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ABSTRACT: Decarbonizing the construction sector has become an imperative global agenda, with electric 
machinery playing a pivotal role in realizing this objective. This research concentrates on devising an operational 
scheduling optimization method for electric ready-mixed concrete vehicles (ERVs) – a groundbreaking, eco-
friendly intervention for the construction sector. We commence by outlining a systematic problem definition for the 
ERV operational process, considering the distinctive characteristics of electric vehicles and ready-mixed concrete 
(RMC) delivery tasks. The entire process is then conceptualized as a Markov decision problem (MDP), which 
enables sequential decision-making. We subsequently develop an enhanced model-based reinforcement learning 
technique, named parallel-masked-decaying Monte Carlo Tree Search (PMD-MCTS), for efficient resolution of 
the MDP. The entire system is authenticated via a real-world case study, and the PMD-MCTS's performance is 
juxtaposed against existing benchmarks. The results demonstrate the appropriateness of the proposed MDP 
formulation for tackling RMC delivery tasks. The PMD-MCTS algorithm and one of its ablation algorithms (PM-
MCTS) have demonstrated superior performance compared to other benchmarks in either cost reduction or delay 
minimization, with PMD-MCTS requiring 30% less computation time than PM-MCTS. 

KEYWORDS: Electric vehicle, Ready-mixed concrete delivery; Scheduling optimization; Model-based 
reinforcement learning; Monte Carlo Tree Search 

1. INTRODUCTION 

The escalating issue of carbon emissions, largely attributing to global warming, has necessitated decarbonization 
as a global imperative for sustainable development (Sinha & Chaturvedi, 2019). As a result, decarbonization has 
emerged as a global priority for sustainable development (Bogachkova, Guryanova, & Usacheva, 2022). 
Construction industry activities are a significant source of environmental pollution, responsible for approximately 
one-third of carbon emissions (Gan, Chan, Tse, Lo, & Cheng, 2017). Specifically, the ready-mixed concrete (RMC) 
production accounts for a large portion of global emissions (Olanrewaju, Edwards, & Chileshe, 2020). In addition, 
RMC is a still-growing market due to the rise of green building construction and the urbanization in developing 
countries (Hart, Nilsson, & Raphael, 1968). Palaniappan, Bashford, Li, Fafitis, and Stecker (2009) indicated that 
the transportation of RMC represents a major component of energy use and emissions. Therefore, optimizing the 
scheduling of RMC delivery is crucial for a greener construction industry. Due to the significant development of 
battery technology and automation, the electric drive technology has been regarded as a promising solution for 
improving the sustainability of the construction industry (T. Lin et al., 2020). Truck manufacturers have recently 
developed several electric RMC trucks that aim to implement emission-free transport in the construction industry 
(Volvo Trucks delivers the first heavy-duty electric concrete mixer truck to CEMEX, 2023). However, the academic 
focus on construction electric vehicles (CEVs), a cross-domain technology integrating the unique properties of 
electric vehicles (EVs) and the construction industry, has been limited. This research aims to bridge this gap by 
focusing on the scheduling optimization of electric ready-mixed concrete vehicles (ERV) to further the cause of 
greener construction.  

In the EV domain, several battery-related factors have been extensively studied, such as battery status, charging 
rates and prices, and charging station locations (Turan, Pedarsani, & Alizadeh, 2020). However, most EV-related 
studies are not directly applicable to the construction industry due to its unique characteristics and requirements. 
Furthermore, existing CEV-related studies mainly focus on hardware improvements such as drivetrain (Tong, Jiang, 
Tong, Zhang, & Wu, 2023) and transmission system (Tan, Yang, Zhao, Hai, & Zhang, 2018), with little attention 
paid to the management-related topics. Studies related to RMC production and delivery have primarily focused on 
developing optimization formulations and optimization algorithms. For instance, P.-C. Lin, Wang, Huang, and 
Wang (2010) formulated the RMC delivery as a job shop problem, where each RMC delivery represents a job 
operation carried out by one of the trucks that correspond to the workstations. Z. Liu, Zhang, Yu, and Zhou (2017) 
proposed a time-space network that combines RMC production and vehicle dispatching, and the problem is 
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optimized by a heuristic algorithm. Nonetheless, these studies overlook the specific properties of ERV, especially 
those related to the battery, such as charging and energy consumption. 

To bridge this gap, our study proposes a scheduling optimization methodology for ERV dispatching. We first 
provide a detailed problem definition for ERV dispatching, incorporating the unique features of both EVs and 
RMC delivery tasks. The problem is then modeled as a Markov decision process (MDP) to capture the sequential 
logic of the RMC dispatching task. Finally, we propose an improved model-based reinforcement learning 
algorithm to solve the MDP problem. This algorithm, developed using a state-of-the-art Monte Carlo Tree Search 
(MCTS), is enhanced with a state-dependent action masking and a decaying searching strategy. 

