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Abstract: Galileo’s abilities as a mathematician were far below that of many of his 
contemporaries. He made numerous technical mistakes — including several high-profile, 
mathematically erroneous applications of his own law of fall — that were swiftly spotted and 
corrected by the leading mathematicians of the day. Many aspects of Galileo’s work can be 
viewed as consequences of this limited technical proficiency in mathematics. For example, 
he ignores Kepler’s work and dismisses comets as a chimerical atmospheric phenomena: 
decisions that are difficult to justify on scientific grounds but which make sense if we grant 
that Galileo wanted to avoid technical mathematics at all costs. Instead he drops rocks, looks 
through tubes, rails against Aristotelian philosophers, and expounds at length about basic 
principles of scientific method: all of which can be seen as dwelling on precisely those parts 
of the mathematician’s worldview that do not require any actual mathematics.

Keywords: Galileo, cycloidal area, orbital speeds, extrusion by terrestrial whirling, 
atmospheric theory of comets.

1. Cycloid

The cycloid is the curve traced by a point on a rolling circle, like a piece of 
chalk attached to a bicycle wheel. Many mathematicians were interested in the 
cycloid in the early 17th century, including Galileo. What is the area under one 
arch of the cycloid? That was a natural question in Galileo’s time. Finding areas 
of shapes like that is what geometers had been doing for thousands of years. Ar-
chimedes for instance found the area of any section of a parabola, and the area 
of a spiral, and so on. Galileo wanted nothing more than to join their ranks. The 
cycloid was a suitable showcase. It was a natural next step following upon the 
Greek corpus, and hence a chance to prove oneself a “new Archimedes.”

There was only one problem: Galileo just wasn’t very good at mathematics. 
Try as he might, he could not for the life of him come up with one of those clev-
er geometrical arguments for which the Greek mathematicians were universally 
admired. All those brilliant feats of ingenuity that Archimedes and his friends 
had blessed us with, it just wasn’t happening for Galileo.

Perhaps out of frustration, Galileo turned to the failed mathematician’s last re-
sort since time immemorial: trial and error. Unable to crack the cycloid with his 
intellect, he attacked it with his hands. He cut the shape out of thick paper and 
got his scales out to have this instrument do his thinking for him. As best as he 
could gather from these measurements, Galileo believed that the area under the 
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cycloid was somewhere near, but not exactly, three times the area of the generat-
ing circle (Drake 1978, 19, 406).

This was no way to audition for the pantheon of geometers. Galileo was left 
red-faced when mathematically competent contemporaries solved the problem 
with aplomb while he was fumbling with his cutouts. These actual mathemati-
cians proved that the cycloid area was in fact exactly three times the area of the 
generating circle, even though Galileo had explicitly concluded the contrary on 
the basis of his cardboard diorama. (The correct result was proved by Roberval 
in 1634. See Struik 1969, 232–8, Whitman 1943, Kline 1972, 350.)

When Galileo heard of others working on the cycloid challenge, he sought help 
on this “very difficult” problem from his countryman Bonaventura Cavalieri, a 
competent mathematician. “I worked on it fruitlessly,” lamented Galileo. “It needs 
the mind of a Cavalieri and no other,” he pleads, tacitly acknowledging his own 
unmistakably inferior mathematical abilities. (Galileo to Cavalieri, 24 February 
1640, Drake 1978, 406. Cavalieri did not take up the problem—“I too left it aside” 
(Freguglia and Giaquinta 2016, 34)—but Torricelli solved it soon thereafter.)

It is interesting to contrast this with the very different reaction to the same 
problem by Galileo’s contemporary René Descartes, the famous philosopher 
who was also a vastly better mathematician than Galileo. When Descartes heard 
of the problem he immediately wrote back to his correspondent that “I do not 
see why you attribute such importance to something so simple, that anyone 
who knows even a little geometry could not fail to observe, were he simply to 
look.” (Descartes to Mersenne, 27 May 1638, AT.II.135, Jullien 2015, 171.) He 
then immediately goes on to give  his own proof of the result composed on the 
spot. Descartes is not famous for his humility, but the fact of the matter is that a 
number of mathematicians solved the cycloid problem with relative ease, while 
Galileo was fumbling about with scissors and glue.

In the case of the cycloid, it is an unequivocal fact that Galileo used an exper-
imental approach because he lacked the ability to tackle the problem as a math-
ematician. If Galileo could have used a more mathematical approach he would 
unquestionably have done so. I suggest that what is so glaringly obvious in this 
case holds for Galileo’s science generally. Galileo’s celebrated use of experiments 
in science is not a brilliant methodological innovation but a reluctant recourse 
necessitated by his shortcomings in mathematical ability.

