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AI AND MACHINE LEARNING TO EXTEND METEO-
MARINE STATION OBSERVATIONS INTO THE FUTURE 
Joel Azzopardi 

Abstract: The real-time availability of data from coastal meteo-marine stations is crucial 
for various stakeholders, including port authorities, government agencies, researchers, 
and the general public. While observation data is fundamental, short-term forecasts can 
significantly enhance planning and decision-making processes. This study explores the 
application of Machine Learning (ML) techniques to predict hourly values of air 
temperature, wind speed, atmospheric pressure, and humidity for the next 24 hours. 
We evaluate three ML models: Long Short-Term Memory Network (LSTM), Random 
Forest (RF), and Multivariate Linear Regression (LR). The models were trained using 
Python libraries and Optuna for hyperparameter tuning on datasets of varying lengths 
from stations in the Malta-Sicily channel. Additionally, we investigated transfer learning 
with the ERA5 dataset, which provides hourly values over an 83-year period, to address 
the challenge of limited data availability. The results show that models trained on longer 
datasets generally achieve better performance. Furthermore, the models demonstrated 
considerable generalizability, particularly across nearby stations, allowing models 
trained at one station to be effectively used for predictions at other proximate stations. 
To support further research and practical application, we have made our models and 
tools publicly available. 
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Introduction 
The real-time availability of data from coastal meteo-marine stations is 

becoming increasingly important. This data is indispensable for stakeholders such 
as port authorities, government agencies, researchers, and the public. While real-
time (now-cast) data is essential, short-term forecasts for the upcoming hours 
would provide significant additional benefits. The integration of Artificial 
Intelligence (AI) and Machine Learning (ML) techniques is pivotal in generating 
these forecasts. Recent advancements in technology and reductions in costs have 
led to a proliferation of coastal station installations. Notably, a number of stations 
have been established in the Malta-Sicily channel as part of the i-waveNet project 
[3]. Real-time observations from these stations are accessible through the i-
waveNET Decision Support System developed by the University of Malta [4]. 

While nowcasts (near-real-time observations) are vital, their utility would be 
greatly enhanced by incorporating short-term forecasts based on these 
observations. This paper explores our research into using ML to project coastal 
stations' observational data into the future. A significant challenge we face is the 
limited amount of data available for training, as most stations have only become 
operational in recent months. The literature suggests that deep learning models, 
especially Long Short-Term Memory Networks (LSTMs), are highly effective but 
require extensive datasets; even a three-year dataset of hourly observations is often 
insufficient to train an LSTM effectively. 

We evaluate the performance of three ML architectures—Long Short-Term 
Memory Network (LSTM), Random Forest (RF), and Multivariate Linear 
Regression (LR)—to predict hourly values for air temperature, wind speed, 
atmospheric pressure, and humidity for the next 24 hours. To address the issue of 
limited available data, we conducted experiments with different training sets. We 
used a 32-month dataset from the Cirkewwa station (October 2020 - May 2023) 
and assessed how models trained on this dataset predict values for the Cirkewwa 
station and three other stations (two in Malta and one in southern Sicily) for 
November 2023. Additionally, we employed a one-month dataset from the 
Cirkewwa station (October 2023) to evaluate how models trained on it generate 
predictions for this station and the other three stations. Lastly, we trained a model 
for each station using data from October 2023 for that station and used these 
models to predict data for November 2023 for the same station. 

The rationale behind experimenting with these different training datasets was 
to determine the extent to which long datasets are necessary for ML predictions 
across different parameters and to explore whether models can be generalised to 
apply across various stations. The outcomes help identify potential solutions for 
scenarios with sparse or missing data. 

Furthermore, we explore the potential of using a long-term time series dataset 
from ERA5, provided by the Copernicus Climate Change Service (C3S), which 
offers meteorological hourly values from 1940 to 2022 at a coarse spatial resolution 
(0.5°) [6]. We performed experiments where we trained our models on this dataset 
and then fine-tuned them using station observational data. 
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Finally, we are making our model training code, prediction tools, and the best-
performing pre-trained models for each parameter publicly available: 
https://ocean.mt/research/stationDataPredictions.zip 

Related Research 

Artificial Intelligence (AI) has demonstrated exceptional utility in short-term 
meteorological forecasting due to its ability to manage the complexities and vast 
datasets inherent in weather systems. Traditional numerical weather prediction 
models often struggle with the nonlinearities and high-dimensionality of weather 
data. In contrast, AI models, such as neural networks, excel in identifying complex 
patterns within large datasets without needing explicit physical modelling, leading 
to more accurate and timely forecasts. 

