
 

EVALUATING THE COMPREHENSION OF CONSTRUCTION 
SCHEDULES OF AN ARTIFICIAL INTELLIGENCE  
Tulio Sulbaran, Ph.D. 
The University of Texas at San Antonio, Texas, United States. 
ABSTRACT: Construction schedules are an important tool to communicate with the project stakeholders and are 
critical for the project management team to plan, coordinate, and manage construction projects. Each construction 
project has a unique schedule that is created based on the construction drawings, specifications, contracting 
requirements, construction methods, and the judgment of the project management team. Therefore, each 
construction schedule is unique in many aspects such as the number of activities, the names of the activities, the 
duration of those activities, and the relationship between the activities. The names of the activities are of particular 
interest as they are the critical core unit to creating the schedule. Furthermore, the activities are the ones that 
bring together all other aspects of the schedule. Unfortunately, there is no standard naming conversion for those 
activities and they vary from project to project as well as from project management team to project management 
team. This inconsistency of the activity name makes it extremely challenging for both humans and machines to 
understand the meaning and scope of the activities. Thus, the problem that this paper addresses is the challenge 
faced by machines to comprehend the activities of a construction schedule. Therefore, the objective of this paper 
is to evaluate the ability of an Artificial Intelligence (AI) implementation to comprehend activities in a construction 
schedule. This research was conducted following a mixed research method. The AI implementation training was 
done by providing the Construction Specifications Institute (CSI) Master Format activity list to a Sentence 
Transformer. Then the AI was given the task of interpreting the activities of a construction schedule according to 
the 50 Divisions of the CSI Master Format. A group of senior construction students was also given the same 
interpretation task. The evaluation was done by comparing the results of the AI vs the humans for each of the 
activities in the construction schedule.  The result was that the AI has 0.56 accuracy, 0.50 precision, 0.85 recall 
and, 0.64 F1 Score. This result is very promising and it supports further research to refine the AI to increase its 
ability to comprehend construction schedule activities. Upon achieving a higher level of comprehension an AI 
could be used to assist humans in the preparation of construction schedules or perhaps prepare drafts of the 
construction schedules for the human to review. 
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1. BACKGROUND 

Construction scheduling is a complex process with a lot of considerations for successful project delivery with 
different and specific approaches for each scheduling constraint (Okonkwo et al., 2022). Preparing good schedules 
is a time-consuming process that requires a deep understanding of the construction process (Sulbaran, & Ahmed, 
2017). Construction schedules serve many purposes ranging from informing owners on state of progress, 
establishing long-term coordination among crews and trade contractors, to specifying terms of payment (Halpin 
& Senior, Bolivar, 2017). The construction schedule is one of the most important planning and control tools for 
the construction process (Rosłon et al., 2020), frequently includes a very large number of activities (Essam et al., 
2023) and it is the core of the project plan. It is used by the project management team to commit resources to the 
project and show the organization how the work will be performed (Magalhães-Mendes, 2011). The main goal of 
a construction schedule is to identify the activities needed to complete a project and sequence them in the most 
efficient way possible within the timeframe and resources available (Essam et al., 2023). Construction scheduling 
is a complex process due to the interdependence and contradiction of project activities (Essam et al., 2023). 
Construction schedule practices rely heavily on manually elaborated descriptions of construction means and 
methods (Amer & Golparvar-Fard, 2019).  The preparation of a construction schedule including the number of 
activities, the names of the activities, the duration of those activities, and the relationship between the activities 
which heavily relies on the judgment and expertise of the project management team.  

