of the dimensionless parameters characteristic of the lower Mississippi
River (Nittrouer et al., 2011): Su = 10−5, d = 1 mm, B = 430 m, and Du = 35 m. The value ν = 0.029 turns out
to be the threshold between full alluvial coverage and partial bedrock exposure (reproduced from Nelson et al.,

2014).

Winslow (1893) suggested that incised meanders originate from streams with minor sinuosities
which would then increase through a combined process of both downward and lateral cutting,
possibly favored by the essentially horizontal character of the rock formations, as in the Ozark
plateau cut by the Osage River. A major expression of this process would be the existence of
slip-off slopes at the convex banks of meander spurs and undercutting at the concave banks of the
same meanders (Figure 136).

Figura 136. Sketch of the mechanism of meander incision suggested by Winslow (1893) (modified from Tarr, 1924).

Davis (1893a) proposed a different mechanism for the origin of the so called entrenched
meanders: they would originate from an initial pattern formed when the river flowed through a
low-gradient alluvial plain. Later, uplifting of the alluvial plain would lead to entrenching of the
meandering stream through a process of vertical cutting into the rising rock mass.

Tarr (1924) and Moore (1926a,b) argued that both types of meandering are present in nature.
In particular, Moore (1926a), analyzing the San Juan River and other incised rivers in the Colorado
Plateau, suggested that it is the effective resistance of the various strata through which the stream
incises that controls the relative amount of vertical versus lateral incision. In resistant rocks, the
erosive load is low and the stream becomes under-loaded, which favors vertical cutting. This is
the case of the San Juan River in southeast Utah, which incised straight down for several hundred
meters in bedrock while maintaining a highly sinuous and regular pattern (Figure 12). On the
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different values of the curvature ratio. Note that, increasing either the bend curvature or the rate
of sediment supply, the point bar height increases.
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in the straight upstream channel was set equal to one (fully alluviated). Moreover, the bedrock roughness was

assumed to be equal to the roughness of the alluvial bed (modified from Nelson et al., 2014).
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the lower Mississippi River, which has characteristics of a mixed bedrock-alluvial river as sand is
transported over a consolidated bedrock-like substratum, which becomes exposed at some locations
along the river (recall Figure 143(I)). Using those data, Nelson et al. (2014) varied the curvature
parameter ν from 0 to 0.08. In Figure 135 the fraction of the bedrock exposed is plotted as a
function of dimensionless curvature. The model predicts a threshold value of ν equal to 0.029
below which the bed is fully alluviated (i.e. no bedrock is exposed). This threshold nicely agrees
with the observations of Nittrouer et al. (2011). Furthermore, adopting parameters characteristic
of bends in the lower Mississippi, the model predicts the formation of point bars with a finite
amplitude height of about 25 m and sediment coverage spanning about 60% of the channel, values
falling within the range of observations reported by Nittrouer et al. (2011).

Various developments of the above model await to be pursued. In particular, its extension to
the case of arbitrary curvature is the next obvious step (see, the slowly varying model of Bolla et
al. (2009) for the alluvial case). The assumption of uniform sediment also needs to be relaxed in
order to explore the effects of sorting on finite amplitude morphology.

6.2.2 How do meanders incise bedrock?

An ambitious goal of investigations concerning incised meandering rivers is settling a long-
standing issue (Leopold et al., 1964, p. 313), namely that of ascertaining which fundamental
mechanism underlies their formation.

Entrenched vs incised meanders

Due to its complexity, the state of the art on this problem does not seem to have progressed much
from the picture outlined in Shepherd and Schumm (1974). The ongoing debate at that time,
based on early contributions by Davis (1893a,b) and Winslow (1893), identified two distinct types
of bedrock meanders, sometimes referred to as entrenched and incised, respectively.
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Winslow (1893) suggested that incised meanders originate from streams with minor sinuosities
which would then increase through a combined process of both downward and lateral cutting,
possibly favored by the essentially horizontal character of the rock formations, as in the Ozark
plateau cut by the Osage River. A major expression of this process would be the existence of
slip-off slopes at the convex banks of meander spurs and undercutting at the concave banks of the
same meanders (Figure 136).

Figura 136. Sketch of the mechanism of meander incision suggested by Winslow (1893) (modified from Tarr, 1924).

Davis (1893a) proposed a different mechanism for the origin of the so called entrenched
meanders: they would originate from an initial pattern formed when the river flowed through a
low-gradient alluvial plain. Later, uplifting of the alluvial plain would lead to entrenching of the
meandering stream through a process of vertical cutting into the rising rock mass.

Tarr (1924) and Moore (1926a,b) argued that both types of meandering are present in nature.
In particular, Moore (1926a), analyzing the San Juan River and other incised rivers in the Colorado
Plateau, suggested that it is the effective resistance of the various strata through which the stream
incises that controls the relative amount of vertical versus lateral incision. In resistant rocks, the
erosive load is low and the stream becomes under-loaded, which favors vertical cutting. This is
the case of the San Juan River in southeast Utah, which incised straight down for several hundred
meters in bedrock while maintaining a highly sinuous and regular pattern (Figure 12). On the
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contrary, in less resistant rocks, streams are overloaded, which would cause lateral cutting as
illustrated in Figure 136.

In order to make any progress with the latter interpretations, one should investigate how
the morphodynamics of mixed bedrock-alluvial meandering channels determines their vertical
and lateral incisions. Some progress in this direction has been made with the help of laboratory
investigations as well as theoretical contributions.

Insight from laboratory observations

A pioneering laboratory investigation was performed by Shepherd and Schumm (1974) in a
laboratory channel realized using a mixture of water and well-mixed fine sand with 19% silt-clay
and kaolinite, added to provide additional cohesion. After drying, this procedure provided a
uniform, cohesive and isotropic material that had the desired characteristics, allowing to simulate
bedrock, including its erosive response to hydraulic stresses and sediment transport, within an
experimentally feasible time period. In one of the four experiments performed in this work, a
channel was excavated in the simulated bedrock with a curved cross-sectional shape and a sinuous
pattern (Figure 137a).

Figura 137. (a) Initial channel precut with a sinuous course in the fourth experiment of Shepherd and Schumm
(1974). Note that gravel was used to prevent overflow at initial bankfull stage. Initial sinuosity was 1.05. (b-d)

Lateral profiles of cross sections monitored at two bends (b,d) and at the crossing inbetween (c). Arrows point to
concave banks. Stippled areas represent sand deposition; elapsed time is shown for each profile (modified from

Shepherd and Schumm, 1974).

Fine sand was then fed upstream and various hydraulic and morphological properties (tran-
sverse and longitudinal water-surface profiles, channel cross sectional profile) were monitored at
given time intervals. Figure 137b,c,d shows the lateral profiles of the experimental channel at two
successive bends and at a crossing, representative of the trend observed at all bends and crossings.
At each bend, erosion initially occurred at the inside bank. This is not surprising recalling that,
at the entrance of bends with fixed bottoms, the longitudinal velocity (and the bottom stress)
is known to peak at the inner bank. After 73 h, as gradient had decreased leading to sediment
deposition, the maximum erosion had moved to the outer bank which was undercut. After 107 h,
erosion had exposed the flume wall at the 17.5 ft bend. At the crossing between the two bends the
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channel incised almost vertically into the bedrock (Figure 137c). Shepherd and Schumm (1974)
also note that the relative intensity of lateral versus vertical incision was controlled by the amount
of load entrained by the flow.

More recently, Fuller (2014) (but see also Fuller et al., 2016) performed systematic laboratory
experiments to investigate how bedload particle impacts may provide an efficient mechanism of
lateral bedrock erosion and how the latter mechanism may be influenced by changes in channel
bed roughness and bedload supply rate.

Figura 138. Profiles of the undercut portion of the channel wall in cross sections characterized by different
roughnesses, observed in the flume experiment of Fuller (2014) at the end of the following periods: clear-water flow
(Time 1, green dot); initial bed load supply (Time 2, red circle); and second bed load supply (Time 3, blue triangle).
Legend time refers to the total time (in hours and minutes) elapsed since beginning of experiment (reproduced from

Figure 2.9 of Fuller, 2014).

