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UNCREWED AERIAL VEHICLES: AN INVESTIGATION 
OF THE PARAMETER INFLUENCES FOR COASTAL 
MONITORING 
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Abstract: Data and information obtained from low-cost uncrewed aerial vehicles 
(UAVs), commonly called ‘drones’, can be used to support coastal monitoring on erosion 
study. The Structure from Motion (SfM) techniques allow to reconstruction of a high-
resolution Digital Elevation Model (DEM) useful to assess shoreline e dune mass, starting 
from the images acquired by UAVs. Flight procedures, acquisition methods and ground 
references are important parameters to be carefully managed to achieve the necessary 
accuracy.  However, the size of the areas to be monitored and the frequency of 
measurements require demanding resources that can limit studies when they are 
insufficient. This work aims to investigate the best flight and processing settings for 
applying SfM for coastal monitoring. The parameters investigated are for example the 
drone type, flight height, ground control points (GCPs) position and post-processing 
parameters. The results of these evaluations and the proposed procedure are shown 
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Introduction 
In recent years, the use of Unmanned Aerial Vehicles (UAVs) for high-

resolution topographic surveys has increased significantly, yielding excellent 
results across various environments [1–9]. Among the techniques employed for 
topographic reconstruction using drones, photogrammetric surveys are the most 
used [10–21]. However, several factors can impact the accurate reconstruction of 
geometries within a model, including flat areas, water presence, and the availability 
of unidirectional models. 

Coastal environments, in particular, exhibit all three of these factors, making 
them challenging terrain for Structure from Motion (SfM) models. SfM models 
play a crucial role in coastal monitoring, allowing quantification of seasonal 
variations, storm surge impacts, and human activities [5,6,8,22–27]. 

One way to enhance SfM models is through the use of ground control points 
(GCPs) for georeferencing and geometry reconstruction [17,28,29]. GCPs also 
help estimate errors in the three dimensions of the model, which is essential for 
understanding uncertainty in subsequent processing phases. However, the optimal 
number of GCPs required for precise and repeatable results over time remains 
scientifically unclear. 

 
Figure 1 – Topographic characteristics of the three areas. The images contain Digital 
Elevation Models (DEMs) derived by DJI Phantom 4 at 30 m and using 20 GCPs for 
georeferencing:  a) Area 1; b) Area 2, c) Area 3. Base map provided by Bing. 
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In this study, we analyze the effects of GCP positioning in three distinct coastal 
environments: low sandy beach (Area 1), sandy beach with dunes and vegetation 
(Area 2), and pebble beach with anthropic structures (Area 3: Figure 1). By 
sampling these areas using two drones at different flight heights and varying the 
number of GCPs during post-processing, we investigate error variations both 
spatially and in terms of average values. 

Materials and Methods 
The three study areas were surveyed using a DJI Phantom 4 Pro V2 and a DJI 

Mini 2. Flight plans for the DJI Phantom 4 were created using PIX4D Capture 
software, while for the DJI Mini 2, the Map Creator app for iOS was used. The 
flight plans were designed to achieve an 80 % overlap between acquired photos on 
each side and a pitch of 90° (orthogonal to the ground). Sampling campaigns were 
conducted at three flight heights: 30 m, 50 m, and 70 m.  

The use of the DJI Phantom 4 and DJI Mini 2 can lead to differences in 
photogrammetric results, primarily due to variations in camera quality, sensor size, 
and stabilization. Equipped with a higher-resolution sensor and a 3-axis gimbal, 
the DJI Phantom 4 enables more detailed and stable image capture, enhancing the 
quality of the final model. Additionally, its superior focal length and stabilization 
reduce distortion and blurring, positively impacting overall survey accuracy. 

In each study area, we strategically positioned a substantial number of markers. 
Specifically, we placed 55 markers in Area 1, 41 markers in Area 2, and 46 markers 
in Area 3. The marker positions were sampled using a Differential GPS Emlid 
Reach 2 with Real-time Kinetic (RTK) positioning. 

We applied the Structure from Motion (SfM) technique using Metashape Profes-
sional v. 2.0.4. The analysis focused on error metrics provided by Agisoft Metashape 
for both control and checkpoint markers. The evaluation of the accuracy of the 
models is provided by calculating the Root Mean Square Errors (RMSE), as follows: 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 =  �1
𝑁𝑁���𝑋𝑋� − 𝑋𝑋�� �� + �𝑌𝑌� − 𝑌𝑌���� + �𝑍𝑍� − 𝑍𝑍�� ���

�

���
  

where 𝑁𝑁 is the number of control points; 𝑋𝑋�, 𝑌𝑌�, 𝑍𝑍� are the observed coordinates of the 
i-th point; 𝑋𝑋�� , 𝑌𝑌��, 𝑍𝑍��  are the coordinates calculated by the model for the i-th point.  

