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Foreword

It is my pleasure to welcome you to the 7th International Workshop on Models and Analysis of Vo-
cal Emissions for Biomedical Applications, MAVEBA 2011, and to Firenze, Italy, the city that is known 
especially for its art and architecture, its cultural heritage and its importance in the Middle Ages and that 
is considered the birthplace of the Renaissance. 

Last several decades have witnessed the continued revolution and scientific advances in technology de-
velopment in the field of biomedical engineering and medicine for better health care. The MAVEBA 2011 
presents a broad spectrum of research papers from all over the world, emerging from multidisciplinary 
areas such as electronic engineering, medicine, mechanical engineering, physics, computational sciences, 
to focus on the challenges of developing future knowledge in the field of voice analysis, demonstrating the 
international appeal of this interdisciplinary field that is indeed greater then “models and analysis” as the 
conference title suggests. However, the MAVEBA roots are strong, demonstrating its commitment to the 
ideal of bringing together specialists, practitioners and all those interested in aspects of voice care.

I am proud to bring you a great synergy of expertise from internationally renowned scientists and pio-
neers in medicine and biomedical engineering through keynote speakers and special sessions. The scien-
tific program is targeted to provide tangible benefits and networking opportunities to current researchers; 
it also provides the best environment for younger scientists and students to learn about future prospects 
and professional development activities.

The Workshop comprises two sessions centred on internationally renowned keynote speakers:
Prof. Franco Fussi, ASL Audiological Phoniatric Centre, Ravenna, Italy, and Prof. Sergio Daniel Cano Ortiz, 

University of Oriente, Santiago de Cuba, Cuba, concerning singing voice and newborn infant cry, respectively.
Three Special Sessions encompass highly timely and relevant topics:

•	 “Computational and experimental vocal fold modelling”, organized by Prof. S. Thomson, Provo, 
Brigham Young University, Utah (USA) and Prof. C. Brücker, TU Bergakademie, Freiberg (D)

•	 “Innovative ways for acoustic analysis of non-quasi-periodic voices”, organized by P. Dejonckere, 
Cath. Univ. Leuven, Fed. Inst. Occup. Diseases, Brussels (B), and Utrecht Univ. (NL).

•	 “Acoustic analysis of Parkinsonian speech: issues methods and applications”, organized by Prof. S. 
Sapir, University of Haifa, Haifa (IL)

Moreover, the Workshop hosts six sessions on both traditional and hot topics in the field: Obstructive 
sleep apnoea, Imaging, Signal analysis, Professional voice, Devices. Again high level scientists will pre-
sent most recent research and results.

I hope that you will be intellectually stimulated and challenged by the MAVEBA 2011 scientific pro-
gram while Firenze provides you with an enjoying and charming atmosphere.

In addition to the outstanding scientific programme, I hope that you will find time to explore Firenze 
and its magnificent natural surroundings.

With my best wishes for a productive meeting 

Claudia Manfredi
Conference Chair
Università degli Studi di Firenze

Claudia Manfredi (edited by), Models and analysis of vocal emissions for biomedical applications : 7th international workshop : August 25-
27, 2011, ISBN 978-88-6655-009-9 (print) ISBN 978-88-6655-011-2 (online)
© 2011 Firenze University Press
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cry-based neWborn diaGnosis of cns diseases and speech 
developMental aspects: softWare and hardWare tools, cry 

databases, MethodoloGies 
 

S.D.Cano Ortiz1
 

 
1Universidad de Oriente, Faculty of Electrical Engineering, Stgo de Cuba, Cuba 

 
In fact we know much about the cries of both healthy 

Abstract:  the  analysis  of  infant  cry  (also  known 
simply as cry analysis)  whose use has become more 
prevalent due to advances in areas such as digital 
signal   processing,   pattern   recognition   and   soft 
computing,  has  changed  the  diagnostic  ability  of 
physicians to correctly diagnose new-borns using cry 
analysis. the present paper examines the results and 
conclusions reached by the speech processing Group 
(Gpv) at the universidad de oriente in cuba, in the 
area of acoustic characterization and the multilateral 
and multidisciplinary processing of the cry signal, as 
well as the design and implementation of a cry-based 
methodology for the diverse diagnosis in newborns 
with cns diseases. the endemic development of tools 
for the acquisition and processing of the cry signal, 
the coordination of multidisciplinary research  team- 
work (with areas like the logaopedics, phoniatrics, 
linguistics, neuro-physiology, etc) to carry out a 
rigorous research schedule, the implementation and 
testing of hybrid cry classifiers, the development of 
unprecedented  cry-based  methodology  for  diagnosis 
in newborns affected by cns diseases (with hypoxia 
background) as well as the induction of Web-based 
technology in order to create skills for people involved 
in the introduction and application of the cry-based 
methodology in hospital settings, are properly 
commented. 
Keywords:  cry analysis, signal processing, diagnosis 
tool 

 
I. INTRODUCTION 

 
In the last years the research priority of the GPV has 

been the cry analysis oriented for new-born diagnose, that 
which  responds  to  a  strategic  target:  only  basic  and 
applied investigations within the Cuban Health Care 
system (CHCS). have the maximum priority, because of 
which  it  holds  the  highest  financial  support  in  the 
country. In Cuba the health care system is full free and it 
is focused to the primary and preventive attention. 

The facilities offered by our   university-hospital- 
community scheme within the CHCS empowers the 
development of   multi-disciplinary research project like 
the one we are leading today: cry analysis oriented to 
newborn diagnosis. 

and sick infants, but a reliable investigation procedure, 
which can be used for clinical purposes, has yet not been 
developed. During these years we have been managing 
the hypothesis that it is really possible the development of 
clinical routines that, supported in the cry analysis, make 
easier the differential    and preventive diagnose of 
illnesses concerned with the Central Nervous System 
(CNS) in new-born. 

The formulation of this question represents the central 
scientific  problem  that  has  inspired  our  investigative 
efforts during  last 20 years 
 

II. METHODS 
 

The Scandinavian experience of the 60´s has 
represented an indispensable piece in our work, 
masterfully exposed in their research work entitled  A 
Spectrographic Studies on Infant Cry under the 
orientation and guide of Prof.Wasz Hocker. [1-3] 

Our investigation is also theoretically supported by 
the    Golub´s  theory  as  well  as  the  Theory  of  Adult 
Speech production developed by Fant and Flanagan. [4-6] 

In order to obtain all the acoustic characteristics and 
parameters of the cry signal  several DSP techniques and 
algorithms  that have been proved to be effective for adult 
speech signals were properly implemented, among them 
the most representative were FFT analysis, linear 
prediction, cepstral analysis, short time analysis and 
adaptive filtering,. 

In the study of the main cry attributes and parameters, 
we have tried to be enough wider and comprehensive 
possible,  moving  around  all  the  diverse  representation 
domains like: time domain (energy, zero-crossings rates, 
cross- correlation), in the frequency domain (estimation 
of  the  fundamental  frequency,  resonant  frequencies  or 
formants, etc.), subjective   characterization (soundness, 
biphonation, vibrato, glottal pulse, tenseness, bifurcation, 
etc.), all of them estimated by digital spectrograms. 
Several approaches have been received special attention 
in  order  to  compute  the  fundamental  frequency  and 
formants, where the SIFT algorithm has prevailed as well 
as the cepstral analysis. 

As interesting observation we can say that the use of 
the Mel-scale frequency cepstral coefficients (MFCC´s), 
something  like  for  adult  speech,  have  fulfilled  very 
satisfactory results in the cry analysis  field. 

Claudia Manfredi (edited by), Models and analysis of vocal emissions for biomedical applications : 7th international workshop : August 25-
27, 2011, ISBN 978-88-6655-009-9 (print) ISBN 978-88-6655-011-2 (online)
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A. Control Groups 

 
Table 1 presents the 6 groups of control study held 

during the investigation. 
 

TABLE 1 
GROUPS OF CONTROL STUDY 

Healthy Control 

Groups (2) 

Normal childbirth 

Caesarean 
 
 

Pathological Control 
Groups (4) 

Hypoxia 

Hypoxia with aggravating factors 

Hiperbilirrubinemia 

CIUR (Intra-uterine Growth Delay) 

 
A pain cry was induced by a standardized stimulus: a 

“heelstick”. The infants were positional supine and flat in 
an open cribs and were not crying at the time of the cry 
stimulus. Each 12-second cry signal was recorded by a 
SONY CFS-210 tape recorder with a flat frequency 
response from 40 to 20,000 Hz. A hand held PHILIPS 
SBC-3040 microphone was used to allow recording of 
the  cry  at  a  distance  of  approximately  17  cms  of  the 
baby’s mouth. The recording was done by the researchers 
at  the Southern Maternity Hospital of Santiago de Cuba. 
Then the recorded cries were digitized by a high-speed 
microcomputer  (with  PCVOX acquisition system). With 
those original cry data and their corresponding  clinical 
profiles the BDLLanto database v1.0 was initially 
constructed. 

The soft and hard supporting was partially developed 
by the researchers of GPV (65%) 

Thanks to the collaboration of foreign institutions as 
the UPM1  of Spain and the VUB2  of Belgium   the 
acquisition of equipments needed for our investigations 
has been really possible, letting us avoid the crude effects 
of US embargo in this kind of research project. 

Our   own   tools   and   procedures   have   also   been 
validated in a standard Kay Elemetrics station located in 
the Dept. of Neurolinguístics of the VUB Hospital in 
Brussels, thanks to the appreciable collaboration of Prof. 
Jan Raes. 

 
B. Cry Analysis and Classification 

 
In this process several processing alternatives have 

been applied to the acoustic cry analysis such as: auditory 
analysis, time-frequency analysis of the cry signal, 
spectrographic analysis, digital signal processing (DSP) 
techniques, all of them empowered by the development of 
computers  and  new  information  technologies.  To  the 

 
 

1 UPM: Universidad Politécnica de Madrid 
2 VUB: Vrije Universiteit Brüssel 

classical approach of threshold-based infant cry analysis 
(that  means  to  extract  relevant  diagnostic  information 
from the threshold behavior of acoustic cry parameters 
[1-3] [5-7], we recently added soft-computing approaches 
like  combinatorial  logic,  connectionist  model,  the 
genetic-neural and hybrid systems. 

The necessity to process automatically high volumes 
of information presupposes the implementation of a well 
structured process with its defined integral blocks as it is 
shown in  Fig. 1. 

Starting from the signal data acquisition it follows a 
block that processes the cry signal in order to obtain the 
feature vectors or attributes. Next a block that includes 
reduction of dimensionality  defining the final vectors to 
be present at the input of classifier, finally it appears the 
classification  block  that  defines  the  ownership  to  one 
class or another 
 
 

 
 

Fig.  1  Automatic  Infant  Cry  Recognition  (AICR) 
process 
 

This  is  a  key  part  of  the  process  since  here  the 
acoustic  features which will be the classifier input are 
properly estimated. In our experience, to the primary 
attributes concerned with the characterization of the vocal 
tract and excitation source (F0, Fi)3  the well known 
MFCC´s are added with very good yields. [8-9] 

The classification stage assumes 2 phases: training 
and tests. In this stage  it has been working intensely in 
the last three years leading to the new focuses as follow: 

• Logical-combinatorial analysis 
• Connectionist model 
• Neuro-evolutive analysis 
• Neuro-fuzzy approach 

Logical-combinatorial analysis: this is related to the 
logical-combinatorial approach of Pattern Recognition 
whose essential idea is to establish the analogy in which 
an object may resemble another, but it might not be in its 
entirety. This approach is an alternative to the statistical 
approach, regularly applied in medical research. 
 

Connectionist model: these systems are known as 
connectionist models or   Artificial Neural Networks 
(ANN), due to the resemblance its processing has with 
 
 
3 F0-fundamental frequency, Fi-formant frequencies 
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the form of  processing  of  the  human  nervous  system. 
This approach has been used in the classification of infant 
crying under several scenarios. 

 
Neuro-evolutive analyis: this approach is a recent 

detour used to select the best features of the crying input 
vectors, which are used to train a classification system 
based on neural networks. To make this selection, 
Evolutionary Strategies techniques are applied. 

 
Neuro-fuzzy approach: a work titled “Type-2 Fuzzy 

Sets Applied to Pattern Matching for the Classification of 
Cries of Infants under Neurological Risk” was presented 
in [10] consisting in a pattern recognition algorithm for 
the classification of infant cries. But very recently we 
tried to classify infant cry by compressing the original 
signal, instead of reducing the vectors once they were 
analyzed. Here the reduction method uses Fuzzy 
Relational Product (FRP) to compress the information 
inside a feature vector, building with this a compressed 
matrix   that   will   help   us   recognize   two   kinds   of 
pathologies in infants: Hypoxia and Deafness. This 
algorithm uses codebooks to build a small relational 
matrix that represents an original vector [10-11]. Thus the 
Fuzzy approach  becomes on a viable alternative for the 
cry classification oriented  to the newborn diagnose. 

 
III. RESULTS AND DISCUSSION 

 
A. A Cry-based methodology for New-born diagnosis 

 
Several experiments were done in order to test new 

procedures for cry signal classification.     The 
performances from neural-evolutive approach and FRP 
deal with the highest classification rates reported by 
technical literature [10]. Moreover the percents of 
efficiency with FRP are lightly higher than those obtained 
recently by other approaches within the soft computing 
field. It is also very interesting to note the improvement 
in the fuzzy-classification performance    when this 
approach  is  properly  combined  with  the  FRP- 
compression techniques At the same time a ANN- 
Threshold classifier also reached high classification rate 
in  [9].  That  emergency  of  hybrid  cry  classifiers  is 
opening a new way for automatic cry classification and 
opportunity for cry-based methodology with diagnostic 
purposes. 

The  proposal  of  a  cry-based  methodology 
incorporates all our experience in the infant cry analysis 
including the new focuses of cry classification. In Fig. 2 
there is a brief description of it. 

A first block of signal acquisition follows the 
established  recording  protocol  and  the  filling  of  the 
model sheet 01 (with all the clinical profile of the new- 
born).. 

 

 

 
 

Fig. 2 A proposal of Cry-based methodology for new- 
born diagnosis 
 
A second block assumes the estimation of all the cry 
attributes     (time  domain,  frequency  domain  and 
qualitative features) 
Next the classification block establishes 2 pre-classifiers 
(one threshold-based classification with F0 as feature and 
one hybrid pre-classifier with a combination of threshold- 
based classification and classification with RNA). 