2. METHODOLOGY 

2.1 ERV Operation Problem Definition 

The operation of Electric Ready-mixed Vehicles (ERVs) comprises five components: a) The construction site and 
b) the ready-mixed concrete (RMC) plant, which are the locations where ERVs are prepared and RMC is poured. 
c) RMC mixer and d) charging station, which are machinery installed at the RMC plant for loading RMC and 
charging EVs respectively. Lastly, e) ERVs are the vehicles for dispatching RMC. For the purposes of this study, 
we assume pumps are pre-installed. The operational process of ERVs can be partitioned into three sections: the in-
plant process (IP), the midway process (MP), and the on-site process (OP). 

2.1.1 In-plant process 

Prior to the delivery of the RMC batch to the construction site, it is imperative that an ERV is adequately prepared 
with the required RMC and sufficient battery power at the RMC plant. The specificities of two in-plant processes 
are as follows: (1) IP1-RMC Production and Loading: The RMC mixer produces and loads RMC onto ERVs 
according to the demands, which are typically determined based on the specific requirements of various 
construction sites. The following assumptions are made: a) RMC mixers can produce any type of required RMC, 
and the loading rate is set constant in this study for efficient validation. b) The RMC plant can load RMC onto 
multiple ERVs simultaneously, eliminating any queuing time for the loading (Z. Liu et al., 2017). c) Each ERV 
should be fully loaded unless it delivers the last batch of the target construction site, which can be smaller than an 
ERV’s capacity. d) The plant owns various types of ERVs, and their loading capacities and operation costs are 
different (Z. Liu et al., 2017). (2) IP2-Charging of ERVs: When an EV’s battery is less than its required degree, 
it will be recharged by charging stations. All the charging stations are installed only in the RMC plant, which is a 
regular practice in current ERV providers. a) We assume that the charging rates and costs are constant, but a basic 
cost is set to avoid frequent charging since launching the charging station is power-consuming. b) Multiple ERVs 
can be recharged simultaneously using multiple charging stations. c) ERVs have different battery capacities, and 
they can be recharged to a certain level between the existing status and the fully charged status. 

2.1.2 Midway process 

Following proper preparation, all ERVs should depart from the RMC plant to their corresponding construction 
sites. Two types of midway processes can be considered: (1) MP1-Plant to Site: a) A qualified pump is assumed 
to be installed on the construction site before the first arrival of ERV. b) To avoid unnecessary battery drainage 
while waiting with loaded RMC, it is assumed that the ERV will depart only if its arrival time is not earlier than 
the demand time of the target site. If the arrival time is earlier than the demand time, the ERV’s RMC loading time, 
battery charging time, and travel time will be delayed. c) This study assumes that the ERV has the same traveling 
speed and battery consumption rate under the loading status. (2) MP2-Site to Plant: After unloading a batch of 
RMC at the construction site, the ERV returns to the plant and prepares for the next delivery batch of RMC. a) It 
is assumed all RMC have been unloaded, and the ERV is in an empty status. b) All ERVs return with a fixed 
traveling speed and energy consumption rate in the empty-load status. 

2.1.3 On-site process 

ERVs are assumed to arrive at the construction site not earlier than the demand time, which allows for the pouring 
task to commence promptly upon the ERV’s arrival. a) Pourings are preferred to be consecutive, but delivery delays 
are also allowed in real applications. The construction sites claim a maximum for the delivery interval. b) Although 
static during the pouring process, ERVs remain operational, and a fixed battery consumption rate is assumed. c) 
This study supposes each construction requires only one ERV for pouring, and the pouring rate is fixed. 
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2.2 Modeling the ERV Operation Processes via an MDP Model 

Based on the ERV operation problem definition, the maximum RMC batch of each construction site can be inferred 
by considering the minimum ERV capacity and site demands. This allows the ERV operation process to be modeled 
as a sequential decision-making problem, with the goal of optimizing the dispatch sequence of all the ERVs. During 
each dispatch, the ERV delivers a batch of RMC to a certain construction site with a certain battery level. Markov 
Decision Process (MDP) is a potent model-based method for sequential decision-making, which can be solved 
byiteratively evaluating the reward function for all potential states and actions until convergence to the optimal 
value (Zhang et al., 2020). Therefore, an MDP formulation is proposed for sequential coverage pattern analysis, 
represented by a four-element tuple (S, A, Ts,a, Ra). S is the state space, A is the action space, Ts,a is the state 
transition operator, and Ra is the reward function. These elements are discussed below. 

2.2.1 State 

S is the state space, s ∈ S is the current state, which is a tuple of 2N1 + 2N2 components. N1 denotes the maximum 
number of ERVs owned by the RMC plant, while N2 represents the maximum number of construction sites in 
demand. The MDP state comprises four parts, namely ERV’s latest available time (LAT), ERV’s battery status, the 
construction sites’ latest demand time (LDT), and the quantities of undelivered RMC. The details of the MDP 
states are illustrated in Table 1. 

Table 1 The definition of the MDP state. 
State number Meaning Related component Format 

[1, N1] The latest available time (LAT) of the 
1st to the N1th ERVs. 

ERV Day-hour-minutes 

[N1+1, 2N1] The ERVs’ battery states on their 
corresponding LAT.  

ERV kWh 

[2N1+1, 2N1+N2] The latest demand time (LDT) of the 
1st to the N3th construction sites. 

Construction site Day-hour-minutes 

[2N1+N2+1, 2N1+2N2] The quantities of undelivered RCM 
for a certain construction site. 

