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Foreword

These Lecture Notes introduce the theoretical basics of solid mechanics
to environmental engineering students. Born out of and supported by the
European Project DEREC TEMPUS JEP Development of Environmen-
tal and Resources Engineering Curriculum, it collects the lectures held by
the Authors during the course of Mechanic of Solids at the University of
Florence, Degree of Environmental Engineering and Resources. Although
the course is extended to basic structural engineering principles, such as
mechanics, statics, kinematics and fundamental equations of beam struc-
tures, inertia, iso static and hyper static solution methods, these Lecture
Notes reflect only the content of the lectures of continuum mechanics.

Several approaches are possible to the subject depending on the con-
cern, either mathematically or physically oriented. The volume aims to
provide a synthesis of both approaches, presenting in an organic whole
the classical theory of solid mechanics and a more direct engineering ap-
proach. It is the Authors’ opinion that a top—down learning process may
offer to the engineering students those critical and autonomy tools neces-
sary to gain awareness of that continuous learning process that is required;
it characterizes the cultural and technical personality of an engineer. An
ongoing learning is all the more necessary today, where the rapid develop-
ment of powerful computers and computer solving methods (finite element
methods, discrete volume methods, boundary methods, etc.) have opened
up the way to new horizons that the classical approaches were only able to
formulate. This fast and impressive growth of computer methods seems to
be replacing the importance of gaining a consolidated knowledge of solid
mechanics background. On the contrary, the Authors believe that only
a conscious knowledge of theory can be that cultural instrument through
which an engineer can really hope to control the use of computer methods.
With this aim, the Reader addressed by this volume is mainly the under-
graduate student in Engineering Schools: it is organized in eight Chapters:
Chapter 1 proposes a synthesis of the basic concepts of mathematics and
geometry that the readers need in the following chapters. Chapter 2 and
Chapter 8 are devoted to the elementary framework of strain and stress
in an elastic body. The concept of finite strain and Cauchy stress state
is introduced, together with Mohr’s representation of a general state of
stress. Chapter J focuses on the classical law of linear elasticity. Chapter
5 deals with the Principle of Virtual Works. Chapter 6 treats the energy
principles and provides a basic introduction to the variational methods.
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XIvV FOREWORD

Finally, Part I ends with a chapter introducing the notion of strength of
materials. At the end of each chapter of the first part the basics of the
tensor—based shell theory are also presented and then an application to
some standard shell geometries is provided in appendiz A.

The second part, Chapter 8, is dedicated to De Saint—Venant’s problem
where the classical beam theory is presented focusing on the four funda-
mental cases: beam under azial forces, terminal couples, torsion, bending
and shear.

The volume, that consolidates the Lecture Notes prepared by the Au-
thors for the second—year undergraduate students in environmental engi-
neering, proposes a widening of the classical theories approached, giving
a list of references used during its preparation as a possible suggestion to
the Reader.

The Authors wish to express their heartfelt gratitude to professor
Marco Modugno for the inspiring discussions and stimulating suggestions.

It is also our pleasure to thank Eng. Seymour Milton John Spence for
kindly revising the English text.

The publication of this book has been possible thanks to the finan-
cial support of the European Commission (DEREC Tempus Project) and
Ente Cassa di Risparmio di Firenze to whom the Authors are extremely
grateful.

CLAuUDIO BORRI, MICHELE BETTI, ENZO MARINO
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Chapter 1
Outline of linear algebra

This chapter briefly presents some preliminary mathematics necessary
to understand continuum mechanics. To this end the basic concepts of
linear algebra and tensor analysis will be introduced. At the end of the
chapter an overview of the theory of surfaces will be exposed in order to
make the reader familiar with some background required for the mechanics
of shell continuums, even though the latter is not the key theme of this
book.

This introduction is neither ezhaustive nor complete; indeed for any
further insight the reader is warmly recommended to refer to the main
sources from which this summary has been derived: Modugno, [4] and
[5]; Sokolnikoff, [1]; Green-Zerna, [3].

1.1 Vector spaces and linear mappings

1.1.1 Vector spaces

We define vector space a set V equipped with the following op-
erations

<l
~—

+ D (1.1)

:(w,v) —a
: ) = AD.

A

1

+:V x
- IR x

< <

Elements belonging to V' are named vectors and are character-
ized by the following properties

La+(@+w)=(u+v)+w Vu,v,weV
2. u+v=v+u VuVEV

3. u+0=u VaeV

4. VueVI=—ueV sothat u+ (—u)=0
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4 OUTLINE OF LINEAR ALGEBRA

where 0 is called null vector.
Every vector space admits the existence of a subset

B={b,... .o} CV

called the basis of V. Thus, each vector o € V can be univocally
represented through the basis B as follows

v =0'b; i=1,...,n (1.3)

where v* € IR are the components of o related to the basis B and n
is a number which defines the dimension of V', namely the number
of vectors in any basis of V.

Notice that in equation (1.3) the Einstein’s summation conven-
tion has been used. It is a notational convenience where any term
in which an index appears twice will stand for the sum of all such
terms as the index assumes all of a preassigned range of values,
hence

=1

1.1.2 Linear mappings

Functions between two vector spaces assume a crucial impor-
tance in linear algebra. In particular, we define a linear map as a
linear transformation between two vector spaces that preserves the
operations of vector addition and scalar multiplication.

Let V and V' be two vector spaces equipped with the bases

B={b,....b.}, B ={1,....0m}

respectively.
We define a linear mapping as the transformation

V=V o= (1.5)
if the two following conditions are satisfied
1. f(u+0)=f(u)+ f(v) Va,v €V : additivity;

2. f(Au) =X\f(a) Va €V e A € IR : homogeneity.
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The set of all linear maps from V to V', denoted by L (V,V’),
represents a n X m—dimensional vector space, where n and m are
the dimensions of V and V’, respectively.

{f:VoV}Y=L(V,V) (1.6)
For linear mappings the following properties hold
L (f+g)@=F@+g@), YigeL(V,V);ueV
2. A\f)(@)=Xf(w), YfeL(V,V);ueV

Matrix representation

Notions so far introduced allow us to assert that if f is a linear
mapping from V to V', then f(7) is a vector in V’. Consequently,
by recalling the expression in components for v, (1.3), we have

f@)=f@)"V;, i=1,...,m (1.7)

and accounting for the fact that v = va]-, with j = 1,...,n, and
by using the homogeneity property for linear mappings, the latter
equation leads to

FO) W=7 f (b)) Vs j=1,...,n i=1,....,m. (L8
In a shorter form the components of f (o) are then
(f (@) = fjv/ (1.9)
so that the m x n—dimensional matrix f]’f =f (Ej)i is the matrix
representation of the linear mapping f referred to the bases B e B'.
Linear forms and the dual space

Linear forms are a special case of linear mappings. Let V be
a vector space and B = {b;} its basis. A linear form w is a linear
transformation from V' to a scalar field

w:V—-IR (1.10)
Hence, we define V* as the set of linear forms from V to IR

V¥={w:V > R}=L(V,R) (1.11)
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V* and V have the same dimension.
The dual space V* admits a basis B* = {3’} whose elements
are linear forms operating as follows

8m)=0-{¢ i (112)

By the definition, we can state that the element @7’ belonging to
B*, applied to the vector u, yields a scalar that is the i—th compo-
nent of 4. In fact we write

B (a) = B (wb;) = u B (b)) = uj(5§ =% (1.13)

We highlight that, as done for vectors, each linear form, chosen
the n—dimensional basis B*, can be written in components as follows

w=w# j=1,....n (1.14)

Bilinear forms
We can define a bilinear form f as a mapping
[:VxV SR, (0,0)—)\ (1.15)

where 9,7 € V and A € IR, and such that it is linear in each
argument separately. That is

1. f(z7+w,@’):f(z7,z7’)
[ (0,0 +w) = f(v,7)

f (Ao, ) (@,A@):/\Jj(@,@’.
erL( €

Endomorphisms

Frequently in the field of solid mechanics we will meet special
linear mappings from a vector space into itself, i.e. f € L (V, V).
These are defined endomorphisms

V=V, o0 0,0 eV (1.16)

The set of linear mappings from V into itself forms a n x n—
dimensional vector space, where n is the dimension of V.

{f:V-Vy=L(V,V)=:End(V) (1.17)
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Change of basis for endomorphisms

Let B be a fixed basis for V,ﬁwe are interested in evaluating how
the endomorphism f € End (V) changes when passing to a new
basis B’ of V. The following transformation rules are established

b; = a'b), (1.18)
b), = alb; (1.19)

that, by replacing (1.19) into (1.18), yield
bi = a"akby, (1.20)

and so
(a ak — (5’“) b, = 0= aal = oF (1.21)

therefore, each change of basis for V is characterized by a square
invertible matrix n x n.
Likewise vectors, the following rules hold for dual elements

B = dip" (1.22)
ﬁlz — /Zﬁh (123)

When both bases are orthogonal, then the transformation ma-
trices are also orthogonal, that is

al = al, (1.24)

where a/" = (a?)_l, and
a;-i = cos (b}, b)) (1.25)
al = cos (br, by,) (1.26)

The change of basis implies a change of the vector components.
In fact we have

ok = akvlj (1.27)

v'F = ;’f (1.28)
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The proof of the above equations can be easily provided. For in-
stance, for equation (1.27) we have that a vector v can be expressed
with respect to two basis B and B’ as © = v'b; = v'jb;-. Hence

v'b; = v’ja%k = v/jakl;k — ', =0 = (1.29)
v”akbk — vzékbk =0= <v’]a —v (5’“) b, =0 (1.30)
finally, by putting zero the coefficient in brackets, we obtain relation

(1.27).
Covector components change by the the following rules

v = ajv)] (1.31)
vy, = atv; (1.32)

Furthermore, recalling equation (1.9), via some manipulations,
we get the rule to transform the endomorphism f, that is

f —ahf/h 1k (1_33)
and
fi = di fia (1.34)

Similar relationships can be found for higher order matrices, for
instance for a mixed fourth—order tensor we have

fhk = alam T/ngnalf?a%) (1-35)
and likewise
i = al'af fianay (1.36)

1.2 Euclidean spaces

A Euclidean vector space is a space which admits a Euclidean
metric, that is a structure inducing some special relationships be-
tween distances and angles. In particular, fixed a Cartesian coordi-
nate system (that will be better defined later on) and its standard
basis, in a Euclidean space the distance between two points can be
computed by means of Pitagora’s formula.

!Often, within an engineering context, it is convenient to represent equations
(1.33) and (1.34) in the matrix form, such as F' = R'FR and F = RF'RY,
where RT and R are nothing but a; and al, respectively.
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1.2.1 Euclidean metric tensor and scalar product

Let V be a n-dimensional vector space and B = {b;} be its
basis. We define Fuclidean metric the symmetric positive definite
bilinear mapping

g:VxV—-R (1.37)

that, given a pair of vectors 4,0 € V, gives a real number g (4, )
as follows

u-v=:9(u,0) (1.38)

The number g (@, ) is termed scalar product. The Euclidean

metric allows us to compute distances. Indeed, we define length (or
modulus, or norm) of v € V' the real number

[o]] = /g (v,9) > 0 (1.39)

The angle ¥ amid vectors @ and o is given by the following
equation
giju'v?
VlgigurvIllgijuivl]
To compute the components of the metric tensor, i.e. the matrix
representing the mapping g, given the basis B = {b;} of V, the
following general rule is adopted

gij = g (bisbj) = b; - b (1.41)

that in the expanded form becomes

cost =

(1.40)

51.51 Bl'bn
9ij = : : (1.42)
byp-by - by by

In the light of the above general expression for the metric tensor,
the scalar product between two vectors becomes

a-0=u'b;- vjl_)j = u'ulb; - Ej = gijuivj (1.43)

Expression (1.43) includes, of course, the special case when,

fixed a Cartesian coordinate system, the metric matrix equals the

identity matrix d;; and consequently the scalar product can be car-

ried out multiplying component by component, i.e. @ -0 = ulv! +
st
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Now we want to point out that between the n—dimensional vec-
tor space V and its dual V* there exists an isomorphism. Note that
we are using some special words, e.g. isomorphism, without giving
the formal mathematical definition. This lies beyond the purpose
of this book, so that, also in this case, we will restrict the current
exposition to an intuitive concept. From this point of view, an iso-
morphism is a one—to—one mapping of an algebraic structure, e.g.
vector space, into another of the same type, preserving all algebraic
relations.

Thus we define the musical isomorphisms: flat and sharp, re-
spectively, as follows

¢ V=V - (1.44)
GV Viv—T (1.45)

where
uw(®) =g (u,0v), VueV (1.46)

The isomorphism between V and V* implies the existence of a
metric tensor

SS)

g:V*xV* = R (1.47)

so that
u-v=g(uv):=g(uv)=u-v (1.48)

For further details the reader is referred to [4].

Both ¢’ and ¢! are particularly helpful when carrying out com-
putations it is necessary to switch from the contravariant form to
the covariant form (and vice versa); namely when we need to lower
or raise the indices.

1.2.2 Eigenvalues and eigenvectors

Let V be a n dimensional vector space and B = {b1,...,b,}
the vector basis. Given f € End (V), we define the eigenvector a
nonzero vector ¥ whose direction does not change under the effect
of f. Formally

f(@) =X, AeRR (1.49)

When equation (1.49) holds we can also define the real number
A as the eigenvalue for v.
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The eigenvalues of f represent the real roots of the following
polynomial

P () = det (ff — AS}) (1.50)

where p,, (A) is called the characteristic polynomial of degree n and
f; is the matrix representation of the endomorphism f.

1.3 Tensors

This section is devote to a short outline of tensor analysis.

Given two vector spaces U and V it is possible to construct a
new structure, i.e. a third vector space, called tensor product of U
times V' that is symbolically denoted by U ® V. This vector space
is made up of elements called tensors. It is possible to demonstrate
that if

BU = {ﬂl,...,ﬂn}
B(/ = {1_]1,...,5m}
are bases for U and V, respectively, then
Bioy = {4 ®v},i=1,...,n;j=1,....m

is a basis of the vector space U®V . Therefore, each tensor 7 € UV
can be univocally expressed by

7 =7 (1 ® vj) (1.51)
where again the Einstein’s summation convention has been used, in
fact (1.51) can also be written

n

m
7= ZZT’”% ®
i=1 j=1

1.3.1 Tensors and linear mappings

The definition of tensors does not alter the structure of U and
V', and, since the dual space V* preserves the structure of a vector
space, we can introduce tensors belonging to spaces such as U* @ V*
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and U*®V . In other words we distinguish the following second order
tensors:

U*eV: mized tensors
U*V*: covarinat tensors
UV : contravariant tensors

Mixed tensors: given the n—dimensional vector spaces V and V*,
let @« € V* be a dual form and o € V a vector, then the
tensor a® @ € V*®V can be identified by the endomorphism
a®v € End (V) =1L (V, V) defined as

a®v:V—=Viam (a@d)i=a(i)veV (1.52)

Hence, a natural isomorphism has been obtained
VeV =L(V,V) (1.53)
Covariant tensors: Let o, 3 be two linear forms belonging to V.

We can identify the tensor a ® 8 € V* ® V* by the bilinear
form o ® 3 € L? (V, ]R) defined as

a®@pB:VxV->R:(4,0)—a(@)p®)eR (1.54)
Therefore we can realize another isomorphism, which is
V*eV*=L*(V,R) (1.55)

Vectors, linear forms and tensors so far discussed can be sum-
marized in the following scheme

Vectors B
vevV (1.56)
Linear forms
acV*=2L(V,R) (1.57)
IT-order mixed tensors
a@veV* @V =End(V) (1.58)

IT-order covariant tensors

a®BeV RV 2L*(V,R) (1.59)
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1.4 Coordinate systems

Within the three-dimensional affine Euclidean space FE it is pos-
sible to define a coordinate system through the following bijections

X:E—-R X '':R>E (1.60)
where X = (1:1,332,1‘3). The injectivity of X assures the one—to—
one correspondence between points belonging to E and their co-
ordinates. Namely, given a point p € FE there exists the triplet
(xl,:cQ,a;?’) which identifies such a point. The mapping X is as-
sumed to be differentiable as many times as required.

The coordinate system X is made up of coordinate functions

@ E—-R i=1,23 (1.61)

Moreover, we define the coordinate curves as the following map-
pings

zip:R—FE =123 (1.62)
such as
21, (A) =X (2! (p) + A\, 2% (p) , 2% ()
zp (\) =X (2! (p), 2 (p) + A, 2% (p))
w3 (A) =X"" (2" (p),2* (p) . 2° (p) + \)
that in a shorter form become
w (zip(N) =2' (p)+6N  peE, NeRR (1.63)

Given a point p € F, there are three coordinate curves passing
through it.

It is possible to demonstrate that the derivatives of the coor-
dinate curves, computed for a fixed A, are vectors forming a basis
B = {51} in p.

Analogously, it can be proved that the derivatives of the coordi-
nate functions {x'} computed in p form a covariant basis B* = {d‘}
in such a point.

The above two bases satisfy the following relation

&7 (8;) = o? (1.64)
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Figure 1.1: Contravariant and covariant bases related to a 2D curvi-
linear coordinate system.

See [4] for further details.

Bases B = {51, s, 53} and B* = {dl,d2,d3} related to X allow
the representation of vectors, linear forms and tensor fields. For
example we write

1|
Il

v'0;, Yo:E—E (1.65)
w;d® Yw:E — E* (1.66)

S
I

where v and w are vector and covector fields, respectively.

1.4.1 Linear mappings and the metric tensor

In order to represent an endomorphism f by means of the coor-
dinate system X we can write

f=fd®d, VfE—L(EE)=2E'QE (1.67)
where ' ' B
f=d(f():E—-R (1.68)
and likewise, for the bilinear form we write
f=fyded, Vf:E—L*(E,R)=E*®FE" (1.69)
where o
fij=[(0:,0;) : E— R (1.70)

It is straightforward now to realize that the metric tensor g is
nothing but the following bilinear form

g:E—L?(E,R) 2 E*®E* (1.71)
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indeed
g=g;d @d (1.72)
where
gi; =4 (81‘763') (1.73)
As a concluding remark of this section we point out the fact that
once the coordinate system is fixed it is possible to find its vector
basis, i.e. the covariant basis, and therefore the covariant expression
of the metric tensor can be directly computed.

1.4.2 Components of the metric tensor

Suppose that X. = {2}, i = 1,2,3 is a Cartesian coordinate
system, with the origin o € E, which describes the affine Euclidean
space E and {€;}, ¢ = 1,2,3 its unit normal basis. Moreover, let
X = {27},j = 1,2,3 be a generic curvilinear coordinate and
{0;}, j = 1,2,3 its basis. Suppose that the functions x! and z°
are single-valued and continuously differentiable with respect to
each of their variables as many times as required, we can therefore

write
ah=a! (z', 2% 2%) i=1,2,3 (1.74)
ot =o' (zf,22,2)) i=1,2,3 (1.75)
and the rules for changing basis (1.18) and (1.19) on page 7, become
- oxh . Oxt h
0; = 6305 €h; d' = a—xébg (1.76)
and
B oxh - . Ot h

where equations (1.76) transform the covariant and contravariant
elements of the Cartesian basis into the elements of the curvilinear
basis while expressions (1.77) perform the vice-versa.

Now, according to equation (1.41), it is possible to compute the
covariant components of the metric tensor related to the curvilinear
coordinate system

- = oxh_ oxk_

gij = 0; - 05 = i P Ok = (1.78)
h 9.k h 5..h

Oz, Oxg Ox; Oz (1.79)

= 0x 023 T Bxi Ox
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Moreover, the contravariant components are

i .
:83;‘ h.ax‘]k

— il = — 1.81
ozl Ok Ozl Oxh (181)
and finally the mixed components of the metric tensor are
i iP5y 0t Oaf
g5 =d'(9;) = P e (1.82)
i k i h
_ Ox 8:1:; h Ox qu (1.83)
Ozl dzi dzh O
Christoffel symbols
The Christoffel?®’s symbol are defined as follows
Iy, =d"(Vi0;): E— R (1.84)

so that Vigj = Ffjék. Hence, Ffj is the k—th component of the
derivative of the basis element 5j along the i—th direction. Analyt-
ically they can be computed by the following formula

1
Tl = 59" (Dign; + Oigni — Ongis) (1.85)
where 9; denotes the partial derivatives.

Moreover, it can be proved that

Il = (Vid)* = - (vid") (1.86)

J

For proofs and more details the reader is referred to [4], [5] and
[1]-

2Elwin Bruno Christoffel (November 10, 1829 Montjoie, now called Mon-
schau - March 15, 1900 Strasbourg) was a German mathematician and physi-
cist.

Source: http://en.wikipedia.org/wiki/.
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1.4.3 Examples of coordinate systems

Cartesian coordinates

The Cartesian coordinate system introduces considerable sim-
plifications with respect to other curvilinear systems, e.g. cylindri-
cal, spherical, hyperbolic, etc.

Therefore, let us begin by defining a Cartesian coordinate system
as the triplet of coordinate functions

Xe=(z,y,2) = (z',2%,2°) : E - R’ (1.87)

with an origin in o € E and equipped with the unit normal basis,
also called standard basis, {€1, é2,€3}. Given p € F, the coordinate
functions are such that

' (p) = (p—o)-& (1.88)
The coordinate curves of a Cartesian system are
Tip ()\) =p+ A (1.89)

Notice that for rectangular coordinate systems the symbols de-
noting the bases will turn into

gz‘ =¢e; (1.90)
d’ =¢ (1.91)
The covariant form of the metric tensor can be readily computed

as follows
gij = € - €5 = 0jj (1.92)

Elements of the standard basis related to the Cartesian coordi-
nate system do not vary with the point p € E. As a consequence,
the Christoffel symbols are identically null.

If=0 (1.93)

In addition to that we also highlight that here the upper or lower
position of the indices does not influence the structure of the field
we are dealing with. Namely, vectors and linear forms are the same
and the unit normal basis equals its dual.

g @) =c=¢ (1.94)
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For this reason whenever given two sets of numbers having the
same dimension, they can be ordered in a row and a column, respec-
tively, and by using the multiplication rule row—by—column a scalar
is always yielded without taking any care whether we are dealing
with vectors or linear forms.

Cylindrical coordinates

We define a cylindrical coordinate system the functions
X=(p,9,2): E— R? (1.95)

In this case, with the help of figure 1.2, equation (1.74) becomes

x = psentd
y = pcost)
z=2z
A z
Ny
\
eA
v &
€ > >
Je Yy

Figure 1.2: Cylindrical coordinate system.

Now, through equation (1.76), it is easy to compute the basis
related to the cylindrical system

= Ox dy_  0z_
82 = @61 + £€2 + £63
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Hence, the covariant components of the metric tensor is

Gop =1

_ 2
g9y = p
gzz:1

99z = Gpz = Gpy = 0

that in the matrix form can be written as follows

1 0 0
gi=0 0 0 (1.96)
0 0 1
The contravariant form of the metric tensor is
1 0 0
g7 =(g)) "= 0 5 0 (1.97)
0 0 1

Using equation (1.85), the Christoffel symbols are

1
s v
ngﬁ = —p, Pﬂp = Fp,& = ; (198)
Spherical coordinates
We define a spherical coordinate system by the functions
X =(r7,¢):E— R (1.99)
In this case, with the help of figure 1.3, equation (1.74) becomes
T = rsin @ cos v
y = rsinpsind
Z=TCcosy

Now, through equation (1.76), it is easy to compute the basis
related to the spherical system

5= 2o+ Wy 22
" 87’61 87’62 87"63
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Figure 1.3: Spherical coordinate system.

Hence, the covariant components are

Grr = 1
gyy = r? sin? %)
Jpp = r?

grd = Grp = G9p = 0

which in the matrix form are written as follows

1 0 0
g =1 0 r2sin?p 0
0 0 r?

The contravariant form of the metric tensor is

1 0 0

- _ 1
g7 = (gij) b= 0 r2sin? ¢ 0
o 0 %

Using equation (1.85), the Christoffel symbols are

T oo _ 102
Iy =—r 9o = —Tsin“ @
1
Y TP I TP _ _ g
FW—FW—T Iyy = —sinpcosp
9 _ o _1 9 _ 1 __ cosp
Prﬁ_rﬂr_ ; Fﬁgo_r‘cpﬁ_ sin ¢

(1.100)

(1.101)
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1.4.4 Volumes and the vector product

In the three-dimensional Euclidean space a volume element ) is
defined as a three-linear form such as

ni=ExExE— R, (1.102)
(771,172,173) — ?7(271,272,173) € R (1.103)

When the set of three vectors forms a basis {by, by, b3}, for any
other basis {b], b5, b}, the volume element changes with the follow-
ing expression

1 (00, b5, b) = la|n (b, bo, bs) (1.104)

where |a;-i\ is the determinant of the endomorphism for basis chang-
ing already seen in equation (1.18).

The application 1 can be expressed by a third order skew—
symmetric tensor 7;;, with the following properties. If two of the
subscripts {4, j,k} equal each other the volume element vanishes.
Any odd permutation of the subscripts changes the sign of the el-
ement, any even permutation of the subscripts does not alter the
volume element.

For a Cartesian system of coordinates we shall denote the vol-
ume form by €;;; and the above properties become clearer in the
following scheme

0 when any two of the indices are equal;
ik

€ijk = €I = 1 when i, j, k is an even permutation of the numbers 1,2,3;

—1 when 4, 7, k is an odd permutation of the numbers 1,2,3;

that means, for example

112 133 229
€ =€p=€" " =€33=€"" =€ =0
123 231 312

€7 =€ =€ =€w1 =€ =e320=1
132 321 213

€7 =€z =€ =€z =€ " =€13=—1

In addition, the operator ¢;;; satisfies the following identity
€ijk€ith = 0jiOkh — 0jnokl (1.105)

Suppose that {51-, 5j, 5k} is a basis related to a curvilinear co-
ordinate system, we want to evaluate the volume element in this
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system through the volume element expressed in the Cartesian axes.

Oz 0z} Oxt

dz" Ozt O,

— =1 1.106
oz, 8CE]‘ D2k €rst = Mijk ( )

which, by means of equation (1.104), we find that the coefficient of
the volume element in the Cartesian coordinates € on the left—hand
side of the latter equation equals the determinant of the endomor-
phism of the basis changing, namely

oz" Ozt Ox', » Oxh
Dz: Oz, Oon laP| = det <8mm> (1.107)

It is easy to prove that the above determinant is the square
root of the determinant of the metric tensor related to the generic
coordinate system {xz} ,1=1,2,3. So we have

n (5’“5])5/6) =4/ |gpq‘€ijk (1108)

and in the same way the following contravariant expression can be

derived o -
7 (gﬂdﬂd’“) = /| gra|eiik (1.109)
where |gpq| = det (gpq) and |gP!] = m = det (¢P?).

The skew-symmetric tensor 1 defines the vector product as
follows

UXvV= uza X vjéj = uiwjgi X 5j = ’u,ivjmjk(_ik (1.110)
and also
uxv=u;d" x vjdj = uivjc_li x dJ = uivjnijkgk (1.111)

We can use the tensor 1 to compute infinitesimal volume, area
and line elements. Let us begin putting the infinitesimal vector
along the j—th coordinate curve as follows

dlj =dz’0;  (j not summed) (1.112)
so that the infinitesimal volume is given by

AV = n (dly, dly, dls) (1.113)
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hence
AV =1 (01,01,01) da'da?da® =
Vaeinzdrtda?da® = \/gdat da?da® (1.114)

The above expression for the volume element can also be written

as
AV = [dl; x dlp] - di3 (1.115)

that allows us to attain the same equation expressed in (1.114),
indeed we have

[dly x dly] - dly = dz'dz*n123d® (d2®5) =
dxldx2dx3\/§6123d3 (53) = dx1d$2d$3\/§6123(5§ =
Vada'dx?da? (1.116)

Infinitesimal area element

Taken two infinitesimal vectors along two coordinate curves re-
spectively, the infinitesimal area normal to the vector along the
third coordinate curve is given by

dAz = |dly x dla| = mos|d®|da’ da® =

NG, d? - d3dztda? = /gg33datda? (1.117)
and it is easy to obtain the general expression for any area element
dA; = /ggiida? dz® (1.118)

where i is not summed and i # j # k.

Infinitesimal line element
A generic infinitesimal line element di? is defined by
di? =|dl]? =dl - dl =
dz'0; - dx’ 9; = da'da’ g;, (1.119)

whereas, a line element taken along the i — th coordinate curve can
be represented by the vector

dl; = d2'0; (i not summed) (1.120)
and it measures

g (dls, dl;) = gidz’ (1.121)



24 OUTLINE OF LINEAR ALGEBRA

1.5 Covariant differentiation

In this section we shall briefly introduce some notions concerning
the derivatives of objects so far discussed, i.e. vectors and tensors. In
order to differentiate these fields the concept of manifold is required.
However, in this context it will be restricted to a rough and informal
description.

A manifold is an abstract space locally Euclidean so that, for
each point belonging to the manifold, there is a neighborhood that
can be described as the Euclidean vector space. When we deal with
manifolds, the intuitive idea of vectors obtained by simply subtract-
ing two points in the affine space might no longer be valid. Keep
in mind, for instance, a curved surface ) € E, i.e. a two dimen-
sional manifold, and try do define a vector entirely belonging to the
surface by subtracting two points. It is easy to see that the vector
cannot belong to the curved surface Q.

For this reason we need an additional space named tangent space
TE that allows us to extend the concept of vector spaces so far
discussed to manifolds. The tangent space is a Euclidean vector
space consisting of the tangent vectors of the curves through the
point of the manifold itself.

In order to use tools for computing volume, area and line el-
ements, i.e. to define the metric tensor, we shall suppose that we
always deal with differentiable Reimannian manifolds. For a formal
mathematical definition see [5].

Given a general coordinate system X = {a:l} , 1 =1,2,3, let
@ be a vector field @ : E — TE and 7 : E — ®*TE a k-order
contravariant tensor, we define the covariant derivative V7 of the
field 7 with respect to the field @ as

Var = Uj(ajTil'“ik + ]_“;1}17_}112% + ...+ F;%Til"'ikflh)gil ®R....&® 5%

(1.122)

Analogously, for a k-order covariant tensor 7 : E — ®FTE™ the
covariant derivative becomes

Vﬁ’]’ =’ (8j7—i1...ik - F?ilThiz...ik e — F?ikTh...ik,lh)d” &....Q (_ilk

(1.123)

where T E* is the cotangent space, namely the space that contains
the dual forms related to the vectors belonging to TE.