We systematically varied the number of control points, starting from three 
points (a minimum number to georeference a three-dimensional model) and 
gradually incorporating the full set of markers positioned in each study area. The 
marker not used as control points are used as check points. The first step use three 
markers as control points, the second step use four markers as control points and 
the procedure progress until the entire number of markers is used as control points. 
The choice of the markers used as control point is random. For this reason, the 
entire procedure is repeated thirty-five times generating more casual situations for 
a statistical analysis. 
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Results  
The RMSE calculated for control points and check points related to changes in 

the Ground Control Points (GCPs) used are reported in Figure 3. As expected, the 
RMSE for control points is lower than that calculated for check points. The RMSE 
for control points shows a significant reduction when using 3 additional GCPs per 
hectare (equivalent to approximately 10 GCPs in the study areas).  

 
Figure 2 – Mean Square Errors (RMSE) of the control and check points. 
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In contrast, check points exhibit greater variability and require about 5 GCPs 
per hectare to achieve smaller errors. For Areas 2 and 3, the DJI Phantom 4 
outperforms the DJI Mini 2, with the lowest RMSE observed for all flight heights. 
In Area 1, the two drones yield more comparable results, making it difficult to 
determine which equipment is superior. When using the DJI Mini 2, point clouds 
have the lowest RMSE for check points, approximately 7-10 cm across all 
investigated areas. The DJI Phantom 4 allows for point clouds with even lower 
RMSE (around 3-4 cm) for check points in Areas 2 and 3 (Figure 3). 

 
Figure 3 – Standard Deviation (STD) of the Square Errors of the control and check points. 
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The statistical mean of errors is an important parameter for assessing the quality 
of a photogrammetric model. However, it is equally crucial to investigate error 
variability along the model. This variability is influenced by factors such as control 
point positions, site topography, and the number of projections per marker (Figure 4). 
Even in this case, using more than 5 GCPs per hectare results in models with the 
lowest RMSE standard deviation for both control and check points, indicating less 
error variability. The DJI Phantom 4 achieves the lowest standard deviation values 
in Areas 2 and 3. Conversely, using the DJI Mini 2 introduces greater RMSE 
variability for both control and check points. 

 
Figure 4 – Ratio between the RMSE checkpoint and the RMSE control point. 

Ground Control Points (GCPs) were initially distributed evenly across the 
entire area of interest. For all the evaluated combinations, the selection of GCPs 
was random. However, since every combination was saved, it was possible to 
analyse the accuracy of the location of the GCPs. Figures 9 and 10 depict accuracy 
versus the average distance between GCPs (Figure 5) and the standard deviation of 
distances between GCPs (Figure 6). Averaged distances and standard deviations 
were calculated using all the GCPs employed in each combination. 

Optimal accuracies for checkpoints were observed when GCPs within a 
specific combination had average distances of approximately 170 meters with 
standard deviations of about 100 meters. Remarkably, these values closely aligned 
with those obtained when statistics were calculated using all the GCPs. Averaged 
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distances below 170 meters were associated with situations where the GCPs did 
not cover peripheral areas. In contrast, averaged distances exceeding 170 meters 
indicated fewer points but a well-distributed coverage across the entire area. 
Regarding standard deviations, values below 100 meters indicated that points were 
preferably grouped in small areas, whereas higher values suggested larger gaps 
between GCPs. While it is unsurprising that maximum accuracy is achieved when 
every ground point serves as a control, we observed that RMSE values degraded 
when points were limited in number, poorly distributed, or widely separated. 

 
Figure 5 – Average distance between Control Point and Checkpoint Root Mean Square 
Errors (RMSE). 
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Figure 6 – Standard deviation of the distances between check points and Average distance 
between Control Points. The point colour indicates the Checkpoint Root Mean Square Errors 
(RMSE): the green points indicate an RMSE between 0 and 0.05 m; the light green points 
indicate an RMSE between 0.05 and 0.1m; the yellow points indicate an RMSE between 
0.1 m and 0.5 m; the orange points indicate an RMSE between 0.5 m and 1 m; and the red 
points indicate an RMSE higher than 1 m. 