Construction site m3 

For clarification, we consider a scenario with two ERVs, two construction sites, and the state is (9:00, 9:30, 120, 
60, 10:30, 12:00, 50, 25) (as shown in Fig. 1). It means that the first ERV is available after 9:00 with a 120-kWh 
battery, and the second ERV is available after 9:30 with a 60-kWh battery. The first construction site has a latest 
demand time (LDT) of 10:30 and requires 50 m3 of RMC. The second construction site has an LDT of 12:00 and 
requires 25 m3 of RMC. 

 

Fig. 1 An illustration of the MDP state 

2.2.2 Action 

A is the action space, where a ∈ A is the action taken based on the current state. Each action is denoted by (e, c, 
b), where e is the serial number of the ERV, c is the serial number of each construction site, and b is the departure 
battery level. For the battery level, 0 means that the battery is kept unchanged, and its accuracy can be determined 
based on the user’s computational capacity. Following the same scenario in section 3.3.1, we assume a battery 
accuracy is 5. Then, action (1, 2, 4) means the first ERV deliveries a batch of RMC to the second construction site 
with an 80-percentage battery, and action (2, 1, 0) means the second ERV is dispatched to the first construction 
site without charging. 

2.2.3 Transition 

Ts,a is the absolute transition that action a in state s at step t will lead to state s’ at step t+1, as the transition is fully 
under control in this study. Apart from the state information, additional parameters are clarified for the state 
transition (Table 2).  
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Table 2 Fixed parameters for the state transition. 
Fixed 

Parameters 
Definition Related element Unit 

𝑙𝑙 The RMC loading rate of the mixer. RMC mixer m3/min 
𝑝𝑝 The power of the charging station. Charging station kw 

��𝑒𝑒� The battery capacity of an electric vehicle ERV kWh 
𝑥𝑥 The battery accuracy ERV / 
    

𝑚𝑚�𝑒𝑒� The RMC capacity of the eth ERV. ERV m3 
𝑣𝑣� The vehicle speed of loading status. ERV km/hr 
𝑣𝑣� The vehicle speed of empty status. ERV km/hr 
𝑟𝑟� The battery consumption rate for the ERVs to travel under 

loading status. 
ERV %/km 

𝑟𝑟� The battery consumption rate for the ERVs to travel under 
empty status. 

ERV %/km 

𝑟𝑟� The battery consumption rate for ERVs to conduct the 
pouring task. 

ERV %/m3 

𝑑𝑑�𝑐𝑐� The distance from the plant to the cth construction site. Construction site km 
𝑤𝑤 The RMC pouring rate. ERV m3/min 

Firstly, the quantity of the RMC required by the target construction site (𝑠𝑠�2𝑁𝑁� � 𝑁𝑁� � 𝑐𝑐�) is compared with the 
capacity of the ERV (𝑚𝑚�𝑒𝑒� ) to get the quantity of delivered RMC 𝑅𝑅𝑅𝑅𝑅𝑅����������  (Eq.(1)). Subsequently, the 
loading time 𝑡𝑡������� can be obtained by Eq.(2). Given the action component b and the battery status (𝑠𝑠�𝑁𝑁� � 𝑒𝑒��, 
the charging time 𝑡𝑡�������� can be calculated using Eq.(3). The departure time from the factory to the construction 
𝑡𝑡��������� can be determined by Eq.(4). Based on Eq.(5), the start time of the current dispatch 𝑡𝑡����� can be 
obtained by comparing the ERV’s arrival time (𝑠𝑠�𝑒𝑒� � 𝑡𝑡�������� � 𝑡𝑡������� � 𝑡𝑡���������) with the construction 
site’s LDT (𝑠𝑠�2𝑁𝑁� � 𝑐𝑐�). Further, Eqs.(6) and (7) are used to calculate the pouring time 𝑡𝑡������� and return time 
𝑡𝑡������.  

 𝑅𝑅𝑅𝑅𝑅𝑅���������� � min�𝑠𝑠�2𝑁𝑁� � 𝑁𝑁� � 𝑐𝑐�,𝑚𝑚�𝑒𝑒��  (1) 
 𝑡𝑡������� � 𝑅𝑅𝑅𝑅𝑅𝑅����������/𝑙𝑙  (2) 
 𝑡𝑡�������� � �𝑏𝑏𝑥𝑥 ∗ ��𝑒𝑒� � 𝑠𝑠�𝑁𝑁� � 𝑒𝑒��/𝑝𝑝  (3) 

 𝑡𝑡��������� � 𝑑𝑑�𝑐𝑐�/𝑣𝑣� (4) 
 𝑡𝑡����� � min�𝑠𝑠�𝑒𝑒� � 𝑡𝑡������� � 𝑡𝑡�������� � 𝑡𝑡��������� , 𝑠𝑠�2𝑁𝑁� � 𝑐𝑐��  (5) 
 𝑡𝑡������� � 𝑅𝑅𝑅𝑅𝑅𝑅����������/𝑤𝑤 (6) 
 𝑡𝑡������ � 𝑑𝑑�𝑐𝑐�/𝑣𝑣�  (7) 