Each pre-classifier grants a classification sub index, 
those classification sub indexes serve as an input to the 
final block where the normality index is computed, which 
finally locates the cry input signal in one of the 2 classes 
(P-pathologic or N-normal). 

This information upgrades the MediCry corpus and at 
the same time is available for the  multidisciplinary staff 
within    the    Consultation    of    the    Infant    Neuro- 
developmental Outcomes  (CNDI), that it is in charge to 
evaluate integrally  the clinical information (given by the 
physical recognition of baby, reading  from specialized 
equipment and clinical tests), the result of the multilateral 
cry processing (not only the result from the cry classifier 
but also from the study of each acoustic parameter in the 
digital  spectrogram).  Through  the  CryTrainer  v1.0  a 
better preparation of the CNDI staff members is fulfilled, 
just to assume  a multidisciplinary  focus in the use of all 
the cry information concerned with the methodology. 

Actually  the  cry-based  methodology  is  being 
introduced at   the Southern Maternity Hospital of 
Santiago de Cuba for its pre-evaluation protocol. 
 
B. Other Tools for Supporting the methodology 
 

Recently collateral results has been developed by the 
GPV consistent on soft tools supported by Web 
technology, which should facilitate the visibility of our 
work, the constant exchange of experiences among 
specialists  of  cry  community     as  well  as  practical 
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application of the cry-based methodology and its integral 
validation. They are: 

 
• MediCry: a  MySQL database which holds all the 

clinical  information  and  cry  corpus  concerned 
with the research project 

 
• CryTrainer: a web-based trainer dedicated to train 

cry researchers in order to read digital spectrogram 
of cry signal 

 
• WebSA on Cry: A Web-based platform for Infant 

Cry Analysis for a collaborative environment that 
lets get an effective exchange of research 
experiences and information sharing among the 
researchers within cry community 

 
 

B. Work in progress 
 

We are directing our efforts to the Classification of 
Cries of Infants under Neurological Risk and High Risk 
Born. For this task we will try to get a large infant cry 
corpus with as many types of samples and from as many 
pathologies as possible. Among the samples we will try 
to build crying histories of medical interesting cases. 

We are also doing research on how to automatically 
identify qualitative acoustic features in the crying signals, 
which until now are only found by visual observation. 
Among  them  are  features  like  vibratos,  glides,  glottal 
rolls, melody, etc. Next we will try to associate them with 
some physical status or pathology. 

 
 

V. CONCLUSION 
 

The GPV during last 20 years has been hardly working 
in  the  field  of  cry  analysis  looking  for  clues  and 
potentials features to be used in early detection of CNS 
diseases and differential diagnosis in new-born. Its main 
results has been synthetically commented showing that 
now we are closest than ever to reach cry classifiers able 
to support new-born diagnosis in clinical routine. 

In the future the final product we visualize for the 
automatic  cry-based  methodology  is  conceived  as  a 
system  with  several  embedded  stages  to  be  called  a 
Neuro-physiological  Evaluation  System  for  New-born 
(SENF). It will include a block of cry data acquisition, a 
classification block, on-line access to digital clinical 
information supported in Web technology, a report 
generator,  Web  connection  with  MediCry  database  as 
well as a dynamic friendly-user interface available for the 
CNDI staff. 
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Abstract: Autism Spectrum Disorders (ASD) show an 

increasing prevalence in children, and are often 

undiagnosed up to the third year of life. Analysis of 

cry patterns appears a promising approach for 

allowing an early ASD detection and diagnosis. In this 

work we compare the main acoustic parameters 

collected by recording infant crying in control 

subjects with the parameters obtained in high risk 

subjects, namely infant siblings of children with 

ASDs. Results confirm previous finding obtained 

using home video recordings, and indicate a weaker 

coupling between fundamental frequency and first 

resonance frequencies in high risk subjects. 

Keywords:  Autism Spectrum Disorders, cry analysis, 

fundamental frequency, resonance frequencies. 

 

I. INTRODUCTION 

 

Cry constitutes the first communication channel 

available to newborns for fulfilling their needs and 

attracting attention of the caregivers. Hearing a crying 

baby produces, in the adults, a reaction aimed at 

activating parental caretaking, ensuring newborn survival 

and comfort. 

Cry involves activation of both the newborn and 

listener neural system, increasing the reciprocal attention 

level. It is produced when the newborn perceives a 

negative stimulus, from an internal or external source, 

and it involves a coordinated effort of several brain 

regions, mainly brainstem and limbic system. 

For this reason, cry can be candidate as an early sign of 

potential problems and pathologies involving the neural 

system, and it should be included and analyzed during the 

evaluation of newborn state.  

Recently, there has been a large interest in the analysis 

of cry features in children with Autism Spectrum 

Disorders (ASD), mainly because of the major role 

played by brainstem and limbic system, both areas 

compromised in children with ASD [1,2], in the 

production of infant crying.  

Autism is a neurodevelopmental disorder characterized 

by impairments in social and communication 

development, and by restricted and repetitive behavior. 

Typically children are not diagnosed before two years of 

life despite 50% of parents of children with ASDs report 

that they suspected a problem before their child was 1 

year of age [3], thus a more precocious diagnosis seems 

possible. 

Recent epidemiological studies reported prevalence 

rates in the general population of 58-67/10.000, 

suggesting that ASDs affect many families and represent 

a serious public health problem. Over the years, 

interventions have focused on enhancing developmental 

skills and on ways of ameliorating behavioral difficulties 

by teaching more effective communication skills. There 

are studies demonstrating that early intensive behavioral 

intervention initiated at preschool age and sustained for 

2-3 years results in substantial improvements for a large 

subset of ASD children. Gains are found in IQ, language, 

and educational placement. Although a few 

pharmacological treatments can reduce some associated 

symptoms, early behavioral interventions remain the most 

effective treatment for the symptoms of autism. Thus, 

early identification of ASDs allows the possibility of 

early intervention, for the ultimate purpose of optimizing 

quality of life and functional independence. 

Previous studies on the properties of cry in autistic 

children involved the spectrographic analysis of the 

sound signal and of the modulation of the acoustic wave, 

reporting the presence of significant differences between 

controls and subjects later diagnosed with ASD. More in 

detail, crying episodes in ASD subjects have shorter 

duration, less modulation, and lack of regular peaks than 

crying recorded in control subjects [4]. Moreover, 

fundamental frequency is lower than in control subjects, 

and structural properties appear atypical [5,6]. 

 

II. METHODS 

Acquisition protocol 

The project will recruit a set of about 200 control 

subjects and a set of high risk subjects to be followed 

prospectively (tentatively, 20 subjects). By allowing 

accurate and detailed assessments of behavioral measures 

at fixed time points, prospective studies offer theoretical 

advantages to detect early modifications of ASD, while 

avoiding biases.  

Presently, no diagnostic tool is available for the early 

detection of autistic children. Recent advances in early 

detection research have resulted from prospective studies 

carried out on high risk infants. We planned to recruit 

later-born infant siblings of children diagnosed with 
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ASD. These infant siblings are themselves at especially 

high risk for an autism or ASD diagnosis [7] and this 

population is arguably the most clearly defined high risk 

group available [8,9]. 

The planned acquisition procedure is totally not 

invasive, minimizing the ethical issues involved in the 

recruitment of control subjects and high risk infants. 

Each subject is involved in a set of measures, 

scheduled every six weeks, starting a few days after birth 

up to the 24
th

 week of life (hence, each one will undergo 

to five testing sessions).  In this work, we present results 

obtained during the 2
nd

 testing session, recorded 

approximately during the 8
th

 week of life. 

Informed consent has been obtained from all parents. 

The study protocol has been approved by the local ethical 

committee (Istituto Superiore di Sanità, IRCCS 

Fondazione Stella Maris, and IRCCS Pediatric Hospital 

Bambino Gesù). 

The acquisition system has been designed for being 

used in the patient home, minimizing the discomfort for 

the involved subjects and the impact of the external 

environment on children habits. Hence, the basic 

requirement is the ease in transporting and assembling the 

system. According to this requirement, the proposed 

system, shown in Fig. 1, includes a laptop which is 

connected to an high speed USB video camera (Logitech 

HD pro webcam C910), able to provide a 1280x1024 

pixel video stream and an external audio acquisition 

device (Tascam US-144-MK2, as the quality of the audio 

card embedded in the laptop is not adequate to the 

recording specifications) and a professional microphone 

(Shure SM58). 

Signal processing 

In the present work, we focus on the analysis of the 

audio track, performed using BioVoice, custom software 

developed in Matlab language. The detail of the 

algorithms used in BioVoice for processing cry 

recordings have been already described in [10], however 

we summarize only part of the elaboration relevant for 

this study in the following paragraphs. The first 

processing step aims at detecting each crying episode in 

order to label it for further elaboration. This allows 

speeding up the elaboration by removing unnecessary 

data. Detection of crying episodes is performed using a 

Voiced/Unvoiced detection procedure. In the next step, 

ach detected crying episode undergoes a detailed 

analysis, where the following features are extracted from 

the signal: 

− length and average amplitude of the episode 

− fundamental frequency F0 

− resonance frequencies, mainly first  and second 

resonance frequency (F1 and F2, respectively) 

F0  estimation and voiced/unvoiced detection 

The fundamental frequency, F0, was estimated with a 

two-step procedure. Simple inverse filter tracking (SIFT) 

was applied first [11,12], to signal time windows of short 

and fixed length. The window length was chosen as 

M = 3Fs/Fmin, where Fs is the signal sampling frequency 

and Fmin is the minimum allowed F0 value for the signal 

under consideration (for newborn cry: Fmin = 150 Hz).  

In the second step, F0 was adaptively estimated inside 

[Fl, Fh]. This allowed for a more precise F0 estimation. A 

variable window length for analysis was applied, 

inversely proportional to the changing F0. Very short time 

windows, ranging from 5 to 15 ms, were thus obtained, 

locally dependent on the signal variability. Over each 

time window, the signal was band-pass filtered (for 

newborn cry the range was settled to 150–900 Hz) with 

the Mexican hat continuous wavelet transform, and the 

signal periodicity was extracted by means of the average 

magnitude difference function (AMDF) approach. In case 

of fast and abrupt F0 changes, this procedure was shown 

to increase the robustness of the F0 estimation, giving 

enhanced results with respect to standard methods [12]. 

In order to disregard voiceless parts of the signal, a 

voiced/unvoiced decision (V/UV) was applied. It was 

based on the approach proposed previously in [13] and 

was suitably modified for our purposes here. Basically, a 

signal frame is selected as voiced if voicing evidence, 

max, defined as the amplitude of the autocorrelation 

function on that frame, is larger than a threshold value. A 

number of controls made on adjacent frames have been 

added to ensure continuity of the detected pitch in order 

to exclude possible wrong V/UV choices [13]. For a 

newborn cry, it was commonly found that max ≥ 0.06.  

Fig. 1 Acquisition system in a typical setup 

Webcam 

Microphone 

Acquisition board 

Laptop 
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Resonance frequencies 

Even if vowel frequencies cannot be found in newborn 

cries, resonance frequencies (RFs) reflect important 

acoustical characteristics of the infant vocal tract. For 

RFs estimation and tracking, a robust parametric 

technique is used, obtained by peak picking in the power 

spectral density (PSD) plot. This was evaluated on the 

same adaptive time windows as previously described. For 

PSD estimation, autoregressive (AR) models were used. 

The model order q varied according to the signal 

characteristics. The “modified covariance method” was 

applied, as it was shown to give the best results for the 

reduction of spectral line splitting and bias of the 

frequency estimations [12]. 

The relation q  0.5Fs (in kHz) was found to be 

optimal for obtaining an enough detailed spectrum, while 

preventing spectral smoothing and consequent loss of 

spectral peaks. Co-ordinates of PSD maxima on each 

time window, as well as their mean and std value on the 

whole signal, were also evaluated. Thus, details were 

given about RFs evolution in time as related to energy. 

The first three RFs, are extracted by the BioVoice 

software, however in the present work we focused only 

on the first two of them, F1 and F2. 

 

III. RESULTS 

Cry episodes detection 

The performance of the detector has been assessed by 

qualitative inspection of the audio signal superimposed 

on the output of the voice detector. Visual analysis of the 

resulting waveform indicates a substantially correct 

extraction of cry episodes.  

An example of the detected voice segments is shown in 

Fig. 2, where a signal frame containing four crying 

episodes is shown. 

Fundamental frequency analysis 

A comparison of the characteristics of cry episodes of a 

control subject and a high risk subject of the same age 

show some interesting differences. As already described 

in the introduction, results confirmed the lower frequency 

range of the fundamental frequency in the high risk 

newborn with respect to control subjects. Moreover, we 

studied possible the relationship between F0 and F1 

during cry episodes. In control cases, we often observed a 

strong coupling between the two variables. As shown in 

Fig. 3, a large number of frames shows a linear relation 

coupling F0 and F1: for instance, in the case shown in 

figure, when F0 is in the range from 400 to 550Hz, we 

have found F1 =3 F0 in almost all frames. As shown in the 

figure, most frames indicate a strong coupling between 

the two frequencies, accordingly to a linear relation with 

an angular coefficient which can be expressed as ratio of 

small numbers (the other alignments which may be seen 

in the figure correspond to angular coefficients equal to 

2+1/4, 2+1/2 and 2+3/4). 

By contrast, the scatter plot relating F0 and F1 in a high 

risk subject is usually similar to the one reported in Fig. 

4, where the coupling between the two frequencies F0 and 

F1 is weaker. 

Melody 

In each cry episode, the fundamental frequency 

presents a well-defined trend. Four typical patterns have 

Fig. 3. Synchronization between F0 and F1 in a control subject 
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been observed in newborns [14,15], namely the 

symmetrical pattern (frequency rising and falling around 

a central peak), the rising pattern (frequency peak appears 

near the end of the episode), the falling pattern 

(frequency peak appears at the beginning), and the 

plateau (with an almost constant frequency). A cry 

recording of a high risk newborn, 2 months old, with 

samples of symmetric and plateau patterns, is reported in 

Fig. 5.  