The cycloid case also makes it clear why the mathematically able prefer geomet-
rical proofs to experiments: the latter are notoriously unreliable. By relying on ex-
periments unchecked by proper mathematics, Galileo got the answer wrong, and 
not for the first time nor the last. “Do not think that I am relying on experiments, 
because I know they are deceitful,” said Huygens (Oeuvres.XI.115, Palmerino and 
Thijssen 2004, 189), and all other mathematicians with him. It had always been 
obvious that mathematics and science can be explored using experiment and ob-
servation. As Galileo says: “You may be sure that Pythagoras, long before he dis-
covered the proof […], had satisfied himself that the square on the side opposite 
the right angle in a right triangle was equal to the squares on the other two sides” 
(Galileo, Dialogue, OGG.VII.75, Wootton 2010, 85)—presumably by making nu-

http://Oeuvres.XI
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merical measurements on various concretely drawn triangles. But able mathema-
ticians had always known that haphazard trial and error had to be superseded by 
rigorous demonstration for a treatise to be worth the parchment it is written on. 
It is this—and not ignorance of “the scientific method”—that explains why you 
don’t see experimental and numerical data defiling the pages of masterpieces of 
ancient mathematics and science such as those of Archimedes.

2. Planetary Speeds

Galileo stated the correct law of fall, as every high school physics student 
knows. However, he made numerous fundamental mistakes when trying to ap-
ply this law in a range of situations. One such error is what has been called Gali-
leo’s “Pisan Drop” theory of planetary speeds (Heilbron 2010, 116). The planets 
orbit the sun at different speeds. Mercury has a small orbit and zips around it 
quickly. Saturn goes the long way around in a big orbit and it is also moving very 
slowly. Galileo imagines that these speeds were obtained by the planets falling 
from some faraway point toward the sun, and then being somehow deflected in-
to their circular orbits at some stage during this fall (Figure 1). That supposedly 
explains why the planets have the speeds they do.

Galileo expounds on this hypothesis in the Dialogue, and claims to have checked 
it mathematically and found that empirical orbital data “agree so closely with those 
given by the computations that the matter is truly wonderful” (Galileo 1953, 29). 
Galileo was so proud of this erroneous argument that he repeated it in his second 
major work, the Discourse, as well (Galileo 1974, 233, OGG.VIII.284). In both places 
he omits the details, however. Galileo has one of the characters in his dialogue say 
that “making these calculations […] would be a long and painful task, and perhaps 
one too difficult for me to understand,” whereupon Galileo’s mouthpiece in the dia-
logue confirms that “the procedure is indeed long and difficult” (Galileo 1953, 30).

Mathematically competent contemporaries did not find it too “difficult” to 
check Galileo’s theory, however. Mersenne immediately ran the calculations and 
found that Galileo must have messed his up, because his scheme doesn’t work. 
(Marin Mersenne, Harmonie Universelle, II.103–7, Galileo 1974, 233, note 22. 
Later Newton made the same observation; Newton 1999, 144.) There is no such 
point from which the planets can fall and obtain their respective speeds. Gali-
leo’s precious idea is so much nonsense, which evidently must have been based 
on an elementary mathematical error in calculation.

3. Centrifugal Force

Galileo wished to refute the following ancient argument: “The earth does not 
move, because beasts and men and buildings” would be thrown off (Galileo 1989, 
220). Picture an object placed at the equator of the earth, such as a rock lying on 
the African savanna. Imagine this little rock being “thrown off” by the earth’s 
rotation. In other words, the rock takes the speed it has due to the rotation of the 
earth, and shoots off with this speed in the direction tangential to its motion.
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Figure 1 – Galileo’s erroneous theory that the orbital speeds of the planets are equal to 
the speeds they would have acquired through free fall if dropped from a common height.

This is not what happens to an actual rock, because gravity is pulling it back 
down again. The rock stays on the ground since gravity pulls it down faster 
than it rises due to the tangential motion. How can we compare these two forc-
es quantitatively? Since we know the size and rotational speed of the earth, it is 
a simple task (suitable for a high school physics test) to calculate how much the 
rock has risen after, say, one second. This comes out as about 1.7 centimeters. 
We need to compare this with how far the rock would fall in one second due to 
gravity. Again, this is a standard high school exercise (equivalent to knowing the 
constant of gravitational acceleration g). The answer is about 4.9 meters. This is 
why the rock never actually begins to levitate due to being “thrown off:” gravity 
easily overpowers this slow ascent many times over.

But this conclusion depended on the particular size and speed and mass of the 
earth. We could make the rock fly by spinning the earth fast enough. For example, 
if we run the above calculations again assuming that the earth rotates 100 times 
faster, we find that, instead of rising a measly 1.7 centimeters above the ground in 
one second, the rock now soars to 170 meters in the same time. The fall of 4.9 me-
ters due to gravity doesn’t put much of dent in this, so indeed the rock flies away.