The LAT of the current ERV 𝑠𝑠�𝑒𝑒� is updated by adding the pouring time and return time to the start time (Eq.(8)). 
The ERV’s battery level 𝑠𝑠�𝑁𝑁� � 𝑒𝑒�  is updated according to Eq.(9), where the second term is the battery 
consumption during traveling, and the third term is the battery consumption during the pouring task. The target 
construction site’s LDT 𝑠𝑠�2𝑁𝑁� � 𝑐𝑐� is updated by adding the pouring time to the start time (Eq.(10)). Further, the 
required quantity of RMC 𝑠𝑠�2𝑁𝑁� � 𝑁𝑁� � 𝑐𝑐� can be updated by subtracting the quantity of delivered RMC from 
the target construction site’s initial requirement, as shown in Eq.(11). 

 𝑠𝑠�𝑒𝑒� � 𝑡𝑡����� � 𝑡𝑡���� � 𝑡𝑡������ (8) 
 𝑠𝑠�𝑁𝑁� � 𝑒𝑒� � �𝑏𝑏𝑥𝑥 � 𝑑𝑑�𝑐𝑐� ∗ �𝑟𝑟� � 𝑟𝑟�� � 𝑅𝑅𝑅𝑅𝑅𝑅���������� ∗ 𝑟𝑟�� ∗ ��𝑒𝑒�  (9) 

 𝑠𝑠�2𝑁𝑁� � 𝑐𝑐� � 𝑡𝑡����� � 𝑡𝑡����  (10) 
 𝑠𝑠�2𝑁𝑁� � 𝑁𝑁� � 𝑐𝑐� � 𝑠𝑠�2𝑁𝑁� � 𝑁𝑁� � 𝑐𝑐� � 𝑅𝑅𝑅𝑅𝑅𝑅���������� (11) 

2.2.4 Reward 

Ra is the immediate reward of action a. In the RMC dispatch task, the objective of the RMC plant is to minimize 
the operational costs and adhere to the dispatch rules, such as avoiding exceeding the maximum pouring interval. 
Meanwhile, the construction sites aim to minimize the total delay for the pouring task. Therefore, the total 
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operation costs rc and the dispatch delay rd are selected as the two primary reward components. rc can be calculated 
by Eq.(12). c1 ($/min) is the unit cost of the ERV operation, 𝑐𝑐� ($) is the fixed cost of opening the charging station, 
which aims to avoid frequent charging, and  𝑐𝑐� ($/kWh) is the unit price for ERV charging. The relevant costs of 
RMC production are not considered as the quantity of the RMC demand is fixed. According to Eq (13), rd can be 
calculated by comparing ERV’s arrival time with the construction site’s LDT.  

 𝑟𝑟� � �𝑐𝑐��𝑒𝑒� ∗ �𝑡𝑡������� � 𝑡𝑡�������� �  𝑡𝑡��������� � 𝑡𝑡������� � 𝑡𝑡������� � 𝑐𝑐�
∗ ����𝑒𝑒𝑎𝑎��𝑡𝑡�������� � 0�� 𝑐𝑐� ∗ �𝑏𝑏𝑥𝑥 ∗ ��𝑒𝑒� � 𝑠𝑠�𝑁𝑁� � 𝑒𝑒�� 

(12) 

 𝑟𝑟� � �max �𝑠𝑠�𝑒𝑒� � 𝑡𝑡�������� � 𝑡𝑡������� � 𝑡𝑡��������� � 𝑠𝑠�2𝑁𝑁� � 𝑐𝑐�, 0� (13) 

In addition, a significant negative reward rp is generated if an invalid action is taken. Three types of invalid actions 
have been identified: 1) Actions that head to the construction site without any demand for RMC, as shown in 
Eq.(14); 2) Actions with a battery level below the current battery level or the minimum battery requirement 
(Eq.(15)). 3) Actions that result in a dispatch delay that exceeds the maximum interval 𝛿𝛿 (Eq.(16)). When the 
RMC demands of all the construction sites are fulfilled, a great positive reward rf is generated. Finally, the total 
reward can be calculated by Eq.(17), where 𝛼𝛼� and 𝛼𝛼� are importance hyper-parameters. Apart from rf, all other 
reward components are negative. 

 𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰 𝟏𝟏: 𝑠𝑠�2𝑁𝑁� � 𝑁𝑁� � 𝑐𝑐� � 0 (14) 
 𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰 𝟐𝟐: 𝑏𝑏

� max �𝑠𝑠�𝑁𝑁� � 𝑒𝑒�,𝑑𝑑�𝑐𝑐� ∗ �𝑏𝑏��𝑒𝑒� � 𝑏𝑏��𝑒𝑒�� � ������������� ∗ 𝑏𝑏��𝑒𝑒�� 
(15) 

 𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰 𝟑𝟑: 𝑠𝑠�𝑒𝑒� � 𝑡𝑡�������� � 𝑡𝑡������� � 𝑡𝑡��������� � 𝑠𝑠�2𝑁𝑁� � 𝑐𝑐� � 𝛿𝛿 (16) 
 𝑟𝑟 �  𝑟𝑟� � 𝛼𝛼� ∗ 𝑟𝑟� � 𝛼𝛼� ∗ 𝑟𝑟� � 𝑟𝑟� (17) 