The above expressions are presented only for the sake of com-

pleteness, while, the covariant derivative of vector fields and second
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order tensors, will be often used in the mechanics of shell contin-
uums. In fact, for a second order covariant tensor 7 = 70, ® O,
the derivative is

Var =l (9,7 + Tl 4 T571) 8, B (1.124)
while, for covariant tensors 7 = Thk(_ih %4 (_ik the derivative becomes
Var = (0, — Ty — Tprpe) 4" @ d* (1.125)

and for a mixed tensor 7 = Thdk ® O, the derivative is
Var = o’ (8 T, + T]tTk Tt ) d* @ oy (1.126)

Finally, for a vector field we have
Vil = o (aﬂf' + r;ihuh) 8, (1.127)
and for the dual form

Vau = o (a v — ) di (1.128)

1.5.1 Grad, div, curl and Laplace’s operator

Gradient. Consider a scalar field f : E — IR, we define the gradi-
ent of f as the the vector

j Of

550 (1.129)

grad f —g

In a Cartesian coordinate system the above operator simplifies
in the following expression

grad f = f _z (1.130)

Divergence. We define the divergence of a vector field v as the
following scalar

divo = tr (Vo) = v + T};07 (1.131)
In a Cartesian coordinate system the divergence is written as

divo = tr (Vo) = v, (1.132)
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Curl. For the sake of simplicity, to define this operator let us de-

note by V a symbolic operator defined as V = 8?& d’. Now the

curl of a vector field v can be defined as the following vector

curlo = V x ¢’ (0) =

= Ol = d x 2 () = 0 1.133

= 554 XUj7—7X@(Uj,)—77 Vj1i0k (1.133)
where 77" is the skew-symmetric tensor related to the vector
product (1.111) and v;); stands for the covariant derivative
Ui|j = Vij; — F%’L)h.
Hence, for a rectangular coordinate system, the curl assumes
the straightforward expression

curlv =V x v = vj,ieijkék = (1.134)

where 0 = wieér and w, = vj@eijk. Expanding the latter ex-
pression leads to the following equivalent form
€1 € €3
5o o) o) 0
curl v = det 92 92T 9l (].].35)
V1 V2 V3

Laplace’s operator. We define the Laplace operator of a scalar
field f the following scalar

V2f = gl (aiajf - rgahf) (1.136)

In a rectangular Cartesian coordinate system the Laplacian
is written as o2 o2 o2
f f f
Vif=—S+-5+-—5 1.137
! Ox?  0x3 0z} ( )

A useful remark

For practical uses of the above expressions concerning the differ-
ential operators it is necessary to consider a unit system. Attention
to this aspect must be especially payed when curvilinear coordi-
nate systems are involved in our computations. For clarity’s sake
we recall both expressions for a vector

’Ui

Qi

]
Il

(1.138)
(1.139)

S
I
&
(=¥
2.
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and we point out that vectors (forms) forming the covariant (con-
travariant) basis {0;} ({d'}) are not dimensionless. Hence, the vec-
tor components do not represent a physical quantity, even though
their geometric properties are correct. So, in order to give vec-
tor components a physical meaning a normalization of the basis
is required. To this end we introduce the so called physical basis
{c'_)<i>} such as

7 =00, (1.140)
Next we normalize the covariant basis as follows
_ 3 a
Oci> = = = — (7 not summed) (1.141)
|04 Gii

which, replaced into equation (1.138), allows us to define the phys-
ical components of v as follows

v = /g’ (i not summed) (1.142)

On the other hand for the dual basis we have

d<?> = (7 not summed)

/gt
Veis = v/ gP (7 not summed)
As an example, in the following we present the expressions of

the differential operators discussed in section 1.5.1 for a cylindrical
coordinate system.

e Gradient
of - o9 Of = of
_ _pp 2z —
grad f =g 83:Pap+g Ema +g 8$Z82
_Of & 1 0f of
= a0t o a0
of 10f of

= gopd<e> T 0z g 0<o> + o 25 0<z
e Divergence
o _ 1
divo = tr (Vo) = o) + U,Gg +07 + ;Uﬁ —

_ 1 ( <p> +U<9>) 1 p<e>
p 7p
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e Curl

curlv = nllkvmék —1—7712’“1)2‘1(% + ?713kU3\15k
0
nzlkvl\zgk =+ 7722kv2\25k +7723k03|25k
0
nglkvusék + 773%“2|35k + 7733kv3|35k =
~—

=0
=/ 99| ((U3|2 - U2\3) o+ (U1\3 - U3|1) D + (U2|1 - Ul|2) 53)

which by making use of the cylindrical notation as stated in
section 1.4.3 (i.e. 1 = p, 2 = ¥, 3 = z), taking into account
that v;; = v;; due to the symmetry of Christoffel symbols
in equation (1.98) and considering the physical components,
allows the above expression to become

~ 1 5
curl v = ;v<z>ﬂ9 — Vg2 | Ocps+

+ (U<p>,z - 'U<z>,p) 5<19> + ; (U<19>,p - U<p>,19) 5<z>

e Laplacian

°f 1Pf 0°f  10f

2p = _
Vf_a;ﬂ p2 092 022 pdp

Note that in the latter expression no normalization has been
used.

The divergence theorem

Consider a generic region V C F bounded by the smooth closed
surface S. Given a continuously differentiable vector field v € V, we

have
/divvdV:/v-ndS (1.143)
% S

where 7 is the outward pointing unit normal vector of the boundary

S.
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In components the above theorem becomes

J J .k _ iy
/v<v’j+f’jhv > dV/Sv n; dS (1.144)

The divergence theorem holds for tensor fields. For a mixed I~
order tensor 7 = T,? ((_ik ® 8h), for example, the theorem states

/VdiVTdV:/ST(n) s (1.145)

where the k—th covariant component is
/ <7-I?,h + FZtTlf; - szﬁh> dV = / Tl?nh ds (1.146)
v S

While for a IT-order contravariant tensor 7 = 7% (5h ® 5k) it
becomes

/ (e Thr™ 4 TR ) av = / n,dS  (1.147)
1% S

1.6 Affine space

Here we shortly introduce the notion of affine space.

Let £ be a n—dimensional vector space. We define the affine
space associated to E the set of points E equipped with the trans-
lation +, such as

+:ExE—E:(pu)—pt+tu=p €E (1.148)
where 4 = (p' —p) € E represents a free vector, while the pairs
(p,u) form applied vectors.

1.6.1 Free and applied vectors

This section is restricted to the geometrical interpretation of
vectors belonging to the Euclidean space and expressed through
the rectangular coordinate system. So that we have

g = 9" = g\ = & (1.149)

and
Nijk = €ijk (1.150)
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From a geometric point of view an applied vector is represented
by a line segment AB from point A to point B, where, with respect
to equation (1.148), A = pand B = p'. I B is moved to the position
C, then the whole translit}on fr(ﬂ)A to C represents the sum of
the partial translations AB and BC'

— —_— —

Putting AB = a and BC' = b we notice that if they were applied
in the same point, see figure 1.4, then a practical rule can be used
to carry out the addition @ -+ b. It consists in moving the vector b,
in such a way to be kept parallel to itself, into a new position so
that its starting point coincides with the ending point of a. Thus,
the line segment from A to the end point of b (in the new position)
represents the addition @+ b. See figure 1.4. This rule is known as
parallelogram rule because @ and b form the sides of a parallelogram
and @ + b is one of the diagonals.

Figure 1.4: Addition of two applied vectors.

The subtraction of two vectors applied in the same point can
be seen as ¢ = a + (—l_)) and so it is carried out by means of the
procedure described for the addition. The vector ¢ = a — b will be
given by the line joining the starting point of @ to the end point of
—b. See figure 1.5.

The addition of two applied vectors has the following properties

l.a+b=>b+a;

2. (a+b)+c=a+ (b+c);
3. A+ p)a = Aa+ pa;

4. A (pa) = (Ap) a;

5. M(@+b) = Aa+ \b;
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Figure 1.5: Subtraction of two applied vectors.

where @, b, ¢ are applied vectors in £ and A\, € IR.
For an applied vector it is possible to define norm, direction,
s4gn:

norm (modulus or length): is the length, measured by a fixed
—
unit system, of the line segment AB;

direction: is the direction of the line passing through A and B;
. . . . - et
sign: specifies the sign, i.e. AB = -BA.

From the preceding discussion about the metric tensor it is
—
known that the length (modulus) of a vector a (= AB) is the square
root of the scalar product by itself

lal=+/g(a,a)=va-a (1.151)

Recalling that the metric tensor is a bilinear symmetric positive
definite form, the following properties can be derived

1.a-a=|al*>0sea#0;
2.a-b
3.¢-(a+b)=c-ate-b;

4. X(@a-b) =(X\a)-b=a- (\b);

The cross product of two applied vectors @, b € F in a Cartesian
coordinate system is carried out by using the general rule given in
equation (1.110), so that

w=axb wecV (1.152)

where
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modulus: || @ ||=|| @ ||| b || sinf, where § denotes the angle
between a and b;

direction: normal to the plane to which @ and b belong;

sign: follows the right hand rule.

Moreover, by virtue of the skew—symmetric tensor €;;x, the vec-
tor product vanishes when either one of the two vectors vanishes or
when the two vectors are parallel. See figure 1.6.

=]

Figure 1.6: Vector product for Cartesian applied vectors.

The following properties can be also enunciated

:—BXEL;

QI
X
Sl

1.

2. (Aa+pb) xe=A@axe)+pu(bxe).

1.7 Surfaces

Let E be the affine Euclidean space. The submanifold Q C F is
a surface if dim @) = 2.

Suppose (Q C F is a surface which can be described by an in-
duced coordinate system of dimension ¢ = m — k, where m is the
dimension of F and k denotes the number of constraints (codimen-
sion of Q). Since @ is a surface we have m = 3, k = 1, ¢ = 2. The
induced coordinate system is given by

X":Q— R?:p— 2%(p) (1.153)
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From now on the quantities living on @ will be distinguished by
the symbol { and the components will be written using superscripts
and subscripts, running from 1 to 2, in Greek letters. The Latin
indices will denote components of quantities that are applied on )
but lie out, namely belonging to the vector space TéE.

The unit normal vector is defined as follows

fi:Q— TQ" so that g (n,n) = 1. (1.154)

where g is the metric tensor defined on TE and TiQJ‘ is the orthog-
onal space.
Analogously, on the surface (Q we can define the the induced
metric as
g TQxTQ — R
that in components® becomes

gT = gaﬁda ® dﬁ

Given two vectorial fields @ : Q@ — T'Q and ¥ : Q — TQ, the
covariant derivative of v with respect to u can be split as follows

Vit = Vo 4+ Vig (1.155)

where
v TQ xTQ — TQ (1.156)
VL TQ xTQ — TQ™ (1.157)

The application VI is called second fundamental form of the
surface. For further details see [5] and [3].
We now define the Weingarten® map L as the following endo-
morphism
L:=Vn:TQ — TQ : i+ Vgn (1.158)

3In some books the covariant components of the metric tensor ¢’ are also
denoted as g11 = FE, gi2=F, g2=0G.

*Julius Weingarten (March 2, 1836 Berlin - June 16, 1910 Freiburg) was a
German mathematician.

)

Source: http://www-history.mcs.st-andrews.ac.uk/.
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In addition to that, we define the total curvature (Gauss curva-
ture) K and the mean curvature H of a surface @ as follows

Ki=detL:Q — R (1.159)
H:=trL:Q— R (1.160)

Finally, eigenvalues of L are defined principal curvatures. See

[5]-
Let L be the second order covariant tensor related to the Wein-
garten endomorphism L by the metric tensor g, so that

L:=Vn:TQxTQ — IR: (u,v) — g (L (u),v) = Vgn-v (1.161)

where n = gb (n).
The following differentiation

0=Val(g(0,n)) =g(Vav,n)+ g (v,Van) = (1.162)
9 (Vav,n) = —g (v, Van) (1.163)

proves that the scalar quantity L (u,v) represents the normal com-
ponent to the surface @) of the covariant derivative, namely

Vav =Vio— L(a,0)n (1.164)

Dealing with mechanics of shell continuums, equation (1.164)
will be often used. Hence, in the following we expand its expression
in components.

Suppose {Ja}, @ = 1,2 is a basis related to the induced coordi-
nate system describing the surface, we have

V3,00 = V5 0 — L (95.0) 0 (1.165)

and for both right hand terms we have, respectively
Vi 8o =d7 (95) (9, (¢ (3a)) +T5ad* (Ba) ) B (1.166)
=5} (F;’A@) D = T%,0, (1.167)

(95) - 9a) = Vg, 7 Da (1.168)
= L350, 00 = LYgua = Lga (1.169)
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Finally, equation (1.165) in components becomes
V30a = T'%,00 — Lgat (1.170)

Note that in the remainder of this book, for the sake of brevity,
we will use Vg- instead of Vg@-.

Analogously, for an element of the controvariant basis, recalling
the general equation for covariant derivatives, and considering the
above Gauss splitting, we have the following expression

Vpd* = —T'§,d* — Lin (1.171)

Often, for instance in the case of shell theory, we will deal with
vector fields that do not belong to the tangent space, so it is useful
to present an example of derivative of vectors applied in @ but lying
out of the tangent space. Namely, suppose that v € TéE. We can
decompose the field v into the tangent and orthogonal component
as follows

o=0ol +ot (1.172)

that in components is written as
b= vy + v°7 (1.173)
Hence, given u € T'Q the derivative of ¥ with respect to u is
Vat = Vil + Veot = viol - L (a 17“) A4 Vol (1.174)
that in components turns into
Vv = (950" + 507 +06L5) Do+ 0 (o — Loge®) 7
(1.175)

In the same way, the dual form v € TéE can be differentiated
as follows

Vav = Vaul + Vol = Vil — L@, ol)n + Vaot  (1.176)
that in components becomes

Vav = u” (851)@ =T vy + vaﬁv) d" +u” (ve5 — LEva) 0
(1.177)
Examples of surfaces will be provided in appendix A, where,
within the application of the shell theory, the above results will be
applied to some well known geometries.






Chapter 2
Analysis of strain

This chapter is devoted to the classical strain theory for deformable
continuums. In order to offer a comprehensive approach, the first part will
be treated in curvilinear coordinates, then results in Cartesian coordinates
will be obtained as a special case.

2.1 Introduction

Before introducing the definition of strain it is useful to give
some preliminary concepts and definitions.

Let us begin with the definition of body.

A body C C E consists of a set of particles embedded in the
three—dimensional Euclidean space. Each particle p € C, i.e. a ma-
terial point, can be put in one-to—one correspondence with a triplet
of scalars that univocally determine the position of such a point.
Namely, for any point p included in the body there exists a coordi-
nate system X : C C E — IR3. See also the more general expression
(1.60) on section 1.4.

From the notions of body and time we can derive the concept
configuration. Configurations are regions V of the three—dimensional
Euclidean space E that can be occupied by the body in a particular
instant. Thus we have

v=(Ct)={t)|peC} (2.1)

where V is also called a spacial domain for fixed t.
It is assumed that:

e Configurations are open connected sets or domains in the Eu-
clidean space.

e On varying of the time t, the configurations of one and the
same body maintain a continuous one—to—one correspondence
between different positions of one and the same particle.

Claudio Borri, Michele Betti, Enzo Marino (a cura di), Lectures on Solid Mechanics, ISBN 978-88-8453-
854-3 (online), ISBN 978-88-8453-853-6 (print), © 2008 Firenze University Press
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2.2 Deformation

Now, beginning with an intuitive statement, we can introduce
the definition of strain. When the relative position of two points
included in a continuous media is altered, we say that the body is
strained. Hence, analysis of strains means to evaluate the change
of the relative distance between points; this is also called deforma-
tion!.

2.3 Strain tensor in general coordinates

Let V be the region taken by an unstrained state of a body at
time ¢, so that

V= (C,1) (2.2)

and V'’ the configuration of the body in the strained state at instant
t', that is
V= (C,t) (2.3)

Consider a Cartesian coordinate system equipped with the unit
normal basis {€;}, so that for any point p in V and p' in V' the
positional vectors can be written respectively as

F=(p—o)=2a'e (2.4)
7 =(p —o) =yle (2.5)

We assume that each point in V' is related to its original position
in V, and vice versa, by the following relations

Yo = Yo (0,22, 20, ) (2.6)
e = ¢ (Yer Yo, Yert)

In order to avoid penetrations or separations of the material
particles it is necessary that the transformation of points in V into
points in V' is one-to—one. Namely, to ensure the existence of the
single-valued inverse of equation (2.6) (or (2.7)) it is sufficient to

!We know that in nature all materials are deformable, but sometimes we
will refer to the abstraction of non-deformable (or rigid) body. This abstraction
assumes that for every pair of points belonging to the continuum, the relative
distance remains unvaried throughout the history of the motion.
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assume that the functions ¢’ and x are continuous and differen-
tiable as many times as required and the Jacobian is greater than
zero?. We write, accordingly

ai
9% 5 0
oxl

Consider now a generic curvilinear coordinates system X = {z'}
so that

= .93251 = $Zdl (2.8)

where {0;} and {d’} are the covariant and contravariant bases re-
lated to the curvilinear system and 2! = 7%, r; = x;. See figure
2.1.

Points belonging to the initial configuration V can also be re-

lated to the curvilinear system of coordinates as follows
xl =l (l‘l, z?, iL‘3) (2.9)

where 2’ are single-valued and differentiable as many times as re-
quired?®.

Moreover, we can use the curvilinear coordinates to describe the
body in the strained configuration V', so that

g =yl (z', 2%, 2%) (2.10)

According to section 1.4.2; through the Jacobian matrices, we
can compute the metric tensors g and ¢’ associated to the curvilin-
ear coordinate system for both configurations, respectively.

For the unstrained configuration the covariant components of
the metric tensor are

-~ Oz oak_

9ij = 8Z . 8]' = 78{[," Ep - 78333' € = (2.11)
h k h h

Ozl 0x; . Oz Oz, (2.12)

T 0t 0z T 9xt Oz

*The Jacobian of the function y. = y¢ (1) is the determinant of the matrix
whose ¢ — th row lists all the first-order partial derivatives of y;.
3With the exception of singular points, curves, surfaces.
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Figure 2.1: Unstrained and strained body states.

while the contravariant components are

i .

dx' 027 dz* 0z7
= Sk = 2.14
ozl Ok Ozl dxh (214)
and finally the mixed components are
7 1 a 8371 h 8.’1;’2 _
g5 =4"(0;) = ohE i (2.15)
0zt 92k, 92t Oxl (2.16)

T Oxh 9xi T Oxh 9a
For the strained configuration the covariant components of the
metric tensor are

dly =8 = Weay Wegy 217
_ Oye Oye Shi = Oue Oye (2.18)
ox* Ox) ox* OxJ
the contravariant components are
g9 =9 = g;: & g;:;ek - (2.19)
0z O 4y, Ox' 0! (2.20)

C Oyhoykt  oyh oyl
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and finally the mixed components are

7 i (5 ax h 8yc =
gj =d"(9;) = e B = (2.21)
0 oYk 0 oyl
T Oyh oz P T oyl i

(2.22)

At the beginning of this chapter we said that the aim of the
analysis of strain is to evaluate the change of length between two
points in a continuous medium. We are now mathematically able
to evaluate this difference

dli’? — di* (2.23)

where dI? = |dl'|? and dI? = |dI|? are the arc lengths of the strained
and unstrained states, respectively. Namely, the vector dl, joining
the points py and p, during the the transformation, is carried into
another vector dl’. These two vectors differ in direction and magni-
tude. See figure 2.2.

By using equation (1.119) on page 23, we can write the above
line elements with the help of the metric tensors for both configu-
rations as

di* = g;jda’da’ (2.24)
dI* = gj;da’da’ (2.25)

then, the difference
di* — di* = (g;; — gij) da'da? (2.26)

We now define a symmetric tensor named the strain tensor, as

1
i = 5 (9i; — 9ij) (2.27)

so that o
di”* — di* = 2v;;dz"dx? (2.28)

The strain tensor is obtained by subtracting two bilinear forms
so that it is still a bilinear form. Therefore, given two vectors pg
and gy at a fixed time to (let us say the initial unstrained state),
the strain tensor just measures the difference between the scalar
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Figure 2.2: Measure of strain.

product of the vectors p and ¢ at a generic time ¢ (that identifies
the strained state) and the scalar product at the initial state.

v:ExE—R (2.29)
0:0) = v(Pa) =9 2 97 (2.30)
so that
v (p,q) = p"qd" i (d'®d?) (Op, Ok) =
= p"¢"7; 0,07, = visp'd’. (2.31)
Points in V and V' are univocally determined by the positional

vectors 7 and 7’ respectively. With respect to the generic curvilinear
coordinate system X we have

F=1'0; (2.32)
7 =90, (2.33)
hence, the position p’ relative to p is denoted @ and it is called the

displacement vector
U=7 -7 (2.34)

Considering now that the basis related to the curvilinear coor-
dinates is given using equation (1.76), we have in the following an
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equivalent expression

5~ Or
= O 2.
0, 5 (2.35)
= OrF
g = 9" 2.36
= o (2.36)
and by considering the relation (2.34) it becomes
O =7;=7;+ Vi (2.37)

where the comma denotes the partial derivative and V indicates
the covariant derivative.

1. - - .
%= 5 (8- 05— 9;-0;) = (2.38)

1,z ~ _
=5 (0 + Vi) - (9; + V;u) = 0; - 0;) = (2.39)
= % (0i - Vju+0; - Vit + Viu - V) (2.40)

In fact, recalling the general expression (1.122) for this differen-
tiation, the above equation turns into

0 =/ = 0 + (w + Tiju") O (2.41)

where the Christoffel symbols are referred to the metric tensor re-
lated to the curvilinear coordinates for the original configuration V
of the body.

Finally, using the definition of strain tensor, with some calcu-
lations we can obtain the expression of the finite strain tensor in
general coordinates as

1 . .
=3 (Viu' + Viud + Vi ju") (2.42)

Expanding the above derivatives the strain tensor assumes the
following expression

1
5 <u,~7j + uj; + QF?Z-uh) +

1
3 (uklul‘; + g D¥u® + g T’ + thupfz-‘sub’) (2.43)

Yij =
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For Cartesian coordinate systems we could repeat exactly the
above procedure to obtain the strain tensor, but this is equivalent
to putting zero all the Christoffel symbols in equation (2.43). So
that for rectangular coordinate systems the strain tensor assumes
the following expression

1
Vij = 5 (Wi + g + upite) (2.44)
where we remind the reader again that in the rectangular coor-
dinates the position of the indices does not make any difference
because g;; = ;5.

2.3.1 Examples of strain in Cartesian coordinates
Stretching ratio
Let us define the stretching ratio d; as follows

s _dl—dl_dl
YA T dl

(2.45)

Namely, suppose we have two points in the unstrained state the
difference of which gives a vector dl = dx'€;. The corresponding
vector in the strained state is dl’ = da/'¢}. Therefore the stretching
ratio §; gives the relative difference between the length of the vectors
dl and dI’.

By means of the definition (2.28) we have

Yijda'dad %’2

e -1 2.4
dzkdzk dl? (2.46)
then
vijdatdrd
1) 1=4/14+2——— 2.47
et + dxkdzk ( )

so that the stretching ratio can be written as follows

. vijdatdad

Considering a simple extension along one of the z;-axis we have
dl = &;, the stretching turns into

(51' = 1/ 1+ 2’%’,’ -1 (2.49)
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Angular dilatation

Let us consider the vectors dl and d3 at a position p in the un-
strained state which are deformed into vectors di’ and d&’, respec-
tively. The difference between the angle amid the deformed vectors
and the unstrained vectors is called angular dilatation. For the sake
of simplicity, suppose that dl = & and d5 = é. We define the
angular dilatation the following difference

0
Wiz = 5 = ©lo (2.50)
T,A
dl',
\ -
| @172 dl',
\
pli e
dx',
p (Zx’l Ly

Figure 2.3: Angular dilatation.

See figure 2.3.
The scalar product of the strained vectors is

dl' - ds' = dl'ds’ cos ¢y (2.51)

and the modulus of both strained vectors can be written by means
of the preceding result for the linear dilatation

dl' =(1+61)dl =1+ (2.52)
ds' = (1 =+ (52) ds=1+ (52 (253)

so that equation (2.51) becomes

dl -ds' = (1+ 81) (14 82) cos )5 (2.54)
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The left hand term of the latter expression can be written with
the help of the strain tensor, so that by recalling equation (2.27) we
have

dl' - ds' = (0i5 + 2v;5) dl'ds’ = 2719 (2.55)

Finally equation (2.54) turns into
2v12 = (14 61) (1 + d2) cos )y (2.56)

By virtue of the identity sin wis = cos 12, the angular dilatation

becomes
2712

(I14+61) (14 62)

and naturally the above formula can be used to compute also the
dilatations wg3 and wsj.

sin w12 =

(2.57)

Area dilatation

Vectors dl and d5 at a position p in the unstrained state de-
fine an area element dA which is deformed into the area element
dA’ defined by the strained vectors dI’ and ds’. We define the area
dilatation ratio the following coefficient

dA" — dA

We may suppose for simplicity that dl = & and d5 = &;. See
figure 2.4.

T,A
da, dA
p ch’, z

Figure 2.4: Area dilatation.
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As well known, we have
dA = |dI' x 5| = dl'ds’ sin @, (2.59)

and, recalling equations (2.52) and (2.53), the latter expression be-
comes

dA" = dl'ds’ sin ¢y = (1 + 1) (1 + &2) sin )5 (2.60)

finally, through the geometrical relation coswio = sin 19 it is easy
to reach the following expression for the finite area dilatation ratio

a=(14+01)(1+0d2)coswia—1 (2.61)
that can be alternatively written as
a=(1+0)(14+6)V1 —Sin2w12 —1=

= (0 +6) (1482) 44, (2.62)

Volume dilatation

We define the volume dilatation ratio the coefficient

ay' —dy

As in the preceding cases, let us suppose that the initial un-
strained volume is given by the following unit vectors

dy = [él X ég] -é3 =€103 =1 (2.64)
Thus, the volume dilatation turns into
v=dy' -1 (2.65)

For the strained volume we have

dV' = [dl} x dly] - dly = (2.66)
= dljdlydly = (2.67)
= (1+61) (1+83)(1+33) (2.68)

Finally, the volume dilatation ratio becomes

V= (1+51) (1—|—(53) (1—|—(53) -1 (269)
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2.3.2 Infinitesimal deformations

In the preceding section we have discussed the theory of finite
deformations. Now, if all the components of the displacements @ and
the displacement gradient tensor u; ; are very small we may neglect
the squares and the product of these quantities in comparison with
the first order derivatives themselves. So equation (2.99) becomes

1
5 (ui’j + Ujﬂ‘) (2.70)

é“ij =

where ¢ denotes a symmetric second-order tensor named infinitesi-
mal strain tensor.

Explicit compatibility equations

Now we want to know if any state of given strain ¢;; yields a
displacement field u; at every point p € V. To ensure that we have
found equations (2.70) and to solve the differential equations system
we discard the components of displacements u; as follows

2645 bk = Wi jhk + Ujihk (2.71)
2€hk,ij = Uhkij + Uk, hij (2.72)
—2€ihjk = —Wihjk + Unijk (2.73)
—2€jkih = —Uj kin + Uk jih (2.74)

Summing equations (2.71) to (2.74) yields the necessary condi-
tion to ensure the existence of the field u.

€ijhk + Ehk,ij — Eihjk — Ejk,ih =0 (2.75)

Infinitesimal stretching ratio

When we work in the frame of linear deformations, i.e with the
infinitesimal strain tensor, the stretching ratio is given by the first
order approximation of the ratio in (2.49), namely

2 ..
ﬂ —1= Eis (276)

6 =vV1+2g;—1=1+ 5
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Infinitesimal angular dilatation

We invoke again the first order approximation of expression
(2.57), so that, by replacing the finite strain tensor with the in-
finitesimal strain tensor and by using the latter result for the stretch-
ing ratio, the angular dilatation assumes the following expression

2812

w19 =~
12 \/1+2611\/1—|—2€22

~ 2512 (277)

With the proper subscripts shifting we can also write the angular
dilatations wo3 and wsy.

Infinitesimal area dilatation

Recalling equation (2.60), that is
a=(1+40d)(1+ d2)cos @y

the infinitesimal area dilatation is obtained, as usual, by neglecting
the second order terms, so that

a~01+ 0y = €11 + €99 (278)

Infinitesimal volume dilatation

From equation (2.69), the first order approximation leads to the
following expression for the infinitesimal volumetric dilatation ratio

V214 0g+ 03 =211 + €99 +e33 = €ij5ij (2.79)

2.3.3 Deformation and rigid body motion

It is rather intuitive to understand that the motion of a flexible
body can be made up of rigid translations and rotations as well as
deformations. To see that from a mathematical point of view, con-
sider the displacement field @ in a point p, as defined in (2.34), being
defined by the first order approximation from the displacement g
on po.

Uj = Ugj + Uj,id.l‘i
where it is clear that the translational component of the motion is
wholly yielded by ug;. Consequently the remaining part must store
the deformation and rigid rotation components.
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By observing that the gradient of & may be also written as
follows

1 1
5 (wji + wij) + 5 (wji — wiy) (2.80)

the displacement field becomes

ujyi =

1 1
uj = voj + 5 (g + i) dei + 5 (g — i) di =

= up; + Ejidl'i + wﬂd:m- (2.81)

where it has been put wj; = % (Ui — uij).
So, through the latter expression, the splitting of the displace-
ment field u appears clear:

® ug;: pure translation;

(wji + u;7): pure deformation;

N[ —

[ ] Eij =
® wj; = % (uj; — u; j): rigid body rotation.