These things were calculated correctly in Galileo’s time (by Mersenne; Ber-
toloni Meli 2006, 113). But Galileo, alas, gets all of this horribly wrong. Even 
though we are supposed to celebrate Galileo as the discoverer of the law of fall, 
it is apparently too much to ask that he work out this basic application of it.

In fact, Galileo claims to “prove” that the rock will never be thrown off regardless 
of the rotational velocity. “There is no danger,” Galileo assures us, “however fast the 
whirling and however slow the downward motion, that the feather (or even some-
thing lighter) will begin to rise up. For the tendency downward always exceeds the 
speed of projection.” Thus Galileo proudly offers “a geometrical demonstration to 
prove the impossibility of extrusion by terrestrial whirling.” (Galileo 1953, 197–8.)
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Galileo’s so-called “demonstration” is shown in Figure 2. (Galileo 2001, 
231–4. The errors in Galileo’s argument have been analysed by Chalmers and 
Nicholas 1983, Hill 1984.) It is indeed a qualitative argument that ostensibly 
rules out all possible cases of centrifugal projection, regardless of the rotational 
speed of the earth V, the radius of the earth R, or the magnitude of gravitational 
acceleration g. It is true, as Galileo says, that the ratio

Figure 2 –  Galileo’s “proof ” that centrifugal projection can never hurl objects off the earth. 
If gravity stops acting on an object at A, it would move inertially in the tangential direction 
AB. Since inertial motion has uniform speed, it would reach the equally spaced points 
AFHK in equal time intervals. If the object had instead been dropped from rest, it would 
have acquired a certain downward speed in those same time intervals. These speeds are 
represented in the diagram by FG, HI, KL. Since the velocity acquired in free fall is propor-
tional to time, AGILE is a straight line. The slope of the line depends on the magnitude of 
gravitational acceleration, but for the purposes of this argument this value does not mat-
ter; in other words, we could just as well consider the speeds to be determined by some 
other line AD. The impossibility of centrifugal projection follows, according to Galileo, 
from the fact that as we consider smaller and smaller time intervals (that is to say, as we 
zoom it at A), the distance h(t) required to catch up with the earth shrinks very rapidly to 
zero, while the speed v(t) acquired from fall shrinks only linearly to zero. Therefore, says 
Galileo, the speed of fall v(t) will, for some small enough t, be more than enough to cover 
the distance h(t) and then some. In other words, the object will never get off the ground.

v(t)/h(t) goes to infinity as t goes to zero. But this is obviously comparing ap-
ples to oranges, namely a velocity with a distance. The relevant comparison is 
between h(t) and the distance d(t) covered by free fall in this time. Galileo evi-
dently felt that since in small time intervals v(t) is overwhelmingly larger than 
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h(t), then d(t) must surely be larger than h(t) as well. But this is false. Instead, 
the limit of d(t)/h(t) as t goes to 0 is gR/V2. In other words, d(t) does not always 
overpower h(t), as Galileo mistakenly believes. Rather, whether d(t) is greater or 
smaller than h(t) for small t depends on the specific parameters of the situation 
in question. A strong gravitational acceleration g, or a big radius of the rotational 
path R, makes it easier for the object to “catch up” with the surface of the earth, 
while a big rotational speed V makes it harder. Whether the object catches up 
with the surface or flies away depends on the relation between these parameters.

4. Circular Path of Fall

A rock dropped from the top of a tower falls in a straight line to the foot of 
the tower. But its path of fall is not actually straight if we take into account the 
earth’s rotation. Seen from this point of view—that is to say, from a vantage 
point that doesn’t move with the rotation of the earth—what kind of path does 
the rock trace? Galileo answers, erroneously,

Figure 3 –  Left: Galileo’s erroneous conception of the path of fall of a rock dropped 
from a tower. “AB [is the radius of] the terrestrial globe. Next, prolonging AB to C, the 
height of the tower BC is drawn. The semicircle CIA […], along which I think it very 
probable that a stone dropped from the top of the tower C will move, with a motion 
composed of the general circular one [due to the rotation of the earth] and its own 
straight one [due to gravity].” Galileo 2001, 192, OGG.VII.191. Right: From Galileo’s 
assumptions it follows that the path should be a spiral rather than a semicircle.

that it will be a semicircle going from the top of the tower to the center of the 
earth (Figure 3):

If we consider the matter carefully, the body really moves in nothing oth-
er than a simple circular motion, just as when it rested on the tower it moved 
with a simple circular motion. […] I understand the whole thing perfectly, and 
I cannot think that […] the falling body follows any other line but one such as 
this […]. I do not believe that there is any other way in which these things can 
happen. I sincerely wish that all proofs by philosophers had half the probability 
of this one (Galileo 2001, 192–3, OGG.VII.191).