The names of the construction activities are the only unstructured data attribute in the construction schedules (Hong 
et al., 2021).  Construction activities are described using Natural Language expressions with little or no 
standardization, grammatical errors, abbreviations, project and construction-specific terms (Heigermoser et al., 
2019). Construction activities have been widely discussed in the construction literature (Amer & Golparvar-Fard, 
2019) as they are critical in construction schedules. The activity names are devised to communicate between 
stakeholders, however, they are often written using inconsistent terminologies with omitted contextual information 
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(Hong et al., 2021).  The inconsistency and omissions are due in part because construction schedules are prepared 
by project management teams’ using their tacit knowledge. The tacit knowledge is the common knowledge on the 
process of conformance checking that is applied by domain experts (Yurchyshyna & Zarli, 2009).  This 
inconsistency in the activity names is further aggravated by the variety of construction means and methods to 
perform construction activities and the differences in practice between different construction companies (Amer & 
Golparvar-Fard, 2019). It is also the case that in most instances, historic information including scheduling decision 
reasoning is not documented and disseminated for use in other future projects (Hong et al., 2022).  Although 
construction companies might establish procedures to propagate their construction scheduling knowledge between 
different projects and teams (Amer & Golparvar-Fard, 2019), it is ultimately the project management team that 
prepares the construction schedule. This current scheduling practice leads to activities written in an inconsistent 
format with inconsistent terminologies (Hong et al., 2021) which makes it extremely challenging for both humans 
and machines to understand the meaning and scope of the activities.  

The problem addressed by this paper is the challenge faced by machines to comprehend the activities of a 
construction schedule. Thus, the objective of this paper is to evaluate the ability of an Artificial Intelligence (AI) 
implementation to comprehend activities of a construction schedule. The AI’s ability to comprehend construction 
activities is critical to further advance the AI competence to assist project management team in the preparation of 
construction schedules or perhaps prepare drafts of the construction schedules for them to review and fine tune.  

Artificial intelligence (AI) is poised to rapidly transform businesses particularly the construction industry.  
Although, AI is still a new technology in the construction industry, it has the potential to have a major impact 
particularly in construction schedules. AI powered scheduling tools could help the project management teams 
create more accurate and efficient schedules, which could lead to significant cost savings and time savings. 
Optimized schedules are expected to yield significant cost savings over the actual schedules employed (Kettunen 
& Kwak, 2018). 

Artificial Intelligence has many branches and sub-branches as shown in Figure 1. Artificial Intelligence is the 
capability of a device to perform functions that are normally associated with human intelligence, such as reasoning 
and optimization through experience (Grewal, 2014). Artificial intelligence brings into being machines that 
respond to stimulation consistent with traditional responses from humans, given the human capacity for 
contemplation, judgment and intention (Grewal, 2014).   

A subset of Artificial Intelligence (AI) is Machine Learning (ML) in which intelligence is provided to a system so 
that it can act automatically make decisions depending on the past experiences (Tiwari, 2022). Machine learning 
focuses on the development of algorithms that can learn from data without being explicitly programmed. ML 
algorithms are typically trained on large datasets of labeled data, and they can then be used to make predictions or 
decisions on new data.  One of the types of machine learning is unsupervised learning in which the algorithm is 
not given any labeled data. Instead, the algorithm is given unlabeled data and it must find patterns in the data on 
its own. Unsupervised learning algorithms try to infer a function to find hidden relations between data points 
(Tiwari, 2022). 

 

 

 

 

 

 

 

 

Fig. 1: Sample Areas of Artificial Intelligence 
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2. RESEARCH METHODOLOGY 

A mixed research method was used in this research. The mixed research method draws largely on quantitative and 
qualitative research (Leedy et al., 2019).  Despite its advantages in comparison to mono methods, mixed methods 
research had been underutilized in the management sciences (Molina-Azorin & Cameron, 2010). However today, 
mixed methods research is increasingly being used in many disciplines (Bentahar & Cameron, 2015). The use of 
mixed research method has increased so much that a specialized journal is devoted specifically to mixed methods 
research - The Journal of Mixed Methods Research, published by Sage (Bentahar & Cameron, 2015). The mixed 
method was used in this research because both non-numerical and numerical data were needed to evaluate the 
ability of an AI implementation to comprehend activities of construction schedules. The implementation of the 
mixed research method was done in four stages: data collection, AI training and preparation, activity interpretation, 
and analysis as shown in Figure 2. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Research Stages 

- Data Collection: data of a construction schedule as well as data regarding the Construction Specifications 
Institute (CSI) Master Format (MF) 50 divisions activity codes and descriptions were gathered. 