AI has been widely applied to predict air temperatures, particularly local 
temperatures over short-term periods (typically 1 to 3 days in advance) [1, 8, 11]. 
Some studies have also focused on forecasting seasonal temperature variations [9]. 
Wind speed prediction, especially at a height of 10 metres, is another frequent 
application of AI [2, 10, 11, 13, 14]. Accurate wind speed forecasts are crucial due 
to the growing use of wind power generation and the necessity to predict energy 
output from wind sources. Other variables forecasted by AI models include 
humidity [11, 12, 18], atmospheric pressure [12], and rainfall/precipitation [16]. 

The AI architectures used to predict these meteorological parameters range 
from deep learning methods (like neural networks and Long Short-Term Memory 
networks, or LSTMs) to simpler machine learning techniques. LSTMs are 
particularly prevalent and have been successfully applied to predict wind speed 
[10] and air temperature [8, 11, 18]. Reports suggest that LSTMs often outperform 
other models. They are also frequently integrated into hybrid models, combined 
with other deep learning architectures such as Convolutional Neural Networks 
(CNNs) [11] and Convolutional Recurrent Neural Networks (CRNNs) [18], which 
have been reported to yield superior results. 

While neural networks and deep learning techniques generally offer enhanced 
performance, they can struggle with limited training data. Some studies indicate 
that polynomial regression models outperform artificial neural networks when 
using a three-year dataset [2]. 

A popular alternative to deep learning models is Random Forests (RF). RF 
models are advantageous because they do not require the extensive training data 
that deep learning approaches do and have proven to be very effective in predicting 
meteorological variables. The reviewed literature shows that RF models are 
primarily used for predicting wind speeds [2, 13] and rainfall [15]. 

Support Vector Machines (SVMs) are another machine learning approach 
frequently employed in meteorological predictions. SVMs have been successfully 
used to forecast air temperature [1] and other general weather parameters [15]. 
Additionally, statistical methods like polynomial regressions have been applied to 
predict wind speed [2, 14]. 
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Materials and Methods 

The data used in this research comes from observations recorded at four coastal 
meteorological stations—three located in Malta and one in southern Sicily. These 
stations are depicted in Figure 1. In Malta, the stations are situated at Mgarr Gozo 
(blue), Cirkewwa (red), and Delimara (green), which are relatively close to each 
other. Mgarr Gozo is approximately 5 km from Cirkewwa, and Delimara is about 
30 km from Cirkewwa. In contrast, the Sicilian station, Marina di Ragusa (yellow), 
is significantly farther away, approximately 90 km from Mgarr Gozo. 

Each of these stations records the following observations at 1-minute intervals: 
● Air Temperature 
● Atmospheric Pressure 
● Relative Humidity 
● Wind Speed and Direction 

 
For the period from October 1, 2023, to November 30, 2023, data from all four 

stations were aggregated into hourly intervals by simple averaging. Additionally, 
a longer dataset from the Cirkewwa station was available, containing hourly 
observations from October 5, 2020, to May 11, 2023. This dataset did not require 
further pre-processing. 

Besides these datasets, we also utilised data from the ERA5 Reanalysis dataset 
for the period from January 1, 1940, to December 31, 2022. This dataset includes 
hourly observations for the geographical point at 14.50° longitude and 36.00° 
latitude, which is the closest to the Maltese Islands and most of the described 
stations. The ERA5 dataset, freely available from the Copernicus Climate Change 
Service, provides multiple meteorological variables from 1940 onwards at an 
hourly temporal resolution and a spatial resolution of 0.5°. For our research, we 
downloaded the following ERA5 parameters: 

● 10 m u and v components of wind 
● 2 m temperature 
● 2 m dew point temperature 
● Surface pressure 

 
Pre-processing of the ERA5 data involved several steps: converting 

temperature from Kelvin to Celsius, calculating wind speed from the wind 
components, converting pressure from Pascals to millibars (mbar), and calculating 
relative humidity from the air temperature and dew point temperature. The relative 
humidity was computed using the formula provided below: 
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Figure 1 – Map displaying the locations of four stations in the WGS84 coordinate system: 
Marina di Ragusa (yellow marker, 14.5465°E, 36.7799°N), Mgarr Gozo (blue marker, 
14.298°E, 36.024°N), Cirkewwa (red marker, 14.3296°E, 35.9906°N), and Delimara (green 
marker, 14.5589°E, 35.8217°N). The selected ERA5 reanalysis model cell is marked by a 
purple square with a central purple dot at 14.5°E, 36.0°N. 