This is “so obviously false (and besides incompatible with his own theory of 
uniformly accelerated motion of falling bodies) that one may wonder that Galileo 
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did not see it himself ” (Koyré 1955, 335). Once again Galileo doesn’t understand 
basic implications of his own law. Mersenne readily spotted Galileo’s error, where-
upon Fermat observed that the path should be a spiral, not a semicircle (Koyré 
1955, 336, 342, Engelberg and Gertner 1981, Galileo 2001, 556). This would be 
the right answer given Galileo’s assumptions, namely that the path is generated by 
composing uniform angular motion with uniformly accelerated radial motion to-
ward the center of the earth. (As stated in Galileo 2001, 192, and again later when 
he admitted Fermat’s correction (Koyré 1955, 343).) This implies that the path of 
fall is r = r0 – aθ2 in polar coordinates, which is indeed a spiral. This is still not the 
true path of fall, since Galileo’s assumption that his law of fall remains unchanged 
in the interior of the earth is itself false. But I am not concerned here with criti-
cising Galileo on such anachronistic grounds. Much worse is the fact that he got 
the wrong answer even if we grant his own assumptions.

When his embarrassing error was pointed out to him, Galileo replied that 
“this was said as a jest, as is clearly manifest, since it is called a caprice and a curi-
osity.” (Galileo to Pierre Carcavy, 5 June 1637, OGG.XVII.89, Shea 1972, 135.) 
But in reality “it is hard to believe that Galileo had really meant his solution of 
the trajectory of the falling body to be merely a joke” (Koyré 1955, 343). If Gal-
ileo truly meant his argument to be taken merely in jest, then why did he say 
that he “considered the matter carefully” and “sincerely wished that all proofs 
by philosophers had half the probability of this one” and so on? Many of Galil-
eo’s errors come with these kinds of bombastic claims where Galileo is editori-
alising about how remarkably convincing his own arguments are. It is advisable 
and sobering for any reader of Galileo to always keep this in mind.

5. Projectile Motion

Pick up a rock and throw it in front of you. The path of its motion makes a 
parabola. Galileo is famous for this result but in fact he only asserts it—he does 
not offer a proof. Even Galileo’s own follower Torricelli acknowledged this: the

Figure 4 –  Left: Correct conception of projectile motion. The dots indicate uniform 
inertial motion in the firing direction. Right: Erroneous conception of projectile mo-
tion, as drawn by Galileo in unpublished manuscripts. The dots indicate a decelerating 
motion in the firing direction, as if the projectile was struggling to ascend the incline. 
In both cases the rectilinear motion is composed with an independent vertical motion 
according to the law of fall. Based on Schemmel 2012, 94, 96.
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result is “more desired than proven,” as he says, very diplomatically (Torricelli, 
1644, Damerow et al. 2004, 275). And the reason why Galileo doesn’t prove this 
result is a revealing one. It is due to a basic misunderstanding.

The right way to understand the parabolic motion of projectiles like this is 
to analyse it in terms of two independent components: the inertial motion and 
the gravitational motion. If we disregard gravity, the rock would keep going 
along a straight line forever at exactly the same speed. That’s the law of inertia. 
But gravity pulls it down in accordance with the law of fall. The rock therefore 
drops below the inertial line by the same distance it would have fallen below its 
starting point in that amount of time if you had simply let it fall straight down 
instead of throwing it. A staple fact of elementary physics is that the resulting 
path composed of these two motions has the shape of a parabola.

Galileo does not understand the law of inertia, and that is why he fails on this 
point. If the projectile is fired horizontally, such as for instance a ball rolling off 
a table, then Galileo does prove that it makes a parabola. He proves it the right 
way, the way just outlined, by composition of inertial and gravitational motion 
(Galileo 1989, 217, 221–2, OGG.VIII.269, 272–3).

But if you throw the rock at some other angle, not horizontally, then Galil-
eo doesn’t dare to give such an analysis. “Although [Galileo’s] Discorsi takes it 
for granted that the trajectory for oblique projection is a parabola, no deriva-
tion of this proposition is presented.” “At the point in the systematic treatment 
of projectile motion in the Discorsi where oblique projection is actually dealt 
with and correctly stated to yield a parabolic trajectory, there is simply a gap in 
the argumentation, and no derivation is offered for this claim.” (Damerow et 
al. 2004, 237.)

