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Foreword

These Lecture Notes introduce the theoretical basics of solid mechanics
to environmental engineering students. Born out of and supported by the
European Project DEREC TEMPUS JEP Development of Environmen-
tal and Resources Engineering Curriculum, it collects the lectures held by
the Authors during the course of Mechanic of Solids at the University of
Florence, Degree of Environmental Engineering and Resources. Although
the course is extended to basic structural engineering principles, such as
mechanics, statics, kinematics and fundamental equations of beam struc-
tures, inertia, iso static and hyper static solution methods, these Lecture
Notes re�ect only the content of the lectures of continuum mechanics.

Several approaches are possible to the subject depending on the con-
cern, either mathematically or physically oriented. The volume aims to
provide a synthesis of both approaches, presenting in an organic whole
the classical theory of solid mechanics and a more direct engineering ap-
proach. It is the Authors' opinion that a top�down learning process may
o�er to the engineering students those critical and autonomy tools neces-
sary to gain awareness of that continuous learning process that is required;
it characterizes the cultural and technical personality of an engineer. An
ongoing learning is all the more necessary today, where the rapid develop-
ment of powerful computers and computer solving methods (�nite element
methods, discrete volume methods, boundary methods, etc.) have opened
up the way to new horizons that the classical approaches were only able to
formulate. This fast and impressive growth of computer methods seems to
be replacing the importance of gaining a consolidated knowledge of solid
mechanics background. On the contrary, the Authors believe that only
a conscious knowledge of theory can be that cultural instrument through
which an engineer can really hope to control the use of computer methods.
With this aim, the Reader addressed by this volume is mainly the under-
graduate student in Engineering Schools: it is organized in eight Chapters:
Chapter 1 proposes a synthesis of the basic concepts of mathematics and
geometry that the readers need in the following chapters. Chapter 2 and
Chapter 3 are devoted to the elementary framework of strain and stress
in an elastic body. The concept of �nite strain and Cauchy stress state
is introduced, together with Mohr's representation of a general state of
stress. Chapter 4 focuses on the classical law of linear elasticity. Chapter
5 deals with the Principle of Virtual Works. Chapter 6 treats the energy
principles and provides a basic introduction to the variational methods.
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Finally, Part I ends with a chapter introducing the notion of strength of
materials. At the end of each chapter of the �rst part the basics of the
tensor�based shell theory are also presented and then an application to
some standard shell geometries is provided in appendix A.

The second part, Chapter 8, is dedicated to De Saint�Venant's problem
where the classical beam theory is presented focusing on the four funda-
mental cases: beam under axial forces, terminal couples, torsion, bending
and shear.

The volume, that consolidates the Lecture Notes prepared by the Au-
thors for the second�year undergraduate students in environmental engi-
neering, proposes a widening of the classical theories approached, giving
a list of references used during its preparation as a possible suggestion to
the Reader.

The Authors wish to express their heartfelt gratitude to professor
Marco Modugno for the inspiring discussions and stimulating suggestions.

It is also our pleasure to thank Eng. Seymour Milton John Spence for
kindly revising the English text.

The publication of this book has been possible thanks to the �nan-
cial support of the European Commission (DEREC Tempus Project) and
Ente Cassa di Risparmio di Firenze to whom the Authors are extremely
grateful.

Claudio Borri, Michele Betti, Enzo Marino
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Chapter 1

Outline of linear algebra

This chapter brie�y presents some preliminary mathematics necessary
to understand continuum mechanics. To this end the basic concepts of
linear algebra and tensor analysis will be introduced. At the end of the
chapter an overview of the theory of surfaces will be exposed in order to
make the reader familiar with some background required for the mechanics
of shell continuums, even though the latter is not the key theme of this
book.

This introduction is neither exhaustive nor complete; indeed for any

further insight the reader is warmly recommended to refer to the main

sources from which this summary has been derived: Modugno, [4] and

[5]; Sokolniko�, [1]; Green-Zerna, [3].

1.1 Vector spaces and linear mappings

1.1.1 Vector spaces

We de�ne vector space a set V̄ equipped with the following op-
erations

+ : V̄ × V̄ : (ū, v̄) 7→ ū+ v̄ (1.1)

· : IR× V̄ : (λ, v̄) 7→ λv̄. (1.2)

Elements belonging to V̄ are named vectors and are character-
ized by the following properties

1. ū+ (v̄ + w̄) = (ū+ v̄) + w̄ ∀ ū, v̄, w̄ ∈ V̄

2. ū+ v̄ = v̄ + ū ∀ ū, v̄ ∈ V̄

3. ū+ 0̄ = ū ∀ ū ∈ V̄

4. ∀ ū ∈ V̄ ∃ = −ū ∈ V̄ so that ū+ (−ū) = 0̄
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4 OUTLINE OF LINEAR ALGEBRA

where 0̄ is called null vector.

Every vector space admits the existence of a subset

B = {b̄1, . . . , b̄n} ⊂ V̄

called the basis of V̄ . Thus, each vector v̄ ∈ V̄ can be univocally
represented through the basis B as follows

v̄ = vib̄i i = 1, . . . , n (1.3)

where vi ∈ IR are the components of v̄ related to the basis B and n
is a number which de�nes the dimension of V̄ , namely the number
of vectors in any basis of V̄ .

Notice that in equation (1.3) the Einstein's summation conven-
tion has been used. It is a notational convenience where any term
in which an index appears twice will stand for the sum of all such
terms as the index assumes all of a preassigned range of values,
hence

v̄ = vib̄i =
n∑
i=1

vib̄i (1.4)

1.1.2 Linear mappings

Functions between two vector spaces assume a crucial impor-
tance in linear algebra. In particular, we de�ne a linear map as a
linear transformation between two vector spaces that preserves the
operations of vector addition and scalar multiplication.

Let V̄ and V̄ ′ be two vector spaces equipped with the bases

B = {b̄1, . . . , b̄n}, B′ = {b̄′1, . . . , b̄′m}

respectively.

We de�ne a linear mapping as the transformation

f : V̄ → V̄ ′, v̄ 7→ v̄′ (1.5)

if the two following conditions are satis�ed

1. f (ū+ v̄) = f (ū) + f (v̄) ∀ ū, v̄ ∈ V̄ : additivity;

2. f (λū) = λf (ū) ∀ ū ∈ V̄ e λ ∈ IR : homogeneity.
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The set of all linear maps from V̄ to V̄ ′, denoted by L
(
V̄ , V̄ ′

)
,

represents a n ×m�dimensional vector space, where n and m are
the dimensions of V̄ and V̄ ′, respectively.

{f : V̄ → V̄ ′} =: L
(
V̄ , V̄ ′

)
(1.6)

For linear mappings the following properties hold

1. (f + g) (ū) = f (ū) + g (ū) , ∀f, g ∈ L
(
V̄ , V̄ ′

)
; ū ∈ V̄

2. (λf) (ū) = λf (ū) , ∀f ∈ L
(
V̄ , V̄ ′

)
; ū ∈ V̄

Matrix representation

Notions so far introduced allow us to assert that if f is a linear
mapping from V̄ to V̄ ′, then f(v̄) is a vector in V̄ ′. Consequently,
by recalling the expression in components for v̄, (1.3), we have

f (v̄) = f (v̄)i b̄′i i = 1, . . . ,m (1.7)

and accounting for the fact that v̄ = vj b̄j , with j = 1, . . . , n, and
by using the homogeneity property for linear mappings, the latter
equation leads to

f
(
vj b̄j

)i
b̄′i = vjf

(
b̄j
)i
b̄′i j = 1, . . . , n i = 1, . . . ,m. (1.8)

In a shorter form the components of f (v̄) are then

(f (v̄))i = f ijv
j (1.9)

so that the m × n�dimensional matrix f ij = f
(
b̄j
)i

is the matrix
representation of the linear mapping f referred to the bases B e B′.

Linear forms and the dual space

Linear forms are a special case of linear mappings. Let V̄ be
a vector space and B = {b̄i} its basis. A linear form ω

	
is a linear

transformation from V̄ to a scalar �eld

ω
	

: V̄ → IR (1.10)

Hence, we de�ne V̄ ∗ as the set of linear forms from V̄ to IR

V̄ ∗ =: {ω : V̄ → IR} =: L
(
V̄ , IR

)
(1.11)
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V̄ ∗ and V̄ have the same dimension.
The dual space V̄ ∗ admits a basis B∗ = {β

	

i} whose elements
are linear forms operating as follows

β
	

i
(
b̄j
)

= δij =
{

1 i = j
0 i 6= j

(1.12)

By the de�nition, we can state that the element β
	

i belonging to
B∗, applied to the vector ū, yields a scalar that is the i�th compo-
nent of ū. In fact we write

β
	

i (ū) = β
	

i
(
uj b̄j

)
= ujβ

	

i
(
b̄j
)

= ujδij = ui (1.13)

We highlight that, as done for vectors, each linear form, chosen
the n�dimensional basis B∗, can be written in components as follows

ω
	

= ωjβ
	

j j = 1, . . . , n (1.14)

Bilinear forms

We can de�ne a bilinear form f
	
as a mapping

f
	

: V̄ × V̄ → IR,
(
v̄, v̄′

)
7→ λ (1.15)

where v̄, v̄′ ∈ V̄ and λ ∈ IR, and such that it is linear in each
argument separately. That is

1. f
	

(v̄ + w̄, v̄′) = f
	

(v̄, v̄′) + f
	

(w̄, v̄′);

2. f
	

(v̄, v̄′ + w̄) = f
	

(v̄, v̄′) + f
	

(v̄′, w̄);

3. f
	

(λv̄, v̄) = f
	

(v̄, λv̄) = λf
	

(v̄, v̄′).

∀f ∈ L
(
V̄ × V̄ , IR

)
; v̄, v̄′, w̄ ∈ V̄ ; λ ∈ IR.

Endomorphisms

Frequently in the �eld of solid mechanics we will meet special
linear mappings from a vector space into itself, i.e. f ∈ L

(
V̄ , V̄

)
.

These are de�ned endomorphisms

f : V̄ → V̄ , v̄ 7→ v̄′ v̄, v̄′ ∈ V̄ (1.16)

The set of linear mappings from V̄ into itself forms a n × n�
dimensional vector space, where n is the dimension of V̄ .

{f : V̄ → V̄ } =: L
(
V̄ , V̄

)
=: End

(
V̄
)

(1.17)
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Change of basis for endomorphisms

Let B be a �xed basis for V̄ , we are interested in evaluating how
the endomorphism f ∈ End

(
V̄
)
changes when passing to a new

basis B′ of V̄ . The following transformation rules are established

b̄i = a′hi b̄
′
h (1.18)

b̄′h = ajhb̄j (1.19)

that, by replacing (1.19) into (1.18), yield

b̄i = a′hi a
k
hb̄k (1.20)

and so (
a′hi a

k
h − δki

)
b̄k = 0⇒ a′hi a

k
h = δki (1.21)

therefore, each change of basis for V̄ is characterized by a square
invertible matrix n× n.

Likewise vectors, the following rules hold for dual elements

β
	

i = aihβ
	

′h (1.22)

β
	

′i = a′ihβ
	

h (1.23)

When both bases are orthogonal, then the transformation ma-
trices are also orthogonal, that is

a′hi = aih (1.24)

where a′hi =
(
ahi
)−1

, and

a′ij = cos
(
b̄′i, b̄j

)
(1.25)

ahk = cos
(
b̄h, b̄

′
k

)
(1.26)

The change of basis implies a change of the vector components.
In fact we have

vk = akj v
′j (1.27)

v′k = a′kj v
j (1.28)
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The proof of the above equations can be easily provided. For in-
stance, for equation (1.27) we have that a vector v̄ can be expressed
with respect to two basis B and B′ as v̄ = vib̄i = v′j b̄′j . Hence

vib̄i = v′jakj b̄k ⇒ v′jakj b̄k − vib̄i = 0⇒ (1.29)

v′jakj b̄k − viδki b̄k = 0⇒
(
v′jakj − viδki

)
b̄k = 0 (1.30)

�nally, by putting zero the coe�cient in brackets, we obtain relation
(1.27).

Covector components change by the the following rules

vk = a′ikv
′
i (1.31)

v′k = aikvi (1.32)

Furthermore, recalling equation (1.9), via some manipulations,
we get the rule to transform the endomorphism f , that is1

f ij = aihf
′h
k a
′k
j (1.33)

and
f ′ij = a′ihf

h
k a

k
j (1.34)

Similar relationships can be found for higher order matrices, for
instance for a mixed fourth�order tensor we have

f ijhk = aila
j
mf
′lm
no a

′n
h a
′o
k (1.35)

and likewise

f ′ijhk = a′il a
′j
mf

lm
no a

n
ha

o
k (1.36)

1.2 Euclidean spaces

A Euclidean vector space is a space which admits a Euclidean
metric, that is a structure inducing some special relationships be-
tween distances and angles. In particular, �xed a Cartesian coordi-
nate system (that will be better de�ned later on) and its standard
basis, in a Euclidean space the distance between two points can be
computed by means of Pitagora's formula.

1Often, within an engineering context, it is convenient to represent equations
(1.33) and (1.34) in the matrix form, such as F ′ = RTFR and F = RF ′RT ,
where RT and R are nothing but a′ij and ahk , respectively.



LECTURES ON SOLID MECHANICS 9

1.2.1 Euclidean metric tensor and scalar product

Let V̄ be a n�dimensional vector space and B = {b̄i} be its
basis. We de�ne Euclidean metric the symmetric positive de�nite
bilinear mapping

g
	

: V̄ × V̄ → IR (1.37)

that, given a pair of vectors ū, v̄ ∈ V̄ , gives a real number g
	

(ū, v̄)
as follows

ū · v̄ =: g
	

(ū, v̄) (1.38)

The number g
	

(ū, v̄) is termed scalar product. The Euclidean
metric allows us to compute distances. Indeed, we de�ne length (or
modulus, or norm) of v̄ ∈ V̄ the real number

||v̄|| =
√
g
	

(v̄, v̄) ≥ 0 (1.39)

The angle ϑ amid vectors ū and v̄ is given by the following
equation

cosϑ =
giju

ivj√
|gijuivj ||gijuivj |

(1.40)

To compute the components of the metric tensor, i.e. the matrix
representing the mapping g

	
, given the basis B = {b̄i} of V̄ , the

following general rule is adopted

gij = g
	

(
b̄i, b̄j

)
= b̄i · b̄j (1.41)

that in the expanded form becomes

gij =

 b̄1 · b̄1 · · · b̄1 · b̄n
...

. . .
...

b̄n · b̄1 · · · b̄n · b̄n

 (1.42)

In the light of the above general expression for the metric tensor,
the scalar product between two vectors becomes

ū · v̄ = uib̄i · vj b̄j = uiuj b̄i · b̄j = giju
ivj (1.43)

Expression (1.43) includes, of course, the special case when,
�xed a Cartesian coordinate system, the metric matrix equals the
identity matrix δij and consequently the scalar product can be car-
ried out multiplying component by component, i.e. ū · v̄ = u1v1 +
· · ·+ vnun.
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Now we want to point out that between the n�dimensional vec-
tor space V̄ and its dual V̄ ∗ there exists an isomorphism. Note that
we are using some special words, e.g. isomorphism, without giving
the formal mathematical de�nition. This lies beyond the purpose
of this book, so that, also in this case, we will restrict the current
exposition to an intuitive concept. From this point of view, an iso-
morphism is a one�to�one mapping of an algebraic structure, e.g.
vector space, into another of the same type, preserving all algebraic
relations.

Thus we de�ne the musical isomorphisms: �at and sharp, re-
spectively, as follows

g[ : V̄ → V̄ ∗ : v̄ 7→ v
	

(1.44)

g] : V̄ ∗ → V̄ : v
	
7→ v̄ (1.45)

where

u
	

(v̄) = g
	

(ū, v̄) , ∀ū ∈ V̄ (1.46)

The isomorphism between V̄ and V̄ ∗ implies the existence of a
metric tensor

ḡ : V̄ ∗ × V̄ ∗ → IR (1.47)

so that

ū · v̄ = g
	

(ū, v̄) := ḡ (u
	
, v
	
) = u

	
· v
	

(1.48)

For further details the reader is referred to [4].

Both g[ and g] are particularly helpful when carrying out com-
putations it is necessary to switch from the contravariant form to
the covariant form (and vice versa); namely when we need to lower
or raise the indices.

1.2.2 Eigenvalues and eigenvectors

Let V̄ be a n dimensional vector space and B = {b̄1, . . . , b̄n}
the vector basis. Given f ∈ End

(
V̄
)
, we de�ne the eigenvector a

nonzero vector v̄ whose direction does not change under the e�ect
of f . Formally

f (v̄) = λv̄, λ ∈ IR (1.49)

When equation (1.49) holds we can also de�ne the real number
λ as the eigenvalue for v̄.
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The eigenvalues of f represent the real roots of the following
polynomial

pn (λ) = det
(
f ij − λδij

)
(1.50)

where pn (λ) is called the characteristic polynomial of degree n and
f ij is the matrix representation of the endomorphism f .

1.3 Tensors

This section is devote to a short outline of tensor analysis.

Given two vector spaces Ū and V̄ it is possible to construct a
new structure, i.e. a third vector space, called tensor product of Ū
times V̄ that is symbolically denoted by Ū ⊗ V̄ . This vector space
is made up of elements called tensors. It is possible to demonstrate
that if

BŪ = {ū1, . . . , ūn}
BV̄ = {v̄1, . . . , v̄m}

are bases for Ū and V̄ , respectively, then

BŪ⊗V̄ = {ūi ⊗ v̄j}, i = 1, . . . , n; j = 1, . . . ,m

is a basis of the vector space Ū⊗V̄ . Therefore, each tensor τ̄ ∈ Ū⊗V̄
can be univocally expressed by

τ̄ = τ̄ ij (ūi ⊗ v̄j) (1.51)

where again the Einstein's summation convention has been used, in
fact (1.51) can also be written

τ̄ =
n∑
i=1

m∑
j=1

τ̄ ij ūi ⊗ v̄j

1.3.1 Tensors and linear mappings

The de�nition of tensors does not alter the structure of Ū and
V̄ , and, since the dual space V̄ ∗ preserves the structure of a vector
space, we can introduce tensors belonging to spaces such as Ū∗⊗V̄ ∗
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and Ū∗⊗V̄ . In other words we distinguish the following second order
tensors:

Ū∗ ⊗ V̄ : mixed tensors

Ū∗ ⊗ V̄ ∗ : covarinat tensors

Ū ⊗ V̄ : contravariant tensors

Mixed tensors: given the n�dimensional vector spaces V̄ and V̄ ∗,
let α

	
∈ V̄ ∗ be a dual form and v̄ ∈ V̄ a vector, then the

tensor α
	
⊗ v̄ ∈ V̄ ∗⊗ V̄ can be identi�ed by the endomorphism

α
	
⊗ v̄ ∈ End

(
V̄
)

= L
(
V̄ , V̄

)
de�ned as

α
	
⊗ v̄ : V̄ → V̄ : ū 7→ (α

	
⊗ v̄) ū = α

	
(ū) v̄ ∈ V̄ (1.52)

Hence, a natural isomorphism has been obtained

V̄ ∗ ⊗ V̄ ∼= L
(
V̄ , V̄

)
(1.53)

Covariant tensors: Let α
	
, β
	
be two linear forms belonging to V̄ ∗.

We can identify the tensor α
	
⊗ β

	
∈ V̄ ∗ ⊗ V̄ ∗ by the bilinear

form α
	
⊗ β
	
∈ L2

(
V̄ , IR

)
de�ned as

α
	
⊗ β
	

: V̄ × V̄ → IR : (ū, v̄) 7→ α
	

(ū)β
	

(v̄) ∈ IR (1.54)

Therefore we can realize another isomorphism, which is

V̄ ∗ ⊗ V̄ ∗ ∼= L2
(
V̄ , IR

)
(1.55)

Vectors, linear forms and tensors so far discussed can be sum-
marized in the following scheme

Vectors

v̄ ∈ V̄ (1.56)

Linear forms

α
	
∈ V̄ ∗ ∼= L

(
V̄ , IR

)
(1.57)

II�order mixed tensors

α
	
⊗ v̄ ∈ V̄ ∗ ⊗ V̄ ∼= End

(
V̄
)

(1.58)

II�order covariant tensors

α
	
⊗ β
	
∈ V̄ ∗ ⊗ V̄ ∗ ∼= L2

(
V̄ , IR

)
(1.59)
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1.4 Coordinate systems

Within the three�dimensional a�ne Euclidean space E it is pos-
sible to de�ne a coordinate system through the following bijections

X : E → IR3 X−1 : IR3 → E (1.60)

where X =
(
x1, x2, x3

)
. The injectivity of X assures the one�to�

one correspondence between points belonging to E and their co-
ordinates. Namely, given a point p ∈ E there exists the triplet(
x1, x2, x3

)
which identi�es such a point. The mapping X is as-

sumed to be di�erentiable as many times as required.

The coordinate system X is made up of coordinate functions

xi : E → IR i = 1, 2, 3 (1.61)

Moreover, we de�ne the coordinate curves as the following map-
pings

xip : IR→ E i = 1, 2, 3 (1.62)

such as

x1p (λ) =X−1
(
x1 (p) + λ, x2 (p) , x3 (p)

)
x2p (λ) =X−1

(
x1 (p) , x2 (p) + λ, x3 (p)

)
x3p (λ) =X−1

(
x1 (p) , x2 (p) , x3 (p) + λ

)
that in a shorter form become

xj (xip (λ)) = xj (p) + δji λ p ∈ E, λ ∈ IR (1.63)

Given a point p ∈ E, there are three coordinate curves passing
through it.

It is possible to demonstrate that the derivatives of the coor-

dinate curves, computed for a �xed λ, are vectors forming a basis
B =

{
∂̄i
}
in p.

Analogously, it can be proved that the derivatives of the coordi-
nate functions {xi} computed in p form a covariant basis B∗ = {d

	
i}

in such a point.

The above two bases satisfy the following relation

d
	
j
(
∂̄i
)

= δji (1.64)
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Figure 1.1: Contravariant and covariant bases related to a 2D curvi-
linear coordinate system.

See [4] for further details.
Bases B =

{
∂̄1, ∂̄2, ∂̄3

}
and B∗ =

{
d
	

1, d
	

2,d
	

3
}
related to X allow

the representation of vectors, linear forms and tensor �elds. For
example we write

v̄ = vi∂̄i, ∀ v̄ : E → Ē (1.65)

w
	

= wid
	
i ∀w

	
: E → Ē∗ (1.66)

where v̄ and w
	
are vector and covector �elds, respectively.

1.4.1 Linear mappings and the metric tensor

In order to represent an endomorphism f by means of the coor-
dinate system X we can write

f = f ji d
	
i ⊗ ∂̄j , ∀f : E → L

(
Ē, Ē

) ∼= Ē∗ ⊗ Ē (1.67)

where
f ji = d

	
j
(
f
(
∂̄i
))

: E → IR (1.68)

and likewise, for the bilinear form we write

f
	

= fijd
	
i ⊗ d

	
j , ∀f

	
: E → L2

(
Ē, IR

) ∼= Ē∗ ⊗ Ē∗ (1.69)

where
fij = f

	

(
∂̄i, ∂̄j

)
: E → IR (1.70)

It is straightforward now to realize that the metric tensor g
	
is

nothing but the following bilinear form

g
	

: E → L2
(
Ē, IR

) ∼= Ē∗ ⊗ Ē∗ (1.71)
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indeed
g
	

= gijd
	
i ⊗ d

	
j (1.72)

where
gij = g

	

(
∂̄i, ∂̄j

)
(1.73)

As a concluding remark of this section we point out the fact that
once the coordinate system is �xed it is possible to �nd its vector
basis, i.e. the covariant basis, and therefore the covariant expression
of the metric tensor can be directly computed.

1.4.2 Components of the metric tensor

Suppose that Xc = {xic}, i = 1, 2, 3 is a Cartesian coordinate
system, with the origin o ∈ E, which describes the a�ne Euclidean
space E and {ēi}, i = 1, 2, 3 its unit normal basis. Moreover, let
X = {xj}, j = 1, 2, 3 be a generic curvilinear coordinate and
{∂̄j}, j = 1, 2, 3 its basis. Suppose that the functions xic and xi

are single�valued and continuously di�erentiable with respect to
each of their variables as many times as required, we can therefore
write

xic = xic
(
x1, x2, x3

)
i = 1, 2, 3 (1.74)

xi = xi
(
x1
c , x

2
c , x

3
c

)
i = 1, 2, 3 (1.75)

and the rules for changing basis (1.18) and (1.19) on page 7, become

∂̄i =
∂xhc
∂xi

ēh; d
	
i =

∂xi

∂xhc
e
	
h (1.76)

and

ēi =
∂xh

∂xic
∂̄h; e

	
i =

∂xic
∂xh

d
	
h (1.77)

where equations (1.76) transform the covariant and contravariant
elements of the Cartesian basis into the elements of the curvilinear
basis while expressions (1.77) perform the vice�versa.

Now, according to equation (1.41), it is possible to compute the
covariant components of the metric tensor related to the curvilinear
coordinate system

gij = ∂̄i · ∂̄j =
∂xhc
∂xi

ēh ·
∂xkc
∂xj

ēk = (1.78)

=
∂xhc
∂xi

∂xkc
∂xj

δhk =
∂xhc
∂xi

∂xhc
∂xj

(1.79)
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Moreover, the contravariant components are

gij = d
	
i · d
	
j =

∂xi

∂xhc
e
	
h · ∂x

j

∂xkc
e
	
k = (1.80)

=
∂xi

∂xhc

∂xj

∂xkc
δhk =

∂xi

∂xhc

∂xj

∂xhc
(1.81)

and �nally the mixed components of the metric tensor are

gij = d
	
i
(
∂̄j
)

=
∂xi

∂xhc
e
	
h · ∂x

k
c

∂xj
ēk = (1.82)

=
∂xi

∂xhc

∂xkc
∂xj

δhk =
∂xi

∂xhc

∂xhc
∂xj

(1.83)

Christo�el symbols

The Christo�el2's symbol are de�ned as follows

Γkij = d
	
k
(
∇i∂̄j

)
: E → IR (1.84)

so that ∇i∂̄j = Γkij ∂̄k. Hence, Γkij is the k�th component of the

derivative of the basis element ∂̄j along the i�th direction. Analyt-
ically they can be computed by the following formula

Γkij =
1
2
gkh (∂ighj + ∂jghi − ∂hgij) (1.85)

where ∂i denotes the partial derivatives.
Moreover, it can be proved that

Γkij =
(
∇i∂̄j

)k = −
(
∇id

	
k
)
j

(1.86)

For proofs and more details the reader is referred to [4], [5] and
[1].

2Elwin Bruno Christo�el (November 10, 1829 Montjoie, now called Mon-
schau - March 15, 1900 Strasbourg) was a German mathematician and physi-
cist.

Source: http://en.wikipedia.org/wiki/.
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1.4.3 Examples of coordinate systems

Cartesian coordinates

The Cartesian coordinate system introduces considerable sim-
pli�cations with respect to other curvilinear systems, e.g. cylindri-
cal, spherical, hyperbolic, etc.

Therefore, let us begin by de�ning a Cartesian coordinate system

as the triplet of coordinate functions

Xc = (x, y, z) ≡
(
x1, x2, x3

)
: E → IR3 (1.87)

with an origin in o ∈ E and equipped with the unit normal basis,
also called standard basis, {ē1, ē2, ē3}. Given p ∈ E, the coordinate
functions are such that

xi (p) =: (p− o) · ēi (1.88)

The coordinate curves of a Cartesian system are

xip (λ) = p+ λēi (1.89)

Notice that for rectangular coordinate systems the symbols de-
noting the bases will turn into

∂̄i =ēi (1.90)

d
	
i =e

	
i (1.91)

The covariant form of the metric tensor can be readily computed
as follows

gij = ēi · ēj = δij (1.92)

Elements of the standard basis related to the Cartesian coordi-
nate system do not vary with the point p ∈ E. As a consequence,
the Christo�el symbols are identically null.

Γkij = 0 (1.93)

In addition to that we also highlight that here the upper or lower
position of the indices does not in�uence the structure of the �eld
we are dealing with. Namely, vectors and linear forms are the same
and the unit normal basis equals its dual.

g[ (ēi) = e
	
i = ēi (1.94)
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For this reason whenever given two sets of numbers having the
same dimension, they can be ordered in a row and a column, respec-
tively, and by using the multiplication rule row�by�column a scalar
is always yielded without taking any care whether we are dealing
with vectors or linear forms.

Cylindrical coordinates

We de�ne a cylindrical coordinate system the functions

X = (ρ, ϑ, z) : E → IR3 (1.95)

In this case, with the help of �gure 1.2, equation (1.74) becomes

x = ρsenϑ

y = ρcosϑ

z = z

Figure 1.2: Cylindrical coordinate system.

Now, through equation (1.76), it is easy to compute the basis
related to the cylindrical system

∂̄ρ =
∂x

∂ρ
ē1 +

∂y

∂ρ
ē2 +

∂z

∂ρ
ē3

∂̄ϑ =
∂x

∂ϑ
ē1 +

∂y

∂ϑ
ē2 +

∂z

∂ϑ
ē3

∂̄z =
∂x

∂z
ē1 +

∂y

∂z
ē2 +

∂z

∂z
ē3
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Hence, the covariant components of the metric tensor is

gρρ = 1

gϑϑ = ρ2

gzz = 1
gϑz = gρz = gρϑ = 0

that in the matrix form can be written as follows

gij =

 1 0 0
0 ρ2 0
0 0 1

 (1.96)

The contravariant form of the metric tensor is

gij = (gij)
−1 =

 1 0 0
0 1

ρ2 0
0 0 1

 (1.97)

Using equation (1.85), the Christo�el symbols are

Γρϑϑ = −ρ, Γϑϑρ = Γϑρϑ =
1
ρ

(1.98)

Spherical coordinates

We de�ne a spherical coordinate system by the functions

X = (r, ϑ, ϕ) : E → IR3 (1.99)

In this case, with the help of �gure 1.3, equation (1.74) becomes

x = r sinϕ cosϑ
y = r sinϕ sinϑ
z = r cosϕ

Now, through equation (1.76), it is easy to compute the basis
related to the spherical system

∂̄r =
∂x

∂r
ē1 +

∂y

∂r
ē2 +

∂z

∂r
ē3

∂̄ϑ =
∂x

∂ϑ
ē1 +

∂y

∂ϑ
ē2 +

∂z

∂ϑ
ē3

∂̄ϕ =
∂x

∂ϕ
ē1 +

∂y

∂ϕ
ē2 +

∂z

∂ϕ
ē3
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Figure 1.3: Spherical coordinate system.

Hence, the covariant components are

grr = 1

gϑϑ = r2 sin2 ϕ

gϕϕ = r2

grϑ = grϕ = gϑϕ = 0

which in the matrix form are written as follows

gij =

 1 0 0
0 r2 sin2 ϕ 0
0 0 r2

 (1.100)

The contravariant form of the metric tensor is

gij = (gij)
−1 =

 1 0 0
0 1

r2 sin2 ϕ
0

0 0 1
r2

 (1.101)

Using equation (1.85), the Christo�el symbols are

Γrϕϕ = −r Γrϑϑ = −r sin2 ϕ

Γϕrϕ = Γϕϕr =
1
r

Γϕϑϑ = − sinϕ cosϕ

Γϑrϑ = Γϑϑr =
1
r

Γϑϑϕ = Γϑϕϑ = cosϕ
sinϕ
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1.4.4 Volumes and the vector product

In the three�dimensional Euclidean space a volume element η
	
is

de�ned as a three�linear form such as

η
	

:= Ē × Ē × Ē → IR, (1.102)

(v̄1, v̄2, v̄3) 7→ η
	

(v̄1, v̄2, v̄3) ∈ IR (1.103)

When the set of three vectors forms a basis {b̄1, b̄2, b̄3}, for any
other basis {b̄′1, b̄′2, b̄′3}, the volume element changes with the follow-
ing expression

η
	

(
b̄′1, b̄

′
2, b̄
′
3

)
= |a′ij |η

	

(
b̄1, b̄2, b̄3

)
(1.104)

where |a′ij | is the determinant of the endomorphism for basis chang-
ing already seen in equation (1.18).

The application η
	
can be expressed by a third order skew�

symmetric tensor ηijk with the following properties. If two of the
subscripts {i, j, k} equal each other the volume element vanishes.
Any odd permutation of the subscripts changes the sign of the el-
ement, any even permutation of the subscripts does not alter the
volume element.

For a Cartesian system of coordinates we shall denote the vol-
ume form by εijk and the above properties become clearer in the
following scheme

εijk = εijk =


0 when any two of the indices are equal;

1 when i, j, k is an even permutation of the numbers 1,2,3;

−1 when i, j, k is an odd permutation of the numbers 1,2,3;

that means, for example

ε112 = ε112 = ε133 = ε133 = ε222 = ε222 = 0

ε123 = ε123 = ε231 = ε231 = ε312 = ε312 = 1

ε132 = ε132 = ε321 = ε321 = ε213 = ε213 = −1

In addition, the operator εijk satis�es the following identity

εijkεilh = δjlδkh − δjhδkl (1.105)

Suppose that {∂̄i, ∂̄j , ∂̄k} is a basis related to a curvilinear co-
ordinate system, we want to evaluate the volume element in this
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system through the volume element expressed in the Cartesian axes.

η
	

(
∂̄i, ∂̄j , ∂̄k

)
= η
	

(
∂xrc
∂xi

ēr,
∂xsc
∂xj

ēs,
∂xtc
∂xk

ēt

)
=

∂xrc
∂xi

∂xsc
∂xj

∂xtc
∂xk

εrst = ηijk (1.106)

which, by means of equation (1.104), we �nd that the coe�cient of
the volume element in the Cartesian coordinates ε

	
on the left�hand

side of the latter equation equals the determinant of the endomor-
phism of the basis changing, namely

∂xrc
∂xi

∂xsc
∂xj

∂xtc
∂xk

= |a′pm| = det

(
∂xpc
∂xm

)
(1.107)

It is easy to prove that the above determinant is the square
root of the determinant of the metric tensor related to the generic
coordinate system

{
xi
}
, i = 1, 2, 3. So we have

η
	

(
∂̄i, ∂̄j , ∂̄k

)
=
√
|gpq|εijk (1.108)

and in the same way the following contravariant expression can be
derived

η̄
(

d
	
i,d
	
j , d
	
k
)

=
√
|gpq|εijk (1.109)

where |gpq| = det (gpq) and |gpq| = 1
det(gpq)

= det (gpq).
The skew�symmetric tensor η

	
de�nes the vector product as

follows

ū× v̄ = ui∂̄i × vj ∂̄j = uiwj ∂̄i × ∂̄j = uivjηijkd
	
k (1.110)

and also

u
	
× v
	

= uid
	
i × vjd

	
j = uivjd

	
i × d

	
j = uivjη

ijk∂̄k (1.111)

We can use the tensor η
	
to compute in�nitesimal volume, area

and line elements. Let us begin putting the in�nitesimal vector
along the j�th coordinate curve as follows

dl̄j = dxj ∂̄j (j not summed) (1.112)

so that the in�nitesimal volume is given by

dV = η
	

(
dl̄1, dl̄2, dl̄3

)
(1.113)
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hence

dV = η
	

(
∂̄1, ∂̄1, ∂̄1

)
dx1dx2dx3 =

√
gε123dx

1dx2dx3 =
√
gdx1dx2dx3 (1.114)

The above expression for the volume element can also be written
as

dV =
[
dl̄1 × dl̄2

]
· dl̄3 (1.115)

that allows us to attain the same equation expressed in (1.114),
indeed we have[

dl̄1 × dl̄2
]
· dl̄3 = dx1dx2η123d

	
3
(
dx3∂̄3

)
=

dx1dx2dx3√gε123d
	

3
(
∂̄3

)
= dx1dx2dx3√gε123δ

3
3 =

√
gdx1dx2dx3 (1.116)

In�nitesimal area element

Taken two in�nitesimal vectors along two coordinate curves re-
spectively, the in�nitesimal area normal to the vector along the
third coordinate curve is given by

dA3 = |dl̄1 × dl̄2| = η123|d
	

3|dx1dx2 =
√
g

√
d
	

3 · d
	

3dx1dx2 =
√
gg33dx1dx2 (1.117)

and it is easy to obtain the general expression for any area element

dAi =
√
ggiidxjdxk (1.118)

where i is not summed and i 6= j 6= k.

