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ABSTRACT: Web platforms are increasingly being used to connect communities, including construction industry 
and academia. Design features of such platforms could impose excessive cognitive workload thereby impacting 
the use of the platform. This is a crucial consideration especially for new web platforms to secure users’ interest 
in continuous usage. Understanding users’ cognitive workloads while using web platforms could help make 
necessary modifications and adapt the features to users’ preferences. Users’ usage patterns can be leveraged to 
predict the needs of users. Hence, the pattern of cognitive demand that users experience can be used to predict 
the cognitive load of web platform users. This could provide insights, generate feedback, and identify areas of 
modification that are critical for sustaining acceptability of web platforms. Using recurrent neural network, this 
study adopts electroencephalogram (EEG) data as a physiological measure of brain activity to predict brain 
signals (cognitive load) of users while interacting with a web platform designed to connect industry and academia 
for future workforce development. This paper presents a Long Short-Term Memory (LSTM) based approach to 
develop a model for predicting users’ cognitive load via EEG signals. Nineteen (19) potential end-users of the 
proposed web platform were recruited as participants in this study. The participants interacted with the web-
platform in a real case scenario and their brain signals were captured using a five-channel EEG device. The 
validity of the proposed method was evaluated using root mean square error (RMSE), coefficient of determination 
(R2), and comparison of the predicted and actual EEG signals and mental workload. The results revealed the 
reliability of the model and provided a suitable method for predicting users brain signals while using web 
platforms. This could be leveraged to understand users’ cognitive demand which could provide insights for web 
platform improvements to engender users’ continuous usage. 
 
KEYWORDS: Cognitive load, electroencephalogram, industry-academia collaboration, long short-term 
memory, web platform. 

1 INTRODUCTION 
To achieve a balanced blend of theory and practice, as well as adequately prepare students for a rapidly changing 
industry like the construction sector, collaboration between industry and academia is important. Academia differs 
from the industry in that the industry is known for practical application of knowledge while academia is known 
for teaching and research. These differences are complementary in preparing the future workforce for the 
workplace. Therefore, this necessitates a connection between instructors and practitioners for collaborations in 
future workforce development. However, there are myriads of challenges plaguing these collaborations of which 
a prime challenge is instructors’ access to practitioners (Chandrasekaran, Littlefair, & Stojcevski, 2015). Since 
the outbreak of Covid-19, the internet is being increasingly used to connect individuals and communities, for 
example, to connect instructors to students, and buyers to sellers. The usage of the internet has been growing over 
the decades, with a transition from mere information sharing medium to workspaces, marketplaces, and even 
communities (H.-F. Lin, 2009; Schmutz, Heinz, Métrailler, & Opwis, 2009; Wellman, 2004). Dale, Basumatary, 
Iqbal, Khullar, and Shaikh (2022) used Facebook to connect diverse community users to archived language 
collections. Maher, Oropello, Roman, and Zeoli (2022) also showed how the internet was used to connect 
underserved communities to increase health care access and improve care outcomes. Internet-based technologies 
have also been leveraged to build virtual communities (H.-F. Lin, 2009). Therefore, a web-based platform could 
be used to connect instructors to different practitioners who are willing and able to provide complementary input 
in course offerings. Hence, a web-based platform was designed to give instructors improved access to practitioners 
who could provide complementary inputs in instructors’ pedagogical effort and support the preparation of students 
for the industry. However, during interaction with web-based platforms, there is a risk of cognitive overload. 
Cognitive overload is an indicator of non-intuitive interface, poor presentation of information which requires more 
efforts to interact with thereby exhausting cognitive resources. Therefore, to ensure that the web platform for 
connecting instructors with practitioners has little or minimal downsides, it is important to ensure it has minimal 
cognitive demand on users.  
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High cognitive load has been identified as an indication of web usability problem (Albers, 2011) but this is not 
always the case. Users’ performance and success in the use of web-based platforms depends not only on the web 
platform but also on users. This is because human cognitive resources at a point in time are limited, unstable, and 
vary from person to person. Also, the perceived cognitive demand for the same activities varies among people 
(Das, Chatterjee, & Sinha, 2013), for example due to differences in prior knowledge (Seufert, Jänen, & Brünken, 
2007), users skill level (Kumar & Kumar, 2016), and amount of cognitive resources available (Tracy & Albers, 
2006). In addition, regardless of intrinsic features of a web-based platform that could impact users’ cognitive load, 
other extrinsic factors such as lack of adequate sleep, temporal demand, and stress (Tracy & Albers, 2006) could 
reduce the amount of cognitive resources available to users at a point in time. Therefore, due to these varying and 
fluctuating extrinsic factors, a user can experience different levels of cognitive demand on the same web-based 
platform at different times even when the platform is not changing. Majority of prior studies (Hewitt & He, 2022; 
F.-R. Lin & Kao, 2018; Mills et al., 2017; Schmutz et al., 2009) focused on detection of cognitive load and the 
impact of web-platforms’ intrinsic characteristics on users’ cognitive load with little or no attention on extrinsic 
factors that are user-dependent which also impact cognitive demand. This represents a major limitation to the 
generalizability of user experience on the same web platform due to the fluctuation and differences in human 
cognitive resources. This also accounts for disparities between usability evaluations and real-world scenarios 
which usually skewed the results of several user testing research. Hence, one-size-fits all approaches cannot meet 
users’ unique and differing needs.  

