
premio firenze university press
tesi di dottorato

– 17 – 





Francesca Di Patti

Finite-Size Effects in Stochastic Models of 
Population Dynamics

Applications to Biomedicine and Biology

Firenze University Press
2010



Progetto di copertina: Alberto Pizarro Fernández

© 2010 Firenze University Press
Università degli Studi di Firenze
Firenze University Press
Borgo Albizi, 28
50122 Firenze, Italy
http://www.fupress.com/

Printed in Italy

Finite-Size Effects in Stochastic Models of Population 
Dynamics : Applications to Biomedicine and Biology / 
Francesca Di Patti. – Firenze : Firenze University Press, 
2010.
(Premio FUP. Tesi di dottorato ; 17)

http://digital.casalini.it/ 9788884539175

ISBN 978-88-8453-976-2 (print)
ISBN 978-88-8453-917-5 (online)



Contents

Introduction� III

Chapter�1�
Theory�of�Pain� 1
1.1	 The	pathophysiology	of	pain	 2
1.2	 Reducing	pain	via	pharmacological	therapy		 3

1.2.1	Opioid	analgesics		 4
1.3	 Importance	of	personalized	medicine	 5
1.4	 The	case	of	Tramadol	 7
1.5	 Experiments	 10

Chapter�2�
Characterizing�the�individual�response�to�medical�treatment� 15
2.1	 A	comprehensive	dynamical	approach	 16

2.1.1	A	short	account	on	one–dimensional	diffusion		 17
2.1.2	The	mathematical	model:	Diffusion	and	time	delay		 19
2.1.3	Validation	of	the	model		 21

2.2	 Unbiased	tools	for	data	processing	 26
2.2.1	Markov	cluster	algorithm		 27
2.2.2	Ecological	clustering		 28

2.3	 The	problem	of	missing	data:	Filling	the	gaps	 32
2.3.1	Test	case	microarray	inspired		 34

Chapter�3�
Role�of�fluctuations�in�the�experienced�pain�perception� 39
3.1	 The	chemical	equations	governing	the	microscopic	process� 40
3.1	 Neglecting	the	inward	migration	of	inactive	molecules� 45

3.2.1	Considering	the	case

�
�

�
�

�
�

�
�

Contents

Introduction III

1 �eory of Pain1
1.1 �e pathophysiology of pain . . . . . . . . . . . . . . . . . . . . . . . . .2
1.2 Reducing pain via pharmacological therapy . . . . . . . . . . . . . . . .3

1.2.1 Opioid analgesics . . . . . . . . . . . . . . . . . . . . . . . . . . .4
1.3 Importance of personalized medicine . . . . . . . . . . . . . . . . . . . .5
1.4 �e case of Tramadol . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7
1.5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2 Characterizing the individual response to medical treatment 15
2.1 A comprehensive dynamical approach . . . . . . . . . . . . . . . . . . . 16

2.1.1 A short account on one–dimensional di�usion . . . . . . . . . 17
2.1.2 �e mathematical model: Di�usion and time delay . . . . . . . 19
2.1.3 Validation of the model . . . . . . . . . . . . . . . . . . . . . . . 21

2.2 Unbiased tools for data processing . . . . . . . . . . . . . . . . . . . . . 26
2.2.1 Markov cluster algorithm . . . . . . . . . . . . . . . . . . . . . . 27
2.2.2 Ecological clustering . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.3 �e problem of missing data: Filling the gaps . . . . . . . . . . . . . . . 32
2.3.1 Test case microarray inspired . . . . . . . . . . . . . . . . . . . . 34

3 Role of �uctuations in the experienced pain perception 39
3.1 �e chemical equations governing the microscopic process . . . . . . . 40
3.2 Neglecting the inward migration of inactive molecules . . . . . . . . . . 45

3.2.1 Considering the case δ̂1 = η̂1 . . . . . . . . . . . . . . . . . . . . 46
3.2.2 Mean �eld vs. stochastic numerical computations . . . . . . . . 49
3.2.3 Parameters for the resonance condition . . . . . . . . . . . . . . 51

3.3 On the general case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.3.1 Assuming η̂1 = δ̂1 . . . . . . . . . . . . . . . . . . . . . . . . . . 56
3.3.2 General case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4 A stochastic approach to the coupled parent drug and metabolite dynamics 61
4.1 Description of the model . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.2 �e deterministic limit . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.2.1 Analysis of the macroscopic equations . . . . . . . . . . . . . . 66

� 46
3.2.2	Mean	-eld	vs.	stochastic	numerical	computations� 49
3.2.3	Parameters	for	the	resonance	condition� 51

3.1	 On	the	general	case� 54
3.3.1	Assuming	

�
�

�
�

�
�

�
�

Contents

Introduction III

1 �eory of Pain1
1.1 �e pathophysiology of pain . . . . . . . . . . . . . . . . . . . . . . . . .2
1.2 Reducing pain via pharmacological therapy . . . . . . . . . . . . . . . .3

1.2.1 Opioid analgesics . . . . . . . . . . . . . . . . . . . . . . . . . . .4
1.3 Importance of personalized medicine . . . . . . . . . . . . . . . . . . . .5
1.4 �e case of Tramadol . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7
1.5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2 Characterizing the individual response to medical treatment 15
2.1 A comprehensive dynamical approach . . . . . . . . . . . . . . . . . . . 16

2.1.1 A short account on one–dimensional di�usion . . . . . . . . . 17
2.1.2 �e mathematical model: Di�usion and time delay . . . . . . . 19
2.1.3 Validation of the model . . . . . . . . . . . . . . . . . . . . . . . 21

2.2 Unbiased tools for data processing . . . . . . . . . . . . . . . . . . . . . 26
2.2.1 Markov cluster algorithm . . . . . . . . . . . . . . . . . . . . . . 27
2.2.2 Ecological clustering . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.3 �e problem of missing data: Filling the gaps . . . . . . . . . . . . . . . 32
2.3.1 Test case microarray inspired . . . . . . . . . . . . . . . . . . . . 34

3 Role of �uctuations in the experienced pain perception 39
3.1 �e chemical equations governing the microscopic process . . . . . . . 40
3.2 Neglecting the inward migration of inactive molecules . . . . . . . . . . 45

3.2.1 Considering the case δ̂1 = η̂1 . . . . . . . . . . . . . . . . . . . . 46
3.2.2 Mean �eld vs. stochastic numerical computations . . . . . . . . 49
3.2.3 Parameters for the resonance condition . . . . . . . . . . . . . . 51

3.3 On the general case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.3.1 Assuming η̂1 = δ̂1 . . . . . . . . . . . . . . . . . . . . . . . . . . 56
3.3.2 General case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4 A stochastic approach to the coupled parent drug and metabolite dynamics 61
4.1 Description of the model . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.2 �e deterministic limit . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.2.1 Analysis of the macroscopic equations . . . . . . . . . . . . . . 66

� 56
3.3.2	General	case		 56

Elisabetta	Coppi,	Purines as Transmitter Molecules: Electrophysiological Studies on Purinergic Signalling in Differ-
ent Cell Systems,	ISBN	978-88-8453-904-5	(print),	ISBN	978-88-8453-905-2	(online)	©	2008	Firenze	University	
Press



Chapter�4�
A�stochastic�approach�to�the�coupled�parent�drug�and�metabolite�dynamics� 61
4.1 Description of the model� 62
4.2 The deterministic limit� 65

4.2.1 Analysis of the macroscopic equations � 66
4.3 The van Kampen expansion � 68

4.3.1 Analysis of the .uctuations� 70

Chapter�5�
Extended�auto–catalytic�networks� 73
5.1 Enhanced stochastic oscillations � 74

5.1.1 On the fluctuations � 78
5.2 On a spatial model of autocatalytic reactions� 84

5.2.1 The perturbative expansion� 85
5.2.2 Right hand side of the master equation: N−1/2 terms� 90
5.2.3 Right hand side of the master equation: N−1 terms 91
5.2.4 The Fokker Planck equation 94

Conclusions� 99

A�The�Gillespie�algorithm� 103

Bibliography� 109

Francesca Di PattiVI



�
�

�
�

�
�

�
�

Introduction

Population dynamics [1] constitutes a widespread branch of investigations which
�nds particularly important applications within the realm of life science. In general
terms, it aims at characterizing the time evolution of interacting species of homologous
entities, so to unravel, among others, the fundamental mechanisms which drive their
dynamics as observed in real systems.

Population is indeed a technical term which is referred to various, completely dis-
tinct �elds of applications ranging, from e.g. the level of expression of a protein in a cell,
to the number of animals in a �nite ecosystem.

�e classical approach to population dynamics [2] relies on characterizing quanti-
tatively the densities x = (x1, . . . , xn) of n species through a system of ordinary di�er-
ential equation of the type

d

dt
x = f(x)

where the function f depends on the speci�c interactions being at play. In other words,
the analytical expression for f , incorporates pure competition, predator–prey interac-
tions, or even cooperative e�ects. Moreover, a speci�c delay might be required to ac-
count for the processing time which is needed for a system under scrutiny to react to an
external stimulus or signal [3]. �is is a paradigmatic problem of many biological path-
ways. A classical example is the haematopoiesis, the formation of blood cellular compo-
nents [4], where the production of thrombocytes is delayed of seven days with respect
to the level of megakaryocytes, the progenitor cells. �ese latter take in fact seven days
to complete their di�erentiation cycle. Towards a re�ned level of approximation, more
than one independent variable is o�en to be assumed, which in turn implies dealing
with the partial di�erential equation for an exhaustive modelization e�ort [5]. For in-
stance, when tracing the dispersion of a di�using chemical compound, space and time
are to be explicitly encapsulated into the mathematical description.

However, and despite the degree of coarse–graining intrinsic to the model, all these
are phenomena that can be tackled via the population viewpoint, namely focusing on
the evolution of homogeneous family of constituents as whole, and solely allowing for
e�ective (global) interactions between microscopic elements. It is customary to refer to
this level of description as to the deterministic theory. Noise and other disturbances can
be eventually hypothesized to alter the ideal deterministic, hence reproducible, dynam-
ics but always act as a macroscopic bias.

As opposed to this formulation, a di�erent level of modeling can be invoked which
instead focuses on the individual–based description. �is amounts to characterizing
the microscopic dynamics via explicit rules governing the interactions among individ-

Francesca Di Patti, Finite-Size Effects in Stochastic Models of Population Dynamics: Applications 
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uals and with the surrounding environment. �is former approach has been recently
adopted in various contexts such as predator–prey interactions [6], metabolic reac-
tions [7], and epidemic models [8]. �ese models are usually implemented numerically
through algorithms which use random numbers, and for these reason we refer to these
models with the term stochastic.� e stochasticity is now intrinsic to the systems and
stems from the microscopic �niteness of the investigated medium.

�ose alternative, conceptual strategies translate into di�erent tools for character-
izing a given phenomenon under inspection, and it is therefore of interest to highlight
similarities, and/or discrepancies, in the associated predictions. A viable method that
enables us to bridge the gap between the two levels of description is the so–called van
Kampen’s system size expansion. Starting form the stochastic scenario and perform-
ing a perturbative development with respect to a small parameter which encodes the
amplitude of �nite size �uctuations, one recovers, at the leading order, the mean–�eld
equations. �ese latter govern the coupled evolution of the average population amount,
as in the spirit of the deterministic representation. Including the next–to–leading order
corrections, one obtains a description of the �uctuations, as a set of linear stochastic
di�erential equations. Such system can be hence analyzed exactly, so allowing us to
quantify the di�erences between the stochastic formulation and its deterministic ana-
logue.

Again, let us emphasize that �uctuations donot arise froman external noise. Despite
the evidence that it is always present in actual population dynamics and that it is an
essential ingredient of life processes, noise is o�en omitted. When instead considered,
it is frequently assumed to act as a source of disorder and it is included in the dynamics as
an external elements. At variance, the individual–level approach allows us to investigate
the unavoidable intrinsic noise, which originates from the discreteness of the systemand
that has to be considered in any sensible model of natural phenomena.

In this thesis we will apply the van Kampen theory to a selection of problems in
biomedicine andbiology, forwhichwe shall also propose dedicated interpretative frame-
work. More speci�cally, we will focus on the role of �nite–size corrections, and show
how these might signi�cantly alter the dynamics. In particular we shall analyze the
molecular mechanisms involved in the perception of pain, and the autocatalytic reac-
tions which widely occur in many biochemical processes.

�e �rst chapter is devoted to introducing themain aspects involved in the neurobi-
ology of pain. We will brie�y describe the various types of pain and the corresponding
pharmacological treatments. Moreover we shall mention the new frontier of the per-
sonalized medicine, making always reference to the problem of pain emergence.

�e second chapter presents a gallery of methods, which we did developed as sup-
port of the experimental data analysis. First, a deterministic model is put forward to
interpret drug kinetics data, with the aim of quantifying the individual response to a
speci�c medical treatment. Moreover, the problem of missing data in microarray ex-
periments is considered, and a method suggested that exploit the similarity between
sequences. In the last section of this chapter, we report on a new algorithm for detect-
ing di�erent level of clustering.

�e third chapter deals with a stochastic model to investigate the microscopic pro-
cesses which trigger the sensation of pain. �e model accounts for the action of anal-
gesic drug and introduces an e�ect of competition among chemical species populating
the bloodstream. Regular oscillations in the amount of bound receptors are detected,
following a resonant ampli�cation of the stochastic component intrinsic to the system.

Francesca Di PattiVIII
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Introduction V

�e condition for such oscillations to occur are studied, resorting to combined numer-
ical and analytical techniques. Extended and connected patches of the admissible pa-
rameters space are detected which do correspond to the oscillatory behaviors. �ese
�ndings are discussed with reference to the existing literature on patients’ response to
the analgesic treatment.

In the fourth chapter we present a minimalist stochastic model for the mechanism
of action of tramadol. �e model accounts for the process of metabolization through
the cytochrome CYP2D6 and the interactions between molecules and target receptors.
From the master equation, through the van Kampen method, we obtain the macro-
scopic equations, and the Fokker Planck equation governing the �uctuations around
the deterministic behavior. �e role of �uctuation is discussed with reference to clinical
tests and outcome of pharmacological therapy.

�e last Chapter is dedicated to a di�erent topic, where similar modelization tech-
niques prove necessary. A simpli�ed scheme of k coupled autocatalytic reactions is ana-
lyzed.� is problem is supposedly related to the inner dynamics of a simpli�ed model of
cell, as previously recognized in the literature. �e role of stochastic �uctuations is elu-
cidated through the use of the van Kampen system–size expansion and the results com-
pared with direct stochastic simulations. Regular temporal oscillations are predicted
to occur for the concentration of the various chemical constituents, with an enhanced
amplitude resulting from a resonance which is induced by the graininess of the system.
Space is then accounted for, resulting in organized spatio–temporal structures.

Introduction IX
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Chapter1

�eory of Pain

�e International Association for the Study of Pain (IASP) de�nes pain as “an un-
pleasant sensory and emotional experience which we primarily associate with tissue
damage or describe in terms of such damage, or both”. Although this is a vague def-
inition, it recognizes that pain is a combined sensory, emotional, and cognitive phe-
nomenon. Interestingly, physical pathologies do not necessarily manifest when a pa-
tient experiences pain. Indeed, pain can be thought of as being composed of three hi-
erarchical levels: a sensory–discriminative component (e.g., location, intensity, qual-
ity), a motivational–a�ective component (e.g., depression, anxiety), and a cognitive–
evaluative component (e.g., thoughts concerning the cause and signi�cance of the pain)
[9]. Clinically, this conceptual vision is useful to focus the attention on the broad range
of factors that may contribute to the emergence of pain as reported by the patients.

In general terms, according to the medical literature, pain is “whatever the patient
says it is”. Onemay argue that pain is a warning sensation delivered to the patient’s brain
signalling that a stimulus is causing, or may cause, damage. Following this philosophy,
the best clinical approach in most circumstances is to assume that the patient is report-
ing a true experience, even in the absence of an obvious demonstrable source of tissue
injury. However, accepting a patient’s complaint of pain as valid does not necessarily
demand the initiation of a speci�c treatment.

�e di�culties in the pharmacological management of pain are not solely related to
the complex underlying network of molecular interactions, which remains at present
to be fully elucidated. As an additional complication, the same administered dose of
drug can result in a wide variability of e�ects, depending on speci�c individual traits.
�is observation points to the need for the so called personalized medicine, one of the
new challenges of the post genomic era.� is, relatively novel discipline elaborates in-
formation on the genetically determined variability in themetabolism of drugs, aiming
at developing personalized pharmacological protocols to enhance the e�ectiveness of
the therapy.

�is chapter is devoted to providing a general, though synthetic, overview on the
neurobiology of pain. We shall be in particular interested in highlighting the various
types of pain and discussing possible treatment strategies. �e pharmacological aspects
are here brie�y reviewed with reference to the issue of personalized medicine.

Chapter�1
Teory�of�Pain
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1.1 �e pathophysiology of pain

Pain perception, or nociception (from the Latin word for “hurt”), is the process by
which a painful stimulus is transmitted from the site of stimulation to the central ner-
vous system. Several successive steps are to be accounted for in the nociception process:
�e contact with stimulus, the reception, the transmission and the pain center percep-
tion [10, 11, 12]. In the following we shall set down to analyzing those processes.

�e contact with the stimulus can be mechanical (pressure, punctures and cuts)
or chemical (burns). As an example, we can consider the cut of a �nger. �e stimu-
lus is captured by nociceptors, nerve cell endings that, like normal sensory neurons,
travel in peripheral sensory nerves. �eir cell bodies lie in the dorsal root ganglia of
peripheral nerves just inside the spine. Nociception uses di�erent neural pathways than
normal perception (like light touch, pressure and temperature). In response to non–
painful stimulation, the �rst group of neurons to �re are normal somatic receptors. At
variance, when external agents cause pain, nociceptors are activated at� rst. Nocicep-
tors, indeed, sense pain via free nerve endings rather than specialized endings such as
those involved in resolving the touch or pressure feelings. However, while normal sen-
sory neurons are myelinated (insulated) and conduct quickly, nociceptor neurons are
lightly or non–myelinated and slower. We can divide nociceptors into three classes:
�e Aδ–mechanosensitive receptors and the Aδ–mechanothermal receptors which are
faster conducting neurons that respond to mechanical stimuli (pressure, touch) and to
heat, and the polymodal nociceptors (C �bers) which are slowly conducting neurons
that respond to a variety of stimuli. A�er the cut of the� nger, several factors contribute
to the reception of pain: �e mechanical stimulation, the potassium released from the
insides of the damaged cells, the prostaglandins, histamines and bradykinin from im-
mune cells that invade the area during in�ammation, and the substance P1 from nearby
nerve �bers. �ese substances cause action potentials in the nociceptor neurons. �e
�rst sensation experienced at the moment of the injury is an intense pain. �e signal
for this pain is conducted rapidly by the Aδ–type nociceptors. �e pain is followed by
a slower, prolonged, dull ache, which is instead conducted by the slower C–�bers.

In this way, the signals originated from the injury event travel into the spinal cord
through the dorsal roots. �ere, theymake synapses2 on neurons within the dorsal horn
(the top half of the butter�y–shaped gray matter). �ey synapse on neurons within the
spinal cord segment and also on neurons one to two segments above and below their
segment of entry. �ese multiple connections relate to a broad area of the body. �is
in turn explains why it is sometimes di�cult to determine the exact location of pain,
especially internal pain. �e secondary neurons send their signals upward through an
area of the spinal cord’s white matter, termed the spinothalamic tract. �is area can be
pictorially seen as a highway: Tra�c from all of the lower segments rides up the spinal
cord. �e signals of the spinothalamic tract is transmitted along the spinal cord through
the medulla (brain stem) and synapse on neurons which are located in the thalamus,
and act as brain’s relay center. Some neurons also synapse in the medulla’s reticular
formation, a region which is deputed to physical behaviors. Nerves from the thalamus
then pass the signal to various areas of brain’s somatosensory cortex.

1 Substance P is a neuropeptide, namely a short–chainpolypeptide that functions as a neurotransmitter and
as a neuromodulator which alters the excitability of the dorsal horn ganglion (pain responsive neurons).

2 Synapse is the functional connections between neurons, or between neurons and other types of cells.

Francesca Di Patti2
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a slower, prolonged, dull ache, which is instead conducted by the slower C–�bers.

In this way, the signals originated from the injury event travel into the spinal cord
through the dorsal roots. �ere, theymake synapses2 on neurons within the dorsal horn
(the top half of the butter�y–shaped gray matter). �ey synapse on neurons within the
spinal cord segment and also on neurons one to two segments above and below their
segment of entry. �ese multiple connections relate to a broad area of the body. �is
in turn explains why it is sometimes di�cult to determine the exact location of pain,
especially internal pain. �e secondary neurons send their signals upward through an
area of the spinal cord’s white matter, termed the spinothalamic tract. �is area can be
pictorially seen as a highway: Tra�c from all of the lower segments rides up the spinal
cord. �e signals of the spinothalamic tract is transmitted along the spinal cord through
the medulla (brain stem) and synapse on neurons which are located in the thalamus,
and act as brain’s relay center. Some neurons also synapse in the medulla’s reticular
formation, a region which is deputed to physical behaviors. Nerves from the thalamus
then pass the signal to various areas of brain’s somatosensory cortex.

1 Substance P is a neuropeptide, namely a short–chainpolypeptide that functions as a neurotransmitter and
as a neuromodulator which alters the excitability of the dorsal horn ganglion (pain responsive neurons).

2 Synapse is the functional connections between neurons, or between neurons and other types of cells.
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Once the pain information reaches the brain, it gets processed following schemes
which are still to be completely resolved. Obviously, the signals should eventually reach
the motor cortex, then down through the spinal cord and to the motor nerves. �ese
impulses would cause muscle contractions to move the hand so to escape the source of
potential injury.

Physicians and neuroscientists generally classify pain depending on its duration, or
according to the associated clinical characteristics.

When it comes to quantifying the time duration, pain can be divided in three main
classes, namely acute, chronic and cancer pain. Acute pain is caused by an injury to the
body. It warns on a potential damage that requires immediate action. It can last for a few
minutes to six months and fade o� when the injury heals. Chronic pain persists long
a�er the trauma has healed (notice that, in some cases, it may occur in the absence of
any trauma). Chronic pain does not warn the body to respond, and it usually lasts longer
than sixmonths. Finally, cancer (ormalignant) pain is clearly associated withmalignant
tumors. Tumors tend to invade healthy tissues so exerting a mechanical pressure on the
nerves or blood vessels, which generates pain. Occasionally, cancer pain can be also
classi�ed as chronic pain.

A grouping based on inferred pathophysiology, broadly classi�es pain syndromes
into nociceptive, neuropathic, psychogenic or idiopathic [13]. �ese latter categories
are here quickly reviewed.

Clinically, pain can be labeled “nociceptive” if it directly correlates to the degree of
tissue injury. More speci�cally, nociceptive pain is presumed to occur as a result of
the normal activation of the nociceptive system by noxious stimuli. �is type of pain
response also occur in presence of in�ammation (in�ammatory pain).

Neuropathic pain refers instead to dysfunction of the peripheral or central nervous
system (CNS). �ese may be caused by injury to either neural or non–neural tissues.
Although neuropathic pain is certainly in�uenced by ongoing tissue injury, it can be
sustained by fundamental mechanisms which have become independent of the initial
injury or damage. A continuing sensation of pain is in fact reported a�er the stimulation
has ceased. Neuropathic pain presents diverse characteristics: On the one hand it mim-
ics the qualitative features of somatic pain. On the other, it is also frequently described
as a continuous burning, shock–like or paresthetic [14].

�e patient’s psychological state contributes importantly to pain perception and as-
sociated su�ering symptoms [15]. �e patient’ s self–report on pain should be evalu-
ated while assessing other factors of paramount importance, as the presence of anxiety,
depression, or other psychiatric disorders. In some cases, pain itself can be intimately
linked to the psychological dimension, a phenomenon generically referred to as to “psy-
chogenic” pain. However, when convincing inferences about the pathophysiological
origin of the pain syndrome cannot be made, it is customary to diagnosis the so called
“idiopathic”pain.

1.2 Reducing pain via pharmacological therapy: Analgesics

An analgesic, also known as a painkiller, is anymember of the rather complex family
of drugs, commonly employed to relieve pain or, equivalently, achieve analgesia. �e
word analgesic comes from Greek an– (“without”) and –algia (“pain”).

Analgesic drugs act in various ways on the peripheral and central nervous systems.

Teory of Pain 3
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�emain classes of analgesics are the narcotics and the nonsteroidal anti–in�ammatory
drugs (NSAIDs).� e narcotic analgesics, also termed opioids, are all derived from
opium.� e narcotic analgesics may vary in potency, but they are all extremely e�ec-
tive when used in adequate doses. A number of chemical classes can be identi�ed, but
all share similar therapeutic e�ects and side e�ects. Notably, analgesics do provide a
symptomatic relief, but, in general, they have no direct e�ect on the generating cause.

Although pain syndromes may be di�erent in many respect, the sensory pathway is
ultimately solicited by the a�ected organ/tissue to the brain. Analgesics act at the level
of the nerves, either by blocking the signal from the peripheral nervous system, or by
distorting the subsequent processing by the central nervous system.

To clarify the key elements that are to be encapsulated in a sensible mathematical
model, as developed in the following, we shall here concentrate on reviewing the prin-
ciple of opioids’ action.

1.2.1 Opioid analgesics

Bene�cial and/or adverse e�ects of opioid analgesics can be traced to their interac-
tion with the endogenous opioid systems [16]. Opioid agents and their receptors pop-
ulate the central and peripheral nervous systems and other tissues. Opioid systems are
indeed crucial in a vast gallery of homeostatic functions andmovement control, as well
as involved in the processing of noxious sensory input. �e antinociceptive system,
from which pain modulation stems, is itself extraordinarily complex. Information on
this system constitute a useful background for understanding the e�ects associated to
opioid analgesics.

Pain transmission in the spinal cord is regulated by a balance of facilitatory and in-
hibitory in�uences.�ese latter operate on theneural circuits of the somatosensory sys-
tem. Noxious stimuli activate high–threshold primary sensory neurons in the periph-
ery.�is seeding activity is then conducted to their central terminals, which synapse on
nociceptive (secondary) neurons in the spinal cord. Although opioid compounds are
found in the periphery as well, they produce the condition for analgesia by primarily
inhibiting the nociceptive transmission in the central nervous system (CNS).

Opioid receptors positioned presynaptically and postsynaptically at the �rst cen-
tral synapse in the spinal cord have been extensively analyzed. �ose located on the
presynaptic nerve terminal decrease the release of excitatory neurotransmitters from
nociceptive neurons and respond to a large spectrum of noxious stimuli. Such a presy-
naptic inhibition re�ects by the opioid receptor activation on ion channels. More into
details, opioid activation yields to hyperpolarization of the terminal through the open-
ing of potassium channels or closing of calcium channels, the hyperpolarized neurons
having a smaller probability to give rise to spontaneous discharge or evoked responses.
Opioid receptors located postsynaptically have similar e�ects on the secondary neuron.
Hyperpolarization caused by changes in ion �uxes leads to a reduced response of this
neuron as an excitatory input is sent by primary nociceptive neurons.

Opioids exert their analgesic e�ects by binding (and then activating) receptors that
are part of the endogenous opioid system. �is latter usually operates so tomodulate the
sensory input as caused by noxious stimuli, its response being activated by endogenous
peptide neurotransmitters. Opioids can in turn mimic and, importantly, amplify the
actions of those neurotransmitters.

�e endogenous opioid system includes a large plethora of opioid peptides which
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are ligands for numerous types of opioid receptors. Some of these naturally produced
peptides, induce amorphinelike e�ects and can be displaced from their apposite binding
sites by opioid antagonists. �ree distinct families of endogenous opioid peptides are
o�en invoked: the endorphins, the enkephalins, and the dynorphins, which derive from
the precursor polypeptides pro–opiomelanocortin, proenkephalin, and prodynorphin,
respectively.

�e endogenous opioid peptides do bind to opioid receptors. In theCNS, there are3
primary types of opioid receptors that mediate analgesia and are respectively labeledµ,
κ, and δ. Enkephalins interact preferentially with the δ receptor, dynorphins with the
κ receptor, while endorphins bind to both µ and δ receptors with a similar degree of
chemical a�nity. As previously remarked, those peptides display rather diverse physio-
logic functions, one of which is associated to the antinociception e�ect here discussed.
In di�erent systems and settings, they can function as neurotransmitters, neuromodu-
lators or, even, neurohormones.

Drugs targeted to opioid receptors are broadly divided in four classes: agonists, par-
tial agonists, mixed agonist–antagonists, and antagonists. Receptor activation by an
agonist launches the pharmacologic actions, whereas an antagonist sit on the receptor
without inducing any sensible e�ects. �e intrinsic activity of a drug is then regarded
as a quantitative indicator to distinguish between the aforementioned classes, includ-
ing the intermediate categories. Partial agonists may also have antagonistic properties,
because they compete with pure agonists for occupancy of opioid receptor sites. �e
degree of competition is determined by their a�nity score to the receptor. For exam-
ple, Buprenorphine hydrochloride, an analgesic used for addiction therapy, is a par-
tial agonist being characterized by a very high a�nity for the µ receptor; it can hence
chase for the receptor and so have antagonist properties. �e opioid analgesics most
commonly used in clinical practice bind selectively to theµ receptor and are called µ–
agonists. Morphine is the prototypical example of µ–agonist. Despite the similarities
between morphine and other µ–agonists agents, di�erent drugs can result in a large
variety of e�ects in the individual patient. Consider for instance a patient who is chron-
ically exposed to a µ–agonist and assume that it is suddenly switched to another: Pain
can o�en be controlled by administering doses of the second drug that are by far lower
than estimated according to their relative potencies and both the pattern and severity
of non–analgesic e�ects can be distinct. �is observation, widely known as incomplete
cross–tolerance, suggests that these µ–agonists are not acting through identical recep-
tors.

As it should be clear from the above, a consistent molecular model for drug absorb-
tion requires accommodating for several di�erent e�ects, which simultaneously cooper-
ate with positive or negative interference. In the forthcoming chapters we shall focus on
a limited set of key mechanisms which, we believe, do play a role of paramount impor-
tance. In particular, anticipating our developments, we shall describe the dynamics of
the active molecular agents by including the e�ect of the stochastic search for the target
receptor and the competition with other chemical species populating the bloodstream.

1.3 Importance of personalized medicine

Inmedicine, individual response is crucial. Two patients, exposed to the same treat-
ment can, for instance, experience completely di�erent e�ect. Severe, even life–threate-
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ning, side e�ects can be reported in one case, while in the other only minor conse-
quences are registered. Alternatively, the drug may shrink an illness in one person but
not in another.

�e body is a complex machine, and so many factors participate in making the re-
sponse to an external input hard to predict. One major source of distinction between
individuals stems from the inherited variations in the individual genes. Even slight vari-
ations can alter the reaction of the body. Pharmacogenomics is the science that studies,
among other things, how individuals react to an administered medications. Pharma-
cogenomics is sometimes described as “personalized” or “individualized” medicine be-
cause it holds the promise to eventually devise speci�c drug treatments based on the
individual genetic background.

Pharmacogenomics is indeed a promising� eld. A handful of tests are nowadays
made available that can detect some of the genetic variations and so help predicting
how a patient is likely to respond to an imposed medical treatment. Just to clarify, it
could be revealed via the genetic analysis that a scrutinized patient is carrying a genetic
modi�cation which makes the drug stay in the body longer than normal, so eventually
causing serious side e�ects. On the contrary, she/he may have a variation that reduces
the e�ectiveness of the medication: �is is hence less potent than reported on average.
Once a variation is identi�ed, scientists might be able to match it up with a response to
a particular medication and so develop a personalized approach to medicine.

O�en the sensitivity versus a drug is due to a very small genetic modi�cation that
yields to a decreased activity of a particular enzyme responsible for the biotrasforma-
tion of that drug. More precisely, once introduced in the body, drugs undergo a pro-
cess of metabolization which converts them to metabolites. �ese latter are more wa-
ter soluble with respect to the original compound and thus can be more easily ex-
creted. Metabolism can also convert prodrugs (pharmacological substance adminis-
tered in an inactive form) into therapeutically active compounds, and it may even re-
sult in the formation of toxic metabolites [17]. Pharmacologists classify pathways of
drugmetabolism as either phase I reactions (i.e. oxidation, reduction and hydrolysis) or
phase II conjugation reactions. Among enzymes that catalyze phase I drug metabolism,
the most important are the cytochrome P450 enzymes, a superfamily of microsomal
drug–metabolizing enzymes [17]. One member of this family, cytochrome P4502D6
(CYP2D6) is by far the most intensively studied and best understood example of phar-
macogenetic variations in drug metabolism. �eCYP2D6 gene3 is highly polymorphic
with over 70 known alleles identi�ed at theCYP2D locus on chromosome 22q13. At least
15 of these alleles encode nonfunctional gene products as a result of single nucleotide
polymorphisms (SNPs), gene deletion, aberrant splicing or premature translation ter-
mination. Carriers of two nonfunctional alleles show a severely impaired metabolism
of CYP2D6 substrates and are customarily referred to as to poor metabolizers (PMs). In
contrast, individuals with at least one functional allele and thus normal CYP2D6 activity
are termed extensive metabolizers (EMs). Among Caucasians, 5–10% are PMs and fur-
ther 10–15% show impaired yet residual activity of CYP2D6, the so called intermediate
metabolizers (IMs). �e 1–5% of the Caucasian population has a duplication or multi–

3 Genes encoding CYP enzymes, and the enzymes themselves, are designated with the abbreviation “CYP”,
followed by an Arabic numeral indicating the gene family, a capital letter indicating the subfamily, and
another numeral for the individual gene. �e convention is to italicise the name when referring to the
gene.
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CYP2D6*1 Wild–type Normal
CYP2D6*2 Several substitutions Normal 18 20 10
CYP2D6*3 A2549 deletion De�cient 2 0 0
CYP2D6*4 G1846A substitution De�cient 12–22 1–2 0–1
CYP2D6*5 Gene deletion De�cient 2–7 4–6 6
CYP2D6*9 G2613–A2615 deletion Decreased 2 2 3
CYP2D6*10 C100T substitution Decreased 1–2 4–6 51
CYP2D6*17 C1023T, C2850T substitutions Decreased 0 17–35 0
CYP2D6*41 C−1584G, G2988A substitutions Decreased 8 10 3
CYP2D6 ×2 Gene duplication Increased 1–10 2–29 0–2
CYP2C9*1 Wild–type Normal
CYP2C9*2 C430T substitution Decreased 8–13 4 0
CYP2C9*3 A1075C substitution Decreased 6–9 2 2–3
CYP2C19*1 Wild–type Normal
CYP2C19*2 G681A substitution Decreased 13 13–25 23–32
CYP2C19*3 G636A substitution Decreased 0 0–2 6–10

Table 1.1: CYP allele subgroups, characteristic mutations, enzyme activity and frequency among Cau-
casians, Africans and Orientals. Data are derived from references [18, 19, 20, 21, 22, 23]

duplication of the CYP2D6 gene leading to the phenotype of ultra rapid metabolisers
(UMs) [24].

Table 1.1 clearly indicates that the polymorphisms are not occasional mutations. On
the contrary, they are widespread in the population. It is hence natural to assume that
this pronounced degree of variability might interfere non trivially with the process of
drug absorption. Before proceeding with a pharmacological treatment, one should have
a clear picture on the genetic characteristic of the patient being treated.

In the next section we will make reference to the case of a synthetic opioid, the tra-
madol, to illustrate how the genetic polymorphism of cytochrome P450 deeply a�ects
the mechanism of the drug’s action.

1.4 �e case of Tramadol

In this section we review the main features of tramadol hydrochloride (tramadol),
a centrally acting analgesic that is structurally related to codeine and morphine. �e
interested reader may refer to [25] for an exhaustive account on the subject.