In�nitesimal line element

A generic in�nitesimal line element dl2 is de�ned by

dl2 = |dl̄|2 = dl̄ · dl̄ =

dxi∂̄i · dxj ∂̄j = dxidxjgij (1.119)

whereas, a line element taken along the i− th coordinate curve can
be represented by the vector

dl̄i = dxi∂̄i (i not summed) (1.120)

and it measures √
g
(
dl̄i, dl̄i

)
= giidx

i (1.121)
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1.5 Covariant di�erentiation

In this section we shall brie�y introduce some notions concerning
the derivatives of objects so far discussed, i.e. vectors and tensors. In
order to di�erentiate these �elds the concept ofmanifold is required.
However, in this context it will be restricted to a rough and informal
description.

A manifold is an abstract space locally Euclidean so that, for
each point belonging to the manifold, there is a neighborhood that
can be described as the Euclidean vector space. When we deal with
manifolds, the intuitive idea of vectors obtained by simply subtract-
ing two points in the a�ne space might no longer be valid. Keep
in mind, for instance, a curved surface Q ∈ E, i.e. a two dimen-
sional manifold, and try do de�ne a vector entirely belonging to the
surface by subtracting two points. It is easy to see that the vector
cannot belong to the curved surface Q.

For this reason we need an additional space named tangent space
¯TE that allows us to extend the concept of vector spaces so far
discussed to manifolds. The tangent space is a Euclidean vector
space consisting of the tangent vectors of the curves through the
point of the manifold itself.

In order to use tools for computing volume, area and line el-
ements, i.e. to de�ne the metric tensor, we shall suppose that we
always deal with di�erentiable Reimannian manifolds. For a formal
mathematical de�nition see [5].

Given a general coordinate system X =
{
xi
}
, i = 1, 2, 3, let

ū be a vector �eld ū : E → ¯TE and τ : E → ⊗k ¯TE a k�order
contravariant tensor, we de�ne the covariant derivative ∇uτ of the
�eld τ with respect to the �eld ū as

∇ūτ = uj(∂jτ i1...ik + Γi1jhτ
hi2...ik + ....+ Γikjhτ

i1...ik−1h)∂̄i1 ⊗ ....⊗ ∂̄ik
(1.122)

Analogously, for a k�order covariant tensor τ : E → ⊗k ¯TE∗ the
covariant derivative becomes

∇ūτ = uj(∂jτi1...ik − Γhji1τhi2...ik − ....− Γhjikτi1...ik−1h)d
	
i1 ⊗ ....⊗ d

	
ik

(1.123)
where TE∗ is the cotangent space, namely the space that contains
the dual forms related to the vectors belonging to ¯TE.

The above expressions are presented only for the sake of com-
pleteness, while, the covariant derivative of vector �elds and second
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order tensors, will be often used in the mechanics of shell contin-
uums. In fact, for a second order covariant tensor τ = τhk∂̄h ⊗ ∂̄k
the derivative is

∇ūτ = uj
(
∂jτ

hk + Γhjtτ
tk + Γkjtτ

ht
)
∂̄h ⊗ ∂̄k (1.124)

while, for covariant tensors τ = τhkd
	
h ⊗ d

	
k the derivative becomes

∇ūτ = uj
(
∂jτhk − Γtjhτtk − Γtjkτht

)
d
	
h ⊗ d

	
k (1.125)

and for a mixed tensor τ = τhk d
	
k ⊗ ∂̄h the derivative is

∇ūτ = uj
(
∂jτ

h
k + Γhjtτ

t
k − Γtjkτ

h
t

)
d
	
k ⊗ ∂̄h (1.126)

Finally, for a vector �eld we have

∇ūv̄ = uj
(
∂jv

i + Γijhv
h
)
∂̄i (1.127)

and for the dual form

∇ūv
	

= uj
(
∂jvi − Γhijvh

)
d
	
i (1.128)

1.5.1 Grad, div, curl and Laplace's operator

Gradient. Consider a scalar �eld f : E → IR, we de�ne the gradi-
ent of f as the the vector

grad f = gij
∂f

∂xj
∂̄i (1.129)

In a Cartesian coordinate system the above operator simpli�es
in the following expression

grad f =
∂f

∂xi
ēi (1.130)

Divergence. We de�ne the divergence of a vector �eld v̄ as the
following scalar

div v̄ = tr (∇v̄) = vi,i + Γiijv
j (1.131)

In a Cartesian coordinate system the divergence is written as

div v̄ = tr (∇v̄) = vi,i (1.132)
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Curl. For the sake of simplicity, to de�ne this operator let us de-
note by ∇

	
a symbolic operator de�ned as ∇

	
= ∂

∂xi
d
	
i. Now the

curl of a vector �eld v̄ can be de�ned as the following vector

curl v̄ = ∇
	
× g[ (v̄) =

=
∂

∂xi
d
	
i × vjd

	
j = d

	
i × ∂

∂xi
(
vjd
	
j
)

= ηijkvj|i∂̄k (1.133)

where ηijk is the skew-symmetric tensor related to the vector
product (1.111) and vi|j stands for the covariant derivative

vi|j = vi,j − Γhijvh.

Hence, for a rectangular coordinate system, the curl assumes
the straightforward expression

curl v̄ = ∇
	
× v
	

= vj,iε
ijkēk = ω̄ (1.134)

where ω̄ = ωkēk and ωk = vj,iε
ijk. Expanding the latter ex-

pression leads to the following equivalent form

curl v̄ = det

 ē1 ē2 ē3
∂
∂x1

∂
∂x1

∂
∂x1

v1 v2 v3

 (1.135)

Laplace's operator. We de�ne the Laplace operator of a scalar
�eld f the following scalar

∇2f = gij
(
∂i∂jf − Γhij∂hf

)
(1.136)

In a rectangular Cartesian coordinate system the Laplacian
is written as

∇2f =
∂2f

∂x2
1

+
∂2f

∂x2
2

+
∂2f

∂x2
3

(1.137)

A useful remark

For practical uses of the above expressions concerning the di�er-
ential operators it is necessary to consider a unit system. Attention
to this aspect must be especially payed when curvilinear coordi-
nate systems are involved in our computations. For clarity's sake
we recall both expressions for a vector

v̄ = vi∂̄i (1.138)

v
	

= vid
	
i (1.139)
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and we point out that vectors (forms) forming the covariant (con-
travariant) basis

{
∂̄i
}
(
{

d
	
i
}
) are not dimensionless. Hence, the vec-

tor components do not represent a physical quantity, even though
their geometric properties are correct. So, in order to give vec-
tor components a physical meaning a normalization of the basis
is required. To this end we introduce the so called physical basis{
∂̄<i>

}
such as

v̄ = v<i>∂̄<i> (1.140)

Next we normalize the covariant basis as follows

∂̄<i> =
∂̄i
|∂̄i|

=
∂̄i√
gii

(i not summed) (1.141)

which, replaced into equation (1.138), allows us to de�ne the phys-
ical components of v̄ as follows

v<i> =
√
giiv

i (i not summed) (1.142)

On the other hand for the dual basis we have

d
	
<i> =

d̄i√
gii

(i not summed)

v<i> = vi
√
gii (i not summed)

As an example, in the following we present the expressions of
the di�erential operators discussed in section 1.5.1 for a cylindrical
coordinate system.

• Gradient

grad f = gρρ
∂f

∂xρ
∂̄ρ + gϑϑ

∂f

∂xϑ
∂̄ϑ + gzz

∂f

∂xz
∂̄z =

=
∂f

∂xρ
∂̄ρ +

1
ρ2

∂f

∂xϑ
∂̄ϑ +

∂f

∂xz
∂̄z =

=
∂f

∂xρ
∂̄<ρ> +

1
ρ

∂f

∂xϑ
∂̄<ϑ> +

∂f

∂xz
∂̄<z>

• Divergence

div v̄ = tr (∇v̄) = vρ,ρ + vθ,θ + vz,z +
1
ρ
vρ =

=
1
ρ

(
v<ρ> + v<θ>,θ

)
+ v<ρ>,ρ
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• Curl

curl v̄ = η11kv1|1∂̄k︸ ︷︷ ︸
=0

+η12kv2|1∂̄k + η13kv3|1∂̄k

η21kv1|2∂̄k + η22kv2|2∂̄k︸ ︷︷ ︸
=0

+η23kv3|2∂̄k

η31kv1|3∂̄k + η32kv2|3∂̄k + η33kv3|3∂̄k︸ ︷︷ ︸
=0

=

=
√
|gij |

((
v3|2 − v2|3

)
∂̄1 +

(
v1|3 − v3|1

)
∂̄2 +

(
v2|1 − v1|2

)
∂̄3

)
which by making use of the cylindrical notation as stated in
section 1.4.3 (i.e. 1 = ρ, 2 = ϑ, 3 = z), taking into account
that vi|j = vi,j due to the symmetry of Christo�el symbols
in equation (1.98) and considering the physical components,
allows the above expression to become

curl v̄ =
(

1
ρ
v<z>,ϑ − v<ϑ>,z

)
∂̄<ρ>+

+ (v<ρ>,z − v<z>,ρ) ∂̄<ϑ> +
1
ρ

(v<ϑ>,ρ − v<ρ>,ϑ) ∂̄<z>

• Laplacian

∇2f =
∂2f

∂ρ2
+

1
ρ2

∂2f

∂ϑ2
+
∂2f

∂z2
+

1
ρ

∂f

∂ρ

Note that in the latter expression no normalization has been
used.

The divergence theorem

Consider a generic region V ⊂ E bounded by the smooth closed
surface S. Given a continuously di�erentiable vector �eld v̄ ∈ V, we
have ∫

V
div v̄ dV =

∫
S
v̄ · n̄ dS (1.143)

where n̄ is the outward pointing unit normal vector of the boundary
S.
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In components the above theorem becomes∫
V

(
vj,j + Γjjhv

h
)

dV =
∫
S
vini dS (1.144)

The divergence theorem holds for tensor �elds. For a mixed II�
order tensor τ = τhk

(
d
	
k ⊗ ∂̄h

)
, for example, the theorem states∫

V
div τ dV =

∫
S
τ (n

	
) dS (1.145)

where the k�th covariant component is∫
V

(
τhk,h + Γhhtτ

t
k − Γthkτ

h
t

)
dV =

∫
S
τhk nh dS (1.146)

While for a II�order contravariant tensor τ = τhk
(
∂̄h ⊗ ∂̄k

)
it

becomes∫
V

(
τhk,h + Γhhtτ

tk + Γkhtτ
ht
)

dV =
∫
S
τhknh dS (1.147)

1.6 A�ne space

Here we shortly introduce the notion of a�ne space.
Let Ē be a n�dimensional vector space. We de�ne the a�ne

space associated to Ē the set of points E equipped with the trans-
lation +, such as

+ : E × Ē → E : (p, ū) 7→ p+ ū = p′ ∈ E (1.148)

where ū = (p′ − p) ∈ Ē represents a free vector, while the pairs
(p, ū) form applied vectors.

1.6.1 Free and applied vectors

This section is restricted to the geometrical interpretation of
vectors belonging to the Euclidean space and expressed through
the rectangular coordinate system. So that we have

gij = gij = gij = δij (1.149)

and
ηijk = εijk (1.150)
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From a geometric point of view an applied vector is represented

by a line segment
−−→
AB from point A to point B, where, with respect

to equation (1.148), A = p and B = p′. If B is moved to the position
C, then the whole translation from A to C represents the sum of

the partial translations
−−→
AB and

−−→
BC.

Putting
−−→
AB = ā and

−−→
BC = b̄ we notice that if they were applied

in the same point, see �gure 1.4, then a practical rule can be used
to carry out the addition ā + b̄. It consists in moving the vector b̄,
in such a way to be kept parallel to itself, into a new position so
that its starting point coincides with the ending point of ā. Thus,
the line segment from A to the end point of b̄ (in the new position)
represents the addition ā+ b̄. See �gure 1.4. This rule is known as
parallelogram rule because ā and b̄ form the sides of a parallelogram
and ā+ b̄ is one of the diagonals.

Figure 1.4: Addition of two applied vectors.

The subtraction of two vectors applied in the same point can
be seen as c̄ = ā +

(
−b̄
)
and so it is carried out by means of the

procedure described for the addition. The vector c̄ = ā − b̄ will be
given by the line joining the starting point of ā to the end point of
−b̄. See �gure 1.5.

The addition of two applied vectors has the following properties

1. ā+ b̄ = b̄+ ā;

2.
(
ā+ b̄

)
+ c̄ = ā+

(
b̄+ c̄

)
;

3. (λ+ µ) ā = λā+ µā;

4. λ (µā) = (λµ) ā;

5. λ
(
ā+ b̄

)
= λā+ λb̄;
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Figure 1.5: Subtraction of two applied vectors.

where ā, b̄, c̄ are applied vectors in Ē and λ, µ ∈ IR.
For an applied vector it is possible to de�ne norm, direction,

sign:

norm (modulus or length): is the length, measured by a �xed

unit system, of the line segment
−−→
AB;

direction: is the direction of the line passing through A and B;

sign: speci�es the sign, i.e.
−−→
AB = -

−−→
BA.

From the preceding discussion about the metric tensor it is

known that the length (modulus) of a vector ā (=
−−→
AB) is the square

root of the scalar product by itself

‖ ā ‖=
√
g
	

(ā, ā) =
√
ā · ā (1.151)

Recalling that the metric tensor is a bilinear symmetric positive
de�nite form, the following properties can be derived

1. ā · ā =‖ ā ‖2> 0 se ā 6= 0̄;

2. ā · b̄ = b̄ · ā;

3. c̄ ·
(
ā+ b̄

)
= c̄ · ā+ c̄ · b̄;

4. λ
(
ā · b̄

)
= (λā) · b̄ = ā ·

(
λb̄
)
;

The cross product of two applied vectors ā, b̄ ∈ Ē in a Cartesian
coordinate system is carried out by using the general rule given in
equation (1.110), so that

w̄ = ā× b̄ w̄ ∈ V̄ (1.152)

where
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modulus: ‖ w̄ ‖=‖ ā ‖‖ b̄ ‖ sin θ, where θ denotes the angle
between ā and b̄;

direction: normal to the plane to which ā and b̄ belong;

sign: follows the right hand rule.

Moreover, by virtue of the skew�symmetric tensor εijk, the vec-
tor product vanishes when either one of the two vectors vanishes or
when the two vectors are parallel. See �gure 1.6.

Figure 1.6: Vector product for Cartesian applied vectors.

The following properties can be also enunciated

1. ā× b̄ = −b̄× ā;

2.
(
λā+ µb̄

)
× c̄ = λ (ā× c̄) + µ

(
b̄× c̄

)
.

1.7 Surfaces

Let E be the a�ne Euclidean space. The submanifold Q ⊂ E is
a surface if dimQ = 2.

Suppose Q ⊂ E is a surface which can be described by an in-
duced coordinate system of dimension q = m − k, where m is the
dimension of E and k denotes the number of constraints (codimen-
sion of Q). Since Q is a surface we have m = 3, k = 1, q = 2. The
induced coordinate system is given by

X† : Q→ IRq : p 7→ xα(p) (1.153)
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From now on the quantities living on Q will be distinguished by
the symbol † and the components will be written using superscripts
and subscripts, running from 1 to 2, in Greek letters. The Latin
indices will denote components of quantities that are applied on Q
but lie out, namely belonging to the vector space ¯TQE.

The unit normal vector is de�ned as follows

n̄ : Q→ ¯TQ⊥ so that g (n̄, n̄) = 1. (1.154)

where g is the metric tensor de�ned on ¯TE and ¯TQ⊥ is the orthog-
onal space.

Analogously, on the surface Q we can de�ne the the induced
metric as

g† : ¯TQ× ¯TQ→ IR

that in components3 becomes

g† = gαβd
	
α ⊗ d

	
β

Given two vectorial �elds ū : Q → ¯TQ and v̄ : Q → ¯TQ, the
covariant derivative of v̄ with respect to ū can be split as follows

∇ūv̄ = ∇‖ūv̄ +∇⊥ū v̄ (1.155)

where

∇‖ : ¯TQ× ¯TQ→ ¯TQ (1.156)

∇⊥ : ¯TQ× ¯TQ→ ¯TQ⊥ (1.157)

The application ∇‖ is called second fundamental form of the
surface. For further details see [5] and [3].

We now de�ne the Weingarten4 map L as the following endo-
morphism

L := ∇n̄ : ¯TQ→ ¯TQ : ū 7→ ∇ūn̄ (1.158)

3In some books the covariant components of the metric tensor g† are also
denoted as g11 = E, g12 = F, g22 = G.

4Julius Weingarten (March 2, 1836 Berlin - June 16, 1910 Freiburg) was a
German mathematician.

Source: http://www-history.mcs.st-andrews.ac.uk/.
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In addition to that, we de�ne the total curvature (Gauss curva-
ture) K and the mean curvature H of a surface Q as follows

K := detL : Q→ IR (1.159)

H := trL : Q→ IR (1.160)

Finally, eigenvalues of L are de�ned principal curvatures. See
[5].

Let L
	
be the second order covariant tensor related to the Wein-

garten endomorphism L by the metric tensor g†, so that

L
	

:= ∇n
	

: ¯TQ× ¯TQ→ IR : (ū, v̄) 7→ g (L (ū) , v̄) = ∇ūn̄ · v̄ (1.161)

where n
	

= g[ (n̄).
The following di�erentiation

0 = ∇ū (g (v̄, n̄)) = g (∇ūv̄, n̄) + g (v̄,∇ūn̄)⇒ (1.162)

g (∇ūv̄, n̄) = −g (v̄,∇ūn̄) (1.163)

proves that the scalar quantity L
	

(ū, v̄) represents the normal com-
ponent to the surface Q of the covariant derivative, namely

∇ūv̄ = ∇‖ūv̄ − L
	

(ū, v̄) n̄ (1.164)

Dealing with mechanics of shell continuums, equation (1.164)
will be often used. Hence, in the following we expand its expression
in components.

Suppose {∂̄α}, α = 1, 2 is a basis related to the induced coordi-
nate system describing the surface, we have

∇∂̄β ∂̄α = ∇†
∂̄β
∂̄α − L

	

(
∂̄β, ∂̄α

)
n̄ (1.165)

and for both right hand terms we have, respectively

∇†
∂̄β
∂̄α = d

	
γ
(
∂̄β
) (
∂γ
(
d
	
ω
(
∂̄α
))

+ Γωγλd
	
λ
(
∂̄α
))
∂̄ω (1.166)

= δγβ

(
Γωγλδ

λ
α

)
∂̄ω = Γωβα∂̄ω (1.167)

L
	

(
∂̄β, ∂̄α

)
=
(
L
(
∂̄β
)
· ∂̄α
)

= ∇∂̄β n̄ · ∂̄α (1.168)

= Lωβ ∂̄ω · ∂̄α = Lωβgωα = Lβα (1.169)
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Finally, equation (1.165) in components becomes

∇β ∂̄α = Γωβα∂̄ω − Lβαn̄ (1.170)

Note that in the remainder of this book, for the sake of brevity,
we will use ∇β· instead of ∇∂̄β ·.

Analogously, for an element of the controvariant basis, recalling
the general equation for covariant derivatives, and considering the
above Gauss splitting, we have the following expression

∇βd
	
α = −Γαβλd

	
λ − Lαβn	

(1.171)

Often, for instance in the case of shell theory, we will deal with
vector �elds that do not belong to the tangent space, so it is useful
to present an example of derivative of vectors applied in Q but lying
out of the tangent space. Namely, suppose that v̄ ∈ ¯TQE. We can
decompose the �eld v̄ into the tangent and orthogonal component
as follows

v̄ = v̄‖ + v̄⊥ (1.172)

that in components is written as

v̄ = vα∂̄α + vξn̄ (1.173)

Hence, given ū ∈ ¯TQ the derivative of v̄ with respect to ū is

∇ūv̄ = ∇ūv̄‖ +∇ūv̄⊥ = ∇†ūv̄‖ − L
	

(
ū, v̄‖

)
n̄+∇ūv̄⊥ (1.174)

that in components turns into

∇ūv̄ = uβ
(
∂βv

α + Γαβγv
γ + vξLαβ

)
∂̄α + uβ

(
vξ,β − L	αβ

vα
)
n̄

(1.175)
In the same way, the dual form v

	
∈ T ∗QE can be di�erentiated

as follows

∇ūv
	

= ∇ūv
	
‖ +∇ūv

	
⊥ = ∇†ūv

	
‖ − L

	
(ū, v

	
‖)n
	

+∇ūv⊥ (1.176)

that in components becomes

∇ūv
	

= uβ
(
∂βvα − Γγαβvγ + vξL

	
βγ

)
d
	
γ + uβ

(
vξ,β − Lαβvα

)
n
	

(1.177)
Examples of surfaces will be provided in appendix A, where,

within the application of the shell theory, the above results will be
applied to some well known geometries.





Chapter 2

Analysis of strain

This chapter is devoted to the classical strain theory for deformable

continuums. In order to o�er a comprehensive approach, the �rst part will

be treated in curvilinear coordinates, then results in Cartesian coordinates

will be obtained as a special case.

2.1 Introduction

Before introducing the de�nition of strain it is useful to give
some preliminary concepts and de�nitions.

Let us begin with the de�nition of body.
A body C ⊂ E consists of a set of particles embedded in the

three�dimensional Euclidean space. Each particle p ∈ C, i.e. a ma-
terial point, can be put in one�to�one correspondence with a triplet
of scalars that univocally determine the position of such a point.
Namely, for any point p included in the body there exists a coordi-
nate system X : C ⊂ E → IR3. See also the more general expression
(1.60) on section 1.4.

From the notions of body and time we can derive the concept
con�guration. Con�gurations are regions V of the three�dimensional
Euclidean space E that can be occupied by the body in a particular
instant. Thus we have

V ≡ (C, t) = {(p, t) |p ∈ C} (2.1)

where V is also called a spacial domain for �xed t.
It is assumed that:

• Con�gurations are open connected sets or domains in the Eu-
clidean space.

• On varying of the time t, the con�gurations of one and the
same body maintain a continuous one�to�one correspondence
between di�erent positions of one and the same particle.

Claudio Borri, Michele Betti, Enzo Marino (a cura di), Lectures on Solid Mechanics, ISBN 978-88-8453-
854-3 (online), ISBN 978-88-8453-853-6 (print), © 2008 Firenze University Press
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2.2 Deformation

Now, beginning with an intuitive statement, we can introduce
the de�nition of strain. When the relative position of two points
included in a continuous media is altered, we say that the body is
strained. Hence, analysis of strains means to evaluate the change
of the relative distance between points; this is also called deforma-

tion1.

2.3 Strain tensor in general coordinates

Let V be the region taken by an unstrained state of a body at
time t, so that

V ≡ (C, t) (2.2)

and V ′ the con�guration of the body in the strained state at instant
t′, that is

V ′ ≡
(
C, t′

)
(2.3)

Consider a Cartesian coordinate system equipped with the unit
normal basis {ēi}, so that for any point p in V and p′ in V ′ the
positional vectors can be written respectively as

r̄ = (p− o) = xicēi (2.4)

r̄′ =
(
p′ − o

)
= yicēi (2.5)

We assume that each point in V ′ is related to its original position
in V, and vice versa, by the following relations

yic = yic
(
x1
c , x

2
c , x

3
c , t
)

(2.6)

xic = xic
(
y1
c , y

2
c , y

3
c , t
)

(2.7)

In order to avoid penetrations or separations of the material
particles it is necessary that the transformation of points in V into
points in V ′ is one�to�one. Namely, to ensure the existence of the
single�valued inverse of equation (2.6) (or (2.7)) it is su�cient to

1We know that in nature all materials are deformable, but sometimes we
will refer to the abstraction of non-deformable (or rigid) body . This abstraction
assumes that for every pair of points belonging to the continuum, the relative
distance remains unvaried throughout the history of the motion.
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assume that the functions yic and xic are continuous and di�eren-
tiable as many times as required and the Jacobian is greater than
zero2. We write, accordingly

| ∂y
i
c

∂xjc
| > 0

Consider now a generic curvilinear coordinates systemX = {xi}
so that

r̄ = xi∂̄i = xid
	
i (2.8)

where {∂̄i} and {d
	
i} are the covariant and contravariant bases re-

lated to the curvilinear system and xi = ri, ri = xi. See �gure
2.1.

Points belonging to the initial con�guration V can also be re-
lated to the curvilinear system of coordinates as follows

xic = xic
(
x1, x2, x3

)
(2.9)

where xic are single�valued and di�erentiable as many times as re-
quired3.

Moreover, we can use the curvilinear coordinates to describe the
body in the strained con�guration V ′, so that

yic = yic
(
x1, x2, x3

)
(2.10)

According to section 1.4.2, through the Jacobian matrices, we
can compute the metric tensors g and g′ associated to the curvilin-
ear coordinate system for both con�gurations, respectively.

For the unstrained con�guration the covariant components of
the metric tensor are

gij = ∂̄i · ∂̄j =
∂xhc
∂xi

ēh ·
∂xkc
∂xj

ēk = (2.11)

=
∂xhc
∂xi

∂xkc
∂xj

δhk =
∂xhc
∂xi

∂xhc
∂xj

(2.12)

2The Jacobian of the function yic = yic
(
xjc
)
is the determinant of the matrix

whose i− th row lists all the �rst-order partial derivatives of yic.
3With the exception of singular points, curves, surfaces.
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Figure 2.1: Unstrained and strained body states.

while the contravariant components are

gij = d
	
i · d
	
j =

∂xi

∂xhc
e
	
h · ∂x

j

∂xkc
e
	
k = (2.13)

=
∂xi

∂xhc

∂xj

∂xkc
δhk =

∂xi

∂xhc

∂xj

∂xhc
(2.14)

and �nally the mixed components are

gij = d
	
i
(
∂̄j
)

=
∂xi

∂xhc
e
	
h · ∂x

k
c

∂xj
ēk = (2.15)

=
∂xi

∂xhc

∂xkc
∂xj

δhk =
∂xi

∂xhc

∂xhc
∂xj

(2.16)

For the strained con�guration the covariant components of the
metric tensor are

g′ij = ∂̄′i · ∂̄′j =
∂yhc
∂xi

ēh ·
∂ykc
∂xj

ēk = (2.17)

=
∂yhc
∂xi

∂ykc
∂xj

δhk =
∂yhc
∂xi

∂yhc
∂xj

(2.18)

the contravariant components are

g′ij = d
	
′i · d

	
′j =

∂xi

∂yhc
e
	
h · ∂x

j

∂ykc
e
	
k = (2.19)

=
∂xi

∂yhc

∂xj

∂ykc
δhk =

∂xi

∂yhc

∂xj

∂yhc
(2.20)
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and �nally the mixed components are

g′ij = d
	
′i (∂̄′j) =

∂xi

∂yhc
e
	
h · ∂y

k
c

∂xj
ēk = (2.21)

=
∂xi

∂yhc

∂ykc
∂xj

δhk =
∂xi

∂yhc

∂yhc
∂xj

(2.22)

At the beginning of this chapter we said that the aim of the
analysis of strain is to evaluate the change of length between two
points in a continuous medium. We are now mathematically able
to evaluate this di�erence

dl′2 − dl2 (2.23)

where dl′2 = |dl̄′|2 and dl2 = |dl̄|2 are the arc lengths of the strained
and unstrained states, respectively. Namely, the vector dl̄, joining
the points p0 and p, during the the transformation, is carried into
another vector dl̄′. These two vectors di�er in direction and magni-
tude. See �gure 2.2.

By using equation (1.119) on page 23, we can write the above
line elements with the help of the metric tensors for both con�gu-
rations as

dl2 = gijdx
idxj (2.24)

dl′2 = g′ijdx
idxj (2.25)

then, the di�erence

dl′2 − dl2 =
(
g′ij − gij

)
dxidxj (2.26)

We now de�ne a symmetric tensor named the strain tensor, as

γij =
1
2
(
g′ij − gij

)
(2.27)

so that

dl′2 − dl2 = 2γijdxidxj (2.28)

The strain tensor is obtained by subtracting two bilinear forms
so that it is still a bilinear form. Therefore, given two vectors p̄0

and q̄0 at a �xed time t0 (let us say the initial unstrained state),
the strain tensor just measures the di�erence between the scalar
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Figure 2.2: Measure of strain.

.

product of the vectors p̄ and q̄ at a generic time t (that identi�es
the strained state) and the scalar product at the initial state.

γ
	

: Ē × Ē → IR (2.29)

(p̄, q̄) 7→ γ
	

(p̄, q̄) = g′ (p̄, q̄)− g (p̄, q̄) (2.30)

so that

γ (p̄, q̄) = phqkγij
(
d
	
i ⊗ d

	
j
) (
∂̄h, ∂̄k

)
=

= phqkγijδ
i
hδ
j
k = γijp

iqj . (2.31)

Points in V and V ′ are univocally determined by the positional
vectors r̄ and r̄′ respectively. With respect to the generic curvilinear
coordinate system X we have

r̄ = xi∂̄i (2.32)

r̄′ = yi∂̄i (2.33)

hence, the position p′ relative to p is denoted ū and it is called the
displacement vector

ū = r̄′ − r̄ (2.34)

Considering now that the basis related to the curvilinear coor-
dinates is given using equation (1.76), we have in the following an
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equivalent expression

∂̄i =
∂r̄

∂xi
(2.35)

∂̄′i =
∂r̄′

∂xi
(2.36)

and by considering the relation (2.34) it becomes

∂̄′i = r̄′,i = r̄,i +∇iū (2.37)

where the comma denotes the partial derivative and ∇ indicates
the covariant derivative.

γij =
1
2
(
∂̄′i · ∂̄′j − ∂̄i · ∂̄j

)
= (2.38)

=
1
2
((
∂̄i +∇iū

)
·
(
∂̄j +∇j ū

)
− ∂̄i · ∂̄j

)
= (2.39)

=
1
2
(
∂̄i · ∇j ū+ ∂̄j · ∇iū+∇iū · ∇j ū

)
(2.40)

In fact, recalling the general expression (1.122) for this di�eren-
tiation, the above equation turns into

∂̄′i = r̄′,i = ∂̄i +
(
um,i + Γmihu

h
)
∂̄m (2.41)

where the Christo�el symbols are referred to the metric tensor re-
lated to the curvilinear coordinates for the original con�guration V
of the body.

Finally, using the de�nition of strain tensor, with some calcu-
lations we can obtain the expression of the �nite strain tensor in
general coordinates as

γij =
1
2

(
∇jui +∇iuj +∇iuh∇juh

)
(2.42)

Expanding the above derivatives the strain tensor assumes the
following expression

γij =
1
2

(
ui,j + uj,i + 2Γhjiuh

)
+

1
2

(
uk,iu

k
,j + uk,iΓkjsu

s + uk,jΓkisu
s + ΓpihupΓ

h
jsu

s
)

(2.43)
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For Cartesian coordinate systems we could repeat exactly the
above procedure to obtain the strain tensor, but this is equivalent
to putting zero all the Christo�el symbols in equation (2.43). So
that for rectangular coordinate systems the strain tensor assumes
the following expression

γij =
1
2

(ui,j + uj,i + uk,iuk,j) (2.44)

where we remind the reader again that in the rectangular coor-
dinates the position of the indices does not make any di�erence
because gij = δij .

2.3.1 Examples of strain in Cartesian coordinates

Stretching ratio

Let us de�ne the stretching ratio δl as follows

δl =
dl′ − dl
dl

=
dl′

dl
− 1 (2.45)

Namely, suppose we have two points in the unstrained state the
di�erence of which gives a vector dl̄ = dxiēi. The corresponding
vector in the strained state is dl̄′ = dx′iē′i. Therefore the stretching
ratio δl gives the relative di�erence between the length of the vectors
dl̄ and dl̄′.

By means of the de�nition (2.28) we have

2
γijdx

idxj

dxkdxk
=
dl′2

dl2
− 1 (2.46)

then

δl + 1 =

√
1 + 2

γijdxidxj

dxkdxk
(2.47)

so that the stretching ratio can be written as follows

δl =

√
1 + 2

γijdxidxj

dxkdxk
− 1 (2.48)

Considering a simple extension along one of the xi-axis we have
dl̄ = ēi, the stretching turns into

δi =
√

1 + 2γii − 1 (2.49)
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Angular dilatation

Let us consider the vectors dl̄ and ds̄ at a position p in the un-
strained state which are deformed into vectors dl̄′ and ds̄′, respec-
tively. The di�erence between the angle amid the deformed vectors
and the unstrained vectors is called angular dilatation. For the sake
of simplicity, suppose that dl̄ = ē1 and ds̄ = ē2. We de�ne the
angular dilatation the following di�erence

ω12 =
π

2
− ϕ′12 (2.50)

Figure 2.3: Angular dilatation.

See �gure 2.3.

The scalar product of the strained vectors is

dl̄′ · ds̄′ = dl′ds′ cosϕ′12 (2.51)

and the modulus of both strained vectors can be written by means
of the preceding result for the linear dilatation

dl′ = (1 + δ1) dl = 1 + δ1 (2.52)

ds′ = (1 + δ2) ds = 1 + δ2 (2.53)

so that equation (2.51) becomes

dl̄′ · ds̄′ = (1 + δ1) (1 + δ2) cosϕ′12 (2.54)
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The left hand term of the latter expression can be written with
the help of the strain tensor, so that by recalling equation (2.27) we
have

dl̄′ · ds̄′ = (δij + 2γij) dlidsj = 2γ12 (2.55)

Finally equation (2.54) turns into

2γ12 = (1 + δ1) (1 + δ2) cosϕ′12 (2.56)

By virtue of the identity sinω12 = cosϕ12, the angular dilatation
becomes

sinω12 =
2γ12

(1 + δ1) (1 + δ2)
(2.57)

and naturally the above formula can be used to compute also the
dilatations ω23 and ω31.

Area dilatation

Vectors dl̄ and ds̄ at a position p in the unstrained state de-
�ne an area element dA which is deformed into the area element
dA′ de�ned by the strained vectors dl̄′ and ds̄′. We de�ne the area
dilatation ratio the following coe�cient

α =
dA′ − dA

dA
(2.58)

We may suppose for simplicity that dl̄ = ē1 and ds̄ = ē2. See
�gure 2.4.

Figure 2.4: Area dilatation.
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As well known, we have

dA′ = |dl̄′ × s̄′| = dl′ds′ sinϕ′12 (2.59)

and, recalling equations (2.52) and (2.53), the latter expression be-
comes

dA′ = dl′ds′ sinϕ′12 = (1 + δ1) (1 + δ2) sinϕ′12 (2.60)

�nally, through the geometrical relation cosω12 = sinϕ12 it is easy
to reach the following expression for the �nite area dilatation ratio

α = (1 + δ1) (1 + δ2) cosω12 − 1 (2.61)

that can be alternatively written as

α = (1 + δ1) (1 + δ2)
√

1− sin2 ω12 − 1 =

=
√

(1 + δ1) (1 + δ2)− 4γ2
12 (2.62)

Volume dilatation

We de�ne the volume dilatation ratio the coe�cient

ν =
dV ′ − dV

dV
(2.63)

As in the preceding cases, let us suppose that the initial un-
strained volume is given by the following unit vectors

dV = [ē1 × ē2] · ē3 = ε123 = 1 (2.64)

Thus, the volume dilatation turns into

ν = dV ′ − 1 (2.65)

For the strained volume we have

dV ′ =
[
dl̄′1 × dl̄′2

]
· dl̄′3 = (2.66)

= dl′1dl
′
2dl
′
3 = (2.67)

= (1 + δ1) (1 + δ3) (1 + δ3) (2.68)

Finally, the volume dilatation ratio becomes

ν = (1 + δ1) (1 + δ3) (1 + δ3)− 1 (2.69)
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2.3.2 In�nitesimal deformations

In the preceding section we have discussed the theory of �nite
deformations. Now, if all the components of the displacements ū and
the displacement gradient tensor ui,j are very small we may neglect
the squares and the product of these quantities in comparison with
the �rst order derivatives themselves. So equation (2.99) becomes

εij =
1
2

(ui,j + uj,i) (2.70)

where ε denotes a symmetric second-order tensor named in�nitesi-

mal strain tensor .