Therefore, to address the dynamism in web-platform usage because of the varying and unstable nature of cognitive 
resources, adaptive and personalized website design would be beneficial (Desai, 2021). To achieve this, 
(Adomavicius & Tuzhilin, 2005) recommended leveraging usage patterns to predict the needs of users. A reliable 
prediction of cognitive load is a fundamental step toward adaptive design (Appel et al., 2019). Hence, the pattern 
of cognitive demand that users experience can be used to predict the cognitive load of users. This could also help 
to generate feedback and identify areas of modification that are critical for sustaining acceptability of web 
platforms. In addition to subjective measures (e.g., NASA TLX), electroencephalogram (EEG) is a growing 
objective measure of cognitive load in human computer interaction. This has been used by previous studies 
(Caldiroli et al., 2023; Kumar & Kumar, 2016) to assess cognitive load in web-platform usage. Previous studies 
(Appel et al., 2019; Herbig et al., 2020) have focused on predicting cognitive load with other physiological 
measures (such as eye tracking metrics, heart rates, and galvanic skin response) using machine learning. Most 
previous studies (Caldiroli et al., 2023; F.-R. Lin & Kao, 2018; Mills et al., 2017) focused on using EEG to detect 
cognitive load in web platform usage. Only a few studies such as (Friedman, Fekete, Gal, & Shriki, 2019; Mills 
et al., 2017; Yoo, Kim, & Hong, 2023) used EEG for prediction of cognitive load in web platform usage. Mills et 
al. (2017) leveraged EEG spectral features using partial least squares regression to develop a model to predict 
cognitive load during interactions with an intelligent tutoring system. Yoo et al. (2023) developed a long short-
term memory (LSTM)-based machine learning model to predict the degree of cognitive load using EEG data. The 
study showed that LSTM had the highest accuracy of 87.1% compared to random forest (64%), AdaBoost 
(64.31%), support vector machine (60.9%), XGBoost (67.3%), and artificial neural network models (71.4%). 
Using EEG data for prediction of cognitive load, Friedman et al. (2019) assessed different machine learning 
predictive models and reported that XGBoost has the highest predictive power compared to random forest, 
artificial neural network, and simple linear regression models. Therefore, if a web platform is held constant over 
time, users' cognitive demand can be predicted with EEG signals as they interact with the platform. Hence, this 
study leverages EEG signals to develop a model for predicting the cognitive demand of a web platform designed 
for industry-academia collaborations. The results of predicting users’ cognitive load could help identify patterns 
in the usage of the platform which could inform necessary modifications to ensure optimum usability that could 
influence users’ acceptance and intention to use the proposed web-based platform 