We employed three Machine Learning (ML) techniques in our study: Long 
Short-Term Memory Network (LSTM), Random Forest (RF), and Multivariate 
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Linear Regression (LR). LSTM and RF were chosen due to their proven success in 
the literature. LR was selected for its simplicity and its low data requirement for 
training. Our methodology involved using a lookback period of the past 48 hours 
of observations to predict the next 24 hours. For simplicity, our predictions always 
start at 0000 GMT each day. Specifically, each prediction (for the period from 0000 
to 2300 of Day 0) was based on data from the lookback period 0000 of Day -2 to 
2300 of Day -1. 

Separate models were trained for each target variable: air temperature, wind 
speed, atmospheric pressure, and relative humidity. The features used for the 
predictions included the observed values of air temperature, wind speed, 
atmospheric pressure, and relative humidity during the lookback period, as well as 
the hour of the day (0 – 23) and the current day of the year (1 – 365). The hour and 
day were transformed into sinusoidal signals by multiplying the hour or day ratio 
by π and then taking the sine of the resulting value. This transformation ensures 
that 0000 hours is as similar to 2300 as it is to 0100, preserving the cyclical nature 
of time. Additionally, we scaled all features using the Min-Max Scaler from the 
sklearn library to ensure they had equivalent ranges. 

All models were implemented in Python 3.10 and trained on a Linux Ubuntu 
system with GPU capabilities. The LSTM model was developed using the Keras 
library, while the RF and LR models were implemented using the sklearn library. 
For the LSTM and RF models, we used the Optuna package for hyperparameter 
tuning. Optuna optimises the search for the best-performing parameters for each 
ML model. 

As previously mentioned, our dataset included observations from the four 
stations covering the period from October 1, 2023, to November 30, 2023. We 
reserved the data for November 2023 (November 1, 2023, to November 30, 2023) 
for testing purposes. All training was conducted on data up to October 31, 2023, 
allowing us to evaluate the models on a full month of data. However, this approach 
also meant that training data was limited in some scenarios. 

In the initial phase of our research, we focused on evaluating the effectiveness 
of AI models in scenarios with limited data by using only the observed data from 
the stations. For this experiment, we trained models for each target variable at each 
station using the following training sets: 

● Data from October 1, 2023, to October 31, 2023, from the same station. 
● Data from October 5, 2020, to May 11, 2023, from the Cirkewwa station. 
● Data from October 1, 2023, to October 31, 2023, from the Cirkewwa station. 
 
The goal was to evaluate the generalizability of models trained on data from 

different stations and to explore the feasibility of using longer datasets from other 
stations to improve model performance. 

In the second phase of our research, we incorporated data from the ERA5 
reanalysis to train our models. For each target variable at each station, we used the 
following training datasets: 
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● Data from January 1, 1940, to December 31, 2022, from ERA5. 
● Data from January 1, 1940, to December 31, 2022, from ERA5, followed 

by fine-tuning with data from October 1, 2023, to October 31, 2023, from 
the same station. 

● Data from January 1, 1940, to December 31, 2022, from ERA5, followed 
by fine-tuning with data from October 5, 2020, to May 11, 2023, from the 
Cirkewwa station. 

● Data from January 1, 1940, to December 31, 2022, from ERA5, followed 
by fine-tuning with data from October 1, 2023, to October 31, 2023, from 
the Cirkewwa station. 

 
This second set of experiments aimed to assess the viability of using a long-

term reanalysis dataset to address the challenges associated with the scarcity of 
training data. By leveraging the extensive historical data from ERA5 and fine-
tuning with more recent observations, we sought to improve the accuracy and 
robustness of the models. 