In order to give a physical meaning to the operator curl intro-
duced by equation (1.133) on page 26, we can observe that

curla = €kijUj i€k =

1 1 _
= 5 i (Wi + wig) +{ Senij (wy — uig) | e =
—_———

=0
= €kijWji€k = Wk (2.82)

Using the identity (1.105) it is possible to prove* that the skew-
symmetric component of a tensor is given by

Wy = iekijwk (2.83)
thus the rigid rotation turns into

1 1 -
wjidxi = §€]m‘jwkd$i = 5@ X dl (284)

where @ = curl @ and dl = dz;é;.

4
EklpWh = €klpChijWii = (01i0pj — 0150pi) Wji = 2wWp.
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2.4 Shell continuum

We define a shell-shaped region modeled on a surface @ and
with thickness 2¢ as a continuous medium G (€) embedded in the
Euclidean space E each point of which is determined through a
coordinate system {z® &} : G (€) — IR3. Therefore, given p* € G (¢)
it is defined by its position p normally projected on @ - by using
the surface coordinate system introduced in (1.153) - and by the
normal coordinate £ taken along the unit normal vector n. In fact
we have

p" = (2% (p), € (p)) (2.85)

The basis induced by the coordinate system {z®,&} is {0a, 11}

It is worthwhile pointing out that mechanics of shells - by virtue
of such above statements - is traced back to the theory of surfaces,
in fact vectors and tensors fields belonging to ToFE will always be
split into the parallel and normal components.

Note also that the symbol * denotes quantities belonging to the
shell continuum.

2.4.1 General assumptions

The shell theory here introduced is based on the following hy-
potheses

Hypothesis 1 The shell is sufficiently thin, so that

2
fﬁ <1 L = min {Rmim Lmin} (286)

where Ry, and Ly, are the minimum radius and a typical dimen-
sion of the shell structure, respectively.

Hypothesis 2 (LINEAR THEORY) Displacements are infinitesimally
small such that their products can be neglected in the kinematic ex-
pressions. This assumption allows us to write the equilibrium equa-
tions in the unstrained shell configuration.

Hypothesis 3 The material filaments along the coordinate & re-
main straight throughout the deformation and no length change is
allowed. Namely, the distance between p* € G(€) and the surface Q
15 unaltered

& = const. (2.87)
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Hypothesis 4 (KiRcHHOFF-LOVE THEORY) The line elements ini-
tially normal to the shell’s mid—surface remain normal to it during
the deformation.

G (Day1ig) =0 (2.88)

where the subscript d is denotes quantities related to deformed con-
figuration.

Note that the last hypothesis is nothing but the extension to a
two—dimensional model of the Bernoulli theory for beams.

2.4.2 Strain tensor

A generic point p* € G(¢) is determined by the vector 7* referred
to the global Cartesian axes, so that

™ =T+&n (2.89)

where £ € (—¢,€). See figure 2.5.

Let us suppose now that a quasi—static motion produces a de-
formed shell configuration points of which are univocally deter-
mined by the vector

Ty =Td+ Eana (2.90)

where &; € (—¢,€).
The displacement field is obtained by subtracting equations
(2.89) and (2.90), so that

Ty =T =7q =T+ & (g — ) (2.91)

where we have made use of hypothesis 3. Equation (2.91) allows us
to define the positional field as a function of two vector fields

V=Fg—T vE TéE (2.92)

W=ng—n weTQ (2.93)

To obtain the strain tensor no more theoretical concepts are
required. We already know the definition and we just need to com-

pute the metric tensors associated to the coordinate systems in the
strained and the original configurations, so we have

Yii = < Yap Va3 >
" Y3a Y33
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Figure 2.5: Two dimensional sketch of the displacement field for
Kirchhoff-Love shells.

where
1
Yo = 5 (966, — 9as) (2.94)
1
Ya3 = V3a = ) (923(1 - 923) (2-95)
1
73325(%%(1—"_1"’7):0 (2.96)
According to equation (1.79) we have
9o, = O, - 05, (2.97)
and o
ag =04 0} (2.98)

where, recalling equation (1.76), we can write

'_Ed_gé'gg] =

2
@
|

(0o +EVana) - (9p, +EVpna)] +
(

[NCRE o N I N I NOY IS Y RS

Do + fVﬂﬁ) . (5@ + fvaﬁ)] =

éad . 5gd + éad . fVﬂﬁd + 8&1 &V g + §2Vaﬁd . Vﬁﬁd]

0o+ 0 + On - EV R+ 05 - €Vl + €2V - Vi (2.99)
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where we realize that the tensor 4,3 can be split in three parts as
follows

Yap = Qo + Ewap + E2Pag (2.100)

We define the stretching strain tensor as

1 = =~ = 1
s = & Oy D, — B 5] = & (g~ 90p) (201)

next, the first bending strain tensor as

1 . _ _ _
Wag = 3 [8ad . Vﬁﬁd + aﬁd -Vahig — 0 - Vﬁﬁ - 6g . Vaﬁ]
(2.102)
and the second bending strain tensor as
1
ap = 5 [Vanag - Vgig — Van - Vgn] (2.103)

Considering now that the displacements are small enough to be
negligible the second order terms
Vot -Vt >~ 0
Vot - Vgﬂ) ~0

and recalling equations (2.92) and (2.93), the stretching and the
bending strain tensors become, respectively

1 - = 1
Qag = 5 (aan—} . 6gva17) = 5 <’Ua‘5 + Vgla + 2’U$Laﬁ) (2-104)

1 - _

1
+ 5 (Voﬂj . Vﬁﬁ + V[ﬂ_) . Voﬂ_l) =
1
=5 (wam + Wgjo + ULL’W + U"yﬁL’ya> +

1
+3 (vf (LgL,Yﬁ + Lng)) (2.105)
1
Cas = (0], Lo + 0y Lye) (2.106)
where we have put

Vot = (vw + ngg) Dy + (vfa - WLM) n (2.107)

|

vl =], + 0T, (2.108)

e
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and

Vo = w0y = w” LayTt (2.109)
w! =wl, +wTY, (2.110)

[

and
Vit - Vi = L1, (wr’ﬁdérw - w“’LBwﬁ) = Lyoufy  (2.111)

Finally, the strain tensor assumes the following form

1
YaB = 5 <Ua|ﬁ + Vgla + QUELag> +

1
+ 55 (walﬁ + wgja + v Lys + U&;Lwa) +

|
L (o (DL + 1L
3 (o (LAl L3ha) ) +
L.
+ 5 (W] Lo + 0y Lna) (2.112)
The stretching strain tensor does not depend on the thickness, in
fact it describes the deformation of the mid—surface (). The bending

strain tensors describe the deformation along the thickness.
The transversal components of the strain are

1 _ -
Y3a = Va3 = 5 (ﬁd'aad _ﬁ'aa) :Ug _UWLQ’Y—FMO‘ (2'113)

,

Kirchhoff-Love strain theory

If we take into account the Kirchhoff-Love hypothesis, see hy-
pothesis 4, we have

Doy Ma=0= (M4 0) - (0a+ Vo) =0= (2.114)
WO+ Val=0= wg=10"Lay — 05, (2.115)

and we observe that the variables reduce just to the field ©. Thus,
the strain tensor turns into

1
Qag = B (1)045 +vgja + 2U§Laﬁ> (2.116)

Wap = Vg + VLo + 07 Lyglg = vhg + 00 L0 Ly (2117)

|
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2as = €2 (vfaLMLg +0° Lyl — vgaLg) +
+ &2 (vfﬁLMLg + 00 Ly g LY, — ugﬁLg) (2.118)

In the linear theory the second bending strain tensor can be
neglected because £ is very small and its square makes the contri-
bution of ¢,g insignificant.

Finally, we have

Y33 = Va3 = V3o = 0 (2119)

Consider now a Cartesian coordinate system where all the Chri-
stoffel symbols vanish, we immediately realize the well known ex-
pression of the strain tensor for bending plates

1
Yo = 5 <va75 + V80 — 2v’€aﬁ> (2.120)



Chapter 3
Analysis of stress

This chapter presents the classical stress analysis of a three—dimen-
sional continuum subjected to both body and surface forces. It begins with
the notions of stress vector and stress tensor which bring to enunciate
the famous Cauchy’s theorem, then the static equilibrium equations will
be derived.

Next, the graphical representation through Mohr’s circle and the prin-
cipal directions associated with the state of stress will be also analyzed.

Curvilinear coordinate systems will be introduced only in the last sec-
tion, where the analysis of stress for shell continuums will be shortly in-
troduced.

3.1 Body and surface forces

Let V be the configuration of the continuous medium. We sup-
pose that V is bounded by the closed surface S. Consider a small
region AV subset of V and a small surface element AS of S. To
analyze the forces acting on the volume element AV it is necessary
to account for two types of forces:

Body forces (or volume forces). These are the forces which are
proportional to the mass contained in the volume element

AV.

Surfaces forces. These are the forces being measured as force per
unit area of surface AS on which they act.

A good example of body forces is gravity: pgAV - where p is
the density of the continuum and g is the gravitational acceleration
- or inertia.

Examples of surface forces are: pressure and tension t, (p,7)
(discussed in depth later on), which two parts of a continuum mu-
tually exchange.

Claudio Borri, Michele Betti, Enzo Marino (a cura di), Lectures on Solid Mechanics, ISBN 978-88-8453-
854-3 (online), ISBN 978-88-8453-853-6 (print), © 2008 Firenze University Press
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S

T3

T

Figure 3.1: Body and surface forces.

If we imagine that the continuous medium V), equilibrium of
which we are searching, is a subset of a bigger imaginary continuous
body, then the tensions exchanged between these two portions can
be assumed as external force loads.

In order to write the equations of equilibrium we consider both
body forces b = b'e; and surface forces %,,. See figure 3.1.

The body forces also produce a resultant moment M = M'e;,
where

M:/V(fx b) dv (3.1)

3.2 State of stress

Let V be the configuration of a continuous medium, whose points
are referred to a rectangular coordinate system

2 :E—R: p—g((p—0),&) (3.2)

where p and o are points of F and {¢;} is the unit normal basis of
Suppose on the body V surface and body forces, e.g. b, S;, My, f
act in such a way to assure the equilibrium state. See figure 3.2. Due
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to these forces throughout the body internal reactions are activated
between the material points.

To understand the stress condition created at generic point p
within the body V, we suppose to cut the continuous medium by
means of a generic plane m,, so that two portions Vi and Vs are
produced.

T,

T

Figure 3.2: Body V being in an equilibrium state.

After splitting, the portions of the body on the left and on the
right side of the section plane m, lose their equilibrium state. In
fact, before parting, both V; and Vs were in equilibrium due to the
mutual forces exchanged through the plane.

Cauchy enunciated the principle that, within a body, the forces
that an enclosed volume imposes on the remainder of the body must
be in equilibrium with the forces from the remainder of the body
itself.

We denote by AA, the small area surrounding p and by AS,
and AM,, the force and the couple resultants in p stemmed from
the internal force distribution acting through AA,,. See figure 3.3.

Cauchy’s principles implies the following limits

1 limaa, 0 855 = tn (p,7) = —tn (p, —1)

2. limax, -0 %{: =0
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Figure 3.3: Splitting of the continuous media V.

The vector t, (p,n) is called the Cauchy stress vector and rep-
resents the surface force per unit of area acting at point p. The
second limit assures that the entire state of stress for a fixed point
p is only defined by the forces, that is the couples are infinitesimal
in comparison with them.

It’s important to observe that t,, is a linear mapping defined as
follows

th:ExE—E (3.3)

so that

fn(p) € L(E. E) (3.4)

and we recognize t,, (p) to be an endomorphism which is associated
to a tensor belonging to F* ® E.

In the following paragraphs this tensor will be thoroughly ana-
lyzed.
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3.2.1 Stress vector components

Let 7 be the unit normal vector of the surface AA,, located at
p. We can write the components of stress vector! £, (p, n) as follows

tn (p,7) = t,, (p. 1) & (3.5)
so that the normal components of ¢, (p) can be easily written as
ty (p,n) =10+t (p, 1) = t, (p, ) (3.6)

Let us observe that the stress vector, which represents the entire
state of stress at p, is completely known if the three coordinate
components t!, (p,n) are known.

3.2.2 Stress tensor

Now we want to show that the state of stress at any point of
the continuum is entirely characterized specifying a linear mapping,
i.e. endomorphism, represented by the nine quantities called com-
ponents of stress tensor.

As usual, p is a point in the medium and ¢, (p,71) is the stress
vector acting on the surface element passing for p with the unit
normal 7. Imagine to have four planar elements, three of which
are parallel to the coordinate planes, the fourth one is supposed
passing normal to 7, at a very small distance to p. We obtain a
small tetrahedron. See figure 3.4

We shall denote by #;, with i = 1,2, 3, the stresses vector? acting
on the planar surface element orthogonal to the coordinate curves
x;, namely t; = t; (p, &;). Evidently, every stress vector can be writ-
ten by its components in the following way

ti=te i,j=1,23 (3.7)

(2

where

tj =€ t; (38)

7

The forces acting on the tetrahedron are both surface and body
forces:

'Tt must be noted that in general the stress vector , (p,n) is not in the
direction of 7.
Rigorously #; should be write as Zz, (p).
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t_‘!l

Figure 3.4: Stress vectors: the sketch of Cauchy’s theorem.

- Body forces: bdV
- Surface forces: —t; (p, —&;) dA; +t, (p,n) dA,, withi = 1,2, 3.

thus the translational equilibrium of the tetrahedron can be readily
written as

—1i (p, =€) dA; + I (p, 1) dA, + bdV = 0 (3.9)

that taking into account that d.A; = d.A,n;, indeed we have n’ =
n - e; = cos (ﬁ, éi), the above expression turns into

i} 1
—ti (p, =) dAnns + 0 (p,7) dAn + 2pghdAn = 0= (3.10)

_ 1
~ti (p, —&) ni +n (p,7) + 5 pgh =0 (3.11)

and, for h approaching zero, i.e. the infinitesimal volume surround-
ing p, the equilibrium becomes

tn (p, 1) =t; (p, —€;) ns (3.12)
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Figure 3.5: Stress tensor components.

Equation (3.12) represents Cauchy?’s theorem which states that
the stress state ¢, (p, ) can be completely determined by the stress
vectors t; (p, —€;), acting on the face with outward unit normal vec-
tor —e;, where 7 is considered known. This result also proves that
we are really dealing with a tensor as introduced by the endomor-
phism (3.4).

It will be convenient to use the customary notation, so that
equation (3.12) may be rewritten in components as follows

tl (p,n)e; =t (p, —&) nié; (3.13)
from which the stress tensor o is defined as
tl (p,n) = 031 (3.14)

The tensor o;; is called the stress tensor, it com-
pletely defines the state of stress at point p and repre-

8 Augustin Louis Cauchy (August 21, 1789 - May 23, 1857) was a French
mathematician.

Source: http://www-history.mcs.st-andrews.ac.uk/Mathematicians/Cauchy.html.
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sents the component of the vector t; working in direction
of 7.

See figure 3.5.
We can summarize saying that

c:E—L(E,E), p—o(p)eE*®E (3.15)
S0
o (p) (n) = tn (p,n) (3.16)
that in components, (3.16), becomes
th = aln” (3.17)

Figure 3.6: Stress tensor components acting on an infinitesimal
volume element.

We remind the reader again that the lower and upper indices,
in this context, can mutually be exchanged; moreover, they can be
placed both upper and lower. So, generally, we shall also write

tnj = OpjNp (318)

3.3 Equations of equilibrium

3.3.1 Translational equilibrium

With respect to the body V, bounded by the closed surface S,
the condition of equilibrium requires that

/5dV+/fndS:() (3.19)
1% S
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Making use of (3.16), equation (3.19) becomes

/de+/J(p) () dS =0 (3.20)
v S

The divergence theorem can be applied to integral (3.20), so
that

/Vde—l—/Vdiva(p) dV:/V(lH—diva(p)) dv=0 (3.21)

Since the region of integration V is arbitrary, i.e. each part of
the medium is in equilibrium, integral (3.21) vanishes, thus, at every
point of V we have

dive +b=0 (3.22)

that in components becomes
Oiji + bj =0 (3.23)

3.3.2 Rotational equilibrium

As well as the translational equilibrium, we require that the
moments acting on the body are also in equilibrium, so

/(rxb) dV+/(r><tn) dS =0 (3.24)
v

S

which in components, by virtue of the skew—symmetric tensor e,
becomes

/ (Tibjek,;jék) dy —l—/ (’I“iéi X Ujhnhéj) dS =0=
% S

/ (ribjekijék) dV—i—/S(Tiajhnhekijek) dS =0
%

With the aid of the divergence theorem, for the k—th component
we can write

Ekij/v (’I”Zb]) dy + €kij /V (7“7;0'jh)7]1 dV=0=

€kij / (T’Zb] + Ti,hOjh + T'inh,h) dyv =0
%
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Recalling equation (3.23), and that 7;; = d;;, and since the
volume V is arbitrary, the rotational equilibrium produces

fkijo'ij =0 (325)

Therefore equation (3.25) imposes the symmetry of the compo-
nents of the stress tensor:

Uij = Uji (326)

The symmetry of the stress tensor can be also seen considering
the volume element taken in shape of a rectangular parallelepiped,
with faces parallel to the coordinate planes and with stress vector
t; acting on the face perpendicular to the z;-axis. Denoting the co-
ordinates {x1,x9, x5} with {z,y, 2z} - as often happens in literature
- for the (y, z)-plane the rotational equilibrium becomes

(oydady) dz = (0,ydardy) dz = 0y, = 04y (3.27)

See figure 3.7.
If we write the equilibrium for all planes, we obtain again the
result in (3.26).

Z A O

Oy
< «,T—>

Oy

(07

Oz
GZZ

Figure 3.7: Plane (y, z). Components of the stress tensor acting on
the volume element.

3.3.3 Boundary equations

Let fbe the external force acting on the surface S, and # the
displacement field imposed on the remaining portion S,, so that
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S =8, US,. Each point of V lying on the boundary S must satisfy
the equilibrium and kinematic conditions as follows

£,dS = fdS, Vp e S, (3.28)
u, Vp € S, (3.29)

U
that in components is

OpjNp = fj, Vp S So' (330)

3.4 Principal stresses and principal directions

Let us consider now the sheaf of planes passing through p € V.
Among the infinite planes there are some for which all the stress
components vanish except the normal one. These planes are said
principal planes and their normal directions are said principal di-
rections. Hence, if 7 is a principal directions, by definition, we have
at p
tn, = on, celR (3.32)

To find the three principal stresses we impose

tn = O;pNKpE; = ON = O;RNKE; = ON;E; (333)

so that
OinMp — U(Sih’rlh =0= (Uih — O'(Sih) ny =0 (334)

Expression (3.34) is a set of three homogeneous equations in the
unknown direction n. The solution is nonvanishing if, and only if,
the determinant of the coefficients matrix is equal to zero; that is

ai-—o'éi- =0 3.35
J J

Solving the determinant above we obtain the cubic equation
called secular equation in the unknown stresses o

o3 —Lo*—Iho—I3=0 (3.36)

The (3.35), (or (3.36)) has three real roots oy, o7, o777, which
are called principal stresses. If o in equation (3.34) is replaced by
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any one of these eigenvalues, the resulting set of equations may
be solved for the corresponding direction n. These directions, 7y,
nrr, nrrr are called principal directions. The planes normal to the
principal directions are termed principal planes of stresses. In other
words we say that along the principal planes of stresses there is no
shearing stress.

Generally there are only three mutually orthogonal principals
directions.

The three scalars in (3.36) are invariants as regards to the co-
ordinate system. They are

I, = tro
1
Ir = 5 (0ii0j; — 0ij0i;)

I3 = det (O'ij)

These invariants are physically very important, they in fact al-
low us to characterize the stress state as follows

if I3 =0 : triaxial state of stress
if Is =0 and Iy # 0 : biaxial stete of stress
if I3=1Iy=0and I; #0 : axial stete of stress

Now we want to point out that the principal stresses found solv-
ing equation (3.35) represent the maximum and minimum stress. To
see this we make use of the Lagrange multipliers method in order
to find the extremes of a function of several variables subjected to
one or more constraints. In this case recalling formulae (1.33) and
(1.34) we can write the stress tensor in a generic unknown coordi-
nate system rotated with respect the initial system as follows

o = a%a,@a}k (3.37)
and we also impose the constraint on the unknown matrices a and
a’ such as they are effectively two orthogonal transformations, i.e.
the condition (1.21). Hence we have

L (ap, ) = a%a,@a;-k —-A (a}‘la;-h — 5;) (3.38)
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and the stationary conditions are

OL _ itk — xalh = (ot =2t af =0 (339)

Oaj,
6£ i Ih i

The first equation, (3.39), yields the following condition
lo — X\ =0 (3.41)

that is exactly the condition (3.35), hence we can derive that given
a generic state of stress oy, the principal stresses oy, o7, o1 are
extrem values.

3.4.1 Normal and tangential components of the stress
vector

The last equations of the previous section enable us to know the
components of the stress vector for every direction we want. Let
be the unit normal vector and ¥ the unit tangent vector. It follows
that the normal and tangent components of the stress vector, o
and 7, respectively, are readily computed through the usual scalar
product as follows

g
T

Figure 3.8: Normal and tangential components of the stress vector.
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From figure 3.8 on the preceding page it is also clear that the
square tangent component of the stress vector can be written as
follows

=t} -0 (3.44)

3.4.2 Mohr’s circles

Two dimensional state of stress

An important graphical interpretation of the above results is due
to O. Mohr?. Following [10], [9] and [12] let us begin considering the
above relations (3.42) and (3.43) for a two dimensional problem, so

that
_ [ on o2
Tij ( S > (3.45)

The unit vectors n and v, with respect to figure 3.9, have the
following components

(i) e Canns) - ()

Hence, the normal and tangent components of ¢, (p,n) are

0 = 011 COS° p + 099 sin? Y2012 sin  cos @ (3.46)
T = —011 COS @ sin ¢ + 099 sin Y cos ¢ + 712 cos? p— 0921 sin? ©
(3.47)

that through some trigonometric manipulations® turn respectively

“Christian Otto Mohr October 8, 1835 - October 2, 1918 was a German civil
engineer.

A

Source:http://en.wikipedia.org/wiki/Otto-Mohr.
5In particular these two identities have been used:

i) 2sinpcosp = sin 2y,

ii) cos®p — sin? ¢ = cos 2¢.
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T2 A

Figure 3.9: Normal and tangential components of the stress vector
in two dimensions.

into
1

1
o= 5011 cos? w+ 5011 (1 — sin? go) +

1 . 9 1 9 .
+ 5022 sin” ¢ + 5022 (1 — cos go) + o128in2¢ =

1 1 .
=3 (011 + 022) + 5 (011 — 022) cO8 20 + 012 8in 20 (3.48)
T = —011 €08 psin @ + g2 sin p cos p + 013 cos? p — 091 sin? P =
1
= —5 (011 — 022) sin 2¢ + 012 cos 2¢ (3.49)

Next, by squaring both terms of the latter equations and sum-
ming term by term, the variable 2¢ disappears, hence

1 2 1 2
(U — 5 (011 + 022)> + 7'2 = <2 (011 — O’QQ)) + 0%2 (3.50)

If we represent the above equation in a two dimensional Carte-
sian system with o and 7 as abscissa and ordinate, respectively, we
realize it represents the equation of a circle in the form (z — xc)2 +
(y — yo)* = R? where

1
o =5 (011 + 022) (3.51)
yc =0 (3.52)

are the coordinates of the center and

2
R = \/(; (0'11 — 022)) + 0%2 (353)
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is the radius of the circle. This circle is known as Mohr’s circle and it
represents all the possible states of stress in p. Namely, there exists
a one-to—one relationship between each state of stress t,, (p,n), i.e.
o and 7, and points belonging to the circle. To show that, let us
assume <y is the angle between the x;—axis and the stress vector
tn, as figure 3.10 depicts. To find the correspondence between the
stress state and the circle let us observe that + defines a principal
direction so, by definition 7 = 0, and we have

tan2y = _ 2o (3.54)

011 — 022

and with the aid of picture 3.10 in the above equation we recognize
that Py P* = 2019 and P,P* = 011 —09. Consequently the following
expressions hold

1
rcos2y = 5 (011 — 022) (3.55)
rsin2y = o019 (3.56)
(3.57)

that substituted into (3.48) and (3.49) and making use of some
trigonometric identities® yield, respectively

1
0=3 (011 + 092) + 1 cos2(y — @) (3.58)
T=rsin2(y - ) (3.59)

Thus, given a generic plane oriented as ¢ equations (3.58) and
(3.59) are a parametric representation of a circle and so a one-to—
one relationship between the state of stress and the Mohr’s circle is
established. See figure 3.10.

We define P* = (011, —012) as the pole of the circle. The line
passing through P* having inclination ¢ with respect to the vertical

In particular these identities have been used:

i) cos2ycos2p = 1 (cos2(y+ )+ cos2(y — ),
ii) sin2ysin2p = 1 (cos2(y — ¢) — cos2 (v + ¢)),

iii) sin2¢pcos2p = % (sin2 (v + ¢) +sin2 (v — ¢)).
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line joining P, and P* intersects the circle in P, and the angle
Pj@l is right 2 (¢ — ), so the coordinates of the point P, in
the (o, 7)-plane, are just those expressed by equations (3.58) and
(3.59).

Thus, we have proved that, given a stress vector orientated as
7, once Mohr’s circle is known, the normal and tangent components
of a stress vector can be graphically found provided the inclination
© in known.

On the other hand, if the normal and tangent stresses are known,
Mohr’s circle enables us to find directly the principal direction. In
fact point S; has coordinates o = OC 4+ R and 7 = 0, so that the
line P*S; defines the angle v that fixes the principal direction. See
figure 3.10.

T2 A

TV

Figure 3.10: Normal and tangential components of the stress vector
for in two dimensions.

Two other relevant features on Mohr’s circle are those for which
the tangent component of ¢, (p,7) is maximum. These directions
can be found through the same procedure. Indeed the lines P*T}
and P*T5 represent the directions along which the stress vector has
maximum shear component. See figure 3.10 and 3.11. Analytically
these maximum and minimum values are

1
Tmax — 5\/(0'11 - 0'22)2 + 40'%2 (360)

1
Tmin = —5\/(011 - (722)2 + 40%2 (3.61)
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and the directions can be computed putting zero the following
derivative

dr T T
—=0= 2(v—p)===>~v= — 3.62
& cos2(y—g)=5=v=¢+ (3.62)

Let us summarize now the key items to draw and use the Mohr’s
circle when a plane state of stress o;;, with 7, j = 1,2 is known with
respect to a generic system {z1,x2}. See figure 3.11.

1. Compute the radius R and the abscissa of the center C' of the
circle, equations (3.51) and (3.53);

2. Identify the pole P*;
3. Identify the principal direction drawing a line from P* to both
S1 and So. The inclination of the latter defines the principal

directions;

4. Compute the principal stresses o; and oj; at the extreme
points S1 and So, respectively;

5. Compute the maximum and minimum shear stresses Tyin and

Tmax-

1> p*

Figure 3.11: Graphical determination of principal directions.



LECTURES ON SOLID MECHANICS 75

Three dimensional state of stress

Consider again the state of stress in p referenced to the principal
axes and let the principal stresses be ordered according to o; >
orr > ogrr. Assume the three principal stresses are known, so that,
in accordance with equations (3.42) and (3.44), we write

o= Umf + UII”% + U[Im?»,
2
2+ 0% = (oyn1)* + (07 m2)” + (o111m3)?
and being 7 -1 = n? +n3 + ng = 1, by solving for the directions n;,
we obtain
n? = ©+ (0 —ou) (o —on) (3.63)
(or — o) (or —orr1)

n2:7'2+(0'—0'[][)(0'—0'[) (364)
2" (o1 — o) (o1 — o7)
s T 4 (0c—o0p)(0c—orr)

n3 =
(orrr —or) (orrr —orr)

(3.65)

In the above equations o7, o7, orrr are known; ¢ and 7 are
functions of n;.

In order to interpret these equations graphically we note that in
equation (3.63) oy — oy > 0 and o7 — o7 > 0, and n? is positive.
Therefore

(0 —op) (0 —orr) +72>0 (3.66)
When the equality sign holds, this equation may be rewritten
as
1 2 1 2
0'—2(0'[[-}-0111)] -|-7'2: |:2 (UH—O'H[):| (3.67)

which is the equation of a circle in the (o, 7)-plane, where we assume
o as abscissa and 7 as ordinate. The circle in figure 3.12 is termed
C7 and has the center in %(0’[1 + o) on the o axis, and radius
(o1 —orn).

Examining equation (3.64) we observe that oy — o7 > 0 and
orr — oy < 0, so we have

(0 —orr) (0 —o7)+72 <0 (3.68)
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Figure 3.12: Mohr’s circles.

The boundary of the area of this equation, i.e. in the case of
equality sign, defines a circle as before in the (o, 7)-plane

o— % (o7 + am)] 2 + 7% = [; (o7 — 0111)} i (3.69)

named C5. See figure 3.12.
The same procedure allows us to obtain from equation (3.65)
the circle C3, indeed, we have the following condition

(0 —a7)(c—or) +72>0 (3.70)
that at the boundary yields

1 2 1 2
[a— 2(01—1—011)] +72= [2 (o1 —UH)} (3.71)
Finally, from inequalities (3.66), (3.68), (3.70), it follows that
admissible values of ¢ and 7 lie in the shaded region of figure 3.12
bounded by the circles C7, Cs, C3. The value Tax and opax can be

readily provided from figure 3.12, so that

1

Tmax = 5 (or —or1r) (3.72)
1

Omax = 5(0’[4-0]]]) (3.73)

and as a consequence, the surface elements supporting these stresses
are found replacing the above values into equations (3.63) to (3.65).
For further details the reader is referred to [1].
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3.5 Stress quadric of Cauchy

Consider an elements of area dA with a normal vector 7. As
previously stated, the stress vector ¢, (p, 1) can be decomposed into
a normal component ¢ and a tangential component 7.

Let us introduce now a local system of axes &; with origin in p
equipped with the unit normal basis {e;}. See figure 3.13.

Figure 3.13: Stress quadratic of Cauchy.