Explicit compatibility equations

Now we want to know if any state of given strain εij yields a
displacement �eld uj at every point p ∈ V. To ensure that we have
found equations (2.70) and to solve the di�erential equations system
we discard the components of displacements ui as follows

2εij,hk = ui,jhk + uj,ihk (2.71)

2εhk,ij = uh,kij + uk,hij (2.72)

−2εih,jk = −ui,hjk + uh,ijk (2.73)

−2εjk,ih = −uj,kih + uk,jih (2.74)

Summing equations (2.71) to (2.74) yields the necessary condi-
tion to ensure the existence of the �eld ū.

εij,hk + εhk,ij − εih,jk − εjk,ih = 0 (2.75)

In�nitesimal stretching ratio

When we work in the frame of linear deformations, i.e with the
in�nitesimal strain tensor, the stretching ratio is given by the �rst
order approximation of the ratio in (2.49), namely

δi =
√

1 + 2εii − 1 ' 1 +
2εij

2
− 1 = εii (2.76)
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In�nitesimal angular dilatation

We invoke again the �rst order approximation of expression
(2.57), so that, by replacing the �nite strain tensor with the in-
�nitesimal strain tensor and by using the latter result for the stretch-
ing ratio, the angular dilatation assumes the following expression

ω12 '
2ε12√

1 + 2ε11
√

1 + 2ε22
' 2ε12 (2.77)

With the proper subscripts shifting we can also write the angular
dilatations ω23 and ω31.

In�nitesimal area dilatation

Recalling equation (2.60), that is

α = (1 + δ1) (1 + δ2) cosϕ′12

the in�nitesimal area dilatation is obtained, as usual, by neglecting
the second order terms, so that

α ' δ1 + δ2 = ε11 + ε22 (2.78)

In�nitesimal volume dilatation

From equation (2.69), the �rst order approximation leads to the
following expression for the in�nitesimal volumetric dilatation ratio

ν ' δ1 + δ2 + δ3 ' ε11 + ε22 + ε33 = εijδ
ij (2.79)

2.3.3 Deformation and rigid body motion

It is rather intuitive to understand that the motion of a �exible
body can be made up of rigid translations and rotations as well as
deformations. To see that from a mathematical point of view, con-
sider the displacement �eld ū in a point p, as de�ned in (2.34), being
de�ned by the �rst order approximation from the displacement ū0

on p0.
uj = u0j + uj,idxi

where it is clear that the translational component of the motion is
wholly yielded by u0j . Consequently the remaining part must store
the deformation and rigid rotation components.
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By observing that the gradient of ū may be also written as
follows

uj,i =
1
2

(uj,i + ui,j) +
1
2

(uj,i − ui,j) (2.80)

the displacement �eld becomes

uj = u0j +
1
2

(uj,i + ui,j) dxi +
1
2

(uj,i − ui,j) dxi =

= u0j + εjidxi + ωjidxi (2.81)

where it has been put ωji = 1
2 (uj,i − ui,j).

So, through the latter expression, the splitting of the displace-
ment �eld ū appears clear:

• u0j : pure translation;

• εij = 1
2 (uj,i + ui,j): pure deformation;

• ωji = 1
2 (uj,i − ui,j): rigid body rotation.

In order to give a physical meaning to the operator curl intro-
duced by equation (1.133) on page 26, we can observe that

curl ū = εkijuj,iēk =

=
1
2
εkij (uj,i + ui,j)︸ ︷︷ ︸

=0

+
(

1
2
εkij (uj,i − ui,j)

)
ēk =

= εkijωjiēk = ωkēk (2.82)

Using the identity (1.105) it is possible to prove4 that the skew-
symmetric component of a tensor is given by

ωji =
1
2
εkijωk (2.83)

thus the rigid rotation turns into

ωjidxi =
1
2
εkijωkdxi =

1
2
ω̄ × dl̄ (2.84)

where ω̄ = curl ū and dl̄ = dxiēi.

4εklpωk = εklpεkijωji = (δliδpj − δljδpi)ωji = 2ωpl.
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2.4 Shell continuum

We de�ne a shell�shaped region modeled on a surface Q and
with thickness 2ε as a continuous medium G (ε) embedded in the
Euclidean space E each point of which is determined through a
coordinate system {xα, ξ} : G (ε)→ IR3. Therefore, given p? ∈ G (ε)
it is de�ned by its position p normally projected on Q - by using
the surface coordinate system introduced in (1.153) - and by the
normal coordinate ξ taken along the unit normal vector n̄. In fact
we have

p? 7→ (xα (p) , ξ (p)) (2.85)

The basis induced by the coordinate system {xα, ξ} is
{
∂̄α, n̄

}
.

It is worthwhile pointing out that mechanics of shells - by virtue
of such above statements - is traced back to the theory of surfaces,
in fact vectors and tensors �elds belonging to ¯TQE will always be
split into the parallel and normal components.

Note also that the symbol ? denotes quantities belonging to the
shell continuum.

2.4.1 General assumptions

The shell theory here introduced is based on the following hy-
potheses

Hypothesis 1 The shell is su�ciently thin, so that

2ε
L
� 1 L = min {Rmin, Lmin} (2.86)

where Rmin and Lmin are the minimum radius and a typical dimen-
sion of the shell structure, respectively.

Hypothesis 2 (Linear theory) Displacements are in�nitesimally

small such that their products can be neglected in the kinematic ex-

pressions. This assumption allows us to write the equilibrium equa-

tions in the unstrained shell con�guration.

Hypothesis 3 The material �laments along the coordinate ξ re-

main straight throughout the deformation and no length change is

allowed. Namely, the distance between p? ∈ G(ε) and the surface Q
is unaltered

ξ = const. (2.87)
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Hypothesis 4 (Kirchhoff�Love theory) The line elements ini-

tially normal to the shell's mid�surface remain normal to it during

the deformation.

ḡ
(
∂̄αd , n̄d

)
= 0 (2.88)

where the subscript d is denotes quantities related to deformed con-
�guration.

Note that the last hypothesis is nothing but the extension to a
two�dimensional model of the Bernoulli theory for beams.

2.4.2 Strain tensor

A generic point p? ∈ G(ε) is determined by the vector r̄? referred
to the global Cartesian axes, so that

r̄? = r̄ + ξn̄ (2.89)

where ξ ∈ (−ε, ε). See �gure 2.5.
Let us suppose now that a quasi�static motion produces a de-

formed shell con�guration points of which are univocally deter-
mined by the vector

r̄?d = r̄d + ξdn̄d (2.90)

where ξd ∈ (−ε, ε).
The displacement �eld is obtained by subtracting equations

(2.89) and (2.90), so that

r̄?d − r̄? = r̄d − r̄ + ξ (n̄d − n̄) (2.91)

where we have made use of hypothesis 3. Equation (2.91) allows us
to de�ne the positional �eld as a function of two vector �elds

v̄ = r̄d − r̄ v ∈ ¯TQE (2.92)

w̄ = n̄d − n̄ w ∈ ¯TQ (2.93)

To obtain the strain tensor no more theoretical concepts are
required. We already know the de�nition and we just need to com-
pute the metric tensors associated to the coordinate systems in the
strained and the original con�gurations, so we have

γij =
(
γαβ γα3

γ3α γ33

)
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Figure 2.5: Two dimensional sketch of the displacement �eld for
Kirchho��Love shells.

where

γαβ =
1
2
(
g?αβd − g

?
αβ

)
(2.94)

γα3 = γ3α =
1
2
(
g?α3d

− g?α3

)
(2.95)

γ33 =
1
2

(n̄d · n̄d − n̄ · n̄) = 0 (2.96)

According to equation (1.79) we have

g?αβd = ∂̄?αd · ∂̄
?
βd

(2.97)

and
g?αβ = ∂̄?α · ∂̄?β (2.98)

where, recalling equation (1.76), we can write

γαβ =
1
2
[
∂̄?αd · ∂̄

?
βd
− ∂̄?α · ∂̄?β

]
=

=
1
2
[(
∂̄αd + ξ∇αn̄d

)
·
(
∂̄βd + ξ∇βn̄d

)]
+

− 1
2
[(
∂̄α + ξ∇βn̄

)
·
(
∂̄β + ξ∇αn̄

)]
=

=
1
2
[
∂̄αd · ∂̄βd + ∂̄αd · ξ∇βn̄d + ∂̄βd · ξ∇αn̄d + ξ2∇αn̄d · ∇βn̄d

]
− 1

2
[
∂̄α · ∂̄β + ∂̄α · ξ∇βn̄+ ∂̄β · ξ∇αn̄+ ξ2∇αn̄ · ∇βn̄

]
(2.99)
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where we realize that the tensor γαβ can be split in three parts as
follows

γαβ = ααβ + ξωαβ + ξ2ϕαβ (2.100)

We de�ne the stretching strain tensor as

ααβ =
1
2
[
∂̄αd · ∂̄βd − ∂̄α · ∂̄β

]
=

1
2

(gαβd − gαβ) (2.101)

next, the �rst bending strain tensor as

ωαβ =
1
2
[
∂̄αd · ∇βn̄d + ∂̄βd · ∇αn̄d − ∂̄α · ∇βn̄− ∂̄β · ∇αn̄

]
(2.102)

and the second bending strain tensor as

ϕαβ =
1
2

[∇αn̄d · ∇βn̄d −∇αn̄ · ∇βn̄] (2.103)

Considering now that the displacements are small enough to be
negligible the second order terms

∇αv̄ · ∇β v̄ ' 0
∇αv̄ · ∇βw̄ ' 0

and recalling equations (2.92) and (2.93), the stretching and the
bending strain tensors become, respectively

ααβ =
1
2
(
∂̄α∇β v̄ · ∂̄β∇αv̄

)
=

1
2

(
vα|β + vβ|α + 2vξLαβ

)
(2.104)

ωαβ =
1
2
(
∂̄α · ∇βw̄ + ∂̄β · ∇αw̄

)
+

+
1
2

(∇αv̄ · ∇βn̄+∇β v̄ · ∇αn̄) =

=
1
2

(
wα|β + wβ|α + vγ|αLγβ + vγ|βLγα

)
+

+
1
2

(
vξ
(
LγαLγβ + LγβLγα

))
(2.105)

ϕαβ =
1
2

(
wγ|αLγβ + wγ|βLγα

)
(2.106)

where we have put

∇αv̄ =
(
vγ|α + vξLγα

)
∂̄γ +

(
vξ,α − vγLαγ

)
n̄ (2.107)

vγ|α = vγ,α + vωΓγαω (2.108)
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and

∇αw̄ = wγ|α∂̄γ − w
γLαγn̄ (2.109)

wγ|α = wγ,α + wωΓγαω (2.110)

and

∇αn̄ · ∇βw̄ = Lγα∂̄γ ·
(
wω|β

¯derω − wωLβωn̄
)

= Lωαw
ω
|β (2.111)

Finally, the strain tensor assumes the following form

γαβ =
1
2

(
vα|β + vβ|α + 2vξLαβ

)
+

+
1
2
ξ
(
wα|β + wβ|α + vγ|αLγβ + vγ|βLγα

)
+

+
1
2

(
vξ
(
LγαLγβ + LγβLγα

))
+

+
1
2
ξ2
(
wγ|αLγβ + wγ|βLγα

)
(2.112)

The stretching strain tensor does not depend on the thickness, in
fact it describes the deformation of the mid�surface Q. The bending
strain tensors describe the deformation along the thickness.

The transversal components of the strain are

γ3α = γα3 =
1
2
(
n̄d · ∂̄αd − n̄ · ∂̄α

)
= vξ,α − vγLαγ + wα (2.113)

Kirchho��Love strain theory

If we take into account the Kirchho�-Love hypothesis, see hy-
pothesis 4, we have

∂̄αd · n̄d = 0⇒ (n̄+ w̄) ·
(
∂̄α +∇αv̄

)
= 0⇒ (2.114)

w̄ · ∂α + n̄ · ∇αv̄ = 0⇒ wα = vγLαγ − vξ,α (2.115)

and we observe that the variables reduce just to the �eld v̄. Thus,
the strain tensor turns into

ααβ =
1
2

(
vα|β + vβ|α + 2vξLαβ

)
(2.116)

ωαβ = vγ|αLγβ + vγ|βLγα + vγLγα|β − v
ξ
,αβ + vξLγαLγβ (2.117)
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2ϕαβ = ξ2
(
vδ|αLδγL

γ
β + vδLδγ|αL

γ
β − v

ξ
γαL

γ
β

)
+

+ ξ2
(
vδ|βLδγL

γ
α + vδLδγ|βL

γ
α − v

ξ
γβL

γ
α

)
(2.118)

In the linear theory the second bending strain tensor can be
neglected because ξ is very small and its square makes the contri-
bution of ϕαβ insigni�cant.

Finally, we have

γ33 = γα3 = γ3α = 0 (2.119)

Consider now a Cartesian coordinate system where all the Chri-
stoffel symbols vanish, we immediately realize the well known ex-
pression of the strain tensor for bending plates

γαβ =
1
2

(
vα,β + vβ,α − 2vξ,αβ

)
(2.120)



Chapter 3

Analysis of stress

This chapter presents the classical stress analysis of a three�dimen-
sional continuum subjected to both body and surface forces. It begins with
the notions of stress vector and stress tensor which bring to enunciate
the famous Cauchy's theorem, then the static equilibrium equations will
be derived.

Next, the graphical representation through Mohr's circle and the prin-
cipal directions associated with the state of stress will be also analyzed.

Curvilinear coordinate systems will be introduced only in the last sec-

tion, where the analysis of stress for shell continuums will be shortly in-

troduced.

3.1 Body and surface forces

Let V be the con�guration of the continuous medium. We sup-
pose that V is bounded by the closed surface S. Consider a small
region ∆V subset of V and a small surface element ∆S of S. To
analyze the forces acting on the volume element ∆V it is necessary
to account for two types of forces:

Body forces (or volume forces). These are the forces which are
proportional to the mass contained in the volume element
∆V.

Surfaces forces. These are the forces being measured as force per
unit area of surface ∆S on which they act.

A good example of body forces is gravity: ρg∆V - where ρ is
the density of the continuum and g is the gravitational acceleration
- or inertia.

Examples of surface forces are: pressure and tension t̄n (p, n̄)
(discussed in depth later on), which two parts of a continuum mu-
tually exchange.

Claudio Borri, Michele Betti, Enzo Marino (a cura di), Lectures on Solid Mechanics, ISBN 978-88-8453-
854-3 (online), ISBN 978-88-8453-853-6 (print), © 2008 Firenze University Press
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Figure 3.1: Body and surface forces.

If we imagine that the continuous medium V, equilibrium of
which we are searching, is a subset of a bigger imaginary continuous
body, then the tensions exchanged between these two portions can
be assumed as external force loads.

In order to write the equations of equilibrium we consider both
body forces b̄ = biēi and surface forces t̄n. See �gure 3.1.

The body forces also produce a resultant moment M̄ = M iēi,
where

M̄ =
∫
V

(
r̄ × b̄

)
dV (3.1)

3.2 State of stress

Let V be the con�guration of a continuous medium, whose points
are referred to a rectangular coordinate system

xi : E → IR : p 7→ g ((p− o) , ēi) (3.2)

where p and o are points of E and {ēi} is the unit normal basis of
Ē.

Suppose on the body V surface and body forces, e.g. b̄, S̄j , M̄k,
ˆ̄f

act in such a way to assure the equilibrium state. See �gure 3.2. Due
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to these forces throughout the body internal reactions are activated
between the material points.

To understand the stress condition created at generic point p
within the body V, we suppose to cut the continuous medium by
means of a generic plane πn, so that two portions V1 and V2 are
produced.

Figure 3.2: Body V being in an equilibrium state.

After splitting, the portions of the body on the left and on the
right side of the section plane πn lose their equilibrium state. In
fact, before parting, both V1 and V2 were in equilibrium due to the
mutual forces exchanged through the plane.

Cauchy enunciated the principle that, within a body, the forces
that an enclosed volume imposes on the remainder of the body must
be in equilibrium with the forces from the remainder of the body
itself.

We denote by ∆An the small area surrounding p and by ∆S̄n
and ∆M̄n the force and the couple resultants in p stemmed from
the internal force distribution acting through ∆An. See �gure 3.3.

Cauchy 's principles implies the following limits

1. lim∆An→0
∆S̄n
∆An = t̄n (p, n̄) = −t̄n (p,−n̄)

2. lim∆An→0
∆M̄n
∆An = 0
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Figure 3.3: Splitting of the continuous media V.

The vector t̄n (p, n̄) is called the Cauchy stress vector and rep-
resents the surface force per unit of area acting at point p. The
second limit assures that the entire state of stress for a �xed point
p is only de�ned by the forces, that is the couples are in�nitesimal
in comparison with them.

It's important to observe that t̄n is a linear mapping de�ned as
follows

t̄n : E × Ē → Ē (3.3)

so that

t̄n (p) ∈ L
(
Ē, Ē

)
(3.4)

and we recognize t̄n (p) to be an endomorphism which is associated
to a tensor belonging to Ē∗ ⊗ Ē.

In the following paragraphs this tensor will be thoroughly ana-
lyzed.
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3.2.1 Stress vector components

Let n̄ be the unit normal vector of the surface ∆An located at
p. We can write the components of stress vector1 t̄n (p, n̄) as follows

t̄n (p, n̄) = tin (p, n̄) ēi (3.5)

so that the normal components of t̄n (p) can be easily written as

tnn (p, n̄) = n̄ · t̄n (p, n̄) = tin (p, n̄)ni (3.6)

Let us observe that the stress vector, which represents the entire
state of stress at p, is completely known if the three coordinate
components tin (p, n̄) are known.

3.2.2 Stress tensor

Now we want to show that the state of stress at any point of
the continuum is entirely characterized specifying a linear mapping,
i.e. endomorphism, represented by the nine quantities called com-

ponents of stress tensor.

As usual, p is a point in the medium and t̄n (p, n̄) is the stress
vector acting on the surface element passing for p with the unit
normal n̄. Imagine to have four planar elements, three of which
are parallel to the coordinate planes, the fourth one is supposed
passing normal to n̄, at a very small distance to p. We obtain a
small tetrahedron. See �gure 3.4

We shall denote by t̄i, with i = 1, 2, 3, the stresses vector2 acting
on the planar surface element orthogonal to the coordinate curves
xi, namely t̄i = t̄i (p, ēi). Evidently, every stress vector can be writ-
ten by its components in the following way

t̄i = tji ēj i, j = 1, 2, 3 (3.7)

where

tji = ēj · t̄i (3.8)

The forces acting on the tetrahedron are both surface and body
forces:

1It must be noted that in general the stress vector t̄n (p, n̄) is not in the
direction of n̄.

2Rigorously t̄i should be write as t̄ēi (p).
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Figure 3.4: Stress vectors: the sketch of Cauchy 's theorem.

- Body forces: b̄dV

- Surface forces: −t̄i (p,−ēi) dAi+ t̄n (p, n̄) dAn, with i = 1, 2, 3.

thus the translational equilibrium of the tetrahedron can be readily
written as

− t̄i (p,−ēi) dAi + t̄n (p, n̄) dAn + b̄dV = 0 (3.9)

that taking into account that dAi = dAnni, indeed we have ni =
n̄ · ēi = cos

( ̂̄n, ēi), the above expression turns into

−t̄i (p,−ēi) dAnni + t̄n (p, n̄) dAn +
1
3
ρghdAn = 0⇒ (3.10)

−t̄i (p,−ēi)ni + t̄n (p, n̄) +
1
3
ρgh = 0 (3.11)

and, for h approaching zero, i.e. the in�nitesimal volume surround-
ing p, the equilibrium becomes

t̄n (p, n̄) = t̄i (p,−ēi)ni (3.12)
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Figure 3.5: Stress tensor components.

Equation (3.12) represents Cauchy3's theorem which states that
the stress state t̄n (p, n̄) can be completely determined by the stress
vectors t̄i (p,−ēi), acting on the face with outward unit normal vec-
tor −ēi, where n̄ is considered known. This result also proves that
we are really dealing with a tensor as introduced by the endomor-
phism (3.4).

It will be convenient to use the customary notation, so that
equation (3.12) may be rewritten in components as follows

tjn (p, n̄) ēj = tji (p,−ēi)niēj (3.13)

from which the stress tensor σ is de�ned as

tjn (p, n̄) = σijni (3.14)

The tensor σij is called the stress tensor, it com-

pletely de�nes the state of stress at point p and repre-

3Augustin Louis Cauchy (August 21, 1789 - May 23, 1857) was a French
mathematician.

Source: http://www-history.mcs.st-andrews.ac.uk/Mathematicians/Cauchy.html.
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sents the component of the vector t̄i working in direction

of xj.

See �gure 3.5.
We can summarize saying that

σ : E → L
(
Ē, Ē

)
, p 7→ σ (p) ∈ Ē∗ ⊗ Ē (3.15)

so
σ (p) (n̄) = t̄n (p, n̄) (3.16)

that in components, (3.16), becomes

tjn = σjhn
h (3.17)

Figure 3.6: Stress tensor components acting on an in�nitesimal
volume element.

We remind the reader again that the lower and upper indices,
in this context, can mutually be exchanged; moreover, they can be
placed both upper and lower. So, generally, we shall also write

tnj = σhjnh (3.18)

3.3 Equations of equilibrium

3.3.1 Translational equilibrium

With respect to the body V, bounded by the closed surface S,
the condition of equilibrium requires that∫

V
b̄ dV +

∫
S
t̄n dS = 0 (3.19)
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Making use of (3.16), equation (3.19) becomes∫
V
b̄ dV +

∫
S
σ (p) (n̄) dS = 0 (3.20)

The divergence theorem can be applied to integral (3.20), so
that∫

V
b̄ dV +

∫
V

div σ (p) dV =
∫
V

(
b̄+ div σ (p)

)
dV = 0 (3.21)

Since the region of integration V is arbitrary, i.e. each part of
the medium is in equilibrium, integral (3.21) vanishes, thus, at every
point of V we have

div σ + b̄ = 0 (3.22)

that in components becomes

σij,i + bj = 0 (3.23)

3.3.2 Rotational equilibrium

As well as the translational equilibrium, we require that the
moments acting on the body are also in equilibrium, so∫

V

(
r̄ × b̄

)
dV +

∫
S

(r̄ × t̄n) dS = 0 (3.24)

which in components, by virtue of the skew�symmetric tensor ε,
becomes∫

V

(
ribjεkij ēk

)
dV +

∫
S

(
riēi × σjhnhēj

)
dS = 0⇒∫

V

(
ribjεkij ēk

)
dV +

∫
S

(
riσjhnhεkij ēk

)
dS = 0

With the aid of the divergence theorem, for the k�th component
we can write

εkij

∫
V

(
ribj

)
dV + εkij

∫
V

(
riσjh

)
,h
dV = 0⇒

εkij

∫
V

(
ribj + ri,hσjh + riσjh,h

)
dV = 0
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Recalling equation (3.23), and that ri,h = δih and since the
volume V is arbitrary, the rotational equilibrium produces

εkijσij = 0 (3.25)

Therefore equation (3.25) imposes the symmetry of the compo-
nents of the stress tensor:

σij = σji (3.26)

The symmetry of the stress tensor can be also seen considering
the volume element taken in shape of a rectangular parallelepiped,
with faces parallel to the coordinate planes and with stress vector
t̄i acting on the face perpendicular to the xi-axis. Denoting the co-
ordinates {x1, x2, x3} with {x, y, z} - as often happens in literature
- for the (y, z)�plane the rotational equilibrium becomes

(σyzdxdy) dz = (σzydxdy) dz ⇒ σyz = σzy (3.27)

See �gure 3.7.
If we write the equilibrium for all planes, we obtain again the

result in (3.26).

Figure 3.7: Plane (y, z). Components of the stress tensor acting on
the volume element.

3.3.3 Boundary equations

Let ˆ̄f be the external force acting on the surface Sσ and ˆ̄u the
displacement �eld imposed on the remaining portion Su, so that
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S = Sσ ∪Su. Each point of V lying on the boundary S must satisfy
the equilibrium and kinematic conditions as follows

t̄ndS = ˆ̄fdS, ∀ p ∈ Sσ (3.28)

ū = ˆ̄u, ∀ p ∈ Su (3.29)

that in components is

σhjnh = fj , ∀ p ∈ Sσ (3.30)

ui = ûi, ∀ p ∈ Su (3.31)

3.4 Principal stresses and principal directions

Let us consider now the sheaf of planes passing through p ∈ V.
Among the in�nite planes there are some for which all the stress
components vanish except the normal one. These planes are said
principal planes and their normal directions are said principal di-

rections. Hence, if n̄ is a principal directions, by de�nition, we have
at p

t̄n = σn̄, σ ∈ IR (3.32)

To �nd the three principal stresses we impose

t̄n = σihnhēi = σn̄⇒ σihnhēi = σniēi (3.33)

so that
σihnh − σδihnh = 0⇒ (σih − σδih)nh = 0 (3.34)

Expression (3.34) is a set of three homogeneous equations in the
unknown direction n̄. The solution is nonvanishing if, and only if,
the determinant of the coe�cients matrix is equal to zero; that is

|σij − σδij | = 0 (3.35)

Solving the determinant above we obtain the cubic equation
called secular equation in the unknown stresses σ

σ3 − I1σ
2 − I2σ − I3 = 0 (3.36)

The (3.35), (or (3.36)) has three real roots σI , σII , σIII , which
are called principal stresses. If σ in equation (3.34) is replaced by
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any one of these eigenvalues, the resulting set of equations may
be solved for the corresponding direction n̄. These directions, n̄I ,
n̄II , n̄III are called principal directions. The planes normal to the
principal directions are termed principal planes of stresses. In other
words we say that along the principal planes of stresses there is no
shearing stress.

Generally there are only three mutually orthogonal principals
directions.

The three scalars in (3.36) are invariants as regards to the co-
ordinate system. They are

I1 = trσ

I2 =
1
2

(σiiσjj − σijσij)

I3 = det (σij)

These invariants are physically very important, they in fact al-
low us to characterize the stress state as follows

if I3 = 0 : triaxial state of stress
if I3 = 0 and I2 6= 0 : biaxial stete of stress

if I3 = I2 = 0 and I1 6= 0 : axial stete of stress

Now we want to point out that the principal stresses found solv-
ing equation (3.35) represent the maximum and minimum stress. To
see this we make use of the Lagrange multipliers method in order
to �nd the extremes of a function of several variables subjected to
one or more constraints. In this case recalling formulae (1.33) and
(1.34) we can write the stress tensor in a generic unknown coordi-
nate system rotated with respect the initial system as follows

σ′ij = aihσ
h
ka
′k
j (3.37)

and we also impose the constraint on the unknown matrices a and
a′ such as they are e�ectively two orthogonal transformations, i.e.
the condition (1.21). Hence we have

L
(
aih, λ

)
= aihσ

h
ka
′k
j − λ

(
aiha
′h
j − δij

)
(3.38)
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and the stationary conditions are

∂L
∂aih

= σ′hk a
′k
j − λa′hj =

(
σ′hk − λδhk

)
a′kj = 0 (3.39)

∂L
∂aih

= aiha
′h
j − δij = 0 (3.40)

The �rst equation, (3.39), yields the following condition

|σ′hk − λδhk | = 0 (3.41)

that is exactly the condition (3.35), hence we can derive that given
a generic state of stress σij , the principal stresses σI , σII , σIII are
extrem values.

3.4.1 Normal and tangential components of the stress
vector

The last equations of the previous section enable us to know the
components of the stress vector for every direction we want. Let n̄
be the unit normal vector and ν̄ the unit tangent vector. It follows
that the normal and tangent components of the stress vector, σ
and τ , respectively, are readily computed through the usual scalar
product as follows

σ = t̄n (p, n̄) · n̄ = tjn (p, n̄)nj = σijninj (3.42)

τ = t̄n (p, n̄) · ν̄ = tjn (p, n̄) νj = σijniνj (3.43)

Figure 3.8: Normal and tangential components of the stress vector.
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From �gure 3.8 on the preceding page it is also clear that the
square tangent component of the stress vector can be written as
follows

τ2 = |t̄n|2 − σ (3.44)

3.4.2 Mohr's circles

Two dimensional state of stress

An important graphical interpretation of the above results is due
to O. Mohr4. Following [10], [9] and [12] let us begin considering the
above relations (3.42) and (3.43) for a two dimensional problem, so
that

σij =
(
σ11 σ12

σ21 σ22

)
(3.45)

The unit vectors n̄ and ν̄, with respect to �gure 3.9, have the
following components

n̄ =
(

cosϕ
sinϕ

)
; ν̄ =

(
− cos (π/2− ϕ)
sin (π/2− ϕ)

)
=
(
− sinϕ
cosϕ

)
Hence, the normal and tangent components of t̄n (p, n̄) are

σ = σ11 cos2 ϕ+ σ22 sin2 ϕ2σ12 sinϕ cosϕ (3.46)

τ = −σ11 cosϕ sinϕ+ σ22 sinϕ cosϕ+ σ12 cos2 ϕ− σ21 sin2 ϕ
(3.47)

that through some trigonometric manipulations5 turn respectively

4Christian Otto Mohr October 8, 1835 - October 2, 1918 was a German civil
engineer.

Source:http://en.wikipedia.org/wiki/Otto-Mohr.
5In particular these two identities have been used:

i) 2 sinϕ cosϕ = sin 2ϕ,

ii) cos2 ϕ− sin2 ϕ = cos 2ϕ.
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Figure 3.9: Normal and tangential components of the stress vector
in two dimensions.

into

σ =
1
2
σ11 cos2 ϕ+

1
2
σ11

(
1− sin2 ϕ

)
+

+
1
2
σ22 sin2 ϕ+

1
2
σ22

(
1− cos2 ϕ

)
+ σ12 sin 2ϕ =

=
1
2

(σ11 + σ22) +
1
2

(σ11 − σ22) cos 2ϕ+ σ12 sin 2ϕ (3.48)

τ = −σ11 cosϕ sinϕ+ σ22 sinϕ cosϕ+ σ12 cos2 ϕ− σ21 sin2 ϕ =

= −1
2

(σ11 − σ22) sin 2ϕ+ σ12 cos 2ϕ (3.49)

Next, by squaring both terms of the latter equations and sum-
ming term by term, the variable 2ϕ disappears, hence(

σ − 1
2

(σ11 + σ22)
)2

+ τ2 =
(

1
2

(σ11 − σ22)
)2

+ σ2
12 (3.50)

If we represent the above equation in a two dimensional Carte-
sian system with σ and τ as abscissa and ordinate, respectively, we
realize it represents the equation of a circle in the form (x− xC)2 +
(y − yC)2 = R2 where

xC =
1
2

(σ11 + σ22) (3.51)

yC = 0 (3.52)

are the coordinates of the center and

R =

√(
1
2

(σ11 − σ22)
)2

+ σ2
12 (3.53)
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is the radius of the circle. This circle is known asMohr's circle and it
represents all the possible states of stress in p. Namely, there exists
a one�to�one relationship between each state of stress t̄n (p, n̄), i.e.
σ and τ , and points belonging to the circle. To show that, let us
assume γ is the angle between the x1�axis and the stress vector
t̄n, as �gure 3.10 depicts. To �nd the correspondence between the
stress state and the circle let us observe that γ de�nes a principal
direction so, by de�nition τ = 0, and we have

tan 2γ =
2σ12

σ11 − σ22
(3.54)

and with the aid of picture 3.10 in the above equation we recognize
that P1P ∗ = 2σ12 and P2P ∗ = σ11−σ22. Consequently the following
expressions hold

r cos 2γ =
1
2

(σ11 − σ22) (3.55)

r sin 2γ = σ12 (3.56)

(3.57)

that substituted into (3.48) and (3.49) and making use of some
trigonometric identities6 yield, respectively

σ =
1
2

(σ11 + σ22) + r cos 2 (γ − ϕ) (3.58)

τ = r sin 2 (γ − ϕ) (3.59)

Thus, given a generic plane oriented as ϕ equations (3.58) and
(3.59) are a parametric representation of a circle and so a one�to�
one relationship between the state of stress and the Mohr's circle is
established. See �gure 3.10.

We de�ne P ∗ ≡ (σ11,−σ12) as the pole of the circle. The line
passing through P ∗ having inclination ϕ with respect to the vertical

6In particular these identities have been used:

i) cos 2γ cos 2ϕ = 1
2

(cos 2 (γ + ϕ) + cos 2 (γ − ϕ)),

ii) sin 2γ sin 2ϕ = 1
2

(cos 2 (γ − ϕ)− cos 2 (γ + ϕ)),

iii) sin 2ϕ cos 2ϕ = 1
2

(sin 2 (γ + ϕ) + sin 2 (γ − ϕ)).
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line joining P1 and P ∗ intersects the circle in Pϕ and the angle

P̂ϕCS1 is right 2 (ϕ− γ), so the coordinates of the point Pϕ, in
the (σ, τ)�plane, are just those expressed by equations (3.58) and
(3.59).

Thus, we have proved that, given a stress vector orientated as
γ, once Mohr's circle is known, the normal and tangent components
of a stress vector can be graphically found provided the inclination
ϕ in known.

On the other hand, if the normal and tangent stresses are known,
Mohr's circle enables us to �nd directly the principal direction. In
fact point S1 has coordinates σ = OC + R and τ = 0, so that the
line P ∗S1 de�nes the angle γ that �xes the principal direction. See
�gure 3.10.

Figure 3.10: Normal and tangential components of the stress vector
for in two dimensions.

Two other relevant features on Mohr's circle are those for which
the tangent component of t̄n (p, n̄) is maximum. These directions
can be found through the same procedure. Indeed the lines P ∗T1

and P ∗T2 represent the directions along which the stress vector has
maximum shear component. See �gure 3.10 and 3.11. Analytically
these maximum and minimum values are

τmax =
1
2

√
(σ11 − σ22)2 + 4σ2

12 (3.60)

τmin = −1
2

√
(σ11 − σ22)2 + 4σ2

12 (3.61)
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and the directions can be computed putting zero the following
derivative

dτ
dγ

= 0⇒ cos 2 (γ − ϕ) =
π

2
⇒ γ = ϕ+

π

4
(3.62)

Let us summarize now the key items to draw and use the Mohr's
circle when a plane state of stress σij , with i, j = 1, 2 is known with
respect to a generic system {x1, x2}. See �gure 3.11.

1. Compute the radius R and the abscissa of the center C of the
circle, equations (3.51) and (3.53);

2. Identify the pole P ∗;

3. Identify the principal direction drawing a line from P ∗ to both
S1 and S2. The inclination of the latter de�nes the principal
directions;

4. Compute the principal stresses σI and σII at the extreme
points S1 and S2, respectively;

5. Compute the maximum and minimum shear stresses τmin and
τmax.

Figure 3.11: Graphical determination of principal directions.
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Three dimensional state of stress

Consider again the state of stress in p referenced to the principal
axes and let the principal stresses be ordered according to σI >
σII > σIII . Assume the three principal stresses are known, so that,
in accordance with equations (3.42) and (3.44), we write

σ = σIn
2
1 + σIIn

2
2 + σIIIn

2
3

τ2 + σ2 = (σIn1)2 +
(
σ2
IIn2

)2 + (σIIIn3)2

and being n̄ · n̄ = n2
1 +n2

2 +n2
3 = 1, by solving for the directions ni,

we obtain

n2
1 =

τ2 + (σ − σII) (σ − σIII)
(σI − σII) (σI − σIII)

(3.63)

n2
2 =

τ2 + (σ − σIII) (σ − σI)
(σII − σIII) (σII − σI)

(3.64)

n2
3 =

τ2 + (σ − σI) (σ − σII)
(σIII − σI) (σIII − σII)

(3.65)

In the above equations σI , σII , σIII are known; σ and τ are
functions of ni.