 

IV. CONCLUSION 

 

Autism Spectrum Disorders (ASD) are often 

undiagnosed up to the third year of life. Analysis of cry 

patterns appears a promising approach for allowing its 

early diagnosis and treatment. In this work main acoustic 

parameters obtained in control subjects with the 

parameters found in a small group of high risk subjects 

are compared. The results of these first experiments 

indicate that appreciable differences can be found. At 

present, the sample size, especially as concerns high risk 

subjects, is too small to assess the statistical significance 

of these differences. Work is in progress in order to 

increase the sample size and to define best acoustic 

parameters suited for an early non-invasive diagnosis of 

autism spectrum disorders.  
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Abstract: obstructive sleep apnea (osa) is a prevalent 
sleep related breathing disorder associated with 
several anatomical abnormalities of the upper airway. 
acoustic parameters of human speech are influenced 
by properties of the vocal tract, which includes the 
upper airway. We hypothesize that it is possible to 
differentiate osa patients from non-osa (healthy) 
subjects by analyzing potential patients’ speech 
signals. using speaker recognition and signal 
processing techniques, we designed a system for 
classifying a given speech signal into one of the two 
groups. the database for this research was 
constructed from 92 subjects who were recorded 
reading a one-minute speech protocol immediately 
prior to a full polysomnography study; one hundred 
and three acoustic features were extracted from each 
signal; seven independent Gaussian mixture models 
(GMM)-based classifiers were implemented; a fusion 
process was designed to combine the scores of these 
classifiers and a validation procedure took place in 
order to examine the system’s performance. 
specificity and sensitivity of 91.66% and 91.66% were 
achieved for the male population; and 88.89% and 
85.71% were achieved for female population, 
respectively. such a system can be used as a tool for 
initial screening of potential osa patients. 

Keywords: obstructive sleep apnea, speech signal 
processing, speaker recognition. 

I. INTRODUCTION 
 

Obstructive sleep apnea (OSA) is a sleep disorder that is 
caused by obstruction of the upper airway. OSA severity 
is defined by the number of obstructive apnea and 
hypopnea events per hour of sleep (apnea hypopnea index 
– AHI). OSA affects approximately 5% of adults in the 
western population; a 2- to 3-fold greater risk for men 
compared to women has been reported [1]. OSA can lead 
to numerous complications such as hypertension, 
cardiovascular disorders, and excessive daytime 
sleepiness [2]. Currently, diagnosis of OSA is conducted 
in a sleep laboratory where a full polysomnography 
(PSG) study is performed. PSG is expensive, time 
consuming, and uncomfortable for the patient. 

In earlier studies, researchers found that OSA is 
associated with several anatomical abnormalities of the 
upper airway that are unique to this disorder [3]. Acoustic 
parameters of human speech are affected by the 
physiological properties of the vocal tract (which 
includes the upper airway) such as vocal tract structure 
and soft tissue characteristics. Therefore, it was suggested 
[4] that acoustic speech parameters of an OSA patient 
may differ from those of a non-OSA subject (speaker). 
Our hypothesis is that speech signal properties of OSA 
patients will be different than those of control (non-OSA) 
subjects, and that we are able to distinguish between the 
two groups using a computer-based system that will 
analyze the subject’s voice. The influence of OSA on 
speech is not yet fully understood but some researchers 
have tried to classify OSA subjects using speech signals 
[5] [6]; in both studies one classifier was trained on all 
speech segments using various acoustic features.  

In this study we designed a system that fuses several 
Gaussian mixture model (GMM)-based classifiers, one 
for each of the voiced phonemes, using different acoustic 
features and model parameters. Our primary goal is to use 
this set of classifiers for initial screening of potential 
OSA patients that will assist in reducing the number of 
patients referred to sleep clinics for diagnosis. Our 
secondary goal is to improve our understanding of the 
effect of the disorder on speech including investigating 
the hyper-nasalization degree of the speech signals. 

 
II. METHODS 

 
A. Experiment setup 

The test population of this research was constructed from 
60 male subjects and 32 female subjects; subjects’ age, 
AHI, and body mass index (BMI) are presented in Table 
1. All subjects are patients who were referred to a sleep 
clinic by different doctors as “potential” OSA patients. 
All subjects underwent full PSG examination, were 
diagnosed, and given an AHI by the clinic’s medical 
staff. Each subject was recorded using a digital audio 
recorder (Handy recorder “H4” by ZOOM) reading a 
one-minute text protocol in Hebrew, designed by the 
researchers to emphasize certain elements of speech. In 

Claudia Manfredi (edited by), Models and analysis of vocal emissions for biomedical applications : 7th international workshop : August 25-
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table 1 – the subjects' information 

Diagnosis Number of 
subjects 

AHI average  
± Std 

Age average  
± Std 

BMI average  ± 
Std 

Male 

Healthy 12 4.83 ± 1.79 45.55 ± 13.6 27.66 ± 4.07 

OSA 48 28.26 ± 20.17 56.58 ± 13.18 31.2 ± 5.7 

Female 

Healthy 14 3.44 ± 2.28 47.23 ± 13.87 28.35 ± 6.73 

OSA 18 24.44 ± 17.33 58.65 ± 10.59 33.44 ± 6.07 

 

order to avoid over-fitting, the speech data was then 
divided into two separate databases: design and 
verification (validation). 

 
B. Pre-processing and feature extraction 

 
Each recorded speech signal underwent a pre-processing 
procedure of down-sampling (to 16 kHz), DC removal, 
pre-emphasizing, and normalization; followed by manual 
segmentation of the signal in order to isolate specific 
phonemes. Using the signals from the vowels (/a/, /e/, /i/, 
/o/, and /u/) and nasal phonemes (/n/, /m/) alone, the 
signals were further framed into 30 msec frames. One 
hundred and three different acoustic features were 
extracted from each frame. The extracted features can be 
divided into four groups: time domain features, such as 
energy, pitch, jitter, and shimmer; spectral features, such 
as linear predictive coding coefficients (LPC) and their 
first and second derivatives, formant location and 
bandwidth, auto regressive moving average (ARMA) 
coefficients, and other potentially relevant spectral 
features; cepstrum domain features such as mel-
frequency cepstral coefficients (MFCC) and their 
derivatives; and features for detection of hyper-nasal 
speech, which will be further elaborated later. 

In addition to these “short term features” that were 
extracted from each frame, another set of features was 
computed as statistics of some of the short-term features 
through the entire speech signal, such as average of 
harmonic to noise ratio and average distance between 
formants. These “long-term features” represent the 
stationary position of the vocal tract uttering different 
vowels [5]. 

C. Abnormal nasalization degree detection 

In [7], the researchers suggested that OSA patients 
demonstrate an abnormal nasalization degree in their 
speech. This abnormality is usually caused by a defective 
velopharyngeal mechanism [8] that may be associated 
with OSA. Hyper-nasal speech is characterized by 
amplitude reduction of the first formant, presence of 
zeros in the spectrum due to coupling of nasal and oral 
cavities, presence of reinforced harmonics resulting from 

the sound resonance in the nasal cavity, and a shift of 
formants [9]. In order to differentiate OSA patients from 
non-OSA subjects we added three features to the feature 
extraction process for estimation of hyper-nasalization 
degree of each given frame. 

The first feature is based on a nonlinear operator called 
Teager energy operator (TEO) [8]. 

 * , -+     , -   ,   - ,   -               (1)    

          
where s[n] is the speech signal in time domain. The TEO 
can be shown to be sensitive to multi-component signals 
(such as hyper-nasal speech signals). The extraction of 
this feature was implemented as follows: each signal was 
filtered once with a BPF around the first formant and 
once with LPF, which was set to remove the frequencies 
that are higher than those of the first formant. TEO was 
extracted from both signals, and cross correlation 
between the two outputs was calculated. The assumption 
is that if there is only one component in the signal (no 
nasal harmonic near the first formant) the signals will be 
similar, but in the case of hyper-nasalized speech, the 
signals will be different. 

The second feature proposed is based on using high and 
low order LPC [9]; where in case of hyper-nasal speech, 
there will be a large difference between the spectra 
obtained from these two sets of coefficients. The distance 
between the LPC sets was calculated by calculating the 
real LP cepstrum c(k) and finding the geometric distance 
between the two sets using (2). 

  ∑ ,  ( )     ( )-  
                       (2) 

 
where   ( ) and   ( ) are high and low order LP 
cepstral sequences, respectively. 
The third feature is set to detect the spectral flattening 
associated with hyper-nasalization of a given speech 
signal. Power spectral density (PSD) was estimated for 
each frame using Welch’s method and standard deviation 
(STD) was calculated on the PSD between 300 Hz to 
2000 Hz [10]. 

These features were added to previously described 
features that discriminate between normal and abnormal 
nasalization degree of speech, such as first formant 
location and bandwidth, distance between first and 
second formants, and ARMA coefficient. 
 

D. Feature selection and model estimation 
 

Seven GMM-based classifiers were implemented; one for 
each of the five vowels, one for the nasal phonemes, and 
one for “long-term features”. Each phoneme-based 
classifier was trained separately on a different subset of 
features selected via a sequential forward floating 
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table 2 – Results of 3 different systems (O-OSA, H-healthy) 
 system a: 7 phoneme-based 

classifiers, separate feature 
selection procedure 

system b:  
7 classifiers, same features 

system c  (baseline system):  
1 classifier for all phonemes 

Male 
classified as O classified as H classified as O classified as H classified as O classified as H 

true label O 85.42% 14.58% 83% 17% 83% 17% 
true label H 16.66% 83.33% 33.33% 66.66% 21% 79% 

female 
 classified as O classified as H classified as O classified as H classified as O classified as H 

true label O 83.33% 16.66% 77.77% 22.23% 86% 14% 
true label H 14.29% 85.71% 21.43% 78.57% 16% 84% 

 

table 3 – Results for system A with hyper nasal detection 
features 

Male 
 classified as O classified as H 

true label O 91.66% 8.33% 
true label H 8.33% 91.66% 

female 
 classified as O classified as H 

true label O 88.89% 11.22% 
true label H 14.29% 85.71% 

 

selection algorithm (SFFS). The most discriminative 
features for each model were chosen to maximize the 
performance of the classifier. After designing all seven 
phoneme-based classifiers and calculating the parameters 
for an OSA model and a healthy model for each 
classifier, each subject (of the design data) was tested 
over all models and scored using log-likelihood ratio and 
Z normalization [11], getting 7 normalized scores 
  ( ) (       ) – one for each classifier:  
 

  ( )  
 
 ∑    . (      )/  

 
 ∑    . (      )/      

     
   

  
  

                                             (3)   
 

where  (      ) and  (      ) are the likelihood 
probabilities of the jth feature vector  xj, given the model 
for healthy subjects and for OSA patients, respectively. 
   and    are the OSA population’s mean and variance, 
respectively, and N is the number of frames. 
  
The significance of each classifier was evaluated by 
conducting a leave one out (LOO) validation procedure 
on the design data. A fusion process was performed in 
order to combine all scores; the fusion process was found 
on issuing different weight,    (       ), to each score 
based on the significance of the classifiers’ results. 
Classifiers that resulted in total significance of 60% or 
less were taken out of the final score and the remaining 
scores were weighted in proportion to their significances; 
the total of all weights is set to be 1. During the training 
phase, a threshold was calculated for all classifiers. 

E. Validation  
 

A validation procedure took place using the validation 
data; each subject was tested in a leave one out process, 
scores were given to the subject for each model, and 
summed using the previously calculated weight function: 
 

  ( )   ∑     ( ) 
                           (4) 

 
The weighted score and the previously calculated 
threshold were used to decide whether to label each 
subject as OSA or non-OSA (healthy).    

 

III. RESULTS 
 

Using the design database, the feature selection procedure 
resulted in a different set of selected features for each 
classifier; moreover, a different order of GMM was 
proven more efficient for each different phoneme.  
 In a recent study conducted in our lab [5], an identical 
database was used to achieve the same purpose of 
differentiating OSA from non-OSA (healthy) patients, 
using a single GMM classifier (baseline system, C) for 
all speech frames; an 8th order GMM model was 
implemented on a 5-dimension feature space for males 
and 4th order GMM model was implemented on a 
different 5-dimension feature space for females. The 
features in baseline system (C) were selected using the 
same SFFS procedure and out of the same 100 features 
described previously in section II, but without the "hyper-
nasal" features. In order to evaluate the efficiency of our 
method of training 7 phoneme-based classifiers 
separately, and the effect each phoneme has on the final 
score, we examined our system using the same 5 features 
selected in [5] for each of the seven classifiers (system 
B). The results of all 3 systems are presented in Table 2. 

Adding the three hyper-nasal speech detection features to 
the model further improved our result. System A was 
retrained using all 103 features; results are presented in 
Table 3. 

The results of each phoneme-based classifier were fused 
with the weight function calculated with the design data; 
this function is presented in Table 4. 
 



16

 

table 4 – Weight function for each gender 
 /a/ /e/ /i/ /o/ /u/ /m/+/n/ Long 

term 
Male 0.16 0.05 0.00 0.00 0.16 0.11 0.52 

Female 0.02 0.00 0.00 0.28 0.00 0.70 0.00 
 

 
IV. DISCUSSION and CONCLUSION 

 
From Table 2 one can see that the proposed system (A), 
which offers an optimal feature set for each phoneme and 
a fusion between phoneme-based classifiers, is superior 
to the other compared systems (B and C). 

For comparison, the results presented in [5] (system C) 
are 83% specificity and 79% sensitivity (for males). 
Implementing the same optimal 5 features of system C on 
the phoneme-based system (B) caused performance 
degradation to 83% specificity and 66% sensitivity, 
implying that those five features are not the optimal 
features for each phoneme. 

Adding the hyper-nasal speech detection features to the 
model further improved the results, increasing specificity 
and sensitivity to 91.66% and 91.66% for male subjects, 
and 88.89% and 85.71% for female subjects. These 
improvements imply a difference in the nasalization 
properties between OSA and non-OSA groups. In order 
to further examine this potential discriminating property 
we trained our system (system A) using only 7 features: 3 
hyper nasal features and first and second formants’ 
location and bandwidth. Classification results of 70.8% 
specificity and 75% sensitivity were achieved, 
reinforcing the assumption of hyper nasalization in OSA 
patients’ speech. 

The procedure of training different classifiers with 
different feature sets for each phoneme (system A) indeed 
improved the results; moreover, the weight function and 
the results of each model led us to conclude that some 
phonemes (such as /a/ and nasal phonemes) carry more 
distinguishing information than other phonemes between 
OSA subjects and healthy subjects. 