Galileo’s failure is quite clearly due to his not daring to believe in uniform 
inertial motion in any other direction than along the horizontal. He seems to 
fear that the law of inertia is perhaps not true for such motions. He is worried 
that the rectilinear component of the projectile’s motion should be seen not 
as uniform but rather as gradually slowing down, like a ball struggling to roll 
up a hill or an inclined plane. In the latter case the trajectory is still a parabola, 
though not an “upright” one. See Figure 4. Indeed, more generally, “neither in 
the Discourses nor in the Dialogue does Galileo anywhere assert the eternal con-
servation of rectilinear motion” (Koyré 1978, 175). On the contrary, he explicitly 
rejects it: “Straight motion cannot be naturally perpetual.” (Galileo 1953, 32.) 
“It is impossible that anything should have by nature the principle of moving in 
a straight line.” (Galileo 1953, 19.)

In his final account, Galileo correctly “postulated upright parabolas for all 
angles of projection. Galileo’s reasoning for this shape is, however, untenable 
in classical mechanics. What is more, Galileo was unable to derive it from the 
consideration of two component motions.” “Galileo was […] confronted with a 
contradiction between the inclined-plane conception of projectile motion and 
his claim that the trajectory is an upright parabola for all angles of projection, 
a contradiction he was never able to resolve.” (Schemmel 2008, 234.) Since he 
only trusted the horizontal case, Galileo tried to analyse other trajectories in 
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terms of this case. To this end he assumed, without justification, that a parabola 
traced by an object rolling off a table would also be the parabola of an object fired 
back up again in the same direction (Galileo 1989, 245, OGG.VIII.296. Schem-
mel 2008, 234, Damerow et al. 2004, 227, 236). In other words, “he takes the 
converse of his proposition without proving or explaining it,” as Descartes—a 
mathematically competent reader—immediately pointed out (Descartes to 
Mersenne, 11 October 1638, AT.II.387. Drake 1978, 391.)

Figure 5 –  Left: The catenary, or shape of a hanging chain, which Galileo erroneously 
believed to be a parabola. Right: The catenary (dotted) compared to a parabola (solid) 
of equal arc length between the same endpoints.

Instead, “it was Galileo’s disciples who first derived the parabolic trajectory 
for oblique projection, although they present it merely as an explication of Gal-
ileo’s Discorsi,” which it is not (Damerow et al. 2004, 7). Indeed, “even before 
Galileo’s Discorsi appeared in print, Bonaventura Cavalieri published a deriva-
tion of the parabolic trajectory that is consistent with classical mechanics and is 
not restricted to horizontal projection.” (Damerow et al. 2004, 284). Cavalieri 
was Galileo’s countryman and in some sense disciple, and was very generous in 
deferring credit to Galileo.

The failures of Galileo’s treatment of projectile motion confirms his miscon-
ception that inertia is limited to horizontal motion, which, as we have seen, was 
already independently suggested by other passages. Some have tried to argue 
that “if Galileo never stated the law [of inertia] in its general form, it was im-
plicit in his derivation of the parabolic trajectory of a projectile” (Drake 1964, 
602). This would have been a good argument if Galileo had treated parabolic 
trajectories correctly. But he didn’t, so the evidence goes the other way: Gali-
leo’s bungled treatment of parabolic motion is yet more proof that he did not 
understand inertia.

Even apart from the above errors and omissions, the mathematical details 
of Galileo’s presentation of projectile motion are very clumsy. Galileo’s “calcu-
lations are unnecessarily complicated, and were greatly simplified by Torricelli 
in […] 1644, a complete revision and enlargement […] which […] makes Gal-
ileo’s demonstrations and procedures obsolete” (Buchwald and Fox 2013, 53). 
Once again Galileo’s text bears the marks of an amateur mathematician, in other 
words. And once again his followers almost immediately cleaned up his mess in 
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more mathematically able works that were full of deference to Galileo. “While 
[…] inspired by veneration of Galileo, Torricelli is more logical in his treatise.” 
(Hall 1952, 91.) Hence later mathematicians who used Torricelli’s better but 
reverential account rather than Galileo’s original for the mathematical details 
could easily be left with a much more flattering impression of the mathemati-
cal quality of “Galileo’s” theory than if they had studied Galileo’s own treatise 
in detail. Perhaps it is not so strange, then, that posterity got a bit confused and 
attributed much more to Galileo than he actually earned.

6. Catenary

The shape of a hanging chain (Figure 5) looks deceptively like a parabola. 
It is not, but Galileo fell for the ruse: “Fix two nails in a wall in a horizontal line 
[…] From these two nails hang a fine chain […] This chain curves in a parabolic 
shape.” (Galileo 1974, 143, OGG.VIII.186). More competent mathematicians 
proved him wrong: Huygens demonstrated that the shape was not in fact para-
bolic (Bukowski 2008; Truesdell 1960, 45). Admittedly, Huygens’s proof is from 
1646, four years after Galileo’s death. So one may consider Galileo saved by the 
bell on this occasion, since he was proved wrong not by his contemporaries but 
only by posterity. It is not fair to judge scientists by anachronistic standards. On 
the other hand, Huygens was only seventeen years old when he proved Galil-
eo wrong. So another way of looking at it is that a prominent claim in Galileo’s 
supposed masterpiece of physics was debunked by a mere boy less than a de-
cade after its publication.