2 BACKGROUND 
The success of new information systems hinged on users' acceptance (Davis, 1985). However, high cognitive load 
could affect user’s satisfaction as well as acceptance of a new web-platform. For example, high cognitive load is 
an indication of web usability problems (Albers, 2011). Hu, Hu, and Fang (2017) demonstrated that cognitive 
load can affect user satisfaction with a website. This could affect users’ revisit, trust, and loyalty (Desai, 2021). 
Hewitt and He (2022) showed that difficulty of task to be performed and web page contrast could impact users’ 
cognitive demand and perceived usability. Schmutz, Roth, Seckler, and Opwis (2010) revealed that mode of 
presentation of information on web platforms impacts users’ perceived cognitive load. Examples of other 
problems associated with web-based platforms which could affect the cognitive load of users include confusing 
link name or description, horizontal scrolling, and atypical interface design which negate users’ mental model 
(Albers, 2011). The cognitive demand of web-based platforms is crucial because human cognitive resources are 
limited. Hence, there is a risk of web-platforms requiring more cognitive resources than what users possess, which 
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results in cognitive overload (Albers, 2011). Despite design principles, users of web platforms could be 
overwhelmed or confused because of information overload and/or excessive obstacles to overcome before locating 
the right information. Cognitive overload could interfere with mental processing of information which could cause 
users to exit a web page or even fail to locate appropriate content (Albers, 2011). Other manifestations/impact of 
cognitive overload on web users include task shedding, increase in frustration, multiple mistakes, lack of attention 
to detail and disregard of content (Albers, 2011; Kumar & Kumar, 2016). As cognitive demand increases, users’ 
performance plummets (Tracy & Albers, 2006). Hence, the need to assess cognitive load of users as they interact 
with web-based platforms. 
 
Though originated from psychology, assessment of cognitive load has translated into physiological sensing where 
objective measures such as EEG are increasingly being used to complement subjective measures (Kumar & 
Kumar, 2016). The limitations of subjective measures (such as bias and inability to currently recall actual 
experience or perception) make objective measures (e.g., EEG) growing methods for assessing cognitive load. 
Through electrodes on the scalp, EEG collects brain signals resulting from cognitive processes taking place in the 
brain (Kumar & Kumar, 2016). These signals vary depending on the type of activities in the brain and correspond 
to cognitive load (Mills et al., 2017). By leveraging deep learning techniques, EEG signals can be used to predict 
cognitive load via real time data from brain signals. Prior studies have demonstrated the efficacy of EEG to predict 
the cognitive load in different contexts (Moghar & Hamiche, 2020; Salman, Heryadi, Abdurahman, & Suparta, 
2018; Yoo et al., 2023) using Recurrent Neural Networks (RNN). RNN are deep learning techniques commonly 
used for time series forecasting of sequential data (Qin & Bulbul, 2023). However, major downsides of RNN 
include the time intensive nature of traditional RNN and difficulty in training the models because they are prone 
to vanishing and exploding gradient problems (Van Houdt, Mosquera, & Nápoles, 2020). To circumvent this 
challenge, advanced architectures like LSTM are being used in diverse contexts to develop prediction models for 
time series. For example, in prediction of mental workload during construction task using augmented reality head 
mounted display (Qin & Bulbul, 2023), stock market prediction (Moghar & Hamiche, 2020), and weather 
forecasting (Salman et al., 2018). LSTM consists of input layer, output layer and an intermediary LSTM layer (or 
hidden layer) (Moghar & Hamiche, 2020). The input layer receives data as input, while the output layer determines 
data that will be output. The hidden layer is made up of memory cells and three gates that are in charge of updating 
the cell state. LSTM is a gradient-based method used for capturing long-term dependencies in sequential data 
(Hua et al., 2019). The primary component of LSTM that enabled this capability of LSTM is the memory block 
(Van Houdt et al., 2020). Memory block (or LSTM cell) is a subnetwork comprising a memory cell (also known 
as cell state) and three gates (namely, input gate, output gate and forget gate) (Staudemeyer & Morris, 2019). The 
memory cell retains the temporal state of the neural network while the gates control the flow of information. The 
input gate manages the inflow of new information into the memory cell using Equation 2 and 3 and updates the 
memory cell by Equation 4. The amount of existing information which remains in the current memory cell is 
controlled by the forget gate as illustrated in Equation 1. The output gate regulates the amount of information for 
computing the output activation of the memory block and how it propagates to the rest of the neural network (Hua 
et al., 2019) using equations 5 and 6. The structure of the LSTM cell is shown in Figure 1. 
 