Let 7 be the vector taken along 7 joining p with a generic point
p/, namely (p’ — p) = rii. This vector can be equivalently expressed
by the following expressions

=
I

rii (3.74)
§i€i (3.75)

=
I

The first equation provides the j—th component of 7 as follows
G=r-e=rn (3.76)

that, replaced into the expression of the normal component of the
stress vector, yields the following relation

r’o = 0,6, (3.77)

We recognize equation (3.77) as a quadric form?.

"We remind that any quadric form F can be expressed as
F (1_]) = M;jviv; (378)

where v = (vl,v2,v3)T is a vector expressed with respect to the chosen basis,
and M;; is a certain symmetric matrix that depends on F' and on the basis.
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So we restrict the coordinates of &; by requiring the end point
p’ of 7 to lie on the quadric surface

F(€1,6,8) = 0468 = £k (3.79)

where k is an arbitrary real constant and where the sign is chosen
in such a way to make the surface real. As a result we have

oc=x— (3.80)

Since r? is a positive quantity, k% will be taken with the posi-

tive sign whenever the normal component o is a tension and with
negative sign when it represents compression.

Next, deriving equation (3.79) and by using equation (3.76), we

obtain
oF

3
which allows us to realize that the quadric form (3.79) has some
properties of a potential function, indeed the partial derivative of
F with respect the i—th coordinate gives, except for the constant r,
the force component (i.e. the component of the stress vector) right
in the i—th direction.

Furthermore we observe that the above derivatives, equation
(3.81), denote the direction of the normal 7 to the plane tangent to
the quadric surface (3.79) at point p’, so that the right-hand term
of equation (3.81) just establishes the stress vector ¢, (p, ) is also
normal to this tangent plane.

The above results have been directly taken from [1]|, to which
the reader is referred for any further detail.

= O'ijgj = 0jjrn; = th@ (p, ﬁ) (381)

3.6 Stress—deviator and spherical components of the
stress tensor

Every state of stress o;; may be decomposed into a spherical
portion and into a portion s;; known as stress—deviator by the fol-
lowing equation

Oij = O’M(Sij + Sij (382)

where o) = %aii is the arithmetic mean of the normal stress, i.e.
spherical stress component (or hydrostatic stress). Equation (3.82)
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may be solved for s;;
Sij = 045 — aMdij (3.83)

where the latter components are termed stress—deviations.

Namely,
011 — OM 012 013
8ij = 021 022 — OM 023
031 032 033—0p

It is possible to prove that both the stress tensor o and the devi-
ator tensor s have the same principal directions. The characteristic
equation for the deviator is

S+ Jys+J3=0 (3.84)

where the deviator invariants are

1
J2 = —582']'8@']'
J3 = det Sij

3.7 Stress in shell continuums

3.7.1 Shifters

Before reasoning upon the stress state characterizing a shell con-
tinuum it is worth introducing some geometrical relations linking
points belonging to the mid-surface () with corresponding points
belonging to the shell thought as a three-dimensional continuum.

Therefore, let us recall the relation already met to compute the
components of the metric tensor g}, see equation (2.99) on page
53, between the basis in p* € G(¢) and the basis in p projection of
p* on @ along the normal coordinate curve £. So we have

0 = Do + LD (3.85)
n=n* (3.86)

which in a short notation assumes the following form

oF =Sho, (3.87)
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Hence, with respect to the basis associated to the coordinate
system {x®, &} the tensor S has the following components

14+¢eLl €2 0
h €LY 1+¢€12 0
0 0 1

S

Therefore, the superficial part of S can be expressed by the
following tensor product

St=d"® 0} (3.88)
so that B B B B
ST (0p) = (4" @ 3%) (93) = (3.89)
In the same way we define FT as follows
Fl' =9, ®d" (3.90)
so that
F1 (a%) = (8, 2 a7) (a°) = 0 (3.91)

Tensors ST and FT are called shifter tensors.

3.7.2 Contraction of surface forces

Consider now a curve ¢ : IR — (@) representing the intersection
of the surface Q. normal to @) which splits the shell continuum G |(¢)
into two portions.

Let 7 € TQ be the unit normal vector applied in p outward
pointing from ¢ and let [ € T'Q be the unit vector tangent to c
applied in the same point. Then the three unit vectors {17, l_,ﬁ}
form a local basis in p. A similar triplet of vectors can be defined in
p* as {ﬂ*, I, ﬁ} Note that the symbol x denotes as usual quantities
belonging to the shell thickness. See figure 3.14.

In order to ensure the equilibrium condition, the portion of the
shell included by (. must exert on the remaining part of the contin-
uum a tension such as for each point p* is entirely described by the
stress vector t*. Moreover the stress vector t* can be equivalently
expressed by Cauchy stress tensor as follows

> (p*? y*) — g* (p*) y* (392)
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Figure 3.14: Local bases in G(¢) and in Q.

where o* is the contravariant form of the stress tensor defined in
p*. For the sake of brevity hereafter o* (p*) will be denoted simply
by o.

Now our goal is to establish a relation between the stress state
distributed along the surface ). and the stress state along the
boundary of the mid—surface of the shell. This can be done by
means of a reduction, i.e. a contraction, of the stress per unit area
to a stress per unit line.

Therefore, let us define two vector fields n and m such as

/ n(p, v)dl = / P (p*, 1) dA* (3.93)
[mpvia= [ (= p) < e )ia (3.94)

c

Equalities (3.93) and (3.94) guarantee that the stress system n
and m is statically equivalent to the stress system ¢* along the fiber
¢ passing through p.

The oriented elemental area in equations (3.93) and (3.94) with
respect to the local basis {D*,l_*,ﬁ} is given by the following vec-
torial product

V¥ dA* = dIl* x dén (3.95)
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and since dllI* = dl®O*

* equation (3.95) can be equivalently ex-
pressed as follows

vdA* = dI®0} x d&n = ) gdl*d¢d™’ = eqpr/grdI*dEd™’  (3.96)

where g* = det <g25>.
Moreover, back to the mid—surface we notice it is possible to
write

dll x n = vdl (3.97)

which in the coordinate system {z%, £} becomes
%o X 7o = 1apdl®d® = e,5,/gdl*d? (3.98)

where g = det (gag)-
Equation (3.92) and (3.96) allow us to rewrite equations (3.93)
and (3.94) as follows

/ n(p,v)dl = / oeapr/grdl®ded™? (3.99)
Qc

m(p,v)dl = [ (57— p) x ocap/TAEDT (3100)
Qc

C

Next, by virtue of the shifter FT, the latter equations become
/ n(p, v)dl = / oeapy/grdl*de (0 ® d*7) d° (3.101)
(& Qc

/ m(p,v)dl = [ &R x oeagy/grdl*dé (0, @ d)d’  (3.102)
C Qc

which, taking into account equations (3.97) and (3.98), become

/n(pﬂ/)cllz//_+ \/fa (0y ® d*7) vdldg (3.103)
+ *

/m(p, v)dl = / 3 &n x \/ga (&, ® (_1*7) vdldé (3.104)

and finally

€
€

+e _
n(p,v) = / go (0 ® d) vd¢ (3.105)

—€

+e
m(p,v) =0 X / €go (0 ® d*7) vdg (3.106)

—€
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where we have put g = \/¢*/g
Both integrands in (3.105) and (3.106) can be further simplified

just substituting ¢ = o/ (51* ® 5;) and v = 1,d® as follows

+e L
n(p,v) = (/ g0a36;d£> Vo (3.107)
- te _
m(p,v) =7 X </ gﬁa‘”@fdf) Ve (3.108)

and using once again equations (3.85) and (3.86) they assume the
following form

“+e€ “+e€ _
n(p,v) = < / go*7d¢ + / g™’ §d€LZa> Oyvat

€ —€
€

+ </+ gaa§d§> Ny (3.109)

+e€ +e€ B
m(p,v) = n x (/ go*EdE +/ gao‘7§2d§Lg> Oyvq  (3.110)

—€ —€

where we can finally define two tensors N and M

N = N (9o ® 0g) + N°* (0 @ 1) (3.111)
M = M (8, ® 0p) (3.112)

respectively as

+e +e
NB = / goPde + / go*Ed¢Ll (3.113)
e _
Nt = / go™ e d¢ (3.114)
and
+€ +e€
MP = / goPede + / go 72 d¢Ll (3.115)
such as
n(p,v) = Nv = N*Pv,05 + N*v,7 (3.116)

m(p,v) =7 x My =7 x M*Pv,d; (3.117)
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Two fields n and m are called surface stress vector and surface
couple vector respectively; while the fields N and M are termed
surface stress tensor and surface couple tensor.

From the above results it is immediate to notice that the surface
stress vector n belongs to TéE, consequently it can be split into a
superficial part and an orthogonal part as follows

n=nl+nt (3.118)

where
nl = N9y, (3.119)
nt = N*y,n (3.120)

while the surface couple vector m belongs to T'Q so that
m = m| (3.121)

As the last remak we point out that the coefficient g involved in
the integration of Cauchy stress tensor along the thickness depends
only on the geometrical features of the mid—surface @, in fact it is
easy to prove the following expression

g = det (s?) —1+€H + 2K (3.122)

where H and K are the mean curvature and the total curvature of
the surface @ defined in equations (1.160) and (1.159).

3.7.3 Body forces and load density

Suppose the the curve c: IR — @ is closed in such a way as to
capture a surface portion Q' C @ bounded by 9Q = c. Assuming c
to be a directrix, that is a curve through which a line generating a
given ruled surface always passes, the generatrices directed along i
define a cylinder Gc(e) C G(e) with thickness 2e and also bounded
by the surface Q.U QU @ _..

We assume that the volume forces acting at every point belong-
ing to the cylinder G.(€) and the load density acting at every point
on the upper and lower surfaces Q€ and ()_, can be integrated along
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the thickness to yield a new force system defined on the mid—surface
Q' as follows

Q' — T E (3.123)
Q' — TQ (3.124)

W

where ¢ = qﬁég + ¢*n represents the load vector and 5 = 71 x sﬁég
represents the load—moment vector.
See [13] for details.

3.7.4 FEulero’s equations

The equilibrium equations for the mid surface portion @’ can
be written as follows

/ n(p, V)dl+/ qdQ" =0 (3.125)
8@/ /

/

/ (m(p,v) +7 X n(p,v)) di +/ (Fxq+35)dQ =0 (3.126)
Q'
which yield
Nvdl +/ qdQ =0 (3.127)
le% '
/ (ﬁxMy—i—FxNz_/)dl—l-/ (T x q+5)dQ" =0 (3.128)
Q! '

Making use of the divergence theorem enounced in equation
(1.145) on page 29, and due to the arbitrariness of @', the above
equations become

divN +q=0 (3.129)
div(n x M3, +7 x N"9p) +F x §+5=0 (3.130)

Equations (3.129) and (3.130) can be written in components as
follows

VIN®S L LN g% =0 (3.131)
VaN 4 Loy N +¢5 =0 (3.132)
ViMPe - NP 48 =0 (3.133)
N (LgMﬂW - Naﬁ) -0 (3.134)
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where equations (3.131) assure the translational equilibrium in the
tangent plane, while (3.132) represents the translational equilibrium
along the normal direction. Next, two equations in (3.133) impose
the rotational equilibrium about the surface axes, respectively. Fi-
nally, the last equilibrium condition (3.134) gives the symmetry to
the tensor L?‘/MBV — N8,

Proor

Here we want to show all steps we made to pass from the equilib-
rium equations (3.129) and (3.130) to the corresponding expressions in
components (3.131) to (3.134).

Let us start form equation (3.129). We invoke the definition of di-
vergence for second order contravariant tensors already used in equation
(1.147), so we have

(divN)" = N + T N'h +Th Nt =
= NP + N +T% N® + T2 N + T, Nt 4 T, Nt =
= N2 + Ne + T3 NP 4 T2 N4+
+08 NOT 4 DD NS 4+ T N + T8, N

Now we just need to separate the tangential and normal components
as follows

(divN)? = N# + T4 NP + T8 Nov 4 10 N (3.135)
(divN)® = N9 +T9 N + T§ N +T¢ N (3.136)

By virtue of the the identity (Vaﬁ)ﬁ =18 = Fgg equation (3.135)
becomes

(divN)? = Vi Nod 4 [ Net (3.137)
where we have just collected the surface divergence® terms into
VIN®? = NP + 12 NP 418 N (3.138)

Equation (3.137) proves the in—plane translational equilibrium ex-
pressed in (3.131).

Concerning equation (3.136), the translational equilibrium along the
normal direction is readily proved remembering both ng = Lo~ and’

VoNO¢ = N 4 1% N7¢ 4 T8, N8 (3.139)

®In literature the divergence of the surface tensor N°? is often denoted by
af
NP,
°In literature the divergence V{,N°¢ is often denoted by N ﬁf.
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Hence we obtain
(divN)® = V4N + Lo N7 (3.140)

which finally proves equation (3.132)
In order to prove equations (3.133) and (3.134), first we simplify equa-
tion (3.130) by taking into account equation (3.129). So it becomes

divin x M*"0p, + 7 x div (M*"0y) + divi x N*"0, +5=0  (3.141)

We can split the divergence of the tensor M " in accordance with the
results in (3.137) and (3.140), thus we have

Vot x M0, + 0 x (VIM* + LEM®) 5+
+7 x (VEM® + Loy M)+ 7 o x Ny +5=0 (3.142)
which after further algebra becomes
L1y x M0, + L]0, x M®n+n x (VLM + LEM®) 95+
+00 X N0, + 0o x N7, + 7 x 8705 =0 (3.143)

Collecting the normal and tangential terms we obtain the following
three scalar equations

Mo (LM 4 N7) = 0 (3.144)

and
nx (VIM*P — NP& 4 59) 95 =0 (3.145)

which finally proves the rotational equilibrium (3.133) about the surface
axes.

Usually a new variable is introduced to make easier possible
further calculations; in fact we define the pseudo-stress tensor
the symmetric tensor

NoF = NP — L2 M7 (3.146)

It is straightforward to notice that N = N only when either a
membrane stress state holds or for flat shells, namely when Wein-
garten’s tensor is identically zero.
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3.7.5 Membrane state of stress

In this last section we introduce an hypothesis on the state of
the stress that enables us to derive a closed form solution for several
shell geometries without invoking the constitutive law. Examples of
these closed form solutions will be provided in appendix A.

A shell continuum is subjected to a membrane stress state when
both the following condition hold

No¢ =0 (3.147)
M =0 (3.148)

Hence, the equilibrium equations become

VaN? 4 ¢° =0 (3.149)
Loy N +¢5 =0 (3.150)
Nag NP =0 (3.151)

where equation (3.149) represents the translational equilibrium along
the tangent plane; equation (3.150) represents the equilibrium along
n and finally equation (3.151) states the rotational equilibrium
about n and establishes the symmetry of N.



Chapter 4
Equations of elasticity

Chapters 2 and 3 of these notes do not specifically concern with the
elastic media, in fact they can be understood for a generic continuum and
studied independently. In this section we shall combine the previous results
in order to to investigate the response of elastic bodies under the action
of forces.

A body is called elastic if it has the property of recovering its original
shape when the forces which produce the deformations are removed. This
property can be characterized mathematically by certain relationships con-
necting force and displacement, that are also called constitutive laws. In
particular we will analyze the linear constitutive law as a generalization
of the Hooke’s law.

4.1 The material law

It was Robert Hooke' who in 1676 gave the first rough law
of proportionality between forces and displacements for an elastic
body. In order to understand the key features of elasticity, let us
consider a thin rod with an initial cross section Ag, which is sub-
jected to a variable tensile force F'. We suppose that the stress is dis-
tributed uniformly over the area Ag and the initial cross—sectional
area stays constant. The stress is obtained by dividing the force at
any stage by the area Ag. So, 0 = F/Ag. The relationship between
F and the axial strain ¢ is plotted in figure 4.1 on the next page.

Figure 4.1 shows that until the point P the relationship o — ¢

'Robert Hooke (July 18, 1635 Freshwater (Isle of Wight) - March 3, 1703
London) was an English scientist.

Source: http://turnbull.mcs.st-and.ac.uk/history/Biographies/Hooke.html.

Claudio Borri, Michele Betti, Enzo Marino (a cura di), Lectures on Solid Mechanics, ISBN 978-88-8453-
854-3 (online), ISBN 978-88-8453-853-6 (print), © 2008 Firenze University Press
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Figure 4.1: Hooke’s law.

is nearly a straight line with the following equation
o= FE¢ (4.1)

where the constant of proportionality F is known as modulus of
elasticity or Young’s modulus.

The greatest stress that can be applied to the rod without pro-
ducing a permanent deformation is called elastic limit of the mate-
rial. When the force F' is increased beyond this limit the material
goes in the elastic-plastic field. Namely, firstly the material reaches
the yield—point Y at which the rod suddenly stretches, then the ma-
terial reaches the ultimate stress at U where it offers the maximum
stress. If the elongation increases again both the cross sectional area
Ap and the stress decrease until the rod breaks at B.

From now on we shall study only the elastic range.

4.1.1 Generalized Hooke’s law

Here we want to extend the results of Hooke’s law to a multidi-
mensional state of stress and strain. So, in accordance with equation
(4.1), let us write a linear relation

oij = Cijhkenk  4J,hk=1,2,3 (4.2)

The coefficients Cjjp are independent from the position of the
reference point in the continuous medium, in other words we require
the homogeneity of the body, that means uniformity in structure
and composition. It can also be shown that the elastic constants
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Cijnk are 81 components of a fourth order tensor which is termed
elasticity tensor.

Since the stress tensor o;; is symmetric, an interchange of the
first two indices in (4.2) does not alter its meaning. In addition to
that, the symmetry of the strain tensor ensures also the symmetry
of the last two indices, so that

Cijnk = Cjink (4.3)
Cijnk = Cijkn (4.4)
That means that the 3* components of C reduce to 36 indepen-

dent constants. Let us show the expansion of a generic component
of the stress tensor, that is

o011 =Chnen + Criizere + Criizes+
Cri21€21 + Chri22e22 + Cr123€23+ (4.5)
Cri31€31 + Chiz2e32 + C1133€33

Equations (4.3) and (4.4) allow (4.5) to be rewritten as follows

o11 =Crenr + Criea2 + Clizsess+
2C1112¢€12 + 2C1113813 + 2C1 123623

Thus, the whole elastic matrix can be written as

o11 Cii11 Crizz Crizz 2C1112 201123 2C1131 €11
022 C2222 Ca233 202212 202223 209231 €22
o33 | _ Cs333 203312 2C3323 203331 €33
o2 | 2C1212 2C1223 2C1231 €12
023 sym. 205323 2Ca331 €23
031 2073131 €31

which, making use of the symmetry relationships expressed in (4.3)
and (4.4), simplifies as follows

011 €11 €12 €13 Ci4 C15 Ci6 €11
022 C22  C23 C24 C25 C26 €22
033 o C33 €34 C35 C36 €33
o2 | Ca4 C45 Cap €12
023 Syml. Cs55  Cs6 €23

031 C66 €31
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Later on, see equation (6.10), we will also introduce another
symmetry condition that has been assumed in the above. Namely,
the condition

Cijnk = Chiij (4.6)

that further reduces the independent elastic constant from 36 to
21. So, the latter material equation represents the constitutive law
for an anisotropic elastic material. However, most of the engineer-
ing materials have some symmetry properties which allow further
reductions of the elastic constants.

The highest degree of symmetry leads to the so called isotropic
material. We define an isotropic material an elastic continuum which
has the same response in any direction, so that the elastic tensor is
not influenced by any rotation of the references axes.

Let the elastic tensor be represented by Cjjx, with respect to
the cartesian coordinate {z'} whose basis is B = {&;}. With respect
to a rotated system {z*} with basis B’ = {e.} the elasticity tensor
is C;jhk. By the definition of isotropic material, we expect that the
elasticity tensor does not change. In order to show this, let us recall
the transformation relations (1.36) on chapter 1. Here we are dealing
with a Cartesian coordinate system, hence it does not matter if the
indices are all subscripts. So, we have

! AW
Cijhk = ailajmclmnoaohank
! ! !/ /
- ailajmahoaknclmno (47)
but to ensure the immunity against the rotation of the reference

system, we impose

C{]hk — C[mno (48)

that is only satisfied if the elasticity tensor assumes the following
form
C(lmno = >\5lm5no + ,Uf(slnémo + /ﬂsloémn (49)

where ), u, x are elastic constants?.

2This can be proved by replacing equation (4.9) into (4.7), as follows
Cz{jhk - agla;ma;wa;gn ()\(Slm(;no + Nélnémo + fiéloémn) =
= Aa/ima;ma;toa;co + Na;na;oa;tna;co + na/ioa‘/ina;Lna;co =
AdijOnk + poindjk + Kdikdjn

that is exactly the expression (4.9). Note that we have used the identity a,san, =
0pq provided by equations (1.21) and (1.24) on page 7.
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In equations (4.3) and (4.4) we have already noticed the sym-
metry of C in relation to the two front and two back indices, let us
show now that one more reduction is possible

Cijnk = AN0ijOnk + pdindji + K00 n (4.10)
Cijkh = AN0ijOkn + pdikdjn + KOindjk (4.11)

where, subtracting term by term and considering the symmetry of
the unit tensor d;;, equations (4.10) and (4.11) lead to the only
possible condition

1 (0indjx — 0ikdjn) + K (Oixdjn — dindjr) = 0 =
e (8in0jk — 0ikdjn) — K (Oindj — Oikdjn) = 0 =
(b — k) (5ih5jk — 5ik5jh) =0 (4.12)

which is only true if (x — k) = 0. So, the relationship between
and p further reduces the number of elastic constants to 2. Namely,
we have

Cijnk = NijOnk + 1 (0indjk + 6idjn) (4.13)

The Hooke’s law becomes

0ij = Cijnkenk = Nij0nkenk + 1t (0indjk + dirjn) Enk =

= >\5ij5hh + 2#6,‘]‘ (4.14)

where we have used Sppepr = epp = trepk.

Equation (4.14) is the generalized form of Hooke’s law, valid
for homogeneous, isotropic, elastic bodies. A and p are called Lamé
constants3.

3Gabriel Lamé (July 22, 1795 Tours - May 1, 1870 Paris) was a French
mathematician and engineer.

)

Source: http://turnbull.mcs.st-and.ac.uk/history/Mathematicians/Lame.html.
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The trace of the stress tensor is readily computed by contracting
the indices, so that

0ii = 3Aepn + 2uE;; = (4.15)

oii = (2p + 3\) enn = (4.16)
Oii

= 4.17

Ehh (2u + 3)\) (4.17)

where we can put tro;; = 0;; = X and tre;; = €5 = O.
The above expression (4.17) is useful if we solve (4.14) for ¢;;.
In fact, we have

Eij = ﬂaij — Zéij@ (4.18)

and in observance of (4.17) we obtain

1 A

PSS — 1 5 4.19
QMUJ 2 (3N +2p) " (4.19)

Ez‘j =

Now, let us consider an axial state of stress. The stress tensor is

011 0
Oij = 0 O
0 O

o O O

form (4.19) we have

€ L <1 A )
= —_— —_—— o =
" 2u (BA+2p) 1

A—p

S — 4.20

A
SR A — 4.21
£99 £33 2M (3>\ i 2#) 011 ( )
(4.22)

Let us define Poisson’s ratio v as follows

po_f_em A (4.23)
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A p=G E v
als _ ) M(?)AA:;? = 2(>\éru)
v - >\(12—V2V) A(1+u3/(1—2y) )
w B "éﬁﬁ;) - i} EQ—MQM
wv | - w(l+v) -
E,v (1+1/f/(‘11721/) g(ﬁ,,) - -

Table 4.1: Relationships between the main elastic constants.

According to Hooke’s law in the original form, see equation (4.1),
we can see that
1 A— 3\ +2
1_ b g hBAT2 (4.24)
E  p(3\+2u) A—pu
So, we have proved that Lamé constants can be replaced by
FE and v which lead to writing the alternative expressions of the
constitutive law

1
i = (1+v)oij — véi;X) (4.25)
E v
% =13, (%’ + 1_2y5ij@> (4.26)

Table 4.1 shows the relationships between elastic constants.

4.2 The linear elastic problem

In this section we are going to sum up equations and unknown
quantities which define the classical linear elastic problem. Then
we will estimate the distribution of stresses and strain as well as
displacements at all points of the body when certain boundary con-
ditions are given. Let us balance the unknowns and the equations,
we have fifteen unknowns (6 stress components + 6 strain compo-
nents + 3 displacement components) for all points in the continu-
ous and just fifteen equations (6 equilibrium + 6 compatibility + 3
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boundary conditions). So, for a given linear elastic body V we have

C = const. (4.27)
b=0b(p) VpeV (4.28)
F=fw) wes, (4.29)
u=1u(p) VpeS, (4.30)

In order to solve the linear elastic problem we start from the
known quantities (4.27) to (4.30), and through the following avail-
able equations

- compatibility equations

€ij = % (uij +uj;) onlV (4.31)

- equilibrium equations
0ijj +bi=0 onV (4.32)

- constitutive laws

o1 = 1+Ey <e,~j + 1_”2yéijeij> on V (4.33)

- boundary conditions
oiinj = fi onS, (4.34)
u; =1u; ons, (4.35)

we will formulate two boundary—value problems.

4.2.1 Boundary value problem in terms of stresses

This first boundary value problem can be stated as follows:

Determine the distribution of stresses and displace-
ments in the interior of an elastic body in equilibrium
when the body forces are prescribed and the distribution

of the forces acting on the surface of the body is known®.

“Sokolnikoff [1].
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Following the above formulation, the procedure for solving the
problem would suggest writing the available equations entirely in
terms of stress. To this aim let us start from equation (2.75)

€ij,hk + Ehk,ij — Eihjk — Ejk,in = 0 (4.36)

and consider the constitutive law (4.25), so that

1+v
= (Cijhk + Ohkyij — Oinjk — Ojk,in) =
14
=z (0ijTnn,hk + OnkOnn,ij — OihOnn jk — OjkTnn.ih) (4.37)

Equation (4.37) represents a set 3* = 81 equations since all the
four indices i, j, h, k run from 1 to 3. Not all of these equations are
independent, indeed the system (4.37) contains only 6 independent
equations. A first reduction of equations is due to the contraction
h = k that yields

Oijkk T Okk,ij — Oik,jk — Ojkik =
14
14w

(030 nn.kk + OkkOnn,ij — OikOnn jk — OjkOnnik)  (4.38)

that, by denoting ¥ = tro;; = 0y and o5k = VQO'Z'J', becomes
v

' ) (4
1+V(5]v2+v i) (4.39)

V2055 + Sij — Oikjk — Ojkik =
By virtue of the equilibrium equations (4.32), the above expres-
sion can be rewritten as follows
V20'i‘ +——X=—|bij+0bj; — L %VQE (4.40)
Tl T 14w
which is a set of 6 independent equations.
Next, in order to express V2X as a function of the body force
b, we put h =i and k = j in equation (4.37), so that, after a bit of
algebra, we have

1%

\V&DY

0ijij = V2 — 21 0

1 —
-y ZVQE (4.41)
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and finally, by invoking the derivative of the equilibrium equation
that provides the relationships b;; = 0jj, we get

1+v
1—v

Ve = — bis (4.42)

Now, going back to equation (4.40) and making use of the latter
result, it is not a difficult task to obtain the following expression

2 v —
Voo + H—UEM = — (bi,j + bjﬂ' + 1 Vdijdlv b> (4.43)

Equations (4.43) were derived by Michell® in 1900 and by Bel-
trami® in the 1892 for the special case when the body forces are
absent. Nevertheless, it is common to refer to equation (4.43) as
Beltrami-Michell equations.

In case of missing or constant volume forces equation (4.43)
assumes the straightforward form

VQO'Z']‘ + Eij =0 (4.44)

1+v

4.2.2 Boundary value problem in terms of displace-
ments

The second boundary value problem can be stated as follows:

Determine the distribution of stresses and displace-
ments in the interior of an elastic body in equilibrium

®John Henry Michell (October 26, 1863 - February 3, 1940) was an Australian
mathematician.

Source:http://en.wikipedia.org/wiki.
5Eugenio Beltrami (November 16, 1835 Cremona - February 18, 1900 Rome)
was an Italian mathematician.

Source: http://www-groups.dcs.st-and.ac.uk/ history/Biographies/Beltrami.html.
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when the body forces are prescribed and the displace-

ments of the points on the surface are prescribed func-

tions' .

By replacing the constitutive law in the form of (4.14) into equi-
librium equation, we obtain

(Aéijakk)J + Zﬂgij,j +b=0 (4.45)

that is
)\Ekk,i + 2/1,61']‘,]‘ +b;=0 (4.46)

and in accordance with the compatibility equations we have

AU i + 1 (ui,jj + Uj,ij) +b=0 (4.47)
Xup i + V2 u; + pg g, + bi = 0 (4.48)
()\ + /L) Uk ki + uVQuZ- +b=0 (4.49)

that in the vectorial form reads
(A + p) grad diva 4+ pV2a +b =0 (4.50)

Equation (4.49) (or equivalently equation (4.50)) is called Lamé-
Navier equation and together with the boundary conditions ex-
pressed by equation (4.35) define the boundary problem inn terms
of displacements.

Once the first boundary value problem has been solved, i.e. when
the displacements are known, the state of strain and hence the
state of stress can be found though equations (4.31) and (4.33),
respectively.

Further attention should be focused on the case when body
forces do not occur or they are constant. First, consider the di-
vergence of equation (4.49)

(AN + p) Uk ki T ,LLVQUM +b;i; =0 (4.51)
that yields

)\V2uk7k + 2MV2uk,k +bi; = (A +2u) V2uk,k +bi;i=0 (4.52)

"Sokolnikoff [1].
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which, under the hypothesis of b; = const., so that b; ; = 0, gives
VQuk7k = V20 =0 (4.53)

where we have set © = tre;; = €.
Moreover, recalling (4.17) it is also proved that

Vo =0 (4.54)

We can finally say that if the volume forces are constant, the
boundary linear elastic problem in terms of displacements turns
into a general boundary values problem of a biharmonic differential
equation.