Using different amounts of sand and cement, the experimental channel was constructed such
that the bed was non-erodible whilst channel walls were erodible. The bottom roughness was
determined by the size of larger particles embedded in the sand-cement mixture. Results of the
experiments can be summarized as follows:

- clear water did not produce significant lateral erosion (green lines in Figure 138);

- bank undercut was driven by bedload, which eroded preferentially the base of the channel
walls, leading to the removal of up to 3% of the initial wetted cross-sectional area;

- adding bottom roughness of size exceeding a threshold (roughly equal to half the median
bedload particle diameter) led to a large increase of lateral erosion, up to a factor of 7 (compare
Figure 138d with Figure 138c);
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channel incised almost vertically into the bedrock (Figure 137c). Shepherd and Schumm (1974)
also note that the relative intensity of lateral versus vertical incision was controlled by the amount
of load entrained by the flow.

More recently, Fuller (2014) (but see also Fuller et al., 2016) performed systematic laboratory
experiments to investigate how bedload particle impacts may provide an efficient mechanism of
lateral bedrock erosion and how the latter mechanism may be influenced by changes in channel
bed roughness and bedload supply rate.

Figura 138. Profiles of the undercut portion of the channel wall in cross sections characterized by different
roughnesses, observed in the flume experiment of Fuller (2014) at the end of the following periods: clear-water flow
(Time 1, green dot); initial bed load supply (Time 2, red circle); and second bed load supply (Time 3, blue triangle).
Legend time refers to the total time (in hours and minutes) elapsed since beginning of experiment (reproduced from

Figure 2.9 of Fuller, 2014).

Using different amounts of sand and cement, the experimental channel was constructed such
that the bed was non-erodible whilst channel walls were erodible. The bottom roughness was
determined by the size of larger particles embedded in the sand-cement mixture. Results of the
experiments can be summarized as follows:

- clear water did not produce significant lateral erosion (green lines in Figure 138);

- bank undercut was driven by bedload, which eroded preferentially the base of the channel
walls, leading to the removal of up to 3% of the initial wetted cross-sectional area;

- adding bottom roughness of size exceeding a threshold (roughly equal to half the median
bedload particle diameter) led to a large increase of lateral erosion, up to a factor of 7 (compare
Figure 138d with Figure 138c);
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- further increase of bottom roughness did not lead to significant variation of lateral erosion
(compare Figure 138c with Figure 138a).

Fuller (2014) interpreted the above findings suggesting that saltating bed load particles were
deflected into the channel wall by the fixed roughness elements and this mechanism drove the
observed increase in lateral erosion rates.This interpretation was supported by the following
arguments. Firstly, the rates of lateral erosion in the smooth channel sections did not increase
significantly over clear flow values, suggesting that the downstream transport of saltating bed
load particles cannot be major drivers of lateral erosion. Secondly, maximum erosion heights were
found to be 3 times larger than the hop height predicted using a saltation model, suggesting that
bed load particles are deflected by the tops of the protruding roughness elements, and thus reach
higher elevations. Thirdly, a distinct correlation was observed between the degree of longitudinal
variability in lateral erosion rates and the size of roughness elements. The lateral erosion rate was
quasi-continuous when the size of roughness elements was comparable with the size of bedload
particles and became increasingly discontinuous as the roughness size increased.

Fuller (2014) concludes that “Given the ability of most bedrock rivers to transport sediment
and the relatively wide distribution of grain sizes present in bedrock channels, lateral erosion by
deflected particle impact is likely an active mechanism in most bedrock channels”. They also note
that particle deflection may also be driven by strong secondary flows like those observed at the
entrance of canyons (Venditti et al., 2014) or those driven by bar development, which could increase
lateral fluid accelerations and enhance the lateral momentum of saltating bed load particles.

Most effective source of secondary flows, as we know, is channel curvature. The distinct features
of lateral erosion in curved meandering channels have thus attracted the attention of Mishra (2017),
but see also Mishra et al. (2018). The starting point of this work was the recognition that three
distinct patterns are typically observed in bedrock meandering rivers: bedrock benches (namely
exposed strips of bedrock with little sediment cover) at the outer banks, alluvial point bars and
strath terraces at the inner banks (Figure 139). The Authors tried to interpret these observations
performing experiments on a U-shaped channel with soft mortar bed and banks. Results displayed
some interesting features. The thickness of the sediment layer as well as the sediment supply rates
adopted in the experiments ensured that the bed in the straight, upstream and downstream, parts
of the channel was fully covered. In the curved part, both regions of exposed bedrock and point bar
developed, moreover vertical and lateral erosions were observed. These features are summarized in
Figure 140, where red and green represent exposed bedrock and sediment covering, respectively.

As the sediment supply rate was increased, the height or width of the point bar increased
and the exposed area decreased. Note that a part of the bed area in the bend was exposed even
when the sediment supply rate was twice the initial transport capacity, although it is reasonable
to predict that for sufficiently high values of the sediment supply rate or of the initial alluvial
thickness, the channel bed would become fully covered, i.e. the alluvial limit would eventually be
attained.

Vertical and lateral erosion were experienced in different portions of the bend, whilst no
erosion occurred in the straight parts (Figure 140). The Author argues that: “the vector direction
of bedload near the outer bank is critical for eroding the walls of channel ” and “with increased
sediment input, the height of point bar increases . . . the effect of lateral bed slope dominates over
effect of secondary flow making more and more sediment collide with the walls of the bank . . . ,
causing more and more erosion to the banks”. Lateral abrasion was located in the region adjacent
to the cross section at 135◦ and its amplitude increased linearly with the sediment supply rate.
However, erosion was only experienced by the lowermost part of the bank. Vertical erosion peaked
in the region adjacent to the cross section at 157◦, although some weak erosion occurred also in
the region adjacent to the cross section at 45◦, where it concentrated in the central part of the
cross section. In this region, bedrock near the outer bank was fully exposed and experienced less
sediment transport over it, i.e. a bedrock bench developed. On the contrary, the bedrock near the
inner bank was fully covered by sediment, hence the central part of the cross section was the only
portion amenable to erosion.

The above observations will have to be extended and interpreted with the help of theoretical
modeling that represents a major challenge for future research.

212

Concluding remarks

Figura 139. Image of a bend of the Shimanto River (Japan) showing various morphological units: bedrock bench at
the outer bank, alluvial point bar and strath terrace at the inner bank (modified from Figure 2.1 of Mishra, 2017).

Let us conclude this section noting that one further mechanism that may play a role in lateral
erosion is physical weathering of rock via wetting and drying cycles, as shown by Montgomery
(2004) and Stock et al. (2005) for channels that cut through clay-rich lithologies. While weathering
weakens the wall rock, it is the hydrodynamics, hence the wall shear stress, which is ultimately
responsible for bedrock removal in this case.
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- further increase of bottom roughness did not lead to significant variation of lateral erosion
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The above observations will have to be extended and interpreted with the help of theoretical
modeling that represents a major challenge for future research.
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Figura 139. Image of a bend of the Shimanto River (Japan) showing various morphological units: bedrock bench at
the outer bank, alluvial point bar and strath terrace at the inner bank (modified from Figure 2.1 of Mishra, 2017).