In order to interpret these equations graphically we note that in
equation (3.63) σI − σII > 0 and σI − σIII > 0, and n2

i is positive.
Therefore

(σ − σII) (σ − σIII) + τ2 ≥ 0 (3.66)

When the equality sign holds, this equation may be rewritten
as [

σ − 1
2

(σII + σIII)
]2

+ τ2 =
[

1
2

(σII − σIII)
]2

(3.67)

which is the equation of a circle in the (σ, τ)�plane, where we assume
σ as abscissa and τ as ordinate. The circle in �gure 3.12 is termed
C1 and has the center in 1

2 (σII + σIII) on the σ axis, and radius
1
2 (σII − σIII).

Examining equation (3.64) we observe that σII − σIII > 0 and
σII − σI < 0, so we have

(σ − σIII) (σ − σI) + τ2 ≤ 0 (3.68)
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Figure 3.12: Mohr's circles.

The boundary of the area of this equation, i.e. in the case of
equality sign, de�nes a circle as before in the (σ, τ)�plane[

σ − 1
2

(σI + σIII)
]2

+ τ2 =
[

1
2

(σI − σIII)
]2

(3.69)

named C2. See �gure 3.12.
The same procedure allows us to obtain from equation (3.65)

the circle C3, indeed, we have the following condition

(σ − σI) (σ − σII) + τ2 ≥ 0 (3.70)

that at the boundary yields[
σ − 1

2
(σI + σII)

]2

+ τ2 =
[

1
2

(σI − σII)
]2

(3.71)

Finally, from inequalities (3.66), (3.68), (3.70), it follows that
admissible values of σ and τ lie in the shaded region of �gure 3.12
bounded by the circles C1, C2, C3. The value τmax and σmax can be
readily provided from �gure 3.12, so that

τmax =
1
2

(σI − σIII) (3.72)

σmax =
1
2

(σI + σIII) (3.73)

and as a consequence, the surface elements supporting these stresses
are found replacing the above values into equations (3.63) to (3.65).
For further details the reader is referred to [1].
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3.5 Stress quadric of Cauchy

Consider an elements of area dA with a normal vector n̄. As
previously stated, the stress vector t̄n (p, n̄) can be decomposed into
a normal component σ and a tangential component τ .

Let us introduce now a local system of axes ξi with origin in p
equipped with the unit normal basis {ēi}. See �gure 3.13.

Figure 3.13: Stress quadratic of Cauchy.

Let r̄ be the vector taken along n̄ joining p with a generic point
p′, namely (p′ − p) = rn̄. This vector can be equivalently expressed
by the following expressions

r̄ = rn̄ (3.74)

r̄ = ξiēi (3.75)

The �rst equation provides the j�th component of r̄ as follows

ξi = r̄ · ēi = rni (3.76)

that, replaced into the expression of the normal component of the
stress vector, yields the following relation

r2σ = σijξiξj (3.77)

We recognize equation (3.77) as a quadric form7.

7We remind that any quadric form F can be expressed as

F (v̄) = Mijvivj (3.78)

where v̄ = (v1, v2, v3)T is a vector expressed with respect to the chosen basis,
and Mij is a certain symmetric matrix that depends on F and on the basis.
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So we restrict the coordinates of ξi by requiring the end point
p′ of r̄ to lie on the quadric surface

F (ξ1, ξ2, ξ3) = σijξiξj = ±k2 (3.79)

where k is an arbitrary real constant and where the sign is chosen
in such a way to make the surface real. As a result we have

σ = ±k
2

r2
(3.80)

Since r2 is a positive quantity, k2 will be taken with the posi-
tive sign whenever the normal component σ is a tension and with
negative sign when it represents compression.

Next, deriving equation (3.79) and by using equation (3.76), we
obtain

∂F

∂ξi
= σijξj = σijrnj = rtin (p, n̄) (3.81)

which allows us to realize that the quadric form (3.79) has some
properties of a potential function, indeed the partial derivative of
F with respect the i�th coordinate gives, except for the constant r,
the force component (i.e. the component of the stress vector) right
in the i�th direction.

Furthermore we observe that the above derivatives, equation
(3.81), denote the direction of the normal n̄ to the plane tangent to
the quadric surface (3.79) at point p′, so that the right�hand term
of equation (3.81) just establishes the stress vector t̄n (p, n̄) is also
normal to this tangent plane.

The above results have been directly taken from [1], to which
the reader is referred for any further detail.

3.6 Stress�deviator and spherical components of the
stress tensor

Every state of stress σij may be decomposed into a spherical
portion and into a portion sij known as stress�deviator by the fol-
lowing equation

σij = σMδij + sij (3.82)

where σM = 1
3σii is the arithmetic mean of the normal stress, i.e.

spherical stress component (or hydrostatic stress). Equation (3.82)
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may be solved for sij

sij = σij − σMδij (3.83)

where the latter components are termed stress�deviations.

Namely,

sij =

 σ11 − σM σ12 σ13

σ21 σ22 − σM σ23

σ31 σ32 σ33−σM


It is possible to prove that both the stress tensor σ and the devi-

ator tensor s have the same principal directions. The characteristic
equation for the deviator is

s3 + J2s+ J3 = 0 (3.84)

where the deviator invariants are

J2 = −1
2
sijsij

J3 = det sij

3.7 Stress in shell continuums

3.7.1 Shifters

Before reasoning upon the stress state characterizing a shell con-
tinuum it is worth introducing some geometrical relations linking
points belonging to the mid�surface Q with corresponding points
belonging to the shell thought as a three�dimensional continuum.

Therefore, let us recall the relation already met to compute the
components of the metric tensor g?αβ , see equation (2.99) on page
53, between the basis in p? ∈ G(ε) and the basis in p projection of
p? on Q along the normal coordinate curve ξ. So we have

∂̄?α = ∂̄α + ξLβα∂̄β (3.85)

n̄ = n̄? (3.86)

which in a short notation assumes the following form

∂̄?i = Shi ∂̄h (3.87)
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Hence, with respect to the basis associated to the coordinate
system {xα, ξ} the tensor S has the following components

Shi =

 1 + ξL1
1 ξL2

1 0
ξL1

2 1 + ξL2
2 0

0 0 1


Therefore, the super�cial part of S can be expressed by the

following tensor product

S† = d
	
γ ⊗ ∂̄?γ (3.88)

so that

S†
(
∂̄β
)

=
(
d
	
γ ⊗ ∂̄?γ

) (
∂̄β
)

= ∂̄?β (3.89)

In the same way we de�ne F† as follows

F† = ∂̄γ ⊗ d
	
?γ (3.90)

so that

F†
(

d
	
β
)

=
(
∂̄γ ⊗ d

	
?γ
) (

d
	
β
)

= d
	
?β (3.91)

Tensors S† and F† are called shifter tensors.

3.7.2 Contraction of surface forces

Consider now a curve c : IR → Q representing the intersection
of the surface Qc normal to Q which splits the shell continuum G(ε)
into two portions.

Let ν̄ ∈ ¯TQ be the unit normal vector applied in p outward
pointing from c and let l̄ ∈ ¯TQ be the unit vector tangent to c
applied in the same point. Then the three unit vectors

{
ν̄, l̄, n̄

}
form a local basis in p. A similar triplet of vectors can be de�ned in
p? as

{
ν̄?, l̄?, n̄

}
. Note that the symbol ? denotes as usual quantities

belonging to the shell thickness. See �gure 3.14.
In order to ensure the equilibrium condition, the portion of the

shell included by Qc must exert on the remaining part of the contin-
uum a tension such as for each point p? is entirely described by the
stress vector t̄?. Moreover the stress vector t? can be equivalently
expressed by Cauchy stress tensor as follows

t̄? (p?, ν
	
?) = σ? (p?) ν

	
? (3.92)



LECTURES ON SOLID MECHANICS 81

Figure 3.14: Local bases in G(ε) and in Q.

where σ? is the contravariant form of the stress tensor de�ned in
p?. For the sake of brevity hereafter σ? (p?) will be denoted simply
by σ.

Now our goal is to establish a relation between the stress state
distributed along the surface Qc and the stress state along the
boundary of the mid�surface of the shell. This can be done by
means of a reduction, i.e. a contraction, of the stress per unit area
to a stress per unit line.

Therefore, let us de�ne two vector �elds n and m such as∫
c
n(p, ν

	
)dl =

∫
Qc

t̄?(p?, ν
	
?)dA? (3.93)∫

c
m(p, ν

	
)dl =

∫
Qc

((p? − p)× t̄?(p?, ν
	
?))dA? (3.94)

Equalities (3.93) and (3.94) guarantee that the stress system n
and m is statically equivalent to the stress system t̄? along the �ber
ξ passing through p.

The oriented elemental area in equations (3.93) and (3.94) with
respect to the local basis

{
ν̄?, l̄?, n̄

}
is given by the following vec-

torial product

ν
	
?dA? = dll̄? × dξn̄ (3.95)
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and since dll̄? = dlα∂̄?α, equation (3.95) can be equivalently ex-
pressed as follows

ν
	
dA? = dlα∂̄?α × dξn̄ = η?αβdl

αdξd
	
?β = εαβ

√
g?dlαdξd

	
?β (3.96)

where g? = det
(
g?αβ

)
.

Moreover, back to the mid�surface we notice it is possible to
write

dll̄ × n̄ = ν
	
dl (3.97)

which in the coordinate system {xα, ξ} becomes

dlα∂̄α × n̄ = ηαβdl
αd
	
β = εαβ

√
gdlαd

	
β (3.98)

where g = det (gαβ).
Equation (3.92) and (3.96) allow us to rewrite equations (3.93)

and (3.94) as follows∫
c
n(p, ν

	
)dl =

∫
Qc

σεαβ
√
g?dlαdξd

	
?β (3.99)∫

c
m(p, ν

	
)dl =

∫
Qc

(p? − p)× σεαβ
√
g?dlαdξd

	
?β (3.100)

Next, by virtue of the shifter F†, the latter equations become∫
c
n(p, ν

	
)dl =

∫
Qc

σεαβ
√
g?dlαdξ

(
∂̄γ ⊗ d

	
?γ
)

d
	
β (3.101)∫

c
m(p, ν

	
)dl =

∫
Qc

ξn̄× σεαβ
√
g?dlαdξ

(
∂̄γ ⊗ d

	
?γ
)

d
	
β (3.102)

which, taking into account equations (3.97) and (3.98), become∫
c
n(p, ν

	
)dl =

∫
c

∫ +ε

−ε

√
g?

g
σ
(
∂̄γ ⊗ d

	
?γ
)
ν
	
dldξ (3.103)∫

c
m(p, ν

	
)dl =

∫
c

∫ +ε

−ε
ξn̄×

√
g?

g
σ
(
∂̄γ ⊗ d

	
?γ
)
ν
	
dldξ (3.104)

and �nally

n(p, ν
	
) =

∫ +ε

−ε
gσ
(
∂̄γ ⊗ d

	
?γ
)
ν
	
dξ (3.105)

m(p, ν
	
) = n̄×

∫ +ε

−ε
ξgσ

(
∂̄γ ⊗ d

	
?γ
)
ν
	
dξ (3.106)
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where we have put g =
√
g?/g

Both integrands in (3.105) and (3.106) can be further simpli�ed

just substituting σ = σij
(
∂̄?i ⊗ ∂̄?j

)
and ν

	
= ναd

	
α as follows

n(p, ν
	
) =

(∫ +ε

−ε
gσαj ∂̄?j dξ

)
να (3.107)

m(p, ν
	
) = n̄×

(∫ +ε

−ε
gξσαj ∂̄?j dξ

)
να (3.108)

and using once again equations (3.85) and (3.86) they assume the
following form

n(p, ν
	
) =

(∫ +ε

−ε
gσαγdξ +

∫ +ε

−ε
gσαβξdξLγβ

)
∂̄γνα+

+
(∫ +ε

−ε
gσαξdξ

)
n̄να (3.109)

m(p, ν
	
) = n̄×

(∫ +ε

−ε
gσαγξdξ +

∫ +ε

−ε
gσαγξ2dξLγβ

)
∂̄γνα (3.110)

where we can �nally de�ne two tensors N and M

N = Nαβ
(
∂̄α ⊗ ∂̄β

)
+Nαξ

(
∂̄α ⊗ n̄

)
(3.111)

M = Mαβ
(
∂̄α ⊗ ∂̄β

)
(3.112)

respectively as

Nαβ =
∫ +ε

−ε
gσαβdξ +

∫ +ε

−ε
gσαγξdξLβγ (3.113)

Nαξ =
∫ +ε

−ε
gσ?αξdξ (3.114)

and

Mαβ =
∫ +ε

−ε
gσαβξdξ +

∫ +ε

−ε
gσαγξ2dξLβγ (3.115)

such as

n(p, ν
	
) = Nν

	
= Nαβνα∂̄β +Nαξναn̄ (3.116)

m(p, ν
	
) = n̄×Mν

	
= n̄×Mαβνα∂̄β (3.117)
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Two �elds n and m are called surface stress vector and surface

couple vector respectively; while the �elds N and M are termed
surface stress tensor and surface couple tensor.

From the above results it is immediate to notice that the surface
stress vector n belongs to ¯TQE, consequently it can be split into a
super�cial part and an orthogonal part as follows

n = n‖ + n⊥ (3.118)

where

n‖ = Nαβνα∂̄β (3.119)

n⊥ = Nαξναn̄ (3.120)

while the surface couple vector m belongs to ¯TQ so that

m = m‖ (3.121)

As the last remak we point out that the coe�cient g involved in
the integration of Cauchy stress tensor along the thickness depends
only on the geometrical features of the mid�surface Q, in fact it is
easy to prove the following expression

g = det
(
Shi

)
= 1 + ξH + ξ2K (3.122)

where H and K are the mean curvature and the total curvature of
the surface Q de�ned in equations (1.160) and (1.159).

3.7.3 Body forces and load density

Suppose the the curve c : IR → Q is closed in such a way as to
capture a surface portion Q′ ⊂ Q bounded by ∂Q ≡ c. Assuming c
to be a directrix, that is a curve through which a line generating a
given ruled surface always passes, the generatrices directed along n̄
de�ne a cylinder Gc(ε) ⊂ G(ε) with thickness 2ε and also bounded
by the surface Qc ∪Qε ∪Q−ε.

We assume that the volume forces acting at every point belong-
ing to the cylinder Gc(ε) and the load density acting at every point
on the upper and lower surfaces Qε and Q−ε can be integrated along
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the thickness to yield a new force system de�ned on the mid�surface
Q′ as follows

q̄ : Q′ → ¯TQ′E (3.123)

s̄ : Q′ → ¯TQ′ (3.124)

where q̄ = qβ ∂̄β + qξn̄ represents the load vector and s̄ = n̄× sβ ∂̄β
represents the load�moment vector.

See [13] for details.

3.7.4 Eulero's equations

The equilibrium equations for the mid surface portion Q′ can
be written as follows∫

∂Q′
n(p, ν

	
)dl +

∫
Q′
q̄dQ′ = 0 (3.125)∫

∂Q′
(m(p, ν

	
) + r̄ × n(p, ν

	
)) dl +

∫
Q′

(r̄ × q̄ + s̄)dQ′ = 0 (3.126)

which yield ∫
∂Q′

Nν
	
dl +

∫
Q′
q̄dQ′ = 0 (3.127)∫

∂Q′
(n̄×Mν

	
+ r̄ ×Nν

	
)dl +

∫
Q′

(r̄ × q̄ + s̄)dQ′ = 0 (3.128)

Making use of the divergence theorem enounced in equation
(1.145) on page 29, and due to the arbitrariness of Q′, the above
equations become

divN + q̄ = 0 (3.129)

div(n̄×Mαh∂̄h + r̄ ×Nαh∂̄h) + r̄ × q̄ + s̄ = 0 (3.130)

Equations (3.129) and (3.130) can be written in components as
follows

∇†αNαβ + LβαN
αξ + qβ = 0 (3.131)

∇αNαξ + LαγN
αγ + qξ = 0 (3.132)

∇†αMβα −N ξβ + sβ = 0 (3.133)

ηαβ

(
LαγM

βγ −Nαβ
)

= 0 (3.134)
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where equations (3.131) assure the translational equilibrium in the
tangent plane, while (3.132) represents the translational equilibrium
along the normal direction. Next, two equations in (3.133) impose
the rotational equilibrium about the surface axes, respectively. Fi-
nally, the last equilibrium condition (3.134) gives the symmetry to
the tensor LαγM

βγ −Nαβ .

Proof

Here we want to show all steps we made to pass from the equilib-
rium equations (3.129) and (3.130) to the corresponding expressions in
components (3.131) to (3.134).

Let us start form equation (3.129). We invoke the de�nition of di-
vergence for second order contravariant tensors already used in equation
(1.147), so we have

(divN)h = Nαh
,α + ΓααγN

γh+ ΓhαtN
αt =

= Nαβ
,α +Nαξ

,α + ΓααγN
γβ + ΓααγN

γξ + ΓβαtN
αt + ΓξαtN

αt =

= Nαβ
,α +Nαξ

,α + ΓααγN
γβ + ΓααγN

γξ+

+ΓβαγN
αγ + ΓβαξN

αξ + ΓξαγN
αγ + ΓξαξN

αξ

Now we just need to separate the tangential and normal components
as follows

(divN)β = Nαβ
,α + ΓααγN

γβ + ΓβαγN
αγ + ΓβαξN

αξ (3.135)

(divN)ξ = Nαξ
,α + ΓααγN

γξ + ΓξαξN
αξ + ΓξαγN

αγ (3.136)

By virtue of the the identity (∇αn̄)β = Lβα = Γβαξ equation (3.135)
becomes

(divN)β = ∇†
αN

αβ + LβαN
αξ (3.137)

where we have just collected the surface divergence8 terms into

∇†
αN

αβ = Nαβ
,α + ΓααγN

γβ + ΓβαγN
αγ (3.138)

Equation (3.137) proves the in�plane translational equilibrium ex-
pressed in (3.131).

Concerning equation (3.136), the translational equilibrium along the
normal direction is readily proved remembering both Γξαγ = Lαγ and9

∇αNαξ = Nαξ
,α + ΓααγN

γξ + ΓξαξN
αξ (3.139)

8In literature the divergence of the surface tensor Nαβ is often denoted by
Nαβ
|α .
9In literature the divergence ∇†αNαξ is often denoted by Nαξ

|α .
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Hence we obtain

(divN)ξ = ∇αNαξ + LαγN
αγ (3.140)

which �nally proves equation (3.132)

In order to prove equations (3.133) and (3.134), �rst we simplify equa-
tion (3.130) by taking into account equation (3.129). So it becomes

divn̄×Mαh∂̄h + n̄× div
(
Mαh∂̄h

)
+ divr̄ ×Nαh∂̄h + s̄ = 0 (3.141)

We can split the divergence of the tensorMαh in accordance with the
results in (3.137) and (3.140), thus we have

∇αn̄×Mαh∂̄h + n̄×
(
∇†
αM

αβ + LβγM
γξ
)
∂̄β+

+n̄×
(
∇†
αM

αξ + LαγM
αγ
)
n̄+ r̄,α ×Nαh∂̄h + s̄ = 0 (3.142)

which after further algebra becomes

Lγα∂̄γ ×Mαω∂̄ω + Lγα∂̄γ ×Mαξn̄+ n̄×
(
∇†
αM

αβ + LβγM
γξ
)
∂̄β+

+∂̄α ×Nαω∂̄ω + ∂̄α ×Nαξn̄ω + n̄× sβ ∂̄β = 0 (3.143)

Collecting the normal and tangential terms we obtain the following
three scalar equations

ηγω (LγαM
αω +Nγω) = 0 (3.144)

and

n̄×
(
∇†
αM

αβ −Nβξ + sβ
)
∂̄β = 0 (3.145)

which �nally proves the rotational equilibrium (3.133) about the surface

axes.♦

Usually a new variable is introduced to make easier possible
further calculations; in fact we de�ne the pseudo-stress tensor

the symmetric tensor

Ñαβ = Nαβ − LαγMβγ (3.146)

It is straightforward to notice that Ñ ≡ N only when either a
membrane stress state holds or for �at shells, namely when Wein-

garten's tensor is identically zero.
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3.7.5 Membrane state of stress

In this last section we introduce an hypothesis on the state of
the stress that enables us to derive a closed form solution for several
shell geometries without invoking the constitutive law. Examples of
these closed form solutions will be provided in appendix A.

A shell continuum is subjected to a membrane stress state when
both the following condition hold

Nαξ = 0 (3.147)

Mαβ = 0 (3.148)

Hence, the equilibrium equations become

∇αNαβ + qβ = 0 (3.149)

LαγN
αγ + qξ = 0 (3.150)

ηαβN
αβ = 0 (3.151)

where equation (3.149) represents the translational equilibrium along
the tangent plane; equation (3.150) represents the equilibrium along
n̄ and �nally equation (3.151) states the rotational equilibrium
about n̄ and establishes the symmetry of N .



Chapter 4

Equations of elasticity

Chapters 2 and 3 of these notes do not speci�cally concern with the
elastic media, in fact they can be understood for a generic continuum and
studied independently. In this section we shall combine the previous results
in order to to investigate the response of elastic bodies under the action
of forces.

A body is called elastic if it has the property of recovering its original

shape when the forces which produce the deformations are removed. This

property can be characterized mathematically by certain relationships con-

necting force and displacement, that are also called constitutive laws. In

particular we will analyze the linear constitutive law as a generalization

of the Hooke's law.

4.1 The material law

It was Robert Hooke1 who in 1676 gave the �rst rough law
of proportionality between forces and displacements for an elastic
body. In order to understand the key features of elasticity, let us
consider a thin rod with an initial cross section A0, which is sub-
jected to a variable tensile force F . We suppose that the stress is dis-
tributed uniformly over the area A0 and the initial cross�sectional
area stays constant. The stress is obtained by dividing the force at
any stage by the area A0. So, σ = F/A0. The relationship between
F and the axial strain ε is plotted in �gure 4.1 on the next page.

Figure 4.1 shows that until the point P the relationship σ − ε

1Robert Hooke (July 18, 1635 Freshwater (Isle of Wight) - March 3, 1703
London) was an English scientist.

Source: http://turnbull.mcs.st-and.ac.uk/history/Biographies/Hooke.html.

Claudio Borri, Michele Betti, Enzo Marino (a cura di), Lectures on Solid Mechanics, ISBN 978-88-8453-
854-3 (online), ISBN 978-88-8453-853-6 (print), © 2008 Firenze University Press
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Figure 4.1: Hooke's law.

is nearly a straight line with the following equation

σ = Eε (4.1)

where the constant of proportionality E is known as modulus of

elasticity or Young's modulus.

The greatest stress that can be applied to the rod without pro-
ducing a permanent deformation is called elastic limit of the mate-
rial. When the force F is increased beyond this limit the material
goes in the elastic-plastic �eld. Namely, �rstly the material reaches
the yield�point Y at which the rod suddenly stretches, then the ma-
terial reaches the ultimate stress at U where it o�ers the maximum
stress. If the elongation increases again both the cross sectional area
A0 and the stress decrease until the rod breaks at B.

From now on we shall study only the elastic range.

4.1.1 Generalized Hooke's law

Here we want to extend the results of Hooke's law to a multidi-
mensional state of stress and strain. So, in accordance with equation
(4.1), let us write a linear relation

σij = Cijhkεhk i, j, h, k = 1, 2, 3 (4.2)

The coe�cients Cijhk are independent from the position of the
reference point in the continuous medium, in other words we require
the homogeneity of the body, that means uniformity in structure
and composition. It can also be shown that the elastic constants
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Cijhk are 81 components of a fourth order tensor which is termed
elasticity tensor .

Since the stress tensor σij is symmetric, an interchange of the
�rst two indices in (4.2) does not alter its meaning. In addition to
that, the symmetry of the strain tensor ensures also the symmetry
of the last two indices, so that

Cijhk = Cjihk (4.3)

Cijhk = Cijkh (4.4)

That means that the 34 components of C reduce to 36 indepen-
dent constants. Let us show the expansion of a generic component
of the stress tensor, that is

σ11 =C1111ε11 + C1112ε12 + C1113ε13+
C1121ε21 + C1122ε22 + C1123ε23+ (4.5)

C1131ε31 + C1132ε32 + C1133ε33

Equations (4.3) and (4.4) allow (4.5) to be rewritten as follows

σ11 =C1111ε11 + C1122ε22 + C1133ε33+
2C1112ε12 + 2C1113ε13 + 2C1123ε23

Thus, the whole elastic matrix can be written as
σ11

σ22

σ33

σ12

σ23

σ31

=


C1111 C1122 C1133 2C1112 2C1123 2C1131

C2222 C2233 2C2212 2C2223 2C2231

C3333 2C3312 2C3323 2C3331

2C1212 2C1223 2C1231

sym. 2C2323 2C2331

2C3131




ε11
ε22
ε33
ε12
ε23
ε31


which, making use of the symmetry relationships expressed in (4.3)
and (4.4), simpli�es as follows

σ11

σ22

σ33

σ12

σ23

σ31

 =



c11 c12 c13 c14 c15 c16

c22 c23 c24 c25 c26

c33 c34 c35 c36

c44 c45 c46

sym. c55 c56

c66





ε11

ε22

ε33

ε12

ε23

ε31


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Later on, see equation (6.10), we will also introduce another
symmetry condition that has been assumed in the above. Namely,
the condition

Cijhk = Chkij (4.6)

that further reduces the independent elastic constant from 36 to
21. So, the latter material equation represents the constitutive law
for an anisotropic elastic material. However, most of the engineer-
ing materials have some symmetry properties which allow further
reductions of the elastic constants.

The highest degree of symmetry leads to the so called isotropic

material. We de�ne an isotropic material an elastic continuum which
has the same response in any direction, so that the elastic tensor is
not in�uenced by any rotation of the references axes.

Let the elastic tensor be represented by Cijhk with respect to
the cartesian coordinate {xi} whose basis is B = {ēi}. With respect
to a rotated system {x′i} with basis B′ = {ē′i} the elasticity tensor
is C ′ijhk. By the de�nition of isotropic material, we expect that the
elasticity tensor does not change. In order to show this, let us recall
the transformation relations (1.36) on chapter 1. Here we are dealing
with a Cartesian coordinate system, hence it does not matter if the
indices are all subscripts. So, we have

C ′ijhk = a′ila
′
jmClmnoaohank

= a′ila
′
jma

′
hoa
′
knClmno (4.7)

but to ensure the immunity against the rotation of the reference
system, we impose

C ′ijhk = Clmno (4.8)

that is only satis�ed if the elasticity tensor assumes the following
form

Clmno = λδlmδno + µδlnδmo + κδloδmn (4.9)

where λ, µ, κ are elastic constants2.

2This can be proved by replacing equation (4.9) into (4.7), as follows

C′ijhk = a′ila
′
jma

′
hoa
′
kn (λδlmδno + µδlnδmo + κδloδmn) =

= λa′ima
′
jma

′
hoa
′
ko + µa′ina

′
joa
′
hna
′
ko + κa′ioa

′
jna
′
hna
′
ko =

λδijδhk + µδihδjk + κδikδjh

that is exactly the expression (4.9). Note that we have used the identity a′psa
′
qs =

δpq provided by equations (1.21) and (1.24) on page 7.
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In equations (4.3) and (4.4) we have already noticed the sym-
metry of C in relation to the two front and two back indices, let us
show now that one more reduction is possible

Cijhk = λδijδhk + µδihδjk + κδikδjh (4.10)

Cijkh = λδijδkh + µδikδjh + κδihδjk (4.11)

where, subtracting term by term and considering the symmetry of
the unit tensor δij , equations (4.10) and (4.11) lead to the only
possible condition

µ (δihδjk − δikδjh) + κ (δikδjh − δihδjk) = 0⇒
µ (δihδjk − δikδjh)− κ (δihδjk − δikδjh) = 0⇒

(µ− κ) (δihδjk − δikδjh) = 0 (4.12)

which is only true if (µ− κ) = 0. So, the relationship between κ
and µ further reduces the number of elastic constants to 2. Namely,
we have

Cijhk = λδijδhk + µ (δihδjk + δikδjh) (4.13)

The Hooke's law becomes

σij = Cijhkεhk = λδijδhkεhk + µ (δihδjk + δikδjh) εhk =
= · · ·
= λδijεhh + 2µεij (4.14)

where we have used δhkεhk = εhh = trεhk.

Equation (4.14) is the generalized form of Hooke's law, valid
for homogeneous, isotropic, elastic bodies. λ and µ are called Lamé

constants3.

3Gabriel Lamé (July 22, 1795 Tours - May 1, 1870 Paris) was a French
mathematician and engineer.

Source: http://turnbull.mcs.st-and.ac.uk/history/Mathematicians/Lame.html.
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The trace of the stress tensor is readily computed by contracting
the indices, so that

σii = 3λεhh + 2µεii ⇒ (4.15)

σii = (2µ+ 3λ) εhh ⇒ (4.16)

εhh =
σii

(2µ+ 3λ)
(4.17)

where we can put trσij = σii = Σ and trεij = εii = Θ.

The above expression (4.17) is useful if we solve (4.14) for εij .
In fact, we have

εij =
1

2µ
σij −

λ

2µ
δijΘ (4.18)

and in observance of (4.17) we obtain

εij =
1

2µ
σij −

λ

2µ (3λ+ 2µ)
δijΣ (4.19)

Now, let us consider an axial state of stress. The stress tensor is

σij =

 σ11 0 0
0 0 0
0 0 0


form (4.19) we have

ε11 =
1

2µ

(
1− λ

(3λ+ 2µ)

)
σ11 =

= · · ·

=
λ− µ

µ (3λ+ 2µ)
σ11 (4.20)

ε22 = ε33 = − λ

2µ (3λ+ 2µ)
σ11 (4.21)

(4.22)

Let us de�ne Poisson's ratio ν as follows

ν = −ε11

ε22
= −ε11

ε33
=

λ

2 (µ+ λ)
(4.23)
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λ µ ≡ G E ν

λ, µ - - µ(3λ+2µ)
λ+µ

λ
2(λ+µ)

λ, ν - λ(1−2ν)
2ν

λ(1+ν)(1−2ν)
ν -

µ,E µ(E−2µ)
3µ−E - - E−2µ

2µ

µ, ν 2µν
1−2ν - 2µ (1 + ν) -

E, ν Eν
(1+ν)(1−2ν)

E
2(1+ν) - -

Table 4.1: Relationships between the main elastic constants.

According to Hooke's law in the original form, see equation (4.1),
we can see that

1
E

=
λ− µ

µ (3λ+ 2µ)
⇒ E =

µ (3λ+ 2µ)
λ− µ

(4.24)

So, we have proved that Lamé constants can be replaced by
E and ν which lead to writing the alternative expressions of the
constitutive law

εij =
1
E

((1 + ν)σij − νδijΣ) (4.25)

σij =
E

1 + ν

(
εij +

ν

1− 2ν
δijΘ

)
(4.26)

Table 4.1 shows the relationships between elastic constants.

4.2 The linear elastic problem

In this section we are going to sum up equations and unknown
quantities which de�ne the classical linear elastic problem. Then
we will estimate the distribution of stresses and strain as well as
displacements at all points of the body when certain boundary con-
ditions are given. Let us balance the unknowns and the equations,
we have �fteen unknowns (6 stress components + 6 strain compo-
nents + 3 displacement components) for all points in the continu-
ous and just �fteen equations (6 equilibrium + 6 compatibility + 3
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boundary conditions). So, for a given linear elastic body V we have

C = const. (4.27)

b̄ = b̄ (p) ∀p ∈ V (4.28)

f̄ = ˆ̄f (p) ∀p ∈ Sσ (4.29)

ū = ˆ̄u (p) ∀p ∈ Su (4.30)

In order to solve the linear elastic problem we start from the
known quantities (4.27) to (4.30), and through the following avail-
able equations

- compatibility equations

εij =
1
2

(ui,j + uj,i) on V (4.31)

- equilibrium equations

σij,j + bi = 0 on V (4.32)

- constitutive laws

σij =
E

1 + ν

(
εij +

ν

1− 2ν
δijεij

)
on V (4.33)

- boundary conditions

σijnj = f̂i onSσ (4.34)

ui = ûi on Su (4.35)

we will formulate two boundary�value problems.

4.2.1 Boundary value problem in terms of stresses

This �rst boundary value problem can be stated as follows:

Determine the distribution of stresses and displace-

ments in the interior of an elastic body in equilibrium

when the body forces are prescribed and the distribution

of the forces acting on the surface of the body is known4.

4Sokolniko� [1].
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Following the above formulation, the procedure for solving the
problem would suggest writing the available equations entirely in
terms of stress. To this aim let us start from equation (2.75)

εij,hk + εhk,ij − εih,jk − εjk,ih = 0 (4.36)

and consider the constitutive law (4.25), so that

1 + ν

E
(σij,hk + σhk,ij − σih,jk − σjk,ih) =

=
ν

E
(δijσnn,hk + δhkσnn,ij − δihσnn,jk − δjkσnn,ih) (4.37)

Equation (4.37) represents a set 34 = 81 equations since all the
four indices i, j, h, k run from 1 to 3. Not all of these equations are
independent, indeed the system (4.37) contains only 6 independent
equations. A �rst reduction of equations is due to the contraction
h = k that yields

σij,kk + σkk,ij − σik,jk − σjk,ik =

=
ν

1 + ν
(δijσnn,kk + δkkσnn,ij − δikσnn,jk − δjkσnn,ik) (4.38)

that, by denoting Σ = trσij = σii and σij,kk = ∇2σij , becomes

∇2σij + Σ,ij − σik,jk − σjk,ik =
ν

1 + ν

(
δij∇2Σ +∇2Σij

)
(4.39)

By virtue of the equilibrium equations (4.32), the above expres-
sion can be rewritten as follows

∇2σij +
1

1 + ν
Σ,ij = −

(
bi,j + bj,j −

ν

1 + ν
δij∇2Σ

)
(4.40)

which is a set of 6 independent equations.
Next, in order to express ∇2Σ as a function of the body force

b̄, we put h = i and k = j in equation (4.37), so that, after a bit of
algebra, we have

σij,ij = ∇2Σ− 2
ν

1 + ν
∇2Σ

= . . .

=
1− ν
1 + ν

∇2Σ (4.41)
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and �nally, by invoking the derivative of the equilibrium equation
that provides the relationships bi,i = σij,ij , we get

∇2Σ = −1 + ν

1− ν
bi,i (4.42)

Now, going back to equation (4.40) and making use of the latter
result, it is not a di�cult task to obtain the following expression

∇2σij +
1

1 + ν
Σ,ij = −

(
bi,j + bj,i +

ν

1− ν
δijdiv b̄

)
(4.43)

Equations (4.43) were derived by Michell5 in 1900 and by Bel-

trami6 in the 1892 for the special case when the body forces are
absent. Nevertheless, it is common to refer to equation (4.43) as
Beltrami-Michell equations.

In case of missing or constant volume forces equation (4.43)
assumes the straightforward form

∇2σij +
1

1 + ν
Σij = 0 (4.44)

4.2.2 Boundary value problem in terms of displace-
ments

The second boundary value problem can be stated as follows:

Determine the distribution of stresses and displace-

ments in the interior of an elastic body in equilibrium

5John Henry Michell (October 26, 1863 - February 3, 1940) was an Australian
mathematician.

Source:http://en.wikipedia.org/wiki.
6Eugenio Beltrami (November 16, 1835 Cremona - February 18, 1900 Rome)

was an Italian mathematician.