4.3 Constitutive equation for shell continuums

The Kirchhoff-Love hypothesis and the inextensibility of mate-
rial fibers along 7 allows one to consider the shear stress components
N unrelated to strains, so that the constitutive problem can be
solved through the plane stress model. Thus, components N are
found only by means of the equilibrium equations. The analytical
derivation of the constitutive equations is beyond the scope of this
book, so we will just present the final equations that will be used
in the appendix A in order to solve some case studies. However,
readers can find thorough discussions in [3] and [16].

Suppose a membrane state of stress, the constitutive equations
are the following

N8 — DHOBG,, (4.55)
MeB — BHO‘ﬁ)‘“wAM (4.56)
where
1—v 2v
HON = == (g™ + g™g™ + ——g™g™)  (457)

The fourth-order tensor H** has the following symmetries

FOBM — ppBedn _ praBph _ priuas (4.58)
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Finally, coefficients D and B are the in—plane and the bending
stiffness, respectively, defined as

D= f?il (4.59)
p o P (4.60)






Chapter 5
Principle of Virtual Work

This chapter is entirely devoted to the Principle of the Virtual Work.
In particular the relations between equilibrium, compatibility conditions,
and virtual work will be highlighted.

5.1 Virtual work

Virtual work can be defined as the work done on a deformable
continuum by all the forces acting on it when the body is subjected
to a small hypothetical displacement field - unrelated to the forces -
which is consistent with the constraints present. The latter is named
virtual displacement and is denoted by an asterisk.

Si'=

~p

[y
Sy
T ,
f=
o
45
T

Figure 5.1: Forces and constraints acting on the continuous.
As figure 5.1 shows, let us suppose to split the surface S into two

separated boundary surfaces, in such a way that surface forces are

Claudio Borri, Michele Betti, Enzo Marino (a cura di), Lectures on Solid Mechanics, ISBN 978-88-8453-
854-3 (online), ISBN 978-88-8453-853-6 (print), © 2008 Firenze University Press
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prescribed on S, and a boundary displacement field @ is prescribed
over the remaining boundary surface denoted by &,. Namely, the
entire surface results as the sum § =S, US,,, where S, =S, US//
and S, =S, US/.

Consider now a virtual displacement field w; which yields the

deformation .
e = 5 (Ui +uji) (5.1)

In order to calculate the virtual work done by the volume and
surface forces we write

W*:/ fzufd80+/bzufdv (5.2)
So %

and we recall also the equilibrium equations discussed in chapter 3

04 +b; =0, VpeV (5.3)
oijnj = fi, VpeS,
Oij = 0jji VpeVy (5.5)

By replacing both equations (5.3) and (5.4) into equation (5.2)
we have

W*:/ aijnju;‘ng—/athude (5.6)
So 4

Next, consider the following identity

/(Jhiuf)th:/ahi,hudeqL/ opiu; ,dV (5.7)
V ' Y V '

that through some simple algebra yields the following equations

/(Uhiu;‘)’thZ/Uhi’hu:dV-f—
1%

%
1 * * 1 * *
—1-2/ oni (ujp + uhﬂ.) dy + 3 / oni (ufp — uhﬂ-) dy =
% %
=0
= / O'h@hu:dv + / O'hiE;kw‘dV =
% %

/ ohs il dV) — / (oniti?) pdV — / oneldV  (5.8)
% % %
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where we have split the virtual displacement gradient uj] = 52} +

*., see equation (2.81), and used the fact that the product of a sym-

Wy

metric tensor o;; by a skew-symmetric tensor w;; = % (u;" o j>
i 9,

always vanishes. Moreover, the divergence theorem allows us to
write

[ (o pav= [ owuinads (5.9)
Vv ’ S.US,,

so finally equation (5.8), provided that u* = 0 on S, becomes

w :/ aijnjude—/ ahiuz‘nhdS—l—/JhiezidV (5.10)
So So 1%

=0

As a result we have proved the following expression, also known
as principle of virtual work, holds

/ fzudeg—F/blu:dV:/m]sZ}dV (511)
So % %

In equation (5.11) we shall define the left—hand side group of
terms as external work, and the right-hand side one as internal
work, the reason why the following alternative names are often used

W= I = / futdS, + / oy
So \%

W* = L,z( = / O‘ij€z~ﬁjdV
\%

To obtain the above results we started from the equilibrium and
compatibility conditions and it is interesting to notice that we have
never used any constitutive laws. So the PVW can be applied to all
continuous material with the only limitation of small displacements.

Let us take a look to the physical meaning of the internal work.
Consider an infinitesimal volume element dV, shown in figure 5.2.

In a two dimensional case the work done by forces acting on dV
for each deformation €7; can be seen in sketches 5.3, where the axial
virtual dilatation along the x5 direction and the angular dilatation
in (x1,x2)-plane are depicted.

Thus, the infinitesimal virtual work done by ooodridxs is

dL;;Q = O'zgdxldng;ZdJIQ = O'QQE;QdV
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Figure 5.2: Elemental volume element.

0 W) 0 X,
Endr?
I
\
I | T
d:pl \
\
|
da?
(a) Axial dilatation. (b) Angular dilatation.

Figure 5.3: Virtual deformation.

In the same way from figure 5.3(b) the work done by the force
O'gld.rldaig 18

ClL;le = Ugld:ﬂldm‘g’y;ldxg = 2021€;1d1‘1d932d.%'3 = 20’21[—3;1dv

Computing the infinitesimal work dL* done for each deformation
and integrating on the entire volume V we obtain

L;k = / O'ij&'jdv (5.12)
1%
The principle of the virtual work for rigid bodies can be readily
derived from the general expression (5.11) where, since g;; = 0,
yields

L*=0 (5.13)
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5.1.1 A simple example

As an application of the virtual work principle let us consider a
simple system of bars'

All the forces are summed in a resultant force F' applied to the
end point of two bars, as shown in figure 5.4. The external force
provides only an axial state of stress in the bars.

F 150 kN

E 206 x 103N/mm?
A 15cm?

l 2m

I 4.47m

ly 4m

a 63.435°

By means of the PVW we want to find the magnitude of the
real displacement at point A along x; and xo-directions under the
effect of F'. To this end we consider first a unit explorer load in
x1-direction (to compute uj, then a unit explorer load in the xg
direction (to compute u3).

First of all we solve the equilibrium problem, so that

real case acase b case

Ny 2F/sina 2/sina 0
Ny —2F -2 1
Consider case a in which we shall compute u]. PVW reads as
follows

L: = lu”f = N1€le + NQ&‘;dl = L;(
I lo
where
L NP2
E‘ pr pr
L™ FEA FAsino
LNyt 2
2T FEA” EA

! Although no notions on mechanics of beams or frame structures have been
introduced so far, the intuitive meaning the reader can assign to some quantities,
like the unit axial deformation ¢, could be enough to get the main idea of this
example. Moreover, after reading chapter 8, the reader will be able to have a
more comprehensive view of this application.
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T2 A

59

Figure 5.4: Example.

So we have

lul = 4 l—l—4Fl
ul_EAsina 1T EA™

For case b we write

L} =1u5 = | Naesdl = L]
l2
where
L NF
€5 = -
FA FA
So we have
2F
luy = —1
Y2 = A

Finally, with respect to the cartesian positive direction, using
the above expressions we easily obtain

18.62mm

uy = —3.88 mm

uy
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5.2 PVW, Compatibility conditions, Equilibrium

In the previous section we showed that the equilibrium and the
compatibility conditions lead to PVW. Now in this section we shall
prove that two of three conditions are enough to obtain the third
one.

PVW + Compatibility = Equilibrium. Let us start from the
PVW and the compatibility equations

S 1% 1%

1
efj = 5 (Ui +45)

By splitting the displacement gradient the PVW can be rewrit-
ten as follows

/fiu;‘dS—ir/biu;‘dV:/aijuf’jdl}—/oijwijdv
S v v %

Now, making use once again of the identity (5.7), the latter
equation becomes

/ futdS + / buidy —
S %

/V(o—iju;‘)’jd]//vUij,jdeV/vaijwijdVZ>
L(aij,j+bi)U?dV=/S(Uu‘”y‘—fz‘)UZ‘dS—/VUijwz‘jdV

where the divergence theorem has been used.

Due to the arbitrariness of the displacement field, if com-
patible, the latter equation is only satisfied if each argument
vanishes, therefore

0ijj + b; =0, VpeVy
oijnj — fi =0, Vp €S,y
OijWij = 0=

Oi5 = 0j; VpeVy
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PVW + Equilibrium = Compatibility. To prove this statement
consider the expression of the PVW (5.11)

/ fiu;»*d80+/biu;de:/aijsfjdv
So Vv Vv

and the equilibrium equations

0iji +b; =0, Vpey
oijng = fi VpeS,

that replaced into the equation of the PVW lead to

/ aijnju;‘ng—/aji,ju;de:/aijs;‘jdV
So % %

and by using again the divergence theorem the above equation
becomes

/(aijuZ)JdV—/ajidufd]}:/aijs;"jdv
% v v

and by expanding the first integral on the left-hand side we
obtain

/Jiju;7jdV:/Uij€;~kjdV:>
v Vv

1 1
/vaijQ (“Zj + u;’z) dy + /v UijE (u;"] — u;kz) dy =

=0;jwi;=0
/ O'Z'jé“;(jdv
%

that proves the compatibility condition of the virtual displace-
ment field




Chapter 6
Energy principles and variational methods

This chapter deals with some of the most important results concern-
ing energy principles in elasticity. Firstly, we will start introducing the
strain energy and how it is related to the work done by the external forces
(Clapeyron’s theorem), secondly we will introduce two important theorems
which make use of the strain energy: uniqueness of the solution for the
elastic boundary—value problem and the theorem of reciprocity.

Finally, the equilibrium condition will be interpreted as the stationary
condition of the potential energy and accordingly some energetic theorems
will be enounced.

6.1 The strain-energy function and Hooke’s law

Suppose the body V lies in a natural state at time ¢ = 0. Under
the effect of surface and body forces, the continuum has at time
t the strained configuration. With respect to the usual cartesian
system each point of V is found by x; + w; (x,t). Where {z;} de-
notes the coordinates in the unstrained configuration at ¢ = 0. The
displacement fields may be derived as follows

6’[1,1'
ot

dt = u,;dt

During the deformation the work done by all the forces acting
on the body is denoted by W. The rate of W is given by

d
7W = / fit; dS + / b;u; dV (6.1)
dt S v
By making use of equilibrium boundary equation (3.3.3) in chap-

Claudio Borri, Michele Betti, Enzo Marino (a cura di), Lectures on Solid Mechanics, ISBN 978-88-8453-
854-3 (online), ISBN 978-88-8453-853-6 (print), © 2008 Firenze University Press
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ter 3 and the divergence theorem, equation (6.1) becomes

dWw

W: meidVJr/V(oijm)’jdV:

—/biﬂidV—F/Jij,jllidv-l-/aij’ll@jd]/—

% % %

:/bZUZdV—F/O'UJ’LleV—F/O'U (6”+le) dV:
v v v

Z/bididv+/0ij7jﬂidv+/0'ij (E'ij-i-dlij) dy
% % v

Due to the equilibrium condition, and remembering that o;jw;; =
0, the latter equation may be written as follows

dw Og;
— = ii€i;dV = | oy 44 2
dt VUJEJV / ot % (6.2)
Now let us suppose that there exists a function ¢ = ¢ (&) such
that
¢
— =0y 6.3
aeij Oij ( )

50, (6.2) becomes

daw 0¢ 85”
di _/ Dz;; Ot v = dt/¢ eij) d (6:4)

Let us define strain energy the following integral

_ / 6 (e1) AV (6.5)
y

where ¢ is said volume density of strain energy or elastic potential.

Hence, since we are considering the instant ¢ when the body lies
in an equilibrium configuration, so that the kinetic energy vanishes,
equation (6.4) states that the work W done by the external forces
in altering the configuration of the natural state to the equilibrium
state at the instant ¢ is equal to the strain energy ®. Therefore, the
latter can be considered as the energy stored in the deformable body
when it is brought from an initial natural state to the equilibrium
state.
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We assume now that the strain energy density function ¢ can
be expanded in a Mc Laurin series

. G0\ (P N
¢ (ei5) = ¢ (0) + (851«]-)0 +t3 <5€¢j3€hk)0%5hk 4+ (6.6)

where we discard all terms of order 3 or higher. The constant ¢ (0)
is the energy density associated with the initial stress state while

( > :
()é‘z‘j
is the initial stress state.

Now recalling the Hooke’s generalized law (4.2), and taking into
account equation (6.3), we obtain

9o

8;1 = Cijnn (6.7)
and 5 o2

%ij _ 4 (6.8)

aehk N 86hka€ij
so from equations (6.7) and (6.8) we have that
0%¢

8€hk8€ij (6'9)

Cijhk =

and due to Schwartz’s theorem the symmetry of the elasticity tensor
has also been proved

Cijhk = Chkij (6.10)

This important result can be substituted into equation (6.6),
where, by assuming that both the energy density at initial state of
stress and prestresses vanish, we obtain

1
¢ (eij) = §Cijhk5ij5hk (6.11)
hence

1
‘I’:/¢(5ij) dy = / CijnkEij€nk (6.12)
% 2 Jy

In the case of a simple axial state of stress the density of strain
energy is
1 1
¢ = 5Cunenen = jonen

therefore the dashed area in figure 6.1 represents the density of
strain energy for an axial state of stress.
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E11h

0

»
»

O

Figure 6.1: Density of strain energy in the case of axial state of
stress.

Theorem 1 (CLAPEYRON’S THEOREM) If a body is in equilibrium
under a given system of body forces b; and surface forces f;, then
the strain energy ® is equal to one-half the work done by the external
forces (of the equilibrium state) acting through the displacements w;
from the initial state to the equilibrium state.

To prove Clapeyron’s theorem let us recall the PVW expres-
sion. See equation (5.11) in chapter 5. To do this it is necessary
to require the equilibrium state of the body and the consistency of
displacement and strain fields, thus

/ fiuz-ng—l—/biuidV:/oijsijdV (6.13)
So % %

where replacing the expression of the strain energy (6.12) we have

2@:/ f,;uidSo—l—/biuidV (6.14)
So %

On the right-hand side of equation (6.14) we recognize what we
have defined as external forces work. Therefore we have proved that

1
=L (6.15)

As done in equation (6.3) we suppose now the existence of the
conjugate strain energy density

¢ = ¢ (0ij) (6.16)

such as
ol
8017

= &ijj (617)
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so we define
o = / 6" (033) dV (6.18)
%

as the conjugate strain energy.
Through equations similar to the strain energy case, we can
write

1

where C;“jhk = C;,llk and g;; = C’;‘jhkahk. We can also prove that

. 1
qb(E@']’) = qb (O'ij) = 561']'0'”' (6.20)
in fact, we have
¢" (0ij) = 5Cink0ijom = 5€ij0ij = ¢ (i) (6.21)

Often it is useful to know the whole strain energy of a deformable
body without knowing the internal state of stress. Figure 6.2 shows
the deformation of a beam under a concentrated external load!.

U

—

P —>

v

D

Figure 6.2: The simplest application of Clapeyron’s theorem.
We can compute the strain energy easily as

1

1We suppose the self weight vanishes.
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6.1.1 Superposition principle

We set the elastic equilibrium boundary-value problem as fol-
lows

dive +b=0 VpeV (6.22)
e = symVu VpeV (6.23)

FE v
= t 24
o 1+V(5+1_2Vr5) Vpey (6.24)

and

on=f VpeS, (6.25)
u=u VpesS, (6.26)

Superposition principle is a general tool that can be applied to
many physical linear systems. It states that if a number of inde-
pendent influences act on the system, then the resultant influence is
the sum of the individual influences acting separately.

Namely, let us suppose to have two systems of body and surface
forces

(M, f3 (6.27)
(@, F@} (6.28)

Every force system is related to the following strain and stress
state, respectively

{aM), M) oM} (6.29)
{a?, @) 52} (6.30)

Formally the the principle of influence superposition allows us
to state that for all Aj, Ay € IR, given the following forces system

L W A D W A I V) (6.31)
then the following set of displacement, strain and stress
D + 200@, Ae® + M@ Ao + A0} (6.32)

is the solution of the equilibrium boundary-value problem.



LECTURES ON SOLID MECHANICS 117

To prove that it is enough to substitute the above fields in the
elastic problem equations.

However, there are some special cases for which the superpo-
sition principle does not hold. Indeed, let us consider the strain

energy ® and put &;; = EZ(»;) + Eg). We obtain
s (EZ] / Cz]hkgzgghkdv = (6.33)
1
2 [ o () (= e

1 1
— - / Cijnwesy) esldV + 5 / Cijnre Ve qy+
2 Jy 2 )y !

1 1 2 1 2 1
+§ /V Cijhké‘l(j)&‘z(»j)dv + B /V Cijhk&‘z(»j)é‘gj)dv (6.35)
Finally, due to the symmetry of the elasticity tensor we have
o (sij) - (aQ’ +ei)) = (6.36)
1
—o () +o / CimeVeDdy— (6.37)

The last term in equation (6.37) represents the coupling con-
tribution to the strain energy which disproves the superposition
principle for the strain energy.

6.1.2 Uniqueness of the solution

The solution of the boundary—value problems formulated in sec-
tions 4.2.1 and 4.2.2 is unique. To show that let us assume, by ab-
surd, that it is possible to obtain two solutions for the boundary—
value problem expressed by equations (6.22) to (6.26)

{a, M oM} (6.38)
{a®, e? 52} (6.39)
Equation (6.22) allows us to put

S0 _ @
o) =g+ b =0 (6.40)

while equation (6.25) allows to write

oin; = oin; = f; (6.41)
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Now, by virtue of the superposition principle, it is clear that the
following function

o= o) _ @

represent a special solution fulfilling the equilibrium equation pro-
vided that b; = 0 and f; = 0. In fact we have

i = <0§}) _ JZ(J@) = 0 (6.42)
045,515 = <01(]1) — 0'1(]2)> n; = 0 (6.43)

Thus, for this special solution Clapeyron’s theorem (6.14) writes
as follows

26 =0 (6.44)

that is
/ qb (€¢j) dV = / Cijhksijehkdv =0 (6.45)
% %

But since ¢ is a positive definite quadratic form, the above in-
tegral can vanish only when ¢;; = 0 and so the following identity
has been proved

e = (6.46)

Therefore, if the components of the strain tensor for two solu-
tions must be identical, then, by means of the constitutive law, it
follows that the components of the stress tensor must be identical
as well

Finally we want to remark that the equality ¢ = ¢® does
not exclude rigid body motion . In fact @' = @2 + @ satisfies the
uniqueness of deformation since it does not produce any deforma-
tion, i.e eg = 0. But we shall suppose the constraints along S, are
able to inhibit all rigid displacements, so that
alt) = a® (6.47)

(2
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6.1.3 Theorem of reciprocity

Now we introduce a general reciprocal expression relating the
equilibrium states of a body under different loads. To do this let
us consider two equilibrium states of an elastic body one of which
subjected to displacement field u due to the body and surface forces
b and f, respectively; the other equilibrium state is characterized
by the displacement field @' due to the body and surface forces o
and f'. respectively. The work that would be done by the forces b;
and f; if they acted through the displacements u} can be written as

follows
S vV )%

and in the same way, the work that would be done by the forces ¥/
and f! if they acted through the displacements u; can be written as

follows
S 1% 1%
Through the symmetry of the tensor of elasticity we notice that

0ij = CijhkEnk

0ij = Clijnreh
hence,
/o—;jsijdV: (650)
v
:/Cijhkgkkgijdvz/ChkijgijE;deV: (6.51)
v %
_ / S (6.52)
%

Equations (6.50) and (6.52) prove that (6.48) and (6.49) are
identical, so

S % S 1%

Equation (6.53) can be enunciated in the following theorem

Theorem 2 (BerT's THEOREM) If an elastic body is subjected to
two systems of body and surface forces, then the work that would be
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done by the first system b; and f; acting through the displacements
w, due to the second system of forces is equal to the work that would
be done by the second system of forces b, and f! acting through the
displacements u; due to the first system of forces.

Theorem of Betti is also termed theorem of reciprocity.

6.2 Variational methods

In this section we present an alternative approach aimed at find-
ing the state of stress in a continuous elastic body. This method
basis itself on some minimum principles that characterize the equi-
librium state of bodies. Namely we shall see that it is possible to
construct some integrals relating the work done by the forces act-
ing throughout the deformation and to show that these integrals
have their minimum values when the distribution of stress in the
body corresponds to the equilibrium states. So searching for equi-
librium state is reduced to certain standard problems of calculus of
variations.

This method is strongly used in computational mechanics to
solve the equilibrium problem in the finite elements method.

6.2.1 Potential energy

Let us start by introducing the functional U/ called potential
energy of deformation. We shall show that this potential attains an
absolute minimum value when the displacements of the body V are
those of the equilibrium configuration. As usual, see also figures 5.1
on page 103 and figure 6.3, let b; be the body forces and f; the
surface forces prescribed on S, .

We suppose that over the remaining part of S, i.e. S, the dis-
placements 4; are known. We denote the displacements which sat-
isfy the equilibrium configuration as u; and consider an arbitrary
small? displacements du; only if consistent with respect to the com-
patibility conditions imposed over S,. To the field du is also re-
quested to belong to class C® and to be zero over S,. We shall term
o as virtual displacement field>.

*Compatible with the hypothesis of linear elasticity, dei; = 5 (Sui; + dujii).
®Note that in chapter 5 the virtual displacement §@ was denoted by @*.
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Figure 6.3: Forces and displacements acting on the body V lying in
the equilibrium state.

The elastic problem is given as follows

divo+b=0 VpeV (6.54)
e = symVu VpeV (6.55)
0= fu (5 + N _VQVtrs) VpeV (6.56)
and
U=1u Vp e S, (6.57)

We define the potential energy of deformation U as follows

U (sij, uz) =0 (&j) - v (uz) (6.58)
where
®(ei) = [ oe)av (6.50)
1%
y (u,) = / biu;dY + /S fiu;dS (6.60)
v

The potential energy U is the sum of the strain energy ¢ and
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the conservative loads potential W. The first variation of I/ is
U =U(u+ du, e+ de) —U (u,e) (6.61)
:<I>(6+55)—\I!(ui+5ui)— ()—F\P(Ul): (662)
=® (e + de)— /b (u; + du;) dV— /fZ (u; + du;) dS+

biu;dV + [ fiu;dS (6.63)
O+ f s [

In equation (6.37) we have just seen that
O (e+0e) =D () + P (de) + / Cijnkenkieij (6.64)
v

so neglecting ® (de;;) as a second order infinitesimal, we obtain

524:/o—ijésijdV—/biéuidV—/fjéuidS (665)
1% 1% S

We recognize in the right-hand side terms of the above expres-
sion the Principle of Virtual Work (5.11). So it is easy to notice
that the stationary point for potential energy U corresponds to the
equilibrium condition. We know, in fact, that the PVW and the
compatibility conditions of displacements du; result in the same
thing and that is equilibrium state.

Theorem 3 (STATIONARY VALUE OF POTENTIAL ENERGY) The total
potential energy U of an elastic body has a stationary value in the
class of the geometrically permissible displacements for the true dis-
placements which correspond to the state of equilibrium.

It is also possible to prove the following stronger theorem.

Theorem 4 (MINIMUM POTENTIAL ENERGY) Of all displacements sa-
tisfying the given boundary conditions those which satisfy the equi-
librium conditions make the potential energy an absolute minimum.

6.2.2 Complementary energy

Now we proceed to prove another important minimum theorem.
As usual, see also figure 5.1 on page 103, let V be a body in an
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equilibrium state under the volume forces b; and surface forces f;
prescribed on S,
The elastic problem is given as follows

dive +b=0 VYpecV (6.66)
e = symVu VpeV (6.67)
E v
=15 (5 + T 2Vtr5> VpeV (6.68)
and
ocn=f VpeS, (6.69)
(6.70)

We term U* conjugate potential energy of deformation or com-
plementary energy and we shall show that this potential reaches an
absolute minimum value when the displacements of the body V are
those of the equilibrium configuration.We define the complementary
energy of deformation U* as follows

U (0ij, fi) = ®* (0ij) — ¥* (fi) (6.71)

where
" (045) = /V¢* (045) AV (6.72)
U (fi) = /sz‘uidS (6.73)

We suppose that over the remaining part S, the displacements
1; are known. We denote the displacements which satisfy the equi-
librium configuration as w; and consider an arbitrary small varia-
tions of o and f: do and 0 f, respectively. It is required that the
fields o + 60 and f + 6 f assures the equilibrium state, so that, by
virtue of equations (6.22) and (6.25), we easily obtain

doij; =0 inV (6.74)
501']'71@' =0 on Sg (6.75)

The first variation of U* is

SU* =U* (f+6f,0+b0) —U" (f,0) (6.76)
=@ (0 +d0) — @ (o) =" (/) + " (f+46f)  (6.77)
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which in components becomes

—®* (Uij) - / (5fzuld8 (679)
S
finally,
51/{* (Uij) = / (SO'ijEIij - / 6fluzd8 (680)
1% S

where we recognize on the right-hand side of the above expression
the Principle of Virtual Work (5.11). So it is easy to notice that
the stationary point for complementary energy U* corresponds to
the equilibrium condition. We know, in fact, that the PVW and
the compatibility conditions of displacements du; lead to the same
result: the equilibrium state.

Theorem 5 (STATIONARY VALUE OF COMPLEMENTARY ENERGY) The
total complementary energy U* of an elastic body has a stationary
value in the class of the statically permissible state of stress for the
true state of stress corresponding to the equilibrium.

It is also possible to prove the following stronger theorem.

Theorem 6 (MINIMUM COMPLEMENTARY ENERGY) The complemen-
tary energy U™ has an absolute minimum when the stress tensor o;;
is that of the equilibrium state and fulfills the conditions (6.74) and
(6.75).

6.2.3 Theorems of Castigliano

Results discussed in the previous sections give us the means to
find some other important results which go by the name of theorems
of Castigliano. Therefore, let us suppose that a body V is subjected
only to concentrated loads F} as figure 6.4 shows.

The potential energy and the complementary energy are, respec-
tively

52] ZFkuz (681)

U = o* (o) ZF’“uz (6.82)
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3
zn F

T

Figure 6.4: Concentrated loads acting on the body V.

Rearranging the scalar product on the right-hand side of equa-
tions (6.81) and (6.82) we obtain

U=9a (Eij) — Fkuk (6.83)

U* = d* (045) — Fruy, (6.84)

where uy, is the component of the displacement vector at the point
of application of F* in the direction of this force. Now we suppose
that the potential energy U results only from the displacements uy,
and the complementary energy U* results only from the external

concentred loads F'*, therefore the energies above can be written as
follows

Uug,. .. un) =P (ug, ... up) — FFuy (6.85)
U (FY,...,F") =&* (F',...,F") — Fruy, (6.86)
where the first variations are

oU = ® (uy, ug + dug, up) — P (u1, ug, uy) — FE§uy, =

_ o0 (“k)auk _ phayt = (920) g Suy, (6.87)
dup ouy,

SU* = o* (Fl, F* 4 §F*, F”) e (Fl, F* F”) — §FFy, =

ou* (F*)
OFk

_ oo (F*)

k k
SFF OF" —0F uk:<

— uk> SFF  (6.88)
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and by means of the principles of stationary value, equations (6.87)
and (6.88) vanish, and discarding the trivial solutions du* = 0 and
SFF =0, we obtain

o0o*
LiiJ
gw =Fk (6.90)

where F* is a generic concentred load and wy is its corresponding
displacement.
Equation (6.90) may also be enounced in the following form

Theorem 7 (CASTIGLIANO’S THEOREM) If an elastic body is sub-
jected to concentred loads and supported in such way that each rigid
body motion is inhibited, then the displacement component uy, of the
point of application of F* towards its direction, is obtained from the
partial derivative of the complementary energy with respect to the
particular force.

Menabrea’s theorem is a particular case of Castigliano’s theo-
rem. In fact, if F* is a reaction due to a constraint which does not
allow any displacement, then equation (6.89) will become

0d*

Equation (6.90) represents the second Castigliano’s theorem,
which states

Theorem 8 (IT CASTIGLIANO’S THEOREM) If an elastic body is sub-
jected to concentred displacements uy and supported in such a way
that each rigid body motion is inhibited, then the component of a
concentrated load acting in the direction of such displacement is ob-
tained by the partial derivative of the potential energy with respect
to the particular displacement component.

Illustrative example

Let us consider the simple system showed in figure 6.5. We have
a rigid body which is supported by means of two elastic devices.

The entire elasticity of the system is concentrated in A and B,
where we have a rotational stiffness with spring modulus k,, and a
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ki F

Figure 6.5: Example of Castigliano’s theorems.

translational stiffness with spring modulus k;, respectively. So, the
constitutive relationships are

M = k9 (6.92)
R = kil (6.93)

and we may also set the following geometric relation
1
==Y
T

According to equations (6.5) and (6.11), through the above con-
stitutive relationships, we can compute the strain energy ® as fol-
lows

_ 1 Lo e w2 li2g2 g2 (Fm
= MO+ SR = Jkad® + Skl = 20 ( 3+ ki) (6.94)

Now, by virtue of second theorem of Castigliano, we can find

the external load
0P km,
F=—=4u|—+k
u < Z l)

so that

F 2
U= —
4

km + 12k






Chapter 7
Strength of materials

This section is intended to give only an overview about some selected
criteria aimed at determining whether the state of stress characterizing
an elastic continuum is secure compared with conventional material limits
derived from experimental tests.

For a thorough investigation on the strength of materials the reader

is recommended to referred to [7], [9], [10], [12].

7.1 Introduction

Usually the mechanical properties of materials are investigated
by simple experimental tests, for example the tensile test and com-
pression test offer the two failure stresses of, and o] which allow
the evaluation of the riskiness of a combined state of stress result-
ing from the solution of the linear—elastic problem.

When the real state of stress is simply tension or compression,
we can directly compare the results with the experimental values of,
and o( and easily evaluate if the working stress is lower or higher
than the yielding point (or rupture point for fragile materials).

The problem becomes more complicated when the actual state
of stress is combined, hence various theories have been developed
in order to find laws which, from the behavior of the materials in
simple compression or tension, predict the condition of failure under
any kind of combined stresses. The following sketch is rappresenta-
tive of this statement

analytical How to compare? experimental
{oi;} == {o{, 00

f=?