Let us conclude this section noting that one further mechanism that may play a role in lateral
erosion is physical weathering of rock via wetting and drying cycles, as shown by Montgomery
(2004) and Stock et al. (2005) for channels that cut through clay-rich lithologies. While weathering
weakens the wall rock, it is the hydrodynamics, hence the wall shear stress, which is ultimately
responsible for bedrock removal in this case.
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Figura 140. Mixed bedrock-alluvial bed observed at the end of the flume experiments of Mishra (2017). The lateral
plots show cross-sectional profiles of bedrock surface measured from 3D scan of the mold at 4 locations in the

channel. The zero reference elevation corresponds to the initial bed elevation at each section; values of the abscissa
measure distances from the outer bank. Coloured dots are the experimental data: the four runs were characterized
by different values of the sediment supply rate, increasing from 35 cm3/min in case 1 to 70, 100, 140 cm3/min in

cases 2, 3, 4 respectively (modified from Figure 2.10 of Mishra, 2017).
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7. Concluding remarks

In this Monograph, we have learnt that there is wide consensus on the nature of the physical
process which determines the spatial-temporal development of meanders once they have formed.
We have seen that research has conclusively ascertained that it is the combined outcome of outer
bank erosion and inner bend accretion that controls meander development. Indeed, models based
on the adoption of simple semiempirical ’long term’ erosion rules have been able to reproduce
most of the major features observed in nature: most notably meander growth, meander migration,
skewing and fattening, shapes of meander loops and neck cutoff.

Consensus has also been reached on when and why free bars may migrate through low amplitude
meanders. The ability of alternate bars to coexist with point bars without triggering bank erosion
does not seem to point at the former features as the actual cause of incipient meander formation.
And, indeed, as discussed in Section 5.3, in many modern experiments where meandering (rather
than braiding) was reproduced in the laboratory, alternate bars did not form.

A further feature of the meandering process that may be considered as definitively ascertained
is the role of bank cohesion, which turns out to be crucial to prevent the tendency of channels to
evolve into braiding patterns.
Needless to say, there is room to improve our understanding of the meandering evolution process.
In particular, decoupling outer bank erosion from inner bank deposition is still an open subject
of research that calls for improved, physically based, modeling of both bank erosion and inner
bend accretion, possibly accounting for the active role of vegetation and the distinct effects of
bedload and suspended load. Indeed, planform evolution in alluvial valleys is affected by long
term exchanges of water and sediments between the river and the flood plain, a process mediated
by the vegetation dynamics, a feature which suggests that ecology will soon intrude in meandering
research.
Also, available evolution models assume that planform changes are free to occur, independently
of end effects that may constrain the channel to follow given paths. The role of upstream and
downstream boundary conditions in meandering models remains an unexplored subject.
A few, non-irrelevant, unsolved modeling problems also remain.
One such problem concerns the modeling of the sorting patterns observed in meandering rivers. As
discussed in Section 6.1, field observations are clear: point bars on the inside of bends tend to be
finer than the pools at the outer bends, moreover, the upper parts of point bars display a tendency
to be coarser upstream and finer downstream. The physical mechanism of sorting has been clarified
in the early work of Parker and Andrews (1985) as driven by the size-dependent component of
gravity in the direction tangent to the lateral bed profile. It is then somewhat surprising that a
phenomenon whose characteristics are clear from field observations and theoretical arguments,
has so far defeated attempts to formulate sound theoretical models. As pointed out in Section
6.1 the available models of sorting in meandering rivers are based on two weak assumptions:
sorting requires the artificial inclusion of side wall effects and the perturbation of the grain size
distribution driven by channel curvature is assumed to have small amplitude. The topic is open to
improvements.
Progress in the available knowledge on meandering initiation and meander development in mixed
bedrock-alluvial channels is also needed. Indeed, as discussed in Section 6.2, no conclusive answer is
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yet available to the issue of which of the two proposed mechanisms (entrenched vs. incised) prevails
depending on the type of rock formation and the history of uplifting of the valley plain. This is an
active area of research that calls for a close collaboration between geomorphologists and hydraulic
engineers and will strongly benefit from further laboratory observations and theoretical modeling
to support interpretations of combined vertical and lateral incisions of mixed bedrock-alluvial
meandering channels.

Finally, a fundamental question that one may ask is: Can meanders form in the absence of
point bars?

We have shown in Chapter 4 that a straight fluvial pattern is not stable in general, in that a
planform instability is triggered by bank erosion-deposition processes in cohesionless channels, and
all the mechanisms of meander formation reviewed in this book (except, possibly, the insufficiently
explored process of meandering in bedrock channels) rely on the existence of point bars.

However, a well known early explanation of river meandering, proposed by Albert Einstein
(Einstein, 1926), did not rely on point bars. It was based on a tea cup analogy and captured the
role of centrifugally driven secondary flow in a curved bend. “At every cross-section of its course,
where it is bent, a centrifugal force operates in the direction of the outside of the curve (from A to
B). This force is less near the bottom, where the speed of the current is reduced by friction, than
higher above the bottom. This causes a circular movement of the kind illustrated in the diagram"
(Figure 141b). It also captured the mechanism of lateral redistribution of momentum associated
with the secondary flow: “The particles of liquid in most rapid motion will be farthest away from
the walls, that is to say, in the upper part above the center of the bottom. These most rapid parts
of the water will be driven by the circulation toward the right-hand wall, while the left-hand wall
gets the water which comes from the region near the bottom and has a specially low velocity". And
concluded: “Hence in the case depicted in Figure 141a the erosion is necessarily stronger on the
right side than on the left". The reader should note that Einstein’s picture ignores the metric
effect that drives flow acceleration at the inner bend and delays the weak effect of the lateral
redistribution of longitudinal momentum, but it does contain the essential idea that meander
formation is caused by bank erosion at the ’outer banks’. However, it is noticeable that, in this
picture, the flow concentration towards the outer bank responsible for bank erosion is exclusively
attributed to the centrifugally driven component of the secondary flow. In other words, although

Figura 141. Einstein’s sketch illustrating the formation of centrifugally driven secondary flows in curved bends.

Einstein (1926) was fully aware of channel deepening at the outer bank, he ignored the role of the
topographically driven component of secondary flow, which is now known to dominate over the
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centrifugal component as soon as the bottom deforms. Indeed, he writes: “We have now revealed
the causes of the formation of meanders. Certain details can, however, also be deduced without
difficulty from these facts. Erosion will be comparatively extensive not merely on the right-hand
wall but also on the right half of the bottom, so that there will be a tendency to assume a profile
as illustrated in Figure 141c". Hence, in the latter picture, outer channel deepening would be
the mere consequence of the redistribution of longitudinal momentum driven by the centrifugal
secondary flow.

One is then led to formulating the fundamental question raised above, that none seems to
have conclusively tackled yet. Proving that a channel with no point bar could meander would fit
Einstein’s picture; proving the opposite would show that the part of the real process captured by
Einstein’s intuition was insufficient to explain meander initiation! Such an investigation would
also help clarifying recent experimental observations suggesting that irregular bends in peat bogs
are strongly controlled by vegetation, migrate only sporadically and have rather unfrequent scroll
bars (G. Parker, Personal communication).

Note that the answer to the latter question is by no means obvious. Indeed, the absence of
point bars is equivalent to assuming a fixed horizontal bed. Employing the model discussed in
Section 2.5 and forcing the bed to be horizontal (Sn= 0), one ends up with a picture of the flow
field (see Figure 37, uppermost panel) suggesting that the thread of high velocity is located at
the inner bend and is in phase with curvature: a pattern that definitely leads to bend stability.
However, the model presented in Section 2.5, in the case of horizontal bed, accounts for the free
vortex effect but does not include the very weak effect of lateral redistribution of longitudinal
momentum associated with the centrifugal secondary flow. The fact that this effect is very weak
emerges clearly for the experiments of Rozovskij (1957): indeed, a glance at Figure 26 shows that
the free vortex effect prevails through the whole bend and the thread of high velocity is displaced
towards the outer bend only around the bend exit. Momentum redistribution requires lateral
variations of the basic longitudinal flow, a feature that is enhanced in narrow channels. Hence, one
may not rule out the possibility that in narrow, sufficiently long meandering channels with fixed
horizontal bed, the thread of high velocity may be displaced to the outer bank, possibly leading to
bend instability.