- Artificial Intelligence Training and Preparation: the CSI MF 50 divisions activity codes and descriptions were 
used to train the machine using sentence transformer with a BERT encoder. During the stage also the activities 
from the construction schedule were extracted and used to automatically create the question of a survey to be 
deployed on-line through Qualtrics. 

- Activity Interpretation: the activities of the schedule were provided to a group of humans and an AI. They both 
were asked to interpret the activities in accordance to the CSI MF 50 divisions. The humans completed the tasks 
through the online-survey in Qualtrics while the AI completed using the cosine similarity metric. 

- Analysis: confusion matrix was used to evaluate the AI comprehension of activities in the construction schedule 
including four metrics – accuracy, precision, recall, and F1 scores to provide a complete picture of the AI 
performance. 

3. RESULTS 

3.1 Data Collection 

The construction schedule gathered for this research project was composed of 94 activities from notice to proceed 
to final completion. The project was a 6,500 SF, single story, steel frame, metal stud, gypsum partitions with 
loadbearing brick and block. The project was a court house in a city in the United States with an approximate cost 
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of $300/SF and a total estimated cost of approximately 2 million dollars.   

The Construction Specifications Institute (CSI) Master Format (MF) 50 divisions activity codes and descriptions 
gathered for this project were composed 7533 individual activities grouped in 35 divisions currently activity from 
Division 00 – Procurement and Contracting Requirements to Division 48 – Electrical Power Generation. 

3.2 Artificial Intelligence Training and Preparation  

The training of Artificial Intelligence (AI) was done in Jupyter Notebook which is a free, open-source, interactive 
web tool known as a computational notebook (Perkel, 2018). Jupyter Notebook was used because it has emerged 
as a de facto standard for data scientists (Perkel, 2018). The programming code in Jupyter Notebook was done 
using Python taking advantage of the Sentence Transformers framework to compute semantic similarity and 
develop the embedding model (Devika et al., 2021). An embedding model is a type of machine learning model 
that is used to represent words or other discrete entities as real-valued vectors. The real-valued vectors were created 
using the Bidirectional Encoder Representation Transformers (BERT) Natural Language Inference (NLI) which 
maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for tasks like clustering or 
semantic search (Devika et al., 2021). The BERT-NLI models was provided the list of the Construction 
Specifications Institute (CSI) Master Format (MF) 50 divisions activity codes and returned the corresponding 
vector for each of the 50 divisions. 

The preparation of the survey was done by uploading the construction schedule into a Jupyter Notebook. The 
Jupyter Notebook extracted the 94 activities from the construction schedule and automatically prepared the 94 
questions using the template shown in the Table 1a. Additionally, the questions were grouped into four quartiles 
according to the cosine of similarity values between the activity and the CSI MF 50 Divisions per the AI 
Interpretation of the Activities as shown in Table 1b. The four group of questions were uploaded into Qualtrics. In 
Qualtrics, randomized sub-set of questions to be shown to each participant from each quartile were entered as 
shown Table 2. 

Table 1: Template, Quartiles, and Number of Questions           

a. Questions Template                                          
Activity Description:  <Activity from Construction Schedule 
Here> 
 
Select from the pulldown below the CSI Master Format 
Division for which the activity description above (in bold) 
belongs to. 
If the activity does NOT belong to any of the CSI Master 
Format select "None of the Above”. 