Source: http://www-groups.dcs.st-and.ac.uk/ history/Biographies/Beltrami.html.
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when the body forces are prescribed and the displace-

ments of the points on the surface are prescribed func-

tions7.

By replacing the constitutive law in the form of (4.14) into equi-
librium equation, we obtain

(λδijεkk),j + 2µεij,j + bi = 0 (4.45)

that is

λεkk,i + 2µεij,j + bi = 0 (4.46)

and in accordance with the compatibility equations we have

λuk,ki + µ (ui,jj + uj,ij) + bi = 0 (4.47)

λuk,ki + µ∇2ui + µuk,ik + bi = 0 (4.48)

(λ+ µ)uk,ki + µ∇2ui + bi = 0 (4.49)

that in the vectorial form reads

(λ+ µ) grad div ū+ µ∇2ū+ b̄ = 0 (4.50)

Equation (4.49) (or equivalently equation (4.50)) is called Lamé-
Navier equation and together with the boundary conditions ex-
pressed by equation (4.35) de�ne the boundary problem inn terms
of displacements.

Once the �rst boundary value problem has been solved, i.e. when
the displacements are known, the state of strain and hence the
state of stress can be found though equations (4.31) and (4.33),
respectively.

Further attention should be focused on the case when body
forces do not occur or they are constant. First, consider the di-
vergence of equation (4.49)

(λ+ µ)uk,kii + µ∇2ui,i + bi,i = 0 (4.51)

that yields

λ∇2uk,k + 2µ∇2uk,k + bi,i = (λ+ 2µ)∇2uk,k + bi,i = 0 (4.52)

7Sokolniko� [1].
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which, under the hypothesis of bi = const., so that bi,i = 0, gives

∇2uk,k = ∇2Θ = 0 (4.53)

where we have set Θ = trεij = εii.

Moreover, recalling (4.17) it is also proved that

∇2σkk = 0 (4.54)

We can �nally say that if the volume forces are constant, the
boundary linear elastic problem in terms of displacements turns
into a general boundary values problem of a biharmonic di�erential
equation.

4.3 Constitutive equation for shell continuums

The Kirchho��Love hypothesis and the inextensibility of mate-
rial �bers along n̄ allows one to consider the shear stress components
N ξα unrelated to strains, so that the constitutive problem can be
solved through the plane stress model. Thus, components N ξα are
found only by means of the equilibrium equations. The analytical
derivation of the constitutive equations is beyond the scope of this
book, so we will just present the �nal equations that will be used
in the appendix A in order to solve some case studies. However,
readers can �nd thorough discussions in [3] and [16].

Suppose a membrane state of stress, the constitutive equations
are the following

Ñαβ = DHαβλµαλµ (4.55)

Mαβ = BHαβλµωλµ (4.56)

where

Hαβλµ =
1− ν

2
(
gαλgβµ + gαµgβλ +

2ν
1− ν

gαβgλµ
)

(4.57)

The fourth�order tensor Hαβλµ has the following symmetries

Hαβλµ = Hβαλµ = Hαβµλ = Hλµαβ (4.58)
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Finally, coe�cients D and B are the in�plane and the bending
sti�ness, respectively, de�ned as

D =
E(2ε)
1− ν2

(4.59)

B =
E(2ε)3

12(1− ν2)
(4.60)





Chapter 5

Principle of Virtual Work

This chapter is entirely devoted to the Principle of the Virtual Work.

In particular the relations between equilibrium, compatibility conditions,

and virtual work will be highlighted.

5.1 Virtual work

Virtual work can be de�ned as the work done on a deformable
continuum by all the forces acting on it when the body is subjected
to a small hypothetical displacement �eld - unrelated to the forces -
which is consistent with the constraints present. The latter is named
virtual displacement and is denoted by an asterisk.

Figure 5.1: Forces and constraints acting on the continuous.

As �gure 5.1 shows, let us suppose to split the surface S into two
separated boundary surfaces, in such a way that surface forces are

Claudio Borri, Michele Betti, Enzo Marino (a cura di), Lectures on Solid Mechanics, ISBN 978-88-8453-
854-3 (online), ISBN 978-88-8453-853-6 (print), © 2008 Firenze University Press
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prescribed on Sσ and a boundary displacement �eld ū is prescribed
over the remaining boundary surface denoted by Su. Namely, the
entire surface results as the sum S = Su ∪ Sσ, where Su = S ′u ∪ S ′′u
and Sσ = S ′σ ∪ S ′′σ .

Consider now a virtual displacement �eld u∗i which yields the
deformation

ε∗ij =
1
2
(
u∗i,j + u∗j,i

)
(5.1)

In order to calculate the virtual work done by the volume and
surface forces we write

W ∗ =
∫
Sσ
fiu
∗
i dSσ +

∫
V
biu
∗
i dV (5.2)

and we recall also the equilibrium equations discussed in chapter 3

σij,i + bj = 0, ∀ p ∈ V (5.3)

σijnj = fi, ∀ p ∈ Sσ (5.4)

σij = σji ∀ p ∈ V (5.5)

By replacing both equations (5.3) and (5.4) into equation (5.2)
we have

W ∗ =
∫
Sσ
σijnju

∗
i dSσ −

∫
V
σhi,hu

∗
i dV (5.6)

Next, consider the following identity∫
V

(σhiu∗i ),h dV =
∫
V
σhi,hu

∗
i dV +

∫
V
σhiu

∗
i,hdV (5.7)

that through some simple algebra yields the following equations∫
V

(σhiu∗i ),h dV =
∫
V
σhi,hu

∗
i dV+

+
1
2

∫
V
σhi
(
u∗i,h + u∗h,i

)
dV +

1
2

∫
V
σhi
(
u∗i,h − u∗h,i

)
dV︸ ︷︷ ︸

=0

=

=
∫
V
σhi,hu

∗
i dV +

∫
V
σhiε

∗
hidV ⇒∫

V
σhi,hu

∗
i dV =

∫
V

(σhiu∗i ),h dV −
∫
V
σhiε

∗
hidV (5.8)
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where we have split the virtual displacement gradient u∗i,j = ε∗ij +
ω∗ij , see equation (2.81), and used the fact that the product of a sym-

metric tensor σij by a skew-symmetric tensor ωij = 1
2

(
u∗i,j − u∗i,j

)
always vanishes. Moreover, the divergence theorem allows us to
write ∫

V
(σhiu∗i ),h dV =

∫
Sσ∪Su

σhiu
∗
inhdS (5.9)

so �nally equation (5.8), provided that u∗ = 0 on Su, becomes

W ∗ =
∫
Sσ
σijnju

∗
i dS −

∫
Sσ
σhiu

∗
inhdS︸ ︷︷ ︸

=0

+
∫
V
σhiε

∗
hidV (5.10)

As a result we have proved the following expression, also known
as principle of virtual work, holds∫

Sσ
fiu
∗
i dSσ +

∫
V
biu
∗
i dV =

∫
V
σijε

∗
ijdV (5.11)

In equation (5.11) we shall de�ne the left�hand side group of
terms as external work, and the right�hand side one as internal

work, the reason why the following alternative names are often used

W ∗ = L∗e =
∫
Sσ
fiu
∗
i dSσ +

∫
V
biu
∗
i dV

W ∗ = L∗i =
∫
V
σijε

∗
ijdV

To obtain the above results we started from the equilibrium and
compatibility conditions and it is interesting to notice that we have
never used any constitutive laws. So the PVW can be applied to all
continuous material with the only limitation of small displacements.

Let us take a look to the physical meaning of the internal work.
Consider an in�nitesimal volume element dV, shown in �gure 5.2.

In a two dimensional case the work done by forces acting on dV
for each deformation ε∗ij can be seen in sketches 5.3, where the axial
virtual dilatation along the x2 direction and the angular dilatation
in (x1, x2)�plane are depicted.

Thus, the in�nitesimal virtual work done by σ22dx1dx3 is

dL∗i22
= σ22dx1dx3ε

∗
22dx2 = σ22ε

∗
22dV
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Figure 5.2: Elemental volume element.

(a) Axial dilatation. (b) Angular dilatation.

Figure 5.3: Virtual deformation.

In the same way from �gure 5.3(b) the work done by the force
σ21dx1dx3 is

dL∗i21
= σ21dx1dx3γ

∗
21dx2 = 2σ21ε

∗
21dx1dx2dx3 = 2σ21ε

∗
21dV

Computing the in�nitesimal work dL∗ done for each deformation
and integrating on the entire volume V we obtain

L∗i =
∫
V
σijεijdV (5.12)

The principle of the virtual work for rigid bodies can be readily
derived from the general expression (5.11) where, since εij = 0,
yields

L∗e = 0 (5.13)
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5.1.1 A simple example

As an application of the virtual work principle let us consider a
simple system of bars1

All the forces are summed in a resultant force F applied to the
end point of two bars, as shown in �gure 5.4. The external force
provides only an axial state of stress in the bars.

F 150 kN
E 20 6× 1 03 N/mm2

A 15 cm2

l 2 m
l1 4.47 m
l2 4 m
α 63.435◦

By means of the PVW we want to �nd the magnitude of the
real displacement at point A along x1 and x2-directions under the
e�ect of F . To this end we consider �rst a unit explorer load in
x1-direction (to compute u∗1, then a unit explorer load in the x2

direction (to compute u∗2).
First of all we solve the equilibrium problem, so that

real case a case b case

N1 2F/ sinα 2/ sinα 0
N2 −2F −2 1

Consider case a in which we shall compute u∗1. PVW reads as
follows

L∗e = 1u∗1 =
∫
l1

N1ε
∗
1dl +

∫
l2

N2ε
∗
2dl = L∗i

where

ε∗1 =
Na∗

1

EA
=

2
EA sinα

ε∗2 =
Na∗

2

EA
= − 2

EA
1Although no notions on mechanics of beams or frame structures have been

introduced so far, the intuitive meaning the reader can assign to some quantities,
like the unit axial deformation ε, could be enough to get the main idea of this
example. Moreover, after reading chapter 8, the reader will be able to have a
more comprehensive view of this application.
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F

2l

A

l

a

u*1

B

u*2

1
A

a B

A

a B

l1

l2

l1

l2

l1

l2

a b

Figure 5.4: Example.

So we have

1u∗1 =
4F

EA sinα
l1 +

4F
EA

l2

For case b we write

L∗e = 1u∗2 =
∫
l2

N2ε
∗
2dl = L∗i

where

ε∗2 =
N b∗

2

EA
= − 1

EA

So we have

1u∗2 =
2F
EA

l2

Finally, with respect to the cartesian positive direction, using
the above expressions we easily obtain

u∗1 = 18.62 mm
u∗2 = −3.88 mm
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5.2 PVW, Compatibility conditions, Equilibrium

In the previous section we showed that the equilibrium and the
compatibility conditions lead to PVW. Now in this section we shall
prove that two of three conditions are enough to obtain the third
one.

PVW + Compatibility ⇒ Equilibrium. Let us start from the
PVW and the compatibility equations∫

S
fiu
∗
i dS +

∫
V
biu
∗
i dV =

∫
V
σijε

∗
ijdV

ε∗ij =
1
2
(
u∗i,j + u∗j,i

)
By splitting the displacement gradient the PVW can be rewrit-
ten as follows∫

S
fiu
∗
i dS +

∫
V
biu
∗
i dV =

∫
V
σiju

∗
i,jdV −

∫
V
σijωijdV

Now, making use once again of the identity (5.7), the latter
equation becomes∫

S
fiu
∗
i dS +

∫
V
biu
∗
i dV =∫

V
(σiju∗i ),j dV −

∫
V
σij,ju

∗
i dV −

∫
V
σijωijdV ⇒∫

V
(σij,j + bi)u∗i dV =

∫
S

(σijnj − fi)u∗i dS −
∫
V
σijωijdV

where the divergence theorem has been used.

Due to the arbitrariness of the displacement �eld, if com-
patible, the latter equation is only satis�ed if each argument
vanishes, therefore

σij,j + bi = 0, ∀ p ∈ V
σijnj − fi = 0, ∀ p ∈ Sσ

σijωij = 0⇒
σij = σji ∀ p ∈ V
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PVW + Equilibrium ⇒ Compatibility. To prove this statement
consider the expression of the PVW (5.11)∫

Sσ
fiu
∗
i dSσ +

∫
V
biu
∗
i dV =

∫
V
σijε

∗
ijdV

and the equilibrium equations

σij,i + bj = 0, ∀ p ∈ V
σijnj = fi, ∀ p ∈ Sσ

that replaced into the equation of the PVW lead to∫
Sσ
σijnju

∗
i dSσ −

∫
V
σji,ju

∗
i dV =

∫
V
σijε

∗
ijdV

and by using again the divergence theorem the above equation
becomes∫

V
(σiju∗i ),j dV −

∫
V
σji,ju

∗
i dV =

∫
V
σijε

∗
ijdV

and by expanding the �rst integral on the left�hand side we
obtain ∫

V
σiju

∗
i,jdV =

∫
V
σijε

∗
ijdV ⇒∫

V
σij

1
2
(
u∗i,j + u∗j,i

)
dV +

∫
V
σij

1
2
(
u∗i,j − u∗j,i

)
dV︸ ︷︷ ︸

=σijωij=0

=

∫
V
σijε

∗
ijdV

that proves the compatibility condition of the virtual displace-
ment �eld

ε∗ij =
1
2
(
u∗i,j + u∗j,i

)



Chapter 6

Energy principles and variational methods

This chapter deals with some of the most important results concern-
ing energy principles in elasticity. Firstly, we will start introducing the
strain energy and how it is related to the work done by the external forces
(Clapeyron's theorem), secondly we will introduce two important theorems
which make use of the strain energy: uniqueness of the solution for the
elastic boundary�value problem and the theorem of reciprocity.

Finally, the equilibrium condition will be interpreted as the stationary

condition of the potential energy and accordingly some energetic theorems

will be enounced.

6.1 The strain-energy function and Hooke's law

Suppose the body V lies in a natural state at time t = 0. Under
the e�ect of surface and body forces, the continuum has at time
t the strained con�guration. With respect to the usual cartesian
system each point of V is found by xi + ui (xj , t). Where {xj} de-
notes the coordinates in the unstrained con�guration at t = 0. The
displacement �elds may be derived as follows

∂ui
∂t

dt = u̇idt

During the deformation the work done by all the forces acting
on the body is denoted by W . The rate of W is given by

dW
dt

=
∫
S
fiu̇idS +

∫
V
biu̇idV (6.1)

By making use of equilibrium boundary equation (3.3.3) in chap-

Claudio Borri, Michele Betti, Enzo Marino (a cura di), Lectures on Solid Mechanics, ISBN 978-88-8453-
854-3 (online), ISBN 978-88-8453-853-6 (print), © 2008 Firenze University Press
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ter 3 and the divergence theorem, equation (6.1) becomes

dW
dt

=
∫
V
biu̇idV +

∫
V

(σij u̇i),j dV =

=
∫
V
biu̇idV +

∫
V
σij,j u̇idV +

∫
V
σij u̇i,jdV =

=
∫
V
biu̇idV +

∫
V
σij,j u̇idV +

∫
V
σij (ε̇ij + ω̇ij) dV =

=
∫
V
biu̇idV +

∫
V
σij,j u̇idV +

∫
V
σij (ε̇ij + ω̇ij) dV

Due to the equilibrium condition, and remembering that σijω̇ij =
0, the latter equation may be written as follows

dW
dt

=
∫
V
σij ε̇ijdV =

∫
V
σij

∂εij
∂t

dV (6.2)

Now let us suppose that there exists a function φ = φ (εij) such
that

∂φ

∂εij
= σij (6.3)

so, (6.2) becomes

dW
dt

=
∫
V

∂φ

∂εij

∂εij
∂t

dV =
d

dt

∫
V
φ (εij) dV (6.4)

Let us de�ne strain energy the following integral

Φ =
∫
V
φ (εij) dV (6.5)

where φ is said volume density of strain energy or elastic potential.

Hence, since we are considering the instant t when the body lies
in an equilibrium con�guration, so that the kinetic energy vanishes,
equation (6.4) states that the work W done by the external forces
in altering the con�guration of the natural state to the equilibrium
state at the instant t is equal to the strain energy Φ. Therefore, the
latter can be considered as the energy stored in the deformable body
when it is brought from an initial natural state to the equilibrium
state.
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We assume now that the strain energy density function φ can
be expanded in a Mc Laurin series

φ (εij) = φ (0) +
(
∂φ

∂εij

)
0

+
1
2

(
∂2φ

∂εij∂εhk

)
0

εijεhk + · · · (6.6)

where we discard all terms of order 3 or higher. The constant φ (0)
is the energy density associated with the initial stress state while(

∂φ

∂εij

)
= σ0

ij

is the initial stress state.
Now recalling the Hooke's generalized law (4.2), and taking into

account equation (6.3), we obtain

∂σij
∂εhk

= Cijhk (6.7)

and
∂σij
∂εhk

=
∂2φ

∂εhk∂εij
(6.8)

so from equations (6.7) and (6.8) we have that

Cijhk =
∂2φ

∂εhk∂εij
(6.9)

and due to Schwartz's theorem the symmetry of the elasticity tensor
has also been proved

Cijhk = Chkij (6.10)

This important result can be substituted into equation (6.6),
where, by assuming that both the energy density at initial state of
stress and prestresses vanish, we obtain

φ (εij) =
1
2
Cijhkεijεhk (6.11)

hence

Φ =
∫
V
φ (εij) dV =

1
2

∫
V
Cijhkεijεhk (6.12)

In the case of a simple axial state of stress the density of strain
energy is

φ =
1
2
C1111ε11ε11 =

1
2
σ11ε11

therefore the dashed area in �gure 6.1 represents the density of
strain energy for an axial state of stress.
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Figure 6.1: Density of strain energy in the case of axial state of
stress.

Theorem 1 (Clapeyron's theorem) If a body is in equilibrium

under a given system of body forces bi and surface forces fi, then
the strain energy Φ is equal to one-half the work done by the external

forces (of the equilibrium state) acting through the displacements ui
from the initial state to the equilibrium state.

To prove Clapeyron's theorem let us recall the PVW expres-
sion. See equation (5.11) in chapter 5. To do this it is necessary
to require the equilibrium state of the body and the consistency of
displacement and strain �elds, thus∫

Sσ
fiuidSσ +

∫
V
biuidV =

∫
V
σijεijdV (6.13)

where replacing the expression of the strain energy (6.12) we have

2Φ =
∫
Sσ
fiuidSσ +

∫
V
biuidV (6.14)

On the right�hand side of equation (6.14) we recognize what we
have de�ned as external forces work. Therefore we have proved that

Φ =
1
2
Le (6.15)

As done in equation (6.3) we suppose now the existence of the
conjugate strain energy density

φ∗ = φ∗ (σij) (6.16)

such as
∂φ∗

∂σij
= εij (6.17)
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so we de�ne

Φ∗ =
∫
V
φ∗ (σij) dV (6.18)

as the conjugate strain energy.

Through equations similar to the strain energy case, we can
write

φ∗ (σij) =
1
2
C∗ijhkσijσhk (6.19)

where C∗ijhk = C−1
ijhk and εij = C∗ijhkσhk. We can also prove that

φ (εij) = φ∗ (σij) =
1
2
εijσij (6.20)

in fact, we have

φ∗ (σij) =
1
2
C∗ijhkσijσhk =

1
2
εijσij = φ (εij) (6.21)

Often it is useful to know the whole strain energy of a deformable
body without knowing the internal state of stress. Figure 6.2 shows
the deformation of a beam under a concentrated external load1.

Figure 6.2: The simplest application of Clapeyron's theorem.

We can compute the strain energy easily as

Φ =
1
2
Fu

1We suppose the self weight vanishes.
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6.1.1 Superposition principle

We set the elastic equilibrium boundary-value problem as fol-
lows

divσ + b̄ = 0 ∀ p ∈ V (6.22)

ε = sym∇ū ∀ p ∈ V (6.23)

σ =
E

1 + ν

(
ε+

ν

1− 2ν
trε

)
∀ p ∈ V (6.24)

and

σn̄ = f̄ ∀ p ∈ Sσ (6.25)

ū = ˆ̄u ∀ p ∈ Su (6.26)

Superposition principle is a general tool that can be applied to
many physical linear systems. It states that if a number of inde-

pendent in�uences act on the system, then the resultant in�uence is

the sum of the individual in�uences acting separately.

Namely, let us suppose to have two systems of body and surface
forces

{b̄(1), f̄ (1)} (6.27)

{b̄(2), f̄ (2)} (6.28)

Every force system is related to the following strain and stress
state, respectively

{ū(1), ε(1), σ(1)} (6.29)

{ū(2), ε(2), σ(2)} (6.30)

Formally the the principle of in�uence superposition allows us
to state that for all λ1, λ2 ∈ IR, given the following forces system

{λ1b̄
(1) + λ2b̄

(2), λ1f̄
(1) + λ2f̄

(2)} (6.31)

then the following set of displacement, strain and stress

{λ1ū
(1) + λ2ū

(2), λ1ε
(1) + λ2ε

(2), λ1σ
(1) + λ2σ

(2)} (6.32)

is the solution of the equilibrium boundary-value problem.
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To prove that it is enough to substitute the above �elds in the
elastic problem equations.

However, there are some special cases for which the superpo-
sition principle does not hold. Indeed, let us consider the strain

energy Φ and put εij = ε
(1)
ij + ε

(2)
ij . We obtain

Φ (εij) =
1
2

∫
V
CijhkεijεhkdV = (6.33)

=
1
2

∫
V
Cijhk

(
ε

(1)
ij + ε

(2)
ij

)(
ε

(1)
hk + ε

(2)
hk

)
dV = (6.34)

=
1
2

∫
V
Cijhkε

(1)
ij ε

(1)
hk dV +

1
2

∫
V
Cijhkε

(2)
ij ε

(2)
hk dV+

+
1
2

∫
V
Cijhkε

(1)
ij ε

(2)
ij dV +

1
2

∫
V
Cijhkε

(2)
ij ε

(1)
ij dV (6.35)

Finally, due to the symmetry of the elasticity tensor we have

Φ (εij) = Φ
(
ε

(1)
ij + ε

(2)
ij

)
= (6.36)

= Φ
(
ε

(1)
ij

)
+ Φ

(
ε

(2)
ij

)
+
∫
V
Cijhkε

(1)
ij ε

(2)
hk dV (6.37)

The last term in equation (6.37) represents the coupling con-
tribution to the strain energy which disproves the superposition
principle for the strain energy.

6.1.2 Uniqueness of the solution

The solution of the boundary�value problems formulated in sec-
tions 4.2.1 and 4.2.2 is unique. To show that let us assume, by ab-
surd, that it is possible to obtain two solutions for the boundary�
value problem expressed by equations (6.22) to (6.26)

{ū(1), ε(1), σ(1)} (6.38)

{ū(2), ε(2), σ(2)} (6.39)

Equation (6.22) allows us to put

σ
(1)
ij,j = σ

(2)
ij,j + bi = 0 (6.40)

while equation (6.25) allows to write

σ
(1)
ij nj = σ

(2)
ij nj = f̂i (6.41)
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Now, by virtue of the superposition principle, it is clear that the
following function

ū = ū(1) − ū(2)

ε = ε(1) − ε(2)

σ = σ(1) − σ(2)

represent a special solution ful�lling the equilibrium equation pro-
vided that bi = 0 and f̂i = 0. In fact we have

σij,j =
(
σ

(1)
ij − σ

(2)
ij

)
,j

= 0 (6.42)

σij,jnj =
(
σ

(1)
ij − σ

(2)
ij

)
nj = 0 (6.43)

Thus, for this special solution Clapeyron's theorem (6.14) writes
as follows

2Φ = 0 (6.44)

that is ∫
V
φ (εij) dV =

∫
V
CijhkεijεhkdV = 0 (6.45)

But since φ is a positive de�nite quadratic form, the above in-
tegral can vanish only when εij = 0 and so the following identity
has been proved

ε
(1)
ij = ε

(2)
ij (6.46)

Therefore, if the components of the strain tensor for two solu-
tions must be identical, then, by means of the constitutive law, it
follows that the components of the stress tensor must be identical
as well

σ
(1)
ij = σ

(2)
ij

Finally we want to remark that the equality ε(1) = ε(2) does
not exclude rigid body motion ū0. In fact ū1 = ū2 + ū0 satis�es the
uniqueness of deformation since it does not produce any deforma-
tion, i.e ε0 = 0. But we shall suppose the constraints along Su are
able to inhibit all rigid displacements, so that

ū
(1)
i = ū

(2)
i (6.47)
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6.1.3 Theorem of reciprocity

Now we introduce a general reciprocal expression relating the
equilibrium states of a body under di�erent loads. To do this let
us consider two equilibrium states of an elastic body one of which
subjected to displacement �eld ū due to the body and surface forces
b̄ and f̄ , respectively; the other equilibrium state is characterized
by the displacement �eld ū′ due to the body and surface forces b̄′

and f̄ ′, respectively. The work that would be done by the forces bi
and fi if they acted through the displacements u′i can be written as
follows ∫

S
fiu
′
idS +

∫
V
biu
′
idV =

∫
V
σijε

′
ijdV (6.48)

and in the same way, the work that would be done by the forces b′i
and f ′i if they acted through the displacements ui can be written as
follows ∫

S
f ′iuidS +

∫
V
b′iuidV =

∫
V
σ′ijεijdV (6.49)

Through the symmetry of the tensor of elasticity we notice that

σij = Cijhkεhk

σ′ij = Cijhkε
′
hk

hence, ∫
V
σ′ijεijdV = (6.50)

=
∫
V
Cijhkε

′
hkεijdV =

∫
V
Chkijεijε

′
hkdV = (6.51)

=
∫
V
σhkε

′
hkdV. (6.52)

Equations (6.50) and (6.52) prove that (6.48) and (6.49) are
identical, so∫

S
fiu
′
idS +

∫
V
biu
′
idV =

∫
S
f ′iuidS +

∫
V
b′iuidV (6.53)

Equation (6.53) can be enunciated in the following theorem

Theorem 2 (Betti's theorem) If an elastic body is subjected to

two systems of body and surface forces, then the work that would be
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done by the �rst system bi and fi acting through the displacements

u′i due to the second system of forces is equal to the work that would

be done by the second system of forces b′i and f
′
i acting through the

displacements ui due to the �rst system of forces.

Theorem of Betti is also termed theorem of reciprocity.

6.2 Variational methods

In this section we present an alternative approach aimed at �nd-
ing the state of stress in a continuous elastic body. This method
basis itself on some minimum principles that characterize the equi-
librium state of bodies. Namely we shall see that it is possible to
construct some integrals relating the work done by the forces act-
ing throughout the deformation and to show that these integrals
have their minimum values when the distribution of stress in the
body corresponds to the equilibrium states. So searching for equi-
librium state is reduced to certain standard problems of calculus of
variations.

This method is strongly used in computational mechanics to
solve the equilibrium problem in the �nite elements method.

6.2.1 Potential energy

Let us start by introducing the functional U called potential

energy of deformation. We shall show that this potential attains an
absolute minimum value when the displacements of the body V are
those of the equilibrium con�guration. As usual, see also �gures 5.1
on page 103 and �gure 6.3, let bi be the body forces and fi the
surface forces prescribed on Sσ.

We suppose that over the remaining part of S, i.e. Su, the dis-
placements ûi are known. We denote the displacements which sat-
isfy the equilibrium con�guration as ui and consider an arbitrary
small2 displacements δui only if consistent with respect to the com-
patibility conditions imposed over Su. To the �eld δū is also re-
quested to belong to class C3 and to be zero over Su. We shall term
δū as virtual displacement �eld3.

2Compatible with the hypothesis of linear elasticity, δεij = 1
2

(δui,j + δuj,i).
3Note that in chapter 5 the virtual displacement δū was denoted by ū∗.
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Figure 6.3: Forces and displacements acting on the body V lying in
the equilibrium state.

The elastic problem is given as follows

divσ + b̄ = 0 ∀p ∈ V (6.54)

ε = sym∇ū ∀p ∈ V (6.55)

σ =
E

1 + ν

(
ε+

ν

1− 2ν
trε

)
∀p ∈ V (6.56)

and

ū = ˆ̄u ∀p ∈ Su (6.57)

We de�ne the potential energy of deformation U as follows

U (εij , ui) = Φ (εij)−Ψ (ui) (6.58)

where

Φ (εij) =
∫
V
φ (εij) dV (6.59)

Ψ (ui) =
∫
V
biuidV +

∫
S
fiuidS (6.60)

The potential energy U is the sum of the strain energy Φ and
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the conservative loads potential Ψ. The �rst variation of U is

δU = U (ū+ δū, ε+ δε)− U (ū, ε) (6.61)

= Φ (ε+ δε)−Ψ (ui + δui)− Φ (ε) + Ψ (ui) = (6.62)

= Φ (ε+ δε)−
∫
V
bi (ui + δui) dV−

∫
S
fi (ui + δui) dS+

− Φ (ε) +
∫
V
biuidV +

∫
S
fiuidS (6.63)

In equation (6.37) we have just seen that

Φ (ε+ δε) = Φ (ε) + Φ (δε) +
∫
V
Cijhkεhkδεij (6.64)

so neglecting Φ (δεij) as a second order in�nitesimal, we obtain

δU =
∫
V
σijδεijdV −

∫
V
biδuidV −

∫
S
fjδuidS (6.65)

We recognize in the right�hand side terms of the above expres-
sion the Principle of Virtual Work (5.11). So it is easy to notice
that the stationary point for potential energy U corresponds to the
equilibrium condition. We know, in fact, that the PVW and the
compatibility conditions of displacements δui result in the same
thing and that is equilibrium state.

Theorem 3 (stationary value of potential energy) The total

potential energy U of an elastic body has a stationary value in the

class of the geometrically permissible displacements for the true dis-

placements which correspond to the state of equilibrium.

It is also possible to prove the following stronger theorem.

Theorem 4 (minimum potential energy) Of all displacements sa-

tisfying the given boundary conditions those which satisfy the equi-

librium conditions make the potential energy an absolute minimum.

6.2.2 Complementary energy

Now we proceed to prove another important minimum theorem.
As usual, see also �gure 5.1 on page 103, let V be a body in an
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equilibrium state under the volume forces bi and surface forces fi
prescribed on Sσ.

The elastic problem is given as follows

divσ + b̄ = 0 ∀p ∈ V (6.66)

ε = sym∇ū ∀p ∈ V (6.67)

σ =
E

1 + ν

(
ε+

ν

1− 2ν
trε

)
∀p ∈ V (6.68)

and

σn̄ = f̄ ∀p ∈ Sσ (6.69)

(6.70)

We term U∗ conjugate potential energy of deformation or com-
plementary energy and we shall show that this potential reaches an
absolute minimum value when the displacements of the body V are
those of the equilibrium con�guration.We de�ne the complementary
energy of deformation U∗ as follows

U∗ (σij , fi) = Φ∗ (σij)−Ψ∗ (fi) (6.71)

where

Φ∗ (σij) =
∫
V
φ∗ (σij) dV (6.72)

Ψ∗ (fi) =
∫
S
fiuidS (6.73)

We suppose that over the remaining part Su the displacements
ûi are known. We denote the displacements which satisfy the equi-
librium con�guration as ui and consider an arbitrary small varia-
tions of σ and f̄ : δσ and δf̄ , respectively. It is required that the
�elds σ + δσ and f̄ + δf̄ assures the equilibrium state, so that, by
virtue of equations (6.22) and (6.25), we easily obtain

δσij,i = 0 in V (6.74)

δσijni = 0 on Sσ (6.75)

The �rst variation of U∗ is

δU∗ = U∗
(
f̄ + δf̄ , σ + δσ

)
− U∗

(
f̄ , σ

)
(6.76)

= Φ∗ (σ + δσ)− Φ∗ (σ)−Ψ∗
(
f̄
)

+ Ψ∗
(
f̄ + δf̄

)
(6.77)
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which in components becomes

δU∗ (σij) = Φ∗ (σij) +
∫
V
C∗ijhkσhkδσij (6.78)

−Φ∗ (σij)−
∫
S
δfiuidS (6.79)

�nally,

δU∗ (σij) =
∫
V
δσijεij −

∫
S
δfiuidS (6.80)

where we recognize on the right�hand side of the above expression
the Principle of Virtual Work (5.11). So it is easy to notice that
the stationary point for complementary energy U∗ corresponds to
the equilibrium condition. We know, in fact, that the PVW and
the compatibility conditions of displacements δui lead to the same
result: the equilibrium state.

Theorem 5 (stationary value of complementary energy) The

total complementary energy U∗ of an elastic body has a stationary

value in the class of the statically permissible state of stress for the

true state of stress corresponding to the equilibrium.

It is also possible to prove the following stronger theorem.

Theorem 6 (minimum complementary energy) The complemen-

tary energy U∗ has an absolute minimum when the stress tensor σij
is that of the equilibrium state and ful�lls the conditions (6.74) and
(6.75).

6.2.3 Theorems of Castigliano

Results discussed in the previous sections give us the means to
�nd some other important results which go by the name of theorems
of Castigliano. Therefore, let us suppose that a body V is subjected
only to concentrated loads Fk as �gure 6.4 shows.

The potential energy and the complementary energy are, respec-
tively

U = Φ (εij)−
n∑
k=1

F ki ui (6.81)

U∗ = Φ∗ (σij)−
n∑
k=1

F ki ui (6.82)
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Figure 6.4: Concentrated loads acting on the body V.

Rearranging the scalar product on the right�hand side of equa-
tions (6.81) and (6.82) we obtain

U = Φ (εij)− F kuk (6.83)

U∗ = Φ∗ (σij)− F kuk (6.84)

where uk is the component of the displacement vector at the point
of application of F k in the direction of this force. Now we suppose
that the potential energy U results only from the displacements uk
and the complementary energy U∗ results only from the external
concentred loads F k, therefore the energies above can be written as
follows

U (u1, . . . , un) = Φ (u1, . . . , un)− F kuk (6.85)

U∗
(
F 1, . . . , Fn

)
= Φ∗

(
F 1, . . . , Fn

)
− F kuk (6.86)

where the �rst variations are

δU = Φ (u1, uk + δuk, un)− Φ (u1, uk, un)− F kδuk =

=
∂Φ (uk)
∂uk

δuk − F kδuk =
(
∂Φ (uk)
∂uk

− F k
)
δuk (6.87)

δU∗ = Φ∗
(
F 1, F k + δF k, Fn

)
− Φ∗

(
F 1, F k, Fn

)
− δF kuk =

=
∂Φ∗

(
F k
)

∂F k
δF k − δF kuk =

(
∂Ψ∗

(
F k
)

∂F k
− uk

)
δF k (6.88)
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and by means of the principles of stationary value, equations (6.87)
and (6.88) vanish, and discarding the trivial solutions δuk = 0 and
δF k = 0, we obtain

∂Φ∗

∂F k
= uk (6.89)

∂Φ
∂uk

= F k (6.90)

where F k is a generic concentred load and uk is its corresponding
displacement.

Equation (6.90) may also be enounced in the following form

Theorem 7 (Castigliano's theorem) If an elastic body is sub-

jected to concentred loads and supported in such way that each rigid

body motion is inhibited, then the displacement component uk of the
point of application of F k towards its direction, is obtained from the

partial derivative of the complementary energy with respect to the

particular force.

Menabrea's theorem is a particular case of Castigliano's theo-
rem. In fact, if F k is a reaction due to a constraint which does not
allow any displacement, then equation (6.89) will become

∂Φ∗

∂F k
= 0 (6.91)

Equation (6.90) represents the second Castigliano's theorem,
which states

Theorem 8 (II Castigliano's theorem) If an elastic body is sub-

jected to concentred displacements uk and supported in such a way

that each rigid body motion is inhibited, then the component of a

concentrated load acting in the direction of such displacement is ob-

tained by the partial derivative of the potential energy with respect

to the particular displacement component.