Finally, engineering calls for the need of models of reduced complexity. Indeed, the most recent
research developments in the field of hydrodynamics and morphodynamics of meandering channels
focus on the refinement of fully 3D numerical models of flow and bed topography, with the aim
to extend applications to the complex configurations relevant for practical purposes (e.g. Nabi
et al., 2012, 2013a,b; Sotiropoulos, 2019). However, investigations of the long term morphodynamic
evolution of large scale fluvial reaches, an important issue in the century of global warming,
can hardly be tackled with the help of 3D numerical models. Future progress may perhaps be
sought in the opposite direction, namely that of deriving from the general formulation simpler, but
physically and theoretically sound, models of reduced complexity that may be more suitable to
long term simulations. Some attempts in this direction have been performed by Blanckaert and de
Vriend (2003) and Ottevanger et al. (2013). Although such attempts should be welcomed, however
achieving reduced complexity is much harder (though possibly more enjoyable) than running a
computer model including all the necessary (and possibly unnecessary) ingredients. The hard
job is to adopt approximations that can be rationally justified. In this respect, we feel that the
problem is still open to future contributions.
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8. Mathematical Appendix

The aim of this Chapter is to provide the reader with some basic knowledge on linear and
nonlinear forced oscillators, as well as on the mathematics of the interaction between free and
forced responses of oscillatory systems.

8.1. Forced oscillations and resonance

8.1.1 Toy model

Let us consider a new toy model consisting of the following nonlinear partial differential equation

du

dt
+ Lu+Nu = ν exp iλm x+ c.c.. (389)

The reader should note that, unlike in the toy-model (665, 666)(I) discussed in Chapter 9(I), a
non-homogeneous forcing term is present in the right-hand side of equation (389).

Here, ν is a small parameter. Moreover, L(·) and N(·) are linear and nonlinear differential
operators, respectively, defined in the form:

L ≡ ∂4

∂x4
+

∂3

∂x3
+ 2R

∂2

∂x2
+ 2

∂

∂x
+ 1, (390a)

N ≡
(

∂

∂x

)2

. (390b)

8.1.2 Free oscillations: Temporal normal modes

In order to provide a complete picture of the behavior of the solutions of our toy model, it is
convenient to start with a linear stability analysis, whereby we seek the response of the non-forced
system (ν = 0) to infinitesimal perturbations of the steady basic solution u = 0. To pursue this
goal we write:

u(x, t) = ϵ u1(x, t) +O(ϵ2), (391)

with ϵ an infinitesimal parameter.
The assumption of infinitesimal perturbations allows us to linearize the differential problem.

Substituting from (391) into (389) after setting ν = 0 and neglecting terms of order ϵ2 or higher
we obtain: (

d

dt
+ L

)
u1 =

[
d

dt
+

∂4

∂x4
+

∂3

∂x3
+ 2R

∂2

∂x2
+ 2

∂

∂x
+ 1

]
u1 = 0. (392)

At this stage, it is convenient to restrict the class of perturbations considered, performing a
normal mode analysis similar to that presented in Section 9.3.4(I). The eigen-relationship in the
present case is found to read:

−i ω + L1(λ,R) = −i ω + λ4 − i λ3 − 2Rλ2 + 2 i λ+ 1 = 0, (393)
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du

dt
+ Lu+Nu = ν exp iλm x+ c.c.. (389)

The reader should note that, unlike in the toy-model (665, 666)(I) discussed in Chapter 9(I), a
non-homogeneous forcing term is present in the right-hand side of equation (389).

Here, ν is a small parameter. Moreover, L(·) and N(·) are linear and nonlinear differential
operators, respectively, defined in the form:

L ≡ ∂4

∂x4
+

∂3

∂x3
+ 2R

∂2

∂x2
+ 2

∂

∂x
+ 1, (390a)

N ≡
(

∂

∂x

)2

. (390b)

8.1.2 Free oscillations: Temporal normal modes

In order to provide a complete picture of the behavior of the solutions of our toy model, it is
convenient to start with a linear stability analysis, whereby we seek the response of the non-forced
system (ν = 0) to infinitesimal perturbations of the steady basic solution u = 0. To pursue this
goal we write:

u(x, t) = ϵ u1(x, t) +O(ϵ2), (391)

with ϵ an infinitesimal parameter.
The assumption of infinitesimal perturbations allows us to linearize the differential problem.

Substituting from (391) into (389) after setting ν = 0 and neglecting terms of order ϵ2 or higher
we obtain: (

d

dt
+ L

)
u1 =

[
d

dt
+

∂4

∂x4
+

∂3

∂x3
+ 2R

∂2

∂x2
+ 2

∂

∂x
+ 1

]
u1 = 0. (392)

At this stage, it is convenient to restrict the class of perturbations considered, performing a
normal mode analysis similar to that presented in Section 9.3.4(I). The eigen-relationship in the
present case is found to read:

−i ω + L1(λ,R) = −i ω + λ4 − i λ3 − 2Rλ2 + 2 i λ+ 1 = 0, (393)
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Figura 142. The marginal stability curve of the toy model (389) is plotted in the plane (λ,R). The absolute
minimum of the curve defines the critical values (λc and Rc) of the wavenumber and of the control parameter,

respectively. The values λR and RR denote marginal perturbations with vanishing wavespeed.

where λ is a real number, ω is complex (in general) and Lp (p = 0, 1, 2, ..) denotes the algebraic
operator:

Lp(λ,R; p) = p4 λ4 − i p3 λ3 − 2Rp2 λ2 + 2 i p λ+ 1. (394)

The eigenrelationship (393) shows that, for our toy model, ω is indeed a complex number. If
we set ωi = 0, then the real part of (393) gives:

R =
λ4 + 1

2λ2
. (395)

The relationship (395) determines the marginal (or neutral) stability curve in the plane (λ,R)
plotted in Figure 142. It exhibits an absolute minimum for the following critical values of the
control parameter R and wavenumber λ:

Rc = 1, λc = 1. (396)

The wavespeed c of marginal perturbations reads:

c =
ωr

λ

∣∣∣
marginal

=
2λ− λ3

λ
= 2− λ2. (397)

In particular, at criticality, one finds cc = 1. Moreover, we denote by λR =
√
2 the wavenumber of

the marginal perturbations characterized by vanishing wavespeed which occur for RR = 5/4.

8.1.3 Free oscillations: spatial modes

A second class of free oscillations allowed by the system is the spectrum of spatial modes,
namely the set of normal modes characterized by vanishing values of ω and complex values of λ.
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Needless to say these are non-migrating modes. The associated eigen-relationship is obtained from
(393) with λ complex simply setting ω = 0, to find:

L1(λ,R) = 0. (398)

A special role is played by spatial modes with vanishing spatial growth rate λi. The corresponding
wavenumber is λR. The real and imaginary parts of (398) under these conditions read:

λ4
R − 2RRλ

2
R + 1 = 0, (399a)

2λR − λ3
R = 0. (399b)

These equations are readily solved to give:

λR =
√
2, RR =

5

4
. (400)

Hence, a harmonic spatial oscillation with wavenumber λR is a free solution of the system provided
the control parameter takes the value RR.

8.1.4 Forced oscillations: linear solution at the steady state and resonance

Let us next move to analyze the forced response of the system (ν ̸= 0) at the steady state
( ∂
∂t ≡ 0). The obvious approach is to take advantage of the assumption that ν ≪ 1 and assume a

regular straightforward expansion of the solution in powers of the small parameter. Truncating
the expansion at the linear level, one finds:

u(x) = ν U1(x) +O(ν2), (401)

Substituting from (401) into (389) at O(ν) we find:

Lm
1 U1(x) = e1 + ē1 = e iλmx + c.c., (402)

where Lm
1 is the algebraic operator L1 evaluated for λ = λm and we have used the following

notation:
ep = ep iλm x, (p = 0, 1, 2, . . . ). (403)

The equation (402) is readily solved assuming the following structure of the solution:

U1(x) = U11 e1 + c.c.. (404)

Hence:
U11 =

1

Lm
1

. (405)

The modulus |U11| and the phase ϕ of the complex amplitude U11 are plotted versus λm for
different values of R in Figure 143.