2.3 Optimization Using PMD-MCTS 

Many reinforcement learning methods have been developed to solve the MDP problem, including model-free 
algorithms and model-based algorithms (Sutton & Barto, 2018). Specifically, the model refers to the state transition 
function Ts,a and the reward function Ra of the MDP problem. Compared with model-free methods, model-based 
reinforcement learning has the great potential to make RL algorithms more sample efficient (Wang et al., 2019). 
MCTS is a model-based RL algorithm that plans the best action at each time step (Browne et al., 2012). It is an 
effective heuristic search algorithm for solving episodic decision-making problems when the underlying search 
spaces are computationally expensive (B. Huang, Boularias, & Yu, 2022). However, MCTS relies on a large 
number of interactions with the environment emulator to construct the search trees for decision-making (Browne 
et al., 2012).  To mitigate the high time complexity of classical MCTS, this section develops an improved MCTS 
algorithm， named parallel-masked-decaying MCTS (PMD-MCTS). Specifically, the state-of-the-art parallel 
MCTS algorithm, WU-UCT (A. Liu et al., 2018), is adopted as the fundamental model. It is further improved by 
incorporating a state-dependent action masking operation and a decaying search strategy. The details of the 
algorithm are introduced as follows.  

2.3.1 Fundamentals of WU-UCT-based parallel Monte Carlo Tree Search 

MCTS adopts a tree-search method that incrementally extends a search tree from the current environment state 
(Luo et al., 2022). Each node denotes a visited state, and each edge from this state denotes an action that can be 
taken at that state, leading to a landing node that denotes the state after the transition. Typically, MCTS performs 
four sequential steps repeatedly: selection, expansion, simulation, and backpropagation (Fig. 2 (a)). The selection 
step starts from the root node (current state) and recursively selects an existing child node according to a tree policy. 
The process ends when it reaches a leaf node or other termination conditions. One of the most commonly used 
node-selection policies is the Upper Confidence bound for Trees (UCT), and the UCT value 𝑎𝑎� can be calculated 
by Eq.(18). Here, C(s) represents the child node set of the current node s; 𝑉𝑉�� is the average value estimation for a 
certain child node 𝑠𝑠𝑠 , denoting the exploitation; The second term is the uncertainty of the value estimation, 
denoting the exploration. 𝑁𝑁� and 𝑁𝑁�� denote the number of times that nodes 𝑠𝑠 and 𝑠𝑠𝑠 have been visited, while 𝛽𝛽 
is the factor that controls the trade-off between exploitation and exploration. During the expansion state, a new 
child node is added to the selected node, and the value of the expanded node is estimated by performing a model-
based simulation until termination. The simulation process follows a certain policy (e.g., random). Finally, 
backpropagation recursively updates the statistics {𝑉𝑉�, 𝑁𝑁�} from the expanded node to the root node along the 
selected path. According to Eq.(19), the visit count of each node is increased by 1. The latest value estimation of 
each node can be obtained by Eq.(20), where 𝛾𝛾 is the reward discount factor, and at is the action that turns the 
state st to the state st+1. It should be noted that the leaf node 𝑠𝑠� obtains its value from the simulation step. Finally, 
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each node’s average value estimation is updated according to Ep. (21). 
 

𝑎𝑎� � argmax
�������

�𝑉𝑉�� � ��2 log𝑁𝑁�
𝑁𝑁�� � (18) 

 𝑁𝑁�� �  𝑁𝑁�� � 1 (19) 
 𝑉𝑉��� � ��𝑠𝑠� ,𝑎𝑎�� � �𝑉𝑉�����  (20) 
 𝑉𝑉�� � ��𝑁𝑁�� � 1�𝑉𝑉�� � 𝑉𝑉��� �/𝑁𝑁�� (21) 

Parallelizing MCTS over multiple workers is an efficient method to improve the optimization speed. During the 
parallel computation, workers typically operate at different steps as the simulation and expansion processes are 
slow (Fig. 2 (b)). As a result, the update of statistics {𝑉𝑉�, 𝑁𝑁�} may become outdated for workers, and the statistics 
loss becomes inevitable. However, the latest 𝑁𝑁� is available as soon as a worker initiates the computation since 
we only need to know if the node is selected. Therefore, the WU-UCT algorithm partially addresses the information 
loss by introducing another quantity O into the classical UCT (Eq.(22)), which counts the number of computations 
that have been initiated but not completed (light dashed blue lines in Fig. 2 (b)). The updated UCT effectively 
balances exploration-exploitation tradeoff by considering incomplete samples, and the node values can be updated 
according to Eqs.(23) and (24). 