ft = σ(Wf [ht-1, xt] + bf )    ...Eqn. 1 
it = σ(Wi[ht-1, xt] + bi)    ...Eqn. 2 
c˜t = tanh(Wc[ht-1, xt] + bc)    ...Eqn. 3     
ct = ft ⊙ ct-1 + it ⊙ c˜t    ...Eqn. 4 
ot = σ(Wo[ht-1, xt] + bo)    ...Eqn. 5 
ht = ot ⊙ tanh(ct)     ...Eqn. 6  
 
Weight matrices for the forget gate, input gate, cell state and output gate are denoted by Wf, Wi, Wc, Wo. In the 
same order, bf, bi, bc, bo represent the bias vectors. Elementwise (Hadamard) multiplication is denoted by ⊙, 
logistic sigmoid function by σ, and the hyperbolic tangent function by tanh. ht and ct represent the hidden state 
and cell state at time t respectively.  

 
Fig. 1: Architecture of LSTM network. 
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Mental workload can be estimated from spectral power which represents the brain rhythm’s energy (Qin & Bulbul, 
2023). A positive relationship existed between cognitive load and theta rhythm power, whereas a negative 
relationship exist between cognitive load and alpha rhythm power (Gevins, Smith, McEvoy, & Yu, 1997).  Hence 
mental workload can be calculated using equation 7 similar to Qin and Bulbul (2023). 

MW t  
   …...Eqn. 7 

MW(t) represents the mental workload at time t; θf(t) and αp(t) are the mean spectral power of theta and alpha 
rhythm at time t respectively.  
 

3 METHODOLOGY 
3.1 Overview of the Web Platform 

The web platform in this study is designed to be a collaborative network of instructors and practitioners for future 
workforce development. The aim of the platform is to improve instructors’ access to practitioners who could 
provide practical supplementary inputs in construction engineering education to aid students’ preparedness for the 
industry. The potential users of the platform are instructors in construction-related programs (such as Building 
Construction, Architecture, Civil and Environmental Engineering as well as Construction Engineering and 
Management) and construction industry professionals. The platform was designed by leveraging participatory 
design, interaction design and user-centered-design principles (Freire, Arezes, & Campos, 2012). Users’ input and 
participation in the design process were ensured through usage research. Usage research was used to elicit 
pertinent information from end users. The information elicited served as inputs for the design of optimal graphic 
user interface of the platform. By leveraging heuristics design principles for user interface design (Nielsen, 1994), 
the platform was designed to be typical to other platforms that potential users are familiar with. This is to ensure 
that the platform operational procedure is similar to users’ mental mode which could enhance ease of use of the 
platform as well as users' acceptance. To use the platform, an instructor is required to sign up, verify email address, 
complete profile, submit request for course-support, view recommended practitioners from the platform and select 
preferred practitioner to meet the course-support request. The course-support requests include site visits, guest 
lectures, seminars, workshops, and other activities that allow students to interact with practitioners under the 
guidance of an instructor. The platform was designed using JavaScript programming language. A relational 
database management system (MariaDB) was adopted with Node.js as server.  

3.2 Experimental Design 
After a brief introduction of the platform to participants. The procedure of the experiment was explained. All 
participants provided their informed consent by signing the consent form. The participants interacted with the 
web-based platform. Each participant was required to sign up on the platform. Thereafter, participants verified 
their email address before first login. Upon login, the participants were required to complete their profile after 
which they requested a course-support from practitioners. After a request for course-support, participants viewed 
recommended practitioners to meet their course support request. Out of these recommendations, instructors made 
a selection. Every session of the experiment was conducted under similar conditions. 

3.3 Participant and Study Approval 

Nineteen (19) participants were recruited after the research protocol was approved by the Virginia Tech 
Institutional Review Board. The participants include both male and female professors (the proposed end-user of 
the web-based platform) with varying degrees of experience, different job titles and from diverse construction-
related academic programs such as civil and environmental engineering, building construction, architecture, and 
construction engineering and management. 