Two important features of the solution deserve to be noted. The first is that the amplitude of
the response exhibits an infinite peak if λm and R take the values λR and RR, respectively. This
condition is called resonance: the forcing oscillation excites a natural (free) oscillation allowed by
the system.

The second observation concerns the phase ϕ which changes sign as the resonant conditions
are crossed: this is a typical feature of linear resonators that has important physical implications
for meander evolution, as discussed in Chapter 4 and Chapter 5..

8.1.5 Forced oscillations: weakly nonlinear solution
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Needless to say these are non-migrating modes. The associated eigen-relationship is obtained from
(393) with λ complex simply setting ω = 0, to find:

L1(λ,R) = 0. (398)

A special role is played by spatial modes with vanishing spatial growth rate λi. The corresponding
wavenumber is λR. The real and imaginary parts of (398) under these conditions read:
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R − 2RRλ

2
R + 1 = 0, (399a)
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R = 0. (399b)

These equations are readily solved to give:
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2, RR =
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4
. (400)

Hence, a harmonic spatial oscillation with wavenumber λR is a free solution of the system provided
the control parameter takes the value RR.

8.1.4 Forced oscillations: linear solution at the steady state and resonance

Let us next move to analyze the forced response of the system (ν ̸= 0) at the steady state
( ∂
∂t ≡ 0). The obvious approach is to take advantage of the assumption that ν ≪ 1 and assume a

regular straightforward expansion of the solution in powers of the small parameter. Truncating
the expansion at the linear level, one finds:
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Substituting from (401) into (389) at O(ν) we find:
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where Lm
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notation:
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The equation (402) is readily solved assuming the following structure of the solution:

U1(x) = U11 e1 + c.c.. (404)

Hence:
U11 =
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1

. (405)

The modulus |U11| and the phase ϕ of the complex amplitude U11 are plotted versus λm for
different values of R in Figure 143.

Two important features of the solution deserve to be noted. The first is that the amplitude of
the response exhibits an infinite peak if λm and R take the values λR and RR, respectively. This
condition is called resonance: the forcing oscillation excites a natural (free) oscillation allowed by
the system.

The second observation concerns the phase ϕ which changes sign as the resonant conditions
are crossed: this is a typical feature of linear resonators that has important physical implications
for meander evolution, as discussed in Chapter 4 and Chapter 5..

8.1.5 Forced oscillations: weakly nonlinear solution
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Figura 143. The modulus |U11| and the phase ϕ of the complex amplitude U11 of the linear forced response of the
toy model (389) are plotted versus λm for different values of R. Note that an infinite resonant peak of the modulus
of the response is experienced as λm and R take the values λR and RR, respectively. Also, note that the phase of

the response changes sign as the resonant conditions are crossed.
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To complete the analysis of the solutions of our toy model, we now examine the role played by
nonlinearity. It is convenient, in this respect to distinguish between non-resonant and near-resonant
conditions.

Solution far from resonance.

Under non-resonant conditions, a weakly nonlinear solution is obtained proceeding with the
expansion (401) up to the required order of approximation. This is an exercise which is left to the
reader. Here, we simply report the O(ν2) term of the solution, which reads:

U2(x) = U22 e2 + 2U20 e0 + Ū22 ē2 = U22 e2 + U20 e0 + c.c., (406)

with

U22 =
λ2
m

Lm
2

U2
11 , U20 = −λ2

mU11Ū11. (407)

This solution fails at resonance (λm = λR), where LR
1 = 0 and, hence, U11 becomes unbounded.

Close to resonance (407) must be replaced by the solution derived below.

Solution near resonance.

Let us now investigate the forced solution assuming that the wavenumber of the forcing spatial
oscillation λm and the control parameter R fall within a neighborhood of the resonant values,
λR and RR. We look for a solution of our nonlinear toy model such that the singular resonant
behaviour occurring at the linear level be suppressed. This is another example of non-uniformity of
the straightforward expansion. In the present case non-uniformity does not occur for large values
of the independent variable x as in the weakly damped oscillator discussed in Section 9.2.1(I).
Rather, non-uniformity is driven by a singularity occurring in a neighborhood of some specific
region of the parameter space.

The main questions to which we need preliminary answers are:
(i) what is the order of magnitude of the amplitude of the solution in terms of the small

parameter ν such that suppression of the singularity may be achieved?
(ii) how wide is the range of values of λm and R within which nonlinear effects are felt and

needed to suppress the singularity?
The classical argument employed to answer the above questions goes as follows. Let us assume

that the fundamental component of the perturbation is of order O(νy) with y a real exponent to
be determined. At the lowest order and exactly at resonance, the oscillatory solution must coincide
with the natural solution of the homogeneous linear problem describing marginally stable (i.e.,
non-amplifying) and non-migrating free oscillations. Hence, at the lowest order of approximation
we may assume the following form of the solution

u1(x) = νy(A eR1 + Ā ēR1 ), (408)

with A a complex amplitude to be determined. Let us analyze how secular terms are generated in
the present case. Substituting from the lowest order of approximation into the nonlinear term
N(u), one finds:

N [u1(x)] = −ν2yλ2
R (A2 eR2 + Ā2 ēR2 − 2AĀ eR0 ) = −ν2yλ2

R (A2 eR2 −AĀ eR0 + c.c.). (409)

Hence it is clear that the nonlinear term N(u) involving the fundamental (408), produces at
second order, O(ν2y), second harmonics proportional to eR2 or eR0 and at third order, O(ν3y), the
fundamental through interactions of second and first harmonics (Figure 144). The reader will
check that ēR1 e

R
2 = eR1 and eR1 e

R
0 = eR1 . Terms reproducing the fundamental are secular and must

be suppressed. The only condition that can ensure that suppression does not lead to the trivial
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Figura 143. The modulus |U11| and the phase ϕ of the complex amplitude U11 of the linear forced response of the
toy model (389) are plotted versus λm for different values of R. Note that an infinite resonant peak of the modulus
of the response is experienced as λm and R take the values λR and RR, respectively. Also, note that the phase of

the response changes sign as the resonant conditions are crossed.
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be determined. At the lowest order and exactly at resonance, the oscillatory solution must coincide
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we may assume the following form of the solution
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with A a complex amplitude to be determined. Let us analyze how secular terms are generated in
the present case. Substituting from the lowest order of approximation into the nonlinear term
N(u), one finds:
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be suppressed. The only condition that can ensure that suppression does not lead to the trivial
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Figura 144. The sketch depicts the nonlinear interactions of the second and first harmonics associated with the
nonlinear term N(u) (equation (390b)) that lead to reproducing the fundamental mode at third order.

solution A = 0, is that the reproduction of the fundamental occurs at the same order, O(ν), as
that of the forcing oscillation. Below we will show that the above condition implies:

3y = 1. (410)

Similarly, for variations of λm and R in a neighborhood of λR and RR respectively, to be felt at
order O(ν), their order must be O(ν

2
3 ).

Let us then set the following expansions:

u(x) = A e1 ν
1
3 + [U20 e0 + U22 e2]ν

2
3 + [U31 e1 + U33 e3]ν + c.c.+O(ν

4
3 ), (411a)

λm = λR + λ1ν
2
3 , (411b)

R = RR +R1ν
2
3 . (411c)

On substituting from the expansion (411) into our toy differential equation, the linear terms give:

Lu =LR
1 A eR1 ν

1
3 + [LR

2 U22 eR2 + LR
0 U20e

R
0 ] ν

2
3+ (412)

+[LR
1 U31 eR1 + LR

3 U33 eR3 ] ν

+

[
iλ1 x LR

1 +
∂L1

∂R

∣∣∣∣
λR,RR

R1 +
∂L1

∂λ

∣∣∣∣
λR,RR

λ1

]
A eR1 ν,

having employed the following notation:

LR
p = Lp(λR, RR). (413)

Recalling the definition (398) one finds:

LR
0 =1, (414a)

LR
1 =λ4

R − iλ3
R − 2RRλ

2
R + 2iλR + 1 = 0, (414b)

LR
2 =16λ4

R − 8iλ3
R − 8RRλ

2
R + 4iλR + 1 = 45− 12

√
2i, (414c)
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∂L1

∂R

∣∣∣∣
λR,RR

R1 +
dLR

1

dλ

∣∣∣∣
λR,RR

λ1 =(−2λ2
R) R1 + (4λ3

R − 3iλ2
R − 4RRλR + 2i)λ1 (414d)

=(3
√
2− 4i)λ1 − 4R1.