Discussion and Conclusions 
The geometric accuracy of the 3D SfM model strongly depends on the 

georeferencing strategy. The results of this study confirm that accuracy is influenced 
by the number of Ground Control Points (GCPs) used to adjust the point cloud. When 
using a small number of GCPs (fewer than 5 markers per hectare), the Root Mean 
Square Error (RMSE) at the checkpoint is very high, even exceeding several 
decimetres. Additionally, the variability along the model is also significant. 
However, by increasing the number of GCPs, the RMSE at the checkpoint decreases, 
reaching values lower than 10 cm, and the variability along the models decreases as 
well. This influence of GCPs on the models aligns with results from previous studies 
in other environments [17,30]. Both drones exhibit similar trends, but in two cases, 
the DJI Phantom 4 outperforms the DJI Mini 2, achieving a lower checkpoint error. 
These findings are consistent with results obtained in prior research [15,17,20,31,32]. 

It appears that further improvement of this value is not possible, regardless of 
the number of Ground Control Points (GCPs) used. Interestingly, flights at lower 
altitudes, which offer higher spatial resolution, exhibit accuracy comparable to that 
of flights at higher altitudes. One plausible reason for this phenomenon is that more 
distant points appear in a greater number of images, resulting in increased 
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redundancy [17]. This observation could also explain the varying results obtained 
across the three study areas. In Areas 2 and 3, the DJI Phantom 4 outperformed the 
DJI Mini 2, while the results were similar in Area 1. Notably, in Area 1, the flights 
conducted with the DJI Mini 2 had a higher number of projections for each marker 
compared to those conducted with the DJI Phantom 4. Additionally, the increased 
redundancy in the photos may suggest improved performance of the Structure-
from-Motion (SfM) technique [33]. 

This study has demonstrated that optimal accuracies are achieved when GCPs 
are uniformly distributed across the entire area. Strategies such as concentrating 
GCPs in specific areas, leaving gaps without GCPs, or focusing points on the 
periphery or centre do not yield good accuracy [17, 30, 34]. Ideally, the distribution 
of GCPs should follow a triangular grid, minimizing the maximum distance of each 
point to the nearest GCP. 

When evaluating the geometric accuracy of a 3D model obtained through 
Structure-from-Motion (SfM), relying solely on ground points used as control is 
insufficient. This becomes critical when the number of GCPs is limited. While the 
RMSE (Root Mean Square Error) calculated at control points may appear 
extremely low (sometimes only a few millimetres) when using only a few points 
for control, a deeper analysis reveals that the actual RMSEs of the checkpoints can 
be much higher, even exceeding several decimetres. With a limited number of 
GCPs, the 3D model can adapt to the few geometric constraints introduced, 
resulting in low control residuals. However, increasing the number of GCPs 
reduces the ratio between RMSE at control points and RMSE at checkpoints, 
stabilizing at around 5 GCPs per hectare (Figure 4). 

Figure 4 provides insights into estimating the RMSE at checkpoints when the 
number of markers is insufficient for control and checkpoint usage. Additionally, 
analyzing the Standard Deviation of the RMSE can enhance the assessment. 
Despite low variability in RMSE at control points with a small number of GCPs 
(as seen in Figure 3), the RMSE at checkpoints can still be significantly higher. 

In summary, when using a small number of Ground Control Points (GCPs), the 
3D models can be affected by high and variable RMSE (Root Mean Square Error) 
at checkpoints, while the RMSE at control points remains lower and less variable. 
This discrepancy can lead to an incorrect interpretation of result quality. 

The study findings suggest that more than 5 markers per hectare (markers/ha) 
are necessary to achieve consistent and low errors. Interestingly, this requirement 
holds across different site characteristics (as observed in three distinct study areas) 
and regardless of the performance of the two different drones used. 

In coastal environments, Structure-from-Motion (SfM) exhibits variability in 
error distribution along the model. Therefore, whenever feasible, it is crucial to 
associate a Digital Elevation Model (DEM) with an error map. This consideration 
becomes especially important during topographic and morphological analyses. 

For future research, investigating the effects of other parameters—such as camera 
pre-calibration, which can reduce systematic errors in image alignment, and pitch 
angle adjustments, which may improve image overlap and coverage in complex 
coastal topography—could significantly enhance the accuracy and reliability of SfM 
models. These factors are especially important in coastal environments, where 
accurate topographic data is essential for understanding geomorphological changes. 
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