In any case, Galileo thus ascribed to the catenary the same kind of shape as 
the trajectory of a projectile. He considered this to be no coincidence but rather 
due to a physical equivalence of the forces involved in either case (Galileo 1989, 
256, OGG.VIII.309). Indeed, Galileo made much of this supposed equivalence 
and “intended to introduce the chain as an instrument by which gunners could 
determine how to shoot in order to hit a given target” (Renn et al. 2001, 118).

Galileo also tried to test experimentally whether the catenary is indeed 
parabolic. To this end he drew a parabola on a sheet of paper and tried to fit a 
hanging chain to it. His note sheets are preserved and still show the holes where 
he nailed the endpoints of his chain (Renn et al. 2001, 39). The fit was not per-
fect, but Galileo did not reject his cherished hypothesis. Instead of questioning 
his theory, he evidently reasoned that the error was due merely to a secondary 
practical aspect, namely the links of the chain being too large in relation to the 
measurements. Therefore he tried it with a longer chain, and found the fit to 
be better. In this way he evidently convinced himself that he was right after all 
(Renn et al. 2001, 92–104).

The catenary case thus undermines two of Galileo’s main claims to fame. 
First it brings his work on projectile motion into disrepute. The composition 
of vertical and horizontal motions that we are supposed to admire in that case 
looks less penetrating and perceptive when we consider that Galileo erroneous-
ly believed it to be equivalent to the vertical and horizontal force components 
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acting on a catenary. Secondly, Galileo’s reputation as an experimental scien-
tists par excellence is not helped by the fact that his experiments in this case led 
him to the wrong conclusion, apparently because his pet hypothesis led him to 
a biased interpretation of the data and a sweeping under the rug of an experi-
mental falsification.

7. Moons of Jupiter

The moons of Jupiter were probably the most surprising new discovery made 
when telescopes were first pointed at the sky. An anecdote related by Kepler 
conveys some of the excitement: “My friend the Baron Wakher von Wachen-
fels drove up to my door and started shouting excitedly from his carriage: ‘Is it 
true? Is it really true that he [i.e., Galileo] has found stars moving around stars?’ 
I told him that it was indeed so, and only then did he enter the house.” (Kepler 
to Galileo, 1610, Santillana 1955, 10.) It seems Galileo was indeed the first to 
observe the moons of Jupiter, but only by the smallest possible margin: Simon 
Marius independently observed them the very next day (Gaab and Leich 2018, 
Chapter 5, Pasachoff (2015)).

Galileo’s mathematical ineptitude is on display in this case as well. “Galileo’s 
first calculations [of the orbital periods of Jupiter’s moons] were geocentric, not 
heliocentric. Galileo was treating Jupiter as if it revolved around the Earth, not 
the Sun. How he ever came to make such an error is an interesting question.” 
(Drake 1999, 421. See also Shea 2009, 35. Galileo eventually realised his error 
when his calculations didn’t match observations.)

Kepler and Marius, meanwhile, understood the matter perfectly and real-
ised at once that this was another good argument against the Ptolemaic system 
(Drake 1999, 422). One Galileo supporter offers a very charitable interpreta-
tion: “this throws in doubt the view that by 1611 Galileo was already a Coper-
nican zealot anxious to find every possible argument for the Earth’s motion” 
(Drake 1999, 429). A more plausible explanation, in my opinion, is that Gal-
ileo was simply not very competent as a mathematical astronomer. It was not 
lack of desire to prove the earth’s motion that made Galileo miss the point, it 
was lack of ability.

8. Comets

“Have you seen the fleeting comet with its terrifying tail?” (Drake and 
O’Malley 1960, 4.) This was the question on everyone’s lips in 1618, follow-
ing the appearance of a comet “of such brightness that all eyes and minds were 
immediately turned toward it.” “Suddenly, men had no greater concern than 
that of observing the sky […]. Great throngs gathered on mountains and other 
very high places, with no thought for sleep and no fear of the cold.” (Drake and 
O’Malley 1960, 6.) “That stellar body with its menacing rays was considered as 
a monstrous thing” (Drake and O’Malley 1960, 4, 6), and, according to many, 
surely a cosmic omen foretelling imminent disasters.
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Some urged a more dispassionate approach, arguing that “the single role of 
the mathematician” is merely to “explain the position, motion, and magnitude 
of those fires.” (Drake and O’Malley 1960, 6–7.) Indeed, “the mathematician” 
had been so engaged for generations. Tycho Brahe, for instance, had worked 
extensively on comets, and in Galileo’s time the task was taken up in depth by 
Kepler and others.