From the results of this research, it appears that initial 
screening of potential OSA patients using speech signals 
is indeed possible. 
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Abstract: in this work, an automatic snore detection 
system of acoustic snoring signals has been designed. 
its purpose is to assist an alternative non-invasive 
method for diagnosing obstructive sleep apnea (osa) 
based on acoustic signal processing. the detector is 
based on Gaussian mixture models that were trained 
and validated on full night acoustic signals that were 
recorded from a sleep laboratory, along with 
polysomnographic tests taken from patients with 
widely distributed severity of osa. the snore 
detection system includes steps from noise reduction 
through event detection and all the way to snore 
identification. 
in order to analyze the performance of our proposed 
detector, a total of more than 80,000 acoustic episodes 
from 33 different osa patients were manually 
segmented into snore and non-snore episodes; among 
the non-snore episodes we can find a variety of sleep 
related noises such as blanket and pillow murmurs, 
moaning, groaning, coughing, and talking. the 
validation dataset was recorded using two different 
audio recorders to ensure the robustness of the 
detector. 
the events’ total identification rate was 97.12% with 
96.02% positive detection of snore as snore 
(sensitivity) and 97.90% detection of noise as noise 
(specificity). 
Keywords: obstructive sleep apnea, snore detection, 
GMM 

 
 

I. INTRODUCTION 
 
Obstructive sleep apnea (OSA) is a common sleep related 
breathing disorder in which the upper airways (UA) are 
collapsed, causing rapid and shallow breathing 
(hypopnea) or even total prevention of inhalation for at 
least 10 seconds (apnea), causing suffocation and 
frequent arousal during sleep. The main consequences of 
OSA are daytime sleepiness and increased risk of severe 
cardiovascular diseases, resulting in high risk of strokes 
and even sudden death [1,2]. 

Today, the gold standard for OSA diagnosis is 
polysomnography (PSG) [3] study, which requires a 
whole night diagnosis at a sleep laboratory while the 
subject is connected to numerous sensors; this study is 

expensive and the waiting list is long; Moreover, during 
this procedure sleep conditions are unnatural; these issues 
lead to seeking alternative methods of OSA diagnosis. 

Snoring is the most common symptom of OSA, 
occurring in 70% to 95% of patients [4]. Snoring is 
caused by the vibration of soft tissues due to turbulent 
airflow through a narrow oropharynx in the UA [5], such 
a narrow oropharynx is more common among patients 
with OSA than subjects without OSA [6]. Earlier studies 
[7,8] suggested that the snores may play a key-role in 
detecting and distinguishing between healthy (non-OSA) 
and OSA patients. Since snores can be recorded using a 
non-contact microphone in any place, even at patients' 
homes, natural sleep can be obtained, and snore event 
detection can be used as the first stage of OSA detection 
system using audio signals. 

In recent years, several snore/non-snore classification 
techniques have been published. Duckitt et al. [9] 
proposed a classification method for snore/non-snore 
episodes using mel-frequency cepstral coefficients 
(MFCC) with hidden Markov model (HMM) and 
achieved a detection rate of 82%-89% (from 6 simple 
snorer subjects). Cavusoglu et al. [10] proposed a method 
using sub-band spectral energy distributions along with 
robust linear regression (RLR) and principal component 
analysis (PCA); their detection rate was around 90.2% 
(using 15 subjects for each design and validation, ~9000 
simple & OSA snore episodes in total). 

We propose a Gaussian mixture model (GMM)–based 
method for snore/non-snore detection that involves 
acoustic feature extraction from three different feature-
space domains: time, energy, and frequency. The 
proposed system produces a detection rate of 97.12% for 
snores and noise, using a real OSA population that was 
referred to PSG study. The system is robust for variety of 
snores, regardless of the subjects' gender or their OSA 
severity. 
 

II. METHODS 
 
Thirty-three patients (over 18 years old) scheduled for the 
sleep laboratory, were recorded during one night with a 
digital audio recorder device (EDIROL R-4) using a 
directional microphone (RODE NTG-1) at a distance of 1 
meter above the head level and stored along with the PSG 
signals; the acquired audio signals are digitized at a 
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sampling frequency of 44.1 kHz, PCM, 16 bits per 
sample. 

The raw audio signal is processed using the proposed 
snore detection system which is shown in Fig. 1. 

 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

 

Fig. 1. – Block diagram of the snore detection system 
 
preprocessing 

The signal is down-sampled to 16 kHz. A noise 
reduction (spectral subtraction) algorithm is applied on 
the full night audio based on the Wiener-filter, which is 
based on tracking a priori SNR using the decision-
directed method proposed by Scalart et al. [11]. 

 
event detection & segmentation 

The audio events were automatically detected and 
segmented using an adaptive energy threshold. 

In order to do so, the event detection module must 
include a few steps in order to achieve a potential snore 
event. At first the full night audio signal is analyzed in 
chucks of one-minute segments, for every segment an 
energy vector is calculated with a frame size of 60 ms and 
75% overlap; the combined energy vectors are stored and 
will be used in the following steps. Later, a threshold is 
calculated using the estimated probability density 
function (pdf) of the energy values, where the first peak 
of the pdf is considered to be the background noise. With 
the completion of calculating every minute of the entire 
audio file, a smoothing technique based on median values 
is applied on the threshold vector to smooth outlier 
values. 

With every energetic event that surpasses the relevant 
threshold, a boundary fine tuning technique is applied, 
based on the slopes of the linear regression fitting curves 
of 10 energetic samples (150 ms window) outside the 
event region on both sides; the event region is increased 
on each side as long as the slope does not change its sign.  

Next is the fragmentation test – some of the events that 
are too close to each other (< 200 ms) are suspected to be 
a fragmented event (such as split snores); these events 
undergo a spectral similarity test of the 100 ms adjacent 
windows; in case of similarity the events are merged to 
form one event. 

In order to improve detection efficiency, an event 
duration test is applied to remove unlikely snore events; 
only 200 ms to 3500 ms events are considered to be a 
potential snore event and sent to the snore classifier 
model. 
 
feature extraction 

At this stage from each suspected event a 40-
dimensional feature vector is calculated, consisting of 
three different sets of features: 
 
1) energy set 

We included seven features such as skewness and 
kurtosis both for energy distribution in amplitude and in 
time, a normalized area beneath the energy envelope 
when a square shape represents one, a volume density 
rate [(max-min)/max] of the energy, and slope, which 
represents the slope from the beginning to the highest 
peak within the energy normalized duration. 
 
2) spectral-domain set 

Twenty-seven features were included in this set. First 
we calculated 20 MFCCs for every 16 ms window (with a 
50% overlapping) of the entire event; from that MFFC 
matrix, some of the features are extracted. We included 
the median (along time) of the first 16 of 20 coefficients 
from the MFCC matrix. 

Two dynamic MFCC's distance (d1 and d2), which 
measure the MFCC's variance along time (1): 

    
                 

  

   
                           

Where the variance (VAR) of MFCC(k,n) is estimated 
along time n and another version of distance uses the 
derivatives of MFCCs (2): 

    
        

            
  

   
                    

We also included a spectral flux, which was measured as 
the variance of the DFT along time (32 ms window 
duration, amplitude in dB). 

A four sub-band frequencies distribution with a 
bandwidth of 2 kHz each – but only the first three was 
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taken, frequency centroid, and the difference between the 
centroid of the initial half episode and the second half 
episode over time. 

Pitch related features were added as well, such as 
pitch, pitch strength, and pitch density [8]. 
 
3) time-domain set  

Six features were included in this set such as episode 
duration, zero-crossing rate, rhythm period, and period 
strength; For the two last features we seek for a snoring 
pattern (evenly repeated events) which is calculated via 
autocorrelation of a 20 sec interval which includes the 
energy signal of the event surroundings; the rhythm 
period is the location (in time) of the first R(τ) peak. 
When the rhythm strength is measured as the product of 
the peak value of the first R(τ) and the variance between 
the R(τ) curve and the Aτ+b linear regression fitting of 
R(0) to that peak, the more "delta" shape the R(τ) the 
greater the error and therefore the greater the strength of 
the rhythm. A demonstration of snores rhythm is shown 
in Fig. 2; while this feature alone cannot be relied on, 
with the addition of the rest of the features, its 
contribution is a major addition in discrimination between 
snores and uncorrelated noises, but cannot be relied on 
alone. 

We also added the ratio between forward and 
backward rhythm periods of the adjacent events as well 
as the strength of the ratio measured as the root square of 
the product between forward and backward strengths. 

 

 
Demonstration of snores rhythm 

Fig. 2. – The upper figure represents the energetic pattern of snores when the 
middle event is the tested snore. To emphasize the rhythm, a log operator and 
rescaling is applied to the energetic segment as shown in the middle figure. At the 
bottom is the autocorrelation R(t) of the segment. 
 
 

Model estimation 
 In the design phase, two GMM-based models are 
estimated, one for snore events and one for non-snore 
events (model order 7 for snores and order 32 for non-
snores) using feature vectors from the first 20 patients 
(design data). For this process, manually labeled events 
were used. 
 
Model matching 

Using the estimated models and the feature vectors, 
calculated from each event from the validation dataset 
(13 patients), a general classification decision (snore/non-
snore) is performed using log-likelihood ratio (LLR) 
scores. 

 
decision 

An adaptive LLR threshold is calculated using all the 
scores to assemble a pdf in order to find a minimum 
between the bi-modal Gaussian densities. 

 
Among the events we recorded 35000+ noise events 

and 46000+ snores – both from simple and OSA snorers; 
the noise events were assembled from breathing, talking, 
blanket noises, and other non-snore events. 

The tested group (for validation) contained 13 subjects, 
three of whom were recorded using another portable hand 
recorder (Olympus SL5, sampling frequency of 44.1 kHz, 
PCM, 16 bits per sample) located on the dresser beside 
the pillow in order to see if different recording devices 
and microphones can be used, although it was not 
included in the training (design) process. 

 
III. RESULTS 

 
The experiment was conducted using the database that is 
shown in Table 1.  

 
Table 1 –Subjects' database information 

 All System 
Design 

System 
Validation 

# subjects 33 20 13 

Gender(M/f) 18/15 9/11 9/4 

aGe - range 25-82 37-82 25-81 

(mean ± std) 51.9±12.4 54.0±10.9 48.1±14.5 

ahi - range 2.2-64.9 2.2-64.9 5.9-47.9 

(mean ± std) 18.3±15.3 16.9±16.6 20.7±13.1 

bMi - range 22.9-39.1 26.4-38 22.9-39.1 

(mean ± std) 29.5±6.9 28.7±7.5 31.0±5.8 

snores (M/f) 23125/22109 16127/17502 6998/4607 
noise events 

(M/f) 21486/13685 8457/9971 13029/3714 

device (rode 
ntG-1/ls-5) 30/3 20/0 10/3 

Tested Snores 

Y=Aτ+b 
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The design set for the model estimation has almost an 
equal number of men and women and a wide range of 
OSA severity – AHI of 2–65. For the validation set we 
included also three recordings from a handy recorder as 
shown in Table 1; we deliberately validated episodes 
recorded from a handy recorder in order to eliminate over 
fitting of the signals to our microphone's specs. The 
overall detection rate was 97.12% with 96.02% for snores 
and 97.90% for noise, with a confusion matrix as shown 
in Table 2. 

 
table 2 – classification results 

 
Snore Noise 

Snore 96.02% 3.98% 
Noise 2.10% 97.90% 

 
       snores/noise llr distribution 

 
Fig. 3. – Log likelihood ratio (LLR) scores of snore and noise events 

 
roc – area=0.9927 

 
Fig. 4.– ROC curve – detection rate (True positive, TP) vs. (False 

Positive, FP) of snores 
 

IV. DISCUSSION 
 
The experiment was conducted on a total of 80,000+ 
audio events (snores and noise), which were extracted 
from 33 subjects as shown in Table 1, simple and OSA 
snorers, men and women – ensuring the robustness of the 
classifier. Furthermore, the validation group was 
assembled from signals that were recorded from different 
devices and even from different angles and distances, 
ensuring that the classification algorithm is robust to 
microphone type and angle; this implies that a small high-
quality audio recording device can be used for home 
recordings, keeping the natural sleep of the patient. 

According to the ROC curve in Fig. 4 and the LLR 
distribution in Fig. 3, we noticed that most of the errors 
were caused by a lack of distinction between smooth 
snores and breaths. 

 

V. CONCLUSION 
 
This paper proposed a snore detection system. The 
performance of the system is very encouraging – the 
detection rate is superior to earlier reported papers [9,10] 
and the system is ready for the next step – classification 
of OSA patients using snore analysis. 
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Abstract: snores are respiratory sounds produced 
during sleep. they are reported to be a risk factor for 
various sleep disorders, such as obstructive sleep 
apnea syndrome (osa). diagnosis of osa relies on 
the expertise of the clinician that inspects whole night 
polysomnographic recording. this inspection is time 
consuming and uncomfortable for the patients. thus, 
there is a strong need for a tool to analyze snore 
sounds automatically. nocturnal respiratory sounds 
are composed of two kind of events: “silence” episodes 
and “sound” episodes that include breathing, snoring 
and “other” sounds. 
in this paper a new method to detect snoring episodes 
from full night audio recordings is proposed. signal 
analysis is performed in three steps: pre-processing, 
automatic segmentation, extraction of features and 
classification. With the segmentation step, only the 
“sound” parts of the audio signal are extracted using 
a short-term energy and the otsu thresholding 
method. the aim of classification step is the detection 
of snore episodes only, using two neural artificial 
network applied to four features (length, maximum 
amplitude, standard deviation and energy). 
data from 24 subject are analyzed using the proposed 
method; on the dataset, a sensitivity of 86,2% and 
specificity of 86,3% are obtained. 
Keyword: snore, obstructive sleep apnea, neural 
network, automatic segmentation 

 
I. INTRODUCTION 

 
Snoring can be defined as a respiratory noise that is 

generated during sleep when breathing is obstructed by a 
collapse in the upper air way. Loud and regular snoring is 
the earliest and most consistent sign of upper airway 
(UA) dysfunction leading to sleep apnea/hypopnea 
syndrome [1].  