On substituting from the expansion (411) into the nonlinear term of our toy differential equation,
we find

Nu =
[
(iλR A eR1 ) ν

1
3 + (2iλR U22 eR2 )ν

2
3 + c.c.+O(ν)

]2
=

−λ2
R (A2 eR2 − A Ā) ν

2
3 +

[
4λ2

R(e
R
1 U22 Ā−A U22 eR3 )

]
ν + c.c.+O(ν

4
3 ). (415)

Substituting from (412) and (415) into the governing equation (389) and equating terms of different
orders of magnitude we find the following sequence of algebraic equations.

O(ν
1
3 )

LR
1 A = 0. (416)

This equation is identically satisfied for any amplitude A, which is left undetermined at this order.

O(ν
2
3 )

The amplitude U22 of the second harmonics satisfies the following algebraic equation:

LR
2 U22 − λ2

RA
2 = 0, (417)

hence:
U22 =

2

45− 12
√
2i
A2. (418)

Moreover, the amplitude U20 of the x−independent component reads:

U20 = −λ2
RAĀ = −2AĀ. (419)

O(ν)

Finally, let us consider the equation that governs the amplitude U31 of the fundamental
component of the solution reproduced at third order O(ν). It reads:

LR
1 ( U31 + iλ1Ax) + [(3

√
2− 4i)λ1 − 4R1] A+

16

45− 12
√
2 i

A2Ā = 1. (420)

Recalling (413a), it follows that suppression of secular terms implies that the amplitude A must
satisfy the following complex algebraic equation:

α1 A+ α2 A2Ā = 1, (421)

where
α1 = (3

√
2− 4i)λ1 − 4R1, α2 =

16

45− 12
√
2 i

. (422)

The complex amplitude equation (421) is readily reduced to a cubic algebraic equation for |A|2
multiplying the product of (421) and Ā by its complex conjugate:

α2 ᾱ2 |A|6 + (α1 ᾱ2 + ᾱ1 α2) |A|4 + α1ᾱ1|A|2 − 1 = 0. (423)
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Figura 144. The sketch depicts the nonlinear interactions of the second and first harmonics associated with the
nonlinear term N(u) (equation (390b)) that lead to reproducing the fundamental mode at third order.

solution A = 0, is that the reproduction of the fundamental occurs at the same order, O(ν), as
that of the forcing oscillation. Below we will show that the above condition implies:
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2 = 0, (417)

hence:
U22 =

2

45− 12
√
2i
A2. (418)

Moreover, the amplitude U20 of the x−independent component reads:

U20 = −λ2
RAĀ = −2AĀ. (419)

O(ν)

Finally, let us consider the equation that governs the amplitude U31 of the fundamental
component of the solution reproduced at third order O(ν). It reads:

LR
1 ( U31 + iλ1Ax) + [(3

√
2− 4i)λ1 − 4R1] A+

16

45− 12
√
2 i

A2Ā = 1. (420)

Recalling (413a), it follows that suppression of secular terms implies that the amplitude A must
satisfy the following complex algebraic equation:

α1 A+ α2 A2Ā = 1, (421)

where
α1 = (3

√
2− 4i)λ1 − 4R1, α2 =

16

45− 12
√
2 i

. (422)

The complex amplitude equation (421) is readily reduced to a cubic algebraic equation for |A|2
multiplying the product of (421) and Ā by its complex conjugate:

α2 ᾱ2 |A|6 + (α1 ᾱ2 + ᾱ1 α2) |A|4 + α1ᾱ1|A|2 − 1 = 0. (423)
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Figura 145. The square of the modulus of the solution of the amplitude equation (421) |A|2 is plotted versus the
parameters (a) λ1 and (b) R1 which measure the distance of λm and R from their resonant values λR and RR.

Solid and dashed lines denote stable and unstable solutions, respectively.

Once the latter equation is solved, one may derive A (hence its phase) from (421).

In general (423) exhibits one real and two complex-conjugate solutions. Under these conditions,
the complex solutions being meaningless, the response of the system is unique. This is shown in
the figures 145a and 145b, where |A|2 is plotted as a function of λ1 and R1, respectively.

However, this figure shows that ranges of λ1 and R1 exist, in which the three solutions of (423)
are all real. In other words, the response of the system may not be unique, a feature characteristic
of the nonlinear behavior of resonant oscillators (see, for instance, Thompson and Stewart, 1986, p.
72). In order to ascertain which of the three real solutions is appropriate for a given set of initial
conditions, we investigate the linear stability of the above three solutions. Let us then set:

A = Ae + a(T ), (424)

where Ae is the equilibrium solution obtained above and a is an infinitesimally small perturbation.
Moreover, we have introduced an appropriate time variable, describing the rate at which the
system responds to perturbations in the near resonant region, namely

T = ν
2
3 t. (425)

Note that T has been chosen such to affect the solution at order O(ν), i.e. such to affect the
amplitude equation for A. Indeed, including the temporal derivative in our toy model, the
amplitude equation takes the form appropriate to investigate transient processes, that is readily
seen to be:

dA

dT
+ α1 A+ α2 A2Ā = 1. (426)

On substituting from (424) into (426) and linearizing we find the following linear ordinary differential
equation for a(T ):

da

dT
= γ1 a+ γ2 ā, (427)

where
γ1 = −(α1 + 2|Ae|2α2), γ2 = −α2A

2
e, (428)
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Figura 146. The amplitude of the linear solution, νU11 (equation (405), thin lines), and the amplitude of the
fundamental component of the weakly nonlinear solution, ν1/3A (equation (421), thick lines), are plotted as

functions of the wavenumber λm of the forcing oscillation for ν = 0.01. Solid and dashed curves denote real and
imaginary parts, respectively.

Differentiating (427) once and using (427) to express dā
dT and ā in terms of da

dT and a, one ends up
with the following second order ordinary differential equation with constant coefficients for the
sought function a(T ).

d2a

dT 2
= (γ1 + γ̄1)

da

dT
+ (γ2 γ̄2 − γ1 γ̄1) a. (429)

This equation admits of exponentially growing solutions provided the quantity (γ2 γ̄2−γ1 γ̄1) is
positive. Alternatively, if the latter quantity is negative, (γ1+ γ̄1) must also be positive. Otherwise
the equilibrium solution Ae is stable. Calculations show that the upper branch of the solution
for |A|2 depicted in Figures 145 is invariably stable with the lower branch and the loop joining
the upper branch to the lower branch invariably unstable. In order to ascertain the nature of
the possibly unsteady solutions bifurcating from the unstable steady solutions, one has to solve
numerically the fully nonlinear equation (426). This exercise is left to the reader (but see also
Seminara and Tubino (1992), sect. 6 for a specific example of relevance to morphodynamics).

Finally, in Figure 146 we compare the amplitude of the linear solution, νU11 (equation (405)),
with the amplitude of the fundamental component of the weakly nonlinear solution, ν1/3A (equation
(421)), for a given value of the small parameter ν = 0.01. Rather than exhibiting a sharp peak
within the resonant range, the nonlinear response follows a fairly smooth trend with a relatively
weak maximum for values of the forcing wavenumber larger than the resonant value. In other
words, not only do nonlinear effects suppress the singularity exhibited by the linear solutions at
λm = λR, but they also control the response of the system within a fairly wide range of values of
the wavenumber of the forcing oscillation.

8.2. Interaction between temporal free modes and forced modes

In the previous Section we have analyzed a toy model which allows for the development of free
temporal modes as well as forced modes associated with an oscillatory spatial forcing. In fluvial
morphodynamics they correspond to free migrating bars and forced (point) bars, respectively.