Illustrative example

Let us consider the simple system showed in �gure 6.5. We have
a rigid body which is supported by means of two elastic devices.

The entire elasticity of the system is concentrated in A and B,
where we have a rotational sti�ness with spring modulus km and a
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Figure 6.5: Example of Castigliano's theorems.

translational sti�ness with spring modulus kl, respectively. So, the
constitutive relationships are

M = kmϑ (6.92)

R = klϑl (6.93)

and we may also set the following geometric relation

u =
1
2
lϑ

According to equations (6.5) and (6.11), through the above con-
stitutive relationships, we can compute the strain energy Φ as fol-
lows

Φ =
1
2
Mϑ+

1
2
Rlϑ =

1
2
kmϑ

2 +
1
2
kll

2ϑ2 = 2u2

(
km
l2

+ kl

)
(6.94)

Now, by virtue of second theorem of Castigliano, we can �nd
the external load

F =
∂Φ
∂u

= 4u
(
km
l2

+ kl

)
so that

u =
F

4
l2

km + l2kl





Chapter 7

Strength of materials

This section is intended to give only an overview about some selected
criteria aimed at determining whether the state of stress characterizing
an elastic continuum is secure compared with conventional material limits
derived from experimental tests.

For a thorough investigation on the strength of materials the reader

is recommended to referred to [7], [9], [10], [12].

7.1 Introduction

Usually the mechanical properties of materials are investigated
by simple experimental tests, for example the tensile test and com-
pression test o�er the two failure stresses σ′0 and σ′′0 which allow
the evaluation of the riskiness of a combined state of stress result-
ing from the solution of the linear�elastic problem.

When the real state of stress is simply tension or compression,
we can directly compare the results with the experimental values σ′0
and σ′′0 and easily evaluate if the working stress is lower or higher
than the yielding point (or rupture point for fragile materials).

The problem becomes more complicated when the actual state
of stress is combined, hence various theories have been developed
in order to �nd laws which, from the behavior of the materials in
simple compression or tension, predict the condition of failure under
any kind of combined stresses. The following sketch is rappresenta-
tive of this statement

analytical How to compare? experimental

{σij} ⇐==⇒ {σ′0, σ′′0}
f =?

It is known that the whole state of stress is de�ned by three
principal stresses, so according to equation (3.36) in chapter 3, we
assume that I3 6= 0. Furthermore, suppose the eigenvalue problem

Claudio Borri, Michele Betti, Enzo Marino (a cura di), Lectures on Solid Mechanics, ISBN 978-88-8453-
854-3 (online), ISBN 978-88-8453-853-6 (print), © 2008 Firenze University Press
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(3.35) yields the three principal stresses ordered as follows

σI > σII > σIII

where tensions are taken positive and compressions negative.
The law we are looking for assumes the following general form

f (σI , σII , σIII) = constant (7.1)

where f (σI , σII , σIII) is a comparable quantity and the constant
can be found applying the criterion f to the simple state of stress
f (0, 0, σ0).

7.2 Maximum stress theory

This theory, also called Rankine's criterion, assumes the maxi-
mum stress as the criterion for the material failure. Accordingly we
write

σ′id = |σI | (7.2)

σ′′id = |σIII | (7.3)

where σid is the ideal stress, that is the comparable stress.
In case of ductile materials the theory assumes that the yielding

starts when the maximum stress becomes equal to the yield point
stress of the material in simple tension or when the minimum stress
becomes equal to the yield point stress of the material in simple
compression. Namely, the failure conditions are

|σI | = σ′0 (7.4)

|σIII | = σ′′0 (7.5)

Whereas, the safety side is ensured by the following conditions

|σI | < σ′0 (7.6)

|σIII | < σ′′0 (7.7)

This theory is not comprehensive and presents some limits. Con-
sider a specimen under simple tension, sliding occurs along the plane
where the stress does not attain the maximum value. Moreover, con-
sider an homogeneous isotropic material weak in simple compres-
sion, it can sustain very large hydrostatic pressure without yielding.
That proves the magnitude of the maximum tensile or compressive
stress alone does not de�ne the yielding condition.
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7.3 Maximum strain theory

In this theory, historically attributed to Grashof, it is assumed
that the yielding of a ductile material starts when either the maxi-
mum strain, i.e. elongation, equals the strain σ′0/E at which yield-
ing occurs in the simple tension or when the minimum strain, i.e.
compressive strain, equals the strain σ′′0/E at which the yielding
occurs in simple compression. Therefore, by recalling constitutive
equations (4.25) and (4.26) on page 95, the criterion is stated as
follows

εmax = ε′0 (7.8)

|εmin| = ε′′0 (7.9)

that is

εmax =
1
E

(σI − ν (σII + σIII)) =
σ′0
E

(7.10)

εmin =
1
E

(σIII − ν (σI + σII)) =
σ′′0
E

(7.11)

keeping the order σI ≤ σII ≤ σIII . The ideal stresses to be com-
pared to the experimental values σ′0 and σ′′0 are

σ′id = σI − ν (σII + σIII) (7.12)

σ′′id = σIII − ν (σI + σII) (7.13)

The failure conditions are

|σI − ν (σII + σIII) | = σ′0 (7.14)

|σIII − ν (σI + σII) | = σ′′0 (7.15)

where σ′0 and σ′′0 are, as said before, the failure point stresses in
tension and compression, respectively. The safety side is ensured by
the following conditions

|σI − ν (σII + σIII) | < σ′0 (7.16)

|σIII − ν (σI + σII) | < σ′′0 (7.17)
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7.4 Beltrami's theory

For the �rst time in 1885 Beltrami proposed an energetic ap-
proach to make comparable a combined state of stress with a simple
tension or compression state of stress. Indeed, the quantity of strain
energy stored per unit of volume of the material has been assumed
as a basis to de�ne the stresses at which the yielding starts.

The elastic potential or the volume density of strain energy, as
de�ned in chapter 6 (equation (6.5) on page 112) for the principal
state of stress and strain assumes the following form

φ =
1

2E
(
σ2
I + σ2

II + σ2
III − 2ν (σIσII + σIσIII + σIIσIII)

)
(7.18)

Beltrami stated that the failure of a body under a combined
state of stress occurs when its volume density of strain energy equals
the elastic potential at the yielding point for a simple tension, so
that

φ =
σ2

0

2E
(7.19)

where it is assumed that the material has the same behavior both
in compression and tension, i.e. σ′0 = σ′′0 = σ0.

Therefore, taking into account the previous expression for φ, we
obtain

σ2
I + σ2

II + σ2
III − 2ν (σIσII + σIσIII + σIIσIII) = σ2

0 (7.20)

Finally, the linear elastic behavior of the material is ensured
when the comparable stress σid, given as follows

σid = ±
√
σ2
I + σ2

II + σ2
III − 2ν (σIσII + σIσIII + σIIσIII) (7.21)

is lower than the yielding point stress. So we have

|σid| ≤ σ0 (7.22)

7.5 Von Mises' criterion

Following Beltrami's approach, in 1913 R. von Mises proposed
a new method to evaluate the failure state for materials. In this
theory not the whole elastic potential is assumed as responsible
for yielding but only the potential energy ΦD due to the deviator
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stresses. Namely, Mises' criterion assumes negligible the hydrostatic
state of stress to evaluate when the yielding starts.

Recalling equation (3.82) on page 78, any state of stress and
strain can be split as follows

σij = σMδij + sij (7.23)

εij = εMδij + eij (7.24)

where σM and εM are the spherical state of stress and strain re-
spectively, while sij and eij are the deviator stresses and strains,
respectively. Hence, the total potential energy can be written as
follows

Φ (εij) =
1
2
σijεij =

1
2

(σMδij + sij) (εMδij + eij) =

1
2
sijeij +

3
2
σMεM (7.25)

Let us now de�ne

ΦM =
3
2
σMεM (7.26)

as the spherical energy, that is the potential energy associated to
the volumetric variation of the body and

ΦD =
1
2
sijeij (7.27)

as the deviator energy, that is the potential energy associated to
the shape variation of the body.

As assumed in Beltrami's criterion, the material is supposed to
have the same behavior both in simple tension and compression.

Now, evaluating the deviator energy depending only on the
stresses, we have

ΦD =
1
2
sij

sij
2G

=
1

4G
sijsij (7.28)

The limit value for yielding is obtained by applying the criterion
to the simple tension σ0 which can also be split as follows 0 0 0

0 0 0
0 0 σ0

 =

 σ0/3 0 0
0 σ0/3 0
0 0 σ0/3

+

 −σ0/3 0 0
0 −σ0/3 0
0 0 2σ0/3

 (7.29)
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consequently, the limit value for the deviator energy results

Φ0
D =

1
4G

2
3
σ2

0 (7.30)

Finally, imposing the criterion (7.1), that here becomes

ΦD = Φ0
D ⇒

1
4G

sijsij =
1

4G
2
3
σ2

0 (7.31)

the ideal stress assumes the following expression

σid =

√
3
2
sijsij (7.32)

The above expression can also be given through the principal
stresses as follows

σid =

√
3
2
sijsij =√

3
2
(
s2

11 + s2
22 + s2

33 + 2s2
12 + 2s2

13 + 2s2
23

)
=√

3
2
(
s2
I + s2

II + s2
III

)
=√

3
2

(
(σI − σM )2 + (σII − σM )2 + (σIII − σM )2

)
=√

σ2
I + σ2

II + σ2
III − σIσII − σIIσIII − σIσIII (7.33)

7.6 Criteria comparison

To highlight out the di�erences among the four methods above
discussed let us consider the graphical interpretation for each of
them. For the sake of simplicity consider the case where σIII =
0. Thus, the whole state of stress is given by the two principal
stresses {σI , σII} not necessarily sorted as equation (7.1) shows.
Moreover, we shall assume the material has the same behavior in
simple tension and compression.

7.6.1 Maximum stress

By the preceding assumptions the comparable stress in this case
turns into

σid = max{|σI |, |σII |} (7.34)
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and the rupture limits are

σI = ±σ0 (7.35)

σII = ±σ0 (7.36)

that on a Cartesian plane depict a square domain. See �gure 7.1.

Figure 7.1: Rupture domain for the maximum stress criterion.

The lines in the �gure represent the values of σI and σII at which
yielding starts. The lengths OA and OB represent the yield points
in simple tension along the directions of σI and σII , respectively.
In the same way A′ and B′ represent the yielding points for simple
compression. Moreover, the four conditions above ensure that any
point within the square 1234 de�ne an elastic con�guration. Hence,
we can de�ne lines 1234 as rupture (or yielding, for ductile material)
boundaries.

7.6.2 Maximum strain

Here the ideal stress assumes the form

σid = max{|σI − νσII |, |σII − νσI |, | − ν (σI + σII) |} (7.37)

and the yielding limits are

σI − νσII = ±σ0 (7.38)

σII − νσI = ±σ0 (7.39)

−ν (σI + σII) = ±σ0 (7.40)
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Figure 7.2: Rupture domain for the maximum strain criterion.

that on a Cartesian plane form a domain as shown in �gure 7.2.

Note that the drawing in �gure 7.2 has only an illustrative in-
tention, in fact, in the reality, points 5−6 and 8−9 are much closer
each other when ν approaches values around 0.3.

Figure 7.2 also shows that if two principal stresses are equal
and opposite in sign, the maximum strain theory indicates that the
yielding starts at a lower value than the maximum stress theory
would indicate, see points 4 and 10, for instance.

On the other hand, since a tension in one direction reduces the
strain in the perpendicular direction, two equal tension can have
higher values at yielding than the maximum stress theory.

7.6.3 Beltrami's criterion

Here the ideal stress assumes the form

σid =
√
σ2
I + σ2

II − 2νσIσII (7.41)

and the yielding boundary is described by the ellipse

σ2
I + σ2

II − 2νσIσII = σ2
0 (7.42)

that intersects the σI and σII axes at points

σI = ±σ0 (7.43)

σII = ±σ0 (7.44)
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Figure 7.3: Elastic domain for Beltrami's criterion.

The intersections with the bisector σII = σI , passing through
the �rst and third quadrants, occurs at points A and B, see �gure
7.4, which have coordinates respectively

σI = σII = ± σ0√
2 (1− ν)

(7.45)

while the intersections of the ellipse with the bisector σII = −σI ,
passing through the second and fourth quadrants, occurs at C and
D having the following coordinates

σI = − σ0√
2 (1 + ν)

σII = +
σ0√

2 (1 + ν)
(7.46)

σI = +
σ0√

2 (1 + ν)
− σII =

σ0√
2 (1 + ν)

(7.47)

respectively. See �gure 7.3.

7.6.4 Von Mises' criterion

From equation (7.33) we derive the expression of the ideal stress
when a two�dimensional state of stress occurs

σid =
√
σ2
I + σ2

II − σIσII (7.48)

hence, the yielding limit is found when σid = σ0 so that

σ0 =
√
σ2
I + σ2

II − σIσII (7.49)
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The latter represents in the (σI , σII)�plane the following ellipse

σ2
0 = σ2

I + σ2
II − σIσII (7.50)

having as the major axis the bisector of the �rst and third quadrants
and as minor axis the bisector of the second and fourth quadrant.

Figure 7.4: Elastic domain for the Mises' criterion.

The intersections with bisector line σII = σI occurs in points E
and F , see �gure 7.4, which have coordinates

σI = σII = ±σ0 (7.51)

while the intersection points with the bisector σII = −σI are G and
H which have coordinates

σI = − σ0√
3

σII = +
σ0√

3
(7.52)

σI = +
σ0√

3
− σII =

σ0√
3

(7.53)

respectively. See �gure 7.4.

7.6.5 Comparison

In order to compare all the above criteria let us consider a two�
dimensional state of stress de�ned as follows

σij =
(

0 σ12

σ12 0

)
(7.54)
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It is straightforward to represent this stress state through Mohr's
circle where we �nd

xC = 0
yC = 0
R = σ12

and the coordinates of the pole in the (σ, τ)�plane are P ∗ ≡ (0,−σ12).
For further detail on Mohr's circles see section 3.4.2.

Moreover, the principal stresses located at points S1 and S2, see
�gure 3.10, are respectively

σI = −σII = σ12

Thus, if we de�ne the following general expression for the yield-
ing point

σ12 = ασ0

then for each criterion we can readily evaluate the coe�cient α
considering the equations above discussed. For the sake of clarity
the relevant results are collected in table 7.1.

criterion α α (ν = 0.3)

Maximum Stress 1 1

Maximum Strain 1
1+ν 0.77

Beltrami's 1√
2(1+ν)

0.62

Mises' 1√
3

0.58

Table 7.1: Criteria comparison.
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Chapter 8

Saint-Venant's problem

This section is devoted to the theory of the beam. We will �rst in-

troduce some necessary adjustments of the three�dimensional theory of

elasticity in order to provide an ad hoc mathematical model for prismatic

structural elements. Then the mechanical behavior of the beam will be

analyzed considering separately four fundamental cases.

8.1 Statement of the problem

The solution of the general boundary�value problem presented
in section 4.2 often presents some mathematical di�culties because
of the complicated form of the boundary conditions. Frequently it
is necessary to introduce some simpli�cations in order to ensure
solutions for technological applications of the theory of elasticity,
so that the mathematical solutions of the problem represents only
an approximation to the actual situation.

In order to simplify the boundary conditions let us assume the
following principle on which the theory of beams is founded.

If some distribution of forces acting on a portion of a

body is replaced by a di�erent distribution of forces act-

ing on the same portion of the body, then the e�ects of

two di�erent distributions on the parts of the body su�-

ciently far from the region of application of the forces are

essentially the same, provided that the two distributions

of forces are statically equivalent.

where �statically� equivalent means that two distributions of forces
have the same resultant force and the same resultant moment. This

Claudio Borri, Michele Betti, Enzo Marino (a cura di), Lectures on Solid Mechanics, ISBN 978-88-8453-
854-3 (online), ISBN 978-88-8453-853-6 (print), © 2008 Firenze University Press
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principle was proposed in 1885 by J. C. B. de Saint Venant1.

First of all we declare the fundamental hypothesis which de�ne
a method of solution.

Shape of solid. We de�ne a beam as a particular body bounded
by a cylindrical surface called the lateral surface and by a pair
of planes normal to the lateral surface called the bases of the
cylinder. We shall also suppose the cross section is constant
and the beam's length is much larger than the cross section's
linear dimension: l� r, see �gure 8.1. The Cartesian coordi-
nate system is positioned having the x3�axis taken along the
length of beam and parallel to the lateral surface. This axis
usually coincides with the axis of the beam passing through
the centers of gravity of the bases. The cylinder is assumed to
be of length l so that one of its bases belongs to the (x1, x2)�
plane and the other is taken at x3 = l.

Loads. It is supposed that the lateral surface of the cylinder is
load free and that the loads act only on its bases x3 = 0 and
x3 = l. Moreover, the forces at the ends assure the equilibrium
condition of the cylinder. It is also supposed that the body
forces b̄ are zero.

Constraints. According to the previous point, we shall suppose
that the cylinder is unconstrained, and the forces acting on
the bases ful�ll the global equilibrium equations. However, to
assure that no rigid displacement is allowed, at least one point
of the beam, say G, must be �xed. So we will assume that to
inhibit any translation, at x1 = x2 = x3 = 0, the following
constraints hold

u1 = u2 = u3 = 0 (8.1)

1Adhémar Jean Claude Barré de Saint-Venant (August 23, 1797 Seine�et�
Marne - January 6, 1886 Seine�et�Marne) was a French engineer.

Source: http://www-history.mcs.st-andrews.ac.uk/PictDisplay/Saint-Venant.html.
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Figure 8.1: Prototype of beam.

and to avoid any rotation we require that

u2,1 = ϕ3 = 0 (8.2)

u2,3 = ϕ1 = 0 (8.3)

u1,3 = ϕ2 = 0 (8.4)

Material. Let us assume an homogeneous isotropic linear elastic
material.

State of stress. We shall assume the stress vector normal to the
lateral surface is zezo. So, for such a unit vector n = niēi =
n1ē1 + n2ē2 normal to the lateral surface, in accordance with
the location of the coordinate system, we have

σnn = σijn
inj = σ11n

1n1 + σ22n
2n2 + 2σ12n

1n2 = 0 (8.5)

only if (
n1
)2 +

(
n2
)2 = 1 (8.6)

Hence, equations (8.5) and (8.6) induce2 a particular form of
the stress tensor

σij =

 0 0 σ13

0 0 σ23

σ31 σ32 σ33


2It can be immediately proved putting �rst n1 = 1 and n2 = 0, then n1 = 0

and n2 = 1.
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The equilibrium problem of an elastic beam with a free lateral
surface subjected to loads only on the bases can be formulated as
follows: determine the three components of stress σ13, σ23, σ33 and

the displacements ui that satisfy equations

σij,j = 0 on V

By virtue of stresses and loads assumptions, the above problem
becomes

σ13,3 = 0 (8.7)

σ23,3 = 0 on V (8.8)

σ31,1 + σ32,2 + σ33,3 = 0 (8.9)

Next, in accordance with the hypotheses, the boundary equa-
tions are

σijnj = f̂i on x3 = 0, x3 = l (8.10)

that can be expanded as follows

x3 = 0, n̄ = (0, 0,−1)

σ13n3 = −σ13 = f̂1 (8.11)

σ23n3 = −σ23 = f̂2 (8.12)

σ33n3 = −σ33 = f̂3 (8.13)

x3 = l, n̄ = (0, 0, 1)

σ13n3 = σ13 = f̂1 (8.14)

σ23n3 = σ23 = f̂2 (8.15)

σ33n3 = σ33 = f̂3 (8.16)
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(a) Basis x3 = 0

(b) Basis x3 = l

Figure 8.2: Unit normal vectors on the bases of the cylinder.

Constitutive equations (4.25) become

ε11 = − 1
E
νσ33 (8.17)

ε22 = − 1
E
νσ33 (8.18)

ε33 =
1
E

((1 + ν)σ33 − νσ33) =
σ33

E
(8.19)

ε12 = 0 (8.20)

ε13 =
(1 + ν)
E

σ13 (8.21)

ε23 =
(1 + ν)
E

σ23 (8.22)

Now, making use of Beltrami-Michell 's equations (4.44), it is
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possible to write

σ33,11 = 0 (8.23)

σ33,12 = 0 (8.24)

σ33,22 = 0 (8.25)

σ33,11 + σ33,22 + σ33,33 +
1

1 + ν
σ33,33 = 0 (8.26)

σ23,11 + σ23,22 + σ23,33 +
1

1 + ν
σ33,23 = 0 (8.27)

σ13,11 + σ13,22 + σ13,33 +
1

1 + ν
σ33,13 = 0 (8.28)

and by means of equations (8.7) and (8.8), the above expressions
turn into

σ33,33 +
1

1 + ν
σ33,33 = 0⇒ σ33,33 = 0 (8.29)

σ23,11 + σ23,22 +
1

1 + ν
σ33,23 = 0 (8.30)

σ13,11 + σ13,22 +
1

1 + ν
σ33,13 = 0 (8.31)

Equations (8.23), (8.25) and (8.29) suggest that the compo-
nent σ33 must vary linearly with x1, x2, x3, while equation (8.24)
imposes that it cannot contain the product x1x2. Hence, σ33 =
σ33 (x1, x2, x3) must assume the following form

σ33 = a+ bx1 + cx2 − (d+ ex1 + fx2)x3 (8.32)

See also [9] and [11].

8.1.1 External and internal forces

In this section we point out that in most of the practical circum-

stances we know the resultant force ˆ̄F and the resultant moment ˆ̄M
acting on the ends of a beam rather than the real external surface

force distribution ˆ̄f . Indeed, if we accept the Saint Venant 's prin-
ciple, we could not care about the nature of the stress distribution

which produces the resultants ˆ̄F and ˆ̄M , just because we are inter-
ested in portions of beam su�ciently far from the ends where the
in�uences of boundary stress distribution is not decisive.
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Let us �x our attention on the bases of the cylinder. Firstly,
on the basis x3 = 0, denoted by A0, we assume a distribution of

surface forces given by ˆ̄f0, next, on the basis x3 = l, denoted by Al,
we assume a distribution of surface forces ˆ̄f l.

For the basis x3 = l the resultant external force are related to
the external surface forces as follows

T̂ l1 =
∫
Al
f̂ l1dA (8.33)

T̂ l2 =
∫
Al
f̂ l2dA (8.34)

N̂ l =
∫
Al
f̂ l3dA (8.35)

and, of course, we can do the same for the basis x3 = 0

T̂ 0
1 =

∫
A0

f̂0
1dA (8.36)

T̂ 0
2 =

∫
A0

f̂0
2dA (8.37)

N̂0 =
∫
A0

f̂0
3dA (8.38)

where T̂1 and T̂2, lying in the plane of the basis, are responsible for
bending and sharing of the beam, while N̂ , taken in x3�direction,
is responsible for tension or compression. See �gure 8.3.

The couple ˆ̄M , analogously, may be split into a component M̂3

along the x3�axis which provides the twisting for the beam and the
components M̂1 and M̂2 which are responsible for bending. Thus,
for both bases we have

M̂ l
1 =

∫
Al
f̂ l3x2dA (8.39)

M̂ l
2 = −

∫
Al
f̂ l3x1dA (8.40)

M̂ l
3 =

∫
Al

(
−f̂ l1x2 + f̂ l2x1

)
dA (8.41)
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and

M̂0
1 =

∫
A0

f̂0
3x2dA (8.42)

M̂0
2 = −

∫
A0

f̂0
3x1dA (8.43)

M̂0
3 =

∫
A0

(
−f̂0

1x2 + f̂0
2x1

)
dA (8.44)

where the moments have been computed with respect to the centers
of gravity for Al and A0, respectively. See �gure 8.3.

Figure 8.3: Equilibrated components of force and couple resultants
acting on the ends of the beam.

As already mentioned, the readers should be aware that in many

actual problems we shall know just the components of resultants ˆ̄F
and ˆ̄M rather than the actual distribution of surface forces ˆ̄f , so,
usually, we will solve an inverse problem. To this end in the following
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we want to �nd how the resultant forces are transmitted inside the
beam.

From the end x3 = l, towards the opposite basis x3 = 0, the
external actions propagate in such a way that, for any cross�section
taken at the distance x3 from the origin of the coordinate system,
the components of resultant forces and moments are, respectively

N+ (x3) = N̂ l (8.45)

T+
1 (x3) = T̂ l1 (8.46)

T+
2 (x3) = T̂ l2 (8.47)

and

M+
1 (x3) = M̂ l

1 − T̂ l2 (l − x3) (8.48)

M+
2 (x3) = M̂ l

2 + T̂ l1 (l − x3) (8.49)

M+
3 (x3) = M̂ l

3 (8.50)

where the sign convention has been established by the following
rule: on the �positive side� of a generic cross section whenever the
forces orientation and the coordinate axes are concordant, then the
positive sign is assigned; concerning the components of the couples,
the positive sign is ascribed whenever the moments are concordant
with the following rotations: x2 → x3, x3 → x1, x1 → x2.

Here the reader will also realize that by virtue of the equilibrium
condition of the cylinder, taking into account the external actions
from the opposite side, here crudely named �negative side�, for the
same generic cross section considered above, the local equilibrium
condition must be assured. In this view, the sign convention as-
sumed when the �negative side� of a generic cross section is taken
into account, is: the external forces have positive sign if they are
discordant with the coordinate axes and, concerning the moments,
they will be assumed with a positive sign if they induce the follow-
ing rotations: x3 → x2, x1 → x3, x2 → x1. In the light of this sign
convention, we notice that equations (8.45) to (8.50) can be equiva-
lently written, for the same generic cross section at x3, considering
the external actions on the �negative part�, that means

N− (x3) = N̂0

T−1 (x3) = T̂ 0

T−2 (x3) = T̂ 0
2
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and

M−1 (x3) = M̂0
1 + T̂ 0

2 x3

M−2 (x3) = M̂0
2 − T̂ 0

1 x3

M−3 (x3) = M̂0
3

Naturally, for each cross section the external actions on the
right�hand side (�positive part�) must equal those on the left�hand
side (�negative part�)3, indeed we can write

N− (x3) = N+ (x3)
T−1 (x3) = T+

1 (x3)
T−2 (x3) = T+

2 (x3)

and

M−1 (x3) = M+
1 (x3)⇒ M̂0

1 + T̂ 0
2 x3 = M̂ l

1 − T̂ l2 (l − x3)

M−2 (x3) = M+
2 (x3)⇒ M̂0

2 − T̂ 0
1 x3 = M̂ l

2 + T̂ l1 (l − x3)

M−3 (x3) = M+
3 (x3)⇒ M̂0

3 = M̂ l
3

When x3 = 0 the �rst set of the above equations remains unal-
tered, while the second, i.e. the bending forces, becomes

M−1 (0) = M+
1 (0)⇒ M̂0

1 = M̂ l
1 − T̂ l2l

M−2 (0) = M+
2 (0)⇒ M̂0

2 = M̂ l
2 + T̂ l1l

M−3 (0) = M+
3 (0)⇒ M̂0

3 = M̂ l
3

In order to pass fromM−i (0) to M̂0
i the signs must be corrected

in accordance with the global sign convention, that is

N̂0 = −N− (0) = −N̂ l

T̂ 0
1 = −T−1 (0) = −T̂ l1
T̂ 0

2 = −T−2 (0) = −T̂ l2
and

M̂0
1 = −M−1 (0) = −M̂ l

1 + T̂ l2l

M̂0
2 = −M−2 (0) = −M̂ l

2 − T̂ l1l
M̂0

3 = −M−3 (0) = −M̂ l
3

3For this reason hereafter we will omit the primes (·)+ or (·)−.
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Now, imagine to cut the beam at the cross section located at x3.
The set of forces {T1, T2, N,M1,M2,M3} can be seen as external
forces, thus, for this section - that is assumed being seen from the
right�hand side - the well known boundary condition σij = f̂i holds.
This justi�es the following expressions

T1 =
∫
A
σ31dA (8.51)

T2 =
∫
A
σ32dA (8.52)

N =
∫
A
σ33dA (8.53)

and

M1 =
∫
A
σ33x2dA (8.54)

M2 = −
∫
A
σ33x1dA (8.55)

M3 =
∫
A

(−σ31x2 + σ32x1) dA (8.56)

8.2 Four fundamental cases

Now we are ready to present the four fundamental cases that,
by virtue of the superposition principle, allow us to entirely solve
the problem of elastic beams. They are

• Extension of a beam by axial force applied at the ends.

• Bending of a beam by couples whose moments lie in the plane
of its bases.

• Torsion of a beam by a couples whose moment is normal to
its basis.

• Flexure of a beam by transverse forces applied at one end of
the cylinder, while on the other end it is acting an opposite
transverse force and a couple in such a way the equilibrium
condition is ful�lled.
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8.3 Beam under axial force

8.3.1 State of stress

Consider the basis x3 = l, and assume that the N̂ l is the only
nonzero external force

N̂ l 6= 0 (8.57)

T̂ l1 = T̂ l2 = M̂ l
1 = M̂ l

2 = M̂ l
3 = 0 (8.58)

therefore, in accordance with equations (8.45) to (8.50), for a generic
cross section at x3, the external forces are

N = N̂ l (8.59)

T1 = T2 = M1 = M2 = M3 = 0 (8.60)

Making use of equations (8.51) to (8.53) and the boundary equa-
tions (8.14) to (8.16), the surface forces are

f̂3 6= 0 (8.61)

f̂1 = f̂2 = 0 (8.62)

So, considering expression (8.32) for the normal stress we can
write

N =
∫
A

(a+ bx1 + cx2 − (d+ ex1 + fx2)x3) dA (8.63)

and recalling equation (8.9), where σ31 = f̂1 = 0 and σ32 = f̂2 = 0,
the above equation turns into

N =
∫
A

(a+ bx1 + cx2) dA = (8.64)

= a

∫
A
dA+ b

∫
A
x1dA︸ ︷︷ ︸
=0

+c
∫
A
x2dA︸ ︷︷ ︸
=0

(8.65)

so we have proved that

a =
N

A
(8.66)

Equations (8.39), (8.40), through condition (8.58), represent a
linear system whose solution yields

b = c = 0
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hence, the expression of the normal stress is �nally

σ33 =
N

A
(8.67)

and the stress tensor assumes the following form

σij =

 0 0 0
0 0 0
0 0 N/A


8.3.2 State of strain

The deformation of a beam under an axial force results directly
from the constitutive laws (8.17) to (8.22), so that

ε11 = −ν N

EA
(8.68)

ε22 = −ν N

EA
(8.69)

ε33 =
N

EA
(8.70)

and the strain tensor is

εij =

 −νN/EA 0 0
0 −νN/EA 0
0 0 N/EA


8.3.3 Displacement �eld

In order to compute the displacement �eld ui = ui (xj) of the
cylindrical body we have to solve the system of di�erential equations
obtained from compatibility relationships. Hence, the equations are

u1,1 = ε11 = −ν N
EA

u2,2 = ε22 = −ν N
EA

u3,3 = ε33 = N
EA

and


u1,2 + u2,1 = 2ε12 = 0
u1,3 + u3,1 = 2ε13 = 0
u2,3 + u3,2 = 2ε23 = 0

The integration of the �rst group of equations gives
u1 = −ν N

EAx1 + α (x2, x3)
u2 = −ν N

EAx2 + β (x1, x3)
u3 = N

EAx3 + γ (x1, x2)
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where α, β, γ are unknown functions. Replacing the above expres-
sions in the second group of di�erential equations, and assuming
inhibited any rigid body motion, some calculations drive us to write
the following solution

u1 = −ν N

EA
x1 (8.71)

u2 = −ν N

EA
x2 (8.72)

u3 =
N

EA
x3 (8.73)

Through the above results we are able to know the strained
shape of a beam subjected to an axial force. Let p be a point inside
the beam, so that p ≡ (x1, x2, x3), we notice that the displacement
u3 of p does not depend on the position of p in the cross section area,
so we have constant displacements along x3�axis for each cross sec-
tion. Let p′ ≡ (x′1, x

′
2, x
′
3) be the position of p after the deformation,

so that

x′1 = x1 + u1 (8.74)

x′2 = x2 + u2 (8.75)

x′3 = x3 + u3 (8.76)

we can de�ne unit axial strain as

(u3 + du3)− u3

dx3
= ε33 =

N

EA
(8.77)

that integrated along the entire length of the beam gives the axial
elongation

∆l =
∫
l
ε33dx3 = ε33l (8.78)

To the elongation ∆l corresponds a cross�section contraction ρ̄
that can be measured by the vector sum of u1 and u2 as follows

ρ̄ = u1ē1 + u2ē2 (8.79)

The magnitude of ρ̄ is

ρ =
√
u1

2 + u2
2 =

νN

EA
√
x1

2 + x2
2 (8.80)
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Figure 8.4: Strained state of a beam subjected to an axial force.

Equation (8.80) shows that the displacement of a point p ∈ A
depends solely on its distance from the center of gravity of A. We
say also that each point p moves towards G along radial direction.
In fact, by considering a polar coordinate system {r, ϑ} with the
origin in the centroid G, the related basis is obtained by making
use of the well known transformations, see page 20 in chapter 1,

∂̄r =
∂x1

∂r
ē1 +

∂x2

∂r
ē2 = sinϑē1 + cosϑē2 (8.81)

∂̄ϑ =
∂x1

∂ϑ
ē1 +

∂x2

∂ϑ
ē2 = r cosϑē1 − r sinϑē2 (8.82)

hence, to ensure the radial direction, it is enough to prove that
∂̄ϑ · ρ̄ = 0. Indeed we have

∂̄ϑ · ρ̄ = u1 sinϑ− u2 cosϑ = x2 cosϑ
νN

EA

(
−x1

x2
+ tanϑ

)
(8.83)

but since it is also known that x1/x2 = tanϑ, (8.83) always van-
ishes. See �gure 8.5.

8.3.4 Strain energy

By virtue of Clapeyron's theorem, see equation (6.15) on page
114, the strain energy is

Φ =
1
2
N̂ l∆l =

1
2
Nε33l =

1
2
N2l

EA
(8.84)

or, in the same way, by using the PLV, we have

Φ =
1
2

∫
V
σ33ε33dV =

1
2
A
∫
l

N

A
N

EA
dx3 =

1
2
N2l

EA
(8.85)
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Figure 8.5: Strained state of a beam subjected to an axial force:
radial contraction.

8.4 Beam under terminal couples

8.4.1 Introductive sketch

Before going ahead it is useful to consider an idealized model of
beam made up of long �laments parallel to the axis of the cylinder.
By virtue of Saint Venant 's hypotheses we know that the stresses
are zero on the lateral surfaces, in the direction perpendicular to
�laments' length, and act only on the ends of the �laments.

Let us consider now a beam subjected to a pair of equilibrated
couples at the ends. See �gure 8.6. Because of the couples, the lower
longitudinal �laments, those towards the center of curvature, will be
contracted and the extrados, the upper portion of �laments, will be
extended. We shall assume that the central line, i.e. the line passing
through the centroid of all cross sections, is unaltered in length and
the cross sections lie always in a plane normal to the cental line.

Figure 8.6: Beam under terminal couples.

The upper longitudinal �laments, initially parallel to the x3�
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axis, under the e�ects of the couples, at a distance f from the
central line, turn from ds0 into ds

ds = (R+ f) dϑ (8.86)

where R is the radius of curvature of the central line. Now we are
interested in evaluating the elongation of a generic material �bre,
so we de�ne the extension e as

e =
ds− ds0

ds0
=

(R+ f) dϑ−Rdϑ
Rdϑ

=
f

R
(8.87)

This linear elongation may be thought to be produced by a
longitudinal stress σ33 which in accordance with equation (8.19) is
given by

σ33 =
E

R
f (8.88)

These intuitive considerations allow us to understand that the
normal stress produced by the �exure of a beam is not constant
along the cross section and is proportional to the distance from the
central line.