Obstructive sleep apnea (OSA) is the most frequent 
encountered form of the sleep apnea [1]. In OSA, the 
upper airways are obstructed during sleep, resulting in the 
decrease of oxygen flow to the lungs. Patients suffering 
from OSA often wake up frequently. When there is a full  
closure of airways, the disease is termed “apnea” while 
when there is a partial closure, it is known as “hypopnea” 
[2]. The disease is associated with significant clinical 
consequences but it is frequently unrecognized and  
 

 
undiagnosed because simple, low-cost devices for mass 
screening of the population do not yet exist. 

The current “gold standard” method for sleep apnea 
assessment is Polysomnography (PSG). This technique 
requires a full night hospital during which the patient is 
connected to more than ten channels of measurements 
requiring physical contact with sensors. PSG is thus 
inconvenient, expensive and unsuited for community 
screening [3] [4] [5]. Thus, in order to study OSA non-
invasively, several researches focused on the analysis of 
snore sounds from full night audio signal recordings, 
using signal processing techniques. 

Commonly tracheal respiratory sounds are recorded 
using a microphone placed over the patient‟s neck or 
hung above the patient‟s head during the night, leading to 
long lasting audio signals (6–8 hours).  The length of a 
whole recordings is thus prohibitive for the analysis by 
listening to and for visual inspection of signal patterns. 
Hence, automatic methods are needed to speed up the 
analysis task.  
Despite its clinical relevance, a limited number of studies 
on automatic detection and classification of snore sound 
has been developed to date [6], [7], [8], [9], [10], [11]. In 
these works different kind of techniques of analysis are 
applied, such as: Energy and zero-crossing rate [6][7] [8], 
Hidden Markov Models (HMMs) and spectral-based 
features [9], 500Hz sub-band energy distribution [8],[10], 
normalized autocorrelation coefficient at 1 ms delay and 
the first predictor coefficient of LPC analysis [6], and 
frequency range of each formant [11].  

However, most often the automatic segmentation step 
is not included, the snore events being detected manually 
or with semi-automatic methods. 

Hence the motivation of this study was to develop an 
effective method to detect the snoring episodes, fully 
automatic and fast enough to allow processing full night 
recordings in a reasonable amount of time. 

A short-term energy measure was implemented for 
automatic detection of “sound” events and two neural 
artificial network were applied to four features (length, 
maximum amplitude, standard deviation and energy), for 
automatic classification of snore events. 

 
II. METHODS 

 
The aim of the proposed system of analysis is the 

detection of snoring events from full night audio 

an autoMatic and efficient Method of snore events 
detection froM sleep audio recordinGs  
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recordings. This is achieved by means of the following 
three steps: 
A.  Pre-processing: loading of audio signal, band-pass 

filtering and down sampling; 
B. Automatic segmentation: detection of the “sound” 

parts of the signal; 
C. Extraction of the features and classification: 

identification of snoring events. 
The implemented method, named Snore Analyzer, is 
developed under Matlab 7.11.00 software tool. A flow 
chart is shown in Figure 1.  
 Snore Analyzer is provided with a user-friendly 
interface (Figure 2) that easily allow the user to choose 
the audio signal to be processed (Load bottom) and set 
the following parameters for subsequent processing: 1) 
Sampling frequency (44.100 kHz by default); 2) Down 
sampling frequency (11.025 kHz by default); 3) Starting 
and ending samples, to select the part of the signal to be 
processed; 4) Size of analysis window (40 ms by default). 

Then the user starts the elaboration of the selected 
audio signal pushing the Start bottom. Through the Reset 
bottom, the user can delete all the items.  

The elaboration of whole signal (or a part of it) is fully 
automatic and the user should not act manually anymore.  

The length of each audio signal is about 7-8 hours and 
the complete analysis of whole signal requires about 30-
40 minutes. At the end, the software gives as output a list 
of extracted “sound” events which are labeled as snore or 
not-snore.  

The next sections (A, B, C) describe each step in detail. 
 
A. Pre-processing 

 
The use of a robust recording system can improve 

signal acquisition, but noise reduction is required to 
eliminate interferences. Therefore a pre-processing step is 
implemented to improve signal to noise ratio.  

In this study the audio signal is bandpass filtered by a 
Butterworth filter of order 5 and a cut-off frequency of 
100 – 1000 Hz, to reduce the effects of heart sounds and 
high-frequency noises [1]. Main frequency components 
of breathing and snoring sounds are in fact included in 
this range [12] [13].  After the filtering step, the signal is 
down sampled (to 11.025 kHz), to reduce the size of the 
data and hence speed up signal processing. 
 
B. Automatic Segmentation 

 
The audio signal is typically a mixture of two different 

kind of events: “silence” that do not contain any sound 
and “sound” that include breathing episodes, snoring 
episodes and “other” sounds such as oral noise, ambient 
sounds, patient‟s cough, speech and blanket movements, 
etc. 

This step is therefore devoted to identify the “sound” 
events. Short-Term Energy (STE) is a commonly used 

measure for determining the “sound” parts as it increases 
during “sound” events and decreases during “silence” 
episodes [14] [15].  

 

 
 

Fig. 1 Flow chart of the analysis system. 
  

 
 

Fig. 2 User-friendly interface of the implemented 
software tool. 

 
In our study, STE is evaluated in signal windows of 

40 ms in length with 50% overlap between adjacent 
windows. In order to determinate boundaries of “sound” 
events, we computed the histogram of the signal energy 
and the Otsu method is iteratively applied to obtain two 
thresholds: the upper one tu and the lower one tl [16], 
[17]. These thresholds are then used to find the starting 
and ending points of each “sound” event in the audio 
signal. In particular, when the STE curve overpasses the 
upper threshold, the first point under the lower threshold 
(on the left side of the curve with respect to the upper 
threshold) is detected in order to get the starting point. 
When the STE curve falls down tl, the ending point of the 
event is found (Figure 3). 
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 Fig. 3 The starting and ending points of a “sound” event. 

 
At the end of segmentation, the list of extracted 

“sound” events is saved in a text file to be used in the 
classification step.  

 
C. Extraction of the features and Classification 

 
Once all the “sound” events from the signal are 

obtained, they have to be classified as snore or not-snore 
(i.e. breath and “other” events). In fact for a reliable 
analysis of OSA, only snore episodes must be detected. 
This task is carried out in two step: in the first on, a set of 
four parameters is computed in time domain; in the 
second one, the events are identified with a classification 
system. 

The first parameter is the length of each “sound” event, 
calculated as the distance between the starting and the 
ending point of the event. This feature allows to 
distinguish between “other” events and breathing/snoring, 
as the average length (in samples), computed for 
breathing and snoring sounds, is lower than for “other” 
sounds, as shown in Table 1.  

Table 1 Mean and Standard Deviation of the length of 
snore/breath and of “other” sounds. 

 
length [sample] 

 Mean value std value 

snore/breath 4.7999 ·104 2.8492 ·104 

“other” 1.4405 ·104 1.3602 ·104 

 
The other parameters are: the Standard Deviation 

(STD), the mean value of Short-Term Energy (STE) and 
the maximum amplitude of “sound” events, given by the 
difference between the maximum and the minimum 
amplitude of the signal.  

These features allow to distinguish between snoring 
episodes and breathing episodes, as the average value of 
each single feature is higher in the class of snoring events 
than in the class of breathing events (Table 2) while the 
behaviour of these parameters is highly variable in 
“other” sounds. 

Hence the following observation can be made: “other” 
sounds can be found using the length of the events only; 
snoring and breathing sounds can be distinguished using 
the STD, the mean value of the STE and the maximum 
amplitude.  

 
Table 2 Mean and Standard Deviation of STD, mean of 

STE and Maximum Amplitude. 
 

std 

 Mean value std value 

snore 0.0038 0.0024 
breath 0.0014 0.0005 

 
ste 

 Mean value std value 

snore -5.4120 0.5283 
breath -6.0974 0.3061 

 
Maximum amplitude 

 Mean value std value 

snore 0.0498 0.0389 
breath 0.0142 0.0061 

 
According to these results, a classifier is designed 

made up by two artificial neural networks: the first one is 
used to identify the “other” sounds, while the second one 
is used to discriminate between snoring and breathing 
sounds.  

The sounds episodes were manually labelled by trained 
clinicians as snore or not snore to built the training and 
the testing datasets for the classification system. The 
training set is made up by 1643 sound signals equally 
distributed among snoring, breathing  and „other‟ sounds. 

The first network is trained with all the events of the 
training set using only the length of the event as input and 
the outcome of listening is used as teaching input.  

After the training step, the network output is tested and 
compared with the outcome of listening; the “other” 
sounds correctly recognized as “other” (true negative) are 
removed from the training set used in the second network 
that consists of three inputs, corresponding to the mean 
value of STE, its STD and the maximum amplitude, 
respectively. 

 
III. RESULTS 

 
Clinical audio signals (18 patients of different age and 

sex) are recorded at Fondazione Don Gnocchi, 
Pozzolatico, Firenze, where the patients slept in single 
bedroom, separated from television and others predictable 
sources of noise.  

The audio signal are digitized at 16-bit with a 
sampling frequency Fs=44.100 kHz, using a Tascam Us-
144 sound card and a unidirectional microphone Shure 
SM58, positioned at about 30 cm from the mouth of the 
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patient. The length of single signal is of about 7-8 hours, 
but, for the analysis, we considered thirty minutes of each 
recording, selected in the central part of the signal when 
the patient was sleeping and low environmental noise was 
detected. 

A preliminary evaluation was carried out to assess the 
performance of the automatic segmentation, evaluated as 
the percentage of sounds detected over the total number 
of sounds, Resulting in about 97%.  

Concerning the classification step, the first network 
was tested on 787 “sound” events, different from the 
original training set. From the analysis of the ROC curve, 
a “best” threshold was obtained that allows to correctly 
identify 85.4% of the “other” sounds. These sounds were 
stored in a list of not-snore events and removed from the 
test set.  

The second network was tested on the remaining 
sounds and, as for the first network, the best ROC 
threshold was computed and used to identify snore and 
not-snore sounds. 

The accuracy (number of correct classifications) of 
the second network was found equal to 86.2%. This result 
corresponds to a sensitivity (true positive (TP) ratio) 
equal to 86.2 and a specificity (true negative (TN) ratio) 
equal to 86.3.  

 
IV. DISCUSSION  AND CONCLUSIONS 

 
A full automatic and unsupervised system for snore 

identification during sleep is proposed.  
The proposed automatic segmentation was shown to 

be a reliable technique for the extraction of sound events 
as almost all silence events were discarded. 

The algorithm for classification correctly identifies 
the 86.2% of analysed events. However it fails in case of 
low intensity snores, as such events have low energy and 
low maximum amplitude. But, as post apnoeic snore 
events are usually more intense than non-post apnoeic 
ones, this limitation could be acceptable. 

Future work will be devoted to enhancing the 
procedure, increasing the dataset and defining a reliable 
method for the identification of post-apnoeic events from 
the automatically detected snore sounds, e.g. as in [18]. 
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Abstract: in this paper we discuss electrical impedance 
tomography (eit) imaging of human larynx.  
especially, we focus on monitoring of vocal folds. eit 
is a non-invasive three-dimensional (3d) imaging 
modality based electrical measurements conducted 
from the skin of a person. We hypothesize that eit 
reconstructions can provide information on vocal 
folds’ movement as well as physiological changes in 
vocal fold tissue caused by the vocal loading. this 
information could be used for quantifying vocal 
loading and measuring the consequences of vocal 
loading. in this paper, the feasibility of eit for 
imaging of larynx is tested with numerical simulation 
studies. the preliminary results suggest that eit is 
sensitive to movement of vocal folds. 
Keywords:  electrical impedance tomography (eit), 
imaging, larynx, vocal loading 

 
I. INTRODUCTION 

 
Electrical impedance tomography (EIT) [1] is an 

imaging modality based on non-invasive electrical 
measurements. In biomedical applications of EIT, an 
array of electrodes is attached on the skin of a person. 
Weak alternating currents are injected through chosen 
electrodes and the resulting potentials are measured on 
several electrodes. This procedure is repeated using 
various current injection patterns. Based on the collected 
current and potential data, the internal three-dimensional 
(3D) conductivity distribution is reconstructed. The 
biomedical applications of EIT include e.g. monitoring of 
ventilation and diagnosing breast cancer.  

With the aid of EIT, it might also be possible to get 
information on human larynx: EIT could perhaps serve as 
a tool for imaging the vocal fold’s movement during 
speech production, and for estimating the physiological 
changes in the vocal fold tissue caused by vocal loading. 
This information could be utilized for detecting and 
quantifying vocal loading (i.e. getting estimates of 
stresses acting upon the tissue) and measuring the 
consequences of vocal loading (i.e. changes in the tissue). 
Indeed, EIT has a high potential for glottal diagnostics. 
Basically the data used in EIT consists of measurements 
also used in electroglottography (EGG) [2,3], which is a 
regularly used tool in the assessment of voice production. 
However, while in standard EGG two-channel impedance 

measurement data is considered, EIT is based on multi-
channel data. Moreover, EIT utilizes advanced 
mathematical modeling in the data processing. This 
enables estimation of spatial properties of the larynx, in 
addition to temporal change information provided by 
EGG. A dual-channel EGG has been used since the 
1990’s [3]. Recently, Kob and Frauenrath [4] proposed a 
multi-channel-EGG system for improving the assessment 
of glottal opening and the laryngeal position. The 
measurement setup was similar to EIT, but the data was 
not used for 3D image reconstruction. However, the 
results indicated that it is possible to track the location of 
glottis during a swallowing manoeuvre. In this paper, the 
feasibility of EIT for imaging of the larynx is discussed. 
Especially, the computational challenges associated with 
the complex internal structure of larynx are considered.   
 

II. METHODOS 
 

Mathematically, the image reconstruction problem in 
EIT – determining the conductivity distribution on the 
basis of the measured electrode potentials – is an ill-
posed inverse problem. By definition, ill-posed problems 
are extremely sensitive to measurement noise and 
modeling errors [5]. In consequence, the accurate 
mathematical modeling of the measurements plays a 
paramount role in the successful EIT reconstruction. In 
addition, prior information on the conductivity needs to 
be incorporated in the reconstruction. The most accurate 
mathematical model for EIT measurements is the 
complete electrode model (CEM) [6] which consists of an 
elliptic partial differential equation and associated 
boundary conditions. The 3D finite element 
approximation of the CEM was presented in [7]. In this 
paper, the feasibility of EIT for imaging of the larynx is 
studied by a numerical simulation. The computational 
model is an adaptation of the model presented in [7]. The 
image reconstruction problem is formulated as a Bayesian 
inverse problem [5]. 
 