Tramadol was �rst synthesized in 1962 and has been available for pain treatment in
Germany since 1977. It is administered as drops, capsules and sustained–release for-
mulations for oral use, suppositories for rectal use and solution for intramuscular, in-
travenous and subcutaneous injection. A�er oral administration, tramadol is rapidly
and almost completely absorbed. It is mainly excreted via the kidneys. Plasma protein
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Figure 1.1: Some known metabolic pathways of tramadol.

binding is about 20%.
�e human in vivo metabolism of tramadol is complex with 23 metabolites be-

ing identi�ed: 11 phase I metabolites and 12 phase II conjugates. �e major metabolic
pathways (see Fig.1.1 ) are O–demethylation4 to O–desmethyl–tramadol (M1) by the
polymorphic isozyme cytochrome P450 2D6 (CYP2D6), and N–demethylation to N–
desmethyl–tramadol (M2) by cytochrome P450 2B6 (CYP2B6) and cytochrome P450
3A4 (CYP3A4). �e primary metabolites of tramadol, may be further metabolized to
three secondarymetabolites, namelyN,N–desmethyl–tramadol (M3), N,N,O–tridesme-
thyl–tramadol (M4) and N,O–desmethyl–tramadol (M5).

As already mentioned in the preceding section, the gene encoding for cytochrome
CYP2D6 is known to show polymorphisms and the existence of di�erent alleles results
in functionally di�erent enzymes. For this reason, the biotransformation of tramadol
changeswithin the phenotypic population depending on the genotype ofCYP2D6. More-

4 Demethylation is the chemical process resulting in the removal a methyl group (CH3) from a molecule.
In biochemical systems, this process is o�en catalyzed by an enzyme such as one of the cytochrome P450
(CYP) family of liver enzymes. N–demethylation and O–demethylation are reactions which remove a
group CH3 from NCH3 and OCH3.
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Drug Opioid receptor a�nity Uptake inhibition

µ δ κ norepinephrine serotonin

(±)–Tramadol 2.1 57.6 42.7 0.78 0.9
(+)–Tramadol 1.3 62.4 54.0 2.51 0.53
(−)–Tramadol 24.8 213 53.5 0.43 2.35
(+)–M1 0.0034
Morphine 0.00034 0.092 0.57 inactive inactive
Imipramine 3.7 12.7 1.8 0.0066 0.021

Table 1.2: Relative activity for inhibition of opioid receptor binding or monoamine uptake. Data (ex-
pressed in µmol/L) from [26, 27].

over tramadol is administered as a racemicmixture5 of two enantiomers6 , (+)–tramadol
and (−)–tramadol, that are essentiallymetabolized by the liver producing (+)–metaboli-
tes and (−)–metabolites, respectively.

In vitro and in vivo studies have convincingly shown that the metabolism and dis-
tribution of tramadol are stereoselective7 . In other words, out of two (or more) possible
reactions, one predominates. In vitro, O– and N–demethylation of tramadol were both
shown to be stereoselective.�eO-demethylation of tramadol, leading toM1, was deter-
mined to be two fold greater for the (−)– enantiomer than for the (+)–enantiomer. On
the other hand, N-demethylation, leading to M2, was considerably faster a�er incuba-
tion of the (+)–enantiomer compared with the (-)–enantiomer. Since O-demethylation
is the preferred pathway for biotransformation of tramadol, higher plasma concentra-
tions of (+)–tramadol and (−)–M1 compared with (−)–tramadol and (+)–M1, respec-
tively, can be expected in vivo.

To study the stereoselectivity of renal clearance, isolated kidneys of rats were per-
fusedwith tramadol andM1. �e renal clearance of the enantiomers of both compounds
was stereoselective, (−)–tramadol and (+)–M1 being preferentially eliminated. In addi-
tion, theO–demethylation of tramadol was stereoselective in the kidneys, (−)–tramadol
being preferentially metabolized.

Both tramadol andmetabolites contribute to the analgesic activity via di�erentmech-
anisms. Tramadol displays only a modest a�nity for µ opioid receptors and no a�nity
for δ or κ opioid receptors. �e a�nity of tramadol for µ opioid receptors is approxi-
mately 10–fold less than that of codeine and 6000–fold less than that ofmorphine. �ese
scores for the a�nity, taken as such, do not seem su�cient to explain the observed anal-
gesic action of tramadol (see Fig. 1.2).

5 In chemistry, a racemic mixture, or racemate, is one that has equal amounts of le�– and right–handed
enantiomers of a chiral molecule.

6 Enantiomer is one of two stereoisomers (molecules that have the same molecular formula and sequence
of bonded atoms, but which di�er in the three dimensional orientations of their atoms in space) that are
non–superposable complete mirror images of each other.

7 Stereoselectivity is the property of a chemical reaction in which a single reactant forms an unequalmixture
of stereoisomers during the creation of a new stereocenter.�e selectivity arises from di�erences in steric
e�ects and electronic e�ects in the reactions leading to the two products.
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On the contrary, the metabolite M1 binds with about 300–fold higher a�nity than
the parent compound. Still, it has a much lower a�nity when compared to morphine.
�e increase in subjective (and objective) pain thresholds as induced by tramadol is,
at variance with what happens for other opioids, only partially blocked by the opioid
antagonist naloxone. �erefore, the activation of µ opioid receptors appears to be only
one of the components of the mechanism of action of tramadol. More precisely, (+)–
tramadol has a 2–fold higher a�nity for the µ opioid receptor than the racemate. Of
the metabolites, (+)–M1 has the highest a�nity for the µ opioid receptor, being about
700–fold more potent than the (±)–tramadol. Anothermetabolite with a higher a�nity
than the (±)–tramadol for the µ opioid receptor is (±)–M5.

In addiction to its opioid action, tramadol inhibits the neuronal re-uptake of nore-
pinephrine. In particular both the enantiomers of tramadol are involved in this pathway,
the (+)–enantiomer being about 4–fold more potent than the (−)–enantiomer. More-
over (±)–tramadol and its (+)–enantiomer, but not the (−)–enantiomer and M1, in-
crease serotonin e�ux.

In conclusion, we can summarize saying that (+)–M1 acts as a µ opioid agonist,
(+)–tramadol inhibits serotonin re–uptake and (−)–tramadol inhibits norepinephrine
re–uptake. �e activity of the other kind of metabolites has not yet been studied.

1.5 Experiments

In the preceding sections we presented a general, though synthetic, overview on of
the main phenomena that are involved in pain expression and management. �ose as-
pects can be brought into evidence via dedicated experiments which enables researches
to gain a comprehensive and quantitative insight into the problem at hand.

When dealing with pain, it is crucial to quantify its associated intensity. Clinicians
dispose of several, carefully validated, pain scales. Among them, theVisual Analog Scale
(VAS) is by far the most adopted in medical practice. VAS is essentially a visual ques-
tionnaire. �e patient has to mark a sign on a graduated line (usually ten centimeters
long) in the position that he feels would best correlate to the sensation of pain that he is
experiencing. �e reference positions are respectively the le�most extreme on the line,
labeled with “no pain”, and its end point which is assumed to correspond to the “worst
possible pain” (see Fig. 1.2).

Clearly, such a method cannot be regarded as an objective criterion for pain assess-
ment, actual responses being strongly in�uenced by diverse psychological factors, as the
emotional state or the anxiety. To overcome this obvious limitation, othermethods have

Francesca Di Patti10



�
�

�
�

�
�

�
�

10 Francesca Di Patti

No 
Pain

Worst
Possible 

Pain

Figure 1.2: Visual Analog Scale

On the contrary, the metabolite M1 binds with about 300–fold higher a�nity than
the parent compound. Still, it has a much lower a�nity when compared to morphine.
�e increase in subjective (and objective) pain thresholds as induced by tramadol is,
at variance with what happens for other opioids, only partially blocked by the opioid
antagonist naloxone. �erefore, the activation of µ opioid receptors appears to be only
one of the components of the mechanism of action of tramadol. More precisely, (+)–
tramadol has a 2–fold higher a�nity for the µ opioid receptor than the racemate. Of
the metabolites, (+)–M1 has the highest a�nity for the µ opioid receptor, being about
700–fold more potent than the (±)–tramadol. Anothermetabolite with a higher a�nity
than the (±)–tramadol for the µ opioid receptor is (±)–M5.

In addiction to its opioid action, tramadol inhibits the neuronal re-uptake of nore-
pinephrine. In particular both the enantiomers of tramadol are involved in this pathway,
the (+)–enantiomer being about 4–fold more potent than the (−)–enantiomer. More-
over (±)–tramadol and its (+)–enantiomer, but not the (−)–enantiomer and M1, in-
crease serotonin e�ux.

In conclusion, we can summarize saying that (+)–M1 acts as a µ opioid agonist,
(+)–tramadol inhibits serotonin re–uptake and (−)–tramadol inhibits norepinephrine
re–uptake. �e activity of the other kind of metabolites has not yet been studied.

1.5 Experiments

In the preceding sections we presented a general, though synthetic, overview on of
the main phenomena that are involved in pain expression and management. �ose as-
pects can be brought into evidence via dedicated experiments which enables researches
to gain a comprehensive and quantitative insight into the problem at hand.

When dealing with pain, it is crucial to quantify its associated intensity. Clinicians
dispose of several, carefully validated, pain scales. Among them, theVisual Analog Scale
(VAS) is by far the most adopted in medical practice. VAS is essentially a visual ques-
tionnaire. �e patient has to mark a sign on a graduated line (usually ten centimeters
long) in the position that he feels would best correlate to the sensation of pain that he is
experiencing. �e reference positions are respectively the le�most extreme on the line,
labeled with “no pain”, and its end point which is assumed to correspond to the “worst
possible pain” (see Fig. 1.2).

Clearly, such a method cannot be regarded as an objective criterion for pain assess-
ment, actual responses being strongly in�uenced by diverse psychological factors, as the
emotional state or the anxiety. To overcome this obvious limitation, othermethods have

�
�

�
�

�
�

�
�

�eory of Pain11

been developed and extensively employed to quantify the e�ectiveness of a pharmaco-
logical treatment. One of such objective criterion, o�en referred to as a physiological
marker of pain, is the Evoked Response Potential (ERP). ERP is a time dependent elec-
trical potential which is recorded from a human patient (or an animal), following an
external stimulus. �e time series of the brain electric activity is acquired via electrodes
positioned on the head. �e signal refers to the local activity of simultaneously �ring
neurons, and hence return a convolved information which necessitate further elabo-
ration. Working with animals, more invasive tests have been conducted, allowing to
unambiguously relate the registered signal to an externally imposed input. Aiming at
clarifying the above technique, we shall here brie�y recall the experiments described
in [28]. In this paper, the authors investigate the e�ect of common anesthetic, on the
rodent whisker sensory system. To this end an electrode array is implanted on the so-
matosensory cortex of adult rats. �e electrode is uniquely sensitive to the cluster of
neurons which are connected to a speci�c whisker barrel. In this respect, it allows to
register EEG and ECG signals (and their time evolution) a�er a whisker stimulation
event. Figure 2 of [28] reports on the main conclusion of the aforementioned the study.
Di�erent panels represent theEEGandECGamplitude respectively under anesthetized,
wake, and sleep conditions. It can be immediately remarked that, while ERPs from con-
trol (non treated) rats present rather stochastic patterns, regular cycles are instead found
to emerge when the animal are kept under pharmacological treatment. �is observa-
tion constitutes indeed an indirect signature of medicaments’ action, which ultimately
stems from their associated molecular peculiarity. As already noticed above, anesthetics
act on large sets of biochemical reactions, being in principle directed towards indepen-
dent neuronal families, and so determining profound di�erences in the evoked response
components.

Besides estimating the degree of experienced pain with a certain level of accuracy, it
is also important to access a genetic screening of the patient being treated so to optimize
the administered pharmacological protocol. Human DNA sequencing opened up novel
scenarios and, among other things, translated into reliable methodologies for character-
izing gene expression levels and detecting the presence of SNPs or deletion/duplication
in the genome.

�esemethods are essentially based on thewell knownmicroarrays technology. Mi-
croarrays are solid surfaces on which a series of thousands of microscopic spots of DNA
oligonucleotides are arrayed. Each spot contains a small portion of DNA sequence spe-
ci�c for a gene.� is can be a short section of a gene or other DNA element that are used
as probes to hybridize a cDNA or cRNA sample previously labeled with a �uorophore
dye.� e idea is to determine relative abundance of nucleic acid sequences in the target,
by monitoring the intensity of the emitted �uorescence.

�is is a rather powerful technology which enables for massive (and parallel) studies
of genes activation within a given biological system. In the last few years, microarrays
have been widely applied to the� eld of genetic polymorphism. As an example, the Am-
pliChip CYP450 Test manufactured by A�ymetrix for Roche Diagnostics made it pos-
sible to carry out a comprehensive analysis of two, particularly important, genes which
encode enzymes crucial in mediating drug e�cacy and adverse drug reaction. �e tests
allow one to detect genetic variations in the Cytochrome P450 2D6 and 2C19 genes and
provides the associated predictive phenotype pro�le (poor, intermediate, extensive, or
ultra–rapid metabolizer). �e AmpliChip CYP450 Test distinguishes among 29 known
polymorphisms in the CYP2D6 gene, including gene duplication and gene deletion.
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With reference to the CYP2C19 gene, the test can resolve the twomajor polymorphisms
so far isolated. �e actual implementation of the methodology is quite straightforward
and non invasive. Only a sample blood from the patient is required. �e blood is then
manipulated in the laboratory so to perform a PCR ampli�cation of selected segments
of the DNA extracted from the patient sample.� e ampli�ed DNA segment is labeled
with a �uorescent dye and then inserted into theAmpliChip CYP450, a plastic cartridge
housing the microarray. �e following step consists in the hybridization and scanning
of the chip. �e hybridization takes place into the A�ymetrix hybridization chamber:
�e complementary base–pairs from the DNA fragments in the sample hybridize with
those on themicroarray which give a perfect match. Technical problems related on this
speci�c operation will be reviewed in the forthcoming chapter. �en the Amplichip
is moved to the A�ymetrix scanner, where laser scanning of the hybridization pattern
is performed. Images captured with the scanner are analyzed through a dedicated so�-
ware which brings into evidence the genetic variations and quanti�es the corresponding
phenotype.

�e phenotypic pro�le of the patient constitutes a useful indicator which can help
physicians to design the most appropriate drug and dose selection. Moreover, beyond
the realmof purely genetic investigations, pharmacokinetics can also guide on the choice
of the optimal therapy. �e principles of pharmacokinetics, synergistically integrated
with a pharmacodynamics viewpoint, are in fact useful ingredients to elucidate the com-
plex dose–e�ect relationships. Figure1 .3 presents a schematic interpretation of the in-
terplaced complementarity referenced above. Pharmacodynamics correlates the con-
centration of drug as measured in the blood to its induced e�ect. Pharmacokinetics
aims at quantifying, under di�erent conditions, the administered dose which is neces-
sary to produce the sought concentration amount (as required by pharmacodynamics
paradigms) [29]. �is latter task necessitates accounting for various important ingredi-
ents as absorption, distribution, metabolism and excretion (ADME). Absorption is the
process through which the substance is propagates from the administration site to the
systemic circulation. Distribution studies instead the dispersion of the drug molecules
throughout the �uids and tissues of the body. Metabolism relates to the biotransforma-
tion of the substance which yields to themetabolites. Finally, excretion clari�es the end
process of the drug elimination from the body.

Quantifying the four levels of the ADME process, implies estimating the associated
pharmacokinetic reaction parameters. To this end a suitable mathematical model can
be numerically �tted to the plasma drug concentration data as seen from blood samples.
Textbooks on pharmacology [30, 31] reports indeed on very crudemathematical formu-
lations which are by far reminiscent of the key physiological aspects involved. Indeed,
rough compartmental ansatz are put forward which allow to de�ne averagedmathemat-
ical indicators. �is latter are then extracted from real data via a simplistic inspection
on the acquired experimental series. No serious attempt to perform direct, non lin-
ear, �tting is registered that could provide a more sensible ensemble of the estimated
parameters.
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Figure 1.3: �e relationship between dose and e�ect can be divided into pharmacokinetic (dose–
concentration) and pharmacodynamic (concentration–e�ect) components. �e concentration pro-
vides a link between pharmacokinetic and pharmacodynamic domains: It is the target quantity for
standard dose assignments. �e three primary processes of pharmacokinetics are absorption, distri-
bution, and elimination.
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Chapter2
Characterizing the individual response to medical treatment

�is chapter is devoted to presenting a selection of methods that we have developed
to analyze di�erent types of experimental data, as reported in the relevant medical lit-
erature. We shall here discuss their potential interest when aiming at quantifying the
individual response to a speci�c medical treatment.

In the �rst section a deterministic model for the kinetics of tramadol is introduced.
�e model represents an example of a focused modelization grounded on the speci�c
mechanisms which are essential elements of the dynamics of tramadol. As we shall see,
by adjusting the theoretical curves to the experimentally measured concentrations, one
can access an estimate of the chemical parameters which are then critically evaluated
with reference to the metabolic pro�les of the patients. �e �nal aim of our work is
to eventually obtain a quantitative indication on the required initial dose amount as a
function of the phenotypic pro�le associated to the polymorphisms of CYP2D6.

Our deterministic formulation moves from the observation that most of the known
polymorphisms of cytochrome CYP2D6 are equipped by a phenotypic metabolic pro-
�le. Characterization of other isoforms of cytochromeCYP450, for example the isoform
CYP3A4, which metabolizes tramadol, have not yet completely investigated, and only
some hypothetical enzyme activity has been reported1 . It should be emphasized that
scientists have been interested in characterizing the cytochrome CYP2D6 because this
latter is involved in the metabolization of nearly every drugs. At variance, cytochrome
CYP3A4, appears to be active along a few metabolic pathways, and, for these reasons,
results less attractive.

Waiting for a detailed characterization of the cytochrome, one could, in principle,
try to clusterize the genetic polymorphisms in order to hypothesize similarities in the
corresponding enzyme activity. Standard clustering algorithm may result too rigid for
being applied to this context, where, instead, one would need to dispose of e�cient
algorithms, suitable for the complex and variable concept of phenotypic distinction.
Inspired to this rationale, we have developed an innovative procedure which is able to
perform such tasks while resolving intermediate levels of the cluster structures. Section
2.2 presents a detailed account on our implementation. Despite themethod is at present
not optimized for sorting real data on genetic polymorphisms of human cytochromes,
we do believe that it could represent a rather promising starting ground for de�ning a
future platform of data screening.

1 �e reader can compare the updated news relative to CYP2D6 and CYP3A4 at the Human Cytochrome
P450 (CYP) Allele home page (http:www.cypalleles.ki.se).

Chapter�2
Characterizing�the�individual�response�to�medical�treatment

Francesca Di Patti, Finite-Size Effects in Stochastic Models of Population Dynamics: Applications 
to Biomedicine and Biology, ISBN 978-88-8453-976-2 (print) ISBN 978-88-8453-917-5 (online) 
© 2010 Firenze University Press



�
�

�
�

�
�

�
�

16 Francesca Di Patti

�e last section of this chapter copes with a common problem of the microarray
experiments, namely the missing values problem. �e new method that we propose is
inspired to analogous developments in the broad �eld of opinion formation. Shortly,
it consists in measuring the distance among records based on the correlations of data
stored in the corresponding database.

2.1 A comprehensive dynamical approach: Modeling the pharmacokinetics of
Tramadol

As introduced in the �rst chapter, one of the new challenges of the post–genomic
era is represented by personalized medicine.� is concept arises from the evidence that
the same administered dose of drug can result in a wide variability of e�ects. �ese
di�erences can be caused by acquired or inherited variability of absorption, distribution,
metabolism and excretion of a drug. Pharmacogenetics and pharmacogenomics are
emerging� elds which aim at processing these information so to develop innovative
medical protocols targeted to the individual patient. Pharmacogenetics is in particular
concerned with detecting the genetical variability in the metabolism of drugs, which
might yield to adverse drug reaction, toxicity or therapeutic failure of pharmacotherapy.
Pharmacogenomics techniques are insteadmeant to isolate new pharmacological agents
on the basis of a detailed knowledge of the human genome [32, 33].

As emphasized in section 1.3, any attempt to a personalized pharmacological treat-
ment should account for the pharmacogenetics of the drugmetabolism. Many drugs, in
fact, undergo ametabolic transformation that produces active metabolites, occasionally
more e�ective than the parent drug. Numerous genetic polymorphisms in drug metab-
olizing hepatic enzymes have been reported and thoroughly characterized, in particular
those belonging to the cytochrome P450 (CYP) superfamily, like cytochrome P450 2D6
(CYP2D6).

Moreover, we have already stressed that the conventional studies on the pharma-
cokinetics of drugs are o�en restricted to analyzing the recorded data set on drug con-
centration, bringing into evidence possible connection with pharmacodynamic aspects,
such as the clinical response. �ese studies are in general not based on a rigorous math-
ematical modelization, fully justi�ed from� rst principles. On the contrary, they tend to
involve rather approximate formulae which are then benchmarked to the macroscopic
traits of the concentration changes over time (e.g. position of the peaks). As we shall
clarify in the forthcoming discussion, we here take a di�erent viewpoint by identify-
ing a selection of relevant microscopic processes that constitute the backbone of our
formulation. In doing so we aim at resolving, at least partially, the intricate dynamical
interplay which drives the evolution of the interacting (chemical) species. �is would
in turn allow us to match the experimental data via a �tting procedure and so returning
a quantitative estimate of themain parameters entering themodel. �ese latter are then
inspected as function of the, independently assessed, patient’s genetic variability.

Before turning to introduce the model, it is useful to recall again the characteris-
tic of tramadol. Tramadol (herea�er T) is a synthetic opioid, commonly used in the
treatment of acute and chronic pain, which is known to be metabolized by CYP2D6.
It acts as central analgesic and follows a complex pathway which is not yet fully eluci-
dated [25]. However, it is generally believed that tramadol has a weak a�nity with the
µ opioid receptors, and it works through modulation of the noradrenergic and sero-
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tonergic systems. Tramadol is administered as a racemic mixture of two enantiomers,
(+)–T and (−)–T, which undergo hepatic metabolism via the cytochromes P450 form-
ing �ve known metabolites [34]. Among the active ones, O–demethyltramadol (M1) is
the most signi�cant since it has 200 times the µ–a�nity of (+)–tramadol. �e isoen-
zyme responsible for O–demethylation is CYP2D6, that leads to the formation of (+)–
O–demethyltramadol ((+)–M1) and (−)–O–demethyltramadol ((−)–M1).

�is cascade of reactions results in an underlying network of interactions which is
still object of investigations. Once administered, tramadol di�uses in the blood cir-
culation, where about 20% of the drug binds to the plasma proteins. �en tramadol
molecules reach the liver where a fraction of it is metabolized by CYP2D6. �e remain-
ing amount abandons the liver and follows the circulation �ux.� e produced metabo-
lites can be released in the circulation or, alternatively, may be further metabolized to
secondary metabolites. Bloodstream drives the parent drug and metabolites to reach
the target sites where they interact with receptors to produce analgesia. Elimination
from the body is mainly due to the kidneys. As we shall see, the mathematical model
here developed allows to track the time evolution of the main concentrations.

It is worth mentioning that the applicability of the proposed model extends beyond
the case under scrutiny. In fact we here focus on rather general physical (biological)
mechanisms that are to be considered as key elements in any grounded pharmacokinet-
ics theory. In this respect our approach is fully predictive and the observed evolution of
the concentration amount are reproduced on the basis of selected interaction patterns.
�is is at variance with previously proposed scenarios [35, 36] where analytical laws for
the concentration time curves are a priori guessed.

We will proceed as follow. In section 2.1.1 we provide a short account on 1D spatial
di�usion, a fundamental mechanism that certainly drives the process of homogeniza-
tion and distribution of the drug in the blood. In section 2.1.2we put forward our model
for tramadol administered through an intravenous injection. �emodel results in a pair
of coupled di�erential equations that govern the self-consistent evolution of tramadol
andmetabolites. Section 2.1.3 is focused on the validation of themodel. First we present
the experimental techniques and the measured data and then the theoretical model is
�tted versus the measurements. Finally, we draw our conclusions and discuss a quanti-
tative strategy for personalized drug treatment based on our� ndings.

2.1.1 A short account on one–dimensional di�usion

Once the drug is administered, for instance via intravenous infusion, it is trans-
ported by the bloodstream and eventually reaches the target tissue. �is is a typical
passive transport process, the random motion of constituents resulting in a net change
of the associated concentration, on a macroscopic level. Di�usion rules the dynamics
and thus needs to be properly incorporated into the model. We will here review some
fundamental aspects of di�usion theory that we shall further elaborate in the following
section to derive a phenomenological entry to the problem of drug transport.

Consider the case of a compound that di�uses along the x coordinate and suppose
the distribution in the y − z plan to be uniform. We further assume a one–dimensional
dri�ing velocity v in the x direction. �e concentration at time t and position x, here-
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Figure 2.1: �e concentration ρ(L, t) is plotted versus time. Di�erent curves refers to di�erent param-
eters (see legend). Here Syz = 1.

a�er termed ρ(x, t), obeys to the following transport equation:
∂ρ

∂t
+ v

∂ρ

∂x
= D

∂2ρ

∂x2
(2.1)

where D stands for the di�usion coe�cient.� e previous equation can be analyti-
cally solved, provided one speci�es the initial and boundary conditions. For the sake
of simplicity we shall here assume that initially (t = 0) the di�using species is spa-
tially located at x = 0, which, in our setting, ideally corresponds to the injection point.
Mathematically, this amounts to require ρ(x,0) = δ(x), where δ(⋅) stands for the so–
called Dirac distribution. Notice that we have implicitly assumed the concentration to
be normalized to one. As concerns the boundary conditions, it sounds reasonable to
require that the concentration vanishes asymptotically, which formally translates into
ρ(−∞, t) = ρ(∞, t) = 0. Under these assumptions, the solution of equation (2.1) reads
[37]:

ρ(x, t) = 1
Syz

√
4πDt

exp(−(x − vt)2

4Dt
) (2.2)

where the cross–sectional area Syz of the system in the y − z plan has been introduced
to convert the mathematical solution into real space (i.e. divide by the neglected di-
mension). Focus now on a speci�c observation point, located atx = L, andmonitor the
time evolution of the concentration ρ(L, t). Equation (2.2) leads to:

ρ(L, t) = 1
Syz

√
4πDt

exp(−(L − vt)2

4Dt
) . (2.3)

In Fig. 2.1 ρ(L, t) is represented versus time, for di�erent choices of the parameters.
As expected, the initial concentration is zero. A monotonic growth in subsequently
displayed, and corresponds to the intuitive picture that an increasing amount ofmaterial
�nds progressively its way through the check–point at x = L. A clear peak is observed
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when the bulk material reaches the assigned spatial coordinates. �e location of the
maximum clearly relates to the di�usion properties of the medium (D,v) and to the
choice of L. For larger times, the concentration diminishes and eventually fade out
asymptotically, as prescribed above.

Interestingly, the pro�les reported in Fig. 2.1 bear an intriguing degree of similar-
ity with the typical curves for the time evolution of drug concentration, as reported in
a large number of experimental pharmacokinetics studies. �is observation reinforces
our belief that di�usion is indeed the key mechanism driving the process of drug ab-
sorption. In a typical experiment, in fact, the substance is injected at a given location
and then visits the intricate network of veins. Blood samples are then drawn from a
distinct extraction point, and the operation is repeated at di�erent times. By examin-
ing the sample, one hence e�ectively monitors the time change of the concentration,
as seen by a �xed reference control, a setting that closely resembles the scenario dis-
cussed above2 . In reality, blood di�usion occurs in a closed, topologically complex,
loop. However, the tramadol data here analyzed do not present any clear evidence of
the repeated (peaked) structures that one would expect in presence of a periodic �ux
[37], thus suggesting that the relevant dynamical process takes place in the time span
that encompasses the� rst passage.3 To simplify the discussion we shall therefore invoke
a simple one–dimensional formulation, directly inspired to equation (2.1). Moreover, as
we shall clarify in the following, the di�usion enters the proposed model as an external,
time dependent, contribution. �is is a minimalist approach that has the merit of en-
abling us to formulate the dynamics in term of ordinary di�erential equations, without
involving partial derivatives that need to be introduced in the framework of a rigorous
description.

2.1.2 �e mathematical model: Di�usion and time delay

As previouslymentioned, the network of tramadol interaction is highly complex and
a comprehensive picture that fully accounts for the underlying microscopic processes
is still lacking. Here we isolate the main mechanisms in which T is involved, namely,
the process of intravenous infusion, the biotransformation in M4 and elimination, and
build up a minimalist formulation which is shown to accurately interpolate the experi-
mental data. A compartmental model is hypothesized and depicted in Fig. 2.2a.� ese
assumptions translate into the following di�erential equation for the concentration of

2 Notice that also in the setting where injection and extraction points coincides, the drug has to ideally
complete a full circulation tour, following the blood stream, before it can be detected in the sample drawn.

3 Indeed, the paper by [37] cited above, solves the di�usion equation, in presence of dri�, on a circular
geometry. Within this setting, the time evolution of the resulting concentration, as measured at a given
distance L, displays multiple peaks, which are originated from successive passages of the dri�ing pulse.
For the case at hand, a direct inspection of the experimental data seems to exclude the existence of recur-
rent patterns of the typementioned above. In other words, it can be reasonably assumed that the drug gets
dispersed, before the �rst complete loop is eventually closed up. Under these conditions, there is hence no
practical di�erence in assuming the process to occur on straight line, as we do here, instead of including
the details of the relevant periodic geometry.

4 HereM incorporates all types of metabolites related to cytochromeCP2D6, including theM1 species for
which data are available.
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Figure 2.2: Schematic layout of tramadol (a) and metabolite M (b) dynamics.� e local concentra-
tion of tramadol in the blood, here labeled with T (t), changes as a result of di�usion through the
circulation network.� e time–dependent term F (t) is here introduced to account for such di�usive
dynamics.� e tramadol amount decreases due either to metabolization into M species (the rate of
transformation being here kM ) or to generic losses (quanti�ed through the reaction rate kE). �e
latter include both renal elimination and binding to receptors.� e metabolites concentration M(t)
increases, as result of the biotransformation of tramadol. Analogously to the above,M molecules are
expelled by the body or bind to the receptors, thus resulting in an e�ective loss here controlled by the
reaction constant hE .

tramadol T (t), at the extraction point:

d
dt

T = −kMT (t) − kET (t) +F (t) (2.4)

�e term kMT denotes the fraction of tramadol metabolized by CYP2D6 in M , while
kET groups tramadol losses due, for instance, to the renal elimination, to the bind-
ing of the molecules to receptors and to the formation of the other kind of metabolites.
F (t) is an externally imposed, time–dependent, contribution which e�ectively mimics
the role of di�usion, following the lines of the preceding discussion. �e complex net-
work that constitutes the pathway of blood circulation is here mapped into an idealized
one–dimensional circuit. Practically, this assumption corresponds to neglect the occur-
rence of periodic cycles of the di�using substance, an event that can be excluded upon
inspection of the recorded data. Mathematically,

F (t) = T0
dρ(L, t)

dt

where ρ(L, t) is given by equation (2.3). T0 labels the administeredµ ⋅mol of tramadol,
thus providing the correct normalization. �e drawing are assumed to be instantaneous
and therefore we avoid to introduce further corrections to account for the time needed
to complete the operation.

Francesca Di Patti20



�
�

�
�

�
�

�
�

20 Francesca Di Patti

INJECTION

ELIMINATION

BLOOD
CIRCULATION

T (t)

METABOLITES

F (t)
kE

kM

TRAMADOL

BLOOD
CIRCULATION

M(t)

ELIMINATION

kM

hE

(a) (b)

Figure 2.2: Schematic layout of tramadol (a) and metabolite M (b) dynamics.� e local concentra-
tion of tramadol in the blood, here labeled with T (t), changes as a result of di�usion through the
circulation network.� e time–dependent term F (t) is here introduced to account for such di�usive
dynamics.� e tramadol amount decreases due either to metabolization into M species (the rate of
transformation being here kM ) or to generic losses (quanti�ed through the reaction rate kE). �e
latter include both renal elimination and binding to receptors.� e metabolites concentration M(t)
increases, as result of the biotransformation of tramadol. Analogously to the above,M molecules are
expelled by the body or bind to the receptors, thus resulting in an e�ective loss here controlled by the
reaction constant hE .

tramadol T (t), at the extraction point:

d
dt

T = −kMT (t) − kET (t) +F (t) (2.4)
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Metabolites M are produced from T , as schematically depicted in Fig. 2.2b. More
speci�cally, at position L, we expect to measure an amount of metabolites which repre-
sents the net balance between two competing processes. On the one hand, metabolites
originates from a fraction of chemically active tramadol molecules, which are not barely
transported by the above, purely di�usive, dynamics. On the other hand, metabolites
may bind receptors and get also eliminated via the kidney, both mechanisms determin-
ing a reduction of the detectable concentration M(t). One can hence hypothesize:

d
dt

M = +kMT (t − τ) − hEM(t) (2.5)

where the delay τ is here introduced to account for the�nite timeneeded in the chemical
conversion from T to M species5.

Let us now focus again on the explicit expression for ρ(L, t). We shall introduce the
variables α = L/√4D and β = v/√4D and recast ρ(L, t) in the form:

ρ(t) = T0
α

VTot

√
πt

exp(−(α − βt)2

t
) (2.6)

where VTot = SyzL represents the total volume associated to the circulation network,
Syz labeling here an averaged estimate of the cross–section surface. In the following we
shall �t the above model to a set of experimental data, by properly adjusting the free
parameters involved. By choosing the appropriate values that enable for an accurate
matching between theory and experiments, we shall obtain a quantitative measure of
the kinetic constants and eventually correlate our �ndings with the typology of patients
under scrutiny.

Finally, it should be emphasized that the simple model here discussed does not ac-
commodate for a degree of negative interference among di�erent species, (+)–T, (−)–T,
(+)–M and (−)–M, a dynamical e�ect which arises when competing for available bind-
ing sites (receptors). For this reason, we shall proceed with an independent analysis of
data relative to the (+)–enantiomers and then to the (−)–enantiomers. �e estimated
parameters will be labeled with the corresponding symbols preceded by the pre�x (+)
or (−) (e.g. (+)–kM stands for the kinetic rate of metabolites production relative to the
(+)–enantiomers).

2.1.3 Validation of the model

To validate the consistency of the model, we used data from [38]. Here we shall
brie�y discuss the experiments:� e reader can refer to the original publication for fur-
ther details on the procedures. In particular, we limit our discussion to the intravenous
injection setting (termed phase C in [38]). Sixteen healthy volunteers, eight poor me-
tabolizers and eight extensive metabolizers, took part in the clinical trial. �e EMs had a
median age of 26 years (range 25–28) and amedian weight of 78 kg (range 71–85 kg); the
PMs had amedian age of 25 years (range 22–31) and amedian weight of 76 kg (range 65–
87 kg). �e CYP2D6 phenotypewas determined with sparteine and tramadol as probes,

5 It is worth mentioning that the time delay τ is an essential ingredient, which proves crucial to establish a
quantitative agreement between theory and experiments.
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Figure 2.3: Plots of experimental points (symbols) and numerical solution of the model (lines) for an
extensive metabolizer. Plot (a) and (b) are relative to (+)–enantiomers, while (c) and (d) refer (−)–
enantiomers.

while Taqman technology was used to genotype four selected SNPs: the three known in-
activation mutations CYP2D6∗3 [39, 40], CYP2D6∗4 [41, 42], CYP2D6∗6 [43, 44] and
the low activity allele CYP2D6∗9 [45, 46].� e volunteers received 100 mg tramadol
hydrochloride in solution as an intravenous injection. Blood samples were drawn from
an intravenous cannula in a forearm vein 0, 1/4, 1/2, 1, 1 1/2, 2, 3, 4, 6, 8, 10, 24, 34 and
48 h a�er administration. �e plasma samples were analyzed by the validated HPLC
method [47].