It is known that the whole state of stress is defined by three
principal stresses, so according to equation (3.36) in chapter 3, we
assume that I3 # 0. Furthermore, suppose the eigenvalue problem

Claudio Borri, Michele Betti, Enzo Marino (a cura di), Lectures on Solid Mechanics, ISBN 978-88-8453-
854-3 (online), ISBN 978-88-8453-853-6 (print), © 2008 Firenze University Press
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(3.35) yields the three principal stresses ordered as follows
0;p > 011 > 0JI1

where tensions are taken positive and compressions negative.
The law we are looking for assumes the following general form

f(or,011,0111) = constant (7.1)

where f (o7,0717,0777) is @ comparable quantity and the constant
can be found applying the criterion f to the simple state of stress

f(0,0,0'())-
7.2 Maximum stress theory

This theory, also called Rankine’s criterion, assumes the maxi-
mum stress as the criterion for the material failure. Accordingly we
write

oiq = lo1] (7.2)
oiq = lorr] (7.3)

where 0,4 is the ideal stress, that is the comparable stress.

In case of ductile materials the theory assumes that the yielding
starts when the maximum stress becomes equal to the yield point
stress of the material in simple tension or when the minimum stress
becomes equal to the yield point stress of the material in simple
compression. Namely, the failure conditions are

lor| = o), (7.4)
lorr1| = o (7.5)

Whereas, the safety side is ensured by the following conditions

lor| < oy, (7.6)
’U[][‘ < Ug (77)

This theory is not comprehensive and presents some limits. Con-
sider a specimen under simple tension, sliding occurs along the plane
where the stress does not attain the maximum value. Moreover, con-
sider an homogeneous isotropic material weak in simple compres-
sion, it can sustain very large hydrostatic pressure without yielding.
That proves the magnitude of the maximum tensile or compressive
stress alone does not define the yielding condition.
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7.3 Maximum strain theory

In this theory, historically attributed to Grashof, it is assumed
that the yielding of a ductile material starts when either the maxi-
mum strain, i.e. elongation, equals the strain of,/E at which yield-
ing occurs in the simple tension or when the minimum strain, i.e.
compressive strain, equals the strain o(/E at which the yielding
occurs in simple compression. Therefore, by recalling constitutive
equations (4.25) and (4.26) on page 95, the criterion is stated as
follows

lemin| = €4 (7.9)
that is
L (o1~ v (o1 + 1)) = 2 (7.10)
= — — UV = — .
Emazx E or o171 T~ OJIT E
SR (o1 +om)) = 2 (7.11)
Emin = E oriyr —v\oy+ojyr)) = E .

keeping the order o7 < 077 < oryr. The ideal stresses to be com-
pared to the experimental values o, and o{j are

oig=o0r—v(omr+orrr) (7.12)

o= ot —v(or +orr) (7.13)

The failure conditions are

o1 —v (o +omr) | = o (7.14)
lo1rr —v(or+o011)| =0 (7.15)

where o(, and of] are, as said before, the failure point stresses in
tension and compression, respectively. The safety side is ensured by
the following conditions

lor —v (o1 +omr) | < o (7.16)
lorir — v (o1 +o11) | < 0 (7.17)
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7.4 Beltrami’s theory

For the first time in 1885 Beltrami proposed an energetic ap-
proach to make comparable a combined state of stress with a simple
tension or compression state of stress. Indeed, the quantity of strain
energy stored per unit of volume of the material has been assumed
as a basis to define the stresses at which the yielding starts.

The elastic potential or the volume density of strain energy, as
defined in chapter 6 (equation (6.5) on page 112) for the principal
state of stress and strain assumes the following form

1

?=3F

(0% + U%I + U%II — 2v (0’[0'[] +ororrr + 0'[[0’[[[)) (7.18)

Beltrami stated that the failure of a body under a combined
state of stress occurs when its volume density of strain energy equals
the elastic potential at the yielding point for a simple tension, so

that

2
)

o= 78 (7.19)

where it is assumed that the material has the same behavior both
in compression and tension, i.e. o, = o, = 0y.

Therefore, taking into account the previous expression for ¢, we
obtain

o} +0jr+oi —2v (oo + oo+ ororn) = o (7.20)

Finally, the linear elastic behavior of the material is ensured
when the comparable stress g;4, given as follows

o =T U% + U%I + O—%II —2v (U[U[] +ojorrr + J][J][[) (7.21)
is lower than the yielding point stress. So we have

loial < o (7.22)

7.5 Von Mises’ criterion

Following Beltrami’s approach, in 1913 R. von Mises proposed
a new method to evaluate the failure state for materials. In this
theory not the whole elastic potential is assumed as responsible
for yielding but only the potential energy ®p due to the deviator
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stresses. Namely, Mises’ criterion assumes negligible the hydrostatic
state of stress to evaluate when the yielding starts.

Recalling equation (3.82) on page 78, any state of stress and
strain can be split as follows

Oij = UMéij + Sij (7.23)
€ij = EM(Sij + eij (7.24)
where o)s and e); are the spherical state of stress and strain re-
spectively, while s;; and e;; are the deviator stresses and strains,

respectively. Hence, the total potential energy can be written as
follows

P (eij) = %%’%‘ = % (00035 + sij) (€mbij + eij) =
1 3
o SijCij + FOMEM (7.25)
Let us now define
Dy = §01\481\/[ (7.26)

2
as the spherical energy, that is the potential energy associated to
the volumetric variation of the body and

1
Cp = Ssijeis (7.27)

as the deviator energy, that is the potential energy associated to
the shape variation of the body.

As assumed in Beltrami’s criterion, the material is supposed to
have the same behavior both in simple tension and compression.

Now, evaluating the deviator energy depending only on the
stresses, we have

Dp = %Sij% = ésijsz’j (7.28)

The limit value for yielding is obtained by applying the criterion

to the simple tension oy which can also be split as follows

00 0 o/3 0 0
000 |=( 0 /3 0 |+
0 0 op 0 0 o00/3
—00/3 0 0
0 —00/3 0 (7.29)

0 0 200/3
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consequently, the limit value for the deviator energy results

12
0 2
= —= 7.30
D= 4G37%0 (7.30)
Finally, imposing the criterion (7.1), that here becomes
1 12
0 2
the ideal stress assumes the following expression
3
Oid — §Sij5ij (732)

The above expression can also be given through the principal

stresses as follows
3
Oid = §Sij5ij =

3
Vo (8 sy 208, + 20 4 208) =
3 2 2 2 _
B} (s7+s7+s7) =

\/; ((01 —om)? + (o1 —om)? + (01T — UM)2> =

\/a? + 0%, + 02, — 01011 — 0110111 — 010111 (7.33)

7.6 Criteria comparison

To highlight out the differences among the four methods above
discussed let us consider the graphical interpretation for each of
them. For the sake of simplicity consider the case where o7 =
0. Thus, the whole state of stress is given by the two principal
stresses {07,077} not necessarily sorted as equation (7.1) shows.
Moreover, we shall assume the material has the same behavior in
simple tension and compression.

7.6.1 Maximum stress

By the preceding assumptions the comparable stress in this case
turns into
0id :max{]01|,|an\} (734)
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and the rupture limits are

o; = +og (7.35)
o = +og (7.36)

that on a Cartesian plane depict a square domain. See figure 7.1.

A O
B B| Oo 1
Al 0, A >
— 0o Jo (o)
3 Bl —00 4

Figure 7.1: Rupture domain for the maximum stress criterion.

The lines in the figure represent the values of oy and oy at which
yielding starts. The lengths OA and OB represent the yield points
in simple tension along the directions of oy and oy, respectively.
In the same way A’ and B’ represent the yielding points for simple
compression. Moreover, the four conditions above ensure that any
point within the square 1234 define an elastic configuration. Hence,
we can define lines 1234 as rupture (or yielding, for ductile material)
boundaries.

7.6.2 Maximum strain

Here the ideal stress assumes the form

00 = max{|o; —voyq|,|orr —vor|,| —v(er+orr)|}  (7.37)
and the yielding limits are

or —vorr = +og (7.38)
orr —vor = tog (7.39)
-V (O’[ —i-O'[[) = 1oy (740)
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Figure 7.2: Rupture domain for the maximum strain criterion.

that on a Cartesian plane form a domain as shown in figure 7.2.

Note that the drawing in figure 7.2 has only an illustrative in-
tention, in fact, in the reality, points 5 —6 and 8 —9 are much closer
each other when v approaches values around 0.3.

Figure 7.2 also shows that if two principal stresses are equal
and opposite in sign, the maximum strain theory indicates that the
yielding starts at a lower value than the maximum stress theory
would indicate, see points 4 and 10, for instance.

On the other hand, since a tension in one direction reduces the
strain in the perpendicular direction, two equal tension can have
higher values at yielding than the maximum stress theory.

7.6.3 Beltrami’s criterion

Here the ideal stress assumes the form

Oid = \/U% + O'%I — 2uoogg (7.41)
and the yielding boundary is described by the ellipse
0% + 0% — 2woorr = o} (7.42)
that intersects the o7 and oj; axes at points

or = too (7.43)
orr = £oo (7.44)
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Figure 7.3: Elastic domain for Beltrami’s criterion.

The intersections with the bisector o;; = oy, passing through
the first and third quadrants, occurs at points A and B, see figure
7.4, which have coordinates respectively

00
or=0y=+t—m——— 7.45
reon 201 ) (7.45)
while the intersections of the ellipse with the bisector ;57 = —oy,

passing through the second and fourth quadrants, occurs at C' and
D having the following coordinates

(7.46)

o =2 747
' 1+u o 1+u (747)

respectively. See figure 7.3.

7.6.4 Von Mises’ criterion

From equation (7.33) we derive the expression of the ideal stress
when a two—dimensional state of stress occurs

Oid = \/Cf%—FU%[—O‘[O'H (7.48)

hence, the yielding limit is found when ¢;4 = 0g so that

o9 = \/(T%—FO'%I—U]UH (7.49)
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The latter represents in the (o7, o77)—plane the following ellipse

of = 0f + 07— 01011 (7.50)

having as the major axis the bisector of the first and third quadrants
and as minor axis the bisector of the second and fourth quadrant.

Figure 7.4: Elastic domain for the Mises’ criterion.

The intersections with bisector line o;; = o occurs in points E
and F', see figure 7.4, which have coordinates

o1 = orr = +oy (7.51)

while the intersection points with the bisector o;; = —o are G and
H which have coordinates

oo g0
oj=——F— 0] =+—F7 7.52
I \/g 11 \/g ( )
or = —i-fo-o —Oorr = 20 (7.53)

V3 V3

respectively. See figure 7.4.

7.6.5 Comparison

In order to compare all the above criteria let us consider a two—
dimensional state of stress defined as follows

Oij = ( 0 052 ) (7.54)

012
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It is straightforward to represent this stress state through Mohr’s
circle where we find

zo=0
yo =0
R =012

and the coordinates of the pole in the (¢, 7)-plane are P* = (0, —012).
For further detail on Mohr’s circles see section 3.4.2.

Moreover, the principal stresses located at points S7 and So, see
figure 3.10, are respectively

o] = —01] =012

Thus, if we define the following general expression for the yield-
ing point
J12 =— QO
then for each criterion we can readily evaluate the coefficient «

considering the equations above discussed. For the sake of clarity
the relevant results are collected in table 7.1.

CRITERION ot a (v=20.3)
Maximum Stress 1 1
Maximum Strain 1—%1/ 0.77

Beltrami’s ﬁ 0.62

Mises’ 7 0.58

Table 7.1: Criteria comparison.
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Chapter 8
Saint-Venant’s problem

This section is devoted to the theory of the beam. We will first in-
troduce some necessary adjustments of the three—dimensional theory of
elasticity in order to provide an ad hoc mathematical model for prismatic
structural elements. Then the mechanical behavior of the beam will be
analyzed considering separately four fundamental cases.

8.1 Statement of the problem

The solution of the general boundary—value problem presented
in section 4.2 often presents some mathematical difficulties because
of the complicated form of the boundary conditions. Frequently it
is necessary to introduce some simplifications in order to ensure
solutions for technological applications of the theory of elasticity,
so that the mathematical solutions of the problem represents only
an approximation to the actual situation.

In order to simplify the boundary conditions let us assume the
following principle on which the theory of beams is founded.

If some distribution of forces acting on a portion of a
body is replaced by a different distribution of forces act-
ing on the same portion of the body, then the effects of
two different distributions on the parts of the body suffi-
ciently far from the region of application of the forces are
essentially the same, provided that the two distributions
of forces are statically equivalent.

where “statically” equivalent means that two distributions of forces
have the same resultant force and the same resultant moment. This

Claudio Borri, Michele Betti, Enzo Marino (a cura di), Lectures on Solid Mechanics, ISBN 978-88-8453-
854-3 (online), ISBN 978-88-8453-853-6 (print), © 2008 Firenze University Press
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principle was proposed in 1885 by J. C. B. de Saint Venant'.

First of all we declare the fundamental hypothesis which define
a method of solution.

Shape of solid. We define a beamn as a particular body bounded
by a cylindrical surface called the lateral surface and by a pair
of planes normal to the lateral surface called the bases of the
cylinder. We shall also suppose the cross section is constant
and the beam’s length is much larger than the cross section’s
linear dimension: [ > r, see figure 8.1. The Cartesian coordi-
nate system is positioned having the x3—axis taken along the
length of beam and parallel to the lateral surface. This axis
usually coincides with the axis of the beam passing through
the centers of gravity of the bases. The cylinder is assumed to
be of length [ so that one of its bases belongs to the (x1,x2)—
plane and the other is taken at x3 = [.

Loads. It is supposed that the lateral surface of the cylinder is
load free and that the loads act only on its bases x3 = 0 and
x3 = [. Moreover, the forces at the ends assure the equilibrium
condition of the cylinder. It is also supposed that the body
forces b are zero.

Constraints. According to the previous point, we shall suppose
that the cylinder is unconstrained, and the forces acting on
the bases fulfill the global equilibrium equations. However, to
assure that no rigid displacement is allowed, at least one point
of the beam, say GG, must be fixed. So we will assume that to
inhibit any translation, at 1 = x2 = x3 = 0, the following
constraints hold

ul :U2:U3:O (8.1)

! Adhémar Jean Claude Barré de Saint-Venant (August 23, 1797 Seine—et—
Marne - January 6, 1886 Seine-et—Marne) was a French engineer.

Source: http://www-history.mcs.st-andrews.ac.uk/PictDisplay/Saint-Venant.html.
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Figure 8.1: Prototype of beam.

and to avoid any rotation we require that

U271 = Y3 = 0 (8.2)
uzs =91 =0
u13 = @2 =0

Material. Let us assume an homogeneous isotropic linear elastic
material.

State of stress. We shall assume the stress vector normal to the
lateral surface is zezo. So, for such a unit vector n = n'e; =
n'e; + n’eé; normal to the lateral surface, in accordance with
the location of the coordinate system, we have

Onn = Uijninj = 0'11711711 + 022n2n2 + 2012n1n2 =0 (8.5)
only if
(n")* + (n?)* =1 (8.6)

Hence, equations (8.5) and (8.6) induce? a particular form of
the stress tensor

0 0 o013
O'ij = 0 0 g923
031 032 033

2Tt can be immediately proved putting first n' = 1 and n? = 0, then n! =0
and n? = 1.
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The equilibrium problem of an elastic beam with a free lateral
surface subjected to loads only on the bases can be formulated as
follows: determine the three components of stress oi3, 093,033 and
the displacements u; that satisfy equations

0ij,5 = 0 on YV

By virtue of stresses and loads assumptions, the above problem
becomes

013,3 = 0 (8.7)
0233 = 0 on Y

031,1 + 0322 + 0333 =0

Next, in accordance with the hypotheses, the boundary equa-
tions are

oin; = fl on x3=0,23=1 (8.10)

that can be expanded as follows

23 =0, n=(0,0,—1)

o13n3 = —013 = fi (8.11)

093N3 = —0923 = fg (8.12)

O33n3 = —033 = f3 (8.13)
zg =1, n=1(0,0,1)

g13N3 — 013 = fl (8.14)

Ta3n3 = 093 = [ (8.15)

033N3 = 033 = fS (816)
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1S

) Basis z3 =0

(b) Basis z3 =1

Figure 8.2: Unit normal vectors on the bases of the cylinder.

Constitutive equations (4.25) become

€11 = —%1/033 (8.17)
€99 = —%l/0'33 (8.18)
€33 = % (1+v)oss —voss) = % (8.19)
e12=0 (8.20)
€13 = u ;V) 013 (8.21)
- JEFV) 023 (8.22)

Now, making use of Beltrami-Michell’s equations (4.44), it is
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possible to write

033,11 = 0 (823)

0'33712 = 0 (824)

03322 = 0 (825)

033,11 + 033,22 + 033,33 + 03383 = 0 (8.26)
=0 8.27

02311 + 02322 + 02333 + 1T VU33,23 ( )
=0 8.28

013,11 + 013,22 + 013,33 + FRBLELEE (8.28)

and by means of equations (8.7) and (8.8), the above expressions
turn into

033,33 + 03383 = 0= 03333=0 (8.29)
=0 8.30

023,11 + 02322 + T y033,23 ( )

=0 8.31

013,11 + 013,22 + T VU33,13 ( )

Equations (8.23), (8.25) and (8.29) suggest that the compo-
nent o33 must vary linearly with z1, 22, z3, while equation (8.24)
imposes that it cannot contain the product z;xo. Hence, o33 =
033 (1, 2, x3) must assume the following form

033 = a+ bry + cxo — (d+ exy + frg) x3 (8.32)

See also 9] and [11].

8.1.1 External and internal forces

In this section we point out that in most of the practical circum-
stances we know the resultant force F and the resultant moment M
acting on the ends Aof a beam rather than the real external surface
force distribution f. Indeed, if we accept the Saint Venant’s prin-
ciple, we could not care about ’Ehe nature of the stress distribution
which produces the resultants F and M, just because we are inter-
ested in portions of beam sufficiently far from the ends where the
influences of boundary stress distribution is not decisive.
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Let us fix our attention on the bases of the cylinder. Firstly,
on the basis z3 = 0, denoted by Ay, we assume a distribution of

surface forces given by f°, next, on the basis 23 = [, denoted by A;,
we assume a distribution of surface forces f.

For the basis z3 = [ the resultant external force are related to
the external surface forces as follows

T{:/ fldA (8.33)

A

L= [ fldA (8.34)
Ay

N = [ fldA (8.35)
A

and, of course, we can do the same for the basis z3 =0

™= [ fldA (8.36)
Ao

9= [ fldA (8.37)
Ao

N= [ f2%A (8.38)
Ao

where T} and Tb, lying in the plane of the basis, are responsible for
bending and sharing of the beam, while N, taken in x3—direction,
is responsible for tension or compression. See figure 8.3.

The couple M, analogously, may be split into a component M
along the x3—axis which provides the twisting for the beam and the
components M; and M, which are responsible for bending. Thus,
for both bases we have

M = [ flaodA (8.39)
Ay

N = — / fladA (8.40)
A

M = / (—flws + fiar) a (8.41)
Ay
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and
MY = | flzodA (8.42)
Ao
M) =— [ flridA (8.43)
Ao
MO = / (— o+ f20x1> dA (8.44)
Ao

where the moments have been computed with respect to the centers
of gravity for A; and Ay, respectively. See figure 8.3.

~

0

Figure 8.3: Equilibrated components of force and couple resultants
acting on the ends of the beam.

As already mentioned, the readers should be aware that in many

actual problems we shall know just the components of resultants F’

and M rather than the actual distribution of surface forces f, so,
usually, we will solve an inverse problem. To this end in the following
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we want to find how the resultant forces are transmitted inside the
beam.

From the end z3 = [, towards the opposite basis x3 = 0, the
external actions propagate in such a way that, for any cross—section
taken at the distance x3 from the origin of the coordinate system,
the components of resultant forces and moments are, respectively

Nt (x3) = N (8.45)
T7F (zs) = T4 (8.46)
Ty (zs) = T (8.47)
and
M (w3) = My — Ty (1 — 3) (8.48)
My (x3) = My + 11 (I — 3) (8.49)
My (x3) = M; (8.50)

where the sign convention has been established by the following
rule: on the “positive side” of a generic cross section whenever the
forces orientation and the coordinate axes are concordant, then the
positive sign is assigned; concerning the components of the couples,
the positive sign is ascribed whenever the moments are concordant
with the following rotations: xo — x3, 3 — x1, 1 — Zo.

Here the reader will also realize that by virtue of the equilibrium
condition of the cylinder, taking into account the external actions
from the opposite side, here crudely named “negative side”, for the
same generic cross section considered above, the local equilibrium
condition must be assured. In this view, the sign convention as-
sumed when the “negative side” of a generic cross section is taken
into account, is: the external forces have positive sign if they are
discordant with the coordinate axes and, concerning the moments,
they will be assumed with a positive sign if they induce the follow-
ing rotations: xg — x2, 1 — x3, £3 — x1. In the light of this sign
convention, we notice that equations (8.45) to (8.50) can be equiva-
lently written, for the same generic cross section at x3, considering
the external actions on the “negative part”, that means

N~ (.%'3) = N
Ty (x3) =1°
Ty (z3) = T20



152 SAINT-VENANT'S PROBLEM

and
M (z3) = M{) +T20x3
My (w3) = M3 — T3
My (3) = MJ
Naturally, for each cross section the external actions on the

right-hand side (“positive part”) must equal those on the left-hand
side (“negative part”)3, indeed we can write

N~ (z3) = N* (x3)
Ty (w3) = T7 (3)
Ty (x3) =Ty (x3)

and
My (x3) = My (23) = MY + T9x5 = M{ — T3 (I — x3)
My (x3) = My (w3) = M3 — T{xy = My + T} (1 — x3)

My (w3) = My (23) = M3 = M}

When z3 = 0 the first set of the above equations remains unal-
tered, while the second, i.e. the bending forces, becomes

M (0) = M (0) = MY = M — T

My (0) = My (0) = M3 = NM; +Tjl
M; (0) = M (0) = Mg = M;
In order to pass from M, (0) to MZO the signs must be corrected

in accordance with the global sign convention, that is

~

N’=—-N"(0)=—N'
10 = 17 (0) = ~1
)

and

3For this reason hereafter we will omit the primes (-)* or (-)”.
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Now, imagine to cut the beam at the cross section located at zs.
The set of forces {T7,Ts, N, My, Ma, M3} can be seen as external
forces, thus, for this section - that is assumed being seen from the
right-hand side - the well known boundary condition o;; = fl holds.
This justifies the following expressions

T, = / og1d A (8.51)

A
TQZ/ O‘32d.A (852)

A
N = / o5 A (8.53)

A

and

Mlz/ 0'331’2d./4 (854)

A
MQZ —/ (T33.Q?1dA (8.55)

A
My = [ (omra+ o) dA (8.56)

A

8.2 Four fundamental cases

Now we are ready to present the four fundamental cases that,
by virtue of the superposition principle, allow us to entirely solve
the problem of elastic beams. They are

e Extension of a beam by axial force applied at the ends.

e Bending of a beam by couples whose moments lie in the plane
of its bases.

e Torsion of a beam by a couples whose moment is normal to
its basis.

e Flexure of a beam by transverse forces applied at one end of
the cylinder, while on the other end it is acting an opposite
transverse force and a couple in such a way the equilibrium
condition is fulfilled.
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8.3 Beam under axial force

8.3.1 State of stress

Consider the basis x3 = [, and assume that the N is the only
nonzero external force

N #£0 (8.57)
TV =T = Ml = Mb = ML =0 (8.58)

therefore, in accordance with equations (8.45) to (8.50), for a generic
cross section at xs, the external forces are

N = N! (8.59)
Ty =Ty=M =My=M;=0 (8.60)

Making use of equations (8.51) to (8.53) and the boundary equa-
tions (8.14) to (8.16), the surface forces are

fa#0 (8.61)
fi=fa=0 (8.62)

So, considering expression (8.32) for the normal stress we can
write

N:/ (a4 bay + cos — (d+ e + foo)23)dA  (8.63)
A

and recalling equation (8.9), where o3; = f1 = 0 and o3y = fo = 0,
the above equation turns into

N = /A (a+ bz + cxe) dA = (8.64)
:a/ dA+b/ a:ldA+c/ xodA (8.65)
A A A
=0 =0
so we have proved that
o= % (8.66)

Equations (8.39), (8.40), through condition (8.58), represent a
linear system whose solution yields

b=c=0
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hence, the expression of the normal stress is finally

033 — % (867)

and the stress tensor assumes the following form

0 0 0
Uij: 0 0 0
0 0 N/A

8.3.2 State of strain

The deformation of a beam under an axial force results directly
from the constitutive laws (8.17) to (8.22), so that

— ﬁ (8.68)
€11 = I/EA .
N
E99 = —VEiA (869)
N
£33 — Ei_/l (870)
and the strain tensor is
—vN/EA 0 0
Eij = 0 —I/N/E.A 0
0 0 N/EA

8.3.3 Displacement field

In order to compute the displacement field u; = u; (z;) of the
cylindrical body we have to solve the system of differential equations
obtained from compatibility relationships. Hence, the equations are

N

ull = €11 = Vg upg+ug; = 2612 = 0

Ugo = €22 = —I/fé\; and U3+ U3l = 2¢13 = 0
N

uz3 = €33 = g4 uz3t+ug2 = 223 = 0

The integration of the first group of equations gives

T— —V%xl + a(x2,x3)
up = —vigre+ B(x1,x3)
uz = pgrs+y (w1, 72)
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where «, 3,7 are unknown functions. Replacing the above expres-
sions in the second group of differential equations, and assuming
inhibited any rigid body motion, some calculations drive us to write
the following solution

N
ulp = —Vﬂml (871)
N
ug = 7VE7A:B2 (872)
N

Through the above results we are able to know the strained
shape of a beam subjected to an axial force. Let p be a point inside
the beam, so that p = (z1, z2,3), we notice that the displacement
ug of p does not depend on the position of p in the cross section area,
so we have constant displacements along x3—axis for each cross sec-
tion. Let p’ = (o, 4, 2%) be the position of p after the deformation,
so that

Ty =z +w (8.74)
xh = 9 + U (8.75)
T = x3 + U3 (8.76)

we can define unit azial strain as

(us + dusz) — us N
=83 = 7oy
diL'3 E.A

(8.77)

that integrated along the entire length of the beam gives the axial
elongation

Al = /833d.’L‘3 = Eggl (8.78)
l

To the elongation Al corresponds a cross—section contraction p
that can be measured by the vector sum of u; and us as follows

p = uiel + ugeéy (879)

The magnitude of p is

N
p=vVu?+u? = 27\/ 12 + 292 (8.80)
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Figure 8.4: Strained state of a beam subjected to an axial force.

Equation (8.80) shows that the displacement of a point p € A
depends solely on its distance from the center of gravity of A. We
say also that each point p moves towards G along radial direction.
In fact, by considering a polar coordinate system {r,9} with the
origin in the centroid G, the related basis is obtained by making
use of the well known transformations, see page 20 in chapter 1,

= 8$1 _ 8%2
= e

Oy = 5 + 5, €2 =sin ¥eé1 + cos ¥éq (8.81)
~ ox ox . ae
Oy = 3719161 + a—;ég = rcosde; — rsindeéy (8.82)

hence, to ensure the radial direction, it is enough to prove that
09 - p = 0. Indeed we have

_ N
0V - p = uysint — ug cos v = 9 cos 1927 (—2 + tanz?) (8.83)

but since it is also known that z1/z2 = tand, (8.83) always van-
ishes. See figure 8.5.
8.3.4 Strain energy

By virtue of Clapeyron’s theorem, see equation (6.15) on page
114, the strain energy is

1, 1 1 N2
or, in the same way, by using the PLV, we have
1 1 N N 1 N2
b= dy == ——drs = - — 8.85
2/\,033533]) oA AEA™ T 3 EA (8.85)
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4

Figure 8.5: Strained state of a beam subjected to an axial force:
radial contraction.

8.4 Beam under terminal couples

8.4.1 Introductive sketch

Before going ahead it is useful to consider an idealized model of
beam made up of long filaments parallel to the axis of the cylinder.
By virtue of Saint Venant’s hypotheses we know that the stresses
are zero on the lateral surfaces, in the direction perpendicular to
filaments’ length, and act only on the ends of the filaments.

Let us consider now a beam subjected to a pair of equilibrated
couples at the ends. See figure 8.6. Because of the couples, the lower
longitudinal filaments, those towards the center of curvature, will be
contracted and the extrados, the upper portion of filaments, will be
extended. We shall assume that the central line, i.e. the line passing
through the centroid of all cross sections, is unaltered in length and
the cross sections lie always in a plane normal to the cental line.

Figure 8.6: Beam under terminal couples.

The upper longitudinal filaments, initially parallel to the x3-
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axis, under the effects of the couples, at a distance f from the
central line, turn from dsg into ds

ds = (R+ f)dv (8.86)

where R is the radius of curvature of the central line. Now we are
interested in evaluating the elongation of a generic material fibre,
so we define the extension e as

ds—dsg (R+ f)dy—RdYy f
“T s RdJ R (8.87)
This linear elongation may be thought to be produced by a
longitudinal stress o33 which in accordance with equation (8.19) is

given by

- g f (8.88)

These intuitive considerations allow us to understand that the
normal stress produced by the flexure of a beam is not constant
along the cross section and is proportional to the distance from the
central line.