III. RESULTS 
 

Figs. 1 and 2 show examples of modeling a larynx. In 
this 2D simulation study, the model was constructed 
based on a cross sectional image data obtained from 
computerized tomography (CT) of the larynx. The images 
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in Figs. 1 and 2 represent cases of a closed and an open 
glottis. In both cases, the EIT measurements were 
simulated by numerical approximation of the CEM. The 
placement of EIT electrodes is shown in the figures. Note 
that electrodes were set only in front of the neck. This 
choice was made because electrical measurements from 
back of the neck would not be sensitive to the 
conductivity of the glottis, due to the electrically 
insulating spine (whitish structure in Figs. 1 and 2). For a 
realistic simulation, Gaussian noise was added to the 
synthetic measurements.  

The EIT reconstructions were computed assuming that 
the outer shape of the neck is known; the observation 
model for the inverse problem was constructed using this 
geometry. However, no information on the internal 
structures shown in Figs. 1 and 2 was utilized in the 
reconstructions. By contrast, a standard smoothness prior 
model [5] for the conductivity distribution was written. 
This model is clearly not well justified in the present case 
– the true conductivity distributions (Figs. 1 and 2) are 
not spatially smooth, because of the anatomical structures 
inside the larynx. 

 

 

figure 1. a conductivity distribution used in the 
simulation: glottis closed. the black bars in front of 
the neck represent the eit-electrodes. 
 

 

figure 2. a conductivity distribution used in the 
simulation: glottis open.  

The EIT reconstructions computed on the basis of the 
noisy observations are depicted in Figs. 3 and 4. In the 
case of a closed glottis (Fig. 3), the EIT reconstruction 
shows a blurry conductive region roughly covering the 
locations of the glottis and the surrounding cartilage. The 
internal structures cannot be detected accurately because 
of the relatively low spatial resolution of EIT, and 
especially because of the unsuitable prior model used in 
the reconstructions: the effect of the smoothness 
assumption is clearly visible in the reconstruction. In the 
case of an open glottis, the conductivity was 
reconstructed by taking the so-called difference imaging 
approach [8]. That is, the data of both measurement sets 
(corresponding to the open and closed glottis) were 
utilized by taking into account that the difference in the 
measured data is due to a change of the conductivity 
distribution. The reconstruction is shown in Fig. 4. The 
inclusion of low conductivity in the image is due to 
opened glottis; the opening acts as a perfectly insulating 
object. This inclusion is relatively well localized. Hence, 
although the resolution of individual images is quite poor, 
the difference in the state of the glottis can clearly be 
distinguished by comparing the two EIT reconstructions. 
 

 

figure 3. reconstructed conductivity distribution in 
the case of a closed glottis. 
 

 

figure 4. reconstructed conductivity distribution in 
the case of an open glottis. 
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IV. DISCUSSION 
 

In the preliminary tests presented in the previous 
section, the aim was to study the feasibility of EIT for 
imaging the human larynx. Especially, we concentrated 
on the effect of complex internal structures on EIT 
reconstructions. The presence of these structures makes 
the problem of imaging the larynx more challenging than 
targets that exhibit more smoothness. A pleasant property 
of the larynx imaging problem, however, is the possibility 
of carrying out the reference measurements for difference 
imaging. Indeed, a test person can deliberately close or 
open the glottis for the reference measurements. The 
reference data is not available in many other biomedical 
applications.  
 

V. CONCLUSION 
 

In this paper, the feasibility of EIT to imaging the 
larynx was studied with 2D numerical simulations. The 
preliminary results suggest that by taking the difference 
imaging approach it is possible to get information on 
properties of glottis with EIT. Future research topics 
include 3D modeling of the larynx and modeling of 
uncertainties related to neck shape. Further, experimental 
studies will be carried out. 
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Abstract:  Recently,  endoscopic  high-speed 

laryngoscopy has been established for commercial use 

and constitutes a state-of-the-art technique to examine 

vocal fold dynamics.

Due to the need of high sampling rates, a high amount 

of  frames  has  to  be  considered  for  subjective 

assessment.  Especially  long  phonation  recordings 

produce  several  hundred  megabytes  of  digital  data. 

We  present  a  technique  for  visualizing  these  high-

speed  videos  in  a  compact  and  intuitive  form.  The 

high-speed  videos  are  therefore  mapped  to  three-

dimensional  cycle-based  graphs  representing  a 

detailed visualization of vocal fold dynamics.

Keywords  : High-speed-laryngoscopy,  visualization, 

vocal fold dynamics, voice assessment

I. INTRODUCTION

Investigation of vocal fold (VF) dynamics is not only 
essential  for  understanding  the  mechanism  of  voice 
production.  It  plays  also  an  important  role  in  voice 
assessment and treatment of voice disorders.

Recently,  endoscopic  high-speed  laryngoscopy  has 
been  established  for  commercial  use  and  constitutes  a 
state-of-the-art  technique  for  analyzing  VF  vibratory 
behavior in vivo. Modern cameras provide sampling rates 
of usually 2,000 to 6,000 frames per second. Hence, huge 
amounts  of  data  have  to  be  considered  for  visual 
assessment  and  analyzing  purposes.  Especially 
investigations  of  long  and  non-stationary  phonation 
sequences remain laborious and time consuming.

To avoid  visual  inspection  of  motional  processes  of 
video sequences, compact VF visualization and analysis 
has  been  addressed  by  several  authors:  The  Hilbert 
transformed of the glottal  area waveform is utilized by 
Yan  et  al.  [1].  The  Nyquist  plot  and  the  envelope 
characterize  the  obtained  analytic  signal  in  terms  of 
perturbation and periodicity.  However,  glottal area does 
not differentiate between ventral and dorsal as well as left 
and right VF oscillations. Li et al. [2] obtain spatial and 
temporal  eigenfolds  through  singular  value 
decomposition  of  vocal  fold  movement at  different 

locations along the glottal axis. The first, second and third 
eigenfold reflect the average shape, the closing pattern of 
the  VFs  and  the  motion  of  the  VFs  in  longitudinal 
direction.  The  separation  of  spatial  and  temporal 
eigenfolds  offers  a  compact  visualization  but  does  not 
allow  to  localize  vibratory  features  in  space  and  time 
simultaneously. Therefore, a mapping of laryngeal high-
speed  videos  into  two  dimensional  color  graphs  is 
brought  up by Lohscheller  et  al.  [3].  Phonovibrograms 
(PVGs)  and  Glottovibrograms  (GVGs)  give  a  detailed 
representation of laryngoscopic high-speed videos but are 
mainly designed to characterize healthy and abnormal VF 
vibratory patterns .

Herbst et al. [4] developed a technique for visualizing 
electroglottographic  signals  in  compact  cycle-based 
graphs called wavegrams. Electroglottography provides a 
relative measure of vocal fold closure by quantifying the 
impedance  of  an  alternating  voltage  between  two 
electrodes placed on the surface of the throat at the level 
of the thyroid cartilage.  Electroglottographic impedance 
measures  are  therefore  restricted to  general  VF contact 
phenomena and provide only rough information of  VF 
dynamics.
Currently,  there is still  a need of visualization methods 
which allow detailed representation of non-stationary and 
long  phonation  sequences.  This  paper  presents  a 
visualization method of laryngoscopic high-speed videos 
combining and extending the ideas of PVGs, GVGs and 
electroglottographic wavegrams, reflecting VF dynamics 
in three-dimensional graphs. 

II. METHODS

The  construction  process  of  PVG-  and  GVG-
wavegrams  comprises  data  preprocessing  and  graph 
assembling steps. The preprocessing part extracts PVGs, 
GVGs  and  glottal  area  from  high-speed  videos.  For  a 
detailed description of  glottal  area  segmentation,  PVG- 
and GVG assembling see Lohscheller et al. ([5], [3]).

The wavegram assembling process  transforms PVG 
and GVG data to three-dimensional cycle-based graphs. 
Therefore,  a  cycle  detection  routine  is  performed  on 
glottal area signal.  Cycles are separated by determining 
points  in  time t i corresponding  to  the  ith maximum  of 

PVG-WAVEGRAMS: 
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glottal opening. For this purpose, auto-correlation of the 
first 100 frames estimates the fundamental frequency f at 
the beginning of the signal. The maximum value within a 
window with a length of T=

1
f yields t 1 corresponding to 

the first maximum glottal opening. If this peak is located 
in the first  half  of  the window, it  is  shifted by 3

4 T   in 
positive time direction, in the other case it is shifted by 5

4

T.  This procedure is repeated until the window reaches 
the end of the signal. The ith  cycle is then separated by 
cutting the interval

(1)

The  first  and  the  last  cycle  may  have  been  truncated, 
therefore,  they  are  being  disregarded  in  the  following 
analysis.

The separated  cycles  are  concatenated  along a new 
axis in such a manner that one axis addresses different 
cycles  and  the  other  displays  the  normalized  cycle 
progress.  The individual cycle length l i is normalized 
and associated with the cycle width in time direction (see 
Fig. 1)

Visualization of three dimensional PVG and GVG data 
requires  rendering  techniques,  projecting  three 
dimensional graphs on two dimensional monitor screens. 
A  great  variety  of  rendering  techniques  established  in 
computer  graphics.  Among  these,  we  will  depict  two 
different methods for our purposes:

Isocontour  extraction  [6] reduces  three  dimensional 
data to contours  with constant  intensity.  Thus, a single 
parameter  suffices  to  define  an  isocontour  surface.  For 
visualizing  PVG  data,  isocontour  surfaces  illustrate 
points  with  constant  deflection  ranging  from 0  to  100 
percent of maximum deflection (Fig. 2, left side). 

Volume  Rendering  Techniques  [7]  utilize  transfer-
functions for mapping each volume element (voxel) from 
3D  data  to  opacity  and  color.  Thereby,  the  transfer 
function specializes the region of interest in terms of high 
opacity values and allows visualization of interior regions 
if opacity is low. For our purposes, we defined a transfer 
function with linear ascend in color intensity (dark colors 
correspond to slight deflections) and opacity is mapped to 
the normalized absolute value of the deflection (Fig.  2, 
right side).

To demonstrate  our visualization method,  one male 
subject  (30  yrs,  no  known  voice  disorders),  was 
introduced to (a) maintain a stable phonation at habitual 
loudness and pitch; and (b) to produce a glissando from 
modal to falsetto register during endoscopic examination. 
The  laryngoscopic  video  was  recorded  using  the 
Endocam 5562 high-speed camera system (Richard-Wolf 
GmbH, Knittlingen, Germany). 

III. RESULTS

The  fundamental  frequency  during  the  glissando  is 
depicted in Fig.  3.  Four labels are marked on the time 
axis:  The first  (beginning until  A) and the last  part  (D 
until end) have nearly constant frequency of 140Hz and 
390Hz,  respectively.  Within  the  PVG-  and  GVG-
wavegrams,  characteristic  changes  of  the  vibratory 
pattern  of  vocal  folds  can  be  identified  in  terms  of 
geometric shapes and colors. Figure 4 shows the GVG-
wavegram  of  the  non-stationary  glissando.  The  GVG-
wavegram  revealed  significant changes  in  vibratory 
patterns  during  pitch-raise  between  A  and  D:  At  the 
beginning the glottis  opened alongside  the entire  vocal 
fold length l 1 and at the end vocal folds opened merely 
within anterior parts along l 2 .

[ ti−
t i−ti−1

2
, ti+

t i+1−t i

2
]

Figure 1: Glottal area and PVG are extracted from video  

data.  The glottal  area induces a cyclewise  partition of  

PVG  data  (left  side).  The  concatenation  process  

increases  the  dimensionality  resulting  in  a  three-

dimensional PVG graph.

Figure  2:  Visualization  techniques  for  PVG  data  

computed  from  0.125  seconds  of  sustained  stable  

phonation:  (a)  Isocontour  extraction  and  (b)  Volume  

Rendering
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The  position  of  the  oscillation  amplitude  along the 

glottal  axis,  emphasized  by  the  dashed  line,  moved 
towards  anterior.  The  projection  along  the  glottal  axis 
(Fig.4, bottom) reveals the glottal area represented as 2D-
wavegram.  Two  features  were  obtained  from  2D 
wavegram representation: First, the transition from dark 
to  light  color  intensities  in  time  direction  implied  a 
decreasing glottal area and secondly, dark and white 

regions constituted opened and closed states of the glottis 
and allows determination of e.g. the open quotient (OQ).

The  PVG-wavegram allows  a  separated  analysis  of 
left and right vocal fold. It revealed symmetric vibratory 
patterns of left and right vocal fold (Fig. 5). The dashed 
lines mark the oscillation amplitude positions over time 
separated for left and right vocal fold. 

IV. DISCUSSION

For an detailed and compact visualization of vocal fold 
dynamics, three dimensional graphs have been developed 
combining  and  extending  the  ideas  of  detailed  and 
intuitive PVG- and GVG-representation with the compact 
cycle-based  wavegram-technique.  PVG-  and  GVG-
wavegrams  provide  a  new  and  powerful  method  for 
visualizing  vocal  fold  dynamics  of  especially  long 
phonation sequences in a single graph. We showed that 
information of  oscillating amplitudes and their  position 
along the  glottal  axis  can  be  obtained  from PVG- and 
GVG-wavegrams.

Opened  and  closed  states  and  clinically  established 
features like open- and speed quotient as well as glottal 
amplitudes are embodied in the corresponding projection 
along the glottal axis. 

PVG-wavegrams enable a separate visualization of left 
and  right  vocal  fold  vibration:  Vibratory  patterns, 
asymmetries as well as amplitudes of left and right vocal 
fold oscillation are emphasized by PVG-wavegrams.

In  addition,  characteristic  geometric  PVG-features, 
which have been already used for classifying pathological 
vocal fold vibrations [8], are represented intuitively. 

V. CONCLUSION

PVG- and GVG-wavegrams aim to visualize vocal fold 
dynamics  obtained  from segmented  laryngoscopic  high 
speed videos. They accent the shape of the glottal cycles 
and its time development and therefore,  they are useful 

Figure 4: GVG wavegram of a pitch raise from 140 to  

390  Hz.  The  projection  along  the  glottal  axis,  

represented  as  2D-wavegram,  provides  information  of  

the glottal area.