Note that the (+)–tramadol time series from 3 subjects classi�ed as PM were ex-
cluded from the analysis. In those cases in fact themetabolites concentration was always
found to be zero.

�e system of coupled di�erential equations (2.4) and (2.5) is integrated numerically
using the matlab function dde23. �e latter is designed to solve systems of di�erential
equations with constant delays. In our scheme, the free parameters are tuned so to inter-
polate the experimental time series for, respectively, the tramadol and metabolite con-
centrations. A recursive algorithm is hence implemented tominimize an error function,
de�ned as the sum of the di�erences between the theoretical and experimental curves,
weighted according to their peak concentration to ensure a correct balance between the
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Poor metabolizers Extensive metabolizers

mean SD mean SD
(+)–α [

√
min] 2.5 ⋅ 10+0 1.5 ⋅ 10+0 1.9 ⋅ 10+0 4.5 ⋅ 10−1

(−)–α [1/
√
min] 1.7 ⋅ 10+0 1.3 ⋅ 10−1 1.9 ⋅ 10+0 2.8 ⋅ 10−1

(+)–β [1/
√
min] 8.1 ⋅ 10−4 5.4 ⋅ 10−4 7.9 ⋅ 10−4 9.0 ⋅ 10−4

(−)–β [1/
√
min] 1.8 ⋅ 10−3 2.6 ⋅ 10−3 1.1 ⋅ 10−3 1.8 ⋅ 10−3

(+)–vTot [m3] 2.8 ⋅ 10+1 1.0 ⋅ 10+1 2.2 ⋅ 10+1 1.4 ⋅ 10+1

(−)–vTot [m3] 2.2 ⋅ 10+1 4.5 ⋅ 10+0 2.4 ⋅ 10+1 1.4 ⋅ 10+1

(+)–kE [1/min] 9.9 ⋅ 10−4 2.1 ⋅ 10−4 1.9 ⋅ 10−3 1.7 ⋅ 10−3

(−)–kE [1/min] 2.0 ⋅ 10−3 1.5 ⋅ 10−3 2.4 ⋅ 10−3 2.8 ⋅ 10−3

(+)–kM [1/min] 3.7 ⋅ 10−5 2.0 ⋅ 10−5 5.2 ⋅ 10−4 2.8 ⋅ 10−4

(−)–kM [1/min] 3.5 ⋅ 10−4 1.5 ⋅ 10−4 8.7 ⋅ 10−4 4.0 ⋅ 10−4

(+)–hE [1/min] 1.9 ⋅ 10−3 1.6 ⋅ 10−3 1.4 ⋅ 10−3 1.4 ⋅ 10−3

(−)–hE [1/min] 1.1 ⋅ 10−3 9.0 ⋅ 10−4 2.0 ⋅ 10−3 1.9 ⋅ 10−3

Table 2.1: Average and associated standard deviation of the main parameters as obtained from the nu-
merical �tting procedure.� e (+) and (-) labels that precede the parameter symbol recall that values
are calculated either from the (+)–enantiomers or the (−)–enantiomers experimental data set. No-
tice that the parameters α and β bear no immediate interpretation, being merely rescaled quantities
introduced to simplify the �tting scheme.

two contributions6 .�e values of the parametersα, β,VTot, kM ,hE andkE are updated
until convergence. �e procedure is repeated for di�erent values of the time delay7 τ
and the �nal global errormonitored: �e value of τ that results in the smallest deviation
is selected, and the corresponding set of �tted parameters stored. For each patient, one
can therefore access an estimate of the constants that control the process of kinetics of
(+)–tramadol (resp. (−)–tramadol) and (+)–metabolites (resp. (−)–metabolites). �is
procedure results eventually in quantitative estimates for the �tted parameters. Average
of the best �t values for the classes here considered are enclosed in Tab. 2.1 together with
the associated error.

In Fig. 2.3 we report a visual comparison between measured points (symbols) and
theoretical pro�les (solid lines).�e curves refer to an extensive metabolizer and clearly
con�rm the adequacy of the proposed scenario.

�e rates of metabolization and elimination play an important role in the kinetic
of tramadol. A statistical analysis over a large population of patients would certainly
contribute to shed light onto the crucial di�erences among PMs and EMs categories,
and possibly to reveal the relative importance of the microscopic processes involved.
Despite the fact that the statistical ensemble here analyzed is limited, we are however in
a position to draw some general conclusion.

Figure 2.4 reports the kM values as resulting from the above �tting procedure for
respectively (a) the (+)–enantiomers experimental data, and (b) the (−)–enantiomers

6 �e code is constructed inmatlab and can bemade available upon request.�ematlab function fminsearch
is used to perform an unconstrained nonlinear minimization (Nelder–Mead).

7 �e minimal change in τ occurs in step 10−4 . �e best �t value results τ = 0.001 for all analyzed cases.
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Figure 2.4: Values of kM obtained from numerical �t. Panel (a) refers to the (+)–enantiomers exper-
imental data ((+)–kM ), while panel (b) to the (−)–enantiomers ((−)–kM ). �e wire–framed rectan-
gular patches de�ne the region spanned by the data and it is solely drawn as a guide for the eye.

data. �e parameters kM are plotted vs an integer number that labels the individual.
Figure 2.4a displays a clear clusterization tendency of kM : �e two groups of sub-

jects segregate, the extensive metabolizers being associated to a sensibly larger value of
kM . More quantitatively, the rate of metabolization in EMs is about 10 times greater
than the corresponding analogue in PMs. �is result agrees with the intuitive picture
that the main di�erence between PMs and EMs is the ability to metabolize the drug.
As clearly testi�ed in Fig. 2.4b, such di�erence is less pronounced for (−)–T: �e data
cover patches which are only approximately disjointed. �is �nding points to the fact
that biotransformation of tramadol varies within the phenotypic population of exten-
sive metabolizers depending on the genotype of CYP2D6[ 48]. In order to obtain the
evidence of a more clustered distribution, one should probably enhance the statistics,
i.e. accessing a larger set of experimental data.

Notice that the above scenario is compatible with the scores of the t-Test. �e null
hypothesis, i.e. the assumption that the means relative to the compared ensembles are
identical, is in both cases rejected, but with di�erent p-values: �e value associated to
the (+)–kM data set (0.003), is lower than the one extracted from (−)–kM (0.007). �is
in turn implies that in the former case poor and extensive metabolizers are more clearly
trackable to independent portions of the parameter space.

Importantly, having accessed a quantitative estimate of the metabolization rate kM

might enable us to de�ne a therapy protocol which is tuned on the genetic pro�le of
the patient. According to [49] in fact (+)–M1molecules display higher a�nity for theµ
opioid receptor, being about 700–fold more potent than the a�nity measured for(±)–
tramadol. In this respect, metabolites molecules, simply M in the present discussion,
seem to result in more e�ective chasers of target receptors, when compared to their tra-
madol analogue. It can be consequently argued that the metabolite concentration in
the blood is to be maximized, so to enhance the chances of a persistent and sensible
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Figure 2.4: Values of kM obtained from numerical �t. Panel (a) refers to the (+)–enantiomers exper-
imental data ((+)–kM ), while panel (b) to the (−)–enantiomers ((−)–kM ). �e wire–framed rectan-
gular patches de�ne the region spanned by the data and it is solely drawn as a guide for the eye.
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screening of the available receptor sites. Following this line of reasoning, we set down
to calculate the initial dose of tramadol that is required to produce the same amount
of metabolites in PMs and EMs individuals. To this end, we now disregard the trans-
port of the drug8 and restrict ourselves to a linearized version of the proposed model.
For relatively short times t (tens of minutes), the metabolite quota M scales approxi-
mately as kMT0t, a formal relation which holds for both EMs and PMs patients with,
respectively, kM = kEM

M and kM = kPM
M . Using the values reported in the Tab. 2.19, one

immediately deduces an estimate for the relative dose of tramadol administered to EM
and PM subjects, which is required to produce an identical concentration of metabo-
lites, at a generic time t. More speci�cally, labeling with T EM

0 (resp. T PM
0 ) the initial

dose prescribed to EMs (resp. PMs), yields:

T PM
0 ≃ 14T EM

0 (2.7)

for (+)–enantiomers and
T PM

0 ≃ 2.5T EM
0 (2.8)

for (−)–enantiomers10 . �is conclusion quanti�es the importance of including infor-
mation on the kinetics of the two enantiomers when planning for personalized drug
therapy. It is however worth emphasizing that the above conclusions are reached on the
basis of a rather limited set of case studies. Increasing the number of patients, so to en-
hance current statistics, represents a crucial leap forward, when aiming at con�rming
the correctness of our �ndings 11.

Moreover, we can speculate on the di�erence between (+)–kM and (−)–kM . Act-
ing as an index of metabolization, kM can be associated to stereoselective property of
O–demethylation in favour of (−)–tramadol. In in vitro experiments O-demethylation
of tramadol was determined to be greater for the (−)–enantiomer than for the (+)–
enantiomer [50]. Our analysis indicates that (−)–kM is always greater than (+)–kM

in every subject. �is result con�rms therefore the above scenario, thus providing an
indirect evidence for the stereoselective property of O–demethylation.

�e distribution ofhE is rather sparse. �e values of (+)–hE range from 3.1⋅10−4 to
3.2⋅10−3 , while (−)–hE ranges from 3.5⋅10−4 to 4.5⋅10−3. An exception is detected for
subject 12, whose values of (+)–hE and (−)–hE are close to zero. �ismay correspond to
a slow process of elimination, or can be alternatively interpreted invoking a low a�nity
of the Mmolecules to the receptors.

For what concerns kE , we could not identify a signi�cant di�erence between poor
and extensive metabolizers: (+)–kE is found in the interval [7.3⋅10−4 ,3.6⋅10−3], while
(−)–kE scans [3.4⋅10−5 ,6.7⋅10−3]. For subjects 11, 13 and 16we found instead (+)–kE ≃
8 �e latter is instead a crucial ingredient when aiming at extract an estimate of the kinetic constants in-

volved via numerical �t of the experimental data.
9 As documented in Tab. 2.1, the (+)–enantiomers (resp. (−)–enantiomers) case corresponds to kEM

M =(5.2 ± 2.8) ⋅ 10−4 (resp. kM = kEM
M = (8.7 ± 4) ⋅ 10−4) and kM = kPM

M = (3.7 ± 2) ⋅ 10−5 (resp.
kM = kEM

M = (3.5 ± 1.5) ⋅ 10−4).
10 In both case the error on the estimated ratio T PM

0 /T EM
0 is less then 5%.

11 It should be again stressed that the above conclusion are reached by putting forward several simplify-
ing assumptions (small time regime, disregard the role of di�usion) which could in principle heavily re-
�ect on the �nal outcome. �e estimated dose falls however within a reasonable range as e.g reported in
http://en.wikipedia.org/wiki/Tramadol.

Characterizing the individual response to medical treatment 25



�
�

�
�

�
�

�
�

26 Francesca Di Patti

0 and for subjects 3, 9, 11 and 16( −)–kE ≃ 0. We here recall that the term kE controls
the fraction of tramadol that binds to receptors, the quota eventually eliminated and the
amount which is metabolized into other types of metabolites. To gain a comprehensive
understanding on the overall process, and interpret these�ndings, it would be crucial to
access the nociception and look for positive correlation with the low a�nity of tramadol
with receptors.

Furthermore, we notice from Tab. 2.1 that, as expected, the entries relative to α, β
and vTot are rather sparse, the latter being essentially related to di�usion and transport
properties.

As a possible extension of the current work, we plan to develop a more detailed
scheme of reactions that includes the distinction between (+)–enantiomers and (−)–
enantiomers. Moreover, we stress the importance of incorporating into the theory the
competition of (+)–T, (−)–T, (+)–M, (−)–M for the receptors’ binding sites, so to repro-
duce the di�erence in a�nity that have been reported in experiments [49, 25]. Another
interesting extension concerns constructing a realistic, compartment–basedmodel:�is
latter could eventually allow for a proper inclusion of the relevant di�usive mechanism,
here incorporated via an e�ective term.

Finally, we emphasize that M1 is just one out 23 known metabolites [51]. It would
be therefore important to enrich the analysis by disposing at least of data relative to
the second active metabolite produced through an hepatic cytochrome, namely N–
desmethyltramadol (M2). To this end, it would be particularly attractive to perform
experiments aimed at registering the concentration of T, M1, M2, for patients whose
genotype has been determined, and monitor, at the same time, the perception of pain.

In conclusion, as outlined above, the phenotype plays an important role in determin-
ing the optimal medical strategy. However a complete characterization of the enzymatic
activity and its relationwith the genetic polymorphisms are far to be fully clari�ed. More
extensive investigations are needed to gain a comprehensive understanding of thewhole
process. In the long run one will eventually dispose of a large gallery of complemen-
tary information. Processing this information clearly implies developing robust and
reliable methods for their classi�cation. Clusterization algorithms constitute a viable
tool, which certainly deserve further analysis. In the following section we shall discuss
a novel procedure that we have outlined to perform such a delicate operation.

2.2 Unbiased tools for data processing: Emergence of homogeneous clusters

Cluster analysis is used to classify a set of items into two or more mutually exclusive
groups based on combinations of internal variables. �e goal of cluster analysis is to
organize items into groups in such a way that the degree of similarity is maximized for
the items within a group and minimized between groups.

�e need of data clustering is common in many problem. In particular, we can con-
sider an abstract system represented as an unweighted graph, composed of N nodes.
�e nodes are connected by a variable number of links. A set of nodes is considered a
cluster if, in some sense, the nodes belonging to it aremore connected among them rather
then among the rest of the system.

�e previous statement is rather vague: it is in fact very rare that one can unam-
biguously identify an isolated cluster. In general, one needs to impose a cut–o�, and
therefore the cluster structure has a certain degree of arbitrariness. If one knows with
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a su�cient precision the model underlying data generation, and therefore the expected
data distribution, then the problemof clustering reduces to theminimization of distance
between themeasured and expected distribution, using the cluster number, coordinates
and size as tuning parameters. In general, however, this is not possible, and so generic
methods can only give a range of possible clusters, according to the variation of a given
parameter. When there are extended regions of the parameters for which the cluster
structure is stable, one may say that, for a given “coarse graining”, there is clustering.
Let us consider the case of an adjacency matrix, with blocks with a given probability
of ones (links) along the diagonal, and a smaller probability outside. Let us call these
probabilities p1 and p2, respectively. In the case p2 = 0 and p1 su�ciently high (above a
percolation threshold), the only clusters are those linking the nodes in the block. How-
ever, as soon as p2 > 0, there are links connecting the previous clusters. In the limit of
in�nite sizes of the blocks, one gets a clear distinction between blocks, but for �nite sys-
tems, and without the possibility of performing ensemble averaging, �uctuations may
well cause a site to be more linked to a “wrong” cluster than to the “right” one. In any
case, even in the most ideal scenario, there is a certain degree of arbitrariness in de-
ciding that the blocks form clusters. �e situation is obviously worse when there is a
continuum variation of the density of links.

Most of clustering methods rely on performing walks on the graph, marking visited
nodes or links, andmeasuring graph–distances.�is is a rather heavy task, especially for
large graphs. More e�cient algorithms are probably those not based on path counting.
Among these, one of the most promising clustering method in bioinformatics is the
Markov Cluster Algorithm (MCL). Although this method is rather e�ective and really
simple to implement, it lacks a precise physical meaning.

Starting fromMCL, we developed a newmethod based on a biological background.
More precisely, we are interested in how to� nd community structures with patches of
populations in competition. We choose to refer to this method as to Ecological Cluster-
ing (EC).

In the next section we brie�y describe the Markov Cluster Algorithm, while in the
last one we introduce our model and compare it with MCL.

2.2.1 Markov cluster algorithm

�e Markov Cluster algorithm (MCL) is a method to �nd community structure de-
veloped by Stijn van Dongen in his PhD thesis [52]. �e algorithm essentially simulates
a process of di�usion on a graph. It works alternating two operations called expan-
sion and in�ation, on a N ×N transition Markov matrix T obtained by dividing each
element Cij of the adjacency matrix by the degree of node j. �e element Tij of the
stochastic matrix represents the probability that a random walker goes from node i to
node j. In the� rst step, the le� stochastic matrix of the graph is squared, so that ev-
ery element of the resulting matrix gives the probability that a random walker, starting
from node i, reaches j in 2 steps. �e second step consists in raising each single entry
of the matrix T to some power α, where α is a real value. �is operation, called in�a-
tion, increases the weights between pairs of vertices with large values of the di�usion
�ow, which therefore have a high probability to belongs to the same community. �e
�nal step is to divide each elements of every column by their sum, such that the sum of
the elements of the column equals one and a new stochastic matrix is recovered. �e
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corresponding algorithm for MCL is the following:

Tij(0) = Cij∑k Ckj

T̃ (t +∆t) = T (t)2

Tij(t +∆t) = (T̃ij(t +∆t))α

∑k (T̃kj(t +∆t))α

A�er some iterations, the process converges to a stationary matrix whose elements are
either zero or one. According with the value of α, the graph represented by this matrix
may be disconnected, and in this case its connected components are the communities of
the original graph. Practically, the clusters are the few lineswith somenonzero elements.
�e �nal partition is clearly dependent of the parameter α used in the in�ation step.
�erefore the method may converge to several di�erent partitions and there is no way
to decide which are the most meaningful or representative.

2.2.2 Ecological clustering

Our idea is to develop an algorithm to� nd community structure based on a biolog-
ical approach. In particular we start from a very simple model for the selection process
of two species labeled A and B. We hypothesize that the number of elements of each
populations, denoted by x and y respectively, obey to

ẋ = axc − φx

ẏ = byc − φy (2.9)

where a and b denote the �tness value of A and B, while φ is a density limitation that
keeps the total population x+y constant.�e exponent c is the parameter which quan-
ti�es the non–linearity of the growth. It is easy to show (see for example [53]) that for
c < 1 there is a stable mixed equilibrium between A and B even if one population is
characterized by a growth rate bigger than the other one. For c > 1 there is an unstable
mixed equilibrium between A and B, and the case where only one population is present
is stable.� is means that if, for example, the space is populated only by species A, B
cannot invade also if it has a higher growth parameter.

We are interested in investigating what happens if we simulate a similar scenario on
an undirected graph withN nodes, where every node has enough room forN di�erent
species, all with the same �tness. Denote by Pij(t) the probability that at time t in the
i–th node there is the j–th specie. We initialize the graph populating each node i with
only individuals of species i, namely Pij(0) = 0 ∀i ≠ j and Pii(0) = 1. Without any
interaction among individuals, we can hypothesize a simple rule: At each time step the
algorithm is based on two processes, namely di�usion and selection. During the process
of di�usion, in each node i a fraction p of individuals decides to emigrate, where p ∈ R
and 0 ⩽ p ⩽ 1. �ey choose a link l according to Cij/∑l Cil, where C is the adjacency
matrix, and move to that node. �e other 1 − p fraction of individuals remains in the
original node. �en a new selection phase takes place, since nodes that received more
thanN individuals are pruned, and nodes with less thanN individuals are repopulated
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by reproduction. �is mechanism translates into the following algorithm:

Qij(t +∆t) = (1 − p)Pij(t) + p∑
l

CilPlj(t)∑k Ckl

Pij(t +∆t) = (Qij(t +∆t))α

∑j (Qij(t +∆t))α

�erefore, in the EC method we have two parameters, exponent α and di�usion p.
Time also could be considered a parameter, since the convergence to the asymptotic
status is enough slow that several structures appear during relaxation. However, here
we concentrate only in the asymptotic state.

To test this model and to compare it with MCL, we followed the idea described in
[54] and we applied the algorithms to a network with a known �xed community struc-
ture. For this purpose, we generated a network with N = 128 nodes, split into four
communities containing 32 nodes each. Pairs of nodes belonging to the same commu-
nity are linked with probability pin, while pairs belonging to di�erent communities are
joined with probability pout. �e value of pout is taken so that the average number of
links a node has to members of any other community, zout, can be controlled. While
pout (and therefore zout) is varied freely, the value of pin is chosen to keep the total
average node degree, k, constant, and set to 16.

Instead of focussing only in correctly classifying the nodes, we preferred to put at-
tention on the ability to detect di�erent levels of clusterization. For this reason, we did
not test the sensitivity of the two algorithms measuring the quantities suggested in [54],
but we preferred to monitor the entropy.

We de�ned the entropy S(t) as
S(t) = −∑k zk ln zk

lnN

where zk(t) is the global distribution of k–th specie, namely zk(t) = ∑j Tkj/N for
MCL and zk(t) = ∑i Pik/N for our model.

�e entropy S(t) of both methods converges to a stationary level that assumes val-
ues between 0 and 1. �e steady state of entropy is 0 when only one big community is
detected, while it is 1 when every node is classi�ed as a single cluster.

Fig. 2.5 shows the stationary entropy as function of the exponent α, relative to the
twomodel tested on networks with di�erent pout. As we can see from this Fig. theMCL
algorithm seems to work in a standard way. We can observe that there are two critical
values, α1 and α2 that identify the regions in which the method �nds di�erent number
of communities. More precisely, MCL converges to a single cluster for 1 < α < α1,
it founds four clusters for α between α1 and α2, and it detects 128 communities for
α > α2. Even though α1 and α2 depend on the characteristics of the network, usually
α1 ≃ 1.5 and α2 ≃ 2. It is interesting to notice that in this case, the parameter α acts
as the parameter c in model (2.9): �e value α = 1, like c = 1, is a critical value which
separates the region which leads to a stable mixed equilibrium among the species (128
clusters), to the one where other equilibrium con�gurations are allowed.

Although some of the previous features may be found also in our model, the EC
algorithm exhibits an important di�erence. In fact we can notice that the stationary
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Figure 2.5: Steady state of entropy S as function of the parameter α. Cyan dots are points relative to
our model, while the magenta lines refer to the van Dongen’s model. For the plot in panel (a) we used
a network with pout = 0.03, in panel (b) pout = 0.04, in panel (c) pout = 0.05 and in the last panel
pout = 0.06. In all cases, we used p = 0.95.

values of the entropy are not only three as for the MCL. Consider, for example, Fig.
2.5b. �e entropy relative to our model follows the behavior of MCL only for small
values ofα. Asα increases the entropy does not reach the boundary value 1 but assumes
mostly two values, namely 0.1 and 0.28. To visualize how entropy is related to the
�nal structure of communities, we can have a look at Fig. 2.6. �is �gure reports the
stationary state of the network and the communities found by the two algorithm, for the
same parameters of Fig. 2.5b, but with di�erent values of α. �e blue dots are the �nal
structure of the network, while the continuous vertical red segments and the continuous
horizontal green segments identify the communities found by EC and van Dongen’s
method respectively. We can see thatwhile theMCL converges essentially to three kinds
of structures (one big cluster, 128 single clusters, and four clusters), the EC algorithm is
able to detect intermediate clusters. In conclusion we can say that the main feature of
EC algorithm is the ability to recognize di�erent levels of clusterization. �ese levels are
found monitoring the behavior of the entropy.

Inmany applications bioinformatics dealswith another crucial problem, the so called
missing data problem. �is is reviewed in the following where a possible approach to
overcome its limitations are discussed.
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Figure 2.5: Steady state of entropy S as function of the parameter α. Cyan dots are points relative to
our model, while the magenta lines refer to the van Dongen’s model. For the plot in panel (a) we used
a network with pout = 0.03, in panel (b) pout = 0.04, in panel (c) pout = 0.05 and in the last panel
pout = 0.06. In all cases, we used p = 0.95.

values of the entropy are not only three as for the MCL. Consider, for example, Fig.
2.5b. �e entropy relative to our model follows the behavior of MCL only for small
values ofα. Asα increases the entropy does not reach the boundary value 1 but assumes
mostly two values, namely 0.1 and 0.28. To visualize how entropy is related to the
�nal structure of communities, we can have a look at Fig. 2.6. �is �gure reports the
stationary state of the network and the communities found by the two algorithm, for the
same parameters of Fig. 2.5b, but with di�erent values of α. �e blue dots are the �nal
structure of the network, while the continuous vertical red segments and the continuous
horizontal green segments identify the communities found by EC and van Dongen’s
method respectively. We can see thatwhile theMCL converges essentially to three kinds
of structures (one big cluster, 128 single clusters, and four clusters), the EC algorithm is
able to detect intermediate clusters. In conclusion we can say that the main feature of
EC algorithm is the ability to recognize di�erent levels of clusterization. �ese levels are
found monitoring the behavior of the entropy.

Inmany applications bioinformatics dealswith another crucial problem, the so called
missing data problem. �is is reviewed in the following where a possible approach to
overcome its limitations are discussed.
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Figure 2.6: Blue dots represent the stationary structure of the network, green segments are communi-
ties detected by the van Dongen algorithm, while the red segments are the ones found with ECmodel.
All plots refers to the same network generated with pout = 0.04, while α varies. In panel (a) α = 1.9,
in panel (b) α = 2.0, in panel (c) α = 2.1, in panel (d) α = 4.0, in panel (e) α = 7.4 and in the last
panel α = 8.0.
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2.3 �e problem of missing data: Filling the gaps

As introduced in section 1.5 a DNA microarray is a collection of microscopic DNA
spots of probes, commonly complementary to some region of a gene, arrayed on a solid
surface by covalent attachment to a chemical matrix. DNA arrays are commonly used
for expression pro�ling, namely monitoring expression levels of thousands of genes si-
multaneously, or for comparative genomic hybridization. Despite their wild use, gene
expressionmicroarray experiments, frequently generate data sets withmultiple missing
expression values. �is may be due to a production �aw, a mistake during the sensible
procedure of preparation, or the �nal image may be corrupted or may have an insu�-
ciently resolution. Some researchers overcome the problem proceeding with the anal-
ysis omitting missing values and data relative to suspected spots, like spots with dust
particles, irregularities or other bad features.

�e presence ofmissing values implies loss of information, and the practice to ignore
this would lead to an unbalanced experimental design. Moreover, many algorithms for
gene expression analysis require a complete matrix of gene array values as input, and
may lose e�ectiveness even with a few missing values.

Methods for imputing missing data are needed, therefore, to minimize the e�ect
of incomplete data sets on analyzes, and to increase the range of data sets to which
these algorithms can be applied [55]. Moreover, comparison between a “forecasted”
value based on correlations in the dataset, and the measured one, can be considered a
consistency “check” of the dataset itself.

Here we propose a newmethod for inferring missing data which takes the cue from
the �eld of opinion formation. In opinion formation, one can assume that one’s opin-
ion on a certain item is given by the characteristics of the item, weighted by individual
“tastes”. �e tastes result from past experiences, but they do not change abruptly from
time to time. In principle, tastes can be decomposed into independent “dimensions”. It
is rather di�cult to identify such dimensions, as testi�ed by the limited success of mar-
ket campaigns. However, it can be shown [56] that exploiting the correlations among
the expressed opinions, it is possible to deduce the distance between the tastes of two
individuals.

We start from the original method described in [56] to derive a new way for mea-
suring the distance among records based on the correlations of data stored in the cor-
responding database entries. In this work the opinions expressed over a set of topics
originate a “knowledge network” among individuals, where two individuals are nearer
the more similar their expressed opinions are. Assuming that individuals’ opinions are
stored in adatabase, the authors show that it is possible to anticipate an opinionusing the
correlations in the database.� is corresponds to approximating the overlap between the
tastes of two individuals with the correlations of their expressed opinions. Here we ex-
tend this model to nonlinear matching functions, inspired by biological problems such
as microarray (probe–sample pairing). We investigate numerically the error between
the correlation and the overlap matrix for eight sequences of reference with random
probes. Results show that this method is particularly robust for detecting similarities in
the presence of traslocations.

Let us �rst illustrate the problem summarizing the main results reported in [56].
Consider a population ofM individuals experiencing a set ofN products. Assume that
each product is characterized by an L–dimensional array a = (a(1), a(2), . . . , a(L)) of
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features, while each individual has the corresponding list of L personal tastes on the
same features b = (b(1), b(2), . . . , b(L)). �e opinion of individual m on product n,
denoted by sm,n, is de�ned proportional to the scalar product between bm and an:
sm,n = λ(L) bm ⋅an, whereλ(L) is a suitably chosen normalization factor. In general,
λ(L) should scale as L−1 and depend on the ranges of a and b.

In order to predict whether the person j will like or dislike a certain product an,
assuming to knowan, it is su�cient to obtain the individual tastes of that individual, i.e.
the vector bj . �e similarity between tastes of two individuals i and j is de�ned by the
overlap Ωij = bi ⋅ bj between the preferences bi and bj .

One can build a knowledge network among people, using the vectors bm as nodes
and the overlaps Ωij as edges. Maslov and Zhang [57] (MZ) assume that a fraction p of
these overlaps are known. �ey show that there are two important thresholds for p in
order to be able to reconstruct the missing information. �e �rst one is a percolation
threshold, reached when the fraction of edges p is greater than p1 = 1/M − 1 whereM
is the number of people. �is means that there must be at least one path between two
randomly chosen nodes, in order to be able to predict the second node starting from
the �rst one.

Since vectors bn lie in an L dimensional space, and a single link “kills” only one
degree of freedom, a reliable prediction needs more than one path connecting two in-
dividuals. Maslov and Zhang show that there is a “rigidity” threshold p2, of the order
of 2L/M , such that for p > p2 the mutual orientation of vectors in the network is �xed,
and the knowledge of the preferences of just one person is su�cient to reconstruct those
of all the other individuals.

In general one does not have access to individuals’ preferences, nor one knows the
dimensionality L of this space. In order to address this problem, the authors de�ne the
correlation Cij between the opinions of agents i and j by

Cij = ∑N
n=1(sin − si)(sjn − sj)√∑N

n=1(sin − si)2 ∑N
n=1(sjn − sj)2

, (2.10)

where si is the average of the opinion matrix S over column i. �e elementsCij can be
conveniently stored in a M ×M opinion correlation matrix C .

One can compute an accurate opinion anticipation s̃mn of a true value smn using
this formula:

s̃mn = k

M

M∑
i=1

Cmisin (2.11)

where k is a factor that in general depends on L and on the statistical properties of
the hidden components. However, if the components of an and bm are independent
random variables, k is independent of n and m, so it can be simply chosen in order to
have s̃mn de�ned over the same interval as smn.

For large values of N and M , the factor k can be identi�ed with the number of
components L, and obtain an estimate for the average prediction error

ε =
���� 1

MN
∑
mn

(s̃mn − smn)2 ≃ γL3/2
√

M +√
N√

MN
, (2.12)
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where
γ = λ(L)√⟨a2⟩⟨b2⟩. (2.13)

Formula (2.12) implies that the predictive power of equation (2.11) grows withMN and
diminishes with L. �is fact is a consequence of the decay of the correlations among
opinions with L, so that more amount of information is needed in order to perform a
prediction asL grows.� is condition can be compared with the “rigidity” threshold p2

in the MZ analysis.

2.3.1 Test case microarray inspired

In order to investigate the introduction of nonlinearities in the function used to
model the process of opinion formation, we considered the case of a microarray.

As mentioned before, microarray experiments can su�er from the missing values,
and this fact represents a problem formany data analysismethods, which require a com-
plete data matrix. Although existing missing value imputation algorithms have shown
good performance to deal with missing values, they also have their limitations. For
example, some algorithms have good performance only when strong local correlation
exists in data, while some provide the best estimate when data is dominated by global
structure [58].

Here we modi�ed the model described in the previous section to investigate the
relationship between the correlation and the overlap between sequences.

Todo thiswe considered an alphabet of four symbols, namelyA,T,G,C, correspond-
ing to the four nucleotides that constitute the DNA. We used this alphabet to generate
randomly M sequences of length L representing the probes of the microarray12 . �en
we generated N samples of length W representing the sequences to be hybridized on
the microarray.

�e correlation Cij between sample i and sample j is de�ned by

Cij = ∑M
k=1(mik −mi)(mjk −mj)√∑M

k=1(mik −mi)2 ∑M
k=1(mjk −mj)2

i, j = 1, . . . ,N, (2.14)

wheremik is themaximum complementary match between sample i and probe k with-
out gaps.

�e aim is to test the relationship between the correlation matrixC and the overlap
matrix Ω constructed using the following idea of similarity. We hypothesized to infer
the similarity between sequences based on the number of subsequences of lengthL in
common. For this reason we de�ned the overlap Ωij between sequence i and sequence
j as the number of subsequences of lengthL that appear in the both sequences, divided
byW −L+1 for normalization. �is matching function is nonlinear since the e�ect of
a mismatch depends on its position in the subsequence.

To test our hypothesis, we considered eight referential sequences:

Seq. 0: �is is the �rst reference sequence, completely random of lengthW .

Seq. 1: Equal to sequence0 , except for a mutation in the middle (this mimics the Af-
�metrix centralmismatchmechanism formeasuring the level of randompairing).

12 �e probes in real microarray are discriminated generally carefully chosen in order to genes of interest.
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Figure 2.7:� e error ε̄ as a function of the length W of the samples, averaged over 40 realizations,
N = 10, L = 30, M = 500.� e plots of sequences 0–2 and 0–3 refer to the right y-axis. One can
observe that all errors diminish with W .

Seq.2: Equal to sequence0 , but shi�ed of one basis.

Seq. 3: Equal to sequence0 , with shi� and central mutation.

Seq. 4: First half of sequence 4 is equal to the second half of sequence0 , and vice versa.

Seq. 5: First half of sequence 0 is equal to the second half of sequence0 , the rest is
random.

Seq. 6: Another reference sequence.

Seq. 7: Sequences 6 and 7 contains the same “gene”, of length W /3, in di�erent posi-
tions.

To check the validity of the model described in the previous section, we measured
the error εij for the pair of sequences i and j de�ned as the absolute value of the di�er-
ence between the correlation and the overlap, namely εij = ∣Cij −Ωij ∣. We performed
various simulations and than we calculated the average of the error denoted by ε̄.

In Fig. 2.7 we plotted the error ε̄ vs W . One can see that for all the analyzed cases
the error decreases, and this result agrees with those reported in [56] (the parameterW
here corresponds to M in the opinion formation model).

Figure 2.8 shows the behavior of ε̄ with respect toM . �e curves are approximately
constant, showing that the error is independent of M .

As one can see from Fig. 2.9, where we plotted the error vs L, ε̄ does not follow
a monotonous trend, except for the pair of sequences0 –4 for which the value of ε̄ is
almost constant and next to zero, and for ε̄01 which increases. For what concerns the
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Figure 2.8:� e error ε̄ as a function of the number of probesM , averaged over 40 realizations,N = 10,
L = 20, W = 150. One can observe that errors do not vary with M .
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values of ε̄02, ε̄03 and ε̄05, one can detect that the errors decrease until L ≃ 10, because
probes too short can hybridize in many positions without a high speci�city. �en they
oscillate until L ≃ 35, and for larger L the errors increase. �is last increase is due to
the small coverage of the probes in the sequence space, since we kept the number of
sequences M �xed while the sequence space grows as 4L.

To sum up, the monitoring of the error for the eight sequences of reference, with
respect toM , W , and L, allows us to assert that the error is low in all cases, decreasing
when W increase, and independent of M . With respect to L we �nd that the model is
more robust for traslocation.

In conclusion we can say that the correlation matrix of our model can be used to
estimate the distance between sequences. Moreover we point out that the same result
can be found following the idea of “negative database”, namely using the subsequences
of lengthL not in common between two sequences.� is idea arises from the antibody–
antigens domain which is commonly a�ected by the missing values problem.