 

b. Quartile and Number of Questions 

 
Quartiles Cos Similarity  

Values 
Number of 
Activities  

Top 25% More than 0.875 24 
Second 25% 0.875 to 0.831 23 
Third 25% 0.830 to 0.779 23 
Bottom 25 Less than 0.779 24 

 

 

3.3 Schedule Activity Interpretation 

The first part of the construction schedule activity interpretation was done by humans. To ensure that the 
participating humans could answer the questions within 15 minutes, only the randomized sub-set of questions were 
provided to each participating human. The sub-sets were composed of 18 of the 94 questions. In the 18 questions, 
there were three questions from the top two quartiles and six questions from the bottom two quartiles as shown in 
Table 2.  This decision of having more questions from the bottom two quartiles was done because it was 
anticipated that there was going to be a lower percentage of AI construction activity interpretation that were going 
to match the interpretation from the participants.  Additionally, none of the questions were mandatory, so the 
participants could skip some of the questions resulting in a total of 316 answers from the participants.  The second 
part of the construction schedule activity interpretation was done by AI using the BERT-NLI model. The AI was 
given the same construction schedule activities with the same questions given to the human.   
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Table 2: Questions Template and Number    
Quartiles Questions Per participant Total Questions Answered 
Top 25% 3 51 
Second 25% 3 53 
Third 25% 6 105 
Bottom 25% 6 107 
Total 18 316 

           

3.4 Artificial Intelligence Schedule Activity Analysis 

The task of interpreting the activities of a construction schedule according to the 50 Divisions of the CSI Master 
Format was completed first by eighteen human participants. The participants’ demographic was as follows: 77.8% 
Hispanics, 61.1% between 20 and 24 years old, 77.8% males, and 55.6% with 1 to 5 years work experience. The 
responses of the participants were grouped in the same four quartiles of questions as shown in Table 1 then the 
answers of the AI were also grouped in according to the four quartiles. If the answer of the AI matched the answer 
of the humans, the answer was considered a match if not it was considered a no match. The AI identification of 
the activities match the human answer on average 50% for the first the three quartiles which correspond to the 
quartiles that the AI was expected to match the human answer. Likewise, the AI identified activities did not match 
the human answer in the bottom quartile 75% of the times as expected. 

Table 3. Questions Template and Number              
Quartiles Number of 

Activities  
Number and % of 
Match 

Number and % of 
No match 

Number and % 
of Match 

Number and % 
of No match 

Top 25% 24 14  (58.3%) 10  (41.7%) 
35  (50.0%) 35  (50.0%) Second 25% 23 10  (43.5%) 13  (56.5%) 

Third 25% 23 11  (47.8%) 12  (52.2%) 
      
Bottom 25% 24  6  (25.0%) 18  (75.0%)   6  (25.0%) 18  (75.0%) 

Furthermore, the Artificial Intelligence (AI) comprehension of the scheduling activities was also done using a 
confusion matrix. A confusion matrix represents the prediction summary in matrix form (Tiwari, 2022). It is a tool 
to determine the performance of the AI useful to identify areas where the AI may need improvement. The confusion 
matrix is useful because shows how many predictions are correct (true) and incorrect (false) per class (Tiwari, 
2022). The two classes used in this research were that the AI was either expected to identify (top three quartile) or 
no identify (bottom quartile) the activities in the construction schedule.  

The values used in the confusion matrix for the AI Activity interpretation correspond to the first top three quartiles 
for identified and the bottom quartile for the not identified.  Also, for the actual activity identified corresponds to 
the match while the not identified correspond to the no match. As shown in Figure 3, the confusion matrix has two 
rows and two columns with four possible outcomes (true positive, false negative, false positive, and true negative).  
The top left quadrant shows the number of true positives, which are cases where the AI implementation correctly 
identified the activity. The bottom left quadrant shows the number of false negatives (also known as type II error), 
which are cases where the AI implementation was not expected to identify the activity but was in fact able to 
identify the activity. The top right quadrant shows the number of false positives (also known as type I error), which 
are cases where the AI implementation was expected to identify the activity, but provided the wrong activity 
interpretation. The bottom right quadrant shows the number of true negatives, which are cases where the AI 
implementation was not expected to identify the activity and in fact was not able to identify the activity. 
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Legend: 
  AI was expected to identify activities  

TP = True Positive = AI correctly identified activity (as 
expected) 
FP = False Positive = AI did not identify activity 

  AI was not expected to identify activities 
FN = False Negative = AI correctly identify activity (although 
it was not expected to identify the activity) 
TN = True Negatives = AI did not identify activity (as 
expected) 

(1) Correct predictions 
(2) Type I Error  
(3) Type II Error 

Figure 3: AI Interpretation of Construction Activities Confusion Matrix 

The confusion matrix information was used to calculate four metrics – accuracy, precision, recall, and F1 scores 
to provide a complete picture of the AI performance in comprehending the activities in the construction schedule.  