 A    B     C  D

Figure 3: Change of fundamental frequency during pitch-

raise

Figure 5: The PVG-wavegram allows the distinction of  

left and right vocal fold oscillations
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for classification of pathologies. Approved features like 
amplitudes,  asymmetries,  open-  and  speed  quotient  are 
embodied in geometrical shapes. Further investigations of 
characteristic  geometric  shapes  will  help  to  interpret 
PVG- and GVG-wavegrams.
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Abstract: in this paper we present a new full-
automatic glottis segmentation scheme that combines 
traditional bottom-up image processing techniques 
with high-level shape constraints provided by the 
active shape Models. unlike previous statistical 
segmentation approaches, which try to accurately 
detect the location of the glottis as initialization for the 
algorithm, we incorporate a new reliability score 
selector at the final stage of the scheme. the result is a 
robust and flexible algorithm able to deal with most 
acquisition techniques, even with stroboscopic videos. 
the good behavior of the algorithm has been 
successfully tested in a set of 170 frames extracted 
from 30 stroboscopic recordings.  

Keywords : Glottis segmentation; active shape 
Models; region Growing; stroboscopic videos. 

I. INTRODUCTION 

According to the latest studies of the National Institute 
of Deafness and Communicative Disorders, about 7.5 
million individuals suffer from diseases or disorders of 
the voice due to different causes, such as the overuse of 
the vocal folds, vocal folds lesions, laryngeal cancer, and 
other laryngeal pathologies [1].  Although there exists a 
large variety of techniques for the diagnosis and 
characterization of these kinds of pathologies, the 
specialist frequently resorts to visual methods, like the 
observation of the larynx or the pattern of variation of the 
vocal folds, to confirm the assessment. In this context, the 
use of new digital image processing techniques becomes 
essential to overcome some of the problems inherent to 
the visualization process, e.g. the presence of artifacts due 
to non-desired movements of either the patient or the 
image acquisition system.  

One of the aims that has aroused most interest in the 
research community is the location of the glottal space, 
whose accurate segmentation is of crucial importance not 
only to minimize the negative effects of the 
aforementioned undesirable movements, but also to 
synthesize and represent the information extracted. 
Roughly spoken, the different glottal segmentation 
approaches can be divided into two main groups 
attending to the underlying philosophy of the algorithm: 
bottom-up algorithms [2][3], that use image-based criteria 
to define  coherent  groups  of  pixels that belongs to  the  

structure of interest; and top-down methods [4][5], that 
use information previously learned from a set of 
examples.  

 Among the first group, region growing based 
algorithms are one of the most popular techniques in 
laryngeal image segmentation. However, in spite of this 
popularity, their critical initialization dependency makes 
difficult the full automation of the process, being direct 
human intervention frequently required. Thanks to the 
optimal image quality provided by high-speed videos, 
Wittenberg et al.[2] suggested using the darkest pixel in 
the image as seed, which is not always correct, especially 
when working with stroboscopic videos. Also based on 
high-speed recordings, Chen et al.[3] present an 
interesting initialization strategy under the assumption 
that the grayscale histogram of the image follows a mixed  
Rayleigh distribution, which is not necessary true for 
stroboscopic images. 

One of the first top-down approaches was presented by 
Saadah et al.[5] using active contours as segmentation 
strategy, although the initialization remains being an 
important issue in the proposed framework. As 
alternative, Demeyer et al.[6] and Skalski et al.[7] use the 
segmentation obtained in one frame as initialization for 
the next one. Certainly, this strategy favors the autonomy 
of the system, although human intervention is still 
required at the first frame of the video, or if the glottis is  
obstructed at some point of the recording. One of the first 
contributions to the glottal segmentation field that 
incorporated prior shape information using Active Shape 
Models (ASMs), i.e. statistical shape models built from a 
set of examples, was the work of Friedl and Wittenberg 
[4]. The initialization of the algorithm was based on 
locating the vocal folds motion in a sequence of 
successive frames extracted from high-speed videos 
(2000 fps) where the variation between frames is 
minimal. However, in spite of the goods results and of the 
high image quality provided by this type of images, the 
economical cost considerable limits its widespread. 
Stroboscopic recordings constitute an affordable 
alternative, although the segmentation problem in this 
kind of images has aroused little attention.  

In this paper we propose a new full-automatic glottal 
segmentation framework for stroboscopic videos. Unlike 
other segmentation approaches, this new scheme 
combines bottom-up techniques, like region growing and 
basic    morphological    operations,     with    high    level  

full-autoMatic Glottis seGMentation With active shape 
Models 
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Figure 1. Block decomposition of the new glottis 
segmentation scheme. 

constraints provided by ASMs,  creating a new algorithm 
able to successfully deal with the main drawbacks of 
stroboscopic videos. 

II. METHOD 

From a procedural point of view, the new 
segmentation scheme can be divided into five different 
blocks or processes, as it is depicted in Fig. 1. When a 
new image is acquired, an initial coarse segmentation is 
performed by means of the region growing technique 
(block 1). The binary image obtained at this initial stage 
is then processed and filtered by the opening (block 2) 
and the blog area filtering (block 3) blocks respectively. 
The target of this initial combination of bottom-up 
operations is not to obtain an accurate segmentation of 
the glottis but to provide a set of possible locations of it. 
The deformable shape model, ASM [8], is initialized at 
each of these potential positions (block 4), generating one 
different contour at each of these locations. Making use 
of the statistical information of appearance and shape 
used to build the ASM, Sukno and Frangi [9] propose a 
new reliability score model that will allows us to 
differentiate the actual glottal area from the rest of fake 
candidates. 

A. Region Growing and Optimal Inputs Parameters

Although a region growing based segmentation 
approach is not, by itself, accurate enough, it still remains 
a highly useful initial approximation. However, as in 
many  other  pixel-based  techniques,  the  quality  of  the  

Figure 2. Linear relationship between the average gray 
level of the image and the optimal seed value of a fixed 
threshold value of 17 (8-bit grayscale images). 

results obtained is strongly dependent on the parameters 
settings, being the value of the seed the most critical one. 
The automation  of this  process  turns specially 
complicated when dealing with stroboscopic images, due 
to high appearance variability of inter and intra-user 
images, which makes it particularly hard to define a 
single default value for the seed or threshold, the two 
main configuration parameters of the region growing 
method. As alternative, different combinations of these 
input parameters, i.e. seed-threshold, are tested over the 
training set build to create the statistical shape model 
(ASM). This set is composed of manually segmented 
examples which allow us to evaluate the suitability of 
each configuration of input parameters, that is, the region 
growing segmentation error, and extract the optimal value 
for each image. Careful experimental tests show how 
once a default threshold value is fixed, the optimal seed 
parameter exhibits a strong linear relationship with the 
average gray level of the input image. Thus, given a new 
image to segment, it is possible to deduce an adequate 
seed value by means of the aforementioned relationship 
with the average gray level of the frame (see Fig. 2). 

B. Morphological Processing and Blob Filtering 

Once a provisional segmentation has been obtained by 
means of the process described above (see Fig. 3(b)), it is 
convenient to include an additional block containing 
some basic morphological operations, such as opening 
(i.e. erosion followed by dilation). The erosion operator 
removes those isolated small regions misclassified during 
the region growing segmentation, while separates regions 
mistakenly joined together. On the other hand, the 
dilation step allows to eliminate undesirable thin 
protrusions (see Fig. 3(c)) . 

Far from obtaining an accurate segmentation of the 
glottal space, it is worth noting that the goal of this initial 
processing is to provide a set of potential locations where 
to initialize the ASM algorithm. Although those invalid 
locations will be conveniently filtered via the reliability 
score selector at block 5, it is convenient to reduce the set  
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Optimal glottis location

False glottis location

(d)

(a) (b)

(c   )

(e) (f)

Figure 3. (a) Frame to segment, extracted from a 
stroboscopic video. (b) Binary image provided by the 
region growing algorithm. (c) Image after opening. (d) 
Output of the area filtering. (e) Reliability score result. (f) 
Final segmentation. 

of possible locations as much as possible in order to 
avoid unnecessary operations. To this purpose, an 
additional blob filtering block is included. According to 
our experience a simple area filtering provides 
satisfactory results for most cases (see Fig. 3(d)), 
although additional filtering criteria based on the 
eccentricity or the convexity are also potentially useful. 

C. Active Shape Models and their Initialization 

 Since its presentation in the early nineties by Cootes et 
al.[8], ASMs have become one of the most popular 
segmentation paradigms of the last years. A detailed 
description of the ASM algorithm is out of the scope of 
this paper, thus the reader is advised to consult the 
extensive research literature regarding ASM. Roughly 
speaking, the ASM algorithm can be described as an 
iterative process in which two statistical models, built 
from a training set, are sequentially applied to drive the 
segmentation process. The crucial importance of the 
training examples is clear, since it must be representative 
of the variability of both, appearance and shape of the 
object of interest. In this set of manually segmented 
images, each shape is defined by a fixed number of 
points, called landmarks, each one of them defining a 

specific anatomical point of the shape of interest. The 
statistical appearance model study the appearance pattern 
around each landmark, typically the gray pattern of the 
pixels around it, in order to guides the matching process 
to a new image. On the other hand, a statistical shape 
model must to characterize both, the inter-user shape 
variability, as well as the variability for a particular 
subject, which corresponds to the vibration of the vocal 
folds. Once the shape variability has been adequately 
modeled, global shape constraints can be applied to 
guarantee that only plausible instances occur. 

 The aforementioned shape restriction provided by the 
statistical shape model makes ASMs especially suitable 
when dealing with anatomic structures, whose variability 
uses to be conveniently delimited. In the particular case 
of the glottal area, the statistical model must to 
characterize both, the inter-user variability, as well as the 
variability for a particular subject, which corresponds 
mostly to the patterns of vibration of the vocal folds.  

In spite of the satisfactory behavior of ASMs, 
particularly adequate when modeling anatomical 
structures, the need for an adequate initialization is still 
critical. Most of previous solutions [7] concentrate their 
efforts on identifying an accurate initial location, which 
typically restrict its applicability to a specific acquisition 
technique like high speed videos. The alternative 
proposed in this paper is to use each one of the potential 
locations obtained at the end of block 3 (see Fig. 1) to 
initialize the statistical model. The inclusion of a post-
filtering additional block will allows us to determine the 
actual glottal shape.  

D. Reliability Score Selector 

Combining adequately the information provided by 
each landmark during the matching process of ASMs, 
Sukno and Frangi [9] develop a probabilistic framework 
to obtain a binary evaluation of the reliability of the 
output. That is, to decide if the shape obtained at the end 
of the algorithm is reliable (1) or not (0). However, a 
continuous evaluation of the adequacy of the result is 
more convenient to our purpose of decide among several 
potential locations. The global reliability score of a shape, 
RS, is defined as a weighted average of the individual 
reliability of all landmarks that defines de contour:  





L

j
jj jjrjjr

L
RS

1
))|()|((1       (1) 

where L is the number of landmarks; )|( jj  and 
)|( jj  are the fraction of the j-th landmarks estimated as 

reliable ( jr  = 1) and unreliable ( jr = 1) from its 
appearance model, respectively, for which the landmarks 
are correctly placed. The reliability of each landmark is 
evaluated during the matching process, observing its 
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particular appearance information and deciding if this 
information is reliable or not according to the statistical 
model built from the training set. Fixing a threshold of 
the mahalanobis distance, one of the most popular 
methods to evaluate the probability that a certain 
appearance pattern belongs to that observed in the 
training set, it is possible to decide if a particular location 
of the landmark is reliable or not. The weighting factors 

)|( jj  and )|( jj  can be estimated from the 
segmentation of the shapes contained in the training set, 
since the actual positions of the landmarks are known. 

Computing (1) for each one of those locations where 
the ASM segmentation algorithm has been initialized, the 
filtering process is simple: the highest RS value will 
correspond to the real glottis placement (see Fig. 3(e)). 

III. RESULTS

To test the new glottis segmentation scheme presented 
in this paper, a total of 170 frames have been extracted 
from 30 stroboscopic videos (25 fps; 360 x 288 pixels) in 
order to cover the high variability of shapes and 
illumination conditions observed in the daily practice. 
The training set is composed by the 70% of these images, 
using the remaining 30% as testing set.  

The behavior of the new full-automatic algorithm is 
very satisfactory, obtaining an average segmentation error 
of 5.2 ± 3.4 pixels; while the error obtained when using a 
manual initialization is of 2.8 ± 2.0 pixels. 

It is worth pointing out that the aforementioned test 
has been performed over isolated frames. However, the 
new process is amenable of being easily integrated into a 
frame-by-frame segmentation scheme, using the result at 
one frame as the initialization for the next one, which will 
potentially improve the accuracy of the system. In 
addition, the new reliability score block is a valuable 
incorporation into the process, allowing us to identify 
possible inaccuracies (i.e. caused by occlusions) and 
indicating the need to restart the algorithm from block 1. 

IV. CONCLUSION

In this paper we present a new full-automatic 
segmentation algorithm of the glottal space in 
stroboscopic images. This work successfully 
demonstrates how the combination of bottom-up 
techniques like region growing, with ASMs, one of the 
latest high level segmentation paradigms, provides an 
effective solution to the problem, overcoming the two 
main drawbacks of the existing methods, initialization 
and acquisition technique dependency. 

Using the same statistical information of ASMs, a new 
reliability score selector has been included. This last 
block of the segmentation scheme allows us to evaluate 

each potential location of the target shape and improving 
the robustness of the system.  

The segmentation algorithm has been successfully 
tested in a set of frames from stroboscopic videos, 
demonstrating the high potential of the proposed scheme. 
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Abstract: In this paper, a new stereo-
endoscopic high-speed digital imaging system
and a method to estimate the glottal func-
tions are proposed. Glottal length, width, and
area of one male and one female participants
were estimated in different fundamental fre-
quencies.

I. INTRODUCTION

Estimation of glottal functions, such as width,
length, and area, plays an important role in clarify-
ing a physical mechanism of vocal fold vibration and
investigating voice qualities in a quantitative manner.
There have been various methods for estimating glot-
tal area function, however, most of them estimate rel-
ative glottal area functions, and actual measurements
of glottal area have been done only in vitro.