Antibodies are proteins that are used by the immune system to identify and neutral-
ize foreign objects, such as bacteria and viruses. Classifying antibodies, based on the
similarity of their binding to the antigens, is essential for progress in immunology and
clinical medicine. A striking feature of the natural immune system is its use of negative
detection in which “self ” is represented (approximately) by the set of circulating lym-
phocytes that fail to match self.� is suggests the idea of a negative representation, in
which a set of data elements is represented by its complement set. �at is, all the ele-
ments not in the original set are represented (a potentially huge number), and the data
itself are not explicitly stored.� is representation has interesting information–hiding
properties when privacy is a concern and it has implications for intrusion detection.
One of the example where this idea has been concretized is exactly the case of a nega-
tive database [59].

In a negative database, the negative image of a set of data records is represented
rather than the records themselves. Negative databases have the potential to help pre-
vent inappropriate queries and inferences. Under this scenario, it is desirable that the
database supports only the allowable queries while protecting the privacy of individ-
ual records, say from inspection by an insider. A second goal involves distributed data,
where one would like to determine privately the intersection of sets owned by di�erent
parties. For example, two or more entities might wish to determine which of a set of
possible “items” (transactions) they have in common without reveling the totality of the
contents of their database or its cardinality.

Since in our model a datum is essentially stored as the set of matching items plus
the set of non–matching ones, our results can be applied both to positive and negative
representation of data.
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Chapter3
Role of �uctuations in the experienced pain perception

In the �rst chapter we have reviewed the main features of pain, focussing on the
cascade of successive reactions which are activated by the so called noxious stimuli:
�e peripheral terminals of primary sensory neurons launch the signal, which is then
transmitted to the spinal and supraspinal nuclei and eventually yields to the activation
of a matrix of cortical areas that are deputed to the conscious experience of pain.

More speci�cally, the stimulus originating from a bodily harmingmenace can be di-
rectly processed through transduction by the receptors located on the nerve terminals.
Alternatively, an indirect pathway can take over through the activation of transient re-
ceptor potentials on keratinocytes or the release of intermediate molecules which, in
turn, act on sensory neurons receptors. In the following we shall assume the �rst sce-
nario to hold, and, though certainly important, disregard other mechanisms that might
be simultaneously in play. In other words, we simplistically imagine that pain receptors
act as e�ective gates, channeling the route to the involved cortical circuits.

Analgesic drugs relieve the pain by interfering with the peripheral and central ner-
vous system. Drug molecules bind in fact their target receptors, and consequently in-
hibit the pain perception. To grasp and visualize the essence of the process, one can
hypothesize that the bound chemical element occludes the path, by impeding the signal
transduction through the channel envisioned above.

Analgesic are commonly used in basic research and clinical practice, but their inter-
action with nociceptory and normal sensory processing remains to be fully unraveled.
In section 1.5 of the �rst chapter we mentioned that analgesics are for instance known
to modify the electrical recordings measured via evoked potentials (ERPs) responses
[60], a powerful diagnostic tools employed to monitor and characterize a large variety
of central nervous system disorders. ERPs are elicited by a speci�c stimulus applied to
the e.g. pain receptors and consist in recording the induced electrical brain activity, as
detected by localized electrodes placed on the surface of the head. Furthermore, ERPs
are also useful in documenting objective response to pain [61, 62] and can thus prove
fundamental to elucidate themolecular processes that control analgesic absorption and
metabolization.

As shown by Fig. 2 of [28] discussed in section 1.5, di�erent analgesic agents have
been shown to produce intriguingly distinct e�ects at the level of the ERPs. Recorded
time series of the solicited electric activity display in fact remarkably di�erent patterns,
which are generically attributed to the chemical speci�city of the analgesic compound.
Qualitatively, large, regular, oscillations of the electric response manifest, latency and
amplitude being peculiar traits, supposedly related to the molecular characteristic of
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the administered drug.
Furthermore, cycles in the perception of pain have been also reported which might

be hypothetically driven by similar microscopic processes, the interaction between the
anaesthetic molecules and their targets playing certainly a role of paramount impor-
tance. Clearly, the individual experience of pain is also in�uenced by psychological and
cultural factors, unfortunately di�cult to deconvolve when aiming at resolving the ob-
jective picture.

�e issue of developing a unique interpretative framework to account for the pres-
ence of such oscillatory regimes has catalyzed vigorous discussions. �e puzzle of their
existence remains however to be fully understood.

Current mathematical models approach the problem via deterministic paradigms,
thus neglecting the crucial role which is certainly played by the noise, intrinsic to the
phenomenon under scrutiny [63].� ese aspects become particularly important when
accounting for the presence of diverse chemical species, which populate the stream �ow
in a spatially di�usive environment. Di�erent chemical entities may compete with the
drug molecules and occupy the sites located in close vicinity of the receptors, thus ef-
fectively hindering the binding event. Under speci�c conditions, such competition sus-
tained by the stochastic component of the dynamics might result in large temporal os-
cillations for the amount of bound receptors, a mechanism which could explain the
emergence of macroscopic cycles for the sensation of pain in response to medicaments.

In this chapter, we shall speculate on the above scenario by putting forward a net-
work of chemical reactions and performing a system–size expansion through the cele-
brated vanKampen theory [64].�is enables us to derive a set of linear equations for the
�uctuations, with coe�cients related to the steady–state concentrations predicted from
the �rst–order theory (i.e. the deterministic rate equations). Solutions are identi�ed
for which the deterministic steady-state occurs via damped oscillations: the inclusion
of second-order �uctuations leads then to the ampli�cation of sustained oscillations.
�ese conclusions are brie�y discussed with reference to the existing medical literature.

3.1 �e chemical equations governing the microscopic process

Within the simpli�ed scenario depicted above, we shall model the chemical inter-
action between a large, though �nite, number of drug molecules (analgesics), hereby
termed T , and free receptorsRF which represent their binding target. Following a suc-
cessful binding event, a molecule of the species T disappears, leaving an empty case,
herea�er labeled E. �e population of bound receptor RT is in turn increased by one
unit. �ese assumptions formally translate into the compact chemical notation:

RF + T
α�→ RT +E (3.1)

where α stands for the associated reaction rate. �e inverse reaction corresponding
to the spontaneous detachment of the bound component may occur 1 with a certain

1 We here assume that the free T molecule is still chemically active and can thus potentially chase for un-
screened targets. �is working hypothesis can be relaxed leading to conclusions qualitatively similar to
the ones highlighted below.
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probability β2, which motivates the introduction of the dual relation:

RT +E
β�→ RF + T (3.2)

�e analgesic molecules T surf in a densely packed environment and certainly ex-
perience collisions with several othermicroscopic chemical entities,H , which populate
the streaming �ow. Binary interactions between H and T elements, can occur in the
close vicinity of the receptors (RF ) location, potentially disturbing and eventually inter-
fering with the binding event. As a result of an hypothetical collision, the active species
T can be ejected by the spatial layer immediately adjacent to the receptor, leaving be-
hind an empty case E. Beyond this e�ect, which stems from purely steric interactions,
one has to account for possible chemical transformations, which might occur when in-
dividuals from the H and T species encounter: �e active chaser T can lose its ability
to bind the target3 and it is thus mapped into an inactive H molecule. To incorporate
these e�ects into the proposed description we postulate the following interaction rules,
which are loosely inspired to the predator–prey competition mechanism:

H + T
γ�→ H +H (3.3)

H + T
σ�→ H +E (3.4)

�e values of σ and γ characterize the e�ectiveness of the interaction, which is in turn
sensitive to the choice of the compound T . �e idealized cartoons of Fig. 3.1 are aimed
at visualizing the above reaction schemes.

To complete the model we introduce an e�ective migration, by requiring that the
T and H molecules can enter (resp. leave) the region deputed to the interaction. �e
latter assumption yields to the following set of chemical relations:

T
δ1�→ E (3.5)

E
η1�→ T (3.6)

H
δ2�→ E (3.7)

E
η2�→ H (3.8)

�e population, namely the ensemble of elements belonging to an homologous species
X , will be labeled in the following with the symbol nX . Notice that the number of
receptors N1 = nRT

+ nRF
and the total amount of molecules (including the empties)

N2 = nT +nH +nE are conserved quantities. �is observation enables us to reduce the
complexity of the problem by setting:

nRF
= N1 − nRT

nE = N2 − nT − nH

2 In principle it would be extremely useful to dispose of experimental estimates for the reaction rates, so to
de�ne a realistic range of variability for the free parameters in the model.�e most reliable data concern
the so-called (equilibrium) a�nity constant for the case of e.g. the Tramadol. Depending on the target
receptor (and on the speci�city of the chaser’smolecule) the a�nity constant is reported to vary of a large
amount which scans two orders of magnitude (from fraction of unity to hundreds) [25, 49].

3 Note that this can happen both due to a mechanical stress or via chemical combination of the colliding
species, see for instance [30] where the plasma protein binding is discussed. For a speci�c application
relative to the case of tramadol refer to [65].
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Figure 3.1:� e main reaction schemes are depicted.� e squares stand for the inactive species, while
the circles represent the drug molecules. �e model is then complemented with a set of additional
reactions (see equations (3.5)–(3.8)), which accounts for the possibility thatT andH enter (resp. leave)
the region deputed for the interaction.

In the following we shall use the vectorial notation n = (nT , nRT
, nH) to help keeping

the mathematical developments compact.
If we denote by nX the number of elements belonging to an homologous species

X , it is reasonable to assume that number of receptors N1 = nRT
+ nRF

and the to-
tal amount of molecules (including the empties) N2 = nT + nH + nE are conserved
quantities. �e inherent complexity of the problem is hence reduced by setting:

nRF
= N1 − nRT

nE = N2 − nT − nH

so that the system is completely speci�ed by the vector n = (nT , nRT
, nH).

We assume that the two populations are homogeneous, where all individuals have
the same chance of interacting. In this case, the probability of an events happening
only depends on the probabilities of choosing the various elements from the total cor-
responding population and the rates at which they take place. So we can de�ne tran-
sition rates T (n′∣n) from state n to a new state n′, where n′ is one of the admissi-
ble state de�ned by the chemical equations (3.1)-(3.8). In our case, n′ can only be
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(nT ±1, nRT
∓1, nH), (nT −1, nRT

, nH+1), (nT ±1, nRT
, nH) or (nT , nRT

, nH±1),
and so just seven transition probabilities di�er from zero, namely:

T (nT − 1, nRT
+ 1, nH ∣n) = α

nT

N2

N1 − nRT

N1

T (nT + 1, nRT
− 1, nH ∣n) = β

N2 − nT − nH

N2

nRT

N1

T (nT − 1, nRT
, nH + 1∣n) = γ

nH

N2

nT

N2

T (nT − 1, nRT
, nH ∣n) = σ

nH

N2

nT

N2

+ δ1
nT

N2

T (nT + 1, nRT
, nH ∣n) = η1

N2 − nT − nH

N2

T (nT , nRT
, nH − 1∣n) = δ2

nH

N2

T (nT , nRT
, nH + 1∣n) = η2

N2 − nT − nH

N2

With the above transition probabilities the master equation for the probability P (n, t)
to observe the system in the state n at time t, may be written as

d
dt

P (n, t) = T (n∣nT + 1, nRT
− 1, nH)P (nT + 1, nRT

− 1, nH , t)
+T (n∣nT − 1, nRT

+ 1, nH)P (nT − 1, nRT
+ 1, nH , t)

+T (n∣nT + 1, nRT
, nH − 1)P (nT + 1, nRT

, nH − 1, t)
+T (n∣nT + 1, nRT

, nH)P (nT + 1, nRT
, nH , t)

+T (n∣nT − 1, nRT
, nH)P (nT − 1, nRT

, nH , t)
+T (n∣nT , nRT

, nH + 1)P (nT , nRT
, nH + 1, t)

+T (n∣nT , nRT
, nH − 1)P (nT , nRT

, nH − 1, t)
−[T (nT − 1, nRT

+ 1, nH ∣n) + T (nT + 1, nRT
− 1, nH ∣n)

+T (nT − 1, nRT
, nH + 1∣n) + T (nT − 1, nRT

, nH ∣n)
+T (nT + 1, nRT

, nH ∣n) + T (nT , nRT
, nH − 1∣n)

+T (nT , nRT
, nH + 1∣n)]P (n, t) (3.9)

Multiplying both sides of equation (3.9) by nX , summing over all states, and remem-
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bering that by de�nition ⟨nx⟩ = ∑n nXP (n, t), we obtain
d
dt

⟨nT ⟩ =− α ⟨nT

N2

N1 − nRT

N1

⟩ −( γ + σ) ⟨nH

N2

nT

N2

⟩ − δ1 ⟨nT

N2

⟩
+β ⟨N2 − nT − nH

N2

nRT

N1

⟩ + η1 ⟨N2 − nT − nH

N2

⟩
d
dt

⟨nRT
⟩ = α ⟨nT

N2

N1 − nRT

N1

⟩ − β ⟨N2 − nT − nH

N2

nRT

N1

⟩
d
dt

⟨nH⟩ = γ ⟨nH

N2

nT

N2

⟩ + η2 ⟨N2 − nT − nH

N2

⟩ − δ2 ⟨nH

N2

⟩
In the limit N1,N2 �→ ∞, we can replace ⟨nXnY ⟩ with ⟨nX⟩⟨nY ⟩, and ⟨nT ⟩/N2,⟨nRT ⟩/N1, ⟨nH⟩/N2 become the deterministic variablesφT ,φRT andφH of themean–
�eld system

d
dτ

φT = −α̂φT (1 − φRT
) + β̂φRT

(1 − φT − φH)
−(1 + σ̂)φHφT − δ̂1φT + η̂1(1 − φT − φH) (3.10)

d
dτ

φRT
= c [α̂φT (1 − φRT

) − β̂φRT
(1 − φT − φH)] (3.11)

d
dτ

φH = φHφT + η̂2(1 − φT − φH) − δ̂2φH (3.12)

where c = N2/N1. In the previous equations we have absorbed the parameter γ in
the de�nition of the rescaled time τ = tγ/N2 and introducing additionally α̂ = α/γ,
β̂ = β/γ, σ̂ = σ/γ, δ̂1 = δ1/γ, η̂1 = η1/γ, δ̂2 = δ2/γ, η̂2 = η2/γ.

Having speci�ed themathematical context that de�nes the problem at hand, we can
proceed following two di�erent, tough complementary, approaches. On the one hand
one can simulate the full stochastic process, via the celebrated Gillespie algorithm. On
the other, analytical tools can be invoked to grasp the essential traits of the underlying
dynamics.

Stochastic e�ects fade o� for an in�nite population amount and the system of equa-
tions (3.1)–(3.8) tends to its deterministic mean–�eld solution, as remarked above. For
a moderate number of individuals, the intrinsic noise due to the discrete nature of the
individuals can instead play an important role. In some cases, indeed, the stochastic
process may results in large persistent �uctuations which, with reference to this speci�c
case, can drive signi�cant repercussion on e.g. the e�ect of a chosen pharmacologi-
cal therapy. As we stated in the introductory section, cycles do emerge at the level of
the electric brain activity, as registered via the ERPs for patients under pharmacological
treatment. �e claim substantiated in [66] is that such oscillatory behaviors might ap-
pear due to �nite size corrections to the mean–�eld dynamics, being hence intimately
related to the intrinsic molecular granularity. Di�erent qualitative patterns might be
associated to peculiar chemical properties of the drugs, an information which is here
incorporated into the assigned rates.

�e onset of these oscillations depends on the nature of the equilibrium points of the
mean–�eld equations. Finite size induced �uctuations may give rise to persistent cycles
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when the equilibrium point is a stable focus: Intrinsic noise perturbs the systems, and
prevents it from approaching its natural asymptotic solution, via damped oscillations.
Under this condition, a resonance may develop which yields to oscillations at a given,
dynamically selected, frequency4. Aiming at identifying the necessary condition for
these oscillatory regimes to develop about the mean–�eld equations (3.10)–(3.12), one
needs to single out the parameters’ values which correspond to complex eigenvalues of
the Jacobian matrix associated to the mean–�eld systems. In our case the elements of
the Jacobian matrix reads

J11(φ∗) =− α̂(1 − φ∗
RT

) − β̂φ∗
RT

− (1 + σ̂)φ∗
H − δ̂1 − η̂1

J12(φ∗) = α̂φ∗
T + β̂(1 − φ∗

T − φ∗
H)

J13(φ∗) =− β̂φ∗
RT

− (1 + σ̂)φ∗
T − η̂1

J21(φ∗) = c[α̂(1 − φ∗
RT

) + β̂φ∗
RT

]
J22(φ∗) =− c[α̂φ∗

T + β̂(1 − φ∗
T − φ∗

H)]
J23(φ∗) = cβ̂φ∗

RT

J31(φ∗) = φ∗
H − η̂2

J32(φ∗) = 0

J33(φ∗) = φ∗
T − η̂2 − δ̂2 (3.13)

where φ∗ = (φ∗
T ,φ∗

RT ,φ∗
H) denotes the equilibrium point of system (3.10)–(3.12). To

analytically addressing the full problem proves rather cumbersome. For this reason,
in the next section, we start by discussing a simpler case study, and eventually move
towards the general settings.

3.2 On the case with η̂2 = 0: Neglecting the inward migration of inactive molecules

Molecules of species H can appear the region of the interaction, as resulting from
two independent mechanisms: Di�usion may occur as prescribed by equation (3.8) as
well as chemical inactivation (3.4). Imagine this latter to dominate over the former, an
assumption which we here exempli�es by setting to zero themigration contribution, i.e.
η2 = 0. �is working ansatz enables us to write down closed analytical expressions for
the two equilibrium points φ∗

1
and φ∗

2
. A straightforward algebraic manipulation leads

to:

φ∗
1
= ( η̂1

δ̂1 + η̂1

,
α̂η̂1

β̂δ̂1 + α̂η̂1

,0)
φ∗

2
= ⎛
⎝δ̂2,

α̂[δ̂2(1 + σ̂) + η̂1]
α̂[δ̂2(1 + σ̂) + η̂1] + β̂[(1 + σ̂)(1 − δ̂2) + δ̂1] ,

η̂1(1 − δ̂2) − δ̂1δ̂2

δ̂2(1 + σ̂) + η̂1

⎞
⎠

4 �e importance of this, rather general, property is being addressed in [6, 7] and will be touched upon in
the forthcoming discussion.
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As previously mentioned, a stability analysis represents the �rst mandatory step to
identifying the parameters range which yields to the oscillations. As concerns φ∗

1
, one

can easily calculate the three eigenvalues λi (i = 1,2,3) of J(φ∗
1
) which respectively

reads:

λ1 = η̂1

η̂1 + δ̂1

− δ̂2

λ2,3 = −[η̂1 + δ̂1 + α̂β̂(η̂1+δ̂1)
α̂η̂1+β̂δ̂1

+ c α̂η̂1+β̂δ̂1

η̂1+δ̂1
] ±√

D1

2

where

D1 = (η̂1 + δ̂1)2
⎡⎢⎢⎢⎣1 + α̂2β̂2(c2 + 1)

(α̂η̂1 + β̂δ̂1)2
+ 2α̂β̂(1 − c)

α̂η̂1 + β̂δ̂1

⎤⎥⎥⎥⎦ + 2cα̂β̂

Eigenvalues λ2 and λ3 are always real and negative, so that φ∗
1
is globally stable if

λ1 < 0, a condition which immediately translates into:

δ̂2 > η̂1

η̂1 + δ̂1

(3.14)

�e stability of the second equilibrium point φ∗
2
cannot be handled analytically and

it is hence carried out numerically. To this end we notice that the characteristic polyno-
mial associated to the Jacobian matrix (3.13) is a cubic equation of the type:

aλ3 + bλ2 + cλ + d = 0 (3.15)

a, b, c being implicit function of the relevant chemical parameters. One can hence intro-
duce the so called discriminant∆ de�ned as∆ = −4b3d+b2c2−4ac3+18abcd−27a2d2.
It is well known that the cubic equation admits a pair of complex conjugate roots if
∆ < 0. One can then scan over the available parameters space, looking those combi-
nation which implies a negative discriminant, namely the potential signature of an os-
cillatory stochastic dynamics. In the next subsections we shall report on our numerical
and analytical �ndings.

3.2.1 Considering the case δ̂1 = η̂1

In the proposedmodel, chemical reactions (3.5) and (3.6) stem for the local di�usion
from the inspected target region. As a�rst working hypothesis, one can equate incoming
and outgoing contributions and hence assume the simplifying setting where δ̂1 = η̂1. In
practice this amount to sampling the interesting parameter region along a preferential
direction.

Under this assumption, we set down to study the sign of the discriminant∆ associ-
ated to φ∗

2
, when scanning the plane (δ̂1, δ̂2) for �xed N1, N2, α̂, β̂ and σ̂ (values as in

the caption of Fig. 3.2).�e colored region shown in Fig. 3.2 corresponds to pair(δ̂1, δ̂2)
which yields to complex eigenvalues of the Jacobian J(φ∗

2
). �e colorcode refers to the

(absolute) values of the corresponding complex eigenvalues. A visual inspection allows
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and outgoing contributions and hence assume the simplifying setting where δ̂1 = η̂1. In
practice this amount to sampling the interesting parameter region along a preferential
direction.

Under this assumption, we set down to study the sign of the discriminant∆ associ-
ated to φ∗
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Figure 3.2: We report a projection of the admissible parameter space: Here δ̂1 and δ̂2 are allowed to
vary. η̂1 also changes under the constraint η̂1 = δ̂1.� e other parameters are kept� xed: α̂ = 0.9,
β̂ = 0.6, σ̂ = 0.5, η̂1 = δ̂1 and η̂2 = 0.� e number of simulated molecules is N1 = 4000, N2 = 9000.
Points falling in the colored region, are characterized by complex eigenvalues associated to the stable
equilibrium point φ∗

2
. �is implies an oscillatory (damped) convergence to� xed point. Colorcoding

measures the magnitude of the absolute value of the eigenvalues’ imaginary part.� e insert shows an
enlargement of the main panel to fully appreciate the region for δ̂1 > 1. A critical δ̂crit

2 exists where
complex eigenvalues are found for any δ1 amount.� e black line represents the theoretical prediction
(3.17) which accurately locates the singularity in the parameter space.

us to highlight two interesting features. First, we notice that for δ̂2 > 0.5, no values of
δ̂1 are found that satisfy the sought condition ∆ < 0. �is conclusion, reached on the
basis of a purely numerical evidence, is also con�rmed by a simple analytical argument
which is developed in the following. Consider the condition δ̂1 << 1, and so focus on
the le�most region of the plane in Fig.3. 2. Performing a power series expansion of∆
in δ̂1, and retaining only �rst order terms, one immediately obtains:

∆ = [cβ̂2(δ̂2 − 1)2 + cα̂2δ̂2
2 + α̂β̂(1 − 2c(δ̂2 − 1)δ̂2)]3

[β̂(δ̂2 − 1) − α̂δ̂2]2 ⋅ 4cδ̂1(2δ̂2 − 1) + O(δ̂2
1)

An exact calculation allows one to prove that ∆ is negative for δ̂2 < 0.5. Notice that
this conclusion holds for any chosen parameters’ setting and has to be regarded as a
general property of themodel at hand 5. It is worth emphasizing that condition δ̂2 > 0.5
also arises when looking for positive real eigenvalues associated to φ∗

1 : In other words
δ̂2 = 0.5 sets the frontier for the global stability of φ∗

1 , as it follows by inserting η̂1 = δ̂1

in equation (3.14).

5 Numerical simulations show that this result holds also when η̂1 ≠ δ̂1. More speci�cally, there are no
complex eigenvalues for δ̂2 > η̂1/(η̂1 + δ̂1).
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�e second aspect which is brought to our attention when analyzing the scenario
depicted in Fig.3. 2 has to do with the pronounced peak which emerges at a speci�c,
critical value of δ̂2. Let us label such a value with δ̂crit

2 and notice that it corresponds
to requiring ∆ < 0 ∀δ̂1. �is latter observation results in a straightforward strategy for
analytically evaluating δ̂crit

2 . We start by rearranging the expression of∆ as a fractional
polynomial of δ̂1. In formulae we get:

∆ = ∆num

∆den

= ∑14
i=0 aiδ̂

i
1

∑10
k=0 bkδ̂k

1

where the coe�cients ai and bk are de�ned as functions of the chemical parameters of
the model6.

Aiming at calculating δ̂crit
2 , one can consider δ̂1 large. Under this assumption,∆num ≃

a14δ̂
14
1 + a13δ̂

13
1 , which can be cast in the explicit form:

∆num

δ̂13
1

≃ −4(α̂ + β̂)3 [−1 + 2(1 + cα̂ + cβ̂)δ̂2] [2c2β̂3δ̂2
2

+2cβ̂2δ̂2 (4δ̂2 − 7 − δ̂1 + α̂(−2 + 3cδ̂2) − 8σ̂ + 6δ̂2σ̂)
+α̂(δ̂1(1 − 2δ̂2 − 2cα̂δ̂2) + σ̂ + 2δ̂2

2(−10 − 8cα̂ + c2α̂2

− 8σ̂ − 6cα̂σ̂) − 2δ̂2(−5 + cα̂ − 3σ̂ + 2cα̂σ̂))
+ β̂ (2cα̂2δ̂2(3cδ̂2 − 2) −( 2δ̂2 − 1)(4 + δ̂1 + 2δ̂2 + 5σ̂)
− 4α̂(−1 + 2cδ̂2

2 + δ̂2(2 + 4c + cδ̂1 + 5cσ̂)))]

As clearly displayed in Fig. 3.2, the boundaries of the two curves which enclose the do-
main for∆ > 0, tend to merge asymptotically (δ̂crit

2 →∞) and approach the horizontal
line that goes through δ̂crit

2 . As the aforementioned boundaries are found by imposing
the discriminant to zero, we argue that δ̂crit

2 can be estimated by setting ∆ = 0 in the
limit for large δ̂1 amount. �is fact is also con�rmed by looking at the inset of Fig. 3.2:
As δ̂1 is increased the imaginary part of the eigenvalues progressively reduces (the color
contrast fades), which again implies ∆ → 0. In formulae, equating expression (3.16) to

6 �e explicit expressions of coe�cients ai and bk has been worked out with Mathematica and involve
hundreds of terms. It is hence not explicitly reported in the body of the paper but can be supplied upon
request.
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depicted in Fig.3. 2 has to do with the pronounced peak which emerges at a speci�c,
critical value of δ̂2. Let us label such a value with δ̂crit

2 and notice that it corresponds
to requiring ∆ < 0 ∀δ̂1. �is latter observation results in a straightforward strategy for
analytically evaluating δ̂crit

2 . We start by rearranging the expression of∆ as a fractional
polynomial of δ̂1. In formulae we get:

∆ = ∆num

∆den

= ∑14
i=0 aiδ̂

i
1

∑10
k=0 bkδ̂k

1

where the coe�cients ai and bk are de�ned as functions of the chemical parameters of
the model6.

Aiming at calculating δ̂crit
2 , one can consider δ̂1 large. Under this assumption,∆num ≃

a14δ̂
14
1 + a13δ̂

13
1 , which can be cast in the explicit form:

∆num

δ̂13
1

≃ −4(α̂ + β̂)3 [−1 + 2(1 + cα̂ + cβ̂)δ̂2] [2c2β̂3δ̂2
2

+2cβ̂2δ̂2 (4δ̂2 − 7 − δ̂1 + α̂(−2 + 3cδ̂2) − 8σ̂ + 6δ̂2σ̂)
+α̂(δ̂1(1 − 2δ̂2 − 2cα̂δ̂2) + σ̂ + 2δ̂2

2(−10 − 8cα̂ + c2α̂2

− 8σ̂ − 6cα̂σ̂) − 2δ̂2(−5 + cα̂ − 3σ̂ + 2cα̂σ̂))
+ β̂ (2cα̂2δ̂2(3cδ̂2 − 2) −( 2δ̂2 − 1)(4 + δ̂1 + 2δ̂2 + 5σ̂)
− 4α̂(−1 + 2cδ̂2

2 + δ̂2(2 + 4c + cδ̂1 + 5cσ̂)))]

As clearly displayed in Fig. 3.2, the boundaries of the two curves which enclose the do-
main for∆ > 0, tend to merge asymptotically (δ̂crit

2 →∞) and approach the horizontal
line that goes through δ̂crit

2 . As the aforementioned boundaries are found by imposing
the discriminant to zero, we argue that δ̂crit

2 can be estimated by setting ∆ = 0 in the
limit for large δ̂1 amount. �is fact is also con�rmed by looking at the inset of Fig. 3.2:
As δ̂1 is increased the imaginary part of the eigenvalues progressively reduces (the color
contrast fades), which again implies ∆ → 0. In formulae, equating expression (3.16) to

6 �e explicit expressions of coe�cients ai and bk has been worked out with Mathematica and involve
hundreds of terms. It is hence not explicitly reported in the body of the paper but can be supplied upon
request.

�
�

�
�

�
�

�
�

Role of �uctuations in the experienced pain perception 49

zero and solving for δ̂1 yields:

δ̂1 = 1
(α̂ + β̂)(−1 + 2δ̂2 + 2cα̂δ̂2 + 2cβ̂δ̂2)
×(4β̂ + 4α̂β̂ + 10α̂δ̂2 − 2cα̂2δ̂2 − 6β̂δ̂2 − 8α̂β̂δ̂2

−16cα̂β̂δ̂2 − 4cα̂2β̂δ̂2 − 14cβ̂2δ̂2 − 4cα̂β̂2δ̂2 − 20α̂δ̂2
2

−16cα̂2δ̂2
2 + 2c2α̂3δ̂2

2 − 4β̂δ̂2
2 − 8cα̂β̂δ̂2

2 + 6c2α̂2β̂δ̂2
2

+8cβ̂2δ̂2
2 + 6c2α̂β̂2δ̂2

2 + 2c2β̂3δ̂2
2 + α̂σ̂ + 5β̂σ̂ + 6α̂δ̂2σ̂

−4cα̂2δ̂2σ̂ − 10β̂δ̂2σ̂ − 20cα̂β̂δ̂2σ̂ − 16cβ̂2δ̂2σ̂

− 16α̂δ̂2
2 σ̂ − 12cα̂2δ̂2

2 σ̂ + 12cβ̂2δ̂2
2 σ̂) (3.16)

Large value of δ̂1, i.e. the asymptotic condition we eventually wish to recover, are ob-
tained by setting the above denominator to zero, which immediately implies:

δ̂crit
2 = 1

2 [1 + c(α̂ + β̂)] (3.17)

�e above prediction is plotted in Fig. 3.2 and proves accurate in interpreting the nu-
merics. As a� nal remark, we stress that, though calculated with reference to a speci�c
selection of the involved parameters, the patterns displayed in Fig.3. 2 are typical for
the model under scrutiny. In particular, the dependence of equation (3.17) on both α̂

and β̂ has been tested in a dedicated series of simulations which con�rmed its excellent
predictive adequacy.

3.2.2 Mean �eld vs. stochastic numerical computations

Numerical simulations of both the the mean–�eld equations and the original sto-
chastic model are performed and compared to the scenario depicted above.

Figure3. 3 shows a typical simulation for a set of parameters which is predicted to
yield complex eigenvalues of J(φ∗

2
). Dashed lines in panels (a)–(c) represent the nu-

merical solution of system (3.10)–(3.12): �e mean–�eld equations exhibit damped os-
cillationswhen approaching the equilibriumpointφ∗

2
. Panel (d) reports a typicalmean–

�eld trajectory projected in the (φT ,φRT ) plane: φ∗
2
is indeed a stable focus, as one can

appreciate visually.
Alternatively, one can perform a full stochastic simulation based on chemical equa-

tions (3.1)–(3.8). �is is achieved through the Gillespie algorithm introduced in ap-
pendix A, which is equivalent to solving the underlying master equation (3.9). At vari-
ance with the mean–�eld system, which formally holds for N → ∞, stochastic sim-
ulations (continuous lines in Fig.3.3 ) display large and persistent oscillations about
the stationary state. �ese oscillations emerge due to the discreteness of the simulated
medium and are hence a typical �nite size e�ect, which is deliberately forgotten in the
realm of deterministic approaches.

�e qualitative comparison between mean–�eld and full stochastic solutions points
to the importance of properly accounting for the e�ect of granularity in any sensible
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Figure 3.3: Panels (a)–(c) represent a typical solution of the mean–�eld system (dashed blue line)
and the stochastic simulation (continuous magenta line). Panel (d) shows the projection of the above
solution onto the plane (φT ,φRT ). Parameters used in the simulations are N1 = 4000, N2 = 9000,
α̂ = 0.9, β̂ = 0.6, σ̂ = 0.5, δ̂1 = η̂1 = 0.01 and δ̂2 = 0.2.

biomedical model. Traditional pharmacology, in fact, takes the mean–�eld viewpoint
and cannot reproduce those collective behavior that might develop as an instability
driven by the stochastic component to the dynamics. As imagined in our model, os-
cillations in the number of RT molecules re�ect in a modulation of the experienced
perception of pain (and of the associated electrical indicators).

As already stated, the request for a complex eigenvalue of the linearized dynamics
constitute a necessary condition for the existence of stochastic induced cycle. �e con-
trary is not a priori guaranteed and dedicated computation tools are to be put in place so
to access an estimate of the subset of parameters which might drive the resonant e�ect.
�is is for instance the case of the �nite N perturbative expansion pioneered by Van
Kampen. In the following section we revisit the main step of the derivation (already
discussed in [66]), and exploit the conclusion to gain some insight into the role played
by the parameters.
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and the stochastic simulation (continuous magenta line). Panel (d) shows the projection of the above
solution onto the plane (φT ,φRT ). Parameters used in the simulations are N1 = 4000, N2 = 9000,
α̂ = 0.9, β̂ = 0.6, σ̂ = 0.5, δ̂1 = η̂1 = 0.01 and δ̂2 = 0.2.

biomedical model. Traditional pharmacology, in fact, takes the mean–�eld viewpoint
and cannot reproduce those collective behavior that might develop as an instability
driven by the stochastic component to the dynamics. As imagined in our model, os-
cillations in the number of RT molecules re�ect in a modulation of the experienced
perception of pain (and of the associated electrical indicators).

As already stated, the request for a complex eigenvalue of the linearized dynamics
constitute a necessary condition for the existence of stochastic induced cycle. �e con-
trary is not a priori guaranteed and dedicated computation tools are to be put in place so
to access an estimate of the subset of parameters which might drive the resonant e�ect.
�is is for instance the case of the �nite N perturbative expansion pioneered by Van
Kampen. In the following section we revisit the main step of the derivation (already
discussed in [66]), and exploit the conclusion to gain some insight into the role played
by the parameters.
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3.2.3 Parameters for the resonance condition:� e large N expansion

�e conditions for the resonant instability reported in Fig. 3.3 are investigated via the
perturbative expansion, termed a�er Van Kampen [64, 67], which applies to moderate
value N of the population ensemble.

�e method relies on the introduction of new set of stochastic (and continuous)
variables, namely ξ = (ξT , ξRT

, ξRH
), related to their discrete homologous via

nT = N2φT (t) +√
N2ξT

nRT
= N1φRT

(t) +√
N1ξRT

nH = N2φH(t) +√
N2ξH

A new probability distributionΠ(ξ, τ) = P (n, t) can be hence de�ned which obeys to
the master equation (3.9) now re-written in term of the new variables. In doing this we
bring into the equation an explicit dependence on the amount of molecules (resp. N1

andN2). �is fact enables us to perform a perturbative analysis inspired to the seminal
work by Van Kampen [64], whereN−1

1 (Eq. N−1
2 ) plays the role of a small parameter. At

the lowest order of approximation, one recovers the deterministic mean–�eld equations
(3.10), see [66].

�e �rst technical point of the van Kampen expansion concerns the introduction of
the so–called shi� operators, E±1

T ,E±1
RT

,E±1
H which obey:

E±1
T f(n, t) = f(nT ± 1, nRT , nH)

E±1
RT

f(n, t) = f(nT , nRT ± 1, nH)
E±1

H f(n, t) = f(nT , nRT , nH ± 1) .