8.4.2 State of stress

In this case we assume that the external forces acting at the
end of a beam are couples whose moments lie in the plane of the
cylinder. So that

M̂ l
1 6= 0, M̂ l

2 6= 0 (8.89)

N̂ l = T̂ l1 = T̂ l2 = M̂ l
3 = 0 (8.90)

therefore, in accordance with equations (8.45) to (8.50), for a generic
cross section located at x3 the external forces propagate as follows

M1 = M̂ l
1 (8.91)

M2 = M̂ l
2 (8.92)

N = T1 = T2 = M3 = 0 (8.93)

The boundary conditions (8.14), (8.15), (8.16) on page 146 in
this case are

f̂3 6= 0 (8.94)

f̂1 = f̂2 = 0 (8.95)
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Hence, we can write ∫
A
σ33dA = 0 (8.96)

M1 =
∫
A
σ33x2dA (8.97)

M2 = −
∫
A
σ33x1dA (8.98)

which become ∫
A

(a+ bx1 + cx2) dA = 0 (8.99)

M1 =
∫
A

(a+ bx1 + cx2x2) dA (8.100)

M2 = −
∫
A

(a+ bx1 + cx2)x1dA (8.101)

By integrating equation (8.99) we �nd a = 0, therefore equations
(8.100) and (8.101) become

M1 =
∫
A
bx1x2dA+

∫
A
cx2

2dA (8.102)

M2 = −
∫
A
bx1

2dA+
∫
A
cx2x1dA (8.103)

that can be written in matrix form as follows(
J12 J1

J2 J12

)(
b
c

)
=
(

M1

−M2

)
In order to simplify the solution of the above linear system, we

may rewrite the system with respect to the axes of inertia (ξ, η), so
it becomes (

0 Jξ
Jη 0

)(
b
c

)
=
(

Mξ

−Mη

)
that resolved for b, c, gives

c =
Mξ

Jξ
(8.104)

b = −Mη

Jη
(8.105)
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and �nally, the stress induced by the couples is

σ33 = −Mη

Jη
ξ +

Mξ

Jξ
η (8.106)

By means of equation (8.106) we are able to �nd the line of zero
stress below of which all the �bers are in tension and above of which
they are in compression. This line is termed neutral axis. We shall
denote it by n− n. See �gure 8.7. In the (ξ, η)�plane, the equation
of the neutral axis is provided as follows

σ33 = −Mη

Jη
ξ +

Mξ

Jξ
η = 0⇒ (8.107)

η =
Mη

Mξ

(
ρξ
ρη

)2

ξ (8.108)

where we have set Jξ = ρ2
ξA and Jη = ρ2

ηA4. Now if γ is the angle
between the axes (ξ,n− n), we can put

tan γ =
Mη

Mξ

(
ρξ
ρη

)2

(8.109)

which, if tan δ = Mη/Mξ, see �gure 8.7, becomes

Figure 8.7: Projection of the couples and rotation axis.

tan γ
tan δ

=
(
ρξ
ρη

)2

(8.110)

4Note that ρξ and ρη are the radius of gyration taken along η and ξ respec-
tively. They satisfy the equation ξ2/ρ2

η + η2/ρ2
ξ = 1.
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Furthermore, let ω be the angle between the axes (ξ, s− s), see
�gure 8.7 on the preceding page, we notice that π

2 + δ = ω so we
can write

cotω = cot
(π

2
+ δ
)

= − tan δ (8.111)

while equation (8.110) becomes

tan γ tanω = −
(
ρξ
ρη

)2

(8.112)

The latter equation allows us to �nd the neutral axis given any
bending pair M1 and M2. In fact, we can summarize the procedure
to �nd the neutral axis in the following items

- �nd the axis s − s, orthogonal to the bending vector M̄ =
M1ē1 +M2ē2;

- �nd the principal axes of inertia, i.e. rotate the system {x1, x2}
into {ξ, η} and compute the radii of gyration;

- ω is now known;

- γ, i.e. the position of the neutral axis, can be computed by
equation (8.112).

The axis (f − f) orthogonal to the neutral axis n − n is called
�exural axis and the angle it forms with the axis s − s gives a
measure of the bending deviation.

8.4.3 State of strain

The state of strain results directly from constitutive laws (8.17)
to (8.22). Hence, chosen the system of principal axes (ξ, η, x3), with
respect to the origin G, we can write

εξξ = − ν
E
σ33 (8.113)

εηη = − ν
E
σ33 (8.114)

ε33 =
σ33

E
(8.115)

A simpler solution is obtained by introducing a new coordinate
system {x, y, z} where, as showed on �gure 8.8, x is the neutral axis,
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y is the �exural axis, and z = x3. The advantage of this coordinate
system is that the normal stress can be written as

σzz = my (8.116)

and the constant m is readily computed by

Mx =
∫
A
σzzydA = m

∫
A
y2dA = mJx (8.117)

hence

m =
Mx

Jx
(8.118)

Finally, equation (8.106) assumes the following monomial ex-
pression

σzz =
Mx

Jx
y (8.119)

Figure 8.8: Neutral axis and �exural axis.

Equation (8.119) is also known as Navier formula. See also [9]
and [11] for a proof based on geometric considerations.

The state of strain associated with the following state of stress

σij =

 0 0 0
0 0 0
0 0 (Mx/Jx) y

 (8.120)

assumes the form

εij =

 −νκy 0 0
0 −νκy 0
0 0 κy

 (8.121)
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where

κ =
Mx

EJx
(8.122)

κ has an important geometric interpretation which will be discussed
in the next paragraph.

Now, recalling equations (2.78) and (2.79) on page 49, it is pos-
sible to prove that

∆A =
∫
A

(εxx + εyy) dA = −2νκ
∫
A
ydA︸ ︷︷ ︸

=0

= 0 (8.123)

∆V =
∫
V

(εxx + εyy + εzz) dV =
∫
l
dz

∫
A
κy (1− 2ν) dA

(1− 2ν) l
∫
A
ydA︸ ︷︷ ︸

=0

= 0 (8.124)

So we notice that throughout the deformation the initial volume
and the area of every cross�section is unaltered.

8.4.4 Displacement �eld

As the foregoing case, the �eld of displacement ū can be found
by integrating the system of di�erential equations (2.70) on page
48. Let us rename the displacement components with respect to the
{x, y, z} coordinate system, as u1 = u, u2 = v, u3 = w. Hence, the
compatibility equations are

u,x = εxx = −νκy
v,y = εyy = −νκy
w,z = εzz = κy

and


u,y + v,x = 2εxy = 0
u,z + w,x = 2εxz = 0
v,z + w,y = 2εyz = 0

By integrating the �rst group of the above di�erential equations
we �nd 

u = −νκyx+ α (y, z)
v = −νκy

2

2 + β (x, z, )
w = κyz + γ (x, y, )

that replaced into the second group of di�erential equations yield
−νκx+ α (y, z),y + β (x, z),x = 0

α (y, z),z + γ (x, y),x = 0
β (x, z),z + κz + γ (x, y),y = 0
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The �rst of the above equations can be derived with respect to
y and then to x; the second with respect to z and then to x; �nally
the third with respect to z, then to y. So we obtain

α (y, z),yy = 0 (8.125)

−νκ+ β (x, z),xx = 0 (8.126)

α (y, x),zz = 0 (8.127)

γ (x, y)xx = 0 (8.128)

β (x, z)zz + κ = 0 (8.129)

γ (x, y)yy = 0 (8.130)

where equations (8.125) and (8.127) yield

α (y, z) = A+A′y +A′′z +A′′′yz (8.131)

equations (8.126) and (8.129) yield

β (x, z) = νκ
x2

2
− κz

2

2
+B +B′x+B′′z +B′′′xz (8.132)

while equations (8.128) and (8.130) yield

γ (x, y) = C + C ′x+ C ′′y + C ′′′xy (8.133)

where A,A′, A′′, A′′′, B,B′, B′′, B′′′, C, C ′, C ′′, C ′′′ are unknown con-
stants.

Equations (8.131), (8.132), (8.133) can be replaced into the sec-
ond group of the initial di�erential equations to obtain the following
system 

A′ +B′ + (A′′′ +B′′′) z = 0
A′′ + C ′ + (A′′′ + C ′′′) y = 0
C ′′ +B′′ + (B′′′ + C ′′′)x = 0

from which we can derive the solution
A′ +B′ = 0
A′′ + C ′ = 0
C ′′ +B′′ = 0

and


A′′′ +B′′′′ = 0
A′′′ + C ′′′ = 0
B′′′ + C ′′′ = 0

where the left�hand group imposes the conditions that A′ = −B′,
A′′ = −C ′ and C ′′ = −B′′, while the right�hand group assures that
A′′′ = B′′ = C ′′′ = 0.
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In the light of the latter results and making use of the boundary
conditions which inhibit any rigid body motion, see equations (8.1)
and (8.3), we �nally obtain the components of the displacement
�eld related to a beam under terminal couples

u = −νκyx (8.134)

v = −κ
2
(
ν
(
y2 − x2

)
+ z2

)
(8.135)

w = κyz (8.136)

Equations (8.134), (8.135) and (8.136) show that the �laments
lying in the neutral plane, i.e. y = 0, do not su�er any extension.
The longitudinal material �bres on the side of y > 0 are extended,
whereas the �laments on the side y < 0 are contracted.

Now we are able to know the strained shape of the beam. Let
p and p′ be the positions of a point within the beam before and
after the deformation, respectively. Hence, the coordinates of such
positions are p ≡ (x1, x2, x3) and p′ ≡ (x′1, x

′
2, x
′
3). By virtue of the

above displacement �eld, we can relate the initial coordinate to the
strained one as follows

x′ = x+ u = x− νκxy (8.137)

y′ = y + v = y − κ

2
(
z2 − ν

(
x2 − y2

))
(8.138)

z′ = z + w = z + κyz (8.139)

Focusing on the central line x = y = 0 the above equations
become

x′ = 0 (8.140)

y′ = −κ
2
z2 (8.141)

z′ = z (8.142)

where we notice that the points on the central line, after the defor-
mation, go into the points

y′ = −κ
2
z′2 (8.143)

that describes a parabola whose radius of curvature is given by the
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following formula

1
R

=
|d

2y′

dz′2 |(
1 +

(
dy′

dz′

)2
)3/2

(8.144)

which can be approximated by

1
R
' |d

2y′

dz′2
| (8.145)

assuming
(
dy′

dz′

)2
to be small.

Thus, equation (8.145) leads us to write

1
R

= |κ| = |Mx|
EJx

(8.146)

where the constant EJx is termed modulus of �exural rigidity.

Points belonging to the central line, i.e. x = y = 0, are subjected
to the following displacements

u = 0 (8.147)

v = −κ
2
z2 (8.148)

w = 0 (8.149)

where in this case v is called the elastic curve (or de�ection line)
and describes the plane curve, i.e. a parabola, that the center line
assumes when the beam is subjected to pure bending.

8.4.5 Strain energy

We have three equivalent tools to compute the strain energy.

Work done by the external forces. By virtue of the Clapey-
ron's theorem, see equation (6.15) on page 114, the strain
energy is

Φ =
1
2
M̂ l
xϕ

l
x (8.150)

where M̂ l
x is the only external force and ϕlx is the rotation in

the (y, z)�plane at the point of application of the couple, i.e.
at the end z = l, with x = y = 0. See �gure 8.6 on page 158.
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The rotation ϕlx is the �rst derivative of the displacement v
and the sign is assumed through the right�hand rule, so that

ϕlx = −v,z|l = κl =
M̂x

EJx
l (8.151)

hence,

Φ =
1
2

(
M̂ l
x

)2
l

EJx
(8.152)

As �gure 8.6 shows, both M̂ l
x and ϕx are negative with respect

to the Cartesian axes.

Work done by the internal stresses. By recalling the equation
6.5 on chapter 6, we can set

Φ =
1
2

∫
V
σijεijdV (8.153)

that in the current application becomes

Φ =
1
2

∫
V

Mx

Jx
yκy =

l

2E

∫
A

(
Mx

Jx

)2

y2dA

=
l

2E

(
Mx

Jx

)2 ∫
A
y2dA =

M2
x l

2EJx
(8.154)

where we have just used the tensors (8.120) and (8.121).

Work done by the internal forces. Note that here the sign con-
vention is taken in accordance with that assumed in section
8.1.1, so we have for a generic cross section

dΦ = Mx (z) dϕx = Mx (z)κdz (8.155)

hence, by integrating along the entire beam we �nd the fol-
lowing expression

Φ =
1
2

∫ l

0
Mx (z)κdz =

1
2
M2
x l

EJx
(8.156)

that due to the well known relation for forces transmitted
along the beam, it is nothing but equation (8.152).
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In equation (8.155) we just used the relationship between the
curvature and the rotation of the section, in fact

dϕx
dz

= κ

that stems form

ϕx = −dv (z)
dz
|x=y=0 = κz

8.5 Beam under torsional couples

8.5.1 Circular bar

To capture the basic ideas on the torsional problem let us start
from the simple case of a circular bar with one end �xed in the
plane (x1, x2). At the other end, i.e. x3 = l, suppose there to be
applied a torsional couple lying around the x3�axis.

Figure 8.9: Circular bar under torsional couples.

Under the hypothesis that all cross�sections parallel to the plane
(x1, x2) remain plane, we can intuitively assume that the magnitude
of the rotation in a generic section perpendicular to the x3�axis
depends proportionally solely on the distance from the �xed end,
see �gure 8.9. Such as

ϑ = kx3 (8.157)

where k is the twist rotation per unit of length, i.e. the relative an-
gular displacement of a pair of cross�sections that are unit distance
apart.

Consider now a generic cross�section, as �gure 8.10 shows.
The hypothesis of plane sections means that u3 (p) = 0 ∀ p of

the bar, moreover the circular shape ensures that a generic point
p lying on a cross-section can just rotate keeping unaltered the
distance r from the origin.
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Figure 8.10: Rotation of a point p lying on a generic cross�section
of the circular beam.

Hence, with respect to �gure 8.10, we can write

u1 = − (r cosβ − r cos (ϑ+ β)) (8.158)

u2 = r sin (β + ϑ)− r sinβ (8.159)

that by means of equation (8.157) and considering that

x1 = r cosβ (8.160)

x2 = r sinβ (8.161)

becomes

u1 = r cos (kx3 + β)− x1 =
= r (cos kx3 cosβ − sin kx3 sinβ)− x1 (8.162)

u2 = r sin (β + kx3)− x2

= r (sin kx3 cosβ + cos kx3 sinβ)− x2 (8.163)

Next, under the assumption that ϑ is small such that

sin kx3 ' kx3

cos kx3 ' 1

we �nally get the expressions of the displacements

u1 = −kx3x2 (8.164)

u2 = kx3x1 (8.165)

Now, making use of compatibility and constitutive equations
governing the linear static problem, see section 4.2, we can obtain
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the strain and the stress tensors as follows

εij =
1
2

 0 0 −kx2

0 0 kx1

−kx2 kx1 0

 (8.166)

σij =
E

2 (1 + ν)

 0 0 −kx2

0 kx1

−kx2 kx1 0

 (8.167)

In order to verify whether the state of stress stemming from
the assumption on the displacement �eld is consistent with the hy-
potheses on which the Saint Venant's model is founded, we want
to be sure that on the lateral surface the external forces vanish. To
verify this consider the unit normal vector n̄ = cosβē1 + sinβē2,
and hence the stress state is

σ31n1 + σ32n2 = −1
2
k (x2 cosβ − x1 sinβ)︸ ︷︷ ︸

=0

= 0 (8.168)

The above is the proof the solution is right.
On the other hand, the boundary condition at x3 = l, where

n̄ = ē3, requires that
σj3n3 = f̂j (8.169)

thus, f̂3 = 0 and by virtue of equations (8.39) and (8.40), the only
non vanishing component which produces the above state of stress
is

M̂3 =
∫
A

(
f̂2x1 − f̂1x2

)
dA =

∫
A

(σ23x1 − σ13x2) dA

=
kE

2 (1 + ν)

∫
A

(
x2

1 + x2
2

)
dA =

kE

2 (1 + ν)
Jo = kµJo (8.170)

where µ = E
2(1+ν) , see table 4.1 on page 95, and Jo is the polar

moment of inertia for a circular cross�section.
Usually in practical applications the problem presents an inverse

formulation, namely, the unknown is the state of the stress and the
given datum is the external couple M̂3, so we can easily derive

σ13 = − E

2 (1 + ν)
M̂3

µJ0
x2 = −M̂3

J0
x2 (8.171)

σ23 = − E

2 (1 + ν)
M̂3

µJ0
x1 =

M̂3

J0
x1 (8.172)



172 SAINT-VENANT'S PROBLEM

8.5.2 Cylindrical bar

The hypothesis of plane cross�sections, i.e. u3 (x1, x2) = 0 is
solely allowed for circular cylinder. It can be proved, in fact, that a
generic�shaped cross�section under a torsional couple warps. This
can be seen, for example, looking at equation (8.168) which would
not be satis�ed if the unit normal vector were not given with respect
to a circular cylinder.

Therefore, to remove the plane sections hypothesis we shall as-
sume the following displacement �eld

u1 = −kx3x2 (8.173)

u2 = kx3x1 (8.174)

u3 = kϕ (x1, x2) (8.175)

where ϕ is an unknown function that must be determined in order
to satisfy all the required conditions.

The strain and stress tensors become

εij =
k

2

 0 0 ϕ,1 − x2

0 0 ϕ,2 + x1

ϕ,1 − x2 ϕ,2 + x1 0

 (8.176)

σij = kµ

 0 0 ϕ,1 − x2

0 0 ϕ,2 + x1

ϕ,1 − x2 ϕ,2 + x1 0

 (8.177)

The equilibrium condition on V leads to

σ13,3 = 0 (8.178)

σ23,3 = 0 (8.179)

σ31,1 + σ32,2 = 0 (8.180)

hence

σ13 = σ13 (x1, x2) (8.181)

σ23 = σ23 (x1, x2) (8.182)

ϕ,11 + ϕ,22 = 0 (8.183)

Moreover, the boundary condition on the lateral surface imposes

σ31n1 + σ32n2 = 0 (8.184)
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and considering the tensor in (8.177), the above condition becomes

ϕ,1n1 − x2n1 + ϕ,2n2 + x1n2 = 0⇒ (8.185)

∇ϕ · n̄ = x2n1 − x1n2 (8.186)

So, letA and ∂A be the cross�section of the beam and its bound-
ary, respectively, the torsional problem of a cylindrical beam can be
stated as follows{

∇2ϕ = 0 ∀ p ∈ A
∇ϕ · n̄ = x2n1 − x1n2 ∀ p ∈ ∂A (8.187)

where the �rst equation stems from (8.183) and the boundary con-
dition is provided by (8.186)5.

The function ϕ = ϕ (x1, x2) is named the torsion function.
The problem (8.187) is known as Neumann's problem and con-

sists in determining a function which is harmonic in a given region
and whose normal derivative is prescribed on the boundary of the
region.

Here we will not give the entire analytical solution for Neu-

mann's problem, but we shall just give some general statements.
The whole problem is solved in [1].

Stress function

Since ϕ (x1, x2) is harmonic on A it is possible to construct
the analytic function ϕ + iψ of complex variable x1 + ix2, where
ψ (x1, x2) is the conjugate harmonic function linked to ϕ (x1, x2)
through the following Cauchy�Riemann equations

ϕ,1 = ψ,2 (8.188)

ϕ,2 = −ψ,1 (8.189)

The theoretical background of the above statements is beyond
the scope of this book, anyhow the reader can �nd a comprehensive
formulation of the torsion problem in [1], [2] and [6].

5Note that ∇ϕ is the gradient of the scalar �eld ϕ and the scalar product
with the unit vector n̄ gives its normal derivative as follows

∂ϕ

∂n̄
= ∇ϕ · n̄ = gradϕ · n̄ =

∂ϕ

xi
ēi · n̄ = ϕ,ini
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Suppose that the boundary of the cross�section A is described
by a curve c : IR → IR2 such as s 7→ (x1 (s) , x2 (s)). We can �nd
the tangent vector t̄ to the curve as t̄ = ẋiēi, where ẋi = dxi

ds and
i = 1, 2. Hence, the conditions n̄ · n̄ = 1 and n̄ · t̄ = 0 allow us to
compute the component of n̄ as

n1 =
ẋ2√
ẋ2

1 + ẋ2
2

(8.190)

n2 = − ẋ1√
ẋ2

1 + ẋ2
2

(8.191)

Replacing the above expressions into the second equation of
(8.187) and by expanding the gradient of the torsion function we
have

(ϕ,1ē1 + ϕ,2ē2) · n̄ = x2
ẋ2√
ẋ2

1 + ẋ2
2

+ x1
ẋ1√
ẋ2

1 + ẋ2
2

(8.192)

that is

ϕ,1n1 + ϕ,2n2 = x2
ẋ2√
ẋ2

1 + ẋ2
2

+ x1
ẋ1√
ẋ2

1 + ẋ2
2

⇒

ϕ,1ẋ2 − ϕ,2ẋ1 = x2ẋ2 + x1ẋ1 (8.193)

and now, making use of equations (8.188) and (8.189), the latter
becomes

ψ,2ẋ2 + ψ,1ẋ1 = x2ẋ2 + x1ẋ1 (8.194)

then
d

ds
ψ (x1, x2) =

1
2
d

ds

(
x2

1 + x2
2

)
(8.195)

so that we �nally obtain the expression of the function ψ as

ψ (x1, x2) =
1
2
(
x2

1 + x2
2

)
+ const. (8.196)

The arbitrary integration constant does not a�ect the �nal so-
lution in terms of stresses and deformations, in fact two di�erent
constants will lead to two solutions which di�er from one another
only by a rigid motion.

Moreover, from Cauchy�Riemann equations (8.188) and (8.189)
it follows

ψ,22 = ϕ,12 (8.197)

ψ,11 = −ϕ,21 (8.198)
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and by summing member by member it becomes

∇2ψ = 0 (8.199)

Hence, Neumann's problem (8.187) turns into the following Dirich-
let's problem{

∇2ψ (x1, x2) = 0 ∀ p ∈ A
ψ (x1, x2) = 1

2

(
x2

1 + x2
2

)
∀ p ∈ ∂A (8.200)

The function ψ = ψ (x1, x2) is named the stress function.
Suppose we are able to solve the problem (8.200). The stress

tensor then becomes

σij = kµ

 0 0 ψ,2 − x2

0 0 −ψ,1 + x1

ψ,2 − x2 −ψ,1 + x1 0

 (8.201)

thus, by virtue of equations (8.50), (8.56) and (8.41) and by con-
sidering the boundary conditions (8.14) and (8.15), we can set

M̂3 = kµ

∫
A

(− (ψ,2 − x2)x2 + (ψ,1 + x1)x1) dA

= kµ

∫
A

((
x2

1 + x2
2

)
− (ψ,1x1 + ψ,2x2)

)
dA

= kµ

(
Jo −

∫
A

(ψ,1x1 + ψ,2x2) dA
)

(8.202)

that solved for the elastic constant gives

k =
M̂3

µ
(
Jo −

∫
A (ψ,1x1 + ψ,2x2) dA

) (8.203)

Finally the state of stress in a generic cross section x3, given an
external twisting action, is

σ31 =
M̂3

%Jo
(ψ,2 − x2) (8.204)

σ32 = − M̂3

%Jo
(ψ,1 − x1) (8.205)

where we have de�ned

% =
Jo −

∫
A (ψ,1x1 + ψ,2x2) dA

Jo
(8.206)
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8.5.3 State of strain

Making use of equation (4.25) and table 4.1 we can write the
strain tensor as follows

εij =
1

2G

 0 0 σ13

0 0 σ23

σ31 σ32 0

 =

=
M3

2G%Jo

 0 0 (ψ,2 − x2)
0 0 − (ψ,1 − x1)

(ψ,2 − x2) − (ψ,1 − x1) 0

 =

=
M3

2G%Jo

 0 0 (ϕ,1 − x2)
0 0 (ϕ,2 + x1)

(ϕ,1 − x2) (ϕ,2 + x1) 0

 (8.207)

8.5.4 Displacement �eld

At the beginning of section 8.5.2 we already introduced the dis-
placement �eld associated to the torsion problem. However, we im-
plicitly assumed that the rotation axis for the point p ∈ A is coin-
cident with the axis x3. It is possible to show that this restriction
does not a�ect the validity of the results in terms of stress.

Anyhow, if we repeated an integration procedure similar to that
we made to compute the displacement �elds in the axial force and
pure bending cases, we would �nd that here the displacement �eld
assumes the following general form

u1 = −kx3 (x2 − xc2) (8.208)

u2 = kx3 (x1 − xc1) (8.209)

u3 = kϕc (x1, x2) (8.210)

where c ≡ (xc1, x
c
2) is the point about which the rotation occurs and

ϕc is the torsion function relative to the rotation point c.
The state of stress consistent with the above displacement com-

ponents is

εij =
k

2

 0 0 ϕc,1 − x2 + xc2
0 0 ϕc,2 + x1 − xc1

ϕc,1 − x2 + xc2 ϕc,2 + x1 − xc1 0


(8.211)
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and consequently it becomes

σij = Gk

 0 0 ϕc,1 − x2 + xc2
0 0 ϕc,2 + x1 − xc1

ϕc,1 − x2 + xc2 ϕc,2 + x1 − xc1 0


(8.212)

By using the above state of stress instead of that in (8.177) the
equilibrium equation (8.180) assures the following condition

∇2ϕc = 0 (8.213)

Moreover, the boundary condition on the lateral surface implies(
ϕc,1 − x2 + xc2

)
n1 +

(
ϕc,2 + x1 − xc1

)
n2 = 0 (8.214)

which can be also written as(
ϕc,1 + xc2

)
n1 +

(
ϕc,2 − xc1

)
n2 = x2n1 − x1n2 (8.215)

which is equivalent to the following expression

(ϕc + xc2x1 − xc1x2),1 n1 + (ϕc + xc2x1 − xc1x2),2 n2 = x2n1 − x1n2

(8.216)
From the latter it is straightforward to realize that the new tor-

sion function ϕ̂c = ϕc+xc2x1−xc1x2 must satisfy the same condition
on ∂A that ϕ must satisfy. In addition to that, condition (8.213)
guarantees that the Laplacian of ϕ̂c vanishes. Thus, Neumann's
problem assumes the following form{

∇2ϕ̂c = 0 ∀ p ∈ A
∇ϕ̂c · n̄ = x2n1 − x1n2 ∀ p ∈ ∂A (8.217)

Due to the uniqueness of Neumann's problem the two torsion
functions ϕ and ϕ̂c can only di�er each other by a constat value, so
that

ϕ̂c = ϕ+ t (8.218)

from which
ϕc = ϕ− xc2x1 + xc1x2 + t (8.219)

If we use the torsion function in (8.219) to compute the state of
strain in (8.211), we will immediately �nd that the state of strain
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remains unaltered compared to that obtained by using the torsion
function ϕ. That means that the kinematics related to ϕ and ϕc

only di�er one another by a rigid body motion which does not alter
the results in term of stress.

By virtue of these remarks we can state that the hypothesis of
assuming the torsional axis coincident with x3-axis was reasonable
and acceptable.

As the last point of this section we want to �nd the position of
the point c called the center of twist obtained by the intersection
of the axis of twist, that is the axis parallel to the generators of a
cylinder undergoing torsion - located so that the displacement of
any point on the axis is not a�ected by any rotation, and a generic
cross section.

From equations (8.208) to (8.210) it is possible to put zero the
mean value of the displacement u3 and the mean value of the rota-
tions of a given point p ∈ A by putting∫

A
ϕc (x1, x2) dA = 0 (8.220)∫

A
ϕc (x1, x2)x2dA = 0 (8.221)∫

A
ϕc (x1, x2)x1dA = 0 (8.222)

which, making use of equation (8.219), give

t = 0 (8.223)∫
A
ϕ (x1, x2)x2dA+ xc1Jx = 0 (8.224)∫

A
ϕ (x1, x2)x1dA− xc2Jy = 0 (8.225)

and �nally

xc1 = − 1
Jx

∫
A
ϕ (x1, x2)x2dA (8.226)

xc2 =
1
Jy

∫
A
ϕ (x1, x2)x1dA (8.227)

8.5.5 Strain energy

We can equivalently use three tools to compute the strain energy
associated to a beam undergoing torsion:
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Work done by the external forces. By virtue of the Clapey-
ron's theorem, see equation (6.15) on page 114, the strain
energy is

Φ =
1
2
M̂ l

3ϑ
l (8.228)

where M̂ l
3 is the only external force and ϑl is the rotation in

the (x1, x2)�plane at the point of application of the torque,
i.e. at the end x3 = l.

As already stated, the twist rotation θ per unit length is given
in accordance with equation (8.157) as follows

θ =
dϑ

dx3
= k (8.229)

thus, the whole twist rotation all along the beam is readily
given by the integral

ϑl =
∫
l
ϑdx3 =

∫
l

M̂ l
3

G%Jo
dx3 =

M̂ l
3

G%Jo
l (8.230)

and �nally

Φ =
1
2
M̂ l

3

2
l

G%Jo
(8.231)

Work done by the internal stresses. By recalling equation 6.5
on chapter 6, we can set

Φ =
1
2

∫
V
σijεijdV (8.232)

which in this speci�c case becomes

Φ =
1
2

∫
V

(σ31ε31 + σ32ε32) dA =

=
1

2G

∫
V

(
σ2

31 + σ2
32

)
dA =

=
M2

3

2G%2J2
o

∫
V

(
(ϕ,1 − x2)2 + (ϕ,2 + x1)2

)
dV =

=
M2

3 l

2G%2J2
o

∫
A

(
ϕ2
,1 − ϕ,1x2 + ϕ2

,2 + ϕ,2x1

)
dA+ %Jo

(8.233)
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The above integral can be rewritten taking into account the
following identities

ϕ2
,1 − ϕ,1x2 = (ϕ (ϕ,1 − x2)),1 − ϕϕ,11 (8.234)

ϕ2
,2 + ϕ,2x1 = (ϕ (ϕ,2 + x1)),2 − ϕϕ,22 (8.235)

hence ∫
A

(
ϕ2
,1 − ϕ,1x2 + ϕ2

,2 + ϕ,2x1

)
dA = (8.236)∫

A

(
(ϕ (ϕ,1 − x2)),1 + (ϕ (ϕ,2 + x1)),2

)
dA+

−
∫
A
ϕ∇2ϕdA (8.237)

Now we can realize that the last integral contains the �rst
condition of Neumann's problem so that on the domain A it
vanishes. Moreover, by using the divergence theorem for the
�rst integral at the second member we obtain∫

A

(
ϕ2
,1 − ϕ,1x2 + ϕ2

,2 + ϕ,2x1

)
dA = (8.238)∫

∂A
((ϕ (ϕ,1 − x2))n1 + (ϕ (ϕ,2 + x1))n2) ds = (8.239)∫

∂A
ϕ (∇ϕ · n̄− x12n1 + x1n2) ds (8.240)

The latter integral includes the boundary condition of Neu-
mann's problem that is identically zero.

Finally we have proved that∫
A

(
ϕ2
,1 − ϕ,1x2 + ϕ2

,2 + ϕ,2x1

)
dA = 0 (8.241)

and so the strain energy can be expressed as follows

Φ =
M2

3 l

2G%2J2
o

%Jo (8.242)

where since M̂3 = M3 we obtain

Φ =
M̂2

3 l

2G%Jo
(8.243)

that is the same result we found through the previous method.
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Work done by the internal forces. Note that here the sign con-
vention is taken in accordance with that assumed in section
8.1.1, so for a generic cross section we have

dΦ =
1
2
M3dθ (8.244)

and, by integrating along the entire beam, we obtain

Φ =
1
2

∫
l
M3θdx3 =

1
2
M̂2

3 l

G%Jo
(8.245)

8.5.6 Torsion of tubular beams: Bredt's theory

To solve the problem of tubular beams under torsional couples
we can make use of an approximate theory that requires just the
equilibrium equations. Consider a generic domain A and a closed
curve c within that domain. See �gure 8.11.

Figure 8.11: The sub-domain Ac bounded by the curve c.

Let τ̄ be the tangential stress vector lying in the domain A so
that

τ̄ = σ31ē1 + σ32ē2 (8.246)

The equilibrium condition (8.9) leads to the following alterna-
tive expression

τi,i = 0 i = 1, 2 (8.247)

that is nothing more than div τ̄ = 0.
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Now let Ac ⊂ A be the area included by the curve c, invoking
the divergence theorem (1.143), we have∫

Ac
div τ̄ dAc =

∫
c
(τ̄ · n̄) dc = 0 i = 1, 2 (8.248)

Equation (8.248) proves that given a generic region Ac the stress
�ux through its boundary c always vanishes.

Consider now two curves c1 and c2 as shown in �gure 8.12.

Figure 8.12: Stress �ux within a small region included by two closed
curves and two generic transversal sections.

Due to the result in (8.248), no stress �ux passes through the
arches a− c and b− d, so for the closed area abcd the �ux balance
is given as follows

−
∫
sab

τ̄ · t̄abds+
∫
scd

τ̄ · t̄cdds = 0⇒

−
∫
sab

τab (s) ds+
∫
scd

τcd (s) ds = 0 (8.249)

where t̄ is the unit vector normal to the transversal sections a − b
and c− d, respectively, while sab and sbc are the the lengths of the
transverse sections, i.e. the thickness of the tubular section.

Assuming that s is su�ciently thin, we can consider the average
value τm instead of τ = τ (s), so the above integral can turn into

τmabsab = τmcdscd (8.250)
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where

τmab =
1
sab

∫
sab

τ̄ · t̄abds (8.251)

Finally, since the sections sab and sbc have been arbitrarily cho-
sen along the all tubular section, equation (8.250) provides the fol-
lowing result

τms = constant (8.252)

and moreover, if we suppose that the �ux lines are parallel to the
midline c, i.e τ = |τ̄ | = τm, we have that the tangential resultant
for unit length is given as follows

dFτ = τsdc (8.253)

Now suppose a generic equilibrium direction is �xed by the angle
α as showed in �gure 8.13,

Figure 8.13: Stress resultants.

the resultant force acting on the cross�section has the following
expression ∮

c
τs cosαdc = τs

∮
c
cosαdc = 0 (8.254)

Accordingly, the in�plane rotational equilibrium is satis�ed by
imposing

M3 =
∮
c
τsh (s) dc = τs

∮
c
h (s) dc = 2τsAc (8.255)

where o is a generic point with respect to which we compute the
moments, Ac is the area included by the midline c.
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Hence, the inverse problem is solved as follows

τ =
M3

2sAc
(8.256)

8.6 Bending and shear

8.6.1 External forces

The external forces acting on the base x3 = l are

T̂ l1 6= 0, T̂ l2 6= 0 (8.257)

N̂ l = M̂ l
1 = M̂ l

2 = M̂ l
3 = 0 (8.258)

hence, the equilibrium condition imposes

T̂ l1 =
∫
A
f̂ l1dA 6= 0 (8.259)

T̂ l2 =
∫
A
f̂ l2dA 6= 0 (8.260)

N̂ l =
∫
A
f̂ l3dA = 0 (8.261)

so that

f̂ l1 6= 0 (8.262)

f̂ l2 6= 0 (8.263)

f̂ l3 = 0 (8.264)

and the following condition has to be satis�ed

M̂ l
3 =

∫
A

(
−f̂1x2 + f̂2x1

)
dA = 0 (8.265)

On the other hand, the rigid body equilibrium requires that on
the base x3 = 0 the external forces acting are

T̂ 0
1 = −T̂ l1, T̂ 0

2 = −T̂ l2 (8.266)

M̂0
1 = T̂ l2l, M̂0

2 = −T̂ l1l (8.267)

N̂0 = N̂ l = 0 (8.268)

M̂0
3 = −M̂ l

3 = 0 (8.269)
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Consequently the boundary conditions are

f̂0
1 6= 0 (8.270)

f̂0
2 6= 0 (8.271)

f̂0
3 6= 0 (8.272)

8.6.2 State of normal stress

Let us start from a generic form of σ33 as stated in equation
(8.32). The condition σ33 = 0 at x3 = l allows us to reduce the six
unknowns to three, in fact we have

σ33|x3=l = a+ bx1 + cx2 + (d+ ex1 + fx2) l = 0 (8.273)

σ33|x3=0 = a+ bx1 + cx2 = f̂0
3 (8.274)

and the following expression could be a solution

σ33 = (α+ βx1 + γx2) (l − x3) (8.275)

where α, β, γ are the unknown constants.