227



Theoretical Morphodynamics: River Meandering

Figura 145. The square of the modulus of the solution of the amplitude equation (421) |A|2 is plotted versus the
parameters (a) λ1 and (b) R1 which measure the distance of λm and R from their resonant values λR and RR.

Solid and dashed lines denote stable and unstable solutions, respectively.
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within the resonant range, the nonlinear response follows a fairly smooth trend with a relatively
weak maximum for values of the forcing wavenumber larger than the resonant value. In other
words, not only do nonlinear effects suppress the singularity exhibited by the linear solutions at
λm = λR, but they also control the response of the system within a fairly wide range of values of
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In the previous Section we have analyzed a toy model which allows for the development of free
temporal modes as well as forced modes associated with an oscillatory spatial forcing. In fluvial
morphodynamics they correspond to free migrating bars and forced (point) bars, respectively.
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The next problem we wish to analyze is that of ascertaining whether free and forced modes may
coexist. More precisely: does the presence of spatially forced modes prevent the development of
free temporal modes? Are there any threshold conditions separating regions where coexistence is
possible from those where free modes are suppressed?

In order to answer this subtle question, we consider again the toy model (389) and employ
the notations of the previous Section. Let us set ourselves within a neighborhood of the critical
conditions for the onset of free temporal modes by assuming that:

R = Rc + ϵ2R1, λ = λc, ω = ωc. (430)

It is instructive to follow the flow of interactions arising when an O(ϵ) free temporal mode, say

Figura 147. The sketch depicts the weakly nonlinear interactions between temporal free modes and forced modes
for the toy model (389) which lead to reproducing the fundamental free temporal mode at third order.

ϵ(AE1 + c.c.) coexists with an O(ν) forced spatial mode, say ν(U11e1 + c.c.). Below, we will
implicitly assume that E1 = E1|λ=λc,ω=ωc

. As depicted in the sketch of Figure 147, at second
order we find the O(ϵ2) free-free interactions and the O(ν2) forced-forced interactions already
analyzed in the previous sections when dealing with the weakly nonlinear stability theory and the
weakly nonlinear forced response. Here, we find additional second order O(νϵ) mixed terms which
account for the interactions between free and forced modes. At third order, the fundamental free
mode is readily seen to be reproduced by three types of interactions: free O(ϵ) - free O(ϵ2), free
O(ϵ)-forced O(ν2) and mixed O(νϵ) - forced O(ν).

The three contributions occur at the same order of approximation provided one sets:

ν = kϵ, (431)

with k an O(1) quantity. Hence, we may expect that, provided the forcing parameter ν is of the
order of ϵ, i.e. the amplitudes of the fundamental free and forced modes, are of the same order
of magnitude, the free-forced interaction is significant and may alter the usual picture of weakly
nonlinear free modes amplifying and reaching an equilibrium amplitude asymptotically in time.
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These intuitive arguments suggest the opportunity to seek a solution in the form of the following
expansion:

u(x, t;T ) =ϵ[A E1 + c.c.] + ν[U11 e1 + c.c.] (432)

+ ν2[U20 e0 + U22 e2 + c.c.]

+ ϵ2[AĀ u20 E0 +A2E2 u22 + c.c.]

+ ϵν[um
21A e1E1 + um

22Ā e1Ē1 + c.c.]

+ ϵ3[u31A
2Ā E1 + u33A

3 E3 + c.c.]

+ ν2ϵ[Aum
31 E1 +Aum

32ē2 E1 +Aum
33e2 E1 + c.c.]

+O(ϵ2ν, ν3),

where A(T ) is an amplitude function of the slow temporal variable T defined as in the classical
weakly nonlinear analysis:

T = ϵ2t. (433)

Substituting from (432) into the governing differential equation (389) and equating terms of the
same order of magnitude, one finds a sequence of algebraic equations for the coefficients of the
expansion. At O(ϵ) and O(ν) the linear free and forced problems are recovered, respectively.

At higher order the contribution of the nonlinear operator Nu must be accounted for. One
readily finds that:

Nu =+ ν2[−(iλm)2U11Ū11 e0 + (iλm)2U2
11 e2 + c.c.] (434)

+ ϵ2[−(iλc)
2AĀ E0 + (iλc)

2A2 E2 + c.c.]

+ ϵν[−2λcλmAU11 e1E1 + 2λcλmĀU11 e1Ē1 + c.c.]

+ ϵ3[2(2iλc)(−iλc)AĀu22 E1 + c.c.+ . . . ]

+ ν2ϵ
{
AE1[2i(λc + λm)(−iλm)Ū11u

m
21 +

2i(λc − λm)(iλm)U11ū
m
22] + c.c.+ . . . }

+O(ϵ2ν, ν3).

The reader should note that at O(ϵ3) and O(ϵν2) other harmonics are also reproduced, but they
are not included as they do not play any role in the derivation of the amplitude equation that is
the main scope of our analysis. With the help of the latter relationship, the solution at higher
order is found as follows.

O(ϵ2)

The solutions for u20 and u22 satisfy the following relationships:

[Lc
2 − 2iωc]u22 = λ2

c , (435)
Lc
0u20 = −λ2

c ,

hence:

u20 = −λ2
c = −1 , u22 =

λ2
c

(16λ4
c − 8Rcλ2

c + 1) + i(−8λ3
c + 4λc − 2ωc)

=
1

9− 6i
. (436)

O(ν2)

The solutions for U20 and U22 are identical to (407) with Lm
p calculated for R = Rc.
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O(νϵ)

The solutions for um
21 and um

22 satisfy the following relationships:

[L
c+m

1 − iωc]u
m
21 = 2λcλmU11, (437)

[L
−c+m

1 + iωc]u
m
22 = −2λcλmU11,

where the following notations have been used:

Lc+m
1 = L1|λ=λc+λm,R=Rc

, L−c+m
1 = L1|λ=−λc+λm,R=Rc

. (438)

Hence:
um
21 =

2λcλmU11

L
c+m

1 − iωc

, um
22 = − 2λcλmU11

L
−c+m

1 + iωc

. (439)

O(ϵ3, ν2ϵ)

At third order we are interested in suppressing the secular terms generated only by the
reproduction of the fundamental free mode E1. Using the assumption (431), the O(ϵ3) and O(ν2ϵ)
nonlinear interactions occur at the same order, hence, taking into account also the effects of the
slow temporal dependence of the amplitude function A and of the perturbation (ϵ2R1) of the
control parameter R, one readily finds:

[Lc
1 − iωc](A

2Āu31 +Ak2um
31) = −dA

dT
+ α1 A+ α2 A2Ā, (440)

where
α1 = k2

[
−2λm(λc + λm) Ū11 um

21 + 2λm(λc − λm) U11 ūm
22

]
+ 2R1λ

2
c , (441)

α2 = −4λ2
cu22. (442)

As the left hand side of (440) vanishes, a similar condition must hold for the right hand side. This
leads to the following amplitude equation of Landau-Stuart type:

dA

dT
= α1 A+ α2 A2Ā. (443)

The discussion of the solutions of this amplitude equation has been given in Section 9.3.6(I). We
know that (443) admits of supercritical equilibrium solutions provided Re(α2) is negative. The
reader will readily show that, in the absence of forcing (ν = 0, k = 0), the bifurcation is indeed
supercritical and the equilibrium amplitude reads:

|Ae| =

√
−Re(α1)

Re(α2)
=

√
− 2R1λ2

c

Re(α2)
=

√
13

2
R1. (444)

Finally, in the presence of forcing (k ≠ 0), we can answer the original question that motivated
the present analysis: is there any threshold condition separating the region where coexistence
of temporal free modes with spatially forced modes is possible from that where free modes are
suppressed? In the present context suppression implies the inability of the perturbation to grow.
We recall that the growth rate of the perturbations is the real part of the linear coefficient α1 in
the amplitude equation (443) (see Section 9.3.6(I)). The threshold condition is thus seen to be
the condition such that Re(α1)=0. This occurs at a threshold value (kt) of the parameter (k), i.e.
when the amplitude of the forcing ν exceeds a critical value depending on the wavenumber of the
forcing oscillation λm and the control parameter R. The reader will readily find that:

k2t = − 2R1λ
2
c

Re[−λm(λc + λm) Ū11 um
21 + λm(λc − λm) U11 ūm

22]
. (445)
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Figura 148. The threshold kt for suppression of the modes is plotted as a function of λm for R1 = 1

The plot of kt(λm) reported in Figure 148 suggests that suppression is inhibited when the
wavenumber of the spatial forcing tends to vanish (λm → 0).