�e master equation (3.9) is hence cast in the form:

1
N2

∂Π
∂τ

− 1√
N2

d
dτ

φT
∂Π
∂ξT

− c−1√
N1

d
dτ

φRT

∂Π
∂ξRT

− 1√
N2

d
dτ

φH
∂Π
∂ξH

=
+ (E+1

T E−1
RT

− 1) [α(1 − φRT
− ξRT√

N1

)(φT + ξT√
N2

)Π]
+ (E−1

T E+1
RT

− 1) [β (φRT
+ ξRT√

N1

)(1 − φT − ξT√
N2

− φH − ξH√
N2

)Π]
+ (E+1

T E−1
H − 1) [γ (φT + ξT√

N2

)(φH + ξH√
N2

)Π]
+ (E+1

T − 1) [σ (φT + ξT√
N2

)(φH + ξH√
N2

)Π + δ1 (φT + ξT√
N2

)Π]
+ (E−1

T − 1) [η1 (1 − φT − ξT√
N2

− φH − ξH√
N2

)Π]
+ (E+1

H − 1) [δ2 (φH + ξH√
N2

)Π] (3.18)
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�e advantage of using the shi� operators relies in that they admit a simple expansion
in the limit for N1 (resp. N2) large:

E±1
T = 1 ±N−1/2

2

∂

∂ξT

+ 1
2
N−1

2

∂2

∂ξ2
T

±⋯ (3.19)

E±1
RT

= 1 ±N−1/2
1

∂

∂ξRT

+ 1
2
N−1

1

∂2

∂ξ2
RT

±⋯ (3.20)

E±1
H = 1 ±N−1/2

2

∂

∂ξH

+ 1
2
N−1

2

∂2

∂ξ2
H

±⋯ (3.21)

Plugging (3.19)–(3.21) into (3.18), a�er some algebraic manipulation, one recovers at the
leading order the mean–�eld equations, formally identical to the ones reported above,
see equations (3.10)–(3.12). �e next–to–leading order result in a Fokker Planck equa-
tion for the probability distribution Π(ξ, t):

∂Π
∂τ

= −∑
i

∂

∂ξi

(Ai(ξ)Π) + 1
2 ∑

ij

Bij
∂2Π

∂ξi∂ξj

(3.22)

whereAi(ξ) = ∑j Mijξi (hence linear in ξi). �e elements of the matrix M are

M11 = −α̂(1 − φ∗
RT

) − βφ∗
RT

− (1 + σ̂)φ∗
H − δ̂1 − η̂1

M12 = c1/2[α̂φ∗
T + β̂(1 − φ∗

T − φ∗
H)]

M13 = −β̂φ∗
RT

− (1 + σ̂)φ∗
T − η̂1

M21 = c1/2[α̂(1 − φ∗
RT

) + β̂φ∗
RT

]
M22 = −c[α̂φ∗

T + β̂(1 − φ∗
T − φ∗

H)]
M23 = c1/2β̂φ∗

RT

M31 = φ∗
H

M32 = 0
M33 = φ∗

T − δ̂2 (3.23)

while the noise correlation matrix B is symmetric and it is given by

B11 = α̂φ∗
T (1 − φ∗

RT
) + β̂φ∗

RT
(1 − φ∗

T − φ∗
H)

+(1 + σ̂)φ∗
T φ∗

H + δ̂1φ
∗
T + η̂1(1 − φ∗

T − φ∗
H)

B12 = −c1/2[α̂φ∗
T (1 − φ∗

RT
) + β̂φ∗

RT
(1 − φ∗

T − φ∗
H)]

B13 = −φ∗
T φ∗

H

B22 = c[α̂φ∗
T (1 − φ∗

RT
) + β̂φ∗

RT
(1 − φ∗

T − φ∗
H)]

B23 = 0
B33 = φ∗

T φ∗
H + δ̂2φ

∗
H (3.24)

Here we have set ξ1 = ξT , ξ2 = ξRT
, ξ3 = ξH . In principle, by solving equation (3.22) one

can quantify the deviation from the idealmean–�eld dynamics. Aswe aim at elucidating
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�e advantage of using the shi� operators relies in that they admit a simple expansion
in the limit for N1 (resp. N2) large:

E±1
T = 1 ±N−1/2

2

∂

∂ξT

+ 1
2
N−1

2

∂2

∂ξ2
T

±⋯ (3.19)

E±1
RT

= 1 ±N−1/2
1

∂

∂ξRT

+ 1
2
N−1

1

∂2

∂ξ2
RT

±⋯ (3.20)

E±1
H = 1 ±N−1/2

2

∂

∂ξH

+ 1
2
N−1

2

∂2

∂ξ2
H

±⋯ (3.21)

Plugging (3.19)–(3.21) into (3.18), a�er some algebraic manipulation, one recovers at the
leading order the mean–�eld equations, formally identical to the ones reported above,
see equations (3.10)–(3.12). �e next–to–leading order result in a Fokker Planck equa-
tion for the probability distribution Π(ξ, t):

∂Π
∂τ

= −∑
i

∂

∂ξi

(Ai(ξ)Π) + 1
2 ∑

ij

Bij
∂2Π

∂ξi∂ξj

(3.22)

whereAi(ξ) = ∑j Mijξi (hence linear in ξi). �e elements of the matrix M are

M11 = −α̂(1 − φ∗
RT

) − βφ∗
RT

− (1 + σ̂)φ∗
H − δ̂1 − η̂1

M12 = c1/2[α̂φ∗
T + β̂(1 − φ∗

T − φ∗
H)]

M13 = −β̂φ∗
RT

− (1 + σ̂)φ∗
T − η̂1

M21 = c1/2[α̂(1 − φ∗
RT

) + β̂φ∗
RT

]
M22 = −c[α̂φ∗

T + β̂(1 − φ∗
T − φ∗

H)]
M23 = c1/2β̂φ∗

RT

M31 = φ∗
H

M32 = 0
M33 = φ∗

T − δ̂2 (3.23)

while the noise correlation matrix B is symmetric and it is given by

B11 = α̂φ∗
T (1 − φ∗

RT
) + β̂φ∗

RT
(1 − φ∗

T − φ∗
H)

+(1 + σ̂)φ∗
T φ∗

H + δ̂1φ
∗
T + η̂1(1 − φ∗

T − φ∗
H)

B12 = −c1/2[α̂φ∗
T (1 − φ∗

RT
) + β̂φ∗

RT
(1 − φ∗

T − φ∗
H)]

B13 = −φ∗
T φ∗

H

B22 = c[α̂φ∗
T (1 − φ∗

RT
) + β̂φ∗

RT
(1 − φ∗

T − φ∗
H)]

B23 = 0
B33 = φ∗

T φ∗
H + δ̂2φ

∗
H (3.24)

Here we have set ξ1 = ξT , ξ2 = ξRT
, ξ3 = ξH . In principle, by solving equation (3.22) one

can quantify the deviation from the idealmean–�eld dynamics. Aswe aim at elucidating
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the emergence of regular cycles induced by stochasticity, it is convenient to map the
problem into an equivalent setting of Langevin type, which takes the explicit form:

dξi

dτ
= Ai(ξ) + ηi(τ) (3.25)

where the term ηi is a Gaussian noise with zero mean and with correlation given by

⟨ηi(τ)ηj(τ ′)⟩= Bijδ(τ − τ
′)

Here i, j = 1, . . . ,3 with 1 = T , 2 = RT and 3 = H .
To bring into evidence any possible oscillatory regime, we perform a Fourier anal-

ysis and calculate the associated power spectrum. Following [7], we take the Fourier
transform of (3.25) obtaining

−iωξ̃i(ω) =∑
j

Mij ξ̃j(ω) + η̃i(ω)
where we have denoted by the tilde the Fourier transform. Introducing the matrixΦ =−iωI −M , the previous relation may be written as

∑Φij(ω)ξ̃j(ω) = η̃i(ω) (3.26)

and the Fourier transform of ηi(ω) has the following correlation function

⟨η̃i(ω)ω̃j(ω′)⟩= Bij(2π)δ(ω + ω
′)

Equation (3.26) gives
ξ̃i(ω) =∑

j

Φ−1
ij η̃j(ω)

and averaging the squared modulus of ξ̃i(ω) we obtain the analytical expression of the
power spectrum

Pi(ω) =⟨∣ ξ̃i(ω)∣2⟩ =∑
j

∑
k

Φ−1
ij (ω)Bjk(Φ†

ij)−1(ω) (3.27)

where Φ†
ij(ω) = Φji(−ω).

Bound receptors might be assumed as quantifying the drug compound action: �e
largest the number of bound receptor, here labeledRT , the more e�ective the analgesic
in reducing the pain. �is is of course a simplistic picture which does not weight the
certainly relevant contribution associated to the subsequent cascade of reactions (signal
transduction) engendered by a successful binding event. As we shall be discussing in a
separate contribution, the model can be made more realistic by accounting for such an
additional e�ect.

Motivated by the willing of unraveling regular patterns in the population of bound
receptors, we calculate the power spectrum de�ned by (3.27) for the case of interest
i = 2. A�er some algebraic manipulations, P2(ω) can be put in the form of a fractional
polynomial of the type

P2(ω) = c0 + c2ω
2 + c4ω

4

d0 + d2ω2 + d4ω4 + d6ω6
(3.28)
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Figure 3.4: A subset of point (lighter region) is identi�ed which leads to an oscillatory behavior of the
acquired stochastic series for RT . Such a region is delimited on the basis of an analytical perturbative
treatment, see equation (3.27).

where ci and di depends on the parameters of the model and on the equilibrium point
φ∗

2

7. �is is a symmetric function with respect to the axis ω = 0, and goes to zero
when ω �→ ∞. At most two maxima (peaks) are possible, depending on the number
of real roots admitted by its derivative. Scanning the parameter space of Fig. 3.2 we
discover that only a subset of pairs (δ̂1, δ̂2) yielding to damped oscillations in themean
�eld regime, do admit a peak in P2(ω). �e (in principle possible) two peaked pro�le
is not being found within the explored parameters range.� e lighter region in Fig. 3.4
highlights the portion of space corresponding to the predicted oscillatory behavior for
RT .

To validate our �nding we turn to direct, Gillespie based, stochastic simulations and
choose the parameters that are expected to lead to a peaked power spectrum. �is latter
is calculated averaging over many independent stochastic runs and then compared to
the theoretical curve (3.27), in Fig.3. 5. A good agreement is found. �e existence of
a pick in the power spectrum implies that the concentration of bound receptors will
undergo signi�cant time oscillations induced by the grainess intrinsic to the medium
being simulated.

3.3 On the general case where η̂2 ≠ 0

Let us consider the general scenario where renewing ofH molecules is also allowed,
implying η̂2 ≠ 0. In this case the mean–�eld system (3.10)–(3.12) admits only one equi-

7 Also in this case we do not report the explicit expressions of the coe�cients ci and di as they do involve
hundreds of terms.
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Figure 3.4: A subset of point (lighter region) is identi�ed which leads to an oscillatory behavior of the
acquired stochastic series for RT . Such a region is delimited on the basis of an analytical perturbative
treatment, see equation (3.27).

where ci and di depends on the parameters of the model and on the equilibrium point
φ∗

2

7. �is is a symmetric function with respect to the axis ω = 0, and goes to zero
when ω �→ ∞. At most two maxima (peaks) are possible, depending on the number
of real roots admitted by its derivative. Scanning the parameter space of Fig. 3.2 we
discover that only a subset of pairs (δ̂1, δ̂2) yielding to damped oscillations in themean
�eld regime, do admit a peak in P2(ω). �e (in principle possible) two peaked pro�le
is not being found within the explored parameters range.� e lighter region in Fig. 3.4
highlights the portion of space corresponding to the predicted oscillatory behavior for
RT .

To validate our �nding we turn to direct, Gillespie based, stochastic simulations and
choose the parameters that are expected to lead to a peaked power spectrum. �is latter
is calculated averaging over many independent stochastic runs and then compared to
the theoretical curve (3.27), in Fig.3. 5. A good agreement is found. �e existence of
a pick in the power spectrum implies that the concentration of bound receptors will
undergo signi�cant time oscillations induced by the grainess intrinsic to the medium
being simulated.

3.3 On the general case where η̂2 ≠ 0

Let us consider the general scenario where renewing ofH molecules is also allowed,
implying η̂2 ≠ 0. In this case the mean–�eld system (3.10)–(3.12) admits only one equi-

7 Also in this case we do not report the explicit expressions of the coe�cients ci and di as they do involve
hundreds of terms.
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Figure 3.5: A plot of the power spectrum relative to species RT as a function of frequency ω.�e
symbols represent the pro�le calculated from 500 independent runs of the stochastic simulations,
while the solid line stands for the theoretical prediction based on equation (3.27). Parameters are
those listed in the caption of Fig. 3.3.

librium point φ∗ = (φ∗
T ,φ∗

H ,φ∗
RT ) with:

φ∗
T = (1 + σ̂)η̂2 + η̂1 −D1

2 [(1 + σ̂)η̂2 + δ̂1 + η̂1]
φ∗

H = (1 + σ̂)η̂2 + η̂1 +D1

2 [(1 + σ̂)(δ̂2 + η̂2) + η̂1]
φ∗

RT =
⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 − β̂α̂−1 [(1 + σ̂)δ̂2 − δ̂1][(1 + σ̂)η̂2 + η̂1 +D1]

[(1 + σ̂)(δ̂2 + η̂2) + η̂1] [D1 − (1 + σ̂)η̂2 − η̂1]
− 2β̂α̂−1δ̂1 [(1 + σ̂)(δ̂2 + η̂2) + η̂1]
[(1 + σ̂)(δ̂2 + η̂2) + η̂1] [D1 − (1 + σ̂)η̂2 − η̂1]

⎫⎪⎪⎪⎬⎪⎪⎪⎭
−1

where

D1 = −δ̂1δ̂2 − η̂1δ̂2 − δ̂1η̂2 +
√

A2 + 4η̂2δ̂1 [(1 + σ̂)(δ̂2 + η̂2) + η̂1]
and A = (1 + σ̂)η̂2 + η̂1 − δ̂1δ̂2 − η̂1δ̂2 − δ̂1η̂2.

Also in this case we are interested in studying the emergence of cycles and so we
follow the procedure outlined above. Due to technical di�culties in carrying out alge-
braic manipulations within the generalized formulation, we proceed with a numerically
assisted investigation. It shall be however emphasized that the van Kampen calculation
can be straightforwardly extended to the case where η̂2 ≠ 0. �is case, in fact, is imme-
diately recovered by replacingM31 → M31 − η̂2 and M33 → M33 − η̂2 in matrix (3.23),
and B33 → B33 + η̂2(1 − φ∗

T − φ∗
H) in matrix 3.24. Analytical prediction for the peak
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(a) (b) (c)

Figure 3.6: Scanning the parameters space (δ̂1, δ̂2): Dark patches are associated to complex eigenvalues
for φ∗, while a lighter color is used to trace the subdomain where a peaked power spectrum is found
for the RT species. Here N1 = 4000, N2 = 9000, α̂ = 0.9, β̂ = 0.6, σ̂ = 0.5, η̂1 = δ̂1, η̂2 = 0.000001
for panel (a), η̂2 = 0.001 for panel (b), and η̂2 = 0.0099 for panel (c). We notice that also in this case
the numerically calculated power spectrum is correctly interpolated by the theoretical curve obtained
within the van Kampen expansion (data not shown).

pro�le are hence obtained and here used to discriminate the parameters’ values which
lead to an ampli�cation of the stochastic oscillations. �e results of this study are dis-
cussed in the following: First we start by considering, η̂1 = δ̂1, in analogy with the above
analysis. �en we relax this latter condition and allow η̂1, η̂2, δ̂1, δ̂2 to change freely.

3.3.1 Assuming η̂1 = δ̂1

To make contact with the analysis of Section 3.2.1 we start by imposing η̂1 = δ̂1. Us-
ing the explicit van Kampen prediction for the power spectrum pro�le, we scanned the
parameter plan (δ̂1, δ̂2), looking for the presence of a peaked pro�le. Results are dis-
played in 3.6 where three di�erent values of the η̂2 are being considered. Dark patches
identify regionwhere complex eigenvalues are found for the dynamics linearized around
φ∗. �e superimposed lighter domains de�ne instead the parameters’ range where a
peak is observed for the power spectrum relative to the molecules of typeRT .

For small values of η̂2, the obtained diagrams resembles pretty closely that reported
in Fig. 3.6. Increasing the value of η̂2, the region which yields to complex eigenvalues
expands, while the subdomain corresponding to a cyclic dynamics shrinks.

3.3.2 General case

As anticipated we now consider the general setting where the parameters η̂1, η̂2, δ̂1,
δ̂2 can be independently adjusted. Results are reported in Fig. 3.7, where now a three
dimensional plot is introduced. �e other reaction parameters are frozen to the val-
ues employed before.� e qualitative conclusions reached holds, however, in general, as
con�rmed by a campaign of simulations, not reported here. A signi�cant, densely con-
nected, region of the parameter space is systematically detected for which oscillations
induced by the stochastic component of the dynamics are present.

Panels (d)–(f) represents the projections of the three–dimensional plots on the plane
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(a) (b) (c)

Figure 3.6: Scanning the parameters space (δ̂1, δ̂2): Dark patches are associated to complex eigenvalues
for φ∗, while a lighter color is used to trace the subdomain where a peaked power spectrum is found
for the RT species. Here N1 = 4000, N2 = 9000, α̂ = 0.9, β̂ = 0.6, σ̂ = 0.5, η̂1 = δ̂1, η̂2 = 0.000001
for panel (a), η̂2 = 0.001 for panel (b), and η̂2 = 0.0099 for panel (c). We notice that also in this case
the numerically calculated power spectrum is correctly interpolated by the theoretical curve obtained
within the van Kampen expansion (data not shown).

pro�le are hence obtained and here used to discriminate the parameters’ values which
lead to an ampli�cation of the stochastic oscillations. �e results of this study are dis-
cussed in the following: First we start by considering, η̂1 = δ̂1, in analogy with the above
analysis. �en we relax this latter condition and allow η̂1, η̂2, δ̂1, δ̂2 to change freely.

3.3.1 Assuming η̂1 = δ̂1

To make contact with the analysis of Section 3.2.1 we start by imposing η̂1 = δ̂1. Us-
ing the explicit van Kampen prediction for the power spectrum pro�le, we scanned the
parameter plan (δ̂1, δ̂2), looking for the presence of a peaked pro�le. Results are dis-
played in 3.6 where three di�erent values of the η̂2 are being considered. Dark patches
identify regionwhere complex eigenvalues are found for the dynamics linearized around
φ∗. �e superimposed lighter domains de�ne instead the parameters’ range where a
peak is observed for the power spectrum relative to the molecules of typeRT .

For small values of η̂2, the obtained diagrams resembles pretty closely that reported
in Fig. 3.6. Increasing the value of η̂2, the region which yields to complex eigenvalues
expands, while the subdomain corresponding to a cyclic dynamics shrinks.

3.3.2 General case

As anticipated we now consider the general setting where the parameters η̂1, η̂2, δ̂1,
δ̂2 can be independently adjusted. Results are reported in Fig. 3.7, where now a three
dimensional plot is introduced. �e other reaction parameters are frozen to the val-
ues employed before.� e qualitative conclusions reached holds, however, in general, as
con�rmed by a campaign of simulations, not reported here. A signi�cant, densely con-
nected, region of the parameter space is systematically detected for which oscillations
induced by the stochastic component of the dynamics are present.

Panels (d)–(f) represents the projections of the three–dimensional plots on the plane
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Figure 3.7: Analyzing the three–dimensional parameters space (δ̂1, δ̂2, η̂1). Dark domain is associated
to complex eigenvalues for φ∗, while the lighter region represents the subset where oscillations in the
RT time series are present. Here N1 = 4000, N2 = 9000, α̂ = 0.9, β̂ = 0.6, σ̂ = 0.5, η̂1 = δ̂1,
η̂2 = 0.000001 for panel (a) and (b), η̂2 = 0.001 for panel (c) and (d), η̂2 = 0.0099 for panel (e) and
(f).

δ̂1η̂1. Oscillations in the number of bound receptors are frequently occurring when
η̂1 > δ̂1, a condition that corresponds to having the incoming rate of active species,
larger than the associated removal probability. In other words, translating this conclu-
sion into a sound medical interpretation, we might be inclined to expect large oscilla-
tions in the experienced perception of pain when exceedinglymassive doses of analgesic
are administered. To illustrate the phenomenon, we report in Fig. 3.8 a typical stochastic
simulation, together with the corresponding mean–�eld solution.

Indeed, the above discussion applies to relatively large population amount. When
instead N2 gets smaller (the threshold being sensitive to the actual value of η̂2), the
system approaches a so called absorbing boundary, and the van Kampen ansatz breaks
down. More speci�cally, the system switches between the two attractive states of the dy-
namics (the stationary stateφ∗, and the equilibriumpointφ∗

1
characteristic of themodel

for η̂2 = 0), the number of H molecule becoming occasionally zero. �is process is re-
sponsible for continuous, thoughunpredictable swing in the number of bound receptor,
yet another dynamical regimes where analgesic might prove substantially ine�ective.
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Figure 3.8: Comparison of stochastic simulations (solid lines) and the mean–�eld numerical solution
(dashed line). Parameters used for the simulations areN1 = 1000,N2 = 9000, α̂ = 0.1, β̂ = 1.67⋅10−2 ,
σ̂ = 0.2, η̂1 = 6.67 ⋅ 10−3 , η̂2 = 3.33 ⋅ 10−6 ,δ̂1 = 3.33 ⋅ 10−3 and δ̂2 = 0.27.

We notice that this is a general property of the model, which can be encountered also
in the simpli�ed settings discussed above. To report on this intriguing phenomenon we
represent in Fig. 3.10 two typical realizations (resp. for η̂1 ≠ δ̂1 and η̂1 = δ̂1 ) for which
it is found to occur.

As a �nal remark, let us stress that the process of signal transduction can be further
detailed by elaborating on the receptors activity, following the lines of [68]. It can be
shown (data not displayed) that themain conclusions here reached still hold under such
general, and more realistic, conditions.
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Figure 3.9: Comparison of stochastic simulations (solid lines) and the mean–�eld numerical solution
(dashed line). Parameters used for the simulations areN1 = 2000,N2 = 2500, α̂ = 0.1, β̂ = 1.67⋅10−2 ,
σ̂ = 0.2, η̂1 = 6.67 ⋅ 10−3, η̂2 = 3.33 ⋅ 10−6,δ̂1 = 3.33 ⋅ 10−3 and δ̂2 = 0.27.� e stochastic simulations
display a switching between the equilibrium point of the system and the trivial equilibrium point of
the system for η̂2 = 0. In this case, φ∗

1
= (0.667,0.923,0).
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Figure 3.8: Comparison of stochastic simulations (solid lines) and the mean–�eld numerical solution
(dashed line). Parameters used for the simulations areN1 = 1000,N2 = 9000, α̂ = 0.1, β̂ = 1.67⋅10−2 ,
σ̂ = 0.2, η̂1 = 6.67 ⋅ 10−3 , η̂2 = 3.33 ⋅ 10−6 ,δ̂1 = 3.33 ⋅ 10−3 and δ̂2 = 0.27.

We notice that this is a general property of the model, which can be encountered also
in the simpli�ed settings discussed above. To report on this intriguing phenomenon we
represent in Fig. 3.10 two typical realizations (resp. for η̂1 ≠ δ̂1 and η̂1 = δ̂1 ) for which
it is found to occur.

As a �nal remark, let us stress that the process of signal transduction can be further
detailed by elaborating on the receptors activity, following the lines of [68]. It can be
shown (data not displayed) that themain conclusions here reached still hold under such
general, and more realistic, conditions.
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Figure 3.9: Comparison of stochastic simulations (solid lines) and the mean–�eld numerical solution
(dashed line). Parameters used for the simulations areN1 = 2000,N2 = 2500, α̂ = 0.1, β̂ = 1.67⋅10−2 ,
σ̂ = 0.2, η̂1 = 6.67 ⋅ 10−3, η̂2 = 3.33 ⋅ 10−6,δ̂1 = 3.33 ⋅ 10−3 and δ̂2 = 0.27.� e stochastic simulations
display a switching between the equilibrium point of the system and the trivial equilibrium point of
the system for η̂2 = 0. In this case, φ∗

1
= (0.667,0.923,0).
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Figure 3.10: Comparison of stochastic simulations (solid lines) and the mean–�eld numerical solution
(dashed line). Parameters used for the simulations areN1 = 1000,N2 = 9000, α̂ = 0.1, β̂ = 1.67⋅10−2 ,
σ̂ = 0.2, η̂1 = δ̂1 = 3.33 ⋅ 10−3 , η̂2 = 3.33 ⋅ 10−7 and δ̂2 = 0.27.� e stochastic simulations display a
switching between the equilibrium point of the system and the trivial equilibrium point of the system
for η̂2 = 0. In this case, φ∗

1
= (0.5,0.86,0).
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Figure 3.10: Comparison of stochastic simulations (solid lines) and the mean–�eld numerical solution
(dashed line). Parameters used for the simulations areN1 = 1000,N2 = 9000, α̂ = 0.1, β̂ = 1.67⋅10−2 ,
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1
= (0.5,0.86,0).

�
�

�
�

�
�

�
�

Chapter4

A stochastic approach to the coupled parent drug and metabolite
dynamics

As outlined in the previous chapter, stochastic e�ects might be important when in-
terested at describing the interaction between molecules. In particular, we have so far
analyzed the interplay between analgesics and the corresponding target receptors. In
this chapter we take one loop forward by developing a model which includes the possi-
bility for the analgesic to undergo a biotransformation intometabolites, a distinct family
of molecules which competes with the parent drug for the same receptors. More specif-
ically, it is important to account for the peculiar role of di�erent metabolites, which
can arise from the genetic variability of the enzymes responsible for the biotransfor-
mation. �ese variations may substantially a�ect the individual response to the ther-
apy, as commonly experienced in the medical practice. Detecting genetic variations in
drug–metabolizing enzymes becomes e.g. essential for identifying individuals forwhich
adverse drug reactions to standard doses of certain medications are expected. Individ-
uals carrying cytochrome poor metabolizer variants exhibit di�erent pharmacokinet-
ics properties as compared to control subjects. As a result, non–conventional doses of
medications are to be eventually required so to sustain the involved cytochrome activity
for biotransformation. Conversely, medications that are not processed via cytochrome
biotransformation, can be preferentially selected for those patients with potentially im-
paired cytochrome metabolic capacity. Althoughwe here make speci�c reference to the
case of tramadol, the model here discussed is rather general and can be hence invoked
within other contexts wheremetabolization and ligand–receptors interactions do occur.

In the next sectionwe introduce the stochasticmodel in termof the associated chem-
ical equations. �e underlying master equation is also speci�ed. In section4. 2, we re-
cover the mean–�eld system which formally applies to the limit of in�nite microscopic
constituents. �e �xed points of the mean–�eld model are studied, as well as their as-
sociated stability. As we shall pinpoint in the following, depending on the chemical pa-
rameters the drug act with a di�erent degree of e�ectiveness, that we here quantify. Also,
the transient dynamics present intriguing features, that we bring into evidence. Section
4.3 is devoted to investigating the role of �uctuations which are analytically studied via
the van Kampen’s expansion already applied in the previous chapter. Numerical simu-
lations are performed to corroborate our �ndings.

Chapter�4
A�stochastic�approach�to�the�coupled�parent�drug�and�metabolite�
dynamics

Francesca Di Patti, Finite-Size Effects in Stochastic Models of Population Dynamics: Applications 
to Biomedicine and Biology, ISBN 978-88-8453-976-2 (print) ISBN 978-88-8453-917-5 (online) 
© 2010 Firenze University Press
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4.1 Description of the model

�e bloodstream in the vicinity of the target receptor is assumed to be populated by
two species of molecules, the parent drug tramadol and themain metabolite M1. Notice
that, in general, metabolization and binding events occur in di�erent parts of the body.
Di�usion between sequentially ordered compartments should be in principle consid-
ered. In the present formulation space is however not explicitly incorporated and the
reactions happen, according to their associated probability, within a unique bulk where
molecules are uniformly stirred. As anticipated the solely biological processes here ad-
dressed are hence themetabolization and the reversible chemical reactions between the
molecules and the free target receptors. As a side comment, we also emphasize that
competition with other molecular entities dispersed in the medium could be possibly
included in the picture. �is important aspects are discussed in [66, 69], as well as the
preceding chapter.

�e process of biotransformation through the cytochromes gives rise to themetabo-
lites. Herewe hypothesize that the cytochromes are present in great quantity in the body,
so thatmetabolization does not depend on their associated concentration, and proceeds
as a spontaneous transformation at constant rate. Denoting withT themolecule of tra-
madol, and assuming M to label the metabolite of type M1, the process of metaboliza-
tion is re–conducted to the following chemical reaction

T
α�→ M

where α is the reaction constant. �is is the parameter which quanti�es the ability of
the body to metabolize the drug and can be hence supposed to be intimately connected
to the genetic polymorphisms of the cytochrome CYP2D6.

Tramadol sailing in the bloodstream can eventually encounter a free target receptor,
herea�er labeled RF . Following a successful binding event the receptor RF changes
into an occupied element RT . In formulae:

T +RF
β1�→ RT

We further assume that during the binding the chemical properties ofT remain un-
altered. It may hence occasionally occur thatRT undergoes the inverse transformation
by realizing a, still active, T molecule. �is assumption translates into

RT
γ1�→ T +RF

�e two parameters β1 and γ1 are the constant reaction rates.
To complete themodel, we have to include the interaction between metabolites and

receptors. �e medical literature reports on the speci�city of tramadol and metabo-
lites to the di�erent classes of receptors involved in pain mechanism, and their role in
achieving analgesia. Here, we set down to consider a simpli�ed scenario, where the par-
ent drug and metabolite bind to the same type of receptors. More speci�cally, we shall
assume, in analogy with the above, the following reactions’ scheme forM :

M +RF
β2�→ RM

RM
γ2�→ M +RF
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Figure 4.1: Chemical equations and schematic representation of the model. A tramadol molecule (T )
turns into metabolite (M) with rateα, and it can bind to a free receptorRF with rate β1.� e sponta-
neous detachment of the compound RT occurs with rate γ1. Molecules of type M bind and unbind
to RF with rate β2 and γ2.

where now RM is the compound receptor–metabolite, and β2 and γ2 stand for the as-
sociated (forward and backward) rates.

�e cartoon in Fig. 4.1 depicts the reactions network that we imagine to characterize
our model.

How to quantify the sensation of pain within the proposed picture? As already re-
marked in chapter 3, we imagine that the more the bound receptors the less the ex-
perienced pain. In other words, the ideal condition where all available receptors were
screened by a pool of injected drug (T orM ) molecules, would correspond to achieving
complete analgesia. In future perspective themodel could be complemented by accom-
modating for the signal transduction pathway, and so accurately representing the neural
activity steps involved in the process.

Another comment is mandatory at this point. We have in fact deliberately decided
to disregard the elimination of tramadol and metabolites from the body. Elimination is
indeed crucial and leads to the� nal absorbing state where the concentration of T and
M are both zero. However, and being at present interested with elucidating the local
interaction of drugs and receptors, we hypothesized the elimination to proceed on a
di�erent (sensibly longer) time scale. Under this working assumption we do imagine to
focus on a sequence of snapshots of the (relatively faster) interaction dynamics, where
the global number of microscopic actors can be assumed as constant.

Moreover, we can certainly assume that the total number of receptors does not change
with time (degradation is also happening with a di�erent characteristic time). Denoting
with ni the number of molecules belonging to the i–th species, for i = T,M,RT ,RM ,
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RF , the following constrains are in conclusion put forward:

nT + nM + nRT
+ nRM

= N1

nRF
+ nRT

+ nRM
= N2

whereN1 represents the total number of molecules, whileN2 refers to the total number
of receptors. We can use these relations to express nRM

and nRF
in terms of the other

independent variables, namely nRM
= N1 − nT − nM − nRT

and nRF
= N2 − N1 +

nT + nM , so that the state of the system is given by the three dimensional vector n =(nT , nM , nRT
).

Within this framework, we are able to write the transition probabilities for the sys-
tem to go from initial state n to the �nal (allowed) state n′. Such a probability is la-
beled T (n′∣n). In our system only transitions from n to (nT −1, nM +1, nRT

), (nT ±
1, nM , nRT

∓ 1) and (nT , nM ± 1, nRT
) can take place. �e corresponding nonzero

T (n′∣n) entries are
T (nT − 1, nM + 1, nRT

∣n) = αnT

T (nT − 1, nM , nRT
+ 1∣n) = β1nT

(N2 −N1 + nT + nM)
N

T (nT , nM − 1, nRT
∣n) = β2nM

(N2 −N1 + nT + nM)
N

T (nT + 1, nM , nRT
− 1∣n) = 2γ1nRT

T (nT , nM + 1, nRT
∣n) = 2γ2(N1 − nT − nM − nRT

)
whereN = N1 +N2.

Transition probabilities allow us to write down amaster equation which governs the
time evolution of the probability P (n, t), namely the probability of having the system
in state n at time t. �e rate of change of P (n, t) is simply given by the sum of the
transitions towards n, minus the outward transitions propagating from that state. In
mathematical notation:

d
dt

P (n, t) = T (n∣nT + 1, nM − 1, nRT
)P (nT + 1, nM − 1, nRT

, t)
+T (n∣nT + 1, nM , nRT

− 1)P (nT + 1, nM , nRT
− 1, t)

+T (n∣nT , nM + 1, nRT
)P (nT , nM + 1, nRT

, t)
+T (n∣nT − 1, nM , nRT

+ 1)P (nT − 1, nM , nRT
+ 1, t)

+T (n∣nT , nM − 1, nRT
)P (nT , nM − 1, nRT

, t)
−[T (nT − 1, nM + 1, nRT

∣n) + T (nT − 1, nM , nRT
+ 1∣n)

+T (nT , nM − 1, nRT
∣n) + T (nT + 1, nM , nRT

− 1∣n)
+T (nT , nM + 1, nRT

∣n)]P (n, t) (4.1)

with null initial and boundary conditions.
We have by now formulated our discrete stochastic model and speci�ed the tran-

sition probabilities between the admissible states. �e (exact) master equation could
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be, in principle, solved to obtain a closed expression for the expected probability at
time t. �is task turns out impossible and one has to resort to approximate solution.
In �rst place, as discussed in the next section, the mean–�eld limit (namely N1 → ∞,
N2 →∞) is recovered following the standard procedure applied in the previous chapter.
�en �uctuations around the mean–�eld dynamics are considered via the perturbative
techniques.

4.2 �e deterministic limit

Multiplying both sides of equation (4.1) bynT and summing over all states, we obtain

d
dt

∑
n

nT P (n, t) =∑
n

[T (nT + 1, nM , nRT
− 1∣n)

− T (nT − 1, nM + 1, nRT
∣n) − T (nT − 1, nM , nRT

+ 1∣n)]P (n, t)
where the summation variables have been shi�ed to simplify the expression. Substitut-
ing in for the transition rates and remembering that by de�nition

∑
n

nT P (n, t) = ⟨nT ⟩
we have

d
dt

⟨nT ⟩ =− α⟨nT ⟩ − β1

N
⟨nT (N2 −N1 + nT + nM)⟩+ 2γ1⟨nRT

⟩ . (4.2)

Applying the same method to the two other variables, we obtain the following di�eren-
tial equations

d
dt

⟨nM⟩ = α⟨nT ⟩ − β2

N
⟨nM(N2 −N1 + nT + nM)⟩

+ 2γ2⟨N1 − nT − nM − nRT
⟩ (4.3)

d
dt

⟨nRT
⟩ = β1

N
⟨nT (N2 −N1 + nT + nM)⟩ − 2γ1⟨nRT

⟩ . (4.4)

In the limit N →∞ we can replace ⟨ninj⟩ =⟨ ni⟩⟨nj⟩ for every i, j in equations (4.2)–
(4.4). In this way ⟨ni⟩/N becomes the deterministic variable φi, and we can write the
mean–�eld system as:

d
dt

φT = −αφT − β1φT (σ + φT + φM) + 2γ1φRT

d
dt

φM = αφT + 2γ2(ϕ − φT − φM − φRT
) − β2φM(σ + φT + φM) (4.5)

d
dt

φRT
= β1φT (σ + φT + φM) − 2γ1φRT

where σ = (N2 −N1)/N and ϕ = N1/N .