To compute the above constants we shall impose the equilibrium
condition on the base x3 = 0, so we have

N̂0 = −
∫
A
σ33dA = −

∫
A

(α+ βx1 + γx2) ldA = 0 (8.276)

M̂0
1 = −

∫
A
σ33x2dA = −

∫
A

(α+ βx1 + γx2) lx2dA = T̂ l2l

(8.277)

M̂0
2 = −

∫
A
σ33x1dA = −

∫
A

(α+ βx1 + γx2) lx1dA = −T̂ l1l

(8.278)

where we have made use of equation (8.275).

Equations (8.276), (8.277), (8.278) represent a linear system in
the unknowns α, β, γ, that is

αlA = 0
−βJ12 − γJ2 = T̂ l2
−βJ1 − γJ12 = −T̂ l1

(8.279)
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In the same way as made for the pure �exure case we may write
the above system with respect to the axes of inertia (ξ, η), so it
becomes (

0 −Jη
Jξ 0

)(
γ
β

)
=

(
T̂ lη
−T̂ lξ

)

β = −
T̂ lξ
Jξ

(8.280)

γ = −
T̂ lη
Jη

(8.281)

and accordingly the stress produced by the couples is

σ33 = −

(
T̂ lη
Jη
ξ +

T̂ lξ
Jξ
η

)
(l − x3) (8.282)

Taking into account that the bending moment due to the exter-
nal forces T̂ξ and T̂η propagates along the beam as

Mξ = −T̂ lη (l − x3) (8.283)

Mη = T̂ lξ (l − x3) (8.284)

then, the state of stress normal to a generic cross�section assumes
the following expression

σ33 =
Mξ

Jξ
η − Mη

Jη
ξ (8.285)

where we want to remak that the above expression is similar to
equation (8.106), but hereMξ andMη are not constant, they depend
on the cross�section position, i.e. x3.

A simpler solution is obtained by introducing the coordinate
system (x, y, z) where x is the neutral axis n − n, y is the �exural
axis f − f

σ33 =
Mx

Jx
y = −

T̂ ly (l − z)
Jx

y (8.286)
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Figure 8.14: Shear regions.

8.6.3 State of tangential stress: Jourawski's theory

This section is devoted to an approximate shear theory widely
applied in practical cases, it is named Jourawski's shear theory.

Consider a generic cross�section of the beam and suppose to
split the area A in two regions A1 and A2. See �gure 8.14.

We call l the line that divides the section and r the line normal
to l. So it is possible to de�ne a local coordinate system assuming
{l, r} as Cartesian axes. Hence, l̄ and r̄ form a two�dimensional basis
for the system. Let us consider now a three�dimensional portion of
the solid included by two surfaces normal to the x3 axis, at x3 and
x3 + dx3, respectively, and the plane πl. See �gure 8.15.

Let τ̄3 be the tangential stress vector lying in the domain A1 so
that

τ̄ = σ31ē1 + σ32ē2 (8.287)

The stress �ux τ3r passing through the line l is given by the
scalar product τ̄3 · r̄, so that the equilibrium condition of the portion
V1 is

−
∫
A1

σ33dA1 +
∫
A1

(σ33 + σ33,3) dA1 −
∫
lab

τr3dl = 0 (8.288)

then ∫
A1

σ33,3dA1 =
∫
lab

τr3dl (8.289)

By using the result in (8.286), the latter equation becomes

T̂ ly
Jx

∫
A1

ydA1 =
∫
lab

τr3dl (8.290)
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Figure 8.15: Beam splitting.

Invoking the mean value theorem, we can set the mean stress
τmr3 along the chord lab as follows

τmr3 =
1
lab

∫ b

a
τr3dl (8.291)

hence we can state that

Ty
Jx

∫
A1

ydA1 = labτ
m
r3 ⇒

τmr3 =
TyS1x

Jxlab
(8.292)

where Ty = T̂ ly is the shear force acting along the �exural axis; S1x

is the static moment of the area A1 with respect to the neutral axis;
Jx is the entire cross�section moment of inertia with respect to the
neutral axis; lab is the length of the chord.

Equation (8.292) allows us to compute the mean value of the
shear stress acting in the r̄ direction normal to a generic chord
which splits the section in two portions. Jourawski's theory does not
depend on the chord position, it is just required that it separates
the cross�section in two parts. Moreover, the chord lab can be a
polygonal line and in the case of tubular section it can cut the
section more than once.

The practical application of Jouwraski's theory is allowed when
the chord length is su�ciently small, so under this condition we
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can approximate the mean stress with the actual one without loss
of accuracy

τmr3 ' τr3 (8.293)

Furthermore, equation (8.5) on page 145 ensures the no�stress
condition along the normal to the lateral surface of the cylinder. So
in points a and b, see �gure 8.14, the stress τr3 must be tangent
to the boundary lines of the cross�section. Considering the above
condition on the smallness of lab, if the boundaries and the chord
are orthogonal we can write that τ̄ = τ3rr̄, i.e. there are no other
components of the shear stress vector except the one along the r�
axis. More details will be given later on symmetrical sections.

As a concluding remark we want to show that the shear stress
τ3r does not depend on which portion of the section we choose. In
fact, if we consider the �ux towards the area A2 we have

τ̄ · (−r̄) = −τ3r (8.294)

moreover, we know that

S1x + S2x = 0⇒ S1x = −S2x (8.295)

so the shear stress equals

−τmr3 = −TyS2x

Jxlab
⇒

τmr3 =
TyS1x

Jxlab
=
TyS2x

Jxlab
(8.296)

8.6.4 Tangential stress for symmetrical cross�sections

Consider now a symmetrical cross�section under a shear force
passing along the axis of symmetry that coincides with the �exural
axis. See �gure 8.16.

Suppose that the section width is su�ciently small to consider
valid Jourawski's theory, then the shear stress along the chord lab
is given by the following expression

τ3y =
TyS1x

Jxlab
(8.297)

On the left side of �gure 8.16 is showed the distribution of the
static moment related to the portion A1 computed with respect to
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Figure 8.16: Symmetrical cross�section.

the x�axis, namely

S1x (y) =
∫
A1

ydA1 =
∫ y1

y
ζl (ζ) dζ (8.298)

Often in the practical application it is required to compute the
maximum shear stress, so it easy to observe that since

τ3y = τ3y (y) (8.299)

then the maximum value is found by imposing the following condi-
tion

τ3y,y = 0

which implies (
Sx
l

)
,y

=
1
l

dS1x

dy
− S1x

l2
dl

dy
= 0 (8.300)

Moreover, equation (8.298) assures that dS1x = lydy, therefore
the latter equation becomes

ly − S1x

l

dl

dy
= 0 (8.301)
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that is

y =
S1x

l

2 dl

dy
(8.302)

This result implies that along the x�axis, i.e. when y = 0, the
chord l has either an extreme value or is constant and that is su�-
cient to assure the condition expressed by equation (8.300). In fact
we have

dl

dy
= 0, if y = 0 (8.303)

therefore

(τ3y)max =
TyS1x

Jxl0
(8.304)

where l0 denotes the length of the chord at y = 0.
Now we can split the moment of inertia into the sum Jx = J1x+

J2x = Sxh1 + Sxh2, where h1 and h2 are the distances between the
centers of area C1 and C2 of the two portions separated by means
of the chord l0 and the center of the whole section G, respectively.
Hence, if h1 + h2 = h0, we can write

Jx = Sxh0 (8.305)

which leads us to write

(τ3y)max = τ3y (0) =
Ty
l0h0

(8.306)

Figure 8.17: Maximum shear stress for symmetrical cross�section.
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As showed in �gure 8.17 the centers C1 and C2 coincide with
the points of applications of the resultant forces produced by the
normal state of stress σ33 = σ33 (y).

As a concluding remark of this section we want to show that by
using the equilibrium equation in (8.9), which has not been used
yet, it is possible to know the distribution of the stress along the
x�axis. To this end let us write equation (8.9) with respect to the
neutral and symmetry axes, respectively

τ3x,x + τ3y,y + σ33,3 = 0 (8.307)

and the derivative with respect of x allows us to write

τ3x,xx = 0 (8.308)

because equations (8.297) and (8.286) tell us that the �rst two terms
of equation (8.307) vanish, so that

τ3x = αx+ β (8.309)

where α and β are two integration constants that must be found by
means of the boundary conditions. The stress boundary conditions
are known due to equation (8.5) that ensures the tangency condition
of the shear stress vector τ̄3 to the boundary of the cross�section.
See �gure 8.18.

It should also be noted, as made clear in �gure 8.18, that for
any point on the chord l the shear stress vector is always lying on
the line towards the point O that belongs to the symmetrical axis
and is determined by the intersection of two tangent lines passing
through a and b.

Hence it is very easy to prove that the shear stress component
along the neutral axis x is given by

τ3x = −2 tanα
lab

τ3yx (8.310)

where we have imposed the conditions

τ3x

(
lab
2

)
= −τ3y tanα (8.311)

τ3x

(
− lab

2

)
= τ3y tanα (8.312)



LECTURES ON SOLID MECHANICS 193

Figure 8.18: σ3x distribution for symmetrical cross�sections.

Finally, for a generic point within a symmetric cross�section we
know the whole state of shear stress

τ3y =
TySx
Jxl

(8.313)

τ3x = −2 tanα
l

τ3yx (8.314)

where l is a generic chord that splits the section.

8.6.5 State of strain

With the same approach followed for the state of stress, the
strained con�guration of a beam under terminal forces, which pro-
duce shear and bending forces along the whole beam, will be in-
vestigated separately. Namely, by using the superposition principle,
the deformation concerning a generic cross�section will be obtained
as sum of the contribution due to the bending state of strain and
the contribution due to the shear state of strain.
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It must be observed that in this section we shall investigate
only the global strain of the cross�section assumed remaining plane,
instead of the local strain tensor εij .

Bending strain

Likewise the pure bending case analyzed in section 8.4.3 for a
generic cross�section we have

ϕx = κz =
Mx

EJx
z (8.315)

where ϕx is the rotation in the (y, z)�plane at the point of appli-
cation of the internal couple Mx = −T̂ ly (l − z) that is the bending
moment produced by the external force T̂ ly. The key di�erence with
respect to the pure bending case is that here the rotation ϕx is no
longer constant, but varies linearly with z.

Figure 8.19: Bending strain for an in�nitesimal beam segment.

Let us de�ne now the rotation per unit of length as follows

κ =
dϕx
dz

=
Mx

EJx
= − T̂y (l − z)

EJx
(8.316)

Shear strain

The natural consequence of the shear state of stress discussed
before is the shearing strain that causes a sliding of the cross�
sections that, initially plane, become warped. See �gure 8.20.

We shall focus our attention only on the sliding of the cross�
section in order do describe its global deformation. Furthermore,
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Figure 8.20: Shear strain for an in�nitesimal beam segment.

we shall also show that the contribute of the sliding to the de�ec-
tion line de�ned as v = v (z) |x=y=0 will be sometimes neglected,
sometimes not, depending on the geometrical features of the cross�
section.

With respect to �gure 8.20 we can set

dη = γdz (8.317)

where, chosen two cross�sections dz apart from each other, dη rep-
resents the strain due to the shear force. We can easily write the
shear strain energy6 Φs as follows

Φs =
1
2

∫
V

(2τzyεzy + 2τzxεzx) dV (8.318)

so that for a small beam's portion dz, considering the constitutive
law, the above energy becomes

dΦs =
dz

2G

∫
A

(
τ2
zy + τ2

zx

)
dA (8.319)

which, recalling equations (8.313) and (8.314), turns into

dΦs =
dz

2G

∫
A
τ2
zy

(
1 +

4 tan2 α

l2
x2

)
dA (8.320)

The shear stress τzy depends only on y, so that the above integral

6Notice that the subscript s denotes the portion of the energy associated to
the shear force alone.
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can be rewritten as

dΦs =
dz

2G

∫ y1

y2

τ2
zydy

∫ l/2

−l/2

(
1 +

4 tan2 α

l2
x2

)
dx =

=
dz

2G

∫ y1

y2

τ2
zydy

[(
x+

4 tan2 α

3l2
x3

)]l/2
−l/2

=

=
T 2
y dz

2GJ2
x

∫ y1

y2

S2
x

l

(
1 +

tan2 α

3

)
(8.321)

Finally, Clapeyron's theorem allows us to equilibrate the strain
energy computed by means of the internal stresses with half of the
work done by the external forces

dΦs =
1
2
Tydη (8.322)

so that equation (8.322) equals equation (8.321) as follows

dΦs =
1
2
Tydη =

T 2
y dz

2GJ2
x

∫ y1

y2

S2
x

l

(
1 +

tan2 α

3

)
dy ⇒

dη =
Ty
G

dz

J2
x

∫ y1

y2

S2
x

l

(
1 +

tan2 α

3

)
dy (8.323)

and �nally the relevant result is that the de�ection of an in�nites-
imal portion of beam due only to the shear force is given by the
following expression

dη =
χγTy
GA

dz (8.324)

where we have de�ned the shear factor χγ as follows

χγ =
A
J2
x

∫ y1

y2

S2
x

l

(
1 +

tan2 α

3

)
dy (8.325)

Equation (8.324) leads in the end to write the sliding angle γ as

γ =
dη

dz
=
χγTy
GA

(8.326)
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8.6.6 Total strain energy

Now we are able to compute the total strain energy for a beam
subjected to shear and bending forces. Keeping unaltered the hy-
potheses of symmetrical cross�section with respect to the y�axis as
symmetry line and x�axis as neutral axis, we can state that the
total strain energy is given by two terms

Φ = Φb + Φs (8.327)

where Φb is the strain energy concerning the bending state of strain
and Φs the energy related to the shear state of strain. See �gures
8.21(a) and 8.21(b), respectively.

(a) Bending state of strain.

(b) Shear state of strain.

Figure 8.21: Two contributions to the state of strain for a beam
subjected to terminal forces.

Clapeyron's theorem allows us to write easily both the contri-
butions as

Φb =
1
2
Tyηb (8.328)

Φs =
1
2
Tyηs (8.329)
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where the �rst contribution is easily obtained replacing the con-
stitutive relationship for the normal stress, see equation (8.19) on
page 147, and making use of equation (8.286) such as

Φb =
1
2

∫
V
σzz

σzz
E
dV =

1
2

∫
V

T 2
y (l − z)2

EJ2
x

y2dV =

=
1
2
T 2
y

EJ2
x

∫
A
y2dA︸ ︷︷ ︸

=Jx

∫
l
(l − z)2 dz =

T 2
y l

3

6EJx
(8.330)

To compute the shear strain energy we recall the expression
obtained in the preceding section, see equation (8.324), and we use
Clapeyron's theorem

Φs =
1
2
Tyηs =

1
2
Ty

∫
l
dηs =

1
2
Ty
χγTy
GA

∫
l
dz =

1
2
χγT

2
y l

GA
(8.331)

In the end, the strain energy for the linear elastic beam with a
symmetrical cross�section subjected to forces at its ends is

Φ =
T 2
y l

3

6EJx
+

1
2
χγT

2
y l

GA
(8.332)

and consequently the total de�ection at the point of application of
the external force, in the direction of the force itself, is

Tyη = Ty (ηb + ηs) = 2Φ =
T 2
y l

3

3EJx
+
χγT

2
y l

GA
(8.333)

hence

η = ηb + ηs =
Tyl

3

3EJx
+
χγTyl

GA
(8.334)

8.6.7 Rectangular cross�section

Consider a rectangular cross�section A = wh where w is the
width and h is the height. The cross�section area is assumed to be
constant, so that we can easily compute the moment of inertia and
the static moment with respect to axes x − −y assumed as above
to be the neutral and �exural axes, respectively.

Jx =
wh3

12
(8.335)

Sx =
w

2

(
h2

4
− y2

)
(8.336)
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Moreover, the tangential stress τ3x = 0, so that in this case the
stress state is completely de�ned by

σ33 = −Ty (l − z)
EJx

(8.337)

τ3y =
TySx
wJx

=
3Ty
2wh

(
1− 4

y2

h2

)
(8.338)

The shear factor χγ can be directly computed by using the ex-
pression (8.325) which yields χγ = 6

5 .
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Appendix A

Applications of the shell theory

This appendix contains some applications of the shell theory discussed

at the ends of the �rst four chapters. For all cases presented the external

load ensures a membrane state of stress and consequently some analytical

closed�form solutions can be reached.

A.1 Spherical dome

A.1.1 Geometry

The spherical dome is a shell modeled on a portion of sphere
having radius r and aperture π/2 (hemisphere). Given the geometry,
the �rst step is to identify the simplest coordinate system able to
describe such a geometry. Of course it is a spherical system, see
section 1.4.3 on page 19.

Let X be the spherical coordinate system1 so that

X = (ϕ, ϑ, ρ) : E → IR3 (A.1)

where E is the a�ne Euclidean space in which the surface Q is
embedded. The origin of the system is located at the center of the
hemisphere. With respect to a Cartesian coordinate system, the
following transformations hold

x = ρ sinϕ sinϑ (A.2)

y = ρ sinϕ cosϑ (A.3)

z = ρ cosϕ (A.4)

The adapted coordinate system X induces the surface coordi-
nate system X† by imposing the constraint ρ = r. Therefore, the

1Note that this coordinate system has been slightly changed compared with
that depicted in �gure 1.3.

Claudio Borri, Michele Betti, Enzo Marino (a cura di), Lectures on Solid Mechanics, ISBN 978-88-8453-
854-3 (online), ISBN 978-88-8453-853-6 (print), © 2008 Firenze University Press
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induced coordinate system is

X† = (ϕ†, ϑ†) : Q→ IR2 (A.5)

The covariant and contravariant expressions of the metric tensor
g† associated with the induced coordinate system are, respectively

g
	

= r2d
	
ϕ ⊗ d

	
ϕ + r2 sin2 ϕd

	
ϑ ⊗ d

	
ϑ (A.6)

ḡ =
1
r2
∂̄ϕ ⊗ ∂̄ϕ +

1
r2 sin2 ϕ

∂̄ϑ ⊗ ∂̄ϑ (A.7)

The nonvanishing Christo�el symbols on Q are

Γϕϑϑ = − sinϕ cosϕ

Γϑϕϑ = Γϑϑϕ =
cosϕ
sinϕ

The unit normal vector of Q is

n̄ = ∂̄ρ (A.8)

The Weingarten tensor and the second fundamental form for Q
are, respectively

L =
1
r

(d
	
ϕ ⊗ ∂̄ϕ + d

	
ϑ ⊗ ∂̄ϑ) (A.9)

L
	

= r(d
	
ϕ ⊗ d

	
ϕ + sin2 ϕd

	
ϑ ⊗ d

	
ϑ) (A.10)

A.1.2 Displacements and strains

To compute the in�plane state of stress only the stretching strain
tensor α is required

αϕϕ = vϕ,ϕ +rvξ (A.11)

αθθ = vϑ,ϑ + sinϕ cosϕ+ r sin2 ϕvξ (A.12)

αϑϕ =
1
2

(vϕ,θ +vϑ,φ )− cos
sinϕ

vϑ (A.13)
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A.1.3 Equilibrium and constitutive law

The equilibrium equations (3.149) to (3.151) for a spherical shell
assume the following form

Nϕϕ,ϕ + cotϕNϕϕ − sinϕ cosϕNϑϑ + qϕ = 0 (A.14)

−Nϕϕr −Nϑϑr sin2 ϕ+ qξ = 0 (A.15)

Nϑϕ,ϕ +3 cotϕNϑϕ + qϑ = 0 (A.16)

The constitutive equations are

Nϕϕ = D
1
r4

(
vϕ,ϕ +rvξ

)
+

+D

(
ν

r4 sin2 ϕ
(vϑ,ϑ + sinϕ cosϕvϕ + r sin2 ϕvξ)

)
(A.17)

Nϑϑ = D
1

r4 sin4 ϕ

(
vϑ,ϑ + sinϕ cosϕvϕ + r sin2 ϕvξ

)
+

+D
ν

r4 sin2 ϕ

(
vϕ,ϕ +rvξ

)
(A.18)

Nϑϕ = D

(
1− ν
r4 sin2 ϕ

1
2

(vϕ,θ +vϑ,ϕ )− cosϕ
sinϕ

vϑ

)
(A.19)

Load case: self weight

The dead load due to the self weight provides, of course, a sym-
metrical action so that the expected solution will not depend on
ϑ.

Suppose the load per unit area is q̄, uniformly distributed through-
out the shell. The vector has only the vertical component

q̄ = −qz ēz (A.20)

whereas, with respect to the basis {∂̄ϕ, ∂̄ϑ, n̄} the vector load q̄ is
written follows

q<> = −qz cosϕn̄+ qz sinϕ∂̄ϕ (A.21)

By multiplying equation (A.14) by sinϕ we obtain

(sinϕNϕϕ),ϕ− sin2 ϕ cosϕNϑϑ + sinϕqϕ = 0 (A.22)
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Let us introduce now the physical components of the stress ten-
sor N , so that

N<αβ> =
Nαβ

|d
	
α||d

	
β|

= Nαβ|∂̄α||∂̄β| (A.23)

Hence, equation (A.22) becomes

(sinϕN<ϕϕ>),ϕ− cosϕN<ϑϑ> + r sinϕq<ϕ> = 0 (A.24)

Analogously, by multiplying equation (A.16) by sin2 ϕ, consid-
ering the physical components and noticing that qϑ = 0, we obtain

(sinϕN<ϑϕ>),ϕ + cosϕN<ϑϕ> = 0 (A.25)

The remaining equilibrium equation becomes

− N<ϕϕ>

r
− N<ϑϑ>

r
+ q<ξ> = 0 (A.26)

where, resolving equation (A.26) for N<ϑϑ>, equation (A.24) turns
into

(sin2 ϕN<ϕϕ>),ϕ = (q<ξ>r cosϕ− q<ϕ>r sinϕ) sinϕ (A.27)

which can be integrated as follows

sin2 ϕN<ϕϕ> =
∫ ϕ

ϕ̄
r
(
q<ξ>(φ) cosφ− q<ϕ>(φ) sinφ

)
sinφdφ+K

(A.28)

Equation (A.28) represents the equilibrium of a spherical cap
included by latitude ϕ̄ and ϕ ∈ [ϕ̄, π/2]. In particular the quantity
2πrK, excepting the sign, equilibrates the resultant acting on the
cap identi�ed by the aperture ϕ̄.

Considering now equation (A.21)

sin2 ϕN<ϕϕ> = −rqz
[
− cosφ

]ϕ
ϕ̄

(A.29)

for the latitude ϕ the whole meridian stress when ϕ̄ = 0 ⇒ K = 0
is

N<ϕϕ> = −rq
z(1− cosϕ)

sinϕ
= − rqz

1 + cosϕ
(A.30)
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so that equation (A.26) becomes

N<ϑϑ> = rqz
(sin2 ϕ− cosϕ

1 + cosϕ
)

(A.31)

The third equilibrium equation does not depend on the two
latter results, therefore, since qϑ = 0, we have

N<ϑϕ> = 0 (A.32)

Load case: uniform load on the horizontal projection
of the shell

This load case keeps unaltered the simpli�cations regarding the
symmetry already discussed in the preceding case. Indeed, here too
we are looking for a solution not depending on ϑ.

The load qz is now projected on the horizontal plane

q = −qz cosϕēz (A.33)

therefore with respect to the local basis, the physical components
are

q<> = −qz cos2 ϕ+ qzn̄ sinϕ cosϕ∂̄ϕ (A.34)

By means of a procedure similar to that formerly used we obtain
that equation (A.28) now becomes

sin2 ϕN<ϕϕ> =
∫ ϕ

ϕ̄
r
(
q<ξ>(φ) cosφ− q<ϕ>(φ) sinφ

)
sinφdφ+K

=
∫ ϕ

ϕ̄
−rqz sinϕ cosϕ+K (A.35)

from which

sin2 ϕN<ϕϕ> = −1
2

[cos2 ϕ]ϕϕ̄ (A.36)

Next, if ϕ̄ = 0⇒ K = 0, the whole meridian stress is

N<ϕϕ> = −1
2
rqz (A.37)

Finally, from equation (A.26) we obtain

N<ϑϑ> = −1
2
rqz cos 2ϕ (A.38)
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A.2 Cylindrical shell

In this example we want to compute the stress state for a cylin-
drical shell subjected to some of the most typical load conditions,
e.g. uniform pressure, dead weight, hydrostatic pressure.

A.2.1 Geometry

Obviously we choose as an adapted coordinate system a cylin-
drical one with a little rearrangement compared with the one intro-
duced in section 1.4.3 on page 18,

X = (ϑ, z, ρ) : E → IR3 (A.39)

where, as usual, E is the a�ne Euclidean space in which the cylin-
drical surface Q is embedded. The relationships between the Carte-
sian system, with the origin along the axis of the cylinder, and the
cylindrical coordinates are

x = ρsenϑ (A.40)

y = ρcosθ (A.41)

z = z (A.42)

The above adapted coordinate system induces the surface sys-
tem X† due to the constraint ρ = r, where r is the radius of the
cylinder. So we have

X† = (θ†, z†) : Q→ IR2 (A.43)

The covariant and contravariant forms of the surface induced
metric are, respectively

g
	

= r2d
	
ϑ ⊗ d

	
ϑ + d

	
z ⊗ d

	
z (A.44)

ḡ =
1
r2
∂̄ϑ ⊗ ∂̄ϑ + ∂̄z ⊗ ∂̄z (A.45)

All Christo�el symbols vanish on Q.

The unit normal vector of Q is

n̄ = ∂̄ρ (A.46)
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The Weingarten tensor and the second fundamental form are,
respectively

L =
1
r

dϑ ⊗ ∂̄ϑ (A.47)

L
	

= rd
	
ϑ ⊗ d

	
ϑ (A.48)

A.2.2 Displacements and strains

To compute the in�plane state of stress only the stretching strain
tensor α is required

αϑϑ = vϑ,ϑ + rvξ (A.49)

αϑz =
1
2

(vϑ,z +vz,ϑ ) (A.50)

αzz = vz,z (A.51)

A.2.3 Equilibrium and constitutive law

For a cylindrical shell subjected to a membrane state of stress
the equilibrium equations in the scalar form are

Nϑϑ,ϑ +Nϑz,z +pϑ = 0 (A.52)

N z,ϑ +N zz,z +pz = 0 (A.53)

−NϑϑLϑϑ + pξ = 0 (A.54)

Nϑz = N zϑ (A.55)

The constitutive equations assume the following form

Nϑϑ =
D

r2

(
1
r2

(vϑ,ϑ +rvξ) + vz,z

)
(A.56)

Nϑz = D

(
1− ν
2r2

(vϑ, z + vz,ϑ

)
(A.57)

N zz = D
( ν
r2

(vϑ,ϑ +rvξ) + vz,z

)
(A.58)

Load case: uniform pressure and self weight

This load condition is characterized by two load components,
namely qξ and qz. The symmetry around the z�axis permits to
delate all terms containing the derivatives with respect to ϑ.
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The equilibrium equations become accordingly

Nϑθ =
qξ

r
(A.59)

Nϑz,z = 0 (A.60)

N zz,z +pz = 0 (A.61)

Next, taking into account the boundary conditions (at z = 0)
related to the particular load condition and using the physical com-
ponents, we obtain

N<ϑθ> = qξr (A.62)

N<ϑz>,z = 0⇒ N<ϑz> = 0 (A.63)

N zz,z +qz = 0⇒ N zz =
∫ z

0
−qzdζ +K ⇒

N zz = N<zz> = −qz (z − h) (A.64)

Thus, the only nonzero components of v̄ are those along ξ and z
due to the self load and to the Poisson e�ect, which are respectively

vξ =
r2qξ + rνqz(z − h)

E(2ε)
(A.65)

vz =
1

E(2ε)

(
−qz

(
z2

2
− hz

)
− νrqξz

)
(A.66)

Hydrostatic pressure and self weight

In this case the load vector q̄ is made up of two components: qξ

and qz and the equilibrium equations are

Nϑθ =
qξ

r
(A.67)

Nϑz,z = 0 (A.68)

N zz,z +qz = 0 (A.69)

Furthermore, by taking into account the boundary conditions
(at z = 0) related to the particular load condition and using the
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physical components, we obtain

N<ϑθ> = qξr (A.70)

N<ϑz>,z = 0⇒ N<ϑz> = 0 (A.71)

N zz,z +qz = 0⇒ N zz =
∫ z

0
−qzdζ +K ⇒

N zz = N<zz> = −qz(z − h) (A.72)

The nonzero components of v̄ are

vξ =
h− z
E

r
(γLr

2ε
+ νγ

)
(A.73)

vz =
rνγl − qz

E2ε

(
z2

2
− hz

)
(A.74)

A.3 Hyperboloid of one sheet

The last example we propose concerns an hyperboloid of one
sheet, that is the geometry of shell structures usually adopted for
cooling towers. The structure is supposed to be loaded by the self
weight lone so that the axial symmetry is preserved.

A.3.1 Geometry

The adapted coordinate system is X = (f, ϑ, z). Here, as made
for the preceding geometries, we will begin computing the metric
tensors and the Christo�el symbols for such system. Then we will
consider the surface Q, i.e. the hyperboloid, described by the in-
duced coordinate system X† = (ϑ†, z†) obtained by imposing the
constraintf|Q = 0. For this system the metric and the Christo�el
symbols will also be computed.

The hyperbolic coordinate system is

(f, ϑ, z) : E → IR3 (A.75)

with the origin in o ∈ E that coincides with the origin of a Cartesian
coordinate system. See �gure A.1.

We use the coordinate function f to de�ne the surface Q, i.e.
f = 0, that is characterized by the following implicit expression

x2 + y2

a2
− z2

b2
− 1 = 0 (A.76)
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Figure A.1: Hyperbolic coordinate system.

The function f is de�ned as

f = ρ− ρ(z) (A.77)

where ρ(z) = a
b

√
b2 + z2 =

√
x2 + y2.

Whit respect to the Cartesian system the following coordinate
transformations hold

x = (f +
a

b

√
b2 + z2) cosϑ (A.78)

y = (f +
a

b

√
b2 + z2) sinϑ (A.79)

z = z (A.80)

The covariant and contravariant expressions of the metric tensor
are, respectively

g
	

= d
	
f ⊗ d

	
f +

(
f +

a

b

√
b2 + z2

)2
d
	
ϑ ⊗ d

	
ϑ+

+
(
a

b

z√
b2 + z2

)(
d
	
f ⊗ d

	
z + d

	
z ⊗ d

	
f
)

+

+
(

a2z2

b2 (b2 + z2)
+ 1
)

d
	
z ⊗ d

	
z (A.81)
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ḡ =
(

a2z2

b2(b2 + z2)
+ 1
)
∂̄f ⊗ ∂̄f+

−
(
a

b

z√
b2 + z2

)(
∂̄f ⊗ ∂̄z + ∂̄z ⊗ ∂̄f

)
+

+
1

(f + a
b

√
b2 + z2)2

∂̄ϑ ⊗ ∂̄ϑ + ∂̄z ⊗ ∂̄z (A.82)

The nonzero Christo�el symbols for the adapted coordinate sys-
tem are

Γfzz =
ab

(
√
b2 + z2)3

(A.83)

Γfϑϑ = −(f +
a

b

√
b2 + z2) (A.84)

Γϑfϑ = Γϑϑf =
1

f + a
b

√
b2 + z2

(A.85)

Γϑzϑ = Γϑϑz =
az

b(f + a
b

√
b2 + z2)

√
b2 + z2

(A.86)

Consider now the constraint ρ = a
b

√
b2 + z2, i.e. f = 0, in such

a way we pass from the adapted coordinate system X = (f, ϑ, z) to
the induced one X† = (ϑ†, z†)2.

With respect to the surface coordinate system the expressions
of the covariant and contravariant metric tensor are, respectively

g† =
a2

b2
(b2 + z2)d

	
ϑ ⊗ d

	
ϑ +

(
a2z2

b2(b2 + z2)
+
)

d
	
z ⊗ d

	
z (A.87)

ḡ† =
b2

a2

1
(b2 + z2)

∂̄ϑ ⊗ ∂̄ϑ +
b2
(
b2 + z2

)
a2z2 + b2 (b2 + z2)

∂̄z ⊗ ∂̄z (A.88)

and the nonzero Christo�el symbols Γ† are

Γ†
ϑ
zϑ = Γ†

ϑ
ϑz =

z

(b2 + z2)
(A.89)

Γ†
z
zz =

a2b2z

[a2z2 + b2(b2 + z2)](b2 + z2)
(A.90)

Γ†
z
ϑϑ = − a2z(b2 + z2)

a2z2 + b2(b2 + z2)
(A.91)

2From now on we will omit the symbol † to denote the entities on Q when
it is not ambiguous.
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Next, the unit normal vector is

n̄ =

√
a2z2 + b2(b2 + z2)

b2(b2 + z2)
∂̄f −

az√
a2z2 + b2(b2 + z2)

∂̄z (A.92)

and the Weingarten tensor and the second fundamental form are,
respectively

L =
b2

a
√
a2z2 + b2 (b2 + z2)

d
	
ϑ ⊗ ∂̄ϑ+

− ab4

(a2z2 + b2 (b2 + z2))
3
2

d
	
z ⊗ ∂̄z (A.93)

L
	

=
a(b2 + z2)√

a2z2 + b2 (b2 + z2)
d
	
ϑ ⊗ d

	
θ+

− ab2

(b2 + z2)
√
a2z2 + b2 (b2 + z2)

d
	
z ⊗ d

	
z (A.94)

The total curvature of the surface, i.e. the Gauss curvature, and
the mean curvature are, respectively

K = − b6

[a2z2 + b2(b2 + z2)]2
(A.95)

H =
a2b2(z2 − b2) + b4(b2 + z2)

a[a2z2 + b2(b2 + z2)]
3
2

(A.96)

Moreover, from the Weingarten tensor, the principal curvatures
are readily obtained

λ1 =
b2(b2 + z2)

a(b2 + z2)
√
a2z2 + b2(b2 + z2)

(A.97)

λ2 = − ab4

[a2z2 + b2(b2 + z2)]
3
2

(A.98)

The surface coordinate system X† = (ϑ, z) is de�nitely comfort-
able to describe and identify points on the hyperboloid, however to
solve the in�plane equilibrium problem for the symmetrical load
condition it is more convenient to chose instead of the z coordinate,
the angle ϕ that the segment line along n̄ forms with the verti-
cal axis z. This new variable is related to the former one by the
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following relationship

ϕ = sin−1

( √
b2 + z2

√
b2 + k2z2

)
(A.99)

where k is a dimensionless geometric factor

k =

√
1 +

a2

b2
(A.100)

A.3.2 Equilibrium

By making use of the coordinate ϕ, the solution of the equi-
librium equations allows us to write the expressions of the stress
tensor as

N<ϕϕ> =
qa
√
k2 sin2 ϕ− 1

sin2 ϕ
√
k2 − 1

(ζ (ϕ)− ζ (ϕt)) (A.101)

N<ϑϑ> =
a
√
k2 − 1

k2 sin2 ϕ− 1

−q cosϕ+
N<ϕϕ>

(
k2 sin2 ϕ− 1

) 3
2

a
√
k2 − 1


(A.102)

where q is the dead load per unit of area (assumed to be constant
along the thickness) while the function ζ equals

ζ =
− cosϕ

2
(
k2 sin2 ϕ− 1

) +
1

4k
√
k2 − 1

ln

(√
k2 − 1− k cosϕ√
k2 − 1 + k cosϕ

)
(A.103)

Further details on the derivation of the above expressions are
available in [17].
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