3.4 Data Collection 
As participants use the web-based platform, their cognitive load was objectively measured via braai signals using 
an electroencephalogram (EEG) device called EMOTIV Insight. EMOTIV Insight has five channels, namely AF3, 
AF4, T7, T8, Pz with semi-dry polymer sensors and two reference sensors (CMS and DRL). The channels are 
arranged according to the 10/20 international EEG system. EMOTIV Insight has a sampling rate of 128 samples 
per second per channel for EEG signal with frequency response of 0.5-43Hz, digital notch filters at 50Hz and 
60Hz. The device has Bluetooth connectivity which can be connected to a computer or mobile device with 
Bluetooth V5.0. EMOTIV Insight provides coverage of the frontal, temporal and parietal lobes which are 
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associated with cognitive effort (Kumar & Kumar, 2016). The EEG recording was about ten (10) minutes on 
average per participant. An overview of the methodology is shown in Figure 2. 
 

 
Fig. 2: Overview of methodology. 

 

3.5 Data Preprocessing and Analysis 
The raw EEG data collected with the EmotivPRO app was cleaned. Thereafter, the processes highlighted below 
were carried out. 
 
3.5.1 Artifacts removal 

EEG signals are susceptible to diverse categories of artifacts which represent noise/interferences to signals of 
interest. These artifacts are either intrinsic or extrinsic. Intrinsic artifacts are generated by EEG user’s body 
movement such as blinking and muscle activity. Extrinsic artifacts originate from external factors such as shifting 
of electrode, noise from electrode wiring and surroundings noise (Jebelli, Hwang, & Lee, 2018). According to 
Urigüen and Garcia-Zapirain (2015), these artifacts are usually small when the EEG device is used in a somewhat 
stationary position as it was in this study. Both intrinsic and extrinsic artifact removals were done using EEGLAB. 
The cleaned EEG data in CSV format were converted to MATLAB file and imported into EEGLAB. The data 
was mapped and structured using 5-channel location. The extrinsic artifacts were removed using basic band pass 
filter range of 0.5Hz to 60Hz. As recommended by Delorme and Makeig (2004), Extended Infomax method was 
used to decompose the EEG data through independent component analysis (ICA). The data was decomposed into 
5 components, displayed with scalp heat maps and intrinsic artifacts were rejected.  
 
3.5.2 Data Processing 

Five (5) brain wave frequency bands were captured by each of the five (5) electrodes of the EEG device (EMOTIV 
Insight) used in this study. These frequency bands include Theta (4-8Hz), Alpha (8-12Hz), Low Beta (12-16Hz), 
High Beta (16-25Hz), Gamma (25-45Hz). The cleaned data for all the nineteen participants from the five (5) 
channels of the EEG device were used for the analysis. There were 79936 data points on average for each 
participant for an average recording time of 10 minutes. The data points were split into 80% and 20% for training 
and testing respectively.  
 
3.5.3 Prediction framework 

The preprocessed EEG data was used to train the LSTM network for prediction of EEG signals. Open loop 
forecasting was adopted because true values of brain signals (representing cognitive load) from EEG were used 
to train the LSTM network for prediction. Similar to Kingma & Ba (2014), Adaptive Moment Estimation which 
is an extension of the stochastic gradient descent algorithm was used for optimization with a learning rate of 0.001. 
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To ensure that the loss is as small as possible an epoch of 250 was adopted for training the model. Root Mean 
Square Error (RMSE) was used to calculate the loss function to determine the performance of the model. The 
LSTM layer has 128 hidden units or memory cells to capture and store information over time, which enables the 
LSTM network to process sequential data effectively. The hidden units determine the amount of information 
learned by the layer. Both the sequence input layer and the fully connected layer of the LSTM regression neural 
network have sizes that match the number of channels of the input data.  

3.5.4 Mental workload 

Because it is not possible to directly measure mental workload from EEG signals, the signals were converted into 
frequency domain. This conversion enabled the calculation of the average spectral power of particular brain 
rhythms, hence, the Power Spectral Density (PSD) of the signal was calculated. PSD is a measure of the mean 
power distribution of a signal over a specific timeframe with the unit showing energy per frequency (Qin & Bulbul, 
2023). The mental workload was estimated using equation 7 for both the actual and predicted EEG signals. 