A stochastic approach to the coupled parent drug and metabolite dynamics 65
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Figure 4.2: Metabolites and receptor densities as function of time. �e solid (red) lines represent the
stochastic simulationwhile the dashed (black) lines correspond to the numerical solution of themean–
�eld system. Parameters used are α = 0.12, β1 = 0.23, β2 = 0.33, γ1 = 0.4, γ2 = 0.35, N1 = 4500
and N2 = 2000.

Figure4. 2 shows the comparison between the stochastic behavior of the model and
the mean–�eld one, as calculated by numerical integration of equations (4.5), dashed
(black) line. �e continuous (red) line is a typical stochastic simulation obtained through
implementing the Gillespie algorithm (see appendix A). For each species, the two pro-
�les overlap well:� e approximate mean–�eld theory and the stochastic simulation
agree, a part from corrections due to the� niteness of the simulated medium. As T is
not continuously administered, its (number) concentration (as well that ofRT ) decays
to zero. Conversely, the densities of the other species settle down to a steady–state value.
�is latter value and its stability properties are calculated in the following, where simple
speculations on the medical relevance of our� ndings are also going to be addressed.

4.2.1 Analysis of the macroscopic equations

To �nd the equilibrium point of the macroscopic equations, we set the time deriva-
tive to zero in system (4.5) and solve, obtaining the point φ∗ = (0,φ∗

M ,0) where

φ∗
M = −(2γ2 + β2σ) +√(2γ2 + β2σ)2 + 8γ2ϕβ2

2β2

.

�e stability of this point can be deduced from the Jacobian matrix

J(φ∗) = ⎛⎜⎝
−α − β1σ − β1φ

∗
M 0 2γ1

α − 2γ2 − β2φ
∗
M −2γ2 − β2σ − 2β2φ

∗
M −2γ2

β1σ + β1φ
∗
M 0 −2γ1

⎞⎟⎠
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whose eigenvalues are

λ1 = −√(2γ2 + β2σ)2 + 8γ2ϕβ2 (4.6)

λ2,3 = −(2γ1 +α + β1σ + β1φ
∗
M) ±√(2γ1 +α + β1σ + β1φ∗

M)2 − 8γ1α

2
. (4.7)

�ese values are clearly negative and real, proving the system has a globally stable equi-
librium point.

As explained in section 4.1, we here assess the e�ectiveness of the pharmacological
treatment by measuring the number of bound receptors. However, recalling that the
initial dose of tramadol is completely metabolized at equilibrium, we shall be solely
interested with the quantity φ∗

RM
. To visualize the asymptotic stage of the evolution we

refer to the plan (φRF
,φRM

) and therein trace the bisectrix (dashed line in Fig. 4.3a).
Above the diagonal, φ∗

RM > φ∗
RF , the drug works better and the patient experience less

pain. Such a condition realizes if

N1 > β2 + 4γ2

2(β2 − 2γ2)N2

and β2 > 2γ2. �is means that the forward binding rate for the metabolite must be (at
least) a factor two larger than the corresponding dissociation constant. Moreover, the
initial dose of administered drug has to be chosen so that N1 is larger than (at least)
N2/2.

As it is shown in Fig. 4.3a, the equilibrium point is con�ned on the line Nφ∗
RM

+
Nφ∗

RF
−N2 = 0, which also de�nes the sub–domain of the plane which can be visited

during the transient dynamics. Above that line in fact the positiveness of the variables
is guaranteed. In Fig. 4.3b we project the numerical solutions of the system (4.5) in
to the plane φ∗

RF
φ∗

RM
. �e trajectories of the mean–�eld equations evolve towards the

attractor. Starting from an arbitrary initial condition characterized by a generic value of
nRT

and nRM
, the system gets apparently trapped into a transient phase which displays

an almost constant number of bound receptors, sensibly di�erent from that eventually
achieved at equilibrium. Indeed, as testi�ed by Fig. 4.3b, the number of bound receptors
initially shrinks and only a�er, due to the action of newly injected chemicals, starts
growing to approach the �xed point. �is setting could correspond to mimicking the
condition where a patient is exposed to a treatment which closely follows a preceding
drug administration.

Furthermore, the characteristic time of equilibration can be estimated as the (abso-
lute value of the) inverse of the maximum eigenvalue (4.6)–(4.7). �is is an interesting
indicator as it quanti�es the ability of the system to eventually attain the asymptotic
condition where the largest number of receptors is occupied. �e data in Fig. 4.4 show
that the relaxation time decreases as the metabolization rate increases, thus suggesting
that the administered drug acts more rapidly for extensive.

4.3 �e van Kampen expansion

Corrections to themean–�eld dynamics can be calculated by resorting, with analogy
to chapter 3, to the van Kampen’s expansion. �e main idea is to write the variables ni
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Figure 4.3: Panel (a) reports the projection of the equilibrium point into the plane φRF φRM .� e two
domains separated by the bisectrix are respectively labeled less/more pain, according to the prescrip-
tions of the model (see main text)�e colored (yellow) region denotes the portion of the plane where
trajectories are not allowed. �e solid black line correspond to the conditionNφ∗

RM
+Nφ∗

RF
−N2 = 0

(hereN1 = 2000 and N2 = 5000)� e equilibrium point (black square) belongs to this line. Panel (b)
represents the projection of the trajectories on the plane φRF φRM for di�erent initial conditions. Pa-
rameters used for the numerical integration of the mean–�eld system areα = 0.7, β1 = 0.2, β2 = 0.9,
γ1 = 0.8, γ2 = 0.05, N1 = 2500 and N2 = 2000. Inset:� e time evolution of the total number
of bound receptors, , is reported.� e curve is traced with reference to one speci�c initial condition,
namely the red trajectory of the main panel.

as a sum of two contributions, namely ni = Nφi(t) + √
Nξi, where i = T,M,RT .

Hereφi stands for the deterministic component, while ξi relates to the �uctuations. �e
new probability distribution function Π is hence de�ned as Π(ξ, t) = P (n, t) where
ξ = (ξT , ξM , ξRT

). Moreover:

dP

dt
= ∂Π

∂t
−√

N ∑
i=T,M,RT

dφi

dt

∂Π
∂ξi

To simplify the notation, it is practice to rewrite the master equation (4.1) in terms of
step operators

E±1
T f(n, t) = f(nT ± 1, nM , nRT )

E±1
M f(n, t) = f(nT , nM ± 1, nRT )

E±1
RT

f(n, t) = f(nT , nM , nRT ± 1) .
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as a sum of two contributions, namely ni = Nφi(t) + √
Nξi, where i = T,M,RT .

Hereφi stands for the deterministic component, while ξi relates to the �uctuations. �e
new probability distribution function Π is hence de�ned as Π(ξ, t) = P (n, t) where
ξ = (ξT , ξM , ξRT

). Moreover:

dP

dt
= ∂Π

∂t
−√

N ∑
i=T,M,RT

dφi

dt

∂Π
∂ξi

To simplify the notation, it is practice to rewrite the master equation (4.1) in terms of
step operators

E±1
T f(n, t) = f(nT ± 1, nM , nRT )

E±1
M f(n, t) = f(nT , nM ± 1, nRT )

E±1
RT

f(n, t) = f(nT , nM , nRT ± 1) .
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Figure 4.4:�e color code (in logarithmic scale) refers to the slowest characteristic time of convergence
to equilibrium as calculated from the linearized dynamics. We here scan the parameter plan (α,β 2).
�e other parameters are chose as β1 = 0.3, γ1 = 0.5, γ2 = 0.1, N1 = 3000, N2 = 2500

�e master equation can be therefore cast in the form:

d
dt

P (n, t) = (E+1
T E−1

M − 1)αnT P (n, t)
+(E+1

T E−1
RT

− 1)β1

N
nT (N2 −N1 + nT + nM)P (n, t)

+(E+1
M − 1)β2

N
nM(N2 −N1 + nT + nM)P (n, t)

+(E−1
T E+1

RT
− 1)2γ1nRT

P (n, t)
+(E−1

M − 1)2γ2(N1 − nT − nM − nRT
)P (n, t) . (4.8)

�e operators E±1
i change ni inn±1 and so ξi in ξi±1. �ey hence admit the following

representation in terms of di�erential operators:

E±1
i = 1 ±N−1/2 ∂

∂ξi

+ 1
2
N−1 ∂2

∂ξ2
i

±⋯ . (4.9)

Substituting relation (4.9) into (4.8) and collecting contributions of order
√

N , one
recovers the mean–�eld system of coupled di�erential equations (4.5). Working out
the next–to–leading order, namelyN , one eventually obtains a Fokker Planck equation
(FPE) which characterizes the �uctuations around the asymptotic mean–�eld solution.
�e FPE reads:

∂Π
∂τ

= −∑
i

∂

∂ξi

(Ai(ξ)Π) + 1
2 ∑

ij

Bij
∂2Π

∂ξi∂ξj

(4.10)

where
A(iξ) =∑

j

Mijξj.
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�e entries of matrix M , herea�er mij , those of B, labeled bij , are function of the
chemical parameters of the model and read

m11 = −[α + 2β1φT + β1σ + β1φM ]
m12 = −β1φT

m13 = −2γ1

m21 = α − β2φM − 2γ2

m22 = 2β2φM + β2σ + β2φT + 2γ2

m23 = −2γ2

m31 = 2β1φT + β1σ + β1φM

m32 = β1φT

m33 = −2γ1 (4.11)

and

b11 = β1σφT + β1φ
2
T + β1φT φM +αφT + 2γ1φRT

b12 = −αφT

b13 = −[β1σφT + β1φ
2
T + β1φT φM + 2γ1φRT

]
b22 = β2φ

2
M + β2σφM + β2φMφT + 2γ2ϕ + (α − 2γ2)φT − 2γ2φM − 2γ2φRT

b23 = 0
b33 = β1φT σ + β1φ

2
T + β1φT φM + 2γ1φRT

(4.12)

Equation (4.10) can be solved explicitly: �e obtained probability distribution Π(ξ, t)
is a Gaussian and it is hence completely speci�ed by its� rst and secondmoments. In the
next section we shall calculate the associated moments explicitly and test the adequacy
of the predictions versus direct simulations.

4.3.1 Analysis of the �uctuations

To characterize themoments of the distribution we proceed as follows. Wemultiply
both sides of the FPE (4.10) by ξi (resp. ξiξj) and integrate over all ξ. One then recovers
the equations for the mean value of the �uctuations ⟨ξi⟩, as well as for the associated
correlations, ⟨ξiξj⟩.

�e evolution of the� rst moments is found to be governed by the following equa-
tions:

d
dt

⟨ξT ⟩ = m11⟨ξT ⟩ +m12⟨ξM⟩ +m13⟨ξRT
⟩

d
dt

⟨ξM⟩ = m21⟨ξT ⟩ +m22⟨ξM⟩ +m23⟨ξRT
⟩

d
dt

⟨ξRT
⟩ = m31⟨ξT ⟩ +m32⟨ξM⟩ +m33⟨ξRT

⟩ (4.13)
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while the the second moments obey to

d
dt

⟨ξ2
T ⟩ = 2m11⟨ξ2

T ⟩ + 2m12⟨ξT ξM ⟩ + 2m13⟨ξT ξRT
⟩ + b11

d
dt

⟨ξT ξM ⟩ = m21⟨ξ2
T ⟩ + (m11 +m22)⟨ξT ξM⟩ +m23⟨ξT ξRT

⟩ +m12⟨ξ2
M⟩

+m13⟨ξMξRT ⟩ + b12

d
dt

⟨ξT ξRT ⟩ = m31⟨ξ2
T ⟩ +m32⟨ξT ξM ⟩ + (m11 +m33)⟨ξT ξRT

⟩
+m12⟨ξMξRT ⟩ +m13⟨ξ2

RT ⟩ + b13

d
dt

⟨ξ2
M ⟩ = 2m21⟨ξT ξM⟩ + 2m22⟨ξ2

M⟩ + 2m23⟨ξMξRT
⟩ + b22

d
dt

⟨ξMξRT ⟩ = m31⟨ξT ξM ⟩ +m21⟨ξT ξRT
⟩ +m32⟨ξ2

M ⟩
+(m22 +m33)⟨ξMξRT

⟩ +m23⟨ξ2
RT ⟩

d
dt

⟨ξ2
RT ⟩ = 2m31⟨ξT ξRT

⟩ + 2m32⟨ξMξRT ⟩ + 2m33⟨ξ2
RT ⟩ + b33 (4.14)

where the elementsmij and bij are the entries of matrices (4.11) and (4.12).
�e above system cannot be solved analytically (indeed we cannot even cast the

mean–�eld solution in a closed analytic form). However, being interested in the �uc-
tuations around the equilibrium point, once the initial transient has damped out, one
sets to zero the time derivatives in system (4.13) and evaluates the coe�cients mij at
the equilibrium point φ∗. It turns out that ⟨ξT ⟩st = ⟨ξM ⟩st = ⟨ξRT ⟩st. Proceeding in
a similar fashion with system (4.14), one readily �nds that all the second moments are
zero but ⟨ξ2

M⟩st which instead reads

⟨ξ2
M⟩st = β2φ

∗
M

2 + (β2σ − 2γ2)φ∗
M + 2γ2ϕ

2(2β2φ∗
M + β2σ + 2γ2)

In this latter case the stationary probability distributionΠ(ξ)st is given by

Π(ξ)st = 1√
2π⟨ξ2

M⟩st
exp [− ξ2

M

2⟨ξ2
M ⟩st

] (4.15)

Figure 4.5a shows the projection of the stationary probability distribution Πst on
the plane (φRF ,φRM ). As it can be appreciated by visual inspection, the dispersion
occurs along the direction given by Nφ∗

RM
+Nφ∗

RF
−N2 = 0 which also contains the

equilibrium point. In Fig. 4.5b the stationary probability distribution Πst is plotted as
a function of ξM . �e �gure testi�es on the predictive ability of equation (4.15) here
depicted with a solid line, which is shown to interpolate correctly the numerical data
(symbols).

Imagine now to partition the plane (φRF ,φRM) into two regions separated by the
bisectrix. Moving above the diagonal, the number of screened receptors increaseswhich
in turn implies reducing the pain, within our simpli�ed scenario. Fluctuations can fa-
cilitate the road towards analgesia, as outlined in Fig. 4.5a. �e stationary probability
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Figure 4.5: Panel (a) shows the projection of the stationary probability distribution Πst on the orig-
inal plane φRF φRM .� e solid black line represent the bisectrix of the plane. Panel (b) reports the
stationary probability distribution as function of ξM .� e solid line represents the theoretical predic-
tion based on equation (4.15). �e symbols refer to the Gillespie like numerical simulation. Here, the
parameters are α = 0.5, β1 = 0.2, β2 = 0.3, γ1 = 0.5, γ2 = 0.1, N1 = 3000, and N2 = 1000

distribution can be be hypothetically employed to quantify the probability of entering
the region in (φRF ,φRM) where the drug e�ect is supposedly more pronounced.�is
latter probability corresponds to the area of the distribution above the bisectrix and is
quanti�ed in p = 0.196 for the chosen parameters’ setting. Interestingly, although the
mean–�eld solution predicts a stationary condition characterized by a pronounced sen-
sation of pain (φ∗

RF = 0.129 andφ∗
RM = 0.121), there is a nonzero probability that, due

to �uctuations, the system enters a region where pain is partially hindered. Obviously,
this speculation applies as long asN is �nite (though large). �is is for instance the case
where a local stimulus is applies which interests a �nite patch of neurons (see for in-
stance the whisker stimulation experiment [28]). In the general case where the number
of involved receptors is exceedingly large, the mean–�eld dynamics takes over and the
aforementioned distribution shrinks to a delta.

In the next chapter we shall move to considering a di�erent case study, where the
stochastic modeling prove fundamental. In particular, as anticipated in the introduc-
tory section, we will concentrate on analyzing an extended set of autocatalytic reactions
which can be hypothesized to occur in a minimal model of cell.
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the region in (φRF ,φRM) where the drug e�ect is supposedly more pronounced.�is
latter probability corresponds to the area of the distribution above the bisectrix and is
quanti�ed in p = 0.196 for the chosen parameters’ setting. Interestingly, although the
mean–�eld solution predicts a stationary condition characterized by a pronounced sen-
sation of pain (φ∗

RF = 0.129 andφ∗
RM = 0.121), there is a nonzero probability that, due

to �uctuations, the system enters a region where pain is partially hindered. Obviously,
this speculation applies as long asN is �nite (though large). �is is for instance the case
where a local stimulus is applies which interests a �nite patch of neurons (see for in-
stance the whisker stimulation experiment [28]). In the general case where the number
of involved receptors is exceedingly large, the mean–�eld dynamics takes over and the
aforementioned distribution shrinks to a delta.

In the next chapter we shall move to considering a di�erent case study, where the
stochastic modeling prove fundamental. In particular, as anticipated in the introduc-
tory section, we will concentrate on analyzing an extended set of autocatalytic reactions
which can be hypothesized to occur in a minimal model of cell.
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Chapter5
Extended auto–catalytic networks

Autocatalytic reactions have long fascinated physicists and chemists because of their
unique features [70]. A chemical reaction is called autocatalytic if one of the reaction
products is itself a catalyst for the chemical reaction. Part of the reason for the interest
in these types of reactions stems from the fact that even if only a small amount of the
catalyst is present, the reactionmay start o� slowly, but will quickly speed up oncemore
catalyst is produced. If the reactant is not replaced, the process will again slow down
producing the typical sigmoid shape for the concentration of the product. All this is for
a single chemical reaction, but of greater interest is the case of many chemical reactions,
where one or more reactions produce a catalyst for some of the other reactions. �en
the whole collection of constituents is called an autocatalytic set [71]. In addition to
the interesting properties of autocatalytic sets, there is also an intriguing possibility that
“bootstrap” reactions such as thismay have had an important role in producing complex
or self–replicating molecules required for the origin of life on Earth [72, 73, 74, 75].

�eoretical studies of the properties of autocatalytic reactions are typically of two
kinds. In the �rst, rate equations for the reactions are written down and these are ei-
ther solved numerically or their properties investigated using the techniques used in the
study of dynamical systems. An alternative is to carry out computer simulations of the
actual reactions themselves. However, as outlined in the preceding discussion, a third
strategy can be also employed: Using methods from the theory of stochastic processes
an analytic approach to the full model (and not just the mean �eld version) is possible.

Occasionally, oscillatory behaviors manifest for a moderate number of constituents,
a phenomenon which arise from the discrete nature of the system. As we pointed out
earlier, these oscillations are purely stochastic in origin. �e main tool that is here used
to elaborate on their emergence in the autocatalytic setting is again the system–size ex-
pansion of van Kampen [64, 76] (see chapter 3).

More speci�cally we shall consider the autocatalytic reaction scheme introduced by
Togashi and Kaneko [77, 78]. In most autocatalytic reactions there are two types of
constituent: the autocatalytic and the substrate. �e number of the latter type are kept
constant by continually feeding them in, however the former are not injected nor ex-
tracted from the system. In this sense the system is closed as far as the autocatalytic
constituents are concerned, but open for the substrate. In the scheme that Togashi and
Kaneko investigate, the reactions are cyclic, with k constituents X1, . . . ,Xk reacting
according to Xi + Xi+1 → 2Xi+1 with Xk+1 ≡ X1, i = 1, . . . , k. �e chemicals are
assumed to be in a container which is well–stirred, but with the possibility of di�using
across the surface of the container into a particle reservoir.

Chapter�5
Extended�auto–catalytic�networks
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Togashi and Kaneko [77, 78] used only computer simulation to study their proposed
reaction scheme. At variance, and following the recipe of chapter 3 we shall proceed
analytically by writing down the master equation for model at hand, and then studying
it through a systematic expansion in N−1/2, where N is the system size. To leading
order one �nds the rate equations which appear in [77], and to next–to–leading order
a Langevin equation which describes the �uctuations about the stable �xed point of
the rate equations. From previous work we expect that (i) this �rst–order correction
will be su�cient to yield results which are in good agreement with simulation data, (ii)
the large amplitude of the oscillations can be understood as a resonant e�ect. One of
the strengths of the technique is that the next–to–leading order corrections give linear
Langevin equations which can be analyzed exactly for arbitrary values of k.

As an additional step, we shall extend Togashi and Kaneko model to explicitly in-
corporate the notion of space. In doing so, the di�usion of the molecular species par-
ticipating to the dynamics is consistently accounted for and spatio–temporal collective
motions unraveled via a straightforward application of the van Kampen analysis. Sec-
tion 5.2 is devoted to discuss this latter topic, combining the analytical and numerical
viewpoints.

5.1 Enhanced stochastic oscillations in autocatalytic reactions

�e autocatalytic reaction scheme described previously can be formulated as

Xi +Xi+1
ri+1�→ 2Xi+1 Xk+1 ≡ X1

E
αi�→ Xi

Xi
βi�→ E i = 1, . . . , k . (5.1)

Here ri,αi and βi (with rk+1 ≡ r1), are the rates at which the reactions take place and
E is the null constituent. Such constituents have to be included so that the number of
molecules of typeXi, ni, are all independent. Figure 5.1 shows a schematic representa-
tion of these reactions. If the size of the system is denoted byN , then∑k

i=1 ni+nE = N ,
where nE is the number of null constituents. While N is �xed, nE may vary as the to-
tal number of molecules changes with time. In practice, nE does not explicitly appear
in the formalism; it is always replaced byN −∑k

i=1 ni. �e rate constants αi and βi in
equation (5.1) represent the interactions of the systemwith the particle reservoir outside
the container. In e�ect αi and βi are the rate at which molecules appear and disappear
from the system, and thus are analogous to birth and death rates.

As an aside, we note that reaction rates which result from a binary encounter should
be scaled by the volume of the system, V . �at is, ri → ri/V . �is follows from a
straightforward kinetic theory argument [79]. �is is an innocent modi�cation as far
as this study is concerned, since it is carried out at constant volume, but it becomes
crucially important when the volume is allowed to change, as it does in the analysis of
the phase transition reported in [77, 78].

�e state of the system is labeled by the set of integers {n1, . . . , nk} and, under
the assumption that the transitions from this state to any other only depends on these
integers, the system is Markov and may be described in terms of a master equation. In
constructing themaster equation we need to give the transition ratesT (n′∣n) from the
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Figure 5.1: Schematic representation of reactions (5.1).

state n to the to the state n′, where n ≡ (n1, . . . , nk). If the system is well–stirred, so
that the probability of a reaction taking place is proportional to its rate and the number
of reactant molecules, then from equation (5.1) these transition rates are

T (n1, . . . , ni − 1, ni+1 + 1, . . . , nk∣n) = ri+1
ni

N

ni+1

N
,

T (n1, . . . , ni + 1, . . . , nk∣n) = αi

⎛
⎝1 − ∑k

j=1 nj

N

⎞
⎠ ,

T (n1, . . . , ni − 1, . . . , nk∣n) = βi
ni

N
. (5.2)

�e master equation for the probability that the system is in staten at time t, P (n, t),
may now be written down:

dP (n, t)
dt

= k∑
i=1

(EiE−1
i+1 − 1) [T (n1, . . . , ni − 1, ni+1 + 1, . . . , nk∣n)P (n, t)]

+ k∑
i=1

(E−1
i − 1) [T (n1, . . . , ni + 1, . . . , nk∣n)P (n, t)]

+ k∑
i=1

(Ei − 1) [T (n1, . . . , ni − 1, . . . , nk∣n)P (n, t)] (5.3)
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where E±1
i are again the step–operators as introduced in Chapter 3. �eir de�nition is

herea�er recalled: E±1
i f(n) = f(n1, . . . , ni ± 1, . . . , nk) . (5.4)

As previously remarked, equations such as (5.3) are di�cult to analyze, but if one is
particularly interested in large or moderately sized values of N , then the system–size
expansion provides an elegant way of encapsulating the essential aspects of the model.
�e key assumption of the method is to write [64]

ni

N
= φi(t) + ξi(t)√

N
. (5.5)

From this relation, limN→∞(ni/N) = φi(t), the fraction of the molecules which are
of type Xi at time t, within the mean–�eld (N → ∞) limit. �e �uctuations about
these are assumed to be Gaussian, hence the 1/√N in equation (5.5). �is assumption
applies as long as the system evolves reasonably far from the (absorbing) boundaries, so
that the probability density functions of the Xi is Gaussian. In other words, stochastic
extinctions cannot be captured by our perturbative calculation.

Substituting equation (5.5) into equation (5.3) allows us to expand themaster equa-
tion as a power series in 1/√N . We here recall that the step operator can be approxi-
mated as:

E±1
i = 1 ± 1√

N

∂

∂ξi

+ 1
2N

∂2

∂ξ2
i

+ . . . . (5.6)

If we set P (n, t) equal to Π(ξ, t), the le�–hand side of the master equation becomes
[64]

dP (n, t)
dt

= ∂Π(ξ, t)
∂t

−√
N

k∑
i=1

∂Π(ξ, t)
∂ξi

dφi

dt
. (5.7)

Applying the ansatz (5.5) to the right–hand side of equation (5.3), the step–operators
(5.4) take the form (5.6), the ni in the transition rates (5.2) are replaced by φi and ξi

using equation (5.5). �is yields the following terms

(a) Terms of order N−1/2:
k∑

i=1

⎧⎪⎪⎨⎪⎪⎩ri+1φiφi+1 [ ∂

∂ξi

− ∂

∂ξi+1

] − αi

⎛
⎝1 − k∑

j=1

φj

⎞
⎠

∂

∂ξi

+ βiφi
∂

∂ξi

⎫⎪⎪⎬⎪⎪⎭Π(ξ, t)
(5.8)

(b) Terms of order N−1 and involving �rst order derivatives

k∑
i=1

{ri+1φi
∂

∂ξi

ξi+1 + ri+1φi+1
∂

∂ξi

ξi − ri+1φi
∂

∂ξi+1

ξi+1

−ri+1φi+1
∂

∂ξi+1

ξi +αi

k∑
j=1

∂

∂ξi

ξj + βi
∂

∂ξi

ξi

⎫⎪⎪⎬⎪⎪⎭Π(ξ, t) (5.9)

Francesca Di Patti76



�
�

�
�

�
�

�
�

76 Francesca Di Patti

where E±1
i are again the step–operators as introduced in Chapter 3. �eir de�nition is

herea�er recalled: E±1
i f(n) = f(n1, . . . , ni ± 1, . . . , nk) . (5.4)

As previously remarked, equations such as (5.3) are di�cult to analyze, but if one is
particularly interested in large or moderately sized values of N , then the system–size
expansion provides an elegant way of encapsulating the essential aspects of the model.
�e key assumption of the method is to write [64]

ni

N
= φi(t) + ξi(t)√

N
. (5.5)

From this relation, limN→∞(ni/N) = φi(t), the fraction of the molecules which are
of type Xi at time t, within the mean–�eld (N → ∞) limit. �e �uctuations about
these are assumed to be Gaussian, hence the 1/√N in equation (5.5). �is assumption
applies as long as the system evolves reasonably far from the (absorbing) boundaries, so
that the probability density functions of the Xi is Gaussian. In other words, stochastic
extinctions cannot be captured by our perturbative calculation.

Substituting equation (5.5) into equation (5.3) allows us to expand themaster equa-
tion as a power series in 1/√N . We here recall that the step operator can be approxi-
mated as:

E±1
i = 1 ± 1√

N

∂

∂ξi

+ 1
2N

∂2

∂ξ2
i
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−√
N
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i=1

∂Π(ξ, t)
∂ξi

dφi

dt
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Applying the ansatz (5.5) to the right–hand side of equation (5.3), the step–operators
(5.4) take the form (5.6), the ni in the transition rates (5.2) are replaced by φi and ξi

using equation (5.5). �is yields the following terms

(a) Terms of order N−1/2:
k∑

i=1

⎧⎪⎪⎨⎪⎪⎩ri+1φiφi+1 [ ∂

∂ξi

− ∂

∂ξi+1

] − αi

⎛
⎝1 − k∑

j=1

φj

⎞
⎠

∂

∂ξi

+ βiφi
∂

∂ξi

⎫⎪⎪⎬⎪⎪⎭Π(ξ, t)
(5.8)

(b) Terms of order N−1 and involving �rst order derivatives

k∑
i=1

{ri+1φi
∂

∂ξi

ξi+1 + ri+1φi+1
∂

∂ξi

ξi − ri+1φi
∂

∂ξi+1

ξi+1

−ri+1φi+1
∂

∂ξi+1

ξi +αi

k∑
j=1

∂

∂ξi

ξj + βi
∂

∂ξi

ξi

⎫⎪⎪⎬⎪⎪⎭Π(ξ, t) (5.9)
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(c) Terms of order N−1 and involving second order derivatives

1
2

k∑
i=1

{ri+1φiφi+1 [ ∂2

∂ξ2
i

+ ∂2

∂ξ2
i+1

− 2
∂2

∂ξi∂ξi+1

]
+αi

⎛
⎝1 − k∑

j=1

φj

⎞
⎠

∂2

∂ξ2
i

+ βiφi
∂2

∂ξ2
i

⎫⎪⎪⎬⎪⎪⎭Π(ξ, t) . (5.10)

If we equate terms of the same order in 1/√N on the le�– and right–hand sides,
the leading order gives

dφi

dτ
= (riφi−1 − ri+1φi+1)φi +αi

⎛
⎝1 − k∑

j=1

φj

⎞
⎠ − βiφi , (5.11)

where τ = t/N is a re–scaled time. �is equation is a deterministic equation for the
fraction of molecules which are of type i. It agrees with that of Togashi and Kaneko
[77], if one takes into account that their equations are for concentrations and so contain
the (constant) concentrations of the species in the reservoir. �ere is also an additional
term ∑j φj in equation (5.11), which is typically present when mean–�eld equations
are derived in systems with a �xed size, but not in the phenomenologically postulated
form. For small concentrations it will not be important, but clearly it will have an e�ect
as the ceiling on particle numbers is felt, reducing the number of molecules entering the
container from the reservoir, as it should.

�e terms of order N−1 in equations (5.9) and (5.10), are now identi�ed with the
remaining term on the right-hand side of equation (5.7). �is resulting equation is a
Fokker–Planck equation:

∂Π
∂τ

= −∑
i

∂

∂ξi

[Ai(ξ)Π] + 1
2 ∑

i,j

Bij
∂2Π

∂ξi∂ξj

. (5.12)

From equation (5.9) we see that theAi(ξ) are linear functions of the ξj and from equa-
tion (5.10) that theBij are independent of them. Explicitly:

Ai(ξ) = (riφi−1 − ri+1φi+1) ξi + riφiξi−1 − ri+1φiξi+1 −αi

k∑
j=1

ξj − βiξi (5.13)

and

Bij =
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−riφi−1φi if j = i − 1

ri+1φiφi+1 + riφiφi−1+αi (1 −∑k
j=1 φj) + βiφi if j = i

−ri+1φiφi+1 if j = i + 1

(5.14)

In equations (5.13) and (5.14), φk+1 ≡ φ1 and ξk+1 ≡ ξ1, which follows from the cyclic
nature of the model.
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Since the Ai(ξ) are linear functions of the ξj we may write them as

Ai(ξ) = k∑
j=1

Mijξj . (5.15)

�is means that the probability distribution at next–to–leading order,Π(ξ, τ), is com-
pletely determined by the twok×k matricesM andB, whose elements are independent
of the ξj , and only functions of the φj . For our purposes, in complete analogy with the
preceding discussion, we need to Fourier analyze the �uctuations. It is hencemore con-
venient to characterize the �uctuation in terms of the equivalent Langevin equations:

dξi

dτ
= k∑

j=1

Mijξj(τ) + ηi(τ) , (5.16)

whereM is a k × k matrix which can be found from equations (5.13) and (5.15), and ηi

is a Gaussian white noise with zero mean and correlator

⟨ηi(τ)ηj(τ ′)⟩= Bijδ (τ − τ ′) , (5.17)

and Bij is another k × k matrix given by equation (5.14).
Equation (5.16), is a stochastic di�erential equation for the deviation from themean–

�eld behavior. It is the analysis of this equation, together with the mean–�eld system
(5.11), that allow us to describe the stochastic aspects of the autocatalytic reactions in a
quantitative way.

5.1.1 On the �uctuations

In their numerical studies, Togashi and Kaneko [77, 78] looked at the simplest case
of the model where the rates ri,αi and βi were the same for all chemical species. To
illustrate ourmethodwewill do the same, and so fromnowonwewill drop the subscript
i on these constants, but it should be clear that our analysis also applies to the general
situation where they are di�erent for each species. With this choice, the deterministic
equations (5.11) have a single �xed point:

φ∗ = α

β + kα
, (5.18)

where the asterisk denotes the �xed point value.
In principle the matrices M and B are time dependent, since φj is. However, in

practice we are just interested in the �uctuations about the stationary state, once the
initial transient has died out. �is is equivalent to replacing φj with its corresponding
equilibrium solution. In our case the asymptotic value of φj is speci�ed by equation
(5.18). Hence, M and B are given by

M =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

m0 m1 m2 m2 . . . m2 m3

m3 m0 m1 m2 . . . m2 m2

m2 m3 m0 m1 . . . m2 m2

m2 m2 m3 m0 . . . m2 m2

. . . . . . . . . . . . . . . . .
m2 m2 m2 m2 . . . m0 m1

m1 m2 m2 m2 . . . m3 m0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (5.19)
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where

m0 = −α − β

m1 = −α − rφ∗
m2 = −α

m3 = −α + rφ∗ (5.20)

and

B =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

b0 b1 0 . . . 0 b1

b1 b0 b1 . . . 0 0
0 b1 b0 . . . 0 0
. . . . . . . . . . . . .
0 0 0 . . . b0 b1

b1 0 0 . . . b1 b0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (5.21)

where

b0 = 2r(φ∗)2 + βφ∗ +α(1 − kφ∗)
b1 = −r(φ∗)2 . (5.22)

IfN is so large that the �uctuations are completely negligible, then the system tends
towards a state where the fractions of the chemical species in the system are equal, and
given by equation (5.18), and stays there. Of course, if N is �nite this is no longer the
case and there are �uctuations about this stationary state, and as we will see these can be
signi�cant even ifN is quite large. Since these�uctuations are expected to be oscillatory,
we begin their analysis by taking the Fourier transform of equation (5.16) to �nd

k∑
j=1

(−iωδij −Mij) ξ̃j(ω) = η̃i(ω) , (5.23)

where the f̃ denotes the Fourier transform of the function f . De�ning the matrix−iωδij −Mij to be Φij(ω), the solution to equation (5.23) is

ξ̃i(ω) = k∑
j=1

Φ−1
ij (ω)η̃j(ω) . (5.24)

To identify the dominant frequency of the oscillatory behavior, we compute the
power spectrum for the i–th species, Pi(ω), from equation (5.24):

Pi(ω) ≡ ⟨∣ξ̃(ω)∣2⟩ = k∑
j=1

k∑
l=1

Φ−1
ij (ω)Bjl (Φ†)−1

li
(ω) , (5.25)

SinceΦ = −iωI −M , where I is the k×k unit matrix, and sinceM andB are indepen-
dent of ω, the structure of Pi(ω) is that of a polynomial of order 2k divided by another
polynomial of degree 2k. �e explicit form of the denominator is ∣detΦ (ω)∣2.