But entering this game would have required more mathematical skill and dil-
ligence than Galileo was used to displaying. Not coincidentally, Galileo offered 
an argument for why one should ignore the serious mathematical astronomy of 
comets, namely that such accounts are hopelessly inconsistent:

Observations made by Tycho and many other reputable astronomers upon 
the comet’s parallax […] vary among themselves […]. If […] complete faith […] 
be placed in them, one must conclude either that the comet was simultaneously 
below the sun and above it, […] or else that, because it was not a fixed and real 
object but a vague and empty one, it was not subject to the laws of fixed and real 
things (Galileo, Assayer 1623, Drake and O’Malley 1960, 257–8).

Kepler was flabbergasted that someone calling himself a geometer could be so 
dismissive of the excellent work of mathematically able astronomers such as Tycho:

Galileo […], if anyone, is a skilled contributor of geometrical demonstrations 
and he knows […] what a difference there is between the incredible observational 
diligence of Tycho and the indolence common to many others in this most 
difficult of all activities. Therefore, it is incredible that he would criticize as 
false the observations of all mathematicians in such a way that even those of 
Tycho would be included (Kepler, appendix to Hyperaspistes 1625, Drake and 
O’Malley 1960, 351).

This paradox disappears if one recognises that Galileo is not a skilled geom-
eter after all.

Unlike serious mathematical astronomers (and perhaps precisely in order 
to avoid having to engage with their mathematically advanced works), Galileo 
maintained that comets were not physical bodies travelling through space at all, 
but rather a chimerical atmospheric phenomenon. (It happens that Aristotle too 
had held that comets were sublunary, but tradition was clearly not the reason for 
Galileo to adopt his theory, as Galileo argues vehemently against the Aristotelian 
theory and the principles on which it is based (Galileo (1957), 263, 266, 270–3).)

According to Galileo’s theory of comets, “their material is thinner and more ten-
uous than fog or smoke” (Galileo, Assayer 1623, Galileo 1957, 254). “In my opin-
ion,” says Galileo, comets have “no other origin than that a part of the vapour-laden 
air surrounding the earth is for some reason unusually rarefied, and […] is struck 
by the sun, and made to reflect its splendour” (Shea 1972, 81, OGG.VI.94).

Galileo’s vapour theory of comets is inconsistent with basic observations, as 
he himself admits. If comets are nothing but “rarefied vapour”—that is to say, 
some kind of pocket of thin gas—then you’d imagine that their natural motion 
would be straight up, like a helium balloon. Indeed Galileo does propose that 
comets have such paths. But then he at once admits that this doesn’t fit the facts: 

http://OGG.VI


99 

Galileo’s Mathematical Errors

“I shall not pretend to ignore that if the material in which the comets takes form 
had only a straight motion perpendicular to the surface of the earth […], the 
comet should have seemed to be directed precisely toward the zenith, whereas, 
in fact, it did not appear so. This compels us either to alter what was stated, […] 
or else to retain what has been said, adding some other cause for this apparent 
deviation. I cannot do the one, nor should I like to do the other.” (Shea 1972, 
82–3, OGG.VI.98.) Bummer, it doesn’t work. But Galileo sees no way out, so 
he just leaves it at that.

Galileo’s contemporaries were not impressed. “[Grassi’s] criticism of Galil-
eo is on the whole penetrating and to the point. He was quick to spot Galileo’s 
inconsistencies. Grassi produced an impressive array of arguments to show 
that vapours could not explain the appearance and the motion of the comets 
[as Galileo had claimed].” (Shea 1972, 84.) For instance, the speeds of comets 
do not fit Galileo’s theory. According to Galileo’s theory, the vapours causing 
the appearance of comets rise uniformly from the surface of the earth straight 
upwards. Therefore the comet should appear to be moving fast when it is close 
to the horizon, and then much slower when it is higher in the sky. Just imagine 
a red helium balloon released by a child at a carnival: it first it shoots off quick-
ly, but soon you can barely tell if it’s rising anymore, even though it keeps going 
up at more or less the same speed, because your distance and angle of sight is so 
different. But comets do not behave like that. Detailed observations of the comet 
of 1618 showed a much more constant speed than Galileo’s hypothesis requires.