8.4.2 State of stress

In this case we assume that the external forces acting at the
end of a beam are couples whose moments lie in the plane of the
cylinder. So that

ML #£0, M #0 (8.89)
N =Tl=T,=M =0 (8.90)

therefore, in accordance with equations (8.45) to (8.50), for a generic
cross section located at x3 the external forces propagate as follows

M; = M} (8.91)
My = M} (8.92)
N=T1=Ty=M;=0 (8.93)

The boundary conditions (8.14), (8.15), (8.16) on page 146 in
this case are

fs#0 (8.94)
fi=f=0 (8.95)
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Hence, we can write

/ o33dA =0 (8.96)
A
M1 = / 033x2d¢4 (8.97)
A
M2 = —/ O'331’1d.A (898)
A
which become
/ (a+ bxy + cx2)dA =0 (8.99)
A
M, = / (a+ bxy + cxoxs)dA (8.100)
A
My = —/ (a + bxq + Cl’g) r1dA (8.101)
A

By integrating equation (8.99) we find a = 0, therefore equations
(8.100) and (8.101) become

M, = / brixadA +/ cxy’d A (8.102)
A A
My = —/ bx12dA+/ crox1dA (8.103)
A A
that can be written in matrix form as follows
J12 J1 b o Ml
JQ Jlg C o —Mg

In order to simplify the solution of the above linear system, we
may rewrite the system with respect to the axes of inertia (£, 7), so

it becomes
0 Je b\ M
Jy 0 c) \—M,

that resolved for b, ¢, gives
c=—* (8.104)

[ — (8.105)
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and finally, the stress induced by the couples is

033 = M §—|— %77 (8106)
Je
By means of equation (8.106) we are able to find the line of zero
stress below of which all the fibers are in tension and above of which
they are in compression. This line is termed neutral azis. We shall
denote it by n — n. See figure 8.7. In the (£, n)—plane, the equation
of the neutral axis is provided as follows

M, M
033——7§+T7]—0:> (8107)
£
M 123
-7 < ) ¢ (8.108)

where we have set Je = péA and J, = pnA4 Now if v is the angle
between the axes ({,n — n), we can put

M 2
tany = ~-1 (pf> (8.109)

Pn
which, if tand = M,, /M, see figure 8.7, becomes

S

Figure 8.7: Projection of the couples and rotation axis.

tany _ (’)5)2 (8.110)

tan d P

*Note that pe and p, are the radius of gyration taken along 7 and & respec-
tively. They satisfy the equation &2/p2 + n*/pg = 1.
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Furthermore, let w be the angle between the axes (£,s —s), see
figure 8.7 on the preceding page, we notice that § + 6 = w so we
can write -

cotw = cot <§+(5> = —tand (8.111)

while equation (8.110) becomes
e\ 2
tanytanw = — (£> (8.112)
Pn

The latter equation allows us to find the neutral axis given any
bending pair M; and Ms. In fact, we can summarize the procedure
to find the neutral axis in the following items

- find the axis s — s, orthogonal to the bending vector M =
Miey + Maés;

- find the principal axes of inertia, i.e. rotate the system {x1, z2}
into {&,n} and compute the radii of gyration;

w is now known;

- 7, i.e. the position of the neutral axis, can be computed by
equation (8.112).

The axis (f — f) orthogonal to the neutral axis n — n is called
flexural axis and the angle it forms with the axis s — s gives a
measure of the bending deviation.

8.4.3 State of strain

The state of strain results directly from constitutive laws (8.17)
to (8.22). Hence, chosen the system of principal axes (£, 7, z3), with
respect to the origin G, we can write

14
Eee = —5033 (8.113)
ey = —%033 (8.114)
g
£33 = % (8.115)

A simpler solution is obtained by introducing a new coordinate
system {z,y, z} where, as showed on figure 8.8, x is the neutral axis,
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y is the flexural axis, and z = x3. The advantage of this coordinate
system is that the normal stress can be written as

Ouz = MY (8.116)

and the constant m is readily computed by

M, = / 0.,ydA = m/ y2dA = mJ, (8.117)
A A
hence
M (8.118)
m = 7 .

Finally, equation (8.106) assumes the following monomial ex-
pression

Orp = =Ly (8.119)

Figure 8.8: Neutral axis and flexural axis.

Equation (8.119) is also known as Navier formula. See also [9]
and [11] for a proof based on geometric considerations.
The state of strain associated with the following state of stress

00 0
045 = 0 0 0 (8.120)
0 0 (Mz/Jz)y

assumes the form

—VKY 0 0
Eij = 0 —vky 0 (8.121)
0 0 KY
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where
M,

EJ,
x has an important geometric interpretation which will be discussed
in the next paragraph.
Now, recalling equations (2.78) and (2.79) on page 49, it is pos-
sible to prove that

R

(8.122)

AA= / (6o + £4y) A = —20% / ylA=0  (8.123)
A A

(AR
=0

AV—/(sm—l—ayy—i—azz)dV—/dz//<;y(1—2y)dA
\% l A

(1-2v) z/ ydA =0 (8.124)
A

=0

So we notice that throughout the deformation the initial volume
and the area of every cross—section is unaltered.

8.4.4 Displacement field

As the foregoing case, the field of displacement @ can be found
by integrating the system of differential equations (2.70) on page
48. Let us rename the displacement components with respect to the
{z,y, z} coordinate system, as u; = u, ug = v, ug = w. Hence, the
compatibility equations are

Uy = Ezg = —VAKY Uy +Vz = 26y = 0
Vy = Eyy = —UVKY and U, +W; = 26, = 0
W, = € = KY Vytwy = 26, = 0

By integrating the first group of the above differential equations
we find

u = —viyr+al(y,z)
v o= —w@%—l—ﬁ(x,z,)
w o= Kkyz+vy(r,y,)

that replaced into the second group of differential equations yield

—I/Rx—i—a(y,z)’y—i—ﬂ(x,z)’x =0
a(y,z), +v(z,y), =0
B(z,z) ,+Kz+v(2,y), =0
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The first of the above equations can be derived with respect to
y and then to x; the second with respect to z and then to x; finally
the third with respect to z, then to y. So we obtain

a(y,z),,=0 (8.125)
—vk+ 3 (2,2) 4, =0 (8.126)
a(y,z),, =0 (8.127)

Y (1) = 0 (5.128)
B(z,2),, +k= (8.129)

Y (2, y)y, =0 (8.130)

where equations (8.125) and (8.127) yield
a(y,z)=A+Ay+ A"2+ A"yz (8.131)

equations (8.126) and (8.129) yield

2 2

B(z,z) = Vﬁ% — /{% +B+Bx+ B2+ B"xz (8.132)

while equations (8.128) and (8.130) yield
v(z,y) = C+C'z+C"y+C"xy (8.133)

where A, A", A", A", B,B',B",B",C,C’,C",C" are unknown con-
stants.

Equations (8.131), (8.132), (8.133) can be replaced into the sec-
ond group of the initial differential equations to obtain the following
System

A/ _|_ B/ + (AI// + B///) z — 0
A// + Cl + (A/// + C///) y — 0
C// + B// + (B/// + C///) r = 0

from which we can derive the solution

Al _|_ Bl — 0 A/l/ +B”/, — O
A// + Cl — O and A/// + C/// — O
Cr/l + B// — O Bl/l “F Cl/l — O

where the left-hand group imposes the conditions that A’ = —B’,
A" = —C" and C” = —B”, while the right-hand group assures that
A/// — B// — C/// — O
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In the light of the latter results and making use of the boundary
conditions which inhibit any rigid body motion, see equations (8.1)
and (8.3), we finally obtain the components of the displacement
field related to a beam under terminal couples

U = —VKYx (8.134)
v = —g (v (y* — 2°) + 2°) (8.135)
w = KYz (8.136)

Equations (8.134), (8.135) and (8.136) show that the filaments
lying in the neutral plane, i.e. y = 0, do not suffer any extension.
The longitudinal material fibres on the side of y > 0 are extended,
whereas the filaments on the side y < 0 are contracted.

Now we are able to know the strained shape of the beam. Let
p and p’ be the positions of a point within the beam before and
after the deformation, respectively. Hence, the coordinates of such
positions are p = (21,2, x3) and p’ = (2, z, z%). By virtue of the
above displacement field, we can relate the initial coordinate to the
strained one as follows

¥ =z+4+u=2x—vKry (8.137)
K

y/=y+v:y—§(z2—y(ﬂs2—y2)) (8.138)

2 =z4+w=2z+ryz (8.139)

Focusing on the central line x = y = 0 the above equations
become

=0 (8.140)
y = —gzz (8.141)
2=z (8.142)

where we notice that the points on the central line, after the defor-
mation, go into the points

y = Ly (8.143)

that describes a parabola whose radius of curvature is given by the
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following formula

1 a?y’
g dz’2
= e (8.144)
(&)
which can be approximated by
1 d2y/
-~ | 14
7Y (8.145)
. du’\ 2
assuming <(TZ/> to be small.
Thus, equation (8.145) leads us to write
1 | My |
— =kl = 8.146
== (8.146)

where the constant EJ, is termed modulus of flexural rigidity.
Points belonging to the central line, i.e. x = y = 0, are subjected
to the following displacements

w=0 (8.147)
v= —gz2 (8.148)
w=0 (8.149)

where in this case v is called the elastic curve (or deflection line)
and describes the plane curve, i.e. a parabola, that the center line
assumes when the beam is subjected to pure bending.

8.4.5 Strain energy

We have three equivalent tools to compute the strain energy.

Work done by the external forces. By virtue of the Clapey-
ron’s theorem, see equation (6.15) on page 114, the strain
energy is

1.~
o= §Mfc<pfc (8.150)
where Mi is the only external force and ¢!, is the rotation in

the (y, z)-plane at the point of application of the couple, i.e.
at the end z = [, with x = y = 0. See figure 8.6 on page 158.
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The rotation ¢! is the first derivative of the displacement v
and the sign is assumed through the right-hand rule, so that

~

M
l T
= v, =kl= l 151
P v, |l oY EJ, (8 5 )
hence,
¢ = 1< l> ; (8.152)
2 EJ, '

As figure 8.6 shows, both M:f: and ¢, are negative with respect
to the Cartesian axes.

Work done by the internal stresses. By recalling the equation
6.5 on chapter 6, we can set

1
o — / oijeijdV (8.153)
2Jy

that in the current application becomes
M M. \? ,
yry = — | ydA
A\ Sz

M, 2, M2l
— 154
2E<Jx>/A dA = 2E.J, (8.154)

where we have just used the tensors (8.120) and (8.121).

Work done by the internal forces. Note that here the sign con-
vention is taken in accordance with that assumed in section
8.1.1, so we have for a generic cross section

d® = M, () dp, = M, (2) kdz (8.155)

hence, by integrating along the entire beam we find the fol-
lowing expression

1 /! 1 M2]
= - M, dz = z 8.156
: /0 (2) iz = 5 2 (8.156)

that due to the well known relation for forces transmitted
along the beam, it is nothing but equation (8.152).
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In equation (8.155) we just used the relationship between the
curvature and the rotation of the section, in fact

dyy
dz

that stems form

_dv(z)
Pz = dz

|z=y=0 = K2

8.5 Beam under torsional couples

8.5.1 Circular bar

To capture the basic ideas on the torsional problem let us start
from the simple case of a circular bar with one end fixed in the
plane (x1,x2). At the other end, i.e. 23 = [, suppose there to be
applied a torsional couple lying around the x3—axis.

Figure 8.9: Circular bar under torsional couples.

Under the hypothesis that all cross—sections parallel to the plane
(z1, x2) remain plane, we can intuitively assume that the magnitude
of the rotation in a generic section perpendicular to the zs—axis
depends proportionally solely on the distance from the fixed end,

see figure 8.9. Such as
¥ = ka3 (8.157)

where k is the twist rotation per unit of length, i.e. the relative an-
gular displacement of a pair of cross—sections that are unit distance
apart.

Consider now a generic cross—section, as figure 8.10 shows.

The hypothesis of plane sections means that us (p) =0 Vp of
the bar, moreover the circular shape ensures that a generic point
p lying on a cross-section can just rotate keeping unaltered the
distance r from the origin.
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Figure 8.10: Rotation of a point p lying on a generic cross—section
of the circular beam.

Hence, with respect to figure 8.10, we can write

uy = — (reosff —rcos (9 + 3)) (8.158)
ug =rsin(f+19Y) —rsinf (8.159)

that by means of equation (8.157) and considering that

x1 =rcos 3 (8.160)
x9 =7rsinf (8.161)

becomes

uy =rcos(kxs+ 0) —x1 =

= r (cos kxg cos f — sinkxssin ) — 1 (8.162)
ug = rsin (8 + kxg) — xo
= r (sinkxg cos § + cos kxzsin ) — zo (8.163)

Next, under the assumption that 9 is small such that

sin kxg ~ kxs

coskrs ~1
we finally get the expressions of the displacements

uy = —]6563.7}2 (8.164)
ug = kxgr (8.165)

Now, making use of compatibility and constitutive equations
governing the linear static problem, see section 4.2, we can obtain
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the strain and the stress tensors as follows
0 0 —kxo

1
5ij = 5 0 0 kxl (8.166)
—kxo kxp 0
E 0 0 —kxo
0ij = 574 1 .~ 0 kxl (8.167)
2049\ _ppy ka0

In order to verify whether the state of stress stemming from
the assumption on the displacement field is consistent with the hy-
potheses on which the Saint Venant’s model is founded, we want
to be sure that on the lateral surface the external forces vanish. To
verify this consider the unit normal vector n = cos e + sin Féo,
and hence the stress state is

1
03111 + 039M9 = _ik (xgcosf—xysinf) =0 (8.168)
=0

The above is the proof the solution is right.
On the other hand, the boundary condition at xg = [, where
n = es, requires that )
043N3 = fj (8.169)

thus, f3 = 0 and by virtue of equations (8.39) and (8.40), the only
non vanishing component which produces the above state of stress
is

M3 = / (foEl — fla:g) dA = / (02371 — 01372) dA
A A

_ KE [ o a4 KE
= 2<1+V)[4($1+x2) dA = 2(1+V>Jo—kzujo (8.170)

where p = ﬁ, see table 4.1 on page 95, and J, is the polar
moment of inertia for a circular cross—section.

Usually in practical applications the problem presents an inverse
formulation, namely, the unknown is the state of the stress and the
given datum is the external couple Ms, so we can easily derive

E M M;

———— Ty =——=x 8.171
ST Y R (8.171)

E M M;

—— 1 = —7 8.172
2(0+v)pdo ' o (8.172)

013 = —

023 = —
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8.5.2 Cylindrical bar

The hypothesis of plane cross—sections, i.e. us(x1,22) = 0 is
solely allowed for circular cylinder. It can be proved, in fact, that a
generic—shaped cross—section under a torsional couple warps. This
can be seen, for example, looking at equation (8.168) which would
not be satisfied if the unit normal vector were not given with respect
to a circular cylinder.

Therefore, to remove the plane sections hypothesis we shall as-
sume the following displacement field

w1 = —kx3To (8.173)
uy = kr3ry (8.174)
us = ko (x1,x2) (8.175)

where ¢ is an unknown function that must be determined in order
to satisfy all the required conditions.
The strain and stress tensors become

1 0 0 Y1 — T2
S 0 0 ¢ota (8.176)
2 b
PY1— T2 P2+T] 0
0 0 Y1 — T2
o1 = kp 0 0 ot (8.177)

PY1—x2 P2+T1 0

The equilibrium condition on V leads to

0133 =10 (8.178)
0233=10 (8.179)
o311+ 0322 =0 (8.180)
hence
013 = 013 (71, 72) (8.181)
093 = 093 (21, T2) (8.182)
p11+e2r=0 (8.183)

Moreover, the boundary condition on the lateral surface imposes

o31n1 + o32ng =0 (8.184)
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and considering the tensor in (8.177), the above condition becomes

@in1 — Tan1 + @ong +x1ne =0 = (8.185)
V- n=xon —x1n9 (8.186)

So, let A and 0.A be the cross—section of the beam and its bound-
ary, respectively, the torsional problem of a cylindrical beam can be
stated as follows

{ Vip=0 Vpe A

Vo -n=uxzon1 —x1n2 VpeIA (8.187)

where the first equation stems from (8.183) and the boundary con-
dition is provided by (8.186)5.

The function ¢ = ¢ (21, x2) is named the torsion function.

The problem (8.187) is known as Neumann’s problem and con-
sists in determining a function which is harmonic in a given region
and whose normal derivative is prescribed on the boundary of the
region.

Here we will not give the entire analytical solution for Neu-
mann’s problem, but we shall just give some general statements.
The whole problem is solved in [1].

Stress function

Since ¢ (z1,22) is harmonic on A it is possible to construct
the analytic function ¢ + 2 of complex variable x; + ix2, where
¥ (x1,x2) is the conjugate harmonic function linked to ¢ (x1,x2)
through the following Cauchy—Riemann equations

p1="12 (8.188)
p2=—Y1 (8.189)

The theoretical background of the above statements is beyond
the scope of this book, anyhow the reader can find a comprehensive
formulation of the torsion problem in [1], [2] and [6].

®Note that V¢ is the gradient of the scalar field ¢ and the scalar product
with the unit vector n gives its normal derivative as follows
op

_ Oy
%7Vgp-nfgrad<p-nf p

€ "N = ;N



174 SAINT-VENANT'S PROBLEM

Suppose that the boundary of the cross—section A is described
by a curve ¢ : IR — IR? such as s — (x1 (s),22(s)). We can find
the tangent vector ¢ to the curve as ¢t = &;¢;, where &; = % and
i = 1,2. Hence, the conditions n-n =1 and n -t = 0 allow us to

compute the component of n as

T2

n = ———— 8.190
' (8.190)
g = — ——ot (8.191)

Vi + i3
Replacing the above expressions into the second equation of

(8.187) and by expanding the gradient of the torsion function we
have

(P81 + pofa) - 1L = Ty \/:% + 21 \/IL‘%L‘:-W (8.192)
that is
p1n1 + @ ong = T2 ,$2 — + 21 'xl — =
i+ i3 Vi3 + @3
(,0’13'32 — (,D’Q.’il = Tod9 + X117 (8193)

and now, making use of equations (8.188) and (8.189), the latter
becomes

Yoo + P 1&1 = Todg + T141 (8.194)
then p 1d
T (@m0) = 5o (a1 + 23) (8.195)
so that we finally obtain the expression of the function ¢ as
1
Y (x1,x9) = 3 (ZC% + x%) + const. (8.196)

The arbitrary integration constant does not affect the final so-
lution in terms of stresses and deformations, in fact two different
constants will lead to two solutions which differ from one another
only by a rigid motion.

Moreover, from Cauchy-Riemann equations (8.188) and (8.189)
it follows

VY22 = @12 (8.197)
Y11= —p21 (8.198)
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and by summing member by member it becomes
V2 =0 (8.199)

Hence, Neumann’s problem (8.187) turns into the following Dirich-
let’s problem

V3 (z1,22) =0 Vpe A
{ Y (1'17-1'2) = % (.Z‘% + x%) VpedA (8.200)

The function ¢ = v (z1, z2) is named the stress function.
Suppose we are able to solve the problem (8.200). The stress
tensor then becomes

0 0 Vo — T2
oij = ku 0 0 -1+ T (8.201)
Yo —wx2 —Y1+11 0

thus, by virtue of equations (8.50), (8.56) and (8.41) and by con-
sidering the boundary conditions (8.14) and (8.15), we can set

M = k‘#/A (—(@Wa2—z2)m2+ (Y1 +21)21)dA
= k:u/A (2% +23) — (Yaz1 + P 212)) dA

=ku (JO — /A (1/)71331 + Ib’gxg) d.A) (8.202)

that solved for the elastic constant gives

~

_ Mj3
(o~ J4 Wz + ¥ om2) dA)

Finally the state of stress in a generic cross section g, given an
external twisting action, is

k (8.203)

M.
031 = QJ?:, (Y2 — x2) (8.204)
Ms
= — — 8.205
032 ol (Y1 — 1) ( )

where we have defined

Jo — [ 4 (Waz1 + P oas) dA
‘= 7,

(8.206)
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8.5.3 State of strain

Making use of equation (4.25) and table 4.1 we can write the
strain tensor as follows

1 0 0 013

Eij = ﬁ 0 0 0923 =
o031 o032 0
0 0 (o — x2)
el \ (o —a2) — (1 —21) 0
0 0 (p1 — x2)
= 2é43j 0 0 (p2 + x1) (8.207)
@0\ (p1—m2) (pa+tm) 0

8.5.4 Displacement field

At the beginning of section 8.5.2 we already introduced the dis-
placement field associated to the torsion problem. However, we im-
plicitly assumed that the rotation axis for the point p € A is coin-
cident with the axis x3. It is possible to show that this restriction
does not affect the validity of the results in terms of stress.

Anyhow, if we repeated an integration procedure similar to that
we made to compute the displacement fields in the axial force and
pure bending cases, we would find that here the displacement field
assumes the following general form

up = —kxs (zg — x5) (8.208)
ug = kxs (x1 — z9) (8.209)
us = ke (1, x2) (8.210)

where ¢ = (2§, 25) is the point about which the rotation occurs and
©° is the torsion function relative to the rotation point c.

The state of stress consistent with the above displacement com-
ponents is

0 0 ¢4 — w2+ x5
51]25 0 0 @?2"’1'1—1‘?
09— @t ah G+ —af 0

(8.211)
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and consequently it becomes

0 0 5 — xo + a5
oij = Gk 0 0 (,0702 + 1 — 2§
O —xa a5 PhH+ T —x] 0
(8.212)

By using the above state of stress instead of that in (8.177) the
equilibrium equation (8.180) assures the following condition

V2 =0 (8.213)
Moreover, the boundary condition on the lateral surface implies
(0% —ma+25) n1+ (% + a1 —2f)ng =0 (8.214)
which can be also written as
(¢ 4+ 25) n1 + (% — 25) na = zany — 2102 (8.215)
which is equivalent to the following expression

(¢ + z5x1 — xfafg)’l ny + (4 x5z — xfxg)’Q N9y = TNl — T1N9
(8.216)
From the latter it is straightforward to realize that the new tor-
sion function ¢¢ = ¢°+x§x1 —r{r2 must satisfy the same condition
on JA that ¢ must satisfy. In addition to that, condition (8.213)
guarantees that the Laplacian of ¢ vanishes. Thus, Neumann’s
problem assumes the following form

{ V2p¢=0 VpeAd

V@ -n=xon; —axine VpeIA (8.217)

Due to the uniqueness of Neumann’s problem the two torsion
functions ¢ and ¢° can only differ each other by a constat value, so
that

=+t (8.218)

from which
¢ =p—a5r +x{re +1t (8.219)

If we use the torsion function in (8.219) to compute the state of
strain in (8.211), we will immediately find that the state of strain
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remains unaltered compared to that obtained by using the torsion
function ¢. That means that the kinematics related to ¢ and ¢
only differ one another by a rigid body motion which does not alter
the results in term of stress.

By virtue of these remarks we can state that the hypothesis of
assuming the torsional axis coincident with x3-axis was reasonable
and acceptable.

As the last point of this section we want to find the position of
the point ¢ called the center of twist obtained by the intersection
of the azis of twist, that is the axis parallel to the generators of a
cylinder undergoing torsion - located so that the displacement of
any point on the axis is not affected by any rotation, and a generic
cross section.

From equations (8.208) to (8.210) it is possible to put zero the
mean value of the displacement u3 and the mean value of the rota-
tions of a given point p € A by putting

/ ¢ (1, 22)dA =0 (8.220)
A
/ ¢ (71, 2) 12d A =0 (8.221)
A
/ 0 (x1,22) 11dA =0 (8.222)
A
which, making use of equation (8.219), give
t=20 (8.223)
/ o (x1,22) vodA+ 27y =0 (8.224)
A
/ ¢ (z1,22) 1dA — 25J, =0 (8.225)
A
and finally
1
xf = —/ ¢ (x1,22) v2dA (8.226)
Jr Ja
1
x5 = / o (x1,m2) 21dA (8.227)
Ty Ja

8.5.5 Strain energy

We can equivalently use three tools to compute the strain energy
associated to a beam undergoing torsion:
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Work done by the external forces. By virtue of the Clapey-
ron’s theorem, see equation (6.15) on page 114, the strain

energy is
1.~
P = §M3{19’ (8.228)
where Mé is the only external force and 1 is the rotation in
the (z1,z2)-plane at the point of application of the torque,

i.e. at the end x3 = 1[.

As already stated, the twist rotation 6 per unit length is given
in accordance with equation (8.157) as follows

9

9:7_
d:L’3

k (8.229)

thus, the whole twist rotation all along the beam is readily
given by the integral

Ml M
9 = [ 9dxs = 3 dpg = —5-] 8.230
/l B ) Geds ™ T Go, (8.230)
and finally

~ 2

1ML
== 8.231
2God, ( )

Work done by the internal stresses. By recalling equation 6.5
on chapter 6, we can set

1
(I):/Uij&“ijdv (8.232)
2y

which in this specific case becomes

1

o = 2/ (0’31531 + 0'32532) dA =
v

1

M3 2 2
= W/V <(90,1 —2)" + (02 + 1) )dV =
M2l

T 2G2 2 /A (¥4 — paw2 + 9% + por) dA+ 0J,
(8.233)
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The above integral can be rewritten taking into account the
following identities

90,21 —paze =(p(p1 — 3?2)),1 — PPl (8.234)
0 + 9ot = (p (P2 +21)) , — Pp22 (8.235)
hence
/A (90,21 —par2 + 90,22 + pox1) dA = (8.236)
/A ((so (1 —22)) +(p(p2+ ml))z) dA+
- / ©V%pd A (8.237)
A

Now we can realize that the last integral contains the first
condition of Neumann’s problem so that on the domain A it
vanishes. Moreover, by using the divergence theorem for the
first integral at the second member we obtain

/,4 (0% — pam2 + % + pow) dA = (8.238)
/(M (e (o1 —x2))n1 + (p(p2+21))n2)ds = (8.239)
/ © (Vo -n—x12n; + x1n2) ds (8.240)

0A

The latter integral includes the boundary condition of Neu-
mann’s problem that is identically zero.

Finally we have proved that

/ (0% — paz2 + @5+ @ox1) dA=0 (8.241)
A
and so the strain energy can be expressed as follows
M2l
= ——=—=0J 8.242
2G o2z (8.242)
where since M3 = M3 we obtain
M3l
= 8.243
2GoJ, ( )

that is the same result we found through the previous method.
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Work done by the internal forces. Note that here the sign con-
vention is taken in accordance with that assumed in section
8.1.1, so for a generic cross section we have

1

d® = - Mydf (8.244)

and, by integrating along the entire beam, we obtain

1 M2

— 24
2God, (8:245)

1
(I):/Mged.fg:
21

8.5.6 Torsion of tubular beams: Bredt’s theory

To solve the problem of tubular beams under torsional couples
we can make use of an approximate theory that requires just the
equilibrium equations. Consider a generic domain A and a closed
curve ¢ within that domain. See figure 8.11.

Figure 8.11: The sub-domain A, bounded by the curve c.

Let 7 be the tangential stress vector lying in the domain A so
that
T = 03161 + 03262 (8.246)

The equilibrium condition (8.9) leads to the following alterna-
tive expression
=0 i=1,2 (8.247)

that is nothing more than div7 = 0.
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Now let A, C A be the area included by the curve ¢, invoking
the divergence theorem (1.143), we have

/ div?dAC:/(i'-ﬁ)dc:O i=1,2 (8.248)
Ac c

Equation (8.248) proves that given a generic region A, the stress
flux through its boundary ¢ always vanishes.
Consider now two curves ¢y and ¢ as shown in figure 8.12.

Figure 8.12: Stress flux within a small region included by two closed
curves and two generic transversal sections.

Due to the result in (8.248), no stress flux passes through the
arches a — c and b — d, so for the closed area abcd the flux balance
is given as follows

_/Sa

- / Tap (5) ds + / Tea (5) ds =0 (8.249)

Sab Sed

7_"7?abd8+/ Totegds =0 =
b Sed

where ¢ is the unit vector normal to the transversal sections a — b
and ¢ — d, respectively, while su; and sp. are the the lengths of the
transverse sections, i.e. the thickness of the tubular section.
Assuming that s is sufficiently thin, we can consider the average
value 7™ instead of 7 = 7 (s), so the above integral can turn into

ngSab = Tgilscd (8250)
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where
Tah = L5 s (8.251)
Sab Jsgy
Finally, since the sections s, and sp. have been arbitrarily cho-
sen along the all tubular section, equation (8.250) provides the fol-
lowing result

T"s = constant (8.252)

and moreover, if we suppose that the flux lines are parallel to the
midline ¢, i.e 7 = |T| = 7™, we have that the tangential resultant
for unit length is given as follows

dF, = sdc (8.253)

Now suppose a generic equilibrium direction is fixed by the angle
« as showed in figure 8.13,

Figure 8.13: Stress resultants.

the resultant force acting on the cross—section has the following
expression

%75 cosadc =Ts y{cos ade =0 (8.254)

Accordingly, the in—plane rotational equilibrium is satisfied by
imposing

M; = j{ﬂsh (s)de = Tsfh (s)dc=271sA, (8.255)

where o is a generic point with respect to which we compute the
moments, A, is the area included by the midline c.
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Hence, the inverse problem is solved as follows

M3
T =
2s A,

8.6 Bending and shear

8.6.1 External forces

The external forces acting on the base z3 =1 are
Ti #0, T4#0
N = NIt = Nt = Ni = 0
hence, the equilibrium condition imposes
i = [ flaazo
A
Ti = / fldA #0
A
M:/ﬁmzo
A
so that
fi #0
f>#0
Aé 0

and the following condition has to be satisfied

Mé = /A (—f1$2 + fol) dA =0

(8.256)

(8.257)
(8.258)

(8.259)
(8.260)

(8.261)

(8.262)
(8.263)
(8.264)

(8.265)

On the other hand, the rigid body equilibrium requires that on

the base x3 = 0 the external forces acting are
7=, 1= 1
MO =Ty, N9 = Tl

N'=N'=0

M) =—-M,=0

8.266
8.267
8.268

(
(
(
(8.269

)
)
)
)
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Consequently the boundary conditions are

240 (8.270)
f2#0 (8.271)
f#0 (8.272)

8.6.2 State of normal stress

Let us start from a generic form of o33 as stated in equation
(8.32). The condition o33 = 0 at x3 = [ allows us to reduce the six
unknowns to three, in fact we have

0’33‘333:[ =a-+bry +cxy + (d +exr; + fx2>l =0 (8.273)
0'33’3;3:0 =a+bxry+cro = f?? (8.274)

and the following expression could be a solution
o33 = (o + Ba1 + yx2) (I — x3) (8.275)

where «, (3, v are the unknown constants.
To compute the above constants we shall impose the equilibrium
condition on the base x3 = 0, so we have

NO = _/ ragd A = —/ (a+ By +yas)ldA=0  (8.276)
A A

M{) = —/ o3322d A = —/ (a+ Bxy + ya2) lxed A = TQZl
A A
(8.277)

O = — / rasr1dA = — / (o + By + o) londA =~
A A
(8.278)

where we have made use of equation (8.275).
Equations (8.276), (8.277), (8.278) represent a linear system in
the unknowns «, (3, v, that is
alA = 0
B2 =ty = T} (8.279)
—BJy =12 = —T}
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In the same way as made for the pure flexure case we may write
the above system with respect to the axes of inertia (£,7), so it

becomes
0 —Jy v\ Té
Je 0 B ) —Tg

3
== 8.280
B 7e ( )
Tl
=_1 8.281
v 7, ( )

and accordingly the stress produced by the couples is

Té Té l 8.282
033 = — jn§+j§n (I —x3) (8.282)

Taking into account that the bending moment due to the exter-
nal forces T¢ and T;, propagates along the beam as

M¢ = T} (1 — x3) (8.283)
My =T} (1 — x3) (8.284)

then, the state of stress normal to a generic cross—section assumes
the following expression

M, M,
o33 =—1N——F¢ (8.285)
7",

where we want to remak that the above expression is similar to
equation (8.106), but here M, and M,, are not constant, they depend
on the cross—section position, i.e. x3.