From previous investigations of �uctuations of a similar kind [6, 8, 7], we expect that
the �uctuations about the stationary state (5.18) will be enhanced by a resonant e�ect:
For values of ω for which ∣detΦ (ω)∣ is a minimum, the power spectra will show peaks
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which correspond to larger than expected �uctuations at that frequency. �is e�ect was
�rst conjectured by Bartlett [80] in the context of the modeling of measles epidemics,
and later elaborated upon by Nisbet and Gurney [81], who called these stochastically
induced cycles, quasi–cycles. However, as already emphasized, it is only in the last few
years that explicit calculations within the system-size expansion have been carried out
and a quantitative understanding of the phenomenon has emerged [6].

To understand the analytic structure of the power spectra, we begin by supposing
that we can neglect the e�ects of the numerator on the right–hand side of equation
(5.25), and simply determine the dominant frequency by looking for the value which
minimizes ∣detΦ (ω)∣. �e e�ect of the numerator will be to shi� this frequency; we
are assuming as a �rst approximation that this shi� will be small, as indeed it has been
found to be in some cases [6]. If λj are the eigenvalues of M , then the denominator of
the expression for the power spectra may be written as

∣detΦ (ω)∣2 = k∏
j=1

(−iω − λj) (iω − λ∗
j ) . (5.26)

Since M is real, the λj will be real or come in complex conjugate pairs, so that the
products in equation (5.26) has one of two forms:

(i) If λ is real, the two factors involving this eigenvalue give (ω2 + λ2).
(ii) If λ is complex: λ = λR + iλI , the four terms involving λ and λ∗ give

∣ω2 + (λ2
R − λ2

I) + 2iλRλI ∣2 . (5.27)

�e resonant e�ect has its origin in the structure of the factor coming from the com-
plex eigenvalues shown in the expression (5.27). It is smallest, and so gives the largest
contribution when it is in the denominator, for frequencies which satisfy

ω2
c = λ2

I − λ2
R . (5.28)

If there are several pairs of complex eigenvalues and their conjugates, the largest contri-
bution should come from the pair for which λRλI is smallest. Clearly this will only be
approximately true since, not only are we neglecting the numerator, but also the factors(ω2 + λ2) coming from real eigenvalues, as well as those coming from other complex
conjugate pairs. However, as we will now see by looking at two speci�c cases, k = 4 and
k = 8, these approximations appear to be remarkably good.

We study the cases k = 4 and k = 8 because they are the smallest even values of
k for which one complex conjugate pair and two distinct complex conjugate pairs, re-
spectively, exist (there are two complex conjugate pairs fork = 6, but they are equal, and
three for k = 8, but two of these are equal). We therefore expect to see one peak in the
power spectra when k = 4 and two when k = 8. Our analysis, and the accuracy of our
approximations, can be directly checked by numerical simulation of the chemical reac-
tion system (5.1) by use of theGillespie algorithm [79, 82]. �is produces realizations of
the stochastic dynamics which are equivalent to those found from the master equation
(5.3). Averaging over many of these realizations gives us power spectra a�er Fourier
transformation, which are exact to a given numerical accuracy. We now investigate the
two cases k = 4 and k = 8 in more detail.
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which correspond to larger than expected �uctuations at that frequency. �is e�ect was
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approximately true since, not only are we neglecting the numerator, but also the factors(ω2 + λ2) coming from real eigenvalues, as well as those coming from other complex
conjugate pairs. However, as we will now see by looking at two speci�c cases, k = 4 and
k = 8, these approximations appear to be remarkably good.

We study the cases k = 4 and k = 8 because they are the smallest even values of
k for which one complex conjugate pair and two distinct complex conjugate pairs, re-
spectively, exist (there are two complex conjugate pairs fork = 6, but they are equal, and
three for k = 8, but two of these are equal). We therefore expect to see one peak in the
power spectra when k = 4 and two when k = 8. Our analysis, and the accuracy of our
approximations, can be directly checked by numerical simulation of the chemical reac-
tion system (5.1) by use of theGillespie algorithm [79, 82]. �is produces realizations of
the stochastic dynamics which are equivalent to those found from the master equation
(5.3). Averaging over many of these realizations gives us power spectra a�er Fourier
transformation, which are exact to a given numerical accuracy. We now investigate the
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Figure 5.2: Time evolution of selected species, i = 1,2,3,4 in clockwise order for the case k = 4.
Here r = 10, α = β = 1/64, N = 8192.� e dashed line indicates the mean� eld solution. �e
species display a clear oscillatory trend about their mean� eld values. A paired synchronization, (1,3)
vs. (2,4) rich states, is also visible, as already observed in [77, 78].

Power spectra when k = 4

�e time evolution of the species is depicted in Fig. 5.2. �is clearly displays large os-
cillations which we aim to investigate analytically. Before beginning this analysis, we
observe that species 1, 3 (odd) and 2, 4 (even) are paired together and move up and
down from the reference mean-�eld level in a synchronized fashion.� is fact was al-
ready recognized in [77, 78] and shown to drive successive switches between the 1–3 or
2–4 rich states, close to the absorbing boundary, i.e. when a small number of molecules
is simulated. �e rate at which the changes occur is controlled by the di�usion param-
eter. However, the details of the transitions stem from a purely dynamical e�ect which
cannot be captured within the perturbative analysis developed here.

Let us now turn to analytically characterizing the aforementioned oscillatory regime.
To this end we begin by determining the eigenvalues of theM matrix.

We note thatM is a circulant matrix [83], and therefore its eigenvalues are given by

λ� = k∑
j=1

m1j e(2πi(j−1)�)/k , � = 0,1, . . . , k − 1 , (5.29)

where m1j is the element of M in the �rst row and j–th column. In fact, M is not the
most general form of circulant matrix; (k − 3) entries in each row are equal (to m2).
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�is leads to a simpli�ed form for the eigenvalues:

λ� = m0 +m1 e2πi�/k +m3 e−2πi�/k +m2

k−2∑
j=2

e2πij�/k

= m0 +m1 e2πi�/k +m3 e−2πi�/k −m2
sin(3π�/k)
sin(π�/k) ,

(5.30)

where in the last line � ≠ 0. Putting in the values from equation (5.20) gives

λ� = { −β − kα, if � = 0−β − 2irφ∗ sin(2π�/k), if � ≠ 0 . (5.31)

For k = 4, the eigenvalues are

λ0 = −β − 4α
λ1 = −β − 2irφ∗
λ2 = −β

λ3 = λ∗
1 . (5.32)

Within the approximations we have discussed, we would expect that there should be a
single peak in the power spectrum for any one of the chemical species at a frequency
given by (see equation (5.28))

ω2
c = 4r2 (φ∗)2 − β2 = 4r2α2

(β + 4α)2 − β2 . (5.33)

In Fig. 5.3 we show the power spectrum (for the chemical species i = 2) found by
averaging over 500 realizations from the Gillespie algorithm, together with that found
from equation (5.25). �e good agreement between the simulation results and those
found from applying the system–size expansion, shows that the method works well for
N = 5000. �e parameters used in this case were r = 10 and α = β = 1/64, which
gives a value of ωc ≈ 4 from equation (5.33). From Fig. 5.3 we see this is a surprising
good estimate for the position of the peak, given the signi�cant frequency dependence
which we have neglected to obtain the estimate (5.28).

Another check of the accuracy of these approximations, and so of equation (5.28),
is to imagine increasing the parameter β at �xed r and α, and asking when ω2

c will
become zero, and so at what frequency will the peak in the power spectra disappear.
From equation (5.33) we estimate this to be

β ∼ 2rα
β

or β ∼ √
2rα, (5.34)

which equals 0.56 for the values of r and α used in Fig. 5.3. Once again this agrees well
with the full spectrum which predicts the peak to disappear at about the same value.
As a �nal check, we measure the position of the peak from a set of simulations run at
di�erent values of r. Direct measurements (symbols) are compared to the theory (solid
line) in Fig. 5.4 and are in good quantitative agreement. Again, we recall that adjusting
the rate r can be equivalently seen as modifying the volume of the system, which is the
setting investigated in [77, 78].
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given by (see equation (5.28))
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c = 4r2 (φ∗)2 − β2 = 4r2α2

(β + 4α)2 − β2 . (5.33)

In Fig. 5.3 we show the power spectrum (for the chemical species i = 2) found by
averaging over 500 realizations from the Gillespie algorithm, together with that found
from equation (5.25). �e good agreement between the simulation results and those
found from applying the system–size expansion, shows that the method works well for
N = 5000. �e parameters used in this case were r = 10 and α = β = 1/64, which
gives a value of ωc ≈ 4 from equation (5.33). From Fig. 5.3 we see this is a surprising
good estimate for the position of the peak, given the signi�cant frequency dependence
which we have neglected to obtain the estimate (5.28).

Another check of the accuracy of these approximations, and so of equation (5.28),
is to imagine increasing the parameter β at �xed r and α, and asking when ω2

c will
become zero, and so at what frequency will the peak in the power spectra disappear.
From equation (5.33) we estimate this to be

β ∼ 2rα
β

or β ∼ √
2rα, (5.34)

which equals 0.56 for the values of r and α used in Fig. 5.3. Once again this agrees well
with the full spectrum which predicts the peak to disappear at about the same value.
As a �nal check, we measure the position of the peak from a set of simulations run at
di�erent values of r. Direct measurements (symbols) are compared to the theory (solid
line) in Fig. 5.4 and are in good quantitative agreement. Again, we recall that adjusting
the rate r can be equivalently seen as modifying the volume of the system, which is the
setting investigated in [77, 78].
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Figure 5.3: Power spectrum of species i = 2 when k = 4.� e analytical curve is shown as a solid line
and the simulation (average over 500 independent realizations) as symbols. Here r = 10, α = β =
10/64, N = 5000.

Power spectra when k = 8

From equation (5.31), the eigenvalues of theM matrix are

λ0 = −β − 8α ,λ 4 = −β ,

λ1 = −β −√
2irφ∗ , λ7 = λ∗

1 ,

λ2 = −β − 2irφ∗ , λ6 = λ∗
2 ,

λ3 = −β −√
2irφ∗ , λ5 = λ∗

3 . (5.35)

Since there are two distinct complex conjugate pairs we would expect to �nd two peaks
in the power spectra, one at ω2

c = 2r2(φ∗)2 − β2 and the other at ω2
c = 4r2(φ∗)2 − β2.

For small β, one peak will be at a frequency
√

2 times the other. We would also expect
that the peak at lower frequency would be larger than the one at higher frequency, since
λRλI is smaller for the former. �at is, the pole in the power spectra in the complex
frequency squared plane is nearer to the real axis for the peak at lower frequency, and so
should have a bigger e�ect. So, in summary, our approximations indicate that the peaks
in the power spectra should be given by

ω2
c1 = 2r2α2

(β + 8α)2 − β2

ω2
c2 = 4r2α2

(β + 8α)2 − β2 , (5.36)

with the peak at ω = ωc1 larger than the one at ω = ωc2. �e results of plotting the full
spectrum found from equation (5.25) and simulation results are shown in Fig. 5.5 for
r = 200,α = 1.9 and β = 2. �is corresponds to peaks at ω = 31.2 and ω = 44.14,
according to equations (5.36), which once again agrees verywell the the results displayed
in the�gure, as does the prediction that the peak nearest the origin should be the largest.
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Figure 5.4:� e position of the peak in the power spectrum (for species i = 2 when k = 4) plotted as
function of the rate constant r. Symbols refers to the stochastic simulations, while the solid line shows
the analytical prediction. Here α = β = 1/64, N = 5000

To the best of our knowledge, this is the� rst time that a double–peaked power spectrum
has been predicted to emerge as a resonant e�ect, within a van Kampen type of analysis.

5.2 On a spatial model of autocatalytic reactions

Wehere present a spatial version of the autocatalyticmodel discussed in the previous
section.� is work is developed in collaboration with Pietro de Anna and constitute the
core of his master thesis essay [84] (see also [85]). Our analysis is closely inspired to that
of Lugo and McKane [86]

�e idea is to introduce a spatial coarse graining at the level of small micro–cells
(which total to Ω) which are supposed to uniformly cover the volume occupied by the
vescicle. In each microscopic cell autocatalytic reactions as speci�ed by (5.1) (and re-
called below) do occur. Migration between neighbours cells is allowed, an ingredient
which in turn amounts to explicitly account for space. As a simplifying ansatz, we im-
age a periodic geometry and focus on a chain of microscopic cells situated at the fron-
tier with the external membrane. In the case of a1 D setting micro–cell 1 is adjacent
to micro–cell Ω. �is simplifying hypothesis is put forward so to restore the transla-
tional invariance, which shall be invoked in the Fourier based treatment developed in
the end. Physically one might imagine to simulate the transport of material along a tiny
shell which is positioned close to the outer edge of the vesicle (a sort of spatio–temporal
zonal �ow).� e shell is then assumed to communicate with the outside and the inside
via an e�ective di�usion mechanism which, however, does not embed space explicitly.
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Figure 5.4:� e position of the peak in the power spectrum (for species i = 2 when k = 4) plotted as
function of the rate constant r. Symbols refers to the stochastic simulations, while the solid line shows
the analytical prediction. Here α = β = 1/64, N = 5000

To the best of our knowledge, this is the� rst time that a double–peaked power spectrum
has been predicted to emerge as a resonant e�ect, within a van Kampen type of analysis.

5.2 On a spatial model of autocatalytic reactions

Wehere present a spatial version of the autocatalyticmodel discussed in the previous
section.� is work is developed in collaboration with Pietro de Anna and constitute the
core of his master thesis essay [84] (see also [85]). Our analysis is closely inspired to that
of Lugo and McKane [86]

�e idea is to introduce a spatial coarse graining at the level of small micro–cells
(which total to Ω) which are supposed to uniformly cover the volume occupied by the
vescicle. In each microscopic cell autocatalytic reactions as speci�ed by (5.1) (and re-
called below) do occur. Migration between neighbours cells is allowed, an ingredient
which in turn amounts to explicitly account for space. As a simplifying ansatz, we im-
age a periodic geometry and focus on a chain of microscopic cells situated at the fron-
tier with the external membrane. In the case of a1 D setting micro–cell 1 is adjacent
to micro–cell Ω. �is simplifying hypothesis is put forward so to restore the transla-
tional invariance, which shall be invoked in the Fourier based treatment developed in
the end. Physically one might imagine to simulate the transport of material along a tiny
shell which is positioned close to the outer edge of the vesicle (a sort of spatio–temporal
zonal �ow).� e shell is then assumed to communicate with the outside and the inside
via an e�ective di�usion mechanism which, however, does not embed space explicitly.

�
�

�
�

�
�

�
�

Extended auto–catalytic networks 85

10 20 30 40 50 60 70
 *

0

0,02

0,04

0,06

0,08

0,1

0,12

P
(*

)

Figure 5.5: Power spectrum of the time series for species i = 2 when k = 8.� e analytical result (solid
line) is superimposed onto the simulations (symbols), averaged over 500 independent realizations.
Here r = 200, α = 1.9, β = 2, N = 7000.

5.2.1 �e perturbative expansion

We start by consider, in complete a analogy with the aforementioned Togashi and
Kanenko model, k chemical species. �e autocatalytic reactions for theXi

s species are:

Xi
s +Xi

s+1

rs�→ 2Xi
s+1

where Xi
k+1 = Xi

1. �e index i labels the cell where the reaction is supposed to occur,
while s stands for the species type. Clearly, i = 1, ...,Ω and s = 1, .., k. As antici-
pated, we shall be concerned with migration between adjacent cells a process which is
encapsulated in the following relations:

Xj
s +Ej′ αs�→ Xj′

s +Ej

Ej +Xj′
s

αs�→ Ej′ +Xj
s

where j and j′ represent nearby sites andE stands for the empty case. Finally, we shall
be accommodating for the di�usion (in/out) through the region delimited by the shell.
Such a di�usion occur either towards the inside of the cell or the outside. �ese e�ects
are speci�ed by:

Xi
s

βs,out�→ Ei

Ei βs,in�→ Xi
s

�e allowed reactions are also depicted in Fig. 5.6 Introducing ni
s to label the popula-

tion amount of species s living in cell i, one can characterize the status of the system as
a vector n = (n1,n2, ...,nΩ) where ni = (ni

1, n
i
2, ..., n

i
s). With analogy of the previous

section, we simplify themodel assuming that all the rates rs,αs, βs,in and βs,out are the
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Figure 5.6: We consider a tiny, inner, shell adjacent to the external membrane. Such a shell is par-
titioned in Ω micro–cells (dashed yellow sectors). In every cell, autocatalytic reactions do occur of
the Togashi and Kaneko type. As an additional ingredient, migration between nearby cells is here al-
lowed. An e�ective di�usion mechanism is also invoked to regulate the mass exchange between every
micro-cell and the interior bulk (resp. outside environment).
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Figure 5.7: Time evolution of species 1 (red line) and species 2 (blue line) in cell number 1. Parameters
used for the stochastic simulation are α = 0.1, r = 10, βin = 10/64, βout = 10/64, Ω = 16, k = 4,
N = 1000.

same for all the chemical species, and we will drop the subscript s on the constants.�e
rates of transition from one state to the other as controlled by the above chemical equa-
tions, are listed below (adopting the standard convention).

Transitions stemming from the autocatalytic cycles:

T (ni
s − 1, ni

s+1 + 1∣ni
s, n

i
s+1) = r

Ω
ni

s

N

ni
s+1

N

For the outward/inward incoming/escape:

T (ni
s − 1∣ni

s) = βout

Ω
ni

s

N

T (ni
s + 1∣ni

s) = βin

Ω
(1 − k∑

s

ni
s

N
)

where use has been made of the equation of conservation of mass (all species amount,
including the empties, should sum up to N ). Finally, the transition rates associated to
the cell-to-cell migration are:

T (nj
s − 1, nj′

s + 1∣nj
s, n

j′
s ) = α

zΩ
nj

s

N
(1 − k∑

m=1

nj′
m

N
)

T (nj
s + 1, nj′

s − 1∣nj
s, n

j′
s ) = α

zΩ
nj′

s

N
(1 − k∑

m=1

nj
m

N
)

where z stands for the number of nearest neighbours.
Also in this case, we can use the transition probabilities to simulate the model with

the Gillespie algorithm. Fig. 5.7 shows a typical result of the stochastic simulation rel-
ative to cell number 1 for a system populated by four species. Red line represents the
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time evolution of specie 1, while the blue line refers to the second specie. With analogy
with the non–spatial model, we observe that even–index species are asynchronized with
those with odd–index.

�e evolution of the system is governed by themaster equation which can be cast in
the form:

d

dt
P (n, t) = A +B +C

where the A, B and C refer to the processes isolated above and explicitly read:

A = Ω∑
j=1

k∑
s=1

[T (nj
s, n

j
s+1∣nj

s + 1, nj
s+1 − 1)P (nj

s + 1, nj
s+1 − 1, t)

−T (nj
s − 1, nj

s+1 + 1∣nj
s, n

j
s+1)P (nj

s, n
j
s+1, t)] (5.37)

B = Ω∑
j=1

k∑
s=1

∑
j′∈j

[T (nj
s, n

j′
s ∣nj

s + 1, nj′
s − 1)P (nj

s + 1, nj′
s − 1, t)

−T (nj
s − 1, nj′

s + 1∣nj
s, n

j′
s )P (nj

s, n
j′
s , t)

+T (nj
s, n

j′
s ∣nj

s − 1, nj′
s + 1)P (nj

s − 1, nj′
s + 1, t)

−T (nj
s + 1, nj′

s − 1∣nj
s, n

j′
s )P (nj

s, n
j′
s , t)] (5.38)

C = Ω∑
j=1

k∑
s=1

[T (nj
s∣nj

s + 1)P (nj
s + 1, t) − T (nj

s − 1∣nj
s)P (nj

s, t)
+T (nj

s∣nj
s − 1)P (nj

s − 1, t) − T (nj
s + 1∣nj

s)P (nj
s, t)] (5.39)

Introducing the shi� operators as

ε±s,jf(. . . , nj
s, . . .) = f(. . . , nj

s ± 1, . . .) (5.40)

the master equation takes the form

d

dt
P (n, t) = Ω∑

j=1

k∑
s=1

[(ε+s,jε
−
s+1,j − 1)T (nj

s − 1, nj
s+1 + 1∣nj

s, n
j
s+1)

×P (ns, n
j
s+1, t)]

+ Ω∑
j=1

k∑
s=1

∑
j′∈j

[(ε+s,jε
−
s,j′ − 1)T (nj

s − 1, nj′
s + 1∣nj

s, n
j′
s )

×P (nj
s, n

j′
s , t) +

+(ε−s,jε
+
s,j′ − 1)T (nj

s + 1, nj′
s − 1∣nj

s, n
j′
s )P (nj

s, n
j′
s , t)]

+ Ω∑
j=1

k∑
s=1

[(ε+s,j − 1)T (nj
s − 1∣nj

s)P (nj
s, t)

+(ε−s,j − 1)T (nj
s + 1∣nj

s)P (nj
s, t)] (5.41)
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those with odd–index.

�e evolution of the system is governed by themaster equation which can be cast in
the form:

d

dt
P (n, t) = A +B +C

where the A, B and C refer to the processes isolated above and explicitly read:

A = Ω∑
j=1

k∑
s=1

[T (nj
s, n

j
s+1∣nj

s + 1, nj
s+1 − 1)P (nj

s + 1, nj
s+1 − 1, t)

−T (nj
s − 1, nj

s+1 + 1∣nj
s, n

j
s+1)P (nj

s, n
j
s+1, t)] (5.37)

B = Ω∑
j=1

k∑
s=1

∑
j′∈j

[T (nj
s, n

j′
s ∣nj

s + 1, nj′
s − 1)P (nj

s + 1, nj′
s − 1, t)

−T (nj
s − 1, nj′

s + 1∣nj
s, n

j′
s )P (nj

s, n
j′
s , t)

+T (nj
s, n

j′
s ∣nj

s − 1, nj′
s + 1)P (nj

s − 1, nj′
s + 1, t)

−T (nj
s + 1, nj′

s − 1∣nj
s, n

j′
s )P (nj

s, n
j′
s , t)] (5.38)

C = Ω∑
j=1

k∑
s=1

[T (nj
s∣nj

s + 1)P (nj
s + 1, t) − T (nj

s − 1∣nj
s)P (nj

s, t)
+T (nj

s∣nj
s − 1)P (nj

s − 1, t) − T (nj
s + 1∣nj

s)P (nj
s, t)] (5.39)

Introducing the shi� operators as

ε±s,jf(. . . , nj
s, . . .) = f(. . . , nj

s ± 1, . . .) (5.40)

the master equation takes the form

d

dt
P (n, t) = Ω∑

j=1

k∑
s=1

[(ε+s,jε
−
s+1,j − 1)T (nj

s − 1, nj
s+1 + 1∣nj

s, n
j
s+1)

×P (ns, n
j
s+1, t)]

+ Ω∑
j=1

k∑
s=1

∑
j′∈j

[(ε+s,jε
−
s,j′ − 1)T (nj

s − 1, nj′
s + 1∣nj

s, n
j′
s )

×P (nj
s, n

j′
s , t) +

+(ε−s,jε
+
s,j′ − 1)T (nj

s + 1, nj′
s − 1∣nj

s, n
j′
s )P (nj

s, n
j′
s , t)]

+ Ω∑
j=1

k∑
s=1

[(ε+s,j − 1)T (nj
s − 1∣nj

s)P (nj
s, t)

+(ε−s,j − 1)T (nj
s + 1∣nj

s)P (nj
s, t)] (5.41)
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Wenowproceed according to the van Kampen prescriptions, splitting every discrete
variable nj

s into two components

nj
s = Nφj

s +N
1
2 ξj

s

where φj
s is the deterministic part de�ned as ⟨φj

s⟩/N , while ξj
s is the stochastic contri-

bution. Within this change of variables, the step operators (5.40) have a simple form for
large N , namely

ε±s,j = 1 ±N− 1
2

∂

∂ξj
s

+N−1 ∂2

∂(ξj
s)2

+ . . .

≡ 1 ±N− 1
2 ∂ξj

s
+N−1∂2

ξj
s
+ . . .

In this way, de�ning the new probability distributionΠ(ξj
s , t) ≡ P (nj

s, t), the le� hand
side of the master equation (5.41) may be written as

d

dt
P (n, t) = ∂

∂t
Π(ξj

s , t) −N
1
2

Ω∑
j

k∑
s

∂

∂ξj
s

Π(ξj
s , t) d

dt
φj

s

�e right hand side of the master equation can be also expressed as function of the
expanded operators and of the stochastic variables, Π, φj

s and ξj
s . We start by noticing

that

(ε+s,jε
−
s+1,j − 1) ≃ N− 1

2 (∂ξj
s
− ∂ξj

s+1
) + 1

2
[N− 1

2 (∂ξj
s
− ∂ξj

s+1
)]2

= N− 1
2 L̂1s + 1

2
N−1L̂2s

(ε+s,jε
−
s,j′ − 1) ≃ N− 1

2 (∂ξj
s
− ∂

ξj′
s
) + 1

2
[N− 1

2 (∂ξj
s
− ∂

ξj′
s
)]2

= N− 1
2 L̂1j + 1

2
N−1L̂2j

(ε−s,jε
+
s,j′ − 1) ≃ N− 1

2 (∂
ξj′

s
− ∂ξj

s
) + 1

2
[N− 1

2 (∂
ξj′

s
− ∂ξj

s
)]2

= −N− 1
2 L̂1j + 1

2
N−1L̂2j

where the operators L̂1s and L̂2s respectively read

L̂1s = (∂ξj
s
− ∂ξj

s+1
)

L̂2s = (∂ξj
s
− ∂ξj

s+1
)2

and

L̂1j = (∂ξj
s
− ∂

ξj′
s
)

L̂2j = (∂ξj
s
− ∂

ξj′
s
)2
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In addition

(ε−s,j − 1) ≃ −N− 1
2 ∂ξj

s
+ 1

2
N−1∂2

ξj
s

(ε+s,j − 1) ≃ N− 1
2 ∂ξj

s
+ 1

2
N−1∂2

ξj
s

For each of the three terms (5.37)–(5.39), namelyA,B,C , we can identify the associated
N−1/2 and N−1 contributions.

5.2.2 Right hand side of the master equation: N−1/2 terms

�e leading term relative to A mentioned above reads:

AN−1/2 = r

Ω ∑
j

∑
s

L̂1s(φj
sφ

j
s+1)Π

Recalling the de�nition of L̂1s one obtains

AN−1/2 =∑
j

∑
s

r

Ω
(φj

sφ
j
s+1∂ξj

s
− φj

sφ
j
s+1∂ξj

s+1
)Π

but

∑
j

k∑
s=1

φj
sφ

j
s+1∂ξj

s+1
Π →∑

j

k+1∑
s=2

φj
s−1φ

j
s∂ξj

s
Π

and since k + 1 → 1 one �nally gets

AN−1/2 =∑
j

∑
s

r

Ω
(φj

sφ
j
s+1 − φj

s−1φ
j
s)∂ξj

s
Π

We now turn to considering the contribution of termB.

BN−1/2 = α

zΩ
∑
j

∑
s

∑
j′∈j

L̂1j(φj
s(1 −∑

m

φj′
m) + φj′

s (1 −∑
m

φj
m))Π (5.42)

which, recalling the de�nition of L̂1j , implies

BN−1/2 = 2
α

zΩ ∑
j

∑
s

∑
j′∈j

∂ξj
s
(φj

s(1 −∑
m

φj′
m) − φj′

s (1 −∑
m

φj
m))Π (5.43)

where the factor 2 comes from exchanging j′ → j in the term associated in (5.42) to
∂

ξj′
s
. We then proceed by adding on the right hand side two terms which sum to zero,

namely
0 = φj

s ∑
m

φj
m − φj

s ∑
m

φj
m
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In addition

(ε−s,j − 1) ≃ −N− 1
2 ∂ξj

s
+ 1

2
N−1∂2

ξj
s

(ε+s,j − 1) ≃ N− 1
2 ∂ξj

s
+ 1

2
N−1∂2

ξj
s

For each of the three terms (5.37)–(5.39), namelyA,B,C , we can identify the associated
N−1/2 and N−1 contributions.

5.2.2 Right hand side of the master equation: N−1/2 terms

�e leading term relative to A mentioned above reads:

AN−1/2 = r

Ω ∑
j

∑
s

L̂1s(φj
sφ

j
s+1)Π

Recalling the de�nition of L̂1s one obtains

AN−1/2 =∑
j

∑
s

r

Ω
(φj

sφ
j
s+1∂ξj

s
− φj

sφ
j
s+1∂ξj

s+1
)Π

but

∑
j

k∑
s=1

φj
sφ

j
s+1∂ξj

s+1
Π →∑

j

k+1∑
s=2

φj
s−1φ

j
s∂ξj

s
Π

and since k + 1 → 1 one �nally gets

AN−1/2 =∑
j

∑
s

r

Ω
(φj

sφ
j
s+1 − φj

s−1φ
j
s)∂ξj

s
Π

We now turn to considering the contribution of termB.

BN−1/2 = α

zΩ
∑
j

∑
s

∑
j′∈j

L̂1j(φj
s(1 −∑

m

φj′
m) + φj′

s (1 −∑
m

φj
m))Π (5.42)

which, recalling the de�nition of L̂1j , implies

BN−1/2 = 2
α

zΩ ∑
j

∑
s

∑
j′∈j

∂ξj
s
(φj

s(1 −∑
m

φj′
m) − φj′

s (1 −∑
m

φj
m))Π (5.43)

where the factor 2 comes from exchanging j′ → j in the term associated in (5.42) to
∂

ξj′
s
. We then proceed by adding on the right hand side two terms which sum to zero,

namely
0 = φj

s ∑
m

φj
m − φj

s ∑
m

φj
m
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a formal step which allows us to rewrite equation (5.43) in terms of di�erences between
homologous quantities evaluated at the adjacent site

BN−1/2 = 2
α

zΩ
∑
j

∑
s

∑
j′∈j

∂ξj
s
[(φj

s − φj′
s ) + (φj′

s − φj
s)∑

m

φj
m

+φj
s ∑

m

(φj
m − φj′

m)]Π

Introducing the discrete Laplacian

∆fj = 2
z
∑
j′∈j

(fj′ − fj), (5.44)

eventually yields

BN−1/2 = −α

Ω
∑
j

∑
s

[∆φj
s(1 −∑

m

φj
m) + φj

s ∑
m

∆φj
m]∂ξj

s
Π

Let us now consider the contribution relative to C for which one immediately gets

CN−1/2 = ∑
j

∑
s

[βout

Ω
φj

s − βin

Ω
(1 −∑

m

φj
m)]∂ξj

s
Π

Retaining order N−1/2 terms in the development of master equation we obtain the
mean–�eld equation for species s in cell j

d

dτ
φj

s = r

Ω
(φj

s−1φ
j
s − φj

sφ
j
s+1) + α

Ω
(∆φj

s(1 −∑
m

φj
m) + φj

s ∑
m

∆φj
m)

+βi

Ω
(1 −∑

m

φj
m) − βo

Ω
φj

s (5.45)

Here time is re–scaled as τ = t
N
. Notice that by settingα to zero we immediately recover

the mean–�eld equations (5.11) for the non–spatial model.
To �nd the homogeneous equilibrium solution, we have to impose that no gradient

in the concentration is allowed between nearby micro–cells. Hence the Laplacian con-
tribution in equation (5.45) can be set to zero. �e equilibrium point of the dynamics is
therefore

φ∗ = βin

kβin + βout

for any s = 1, ..., k and j = 1, ...,Ω.

5.2.3 Right hand side of the master equation: N−1 terms

It should be remarked that for any of the three contributions entering the master
equation, namely A, B and C , two types of terms are to be considered
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• �e terms were� rst derivatives enter. �ese are expressed as a function of the
operator L̂1j , so function of the� rst derivatives in the �uctuation variables. �ese
contributions are here called A1

N−1 , B1
N−1 and C1

N−1

• �e terms where second derivatives enter. �ese are expressed as a function of the
operator L̂2j , so function of the second derivatives in the �uctuation variables.
�ese contribution are termed A2

N−1 , B2
N−1 and C2

N−1

Let us start by evaluating the above contributions.