Galileo also offered another poorly considered argument against the cor-
rect view of comets as orbiting bodies, namely that their orbits would have to 
be unrealistically big: “How many times would the world have to be expanded 
to make enough room for an entire revolution [of a comet] when one four-hun-
dredth part of its orbit takes up half of our universe?” (Galileo, Shea 1972, 77.) 
This is a poor argument, because the universe must indeed be very big and then 
some according to Copernican theory, in order to explain the absence of stellar 
parallax. Since the earth’s motion is observationally undetectable, the orbit of 
the earth must be minuscule in relation to the distance to the stars. That means 
there is plenty of room for comets. But Galileo conveniently pretends otherwise 
in his argument against comets. Evidently, Galileo “was so intent on refusing 
Tycho that he failed to notice that he was pleading for a universe in which there 
would be no room for the heliocentric theory” either (Shea 1972, 88).

In sum, Galileo’s completely erroneous theory of comets was roundly and 
rightly criticised by contemporaries. It is difficult to see why Galileo nevertheless 
found it so attractive, except perhaps for the fact that it conveniently alleviated 
him of having to do any actual mathematical astronomy of comets.

9. Conclusion

Galileo made numerous mistakes that were corrected by his mathematically 
superior contemporaries. It is time to abandon the persistent myth of “Galileo’s 
mathematical genius” (Costabel and Lerner 1973, I.41). Historians will never 
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see Galileo’s true colours as long as they keep taking it for granted that Galil-
eo was “the greatest mathematician in Italy, and perhaps the world” in his time 
(Heilbron 2010, 303). In reality, tell-tale signs of mathematical mediocrity per-
meate all of Galileo’s works.

Galileo’s mathematical shortcomings can be seen as a consistent theme inter-
twined with many aspects of his career. Galileo’s celebrated adoption of empirical 
experiments and the telescope are grateful avenues of research for someone ill 
equipped to make a contribution on mathematical grounds. Likewise, it is easier 
to rhapsodise about the mathematical design of the universe and expound the 
basic principles of scientific method than to engage with advanced mathemati-
cal science (“those who can’t do, teach”). In physics, as Descartes put it, Galileo 
“did not need to be a great geometer” for the purposes that he set himself: “he is 
eloquent to refute Aristotle, but that is not hard” (Drake 1978, 390). In astrono-
my, the very title of Galileo’s Dialogue Concerning the Two Chief World Systems: 
Ptolemaic and Copernican reveals how antiquated and irrelevant to mathematical 
astronomers his framing of the issue of heliocentrism was, since “the Ptolemaic 
system already had been set aside, at least among mathematical astronomers” 
(Magruder 2009, 208), because, as Kepler said, there was “practically no one 
who would doubt what is common to the Copernican and Tychonic hypoth-
eses” (Jardine 1984, 147) already well before Galileo had entered the picture. 
Regarding his conflict with the church, “if Galileo spoke only as a mathemati-
cian he would have nothing to worry about” (Drake 1978, 249), he was told by 
church authorities in 1615. Perhaps things would have turned out differently if 
Galileo’s ability to advance science “as a mathematician” had not been so limited.

Galileo’s errors also call for reassessing his good points. Apollo 15 astro-
nauts performed an experiment on the moon. They dropped a hammer and a 
feather and found that they fell with the same speed. “Galileo was correct,” they 
concluded in a famous video recording still often shown in science classrooms 
today. Lucretius was correct, they could have said instead, since he predicted 
that this would happen in the absence of air well over a millennium before Gali
leo (De rerum natura, II: 225–39). Meanwhile, Galileo was wrong, because he 
considered it “obvious” that the moon had an atmosphere (Shea 2009, 93). If 
the astronauts wanted to test Galileo’s theory they should not have dropped a 
hammer and a feather. They should have taken off their helmets and suits and 
tried to breathe. That would have showed you how “right” Galileo really was. It 
is easy to be a hero of science if you are allowed a hundred guesses and people 
only remember the few that worked. If there had been air on the moon, the as-
tronauts would have hailed Galileo for this “discovery” instead.

Posterity has chosen to remember only Galileo’s successes while forgetting his 
numerous errors. Galileo made many erroneous claims that would have earned 
him not a little credit if they had been correct. It is dangerous to start with what 
we know and ask of history only who was the first to say it. Such selective retro-
spection is bound to reward careless scientists who made a hundred wild guesses 
instead of those who weigh evidence carefully before making any rash judge-
ments. Galileo is indeed excessively and erroneously assertive where he should 



101 

Galileo’s Mathematical Errors

have been much more cautious and aware of the limitations of his evidence in 
many cases. In this way Galileo is undermining his right to claim credit for the 
things he did get right: his accounts of his correct discoveries may sound very 
convincing and emphatic, but knowing that he was equally sure of a long list of 
errors gives us reason to suspect that some of the things he got right are to some 
extent guesswork propped up with overconfident rhetoric in the hope that read-
ers will mistakenly think his case is stronger than it is. Only by paying attention 
to Galileo’s errors can we gain a sound perspective on his truths.
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