4 RESULTS AND DISCUSSION 
4.1 Performance Evaluation 

The performance of the predictive model was evaluated using RMSE. The RMSE shows the difference between 
the predicted and actual values of the EEG signals. Table 1 shows the RMSE for all the test participants. The 
average of the RMSE was 0.0674. The RMSE of the test participants' datasets were very low (<0.037) except for 
the third participants whose RMSE was 0.1607 which skewed the average of the RMSE to 0.0674. However, the 
low RMSE of the other test participants' datasets reveal the high predictive power of the LSTM model by 
indicating marginal difference between the actual and predicted EEG signals. This agrees with Miyamoto, Tanaka, 
and Nakamura (2022) who posited that the closer RMSE is to zero the better. The high RMSE of the third 
participant in the test dataset could be attributed to insufficient data points. All other participants had more than 
74,000 data points while the third participant had about 58,500 data points amounting to a difference of 16,000 
data points. Also, the EEG recording time of the participant was very short and fell below the average duration. 
This agrees with Pyo et al. (2018) who opined that low RMSE might be because of insufficient data points. In 
addition, although 58,500 data points seem considerably high, this result reveals that prediction models require 
large amounts of data for accurate forecasting. This position is also supported by Ettinger et al. (2021), even 
though there are no fixed number of data points required for predictive models. However, considering other factors 
such as complexity of problem, desired performance and complexity of model, this result could provide a guide 
for future research.  
 
 
Table 1: RMSE for test participants. 

Test Participants 1 2 3 4 

RMSE 0.0356 0.0367 0.1607 0.0367 

The performance of the LSTM prediction model was further assessed as shown in Figure 3 by comparing the 
predicted and actual EEG signals of the test dataset for the five (5) EEG channels. The comparison reveals that 
the predicted EEG signals follow a very similar pattern as the actual EEG signals. Although there were minor 
deviations where the path of the predicted signals did not align with the actual EEG signals, to a large extent, the 
model was able to accurately predict sudden and subtle fluctuations. However, it appears that the model was able 
to predict subtle fluctuations better than sudden drastic changes in the EEG signals. Overall, the predictive model 
can be adjudged reliable especially in predicting subtle fluctuations in the EEG signal. To further show the 
performance (validity) of the predictive model, scatter plot was used to plot the predicted values and the actual 
values of the test data set for each EEG channel (see Figure 4). 
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Fig. 3: Comparison of predicted and actual EEG signals for the test dataset across the five EEG channels. 

 
The scatter plots in Figure 4 and the R2 in Table 2 show that the model was able to explain a significant proportion 
of the variability in the actual EEG values. R2 is the coefficient of determination which indicates the goodness-of-
fit of the regression model. Given the low RMSE for the test participants and the high R2 for the channels, it is 
evident that the model captured the underlying pattern in the data effectively, and the predicted values are very 
close to the actual values. The model could therefore be considered accurate because as Alexander, Tropsha, and 
Winkler (2015) explained, RMSE is a useful indicator of a model's practical value. The high R2 values show that 
a significant portion of the underlying patterns and relationships in the actual data is accounted for by the 
predictions made by the LSTM model. This is because according to Chicco, Warrens, and Jurman (2021), RMSE 
is a measure of the average errors between predicted values and actual values while R2 explains the amount of 
variance in the data that the model could explain. Hence, the overall value of a model has been defined by its 
accuracy and precision and as well as by its effectiveness in elucidating the variability in datasets (Coulibaly & 
Baldwin, 2005; Qin & Bulbul, 2023). Also, given that the low RMSE values were for the test participants while 
the high R2 values were for the EEG channels, it is shown that on the overall for a participant, the model was able 
to achieve little error between the actual EEG signals and the predicted EEG signals, and for each EEG channel, 
the model was able to explain a significant portion of the variability in the data for prediction. Hence, the model 
is able to give reliable prediction of participants’ EEG signals.  
 
Table 2: R2 for each channel. 