EvaluatingA1
N−1 , B1

N−1 andC1
N−1

Consider the autocatalytic reaction. We have

A1
N−1 =∑

j

∑
s

r

Ω
[L̂1s(φj

sξ
j
s+1 + φj

s+1ξ
j
s)]Π

and, recalling the de�nition of L̂1s, we obtain

A1
N−1 =∑

j

∑
s

r

Ω
[∂ξj

s
(φj

sξ
j
s+1 + φj

s+1ξ
j
s) − ∂ξj

s+1
(φj

sξ
j
s+1 + φj

s+1ξ
j
s)]Π

Playing with the index just like we did before eventually results in

A1
N−1 =∑

j

∑
s

r

Ω
{∂ξj

s
[φj

s (ξj
s+1 − ξj

s−1) + ξj
s (φj

s+1 − φj
s−1)]}Π

�e term B1
N−1 corresponds to

B1
N−1 = α

zΩ ∑
j

∑
s

∑
j′∈j

{L̂1j [φj
s (−∑

m

ξj′
m) + ξj

s (1 −∑
m

φj′
m)]

−L̂1j [φj′
s (−∑

m

ξj
m) + ξj′

s (1 −∑
m

φj
m)]}Π

which a�er making it explicit L̂1s reads

B1
N−1 = α

Ωz

⎡⎢⎢⎢⎣∑j ∑
s

∑
j′∈j

∂ξj
s
(−φj

s ∑
m

ξj′
m − ξj

s ∑
m

φj′
m + ξj

s − ξj′
s

+φj′
s ∑

m

ξj
m + ξj′

s ∑
m

φj
m)Π −∑

j′
∑
s

∑
j∈j′

∂
ξj′

s
(−φj

s ∑
m

ξj′
m

−ξj
s ∑

m

φj′
m + ξj

s − ξj′
s + φj′

s ∑
m

ξj
m + ξj

s ∑
m

φj
m)Π] (5.46)

Changing the index j′ to j in the second combination of nested sum in equation (5.46)
we can re–write the expression for B1

N−1 as:

B1
N−1 = 2α

Ωz

⎡⎢⎢⎢⎣∑j ∑
s

∑
j′∈j

∂ξj
s
(ξj

s − ξj′
s − φj

s ∑
m

ξj′
m − ξj

s ∑
m

φj′
m + φj′

s ∑
m

ξj
m

+ξj′
s ∑

m

φj
m)Π]
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r

Ω
[L̂1s(φj

sξ
j
s+1 + φj

s+1ξ
j
s)]Π

and, recalling the de�nition of L̂1s, we obtain

A1
N−1 =∑

j

∑
s

r

Ω
[∂ξj

s
(φj

sξ
j
s+1 + φj

s+1ξ
j
s) − ∂ξj

s+1
(φj

sξ
j
s+1 + φj

s+1ξ
j
s)]Π

Playing with the index just like we did before eventually results in

A1
N−1 =∑

j

∑
s

r

Ω
{∂ξj

s
[φj

s (ξj
s+1 − ξj

s−1) + ξj
s (φj

s+1 − φj
s−1)]}Π

�e term B1
N−1 corresponds to

B1
N−1 = α

zΩ ∑
j

∑
s

∑
j′∈j

{L̂1j [φj
s (−∑

m

ξj′
m) + ξj

s (1 −∑
m

φj′
m)]

−L̂1j [φj′
s (−∑

m

ξj
m) + ξj′

s (1 −∑
m

φj
m)]}Π

which a�er making it explicit L̂1s reads

B1
N−1 = α

Ωz

⎡⎢⎢⎢⎣∑j ∑
s

∑
j′∈j

∂ξj
s
(−φj

s ∑
m

ξj′
m − ξj

s ∑
m

φj′
m + ξj

s − ξj′
s

+φj′
s ∑

m

ξj
m + ξj′

s ∑
m

φj
m)Π −∑

j′
∑
s

∑
j∈j′

∂
ξj′

s
(−φj

s ∑
m

ξj′
m

−ξj
s ∑

m

φj′
m + ξj

s − ξj′
s + φj′

s ∑
m

ξj
m + ξj

s ∑
m

φj
m)Π] (5.46)

Changing the index j′ to j in the second combination of nested sum in equation (5.46)
we can re–write the expression for B1

N−1 as:

B1
N−1 = 2α

Ωz

⎡⎢⎢⎢⎣∑j ∑
s

∑
j′∈j

∂ξj
s
(ξj

s − ξj′
s − φj

s ∑
m

ξj′
m − ξj

s ∑
m

φj′
m + φj′

s ∑
m

ξj
m

+ξj′
s ∑

m

φj
m)Π]
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We can then re–write the above equation in a completely equivalent form by adding in
each of the sum a pair of �ctitious quantities, each summing up to zero

0 = ξj
s ∑

m

φj
m − ξj

s ∑
m

φj
m

0 = φj
s ∑

m

ξj
m − φj

s ∑
m

ξj
m

Re–ordering the terms so to bring in evidence di�erences of species (both mean–�eld
and �uctuations terms) between consecutive micro–cells and recalling the de�nition
(5.44) of discrete Laplacian yield

B1
N−1 = −α

Ω ∑
j

∑
s

∂ξj
s
(∆ξj

s + ξj
s ∑

m

∆φj
m −∆φj

s ∑
m

ξj
m + φj

s ∑
m

∆ξj
m

−∆ξj
s ∑

m

φj
m)Π

Finally we focus on C1
N−1 and immediately get

C1
N−1 =∑

j

∑
s

∂ξj
s
(βout

Ω
ξj

s + βin

Ω ∑
m

ξj
m)Π

EvaluatingA2
N−1 , B2

N−1 andC2
N−1

�e contribution due to the second derivative inA is

A2
N−1 = r

Ω ∑
j

∑
s

1
2
L̂2s (φj

sφ
j
s+1)Π

which equivalently reads

A2
N−1 = 1

2
r

Ω ∑
j

∑
s

φj
sφ

j
s+1 ( ∂2

∂(ξj
s)2

+ ∂2

∂(ξj
s+1)2

− 2
∂2

∂ξj
s∂ξj

s+1

)Π

�en as concerns B2
N−1

B2
N−1 = α

zΩ ∑
j

∑
s

∑
j′∈j

1
2
{L̂2j [φj

s (1 −∑
m

φj′
m)Π]

+L̂2j [φj′
s (1 −∑

m

φj
m)Π]}

= 1
2

α

zΩ ∑
j

∑
s

∑
j′∈j

[φj
s (1 −∑

m

φj′
m) + φj′

s (1 −∑
m

φj
m)]

×( ∂2

∂(ξj
s)2

+ ∂2

∂(ξj′
s )2

− 2
∂2

∂ξj
s∂ξj′

s

)Π
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It should be noted that the following relation applies

∑
j

∑
j′∈j

[ ∂

∂ξj
s

− ∂

∂ξj′
s

]2 = 2∑
j

∑
j′
[z ∂2

∂(ξj
s)2

δjj′ − ∂2

∂ξj
s∂ξj′

s

J<jj′>] (5.47)

where J<jj′> is equal to 1 if j′ and j are nearest neighbors, zero otherwise. �is is a
technicality which enables us to cast in a compact form the coe�cients of the matrixB de�ned below. It should be noted that the factor 4 in the coe�cients of matrix B
originates from the factor 2 in equation (5.47).

Finally theC2
N−1 term is

C2
N−1 = ∑

j

1
2 ∑

s

{ ∂2

∂(ξj
s)2

[βin

Ω
(1 −∑

m

φj
m)Π] + ∂2

∂(ξj
s)2

(βout

Ω
φj

sΠ)}
= 1

2 ∑
j

∑
s

[βin

Ω
(1 −∑

m

φj
m) + βout

Ω
φj

s] ∂2

∂(ξj
s)2

Π

5.2.4 �e Fokker Planck equation

Equating the ordersN−1 in theMaster equation leads to the following Fokker Planck
equation which governs the probability distribution function of �uctuations:

∂Π
∂τ

= −∑
j

∑
s

∂

∂ξj
s

[∑
l,m

Ajs,lmξm
l Π] + 1

2 ∑
j,j′

∑
r

∑
q

∂2

∂ξj
r∂ξj′

s

[Bjj′,qsΠ]
�ematricesA andB are de�ned on the basis of the above calculations. In particular we
shall concentrate on the analysis of �uctuations around the �xed point. �is is obtained
by imposing φj

s = φ∗ for each choice of s and j. In the following, the structures of the
matricesA and B are discussed. �eir elements are expressed as an explicit function of
the chemical parameters specifying the model at hand.

�e matrixA has dimension kΩ × kΩ and it can be explicitly written as

A =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A0 C1 0 0 . . . C1C1 A0 C1 0 . . . 0
0 C1 A0 C1 . . . 0
0 0 C1 A0 . . . 0

. . . . . . . . . . . . . . . . . .
0 0 0 0 . . . C1C1 0 0 0 . . . A0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
whereA0 is a circulant k × k matrix

A0 =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a0 a1 a2 a2 . . . a3

a3 a0 a1 a2 . . . a2

a2 a3 a0 a1 . . . a2

a2 a2 a3 a0 . . . a2

. . . . . . . . . . . . . . . . . .
a2 a2 a2 a2 . . . a1

a1 a2 a2 a2 . . . a0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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It should be noted that the following relation applies

∑
j

∑
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∑
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∂(ξj
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s∂ξj′

s

J<jj′>] (5.47)

where J<jj′> is equal to 1 if j′ and j are nearest neighbors, zero otherwise. �is is a
technicality which enables us to cast in a compact form the coe�cients of the matrixB de�ned below. It should be noted that the factor 4 in the coe�cients of matrix B
originates from the factor 2 in equation (5.47).
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�ematricesA andB are de�ned on the basis of the above calculations. In particular we
shall concentrate on the analysis of �uctuations around the �xed point. �is is obtained
by imposing φj

s = φ∗ for each choice of s and j. In the following, the structures of the
matricesA and B are discussed. �eir elements are expressed as an explicit function of
the chemical parameters specifying the model at hand.

�e matrixA has dimension kΩ × kΩ and it can be explicitly written as

A =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
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0 C1 A0 C1 . . . 0
0 0 C1 A0 . . . 0

. . . . . . . . . . . . . . . . . .
0 0 0 0 . . . C1C1 0 0 0 . . . A0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
whereA0 is a circulant k × k matrix

A0 =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a0 a1 a2 a2 . . . a3

a3 a0 a1 a2 . . . a2

a2 a3 a0 a1 . . . a2

a2 a2 a3 a0 . . . a2

. . . . . . . . . . . . . . . . . .
a2 a2 a2 a2 . . . a1

a1 a2 a2 a2 . . . a0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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and C1 is also k × k and takes the form

C1 =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

c0 c1 c1 c1 . . . c1

c1 c0 c1 c1 . . . c1

c1 c1 c0 c1 . . . c1

c1 c1 c1 c0 . . . c1

. . . . . . . . . . . . . . . . . .
c1 c1 c1 c1 . . . c1

c1 c1 c1 c1 . . . c0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
�e elements of such matrices follow from the calculation developed above and read

a0 = −2α
Ω

[1 − (k − 1)φ∗] − βin

Ω
− βout

Ω

a1 = −2α
Ω

φ∗ − r

Ω
φ∗ − βin

Ω

a2 = −2α
Ω

φ∗ − βin

Ω

a3 = −2α
Ω

φ∗ + r

Ω
φ∗ − βin

Ω

c0 = 2α
zΩ

[1 − (k − 1)φ∗]
c1 = 2α

zΩ
φ∗

�e coe�cient of matrix B are

Bjj′,qs =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−2 r
Ω
φ∗φ∗δjj′ if ∣q − s∣ = 1

[2 r
Ω
φ∗φ∗ + 4α

Ω
φ∗(1 − kφ∗)+βin

Ω
(1 − kφ∗) + βout

Ω
φ∗] δjj′ if q = s−4 α

zΩ
φ∗(1 − kφ∗)J<jj′>

0 otherwise

More speci�cally matrix B is kΩ × kΩ and has the following structure:

B =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

B0 B1 0 0 . . . 0 B1B1 B0 B1 0 . . . 0 0
0 B1 B0 B1 . . . 0 0
0 0 B1 B0 . . . 0 0

. . . . . . . . . . . . . . . . . . . . .
0 0 0 0 . . . B0 B1B1 0 0 0 . . . B1 B0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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where B0 is a k × k matrix de�ned as:

B0 =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

b0 b1 0 0 . . . 0 b1

b1 b0 b1 0 . . . 0 0
0 b1 b0 b1 . . . 0 0
0 0 b1 b0 . . . 0 0

. . . . . . . . . . . . . . . . . . . . .
0 0 0 0 . . . b0 b1

b1 0 0 0 . . . b1 b0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
and B1 is also a k × k matrix:

B1 =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

b2 0 0 . . . 0
0 b2 0 . . . 0
0 0 b2 . . . 0

. . . . . . . . . . . . . . .
0 0 0 . . . b2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
�e coe�cients b0, b1, b2 read:

b0 = 2
r

Ω
φ∗φ∗ + 4α

Ω
φ∗(1 − kφ∗) + βin

Ω
(1 − kφ∗) + βout

Ω
φ∗

b1 = −2
r

Ω
φ∗φ∗

b2 = −4
α

zΩ
φ∗(1 − kφ∗)

Having de�ned the matricesA and B, we are in the position to obtain an analytical
expression for the power spectrum for the �uctuations. �is is achieved via a straight-
forward procedure which is essentially analogous to that reported in section 5.1.1. Just
a few technical points need to be carefully handled, as clari�ed in [84]. Here, we are
solely concerned with presenting a preliminary gallery of results which testi�es on the
predictive ability of our analysis.

In Fig. 5.8 the (two dimensional) analytical and numerical power spectra are dis-
played, for the case where k = 4. Clearly, the power spectra are now function of the
time–frequency ω and space–frequency κ. �e migration parameter α is set to zero so
that the system is practically composed by Ω, independent replica of the Togashi and
Kaneko setting. �e other parameters are set to the same values as adopted in Fig. 5.3.
As expected, a peak at k = 4 is observed, and no spatial modulation recorded. Direct
simulations agree with the theoretically predicted pro�le. We then turn on the migra-
tion e�ect and setα = 0.1, see Fig. 5.9a.�e system still exhibits the peak forω = 4, but
now a decay in k is predicted to occur. �is feature is then observed in the simulations
(see Fig. 5.9b), again pointing to the validity of the perturbative development, and sug-
gesting that the system organizes collective modes on the large wavelength scale. We
notice that a similar e�ect is also reported by Lugo and McKane in [86] for their spatial
predator–prey model.

Preliminary simulations (not reported here) where the species are di�erentiated
with respect to their chemical activity (di�erent rates) shows a large zoology of allowed
spatio–temporal patterns, including the existence of isolated peaks in the power spectra,
see [84] for an extended discussion.
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Figure 5.8: Numerically (panel (a)) and analytically (panel (b)) obtained power spectrum for a system
with k = 4. Parameters used for the simulations are r = 10, α = 0, βin = 10/64, βout = 10/64, Ω = 16,
N = 5000.� e numerical power spectrum is obtained from 100 runs of the stochastic simulation.

As a �nal remark, we wish to stress that the emergence of regular spatio–temporal
oscillations in the concentration amount might have important implication for the dy-
namics of the so–called protocells. �ese are small–cell like, living, units, which can
self–assemble, develop and replicate. Autocatalytic chemical reactions might have oc-
curred inside those primordial containers back to the origin of life, and could have hy-
pothetically contributed to mediate the minimal mechanisms involved in duplication.
�ese aspects are little understood, despite the fact that lipidic vesicles (i.e. the candidate
representative of the protocells’ family) are nowadays heavily studied in laboratories. In
a future work we intend to explore the possibility that the division process is initiated
by a Turing instability, i.e. following from a purely spatial e�ect of the type investigated
in this chapter.
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where B0 is a k × k matrix de�ned as:

B0 =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

b0 b1 0 0 . . . 0 b1

b1 b0 b1 0 . . . 0 0
0 b1 b0 b1 . . . 0 0
0 0 b1 b0 . . . 0 0

. . . . . . . . . . . . . . . . . . . . .
0 0 0 0 . . . b0 b1

b1 0 0 0 . . . b1 b0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
and B1 is also a k × k matrix:

B1 =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

b2 0 0 . . . 0
0 b2 0 . . . 0
0 0 b2 . . . 0

. . . . . . . . . . . . . . .
0 0 0 . . . b2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
�e coe�cients b0, b1, b2 read:

b0 = 2
r

Ω
φ∗φ∗ + 4α

Ω
φ∗(1 − kφ∗) + βin

Ω
(1 − kφ∗) + βout

Ω
φ∗

b1 = −2
r

Ω
φ∗φ∗

b2 = −4
α

zΩ
φ∗(1 − kφ∗)

Having de�ned the matricesA and B, we are in the position to obtain an analytical
expression for the power spectrum for the �uctuations. �is is achieved via a straight-
forward procedure which is essentially analogous to that reported in section 5.1.1. Just
a few technical points need to be carefully handled, as clari�ed in [84]. Here, we are
solely concerned with presenting a preliminary gallery of results which testi�es on the
predictive ability of our analysis.

In Fig. 5.8 the (two dimensional) analytical and numerical power spectra are dis-
played, for the case where k = 4. Clearly, the power spectra are now function of the
time–frequency ω and space–frequency κ. �e migration parameter α is set to zero so
that the system is practically composed by Ω, independent replica of the Togashi and
Kaneko setting. �e other parameters are set to the same values as adopted in Fig. 5.3.
As expected, a peak at k = 4 is observed, and no spatial modulation recorded. Direct
simulations agree with the theoretically predicted pro�le. We then turn on the migra-
tion e�ect and setα = 0.1, see Fig. 5.9a.�e system still exhibits the peak forω = 4, but
now a decay in k is predicted to occur. �is feature is then observed in the simulations
(see Fig. 5.9b), again pointing to the validity of the perturbative development, and sug-
gesting that the system organizes collective modes on the large wavelength scale. We
notice that a similar e�ect is also reported by Lugo and McKane in [86] for their spatial
predator–prey model.

Preliminary simulations (not reported here) where the species are di�erentiated
with respect to their chemical activity (di�erent rates) shows a large zoology of allowed
spatio–temporal patterns, including the existence of isolated peaks in the power spectra,
see [84] for an extended discussion.
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Figure 5.8: Numerically (panel (a)) and analytically (panel (b)) obtained power spectrum for a system
with k = 4. Parameters used for the simulations are r = 10, α = 0, βin = 10/64, βout = 10/64, Ω = 16,
N = 5000.� e numerical power spectrum is obtained from 100 runs of the stochastic simulation.

As a �nal remark, we wish to stress that the emergence of regular spatio–temporal
oscillations in the concentration amount might have important implication for the dy-
namics of the so–called protocells. �ese are small–cell like, living, units, which can
self–assemble, develop and replicate. Autocatalytic chemical reactions might have oc-
curred inside those primordial containers back to the origin of life, and could have hy-
pothetically contributed to mediate the minimal mechanisms involved in duplication.
�ese aspects are little understood, despite the fact that lipidic vesicles (i.e. the candidate
representative of the protocells’ family) are nowadays heavily studied in laboratories. In
a future work we intend to explore the possibility that the division process is initiated
by a Turing instability, i.e. following from a purely spatial e�ect of the type investigated
in this chapter.
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Figure 5.9: Numerically (panel (a)) and analytically (panel (b)) obtained power spectrum for a system
with k = 4. Parameters used for the simulations are r = 10, α = 0.1, βin = 10/64, βout = 10/64,
Ω = 16, N = 5000.� e numerical power spectrum is obtained from 100 runs of the stochastic
simulation.
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Conclusions

Microscopic systems, such as the intracellular environment, are characterized by
pronounced biochemical oscillations that the standard deterministic approach fails to
capture. �is observation has stimulated the research of novel theoretical frameworks
to interpret the large class of intriguing scenarios characterizing these systems. In par-
ticular, the discrete nature of the system, which can be microscopically segmented in
independent entities, can yield to an e�ective stochastic resonance, resulting in ampli-
�ed regular cycles. Finite size contributions do matter and may hence cause complex
dynamical patterns for the populations under inspection.

In this thesis we have investigated this crucial aspect with reference to a selected
gallery of problems. First, focusing on pain perception, we have developed a discrete
dynamical framework to study themolecular processes which are activated in response
to an external harming stimulus. �ese cascade of reactions ultimately triggers the pain
sensation. �e problem has been analyzed, paying special attention to the associated
�nite–size e�ects. �rough the van Kampen perturbative theory, we are able to recover
an exact analytic description of the �uctuations. Wewere in particular interested in elu-
cidating the crucial interplay between the administered drug molecules, which express
their analgesic function chasing the target receptors, and other chemical elements freely
di�using in the bloodstream. �e latter can substantially reduce the anaesthetic e�ect,
by hindering the available binding sites. Similarly, drug molecules can be turned into
inactive species following binary encounters. �e mechanisms here postulated were
formally coded via chemical reactions and de�ne a consistent stochastic scheme. Nu-
merical simulations displayed macroscopic oscillations in the concentration amount:
the number of bound receptors changed cyclically in time, a trend which we assumed
to induce an analogous modulation for the experienced perception of pain. It is impor-
tant to remark that the ampli�cation process here discussed stems from the underlying
stochasticity, which is resonant with the natural frequencies of the system. Oscillations
arise hence spontaneously, driven by the noise which is intrinsic to the system and with-
out invoking any ad hoc couplings among the molecular agents participating to the
dynamics. Our �ndings suggest the existence of a simple, though general, molecular
mechanism responsible for the emergence of cyclic behaviors in response to analgesic
treatments.

An extension of the model included drug–metabolite interactions where di�erent
populations compete for the same target receptors, so to induce analgesia.� e system
has been analyzed, focusing �rst on the mean–�eld dynamics (N → ∞) which is gov-
erned by a set of coupled ordinary di�erential equations for the species amount. �e
�xed points have been studied together with their associated stability properties. �e

Conclusions
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chemical parameters are found to control the asymptotic regime determining the ef-
fectiveness of the administered therapy. More interestingly, in the transient dynamics a
lethargic phase is registered, where the number of bound receptors appear to have stabi-
lized to a quota sensitive to initial condition, before reaching their equilibrium solution.
Moreover, �uctuations have been also analyzed via the van Kampen technique. It is here
speculated that, in particular cases, theymight in�uence the degree of experienced pain,
which could hence change over time.

Another context where intrinsic noise may have important e�ects on the dynamics
is that of the auto–catalytic networks. �ese kind of reactions are central in many di�er-
ent contexts and play an important role in intracellular biochemical reaction schemes.
In this latter scenario, species are con�ned in a closed volume, delimited by the cellu-
lar membrane. Low concentration can occasionally develop resulting from the com-
plex mutual interaction between microscopic actors. Under such conditions, �uctua-
tions matter and the e�ects of the intrinsic discreteness need to be properly accounted
for. In other words, continuous kinetic equations prove inadequate, �nite size correc-
tions becoming signi�cant. �ese aspects were numerically substantiated by Togashi
and Kaneko [77, 78] within the framework of a simpli�ed system of k coupled autocat-
alytic reactions. In this thesis we elaborate on this concept by studying analytically the
associated master equation via a systematic expansion in power of N−1/2, where N is
the system size. To leading order, the mean–�eld rate equations are recovered, while
higher order corrections enable us to explain the large amplitude of the oscillations as
detected in direct simulations. Importantly, the calculation applies to arbitrary values of
k. For k = 4 a peak in the power spectrum is found, while for k = 8 two peaks develop.
To the best of our knowledge, this is the� rst time that a double–peaked power spectrum
has been predicted to emerge as a resonant e�ect, within a van Kampen type of anal-
ysis. In both cases, theory and simulations agree well thus con�rming the importance
of �nite N contributions. Later on we have extended our work by taking spatial e�ects
into account. Also in this case, we detected spatio–temporal oscillations in the species
concentration, which are again driven by the discreteness of the system components.

In addition to�nite–size e�ects problems, a short part of this thesis has been devoted
to describe new method for analyzing experimental data relative to drugs kinetics and
to microarray experiments.

First, we have proposed a mathematical model for the kinetics of tramadol. �is
novel theoretical framework could result in an objective criterion on how to adjust the
assigned dose, depending on the genetic polymorphisms of CYP2D6.� e model de-
scribes the coupled dynamics of tramadol and the metabolite O–desmethyl–tramadol.
�e e�ect of di�usion of the drug in the blood is here accounted for and we further
hypothesize the existence of a time delay in the process of chemical translation from
tramadol into metabolites. �e system of coupled di�erential equations is solved nu-
merically and the free parameters adjusted so to interpolate the experimental time se-
ries for the intravenous injection setting.� eoretical curves are shown to reproduce
correctly the experimental pro�les obtained from clinical trials. �is enables in turn
to extract an estimate of the metabolization rate. A di�erence in metabolization rate
between CYP2D6 poor and extensive metabolizers is also found, and the stereoselec-
tivity in theO–demethylation of tramadol highlighted. Our results allow one to quantify
the dose of (+)–tramadol (resp. (−)–tramadol) administered to poor or extensive me-
tabolizers, if the same e�ect is sought. �e latter is here quanti�ed through the blood
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chemical parameters are found to control the asymptotic regime determining the ef-
fectiveness of the administered therapy. More interestingly, in the transient dynamics a
lethargic phase is registered, where the number of bound receptors appear to have stabi-
lized to a quota sensitive to initial condition, before reaching their equilibrium solution.
Moreover, �uctuations have been also analyzed via the van Kampen technique. It is here
speculated that, in particular cases, theymight in�uence the degree of experienced pain,
which could hence change over time.

Another context where intrinsic noise may have important e�ects on the dynamics
is that of the auto–catalytic networks. �ese kind of reactions are central in many di�er-
ent contexts and play an important role in intracellular biochemical reaction schemes.
In this latter scenario, species are con�ned in a closed volume, delimited by the cellu-
lar membrane. Low concentration can occasionally develop resulting from the com-
plex mutual interaction between microscopic actors. Under such conditions, �uctua-
tions matter and the e�ects of the intrinsic discreteness need to be properly accounted
for. In other words, continuous kinetic equations prove inadequate, �nite size correc-
tions becoming signi�cant. �ese aspects were numerically substantiated by Togashi
and Kaneko [77, 78] within the framework of a simpli�ed system of k coupled autocat-
alytic reactions. In this thesis we elaborate on this concept by studying analytically the
associated master equation via a systematic expansion in power of N−1/2, where N is
the system size. To leading order, the mean–�eld rate equations are recovered, while
higher order corrections enable us to explain the large amplitude of the oscillations as
detected in direct simulations. Importantly, the calculation applies to arbitrary values of
k. For k = 4 a peak in the power spectrum is found, while for k = 8 two peaks develop.
To the best of our knowledge, this is the� rst time that a double–peaked power spectrum
has been predicted to emerge as a resonant e�ect, within a van Kampen type of anal-
ysis. In both cases, theory and simulations agree well thus con�rming the importance
of �nite N contributions. Later on we have extended our work by taking spatial e�ects
into account. Also in this case, we detected spatio–temporal oscillations in the species
concentration, which are again driven by the discreteness of the system components.

In addition to�nite–size e�ects problems, a short part of this thesis has been devoted
to describe new method for analyzing experimental data relative to drugs kinetics and
to microarray experiments.

First, we have proposed a mathematical model for the kinetics of tramadol. �is
novel theoretical framework could result in an objective criterion on how to adjust the
assigned dose, depending on the genetic polymorphisms of CYP2D6.� e model de-
scribes the coupled dynamics of tramadol and the metabolite O–desmethyl–tramadol.
�e e�ect of di�usion of the drug in the blood is here accounted for and we further
hypothesize the existence of a time delay in the process of chemical translation from
tramadol into metabolites. �e system of coupled di�erential equations is solved nu-
merically and the free parameters adjusted so to interpolate the experimental time se-
ries for the intravenous injection setting.� eoretical curves are shown to reproduce
correctly the experimental pro�les obtained from clinical trials. �is enables in turn
to extract an estimate of the metabolization rate. A di�erence in metabolization rate
between CYP2D6 poor and extensive metabolizers is also found, and the stereoselec-
tivity in theO–demethylation of tramadol highlighted. Our results allow one to quantify
the dose of (+)–tramadol (resp. (−)–tramadol) administered to poor or extensive me-
tabolizers, if the same e�ect is sought. �e latter is here quanti�ed through the blood
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concentration of (+)–metabolites (resp. (−)–metabolites).
As for the microarray experiments, we have developed a method for measuring the

distance among records based on the correlations among available data, with the aim
of estimating the missing values. Finally, we have reviewed the Van Dongen algorithm,
suggesting a new method for detecting di�erent levels of communities, i.e. clusters of
homogeneous objects with respect to a prede�ned norm.
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Chapter A
A technique to simulate the full stochastic process: �e Gillespie
algorithm

In 1976Daniel T. Gillespie proposed an algorithm to exactly simulate the stochastic
dynamics of chemical reactions [79, 82]. To describe this method, let us consider a
volume V which contains molecules ofN chemically active speciesSi for i = 1, . . . ,N ,
and denote by Xi the current number of molecules of species Si in V . �e molecules
interact according to M chemical reactions Rµ for µ = 1, . . . ,M , each characterized
by a reaction parameter cµ. �e quantity cµδt represents the �rst order approximation1
of the average probability that a particular combination of Rµ reactant molecules will
react accordingly in the next time interval δt, as it follows by a chemical kinetics theory
derived into details in the original paper [79].

To illustrate the relationship between cµ and the more familiar “reaction rate con-
stant” kµ used in the deterministic formulation of chemical kinetics, let us consider
the reaction S1 + S2 �→ 2S3. In this case, X1X2 ⋅ cµdt is the probability that the
reaction will occur inside V in the next time interval dt, where X1X2 represents the
distinct combinations of reactant molecules in V . Averaging over a set of stochastically
identical system, and diving by V , we obtain the average reaction rate per unit time⟨X1X2⟩cµ/V or, in terms of molecular concentrations xi = Xi/V , ⟨x1x2⟩cµV . If we
divide this latter quantity by the product of the average densities of the reactants, we
obtain the expression for kµ, namely

kµ = ⟨x1x2⟩cµV

⟨x1⟩⟨x2⟩ (A.1)

In the deterministic formulation the average of a product is equivalent to the product
of the averages, thus ⟨x1x2⟩ =⟨ x1⟩⟨x2⟩ and (A.1) simpli�es to

kµ = V cµ

�e factor V in this relation is due to the type of reaction considered. In reactions with
only one reactant molecule, indeed, the factor V would be absent, while in those with
three reactants, a V 2 would instead appear.

�e aim of themethod is to simulate the time evolution of theN variablesXi know-
ing their initial values Xi(0), theM reactions Rµ and the associated reaction parame-

1 More precisely, the �rst order in δt means that the average probability is cµδt + o(δt) with
limδt�→0 o(δt)/δt = 0.

Francesca Di Patti, Finite-Size Effects in Stochastic Models of Population Dynamics: Applications 
to Biomedicine and Biology, ISBN 978-88-8453-976-2 (print) ISBN 978-88-8453-917-5 (online) 
© 2010 Firenze University Press
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Reaction hµ

Sj �→ reaction products Xj

Sj + Sk �→ reaction products XjXk

2Sj �→ reaction products Xj(Xj − 1)/2
Si +Sj + Sk �→ reaction products XiXjXk

Sj + 2Sk �→ reaction products XjXk(Xk − 1)/2
3Sj �→ reaction products Xj(Xj − 1)(Xj − 2)/6

Table A.1: A selection of possible reactions and their corresponding state variables hµ.

ters cµ. �e standard stochastic approach to this problem focuses on the master equa-
tion, namely the time evolution of the probability function P (X1, . . . ,XN ; t) to have
Xi molecules ofSi (for i = 1, . . . ,N ) at time t. Inmost cases this approach turns out to
be intractable, both analytically and numerically. To overcome this problem, Gillespie
proposed a method based on what he called the reaction probability density function
P (τ, µ). He de�ned this quantity as the probability at time t that the next reaction in
V will occur in the time interval (t + τ, t + τ + δτ) and that the selected reaction was
of the type Rµ.

�e� rst step for deriving an analytical expression for P (τ, µ), consists in associ-
ating to every chemical reaction, a state variable hµ de�ned as the distinct molecular
reactant combinations for reaction Rµ within the volume V at time t. Table A shows
the state variables for a selection of reactions. In this way hµcµδt is the probability, to
�rst order in δt, that an Rµ reaction occurs in V , in the next time interval δt.

�e second step requires decomposing P (τ, µ) as
P (τ, µ)dτ = P0(τ) ⋅ hµcµdτ (A.2)

where P0(τ) is the probability at time t that no reaction will occur in the time interval(t, t + τ), and hµcµdτ is the probability that an Rµ reaction will occur in the next
di�erential time interval (t + τ, t + τ + dτ).

To calculate P0(τ) one can divide the interval (t, t + τ) in K subintervals of equal
length ε = τ/K . In each subinterval, the probability that none of the reactions occurs
is given by

M∏
ν=1

[1 − hνcνε + o(ε)] = 1 − M∑
ν=1

hνcνε + o(ε) (A.3)

In this way, P0(τ) is just the product of K times equation (A.3)

P0(τ) =[ 1 − M∑
ν=1

hνcνε + o(ε)]K

= [1 − M∑
ν=1

hνcν
τ

K
+ o(K−1)]

K
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�is relation holds for anyK > 1, and therefore it is true for in�nitely large value ofK :

P0(τ) = lim
K→∞ [1 −∑M

ν=1 hνcντ + o(K−1)K
K

]K

= exp [− M∑
ν=1

hνcντ] (A.4)

Putting together equation (A.2) with equation (A.4) one obtains the exact expression
for the probability density function

P (τ, µ) = hµcµ exp [− M∑
ν=1

hνcντ] (A.5)

for 0 ⩽ τ <∞ and 1 ⩽ µ ⩽ M with τ ∈ R and µ ∈ N.
Before moving to the description of the algorithm, we recall the main ideas of a

Monte Carlo method. �is latter constitutes a crucial step in the Gillespie implemen-
tation, providing a method to generate two random numbers τ (real) and µ (integer)
according to the joint probability density function in (A.5). �e trick consists in splitting
the probability density function P (τ, µ) into the product of two one–variable proba-
bility density functions.� is procedure is called conditioning and leads to

P (τ, µ) = P1(τ) ⋅P2(µ∣τ) (A.6)

where P1(τ)dτ is the probability that the next reaction will occur between times t + τ
and t+ τ +dτ , and P2(µ∣τ) is the probability that the next reaction will be anRµ type,
given that it happens at time t + τ . Invoking the addition theorem for probabilities,
P1(τ)dτ is obtained by summing P (τ, µ)dτ over all µ, and thus

P1(τ) = M∑
µ=1

P (τ, µ)
Putting this into (A.6) and solving for P2(µ∣τ) it gives

P2(µ∣τ) = P (τ, µ)/ M∑
ν=1

P (τ,ν )
Substituting P (τ, µ) with (A.5) in the previous two equations, we obtain

P1(τ) = { a exp [−aτ] for 0 ⩽ τ <∞
0 otherwise (A.7)

and
P2(µ∣τ) = { aµ/∑M

ν=1 aν for ν = 1, . . . ,M
0 otherwise (A.8)

where

a = M∑
µ=1

aµ
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with
aµ = hµcmu for µ = 1, . . . ,M (A.9)

In this way the problem of �nding two random numbers according to P (τ, µ)may
be recast as the problem of drawing a real random number from the P1 distribution,
and an integer random number according to P2.

Let us �rst focus on the former case. We wish to generate a real number x accord-
ing to a probability density function P (x). �e corresponding probability distribution
function

F (x0) = ∫ x0

−∞ P (x)dx (A.10)

quanti�es the probability that x will be less than x0. �e inversion method for gen-
erating a random value x according to P (x) is to draw a random number r from the
uniform distribution in the unit interval, and than take

x = F −1(r) (A.11)

To prove that this procedure is correct, we have to show that the probability that the x
value so generated will lie betweenx′ and x′+dx′, isP (x′)dx′. By construction, this is
equivalent to calculating the probability that r will lie between F (x′) andF (x′ +dx′).
Since r is a random number drawn from the uniform distribution in the unit interval,
this probability is just the length of the interval [F (x′), F (x′ + dx′)], namely F (x′ +
dx′) −F (x′) = F ′(x′)dx′. Applying the de�nition (A.10), we get

F (x′ + dx′) −F (x′) = F ′(x′)dx′ = P (x′)dx′
and this prove that the probability density function for the random numberx generated
according to (A.11) is indeed P (x).

For the speci�c case at hand, we wish to generate a random number τ according
to the probability density function (A.7). In this case F (τ) = 1 − exp[−aτ]. Putting
F (τ) = r and inverting the function F , we obtain

τ = 1
a

ln(1
r
) (A.12)

where, for simplicity, we have replaced the random variable 1 − r by the statistically
equivalent random variable r.

We have seen how to generate a random number according to a speci�c probability
density distribution for a continuous variable. Now we consider the discrete case and
we look for a method which enables us to obtain a random integer i according to the
probability density function P (j), where now P (j) is the probability that i = j. �e
corresponding distribution function F (i) is de�ned by

F (i) = i∑
j=−∞P (j)

and F (i0) represents the probability that i ⩽ i0. With analogy to the continuous case,
the inversion method consists in drawing a random number r from the uniform distri-
bution in the unit interval and take for i that value which satis�es

F (i − 1) < r ⩽ F (i) (A.13)
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To show that the procedure is correct also in this case, we use the fact the resulting
integer iwill equal j is equivalent to the probability that r will lie betweenF (j−1) and
F (j). So we have

F (j) −F (j − 1) = j∑
k=−∞

P (k) − j−1∑
k=−∞

P (k) = P (j)
�is proves that P (i) is indeed the probability density function for the random integer
i generated according to (A.13).

As an example, we consider again our speci�c case, and make it explicit the expres-
sion of the random integerµwith respect to the density function (A.8). Applying (A.13)
we see that we have to select the integer µ so that

µ−1∑
ν=1

P2(ν ∣τ) < r ⩽ µ∑
ν=1

P2(ν ∣τ)
or

µ−1∑
ν=1

aν < r
M∑
ν=1

aν ⩽ µ∑
ν=1

aν (A.14)

Now we have all the ingredients to describe the details of the simulation methods.
�e steps of the algorithm are the following:

Step0 Assign values to theM reaction constants c1, . . . , cM and initialize theN molec-
ular population numbers X1, . . . ,XN . Set the time variable t = 0, and specify a
stopping time tstop.

Step1 Calculate the quantities aν = hνcν for ν = 1, . . . ,M for the current molecular
population numbers, and the quantity a0 = ∑M

ν=1 aν .

Step2 Use the Monte Carlo technique to generate a random pair (τ, µ) according to
(A.12) and (A.14).

Step3 According to the numbers τ and µ generated in the previous step, advance time
by τ (t = t+ τ ) and update the values ofXi for every species involved in reaction
Rµ.

Step4 If t < tstop go to step1 , otherwise terminate the calculation.

It is important to stress that the time series generated with this algorithm recover the
exact probability distribution function given by the master equation. It can be shown,
in fact, that the two approaches, the master equation and the Gillespie’s method, are
equivalent at the� rst order approximation grounded on the kinetic theory argument
mentioned before.
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