- Accuracy: is used to find the portion of correctly interpreted activities. In other words, measures how often the 
AI is correct. The value ranges from 1 for 100% accurate to 0 for 0% accurate. The equation used to calculate 
accuracy is presented in Equation 1 resulting in the AI having an accuracy to identify activities of 0.56. 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 �  �����
 �����������  �  �����

����������  �  0.56                        Equation  1 

- Precision: is used to calculate the AI's ability to interpret positive values correctly (True). In other words, 
measures how often the AI correctly identified the activity when it was expected to do so.  Precision is equal to 
the ratio of the number of construction activities correctly interpreted to the total number of construction activities 
predicted.  The value ranges from 1 for 100% precise to 0 for 0% precision. The equation used to calculate 
precision is presented in Equation 2 resulting in the AI having a precision to identify activities of 0.50. This result 
is consistent with literature as fully AI automated approach is still immature to be used in the industry where the 
best model scored 0.511 precision (Amer et al., 2021) 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃  �   ��
�����  �  ��

�����  =  0.50                                   Equation 2 

- Recall: (also called sensitivity) is used to calculate the AI's ability to interpret activities among all the activities. 
In other words, measures how often do the AI correctly identified the activities weather or not is expected to do 
so.  Recall is the ratio of the number of construction activities correctly interpreted to the total number of 
construction activities interpreted. The value ranges from 1 for 100% recall to 0 for 0% recall. The equation used 
to calculate precision is presented in Equation 3 resulting in the AI having a recall to identify activities of 0.85. 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 �  ��
�����   �  ��

����  �  0.85                                          Equation 3               

-F1-Score: is the harmonic mean of Recall and Precision. In other words, it is useful when a balance between 
Precision and Recall needs to be taken into account. 

𝐹𝐹1 �𝐴𝐴𝑃𝑃𝐴𝐴𝑃𝑃 �  �� ����������������
���������������� �   ���.����.��

�.����.��  �  0.63                          Equation 4 

4. SUMMARY 

The construction schedule activity names are of particular interest as they are the critical core unit to create the 
schedule. Unfortunately, there is no standard naming conversion for those activities and they vary from project to 
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project as well as from project management team to project management team. This inconsistency of the activity 
name makes it extremely challenging for both humans and machines to understand the meaning and scope of the 
activities. Therefore, the objective of this paper was to evaluate the ability of an Artificial Intelligence (AI) 
implementation to comprehend activities in a construction schedule. Following a mixed method in this research, 
the AI was implemented using the Bidirectional Encoder Representation Transformers (BERT) Natural Language 
Inference (NLI) with the list of the Construction Specifications Institute (CSI) Master Format (MF) 50 divisions 
activity codes. The result was that the AI has 0.56 accuracy, 0.50 precision, 0.85 recall and, 0.64 F1 Score. 

5. FUTURE WORK 

Despite the AI not being 100% accurate, this paper opens a wide variety of future research opportunities grounded 
on the mixed method used in this research with the four stages (Data Collection, AI Training and Preparation, 
Activity Interpretation, and Analysis). Some of those future research opportunities include: 1- Used other method 
to evaluate the NLP such as the Area Under the Curve (AUC) of the Receiver Operating Characteristic (ROC) 
curve, 2- Evaluating other NLP Encoder, 3- Comparing Performance among multiple NLP Encoders, 4- Implement 
a mixture of unsupervised and supervise NLP, and 5- Expand the number and type of schedule activities to be 
implemented just to mention a few. Upon achieving a higher level of comprehension future research could be 
directed towards using AI to assist humans in the preparation of construction schedules or perhaps prepare drafts 
of the construction schedules for the human to review. 
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