Results 
We trained and evaluated a total of 30 models for each target variable, resulting 

in a combined total of 120 models. Table 1 summarises the results obtained from 
these models, with Mean Absolute Error (MAE) used as the evaluation metric. To 
provide a more comprehensive overview, the MAE results for each model 
configuration were averaged across different stations. 

Figure 2 illustrates the air temperature predictions for the Cirkewwa station 
made by the best-performing model from each of the different machine learning 
architectures. Figures 3, 4, and 5 follow a similar format: Figure 3 presents the 
wind speed predictions, Figure 4 the atmospheric pressure predictions, and Figure 
5 the relative humidity predictions. 

Discussion 

Our results indicate that different meteorological parameters exhibit distinct 
characteristics and therefore require tailored modelling approaches. The simplest 
model, Multivariate Linear Regression (LR), performed the best for predicting air 
temperature and relative humidity. Notably, the LR model trained on the two-year 
Cirkewwa dataset produced the most accurate results for these parameters, even 
outperforming models trained on data from the station being evaluated. The 
Random Forest (RF) models trained on the ERA5 dataset and then fine-tuned using 
the two-year Cirkewwa dataset were the next best performers for both air 
temperature and relative humidity. 

In contrast, for predicting wind speed and atmospheric pressure, the RF model 
trained exclusively on the ERA5 dataset (without fine-tuning) yielded the best 
results. This was particularly evident in the case of atmospheric pressure 
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predictions, where the difference in performance between the ERA5-trained model 
and models not trained on ERA5 was significant. 

Overall, our findings underscore the critical importance of having sufficiently 
large datasets. Our analysis suggests that models trained on extensive datasets from 
nearby stations, or using global datasets, tend to perform better than those trained 
on shorter datasets from the same station. 

Another key observation from our results is that deep learning architectures, 
such as Long Short-Term Memory networks (LSTMs), should not be presumed to 
provide superior results automatically. We believe the primary reason for this is 
that the training datasets used in these experiments were smaller than what is 
typically required for deep learning models to achieve their full potential. 

Table 1 – Mean Absolute Error values for each training set and each target variable averaged 
across all stations. 

Training Set Model 
Air 

Temp. 
(deg. C) 

Wind 
Speed 
(m/s) 

Atm. 
Pres. 

(mbar) 

Rel. 
Hum. 
(%) 

Same Station (Oct 
2023) LSTM 3.994 2.505 5.660 9.603 

 RF 4.347 2.375 4.934 8.671 
 LR 2.839 8.164 3.587 27.734 
Cirkewwa (2 yr) LSTM 1.710 2.277 6.383 7.529 
 RF 1.272 2.540 4.099 6.737 
 LR 1.192 2.570 7.012 6.195 
Cirkewwa (Oct 2023) LSTM 4.253 2.576 5.997 9.572 
 RF 5.010 2.989 5.531 8.702 
 LR 2.547 5.707 3.447 16.264 
ERA5 LSTM 2.238 2.913 5.624 17.680 
 RF 1.593 2.110 2.161 15.614 
ERA5 + Same Station 
(Oct 2023) LSTM 2.890 2.892 4.946 9.024 

 RF 4.339 2.469 4.903 8.450 
ERA5 + Cirkewwa (2 
year) LSTM 2.114 3.047 5.042 7.577 

 RF 1.242 2.616 4.237 6.691 
ERA5 + Cirkewwa 
(Oct 2023) LSTM 3.221 3.000 5.080 8.434 

 RF 5.053 2.956 5.540 8.609 
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Figure 2 – Air Temperature predictions for the Cirkewwa station. 
 
 

 
Figure 3 – Wind speed predictions for the Cirkewwa station. 
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Figure 4 – Atmospheric pressure predictions for the Cirkewwa station. 

 
Figure 5 – Relative humidity predictions for the Cirkewwa station. 
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Conclusion 
In this research, we explored the use of LSTMs, RF and LR to predict 

meteorological parameters based on observations from coastal meteorological 
stations. Our findings highlighted the critical importance of having sufficiently 
large training datasets. They suggest that models trained on extensive datasets from 
nearby stations or global models are preferable to those trained on shorter datasets 
from the same station. 

For future work, we plan to investigate the effectiveness of pre-trained 
probabilistic forecasting models, such as Lag Llama [18]. Additionally, we intend 
to experiment with hybrid models that integrate AI with computational physical 
models, such as the WRF model, to potentially enhance prediction accuracy. 
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