 
𝑎𝑎� � argmax

�������
�𝑉𝑉�� � ��2 log�𝑁𝑁� � 𝑂𝑂��

𝑁𝑁�� � 𝑂𝑂�� � (22) 

 Incomplete update: 𝑂𝑂� �  𝑂𝑂� � 1 (23) 
 Complete update:   𝑂𝑂� �  𝑂𝑂� � 1 

𝑁𝑁� �  𝑁𝑁� � 1 (24) 

Selection Expansion Simulation Backpropagation

R

(b) PMD-MCTS

C

A

B

(a) Classical MCTS

Worker A under backpropagation 

Worker B under simulation

Worker C under selection

Incomplete update for O

Complete update for V,N,O
Action 

masking

Decaying search steps
t0 t  

Fig. 2 The relationship between classical MCTS and PMD-MCTS 

2.3.2 Action masking 

The ERV operation involves complicated rules, and the valid action spaces usually vary under different states. 
Typically, RL algorithms sample the action from a space containing actions of all states and assign a significant 
negative reward for invalid actions. However, this kind of invalid action penalty is challenging to explore, 
particularly when the state is complicated, even for the very first reward (S. Huang & Ontañón, 2020). Hence, this 
section proposes a state-dependent action masking method to improve MCTS’s efficiency (Fig. 2 (b)). First, a 
complete action space A0 is generated, which contains all combinations of the ERV’s serial number, each 
construction site’s serial number, and the departure battery level. Then, invalid actions (Eqs.(14)-(16)) of A0

 are 
updated under each state (circles in Fig. 2 (b)), followed by invalid action masking. Specifically, 𝑉𝑉�� (Eq.(22)) of 
invalid actions are set as a large negative number M (e.g., M = -1 x 108) during the expansion stage. Consequently, 
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only valid actions will be expanded. During the simulation stage, actions are randomly selected from valid 
candidates, while invalid ones are ignored. In practical implementations, vectorization is adopted for speeding up 
the masking operations. 

2.3.3 Decaying search strategy 

During the implementation of MCTS, an initial MDP state is set as the start for optimization. The best child node 
of the current state is set as the output when the number of iterations is larger than a threshold value of 𝑁𝑁�. Then, 
the updated state becomes the new start, and the process iteratively continues until the MDP ends. Intuitively, the 
size of the Monte Carlo tree will decrease gradually, as the quantity of undelivered RMC decreases. Hence, the 
last stages of MDP may not require many iterations, and this section proposes a decaying threshold to ensure both 
optimization accuracy and efficiency. The decaying strategy is designed based on the remaining demand for RMC, 
as shown in Eq.(25). 𝑁𝑁�� is the maximum number of iterations determined by the users, Qleft is the remaining 
required quantity of RMC, Qleft is the total RMC demand, and e is the Euler's number. 

 𝑁𝑁� �  𝑁𝑁�� ∗ 𝑒𝑒
�������������
𝑒𝑒  

(25) 

3. VALIDATION 

3.1 Scenario Setup 

As the use of electric RMC vehicles is a relatively new solution in the construction industry, a customized dataset 
for this purpose is currently unavailable. Therefore, it is reasonable and acceptable to utilize data from previous 
RMC delivery studies to establish the proposed MDP model. Hence, we extracted the basic configurations of sites 
and RMC vehicles from the dataset of (Z. Liu et al., 2017). The dataset was determined based on a real case, 
including distances between the sites, RMC demands of the construction sites, RMC loading rate, ERVs’ capacities, 
and relevant costs. We updated certain assumptions from (Z. Liu et al., 2017) in more detail. For example, we 
provided vehicle speeds for traveling time calculation and determined the battery-related factors based on actual 
reports (e.g., the charging rates). Table 3 describes the shared parameters, Table 4 indicates the information on the 
construction sites, and Table 5 shows ERV information. Two objectives are optimized: a) objective 1 aims to 
minimize the operation costs for the RMC plant, and b) objective 2 aims to minimize the dispatch delay for the 
construction sites. 

Table 3 Information of the shared parameters. 
Shared parameters Value Unit 
RMC loading rate 2  min/m3 

Battery charging power 20 kw 
Battery accuracy 5 / 

Vehicle speed of loading status 40  km/hr 
Vehicle speed of empty status 80  km/hr 

Battery consumption rate for ERVs to 
travel under loading status 

1 %/km 

Battery consumption rate for ERVs to 
travel under empty status 

0.8 %/km 

Battery consumption rate for ERVs to 
conduct the pouring task 

0.25 %/ m3 

RMC unloading rate 0.5 m3/min 
Cost of opening the charging station 5 $ 

Unit cost for ERV charging 2 $/kWh 
Importance hyper-parameters 𝛼𝛼� 1 for objective 1, 0 for objective 2 / 
Importance hyper-parameters 𝛼𝛼� 0 for objective 1, 1 for objective 2 / 
Reward for an invalid action rp -1000 / 

Reward for completing the task rf 1000 / 
Maximum pouring interval 𝛿𝛿 90 min 
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Table 4 Information of the construction sites. 
No. RMC demand (m3) Distance (km) Start time (hr:mm) 
C1 6 6.2 8:30 
C2 60 4.0 8:40 
C3 26 5.5 9:30 
C4 3 3.4 10:40 
C5 64 12.0 11:20 
C6 64 4.1 10:00 
C7 24 6.6 15:10 

Table 5 Information of the ERVs. 
No. 1 2 3 4 5 6 7 8 

RMC Capacity (m3) 8 8 8 7 7 6 5 2 
Unit cost ($/min) 1.3 1.3 1.3 1.2 1.2 1.1 1.0 0.8 