Channel AF3 T7 PZ T8 AF4 

R2 0.9336 0.7683 0.8022 0.7541 0.8854 
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Fig. 4: Scatter plots showing the predicted and actual values for the 5 EEG channels. 

 
As shown in Table 2, the R2 values are ≥ 0.7541. Channel AF3 has the highest R2 value, this is followed by channel 
AF4, PZ, T7 and T8 respectively. The scatter plots show the linear relationship between the predicted and actual 
EEG signals. Although as shown in Figure 4, there are few data points that deviated from the linear relationship 
in each EEG channel, a great proportion of both the predicted and actual EEG values fit into the linear relationship. 
For example, the lowest R2 value is 0.7541 shows that about 75.41% of variance in the actual EEG signals is 
accounted for by the predicted signals. According to Coulibaly and Baldwin (2005), R2 values in the range of 0.8 
- 0.9 are considered acceptable and those > 0.90 are considered very satisfactory. Only three EEG channels (AF4, 
PZ and AF4) fall within this range. However, as revealed by Alexander et al. (2015), RMSE is a more informative 
indicator of a model's usefulness compared to R2. This is because, the value of a model should be based on its 
accuracy and precision and not on its explanatory power of variability in a particular data set (Alexander et al., 
2015). Chicco et al. (2021) also noted that R2 value can be quite low even when dealing with a fully linear model, 
and the opposite is also true. Therefore, overall, the results show that brain activity of users using a web-based 
platform can be reliably predicted with EEG signals. 

4.2 Mental Workload 

Figure 5 shows the scatter plot of the predicted mental workload plotted against the actual mental workload. 
According to Coulibaly and Baldwin (2005), the R2 value (> 0.90) was very satisfactory. This shows that the 
predicted mental workload matches the actual mental workload which further reinforces the efficacy of the LSTM 
model to learn and predict the cognitive load of users during industry industry-academia collaboration via a web 
platform. The results reveal that 92.50% of the variance in the actual mental workload can be explained by the 
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predicted mental workload. This provides a reliable prediction of mental workload of users in industry-academia 
collaboration via a web platform. This potential of LSTM model to predicted cognitive load has been corroborated 
by earlier studies such as Salman et al. (2018) and Qin and Bulbul (2023). 
 

 
Fig. 5: Relationship between actual and predicted mental workload. 

5 CONCLUSION, LIMITATIONS AND FUTURE WORK 
Cognitive load is a major consideration in the design and usage of user interfaces because it could influence users’ 
attitude towards the web platform as well as continual usage. Through web platforms, the internet is being 
leveraged to connect instructors in construction-related programs with construction industry practitioners who 
could support their pedagogical efforts in preparing students for the workplace. Using LSTM, this study assessed 
the effectiveness of EEG-based prediction of brain signals (representing cognitive load) as instructors interact 
with the web platform designed to connect them with practitioners. The results demonstrated the accuracy and 
reliability of the LSTM model to predict EEG signals as users interact with the web platform. The model was able 
to predict subtle fluctuations better than sudden drastic changes in the EEG signals. The results showed low RMSE 
and high R2 values which indicate that the model’s predictions are close to the actual values, and it is explaining 
much of the variability in the data. The efficacy of the model to predict EEG signals could be leveraged to 
understand users’ pattern of cognitive demand in human-computer interaction. This pattern of users’ cognitive 
demand could provide a better understanding of the cognitive resources expended by users as they interact with 
the web platform. This is critical because users’ cognitive resources and cognitive demand varies due to both 
intrinsic and extrinsic factors hence a one-time detection of cognitive load might not provide adequate insights. 
The prediction of EEG signals could be used to understand users’ usage patterns and necessary modifications 
required to enhance interface functionality, navigation, content integration as well as user experience. This is 
crucial for new web platforms which users are unfamiliar with and which could operate differently from their 
mental model. Also, the process of users’ acclimatization with the platform as well as the impact of learning curve 
in using the web platform could be better understood through the prediction model. The study has some limitations 
which should be acknowledged. Although the sample size is adjudged adequate, using a higher sample size could 
yield better results. Also, LSTM was used in this study, future work could focus on using different network models 
for comparison of accuracy and reliability. Future work could likewise explore achieving lower RMSE and higher 
R2. 
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