Differently from the problem of the free bar suppression in meandering channels (Figure 79),
Figure 148 does not show any local minimum for λm equal to λR. It occurs because in our toy
problem, RR(= 1.25) is significantly higher than Rc(= 1). Indeed, by slightly modifying the linear
operator of the model problem (389) with the introduction of a constant larger than 1 and lower
than 2 (e.g. equal to 1.2) before the third derivative in (390a), the resonant value of R becomes
closer to Rc (e.g. equal to 1.134). In this case, as shown in Figure 149, the value of kt has a local
minimum close to resonance, hence lower intensities of the forcings are sufficient to damp the
growth of instabilities.
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The plot of kt(λm) reported in Figure 148 suggests that suppression is inhibited when the
wavenumber of the spatial forcing tends to vanish (λm → 0).
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Figure 148 does not show any local minimum for λm equal to λR. It occurs because in our toy
problem, RR(= 1.25) is significantly higher than Rc(= 1). Indeed, by slightly modifying the linear
operator of the model problem (389) with the introduction of a constant larger than 1 and lower
than 2 (e.g. equal to 1.2) before the third derivative in (390a), the resonant value of R becomes
closer to Rc (e.g. equal to 1.134). In this case, as shown in Figure 149, the value of kt has a local
minimum close to resonance, hence lower intensities of the forcings are sufficient to damp the
growth of instabilities.
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Figura 149. The threshold kt for suppression of the modes is plotted as a function of λm for the modified model
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10. Notations

- f

f any scalar, vectorial or tensorial quantity
f̃ dimensionless form of f
⟨f⟩ large scale turbulent flow (macroscopic) average of f
f ′ fluctuations of f
f+

f̄ overbar is used for the instantaneus and local value of the volume (spatial) average of f
(microscopic average) and to denote the conjugate of a complex number
∇h two dimensional gradient operator (∂/∂x, ∂/∂y)
|f | modulus of the vector f

- a A bar or, in general, perturbation amplitude

- b

B half width of the free surface

- c

c wavespeed of the perturbations
C depth averaged value of the Reynolds averaged local sediment concentration
Cf friction coefficient
Cfu friction coefficient associated with the uniform flow
C̄f cross sectionally averaged friction coefficient
C̄fw free surface averaged wind friction coefficient
C dimensionless curvature

- d

d sediment particle diameter
dg geometric mean grain size of a sediment mixture
ds relative roughness d/Du

d50 average grain size
d90 sediment size such that 90% percent of the sample is finer
D(x, y, t) local instantaneous flow depth
Du uniform flow depth
Db average flow depth in the bend
Dj j-th-component of the turbulent diffusivity vector
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- e
E erosion coefficient

- f
F0 shape function for the logaritmic vertical velocity profile
Fr Froude number
Fru uniform flow Froude number

- g
g gravity vector

- h
hs, hn, hz metric coefficients
H(x, y, t) local, instantaneous free surface elevation

- k
k von Karman constant
km cartesian meander wavenumber

- l
L scale of spatial variations of the flow field in the longitudinal direction
L wavelegth in Chapter I.1.
Lm and Ls ntrinsic meander wavelength
Lx the cartesian meander wavelength
L0 intrinsic length of the oxbow lakes
Lr the intrinsic length of the curved channel reach

- n
N shape function for eddy viscosity
n̂ unit vector normal to the element, oriented in the outward direction

- p
p(x, t) pressure
P average pressure

- q
qs local total sediment flux per unit width
qb,s
s local (b bedload; s suspended) sediment flux per unit width

Q local fluid discharge per unit width
Q (modulus of the) local fluid discharge per unit width
Q flow discharge
Qs local depth integrated total sediment flux per unit width
Qb,s

s local depth integrated (b bedload; s suspended) sediment flux per unit width
Qs modulus of the depth integrated total sediment flux per unit width
Qb,s

s modulus of the depth integrated (b bedload; s suspended) sediment flux per unit width
Q̃b

s dimensionless modulus of the depth integrated bedload sediment flux per unit width (it
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coincides with Φb under plane bed conditions)
Qs[L

3T−1] total longitudinal sediment flux transported in the cross section Qi
s[L

3T−1] (i=b

bedload; i=s suspended) sediment flux transported in the cross section

- r
Rp particle Reynolds number
Ru hydraulic radius of the reference flow
R0 radius of curvature of the channel axis

- s
s relative particle density
s also longitudinal curvilinear coordinate
S channel slope

- t
t time
T dimensionless slow time variable
T (x, t) fluid stress tensor
T t Reynolds stress tensor

- u
uτ friction velocity
uτu friction velocity of the uniform flow
u = (u, v, w) Reynolds averaged fluid velocity
Uu depth averaged uniform flow velocity
U depth averaged longitudinal velocity
U0 scale of fluid velocity
U cross sectionally averaged flow speed

- v
V lateral component of the depth averaged velocity
V0 scale of the lateral component of velocity

- w
ws asymptotic steady value of the sediment settling speed
W0 scale of the vertical velocity component
Wf wake function

- x
x position
xj , j = 1, 2, 3 Cartesian coordinate system

- z
z axis orthogonal to the channel axis
ẑ unit vector
ζ normalized vertical coordinate
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Z Rouse parameter
z0 elevation where no-slip is imposed at the wall

- α

αs stream-wise inclination angle of the bottom
αn transverse inclination angle of the bottom

- β

β aspect ratio of the channel cross-section defined as half width over depth

- δ

δ phase lag between bank erosion and curvature

- ζ

ζ dimensionless form of the z coordinate
ζ also average bank erosion rate in Section 1

- η

η elevation of the bed interface
ηa elevation of the channel axis
η̄ cross sectionally averaged bottom elevation

- θ

θ angle between straight segments tangent to the channel axis at two consecutive inflection
points
θ(s, t) angle that the local tangent to the channel center line forms with the direction of a
Cartesian axis x

- λ

λm intrinsic meander wavenumber

- ν

ν viscosity
νT eddy viscosity

- ϕ

ϕ phase lag
Φb dimensionless depth integrated bedload sediment flux per unit width under plane bed
conditions
Φs dimensionless depth integrated suspended sediment flux per unit width

- χ

χ flow conductance
χ also angle that the bottom stress forms with the longitudinal axis
χu flow conductance of uniform flows
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- ψ

ψ angle that the velocity of the bedload particles forms with the bottom shear stress vector
τ

- ϱ

ϱ water density
ϱs density of sediment particles

- σ

σ standard deviation of the grain size distribution
σs standard deviation of the grain size distribution of the surface layer

- τ

τ flow shear stress
τu bottom value of the uniform shear stress
τc threshold shear stress for incipient sediment motion
τs, τn dimensionless longitudinal and lateral components of the bottom stress
τ̄u uniform shear stress averaged over the wet boundary

τ∗ local value of the dimensionless Shields stress
τ̄∗ laterally averaged value of the dimensionless Shields stress
τ∗c critical value of the Shields stress for incipient motion
τ∗c0 critical value of the Shields stress for incipient motion under conditions of nearly vani-
shing bed slope
τ∗g Shields stress associated with the geometric mean size of the sediments in the surface
layer
τ∗u dimensionless Shields stress of the uniform flow

- ω

ω vorticity
ω complex perturbations growth rate
Ω mean vorticity, averaged over turbulence
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