Battery capacity (kWh) 160 160 160 160 160 120 100 50 
Initial battery capacity 

(kWh) 
80 80 80 80 80 60 50 25 

Initial LAT (hr:mm) 6:00 6:00 6:00 6:00 6:00 6:00 6:00 6:00 

3.2 Benchmark Setup 

To validate the performance of our proposed PMD-MCTS algorithm under the given scenario setup, we compared 
it with three benchmarks, including GA-based optimization from (Z. Liu, Zhang, & Li, 2014), and two ablation 
studies. All algorithms were run ten times to minimize the impact of random errors. The two most common metrics, 
namely a) the average reward and b) the average computation speed, were used as the first two evaluation criteria. 
To test the stability of the algorithm, three additional metrics were selected, namely c) the success rate, d) the 
standard deviation (SD) of the average reward, and e) the SD of the average computation speed. Instead of 
terminating the MDP process when an invalid action occurs, we adopted a great negative number as a penalty and 
continued the MDP simulation. To avoid a negative battery state, the negative battery level was modified to the 
smaller one between the current battery status and the minimal battery requirement.  

3.2.1 Genetic algorithm 

Three-layer chromosome: The chromosome structure was designed based on the concepts of (Karakatič, 2021; 
Z. Liu et al., 2014). As described in (Z. Liu et al., 2014), the maximum number of vehicles to be dispatched is 
fixed, which is set as the chromosome length. The chromosome of (Z. Liu et al., 2014) has three layers: a) sequence 
of construction site ID, b) sequence of the accumulative number of vehicles to the construction site, and c) 
sequence of vehicle ID. The second layer was removed as it can be inferred from the first layer. In addition, we 
added a layer for battery level according to (Karakatič, 2021), and used the same battery definition as our PMD-
MCTS method. An illustration of the chromosome is shown in Fig. 3. 

13 2 1 1 3 2
32 1 2 1 3 2
15 5 4 0 3 2

The 2nd ERV is dispatched to the
1st construction site with 80% battery. 

 
Fig. 3 An illustration of the GA chromosome 

Selection: The chromosome represents a set of sequential MDP actions that can be input into the MDP model to 
obtain the accumulative reward (fitness). It should be noted that action will not be taken if the target construction 
site has been satisfied.  

Crossover: This study adopted one-point crossover, but the crossover operation may change the maximum number 
of vehicles required by each site. Hence, the probability mapping method of (Z. Liu et al., 2014) was adopted for 
the first layer crossover, as shown in Fig. 4. Specifically, each gene in the first layer has a mapping probability, 
and the crossover is conducted on the probability layer. The new chromosome is generated by mapping the 
probabilities to a basic chromosome in descending order, and the basic chromosome can be user-defined 
([1,1,1,2,2,3,3] in Fig. 4). The crossovers of the second and third layers are conducted directly. We conduct the 
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crossover layer by layer, which can generate six children during one crossover. 

32 1 2 1 3 2

15 5 4 0 3 2

0.32 0.53 0.74 0.81 0.25 0.96 0.05

0.32 0.53 0.74 0.81 0.83 0.56 0.25 0.45 0.32 0.73 0.28 0.25 0.96 0.05

11 1 2 2 3 3

22 1 3 1 1 3 13 1 1 2 2 313 2 1 1 3 2

21 1 3 3 3 2

12 0 4 2 1 3

0.45 0.32 0.73 0.28 0.83 0.56 0.25

13 1 1 2 2 3

32 1 3 3 3 2 21 1 2 1 3 2

15 5 4 0 1 3 12 0 4 2 3 2

Chromosome 1 Chromosome 2
Crossover

 
Fig. 4 The crossover of two chromosomes  

Mutation: One-point mutation is adopted, as shown in Fig. 5. Similar to the crossover operation, the mutation of 
the first layer is realized by probability mapping, while the genes in the other two layers are mutated according to 
their ranges. 

32 1 2 1 3 2

15 5 4 0 3 2

0.32 0.53 0.74 0.81 0.25 0.96 0.05

0.32 0.53 0.74 0.24 0.25 0.96 0.05

11 1 2 2 3 3

13 1 1 2 2 313 2 1 1 3 2

32 1 3 3 1 2

25 5 4 0 1 3

Chromosome

Mutation

 
Fig. 5 The mutation of the chromosome 

Table 6 Hyperparameters of genetic algorithm 
Hyperparameters Value 
Population size 20 
Parent number 3 
Mutation rate 0.3 

Maximum generation number 200000 

3.2.2 Ablation studies 

We have made two improvements based on WU-UCT-based MCTS. To evaluate the effectiveness of these 
improvements, we conducted two ablation studies: a) PD-MCTS, which is PMD-MCTS without action masking, 
and b) PM-MCTS, which is PMD-MCTS without decaying search strategy. The hyperparameters used in the 
MCTS algorithms are listed in Table 7. 