A simpler solution is obtained by introducing the coordinate
system (x,y, z) where x is the neutral axis n — n, y is the flexural
axis f — f

y (8.286)

g = —_— —_—
33 Jac

y=- I
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Figure 8.14: Shear regions.

8.6.3 State of tangential stress: Jourawski’s theory

This section is devoted to an approximate shear theory widely
applied in practical cases, it is named Jourawski’s shear theory.

Consider a generic cross—section of the beam and suppose to
split the area A in two regions A; and As. See figure 8.14.

We call [ the line that divides the section and r the line normal
to I. So it is possible to define a local coordinate system assuming
{l,7} as Cartesian axes. Hence, [ and 7 form a two—dimensional basis
for the system. Let us consider now a three—dimensional portion of
the solid included by two surfaces normal to the z3 axis, at x3 and
x3 + dxs, respectively, and the plane ;. See figure 8.15.

Let 73 be the tangential stress vector lying in the domain 4; so
that

T = 031€1 + 032€2 (8.287)

The stress flux 73, passing through the line [ is given by the

scalar product 73-7, so that the equilibrium condition of the portion
V1 is

—/ 033dA1+/ (033+033,3)dA1—/ Tr3dl =0 (8.288)
Aq Ay

lab
then
/ 0'3373d.»41 :/ Trgdl (8289)
Al lab
By using the result in (8.286), the latter equation becomes
all
L ydA; = / Tr3dl (8.290)
J:C A lab
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Figure 8.15: Beam splitting.

Invoking the mean value theorem, we can set the mean stress
775 along the chord [, as follows

1 b
Ty = / Tr3dl (8.291)
lab a

hence we can state that

T,

Jy yd Ay = lgp7)5 =
x J A
T,S1
m o _ 8.292
7—7'3 leab ( )

where T} = Té is the shear force acting along the flexural axis; S,
is the static moment of the area A; with respect to the neutral axis;
Jz is the entire cross—section moment of inertia with respect to the
neutral axis; [y, is the length of the chord.

Equation (8.292) allows us to compute the mean value of the
shear stress acting in the # direction normal to a generic chord
which splits the section in two portions. Jourawski’s theory does not
depend on the chord position, it is just required that it separates
the cross—section in two parts. Moreover, the chord [,; can be a
polygonal line and in the case of tubular section it can cut the
section more than once.

The practical application of Jouwraski’s theory is allowed when
the chord length is sufficiently small, so under this condition we
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can approximate the mean stress with the actual one without loss
of accuracy
Trg ™ Tr3 (8.293)

Furthermore, equation (8.5) on page 145 ensures the no—stress
condition along the normal to the lateral surface of the cylinder. So
in points a and b, see figure 8.14, the stress 7.3 must be tangent
to the boundary lines of the cross—section. Considering the above
condition on the smallness of [, if the boundaries and the chord
are orthogonal we can write that 7 = 73,7, i.e. there are no other
components of the shear stress vector except the one along the r—
axis. More details will be given later on symmetrical sections.

As a concluding remark we want to show that the shear stress
73, does not depend on which portion of the section we choose. In
fact, if we consider the flux towards the area As we have

T (=T) = —T3 (8.294)
moreover, we know that
Siz + S22 = 0= S1z = =52 (8.295)

so the shear stress equals

Ty S2z
B Jxlab
T,S1.  TySs
Jxlab B J:clab

m o __
—Tr3 =

mo__
Tr3 =

(8.296)

8.6.4 Tangential stress for symmetrical cross—sections

Consider now a symmetrical cross—section under a shear force
passing along the axis of symmetry that coincides with the flexural
axis. See figure 8.16.

Suppose that the section width is sufficiently small to consider
valid Jourawski’s theory, then the shear stress along the chord I,
is given by the following expression

(8.297)

On the left side of figure 8.16 is showed the distribution of the
static moment related to the portion 4; computed with respect to
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a
o\ L]

d¢ MRS

Yy

Figure 8.16: Symmetrical cross—section.

the z—axis, namely

S1u () = /,4 yd A, = / " de (8.298)

Often in the practical application it is required to compute the
maximum shear stress, so it easy to observe that since

T3y = T3y (V) (8.299)

then the maximum value is found by imposing the following condi-
tion

T3y,y =0

which implies

l

_ 2 (8.300)

Sz\ _ 1dSi; Sz dl
’ 1 ody 2 dy

)

Moreover, equation (8.298) assures that dS1, = lydy, therefore
the latter equation becomes

Sy, dl
Iy— 22 8.301
YT 0y ( )
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that is )
Sz dl
= — — 8.302
Iy (8.302)
This result implies that along the x—axis, i.e. when y = 0, the
chord [ has either an extreme value or is constant and that is suffi-
cient to assure the condition expressed by equation (8.300). In fact

we have !
dy ) 1 ( )

therefore T g
_ TyPlz
(T3y)max - Jxl()

(8.304)

where [y denotes the length of the chord at y = 0.

Now we can split the moment of inertia into the sum J, = Ji,+
Jogz = Szh1 4+ Spho, where hy and ho are the distances between the
centers of area C7 and Cs of the two portions separated by means
of the chord [y and the center of the whole section G, respectively.
Hence, if h1 + ho = hg, we can write

Jz = Szho (8.305)

which leads us to write

(T3y) maxe = T3y (0) = —— (8.306)

A

T3y

Y+

Figure 8.17: Maximum shear stress for symmetrical cross—section.
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As showed in figure 8.17 the centers C; and Cs coincide with
the points of applications of the resultant forces produced by the
normal state of stress o33 = 033 (y).

As a concluding remark of this section we want to show that by
using the equilibrium equation in (8.9), which has not been used
yet, it is possible to know the distribution of the stress along the
x—axis. To this end let us write equation (8.9) with respect to the
neutral and symmetry axes, respectively

T3z, + T3yy + 0333 =0 (8.307)
and the derivative with respect of x allows us to write
T3z,z0 = 0 (8.308)

because equations (8.297) and (8.286) tell us that the first two terms
of equation (8.307) vanish, so that

T3y = ax + 3 (8.309)

where o and ( are two integration constants that must be found by
means of the boundary conditions. The stress boundary conditions
are known due to equation (8.5) that ensures the tangency condition
of the shear stress vector 73 to the boundary of the cross—section.
See figure 8.18.

It should also be noted, as made clear in figure 8.18, that for
any point on the chord [ the shear stress vector is always lying on
the line towards the point O that belongs to the symmetrical axis
and is determined by the intersection of two tangent lines passing
through a and b.

Hence it is very easy to prove that the shear stress component
along the neutral axis x is given by

——— T3y (8.310)
where we have imposed the conditions

l
T3z <;b> = —T3y tan o (8.311)

l
T3 (—5“’) = 73, tana (8.312)
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lub/2 - 1 1{1,1,/2

0

Figure 8.18: o3, distribution for symmetrical cross—sections.

Finally, for a generic point within a symmetric cross—section we
know the whole state of shear stress

_1yS

= (8.313)
2t
T3y = — ina'ri}y:ﬂ (8314)

where [ is a generic chord that splits the section.

8.6.5 State of strain

With the same approach followed for the state of stress, the
strained configuration of a beam under terminal forces, which pro-
duce shear and bending forces along the whole beam, will be in-
vestigated separately. Namely, by using the superposition principle,
the deformation concerning a generic cross—section will be obtained
as sum of the contribution due to the bending state of strain and
the contribution due to the shear state of strain.
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It must be observed that in this section we shall investigate
only the global strain of the cross—section assumed remaining plane,
instead of the local strain tensor ;;.

Bending strain

Likewise the pure bending case analyzed in section 8.4.3 for a
generic cross—section we have

r — K2 = 8.315
@ (

EJ,”

where @, is the rotation in the (y, z)-plane at the point of appli-
cation of the internal couple M, = —Té (I — z) that is the bending

moment produced by the external force Té The key difference with
respect to the pure bending case is that here the rotation ¢, is no
longer constant, but varies linearly with z.

sﬂz\

A 2N

Yy

Figure 8.19: Bending strain for an infinitesimal beam segment.

Let us define now the rotation per unit of length as follows

d@x M.Z‘ Ty (l - Z)
_ W _ - 31
T4z T EJ, EJ, (8.316)

Shear strain

The natural consequence of the shear state of stress discussed
before is the shearing strain that causes a sliding of the cross—
sections that, initially plane, become warped. See figure 8.20.

We shall focus our attention only on the sliding of the cross—
section in order do describe its global deformation. Furthermore,
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Figure 8.20: Shear strain for an infinitesimal beam segment.

we shall also show that the contribute of the sliding to the deflec-
tion line defined as v = v (2) |y=y—0 Wwill be sometimes neglected,
sometimes not, depending on the geometrical features of the cross—
section.

With respect to figure 8.20 we can set

dn = vdz (8.317)

where, chosen two cross—sections dz apart from each other, dn rep-
resents the strain due to the shear force. We can easily write the
shear strain energy® ®, as follows

1

o, = 2/ (2T2y€2y + 2To0€20) AV (8.318)
%

so that for a small beam’s portion dz, considering the constitutive
law, the above energy becomes

_dz

dd, = =
2G /4

(72, 4+ 72,) dA (8.319)

which, recalling equations (8.313) and (8.314), turns into

dz 9 4tan’a
dd, = Yel /ATZy (1 + —p ¢ ) dA (8.320)

The shear stress 7., depends only on y, so that the above integral

5Notice that the subscript s denotes the portion of the energy associated to
the shear force alone.
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can be rewritten as
dz [ /2 4tan? o
d@sz/ 72 dy/ <1+ :102> dr =
2G Jy, ! —l/2 &
dz /yl 9 K 4tan? o 3>]l/2
=— Tody ||+ x =
2G o Y 312 ~1)2

T2dz [ §2 tan? o
=Y =z (1 321
2GT2 /m z < T3 ) (8.321)

Finally, Clapeyron’s theorem allows us to equilibrate the strain
energy computed by means of the internal stresses with half of the
work done by the external forces

1
db, = Tydn (8.322)

so that equation (8.322) equals equation (8.321) as follows

1 T2dZ Y1 2 t 2
d@szzTydn:y/ Sf<1+ an a)dy:>

2GJ§ Yo l 3
T,dz (Y S? tan? v
dn=-“2=—= (1 d 8.323

and finally the relevant result is that the deflection of an infinites-
imal portion of beam due only to the shear force is given by the
following expression

_ X1y

dn = d .324
n="aq % (8.324)
where we have defined the shear factor x- as follows
A [ S? tan? a
= — =< (1 d 8.325
A (e (8.325

Equation (8.324) leads in the end to write the sliding angle v as

_dn _ xyTy

dz GA

(8.326)
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8.6.6 Total strain energy

Now we are able to compute the total strain energy for a beam
subjected to shear and bending forces. Keeping unaltered the hy-
potheses of symmetrical cross—section with respect to the y—axis as
symmetry line and x—axis as neutral axis, we can state that the
total strain energy is given by two terms

d =, + P, (8.327)

where @y, is the strain energy concerning the bending state of strain
and @, the energy related to the shear state of strain. See figures
8.21(a) and 8.21(b), respectively.

T,
S D)
Y

(a) Bending state of strain.

(b) Shear state of strain.

Figure 8.21: Two contributions to the state of strain for a beam
subjected to terminal forces.

Clapeyron’s theorem allows us to write easily both the contri-
butions as

1

@ = 5Ly (8.328)
1

q)s - *Tyns (8329)
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where the first contribution is easily obtained replacing the con-
stitutive relationship for the normal stress, see equation (8.19) on
page 147, and making use of equation (8.286) such as

1 o 1 [ T2(—2)?
Oy =5 | oprdV =5 %V =
b 2LU v 2L A

117 ) T
2EJ2/ dA/l—z - (8.330)
x
_Jz

To compute the shear strain energy we recall the expression
obtained in the preceding section, see equation (8.324), and we use
Clapeyron’s theorem

1 1 X+ Ty 1 x,121
@:%mzﬂ/my— m:fMy (8.331)
l

2 2 yGA 2 GA

In the end, the strain energy for the hnear elastic beam with a
symmetrical cross—section subjected to forces at its ends is

273 2
_ Tyl N EX'YT?/Z
6EJ, 2 GA

and consequently the total deflection at the point of application of
the external force, in the direction of the force itself, is

TP xyT

(8.332)

T,n=1T, + 1) =20 = .
y7 y (M + 15) SET. A (8.333)
hence 3 l
Ty Xy Ty
=+ ns = .334
M= 3EJ, GA (8.334)

8.6.7 Rectangular cross—section

Consider a rectangular cross—section A = wh where w is the
width and h is the height. The cross—section area is assumed to be
constant, so that we can easily compute the moment of inertia and

the static moment with respect to axes x — —y assumed as above
to be the neutral and flexural axes, respectively.
wh?
Jy = —— 8.335
* = 13 (8.335)

‘%:2<f—y) (8.336)
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Moreover, the tangential stress 73, = 0, so that in this case the
stress state is completely defined by

T, (1 -
033 = —y;ﬂz) (8.337)
T,S; 3T, y?
- =2y [y 4Y .
VT W, T 2wh ( h2 (8.338)

The shear factor x~ can be directly computed by using the ex-
pression (8.325) which yields x = g.
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Appendix A
Applications of the shell theory

This appendix contains some applications of the shell theory discussed
at the ends of the first four chapters. For all cases presented the external
load ensures a membrane state of stress and consequently some analytical
closed—form solutions can be reached.

A.1 Spherical dome

A.1.1 Geometry

The spherical dome is a shell modeled on a portion of sphere
having radius r and aperture 7/2 (hemisphere). Given the geometry,
the first step is to identify the simplest coordinate system able to
describe such a geometry. Of course it is a spherical system, see
section 1.4.3 on page 19.

Let X be the spherical coordinate system' so that

X = (p,0,p) : B — IR (A1)

where FE is the affine Euclidean space in which the surface @ is
embedded. The origin of the system is located at the center of the
hemisphere. With respect to a Cartesian coordinate system, the
following transformations hold

x = psinpsind (A.2)
y = psin pcos? (A.3)
2= pcosp

The adapted coordinate system X induces the surface coordi-
nate system XT by imposing the constraint p = r. Therefore, the

!Note that this coordinate system has been slightly changed compared with
that depicted in figure 1.3.

Claudio Borri, Michele Betti, Enzo Marino (a cura di), Lectures on Solid Mechanics, ISBN 978-88-8453-
854-3 (online), ISBN 978-88-8453-853-6 (print), © 2008 Firenze University Press
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induced coordinate system is
XT= (0" : Q — R? (A5)

The covariant and contravariant expressions of the metric tensor
g' associated with the induced coordinate system are, respectively

g =r*d? ® d¥ + r?sin® ed? @ d’ (A.6)
1~ = 1 - -

J=—50,R0p +—5—5—09 @O0 A7

9= 2 »® ¢+r2sin2gpﬁ® v (A7)

The nonvanishing Christoffel symbols on ) are

Iy = —singcosep
I S COS @
FW - FW T
sin

The unit normal vector of () is
n=20a, (A.8)

The Weingarten tensor and the second fundamental form for @
are, respectively

1 _ _
L=-(d"®0,+ d’ @ ) (A.9)
L =r(d® ® d? +sin® pd” © d”) (A.10)

A.1.2 Displacements and strains

To compute the in—plane state of stress only the stretching strain
tensor «v is required

Cpp = Vpsp +rob (A.11)

Qg = Vg9 + sin @ cos @ + 7 sin? v (A.12)
1 coS

Qyp = *(’ng,e +1)79,¢)) — V9 (A.13)

2 sin ¢
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A.1.3 Equilibrium and constitutive law

The equilibrium equations (3.149) to (3.151) for a spherical shell
assume the following form

N#? ,+cot pN?? —sin g cos pN" 4 ¢# = 0 (A.14)
—N?r — N"rsin? o4+ ¢ =0 (A.15)
N 43cot N 4 ¢” =0 (A.16)

The constitutive equations are
N# =D ¢
=D Uy TTV° | +

+D (4.1/2(019719 + sin ¢ cos vy, + 7 sin’ gov£)> (A.17)
r4sin® @

1
NY9 = Dﬁ (1)19,19 + sin ¢ cos Yv, + 7 sin? gpv£> +
rdsin® ¢
+ Dm (Ucpvtp +7"’U€) (A].S)
1-v 1 COS
NY =D ——b5—= - Al
<r4 sin? ¢ 2 (Vg0 09,5 ) sin vﬁ) (A.19)

Load case: self weight

The dead load due to the self weight provides, of course, a sym-
metrical action so that the expected solution will not depend on
9.

Suppose the load per unit area is ¢, uniformly distributed through-
out the shell. The vector has only the vertical component

7= —qe. (A.20)

whereas, with respect to the basis {0,,dy,n} the vector load q is
written follows

q~~ = —q® cos pn + ¢* sin gp(ip (A.21)
By multiplying equation (A.14) by sin ¢ we obtain

(sin p N*#?),,, —sin® p cos ©N? 4 sin pg¥ =0 (A.22)



206 APPLICATIONS OF THE SHELL THEORY

Let us introduce now the physical components of the stress ten-
sor N, so that

[} chﬁ af |y 3
N = g = Vel (A.23)

Hence, equation (A.22) becomes
(sin N <992, — cos N <> 4 1 sin pg<?> = 0 (A.24)

Analogously, by multiplying equation (A.16) by sin? ¢, consid-
ering the physical components and noticing that ¢¥ = 0, we obtain

(sin N <), +cos pN<"9> = 0 (A.25)

The remaining equilibrium equation becomes

N <> N<7979>
— — +¢<> =0 (A.26)
r r

where, resolving equation (A.26) for N<Y>equation (A.24) turns
into

(sin? pN<P9>) = (¢“rcosp — ¢~ rsing)sing  (A.27)

which can be integrated as follows

sin? Q N<¢¥> = /sa r(q<’5>(¢) cos ¢ — q<¥7 (¢) sin qb) sin pdo + K

’ (A.28)
Equation (A.28) represents the equilibrium of a spherical cap
included by latitude ¢ and ¢ € [p,7/2]. In particular the quantity
2mr K, excepting the sign, equilibrates the resultant acting on the
cap identified by the aperture @.
Considering now equation (A.21)

sin? pN<¢9> = —pg? [—cos¢ ]g (A.29)

for the latitude ¢ the whole meridian stress when @ =0= K =0

1S
z

sin ¢ _1+coscp

N<<,0<,0> — _qu(]‘ — COs ()0) rq (A30)
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so that equation (A.26) becomes
;2
N<1919> — ? SI= @ — COS ¢ A31
rq ( 1+ cosep ) ( )

The third equilibrium equation does not depend on the two
latter results, therefore, since ¢V = 0, we have

N<U> = (A.32)

Load case: uniform load on the horizontal projection
of the shell

This load case keeps unaltered the simplifications regarding the
symmetry already discussed in the preceding case. Indeed, here too
we are looking for a solution not depending on 4.

The load ¢* is now projected on the horizontal plane

q = —q° cos pe, (A.33)

therefore with respect to the local basis, the physical components
are

g~ = —q* cos® p + ¢*nsin ¢ cos pd, (A.34)

By means of a procedure similar to that formerly used we obtain
that equation (A.28) now becomes

sin? pN<¢¥> = /90 r(q<5>(¢) cos ¢ — ¢~¥7(¢) sin ¢) sin pdg + K

@
)
= / —r¢®sinpcosp + K (A.35)
?
from which ]
sin? @ N<¢¥> = —3 [cos® ]2 (A.36)

Next, if ¢ = 0= K = 0, the whole meridian stress is
1
N<#P> — —irqz (A.37)
Finally, from equation (A.26) we obtain

1
N<9> — —§rqz cos 2¢ (A.38)
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A.2 Cylindrical shell

In this example we want to compute the stress state for a cylin-
drical shell subjected to some of the most typical load conditions,
e.g. uniform pressure, dead weight, hydrostatic pressure.

A.2.1 Geometry

Obviously we choose as an adapted coordinate system a cylin-
drical one with a little rearrangement compared with the one intro-
duced in section 1.4.3 on page 18,

X=0,zp:E— R (A.39)

where, as usual, F is the affine Euclidean space in which the cylin-
drical surface @) is embedded. The relationships between the Carte-
sian system, with the origin along the axis of the cylinder, and the
cylindrical coordinates are

x = psent (A.40)
y = pcost (A.41)
z=2z (A.42)

The above adapted coordinate system induces the surface sys-
tem X' due to the constraint p = r, where r is the radius of the
cylinder. So we have

XT=(07,2):Q — R? (A.43)

The covariant and contravariant forms of the surface induced
metric are, respectively

g=r*d"®d" +d*®d* (A.44)
1 - _ _ _
§=300®0y+0:®0: (A.45)

All Christoffel symbols vanish on Q.
The unit normal vector of Q) is

n=0, (A.46)
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The Weingarten tensor and the second fundamental form are,
respectively

1 _
L= ;dﬁ ® Oy (A.47)
L=rd’®d’ (A.48)

A.2.2 Displacements and strains

To compute the in—plane state of stress only the stretching strain
tensor « is required

gy = Uy 9 + TV (A.49)
1

g, = §(Uﬁ7z +v2,9) (A.50)

Qyy = Usy,ys (A.51)

A.2.3 Equilibrium and constitutive law

For a cylindrical shell subjected to a membrane state of stress
the equilibrium equations in the scalar form are

N 54NV 4p¥ =0 (A.52)

N*Y £ N**  4p* =0 (A.53)

—N"Lgy+p=0 (A.54)

NV = N* (A.55)

The constitutive equations assume the following form

D /1

NV = 2 <72(U19,0 +rve) + vz,z) (A.56)

1—

N9 — D (27421/(1)19, zZ+ vz,,g> (A.57)
v

N — D (72(1119,19 +rvg) + vz,z) (A.58)

Load case: uniform pressure and self weight

This load condition is characterized by two load components,
namely ¢¢ and ¢*. The symmetry around the z-axis permits to
delate all terms containing the derivatives with respect to 1.
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The equilibrium equations become accordingly

3
N =2 (A.59)

T
NY% . =0 (A.60)
N*, +p* =0 (A.61)

Next, taking into account the boundary conditions (at z = 0)
related to the particular load condition and using the physical com-
ponents, we obtain

N<V> — g8 (A.62)
N<"%>  =0= N<"*> =0 (A.63)
z
N* .4+¢° =0= N** = / —qd( + K =
0

N** = N<*%> = _¢* ( — h) (A.64)

Thus, the only nonzero components of v are those along ¢ and z
due to the self load and to the Poisson effect, which are respectively

- T2q5 +rvg®*(z — h)
B E(2¢)

V¥ = E(l%) <—q2 (z; - hz> - m«qu> (A.66)

Hydrostatic pressure and self weight

(A.65)

In this case the load vector § is made up of two components: ¢°
and ¢* and the equilibrium equations are

¢
N =L (A.67)

r
NV . =0 (A.68)
N*_, +¢* =0 (A.69)

Furthermore, by taking into account the boundary conditions
(at z = 0) related to the particular load condition and using the
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physical components, we obtain

N<9> = g5 (A.70)
N<U=>  —0= N> =0 (A.71)

z
N*? ,+¢*=0= N* = / —¢*d( + K =
0
N = N2 = —¢*(z — h) (A.72)

The nonzero components of v are

h—z /vpr
€ = _—
v r ( 9e + V'y) (A.73)
z 2
s_tvu—q (27
V= <2 hz) (A.74)

A.3 Hyperboloid of one sheet

The last example we propose concerns an hyperboloid of one
sheet, that is the geometry of shell structures usually adopted for
cooling towers. The structure is supposed to be loaded by the self
weight lone so that the axial symmetry is preserved.

A.3.1 Geometry

The adapted coordinate system is X = (f, 1, z). Here, as made
for the preceding geometries, we will begin computing the metric
tensors and the Christoffel symbols for such system. Then we will
consider the surface @, i.e. the hyperboloid, described by the in-
duced coordinate system XT = (91, 27) obtained by imposing the
constraint fjo = 0. For this system the metric and the Christoffel
symbols will also be computed.

The hyperbolic coordinate system is

(f,9,2): E — IR (A.75)

with the origin in 0 € F that coincides with the origin of a Cartesian
coordinate system. See figure A.1.
We use the coordinate function f to define the surface @, i.e.
f =0, that is characterized by the following implicit expression
22 4y 22

-5 —1=0 (A.76)
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Figure A.1: Hyperbolic coordinate system.

The function f is defined as

f=p-0p(z) (A.77)

where p(z) = $Vb2 + 22 = /22 + 2.
Whit respect to the Cartesian system the following coordinate
transformations hold

r = (f—l—%\/bQ—l—zQ)cosf} (A.78)

y = (f—l—%\/lﬂ—i—zz)sinﬁ (A.79)
2=z (A.80)

The covariant and contravariant expressions of the metric tensor
are, respectively

g=d' ed + <f+ \/b2+z> d’ ®d”+

S fod+d*odf
+(b b2+22)(d ®d+d*@dl)+

n 1) d* @ d* (A.81)
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2.2 B B
g= (azz+1>af®af+
a z = - - _
1
f+4vVb2 + 22)

The nonzero Christoffel symbols for the adapted coordinate sys-
tem are

+ ( 2519 ® 0y + 0, ® 0, (A.82)

b
rf -2 A.83
N EE (A.83)
D)y = —(f+3 VP +22) (A.84)
1

o, =1, - A.85
S 5

az
Y, =1y = (A.86)

b(f + $Vb% + 22)Vb? + 22

Consider now the constraint p = §vb? 4 22, i.e. f =0, in such
a way we pass from the adapted coordinate system X = (f, 9, z) to
the induced one XT = (9, 21)2.

With respect to the surface coordinate system the expressions
of the covariant and contravariant metric tensor are, respectively

2 2.2
P2 2 90d + (= 1) d*@d? A 87
2 (2 +22) . .
L — Y )| 9.0, (A.88
g a? (b% 4 22) 9 © Op + a?z? + b2 (b2 + 22) ® ( )

and the nonzero Christoffel symbols T'T are

9 9 z
FTzﬁ = FTﬁz = (b2 T 22) (A89)
z 2b22
rt? — a A.90
= [a?22 4+ b2(b? + 22)](b2 + 22) ( )
2,12 | .2
N i C s (A.91)

T a222 4 b2(b? + 22)

2From now on we will omit the symbol 1 to denote the entities on @ when
it is not ambiguous.
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Next, the unit normal vector is

a?z? + b2(b% + 22) - az ~
= — A92
! \/ b2 (0% + 22) O Va2z? + 02 (02 + 22)8z (4.92)

and the Weingarten tensor and the second fundamental form are,
respectively
b2
/a2 + 02 (02 + 22)
b ~
- : ~d*® 0. (A.93)
(a222 + 02 (0% + 22))2
a(b2 + Zz) (;119 ® d9+
\/CL222 + b2 (b2 + 22)
ab?

_ d* ® d* A.94
(b2 + 22) \/anQ + b2 (b2 + 22) ( )

L d’ @ g+

L=

The total curvature of the surface, i.e. the Gauss curvature, and
the mean curvature are, respectively

bG

K =— A .95
[a222 + b2(b? + 22)]? ( )

a?b? (22 — %) + b4 (b + 22)

ala2z? + b2(b2 + 22)]2

H= (A.96)

Moreover, from the Weingarten tensor, the principal curvatures
are readily obtained

2(1,2 2
A — b +27) (A.97)
a(b? + 22)\/a222 + b2(b2 + 22)
4
do = — ab (A.98)

[a222 + b2(b2 + 22)]2

The surface coordinate system X1 = (19, 2) is definitely comfort-
able to describe and identify points on the hyperboloid, however to
solve the in—plane equilibrium problem for the symmetrical load
condition it is more convenient to chose instead of the z coordinate,
the angle ¢ that the segment line along n forms with the verti-
cal axis z. This new variable is related to the former one by the
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following relationship

Y= sin™! 71)2 + 2
Vb2 + k222

where k is a dimensionless geometric factor

a2
k=145 (A.100)

By making use of the coordinate ¢, the solution of the equi-
librium equations allows us to write the expressions of the stress

(A.99)

A.3.2 Equilibrium

tensor as

N<#e> qav/k2sin? ¢ — 1
sin? pvkZ — 1

(€ (@) = ¢ (1)) (A.101)

3
VE? -1 N<¥%> (k?sin?p — 1)2
N<O9> 26‘ _ —gcos g+ (k?sin? o — 1)
k4sin“p —1 avkZ — 1
(A.102)

where ¢ is the dead load per unit of area (assumed to be constant
along the thickness) while the function ¢ equals

—Ccos 1 | (\/k:Q— —k:coscp)

¢= 2 (k?sin? p — 1) * 4kVE2 —1 " VEk? — 1+ kcosyp
(A.103)
Further details on the derivation of the above expressions are
available in [17].
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