Table 7 Hyperparameters of MCTS algorithms 
Hyperparameters Value 

Number of expansion workers 8 
Number of simulation workers 16 

Maximum search step (𝑁𝑁��) 3000 
Maximum search depth 100 
Maximum search width 200 

Discount factor 0.9 
Expansion policy  Random 

3.3 Results 

Experiments for PMD-MCTS and four benchmark algorithms were conducted on the designed scenario. The entire 
procedure was executed on a laptop with the specification of Intel i9-10980H 3.10GHz CPU and 32GB RAM. The 
the scheduling performance of each algorithm is shown in Table 9 and Table 8. 

.  
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Table 8 Scheuling performance of each algorithm in objective_1 (minimizing the costs) 
 Average reward SD of average 

reward 
Success 
rate (%) 

Average 
computation time 

(s) 

SD of average 
computation 

time 
GA -8313.1(-6494.3*) 1283.1 0 102.0 1.7 

PD-MCTS -6950.0 (-5421.5*) 1040.6 0 320.8 26.3 
PM-MCTS -3095.2 (-3004.5*) 120.4 100 385.6 40.1 

PMD-MCTS  -3064.0 (-2862.4*) 123.0 100 260.0 19.9 

Table 9 Scheuling performance of each algorithm in objective_2 (minimizing the delay) 
 Average reward SD of average 

reward 
Success 
rate (%) 

Average 
computation time 

(s) 

SD of average 
computation 

time 
GA -837.9 (479.4*)  1076.5 30 93.27 2.0 

PD-MCTS -484.1 (182.8*) 503.3 100 497.8 78.1 
PM-MCTS 969.0 (1000*) 18.2 100 292.4 10.4 

PMD-MCTS  991.6 (1000*) 6.7 100 203.0 1.6 

* indicates the optimal performance 

The empirical results indicate that our PMD-MCTS algorithm demonstrates superior performance, achieving the 
highest rewards across both objectives. Specifically, the average reward of the PMD-MCTS in objective 1 is 3064.0, 
which translates to an average cost of $4064.0. In objective 2, the average reward of the PMD-MCTS is 991.6, 
representing an average delay of 8.4 minutes, and the most optimal solution can eliminate any delay entirely. 
Furthermore, our findings suggest that only algorithms implementing action masking (i.e., PMD-MCTS and PM-
MCTS) can consistently ensure a feasible solution for both objectives. These two algorithms also display the 
smallest standard deviation of average reward, indicating their superior stability. Although PM-MCTS exhibits a 
performance similar to PMD-MCTS in terms of reward and success rate, the PMD-MCTS requires 30% less 
computational time than PM-MCTS. 

4. DISCUSSIONS 

This study's outcomes substantiate the effectiveness of our proposed scheduling optimization approach for 
managing ERV operations. This methodology mainly contributes to the field in three ways. 

Firstly, this study addresses an existing gap in on-road Commercial Electric Vehicle (CEV) research. We are 
pioneers in examining CEVs, particularly on-road CEVs, marking a significant stride towards sustainable 
advancement in the construction sector. By incorporating the demands of Ready-Mixed Concrete (RMC) 
dispatching and Electric Vehicles (EVs), we have holistically examined the characteristics of ERVs. This problem 
definition can potentially be extrapolated to other CEV studies in the future. Secondly, we have crafted a novel 
formulation for the RMC delivery problem, utilizing the Markov Decision Process (MDP) based on the temporal 
dynamics of the RMC delivery process. Compared to its predecessors, the MDP formulation is a more rational 
choice as it facilitates sequence decision-making. This approach prevents invalid decisions at each stage and 
ensures the decision-making process is far-sighted, considering all decisions in a comprehensive manner. Lastly, 
we introduced an enhanced Monte Carlo Tree Search (MCTS) algorithm, named PMD-MCTS, to optimize the 
ERV operation process. When compared with four benchmark algorithms, it proved to be the most effective. Two 
key advantages of the PMD-MCTS were identified: Both PMD-MCTS and PM-MCTS displayed superior 
performance in terms of average reward and success rate, outperforming the Genetic Algorithm (GA) by 
employing the MCTS optimization strategy. The GA algorithm fails to ensure a feasible solution for both objectives, 
owing to its limitations in managing sequential requirements. PMD-MCTS surpassed PM-MCTS on computational 
speed. Our PMD-MCTS saves over 30% of the computational time required by PM-MCTS, without compromising 
on accuracy, by implementing a decaying strategy. 
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5. CONCLUSION  

In the face of pressing concerns over carbon emissions, the construction industry can expect to see an influx of 
more sustainable technologies. Electric Ready-mixed Vehicles (ERVs) are a promising technology geared towards 
enhancing the sustainability of the construction industry. However, the interdisciplinary nature of ERVs has led to 
a considerable gap in this field. This study addressed this gap by proposing a scheduling optimization methodology 
for ERV dispatching. It introduces a systematic problem definition for the ERV operation, which integratively 
considers the properties of both EVs and RMC delivery tasks. Moreover, the ERV operation process is modelled 
as an MDP problem, thereby breaking down the entire process into sequential sub-processes. The proposed PMD-
MCTS algorithm, equipped with parallel computing, invalid action masking, and decaying searching capability, 
has been validated through a meticulously designed experiment. This study, thus, provides a comprehensive 
evaluation of ERV operations and offers a solid foundation for future research in this domain. 
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