In this paper, using a method of estimation of
time-varying glottal length, width, and area in vivo
based on actual measurement by stereoscopic high-
speed digital imaging proposed in [1, 2, 3, 4], glottal
functions in different F0s and vocal registers for male
and female subjects were estimated. There are posi-
tive correlation between F0 and glottal length, nega-
tive correlations between F0 and glottal width. Shapes
of glottal area function varied depending on F0.

II. METHODS

A. Stereo-endoscopic high-speed imaging

The stereo-endoscope includes two independent or-
dinary rigid optical systems with a diameter of 9 mm.
The tips of the optical systems house objective lenses
with prisms designed for 70 oblique-angled view, with
a field angle of 40◦ (Fig. 1, 2). The distance between
the optical axes of the tips was 10 mm. The stereo-
endoscope was attached to a CCTV lens of 50 mm,
and the CCTV lens was connected to the high-speed
digital camera. The high-speed digital camera em-
ployed in this study was Photron Fastcam 1024PCI
with the following specifications: an image sensor
size of 17.4 mm×17.4 mm, a full image resolution of

1024×1024 pixels, a temporal resolution of 1000 fps at
a full image resolution of 1024×1024, 8-bit grayscale.

In stereo-endoscopic high-speed digital recordings,
the high-speed camera captured images at an image
resolution of 768 (horizontal) ×352 (vertical), a frame
rate of 3750 fps, and sample duration of 10.12 s. Fig. 3
shows an example of a pair of stereoscopic images of
the larynx. A pair of images was formed side-by-side
on the image sensor.

Figure 1: Stereo-endoscope

Figure 2: Dimension of stereo-endoscope

Figure 3: A pair of stereo-endoscopic images
of the larynx

B. Calculation

Measurements and a procedure of calculation are
based on those reported in [1, 2, 3, 4, 7]. The two tips
are assumed to be set coplanar, and are mutually in-
clined to a mid-axis by a small angle α. The distance
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between the optical axes at the tips is dT (Figure 4).
A rectangular coordinate system is defined with the
origin at the tip of the left endoscope. The z-axis is
along the optical axis of the left endoscope. The x-
axis passes through the two endoscope tips, and the
y-axis is orthogonal to the x-axis and the z-axis (out
of the page).

z

x

α

θR
θL

p=(x , y , z )p p p

dT

Figure 4: Geometrical quantities defined for
calculation of three dimensional coordinates

Vectors to the object point p = (xp, yp, zp) form
angles θR and θL with the left and right optical axes
respectively. Let DL and DR be horizontal distances
of the images of p from the centers of the left and
right optical fields respectively, and DV be a verti-
cal distance of the image of p from the center of the
left and right optical fields, then coordinates of p are
calculated by the following formulas:

zp =
1

k1(DL − c1DR + c2DV ) − k2
(1)

yp = k3zpDL (2)
xp = k3zpDV (3)

where {ki} are calibration constants empirically de-
termined by photographing a Cartesian graph paper.
The above calculations are true if DL and DR are pro-
portional to tan θL and tan θR respectively. In reality,
however, a photographic lens causes optical distortion
and hence, the relationships such that DL and DR are
proportional to tan θL and tan θR are less likely to be
satisfied. Therefore, further calibration and correction
of optical distortion are desired. After including cor-
rection of optical distortion, the modified formulas to
calculate the coordinates are as follows:

zp =
1

k1(DL − c1DR + c2DV ) − k2
(4)

yp = k5 + DV + k6 (5)
xp = k3f(zp, DL) + k4 (6)

where f(zp, DL) :=
DL − c3

2 + c4 + zp + c5

c6zp
−c7

where {ki} and {ci} are constants for calibration. The
procedure to determine constants ki and ci was as fol-
lows: (i) DL and DR were measured by changing dis-
tance between the tips of endoscope and the 5 mm

Cartesian graph paper from 14 mm to 84 mm; (ii) the
regression lines of DL on xp and DR on xp were cal-
culated for each zp; (iii) DL and DR were represented
as functions both having parameters of xp and zp; (iv)
the regression plane of (DL, DR, DV ) was obtained.

As a result, distribution of errors between real
coordinates and estimated coordinates in the three-
dimensional Euclid space had a median of 0.55 mm
(Q0.05 = 0.15 mm, Q0.95 = 2.96 mm). The errors of
x- and y-axes were less than 15% of the error of z-axis.

C. Glottal edge detection

First, glottal edges in the left and right images
both are detected to estimate a glottal area in each
frame. On each horizontal line, the edges are au-
tomatically determined as the points with maximal
brightness derivative among the points with minimum
brightness. To represent the glottis as a plane in the
three-dimensional space, the following steps were pro-
cessed: (i) smoothing the estimated left and right
edges independently along y-axis by a predetermined
window function, reasonably assuming that the edge
of glottis is a smooth curve in three-dimensional space,
here, the 7-point weighted mean with a length of 7
pixels (0.7 mm at the distance of 50 mm from the
endoscope tips in the real space) was employed for
smoothing; (ii) determining a regression line of z on
y for each edge after the smoothing, and rewriting z
in such a manner that the left and right glottal edges
were represented as two lines; (iii) for each y, pick-
ing up middle point my of the left and right glottal
edges, then a line approximation C of a curve {my}
was obtained by linear regression of z on y; (iv) calcu-
lating lateral inclination from the left edge (xL, y, zL)
to the right edge (xR, y, zR) for each y, and the mean
of the lateral inclinations, denoted by (dz/dx)mean; (v)
obtaining the glottal hyperplane as the plane includ-
ing the line approximation C and the hyperplane ’s
cotangent vector is orthogonal to (dz/dx)mean. The
glottal edge points were obtained as points of projec-
tion along z-axis of (xL, y, zL) and (xR, y, zR) on the
glottal hyperplane.

D. Verification of the method

To verify the proposed method for estimation of
the glottal edges, the proposed method was applied
to estimate a rectangle slit obtained by cut a thick
paper (Fig. 5). The rectangle slit had the length of
13.2 mm, the width of 2.2 mm, and the depth of 0.25
mm. Hence, the area of the slit was 29.04 mm2. Using
the proposed method, an area of the glottis was 35.6
mm2 without smoothing, and 29.5 mm2 with smooth-
ing and planar approximation. Fig. 6 illustrates the
glottis after smoothing in (a) and the estimated glottis
after smoothing and planar approximation in (b).
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Figure 5: A pair of stereoscopic images
of a rectangle slit in a thick paper

Figure 6: (a): glottis of the slit after edge smoothing
and (b): glottis of the slit after smoothing and
planar approximation.

III. EXPERIMENTS

One female and one male participants without any
vocal problems performed in different F0s (middle,
high, and low), with the same sustained vowel (al-
most [e] by reason of insertion of endoscope into the
mouth). Their vocal fold vibrations were observed by
stereo-endoscopic high-speed digital imaging in 3750
fps. A male participant performed in different regis-
ters: vocal fry, modal, and falsetto. However, in vocal
fry, the vocal folds were covered by supraglottal struc-
tures, such as the ventricular and aryepiglottic folds,
and not observed by the endoscope, therefore, only
modal and falsetto phonations were observed. A fe-
male participant performed in three different F0s and
in a modal register.

IV. RESULTS

Fig. 7 shows the glottis after smoothing in (a) and
the estimated glottis after smoothing and planar ap-
proximation in (b) at F0 = 230 Hz. In this case, the
mean lateral inclination (dz/dx)mean was −0.3. The
mean lateral inclinations in the cases of high and low
F0s were also equal to −0.3.

Figure 7: (a): glottis after smoothing and (b): glottis
after smoothing and planar approximation in
F0 = 100 Hz and a modal register by female.

Figs. 8–10 show a time-varying function of the glot-
tal area (in the top graph), and the glottal width and
length (solid and dotted lines, respectively, in the top

graph) at F0 = 100, 230, 450 Hz for a female partic-
ipant. The maximum glottal length increased along
with increase of F0. The maximum glottal length in
observed interval was 2.0 mm for 100 Hz, 7.21 mm for
230 Hz, and 8.16 mm for 450 Hz. For the glottal area
functions in 100 and 230 Hz, the closing phase was
slightly shorter than the opening phase in each pe-
riod. The maximum glottal widths were 0.85 at 100
Hz, 2.11 at 230 Hz, and 0.92 at 450 Hz.
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Figure 8: Glottal area (at the top) and glottal length
(solid blue line at the bottom), glottal width
(dashed red line at the bottom) at F0 = 100 Hz and
in modal for female
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Figure 9: Glottal area, length, and width at
F0 = 230 Hz and in modal for female
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Figure 10: Glottal area, length, and width at
F0 = 450 Hz and in modal for female

Figs. 11, 12 show a time-varying function of the
glottal area (in the top graph), and the glottal width
and length (solid and dotted lines, respectively, in the
top graph) at F0 = 145 Hz in a modal register, and
F0 = 375 Hz in falsetto register for a male participant.
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By observing the glottal area and length functions,
the opening phase was slightly longer than the clos-
ing phase in a modal register, and the closing phase
was longer than the opening phase in a falsetto regis-
ter. The maximum glottal lengths were 9.14 mm in a
modal register at 145 Hz, and 11.07 mm for a falsetto
register in 357 Hz. The maximum glottal widths were
2.67 mm in a modal register, and 2.02 mm in a falsetto
register.
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Figure 11: Glottal area, length, and width at
F0 = 145 Hz and in modal for male
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Figure 12: Glottal area, length, and width at
F0 = 375 Hz and in falsetto for male

V. DISCUSSION

The glottal functions estimated by the proposed
method with stereo-endoscopic high-speed digital
imaging were in accordance with known results. The
estimated values of the maximum glottal lengths
showed good accordance with those in [5, 6]. In the
future, it is necessary to improve the method for esti-
mating the glottal area function from the theoretical
and instrumental viewpoints.
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Abstract:  Pipette aspiration technique is applied to 
take locally resolved measurements of artificial and 
real vocal folds. The measured data of one-layer and 
multi-layer samples as well as a pig vocal fold are 
compared to a finite element simulation in order to 
estimate the mechanical properties of the investigated 
samples. For the simulation, we used the results 
obtained by a previous study. In that study, the 
mechanical properties of simple one-layer silicone 
samples have been determined from measurements 
with a so-called vibration transmission analyzer. With 
the aid of a mathematical Inverse Method, the 
numerical results were adjusted to the measured data 
and thus equations for the material parameters were 
calculated. These relations serve as the material input 
parameters for the simulation in our study. Our 
measurement results are in good agreement with the 
simulation. Hence, this study verifies the application 
of an inverse scheme. Moreover, it presents a method 
for material characterization of multi-layer vocal fold 
models as well as real tissue that could assist in 
analyzing voice disorders.  
Keywords:  Elasticity modulus, pipette aspiration, 
Inverse Method, vocal fold  

 
I. INTRODUCTION 

 
The quality of life of persons suffering from voice 

disorders is limited as speech is an important instrument 
in human communication [1]. It is well known that the 
vocal folds, more precisely the oscillation of the vocal 
folds, play an outstanding role in voice generation. Thus, 
the analysis of vocal fold vibrations could help 
understanding the reasons of voice disorders. The 
vibratory characteristics of the vocal folds are mainly 
influenced by their mechanical material parameters, 
especially the elasticity modulus [2].  This fact demands 
for methods to estimate the mechanical properties to 
describe the vocal fold vibration and thus assist in 
improving the clinical care of human voice.  

 Many different approaches to characterize the 
mechanical material parameters of the vocal folds have 
been published. In [3,4] the static elasticity modulus was 
determined by analyzing the stress relaxation of canine 
vocal folds with the aid of an ergometer. To measure the 
dynamic mechanical properties of viscoelastic materials, 
rheometer systems were applied in [5,6]. With these 

systems, the dynamic material behavior up to 250 Hz 
could be determined. Furthermore, they are destructive 
methods and very expensive. A low-cost alternative to 
identify the mechanical material parameters within the 
frequency range of human phonation was presented in 
[7]. In that study, the transfer function of cylindrically 
shaped one-layer silicone samples was measured with a 
so-called vibration transmission analyzer. For the 
estimation of the mechanical properties an Inverse 
Method [8] is applied, that minimizes the deviations 
between a simulated transfer function and the measured 
one by adjusting the sought-after parameter set. The 
comparison of numerical and measured results showed 
only small deviations. However, this method is only 
applicable for homogeneous one-layer samples. Thus, the 
idea of this study is to find a possibility to determine the 
dynamic material parameters of multi-layer samples on 
the basis of the results presented in [7]. 

In this study, the pipette aspiration technique [9,10] is 
applied to measure the local stiffness of artificial and real 
vocal folds. With this technique, the elasticity modulus is 
determined by the measurement of the maximum 
aspiration displacement, under assumption that the 
investigated specimen is isotropic, incompressible, 
homogeneous and linearly elastic. Realistic vocal fold 
models are usually made of silicone mixtures [11,12] that 
fulfill the required properties. Therefore, we investigated 
several one-layer and multi-layer silicone samples with 
reference to their maximum aspiration displacement as 
well as to their displacement profiles within the human 
voice frequency range. The measurement data is 
compared to a finite element simulation of the 
experimental setup which is based on the adjusted 
dynamic material parameters out of the investigations 
with the vibration transmission analyzer [7]. In order to 
compare the artificial specimens with real tissue, a pig 
vocal fold has also been investigated.  
 

II. METHODS 
 

A. Measurement Setup 
 

The idea of determining the elasticity modulus using 
pipette aspiration was first reported in [9]. To analyze the 
dynamic material behavior, the original setup was 
extended [13] and has provided the basis for the resulting 
pipette aspiration setup in this study, which is shown in 
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Fig. 1. The pipette is centrically placed on the surface of 
the specimen. To create boundary conditions that are in 
good agreement with the simulation, the pipette is glued 
on the silicone samples. Concerning the investigations of 
the pig vocal fold, the contact force is measured by a 
force sensor and kept constant at 0.1 N. The pistonphone, 
which is connected to the gauge head by a flexible tube, 
is mounted on an electromechanical shaker. This shaker 
induces a mechanical oscillation, the frequency and the 
amplitude of which are controlled by a computer via the 
automation software LabVIEW©. This oscillation is 
transmitted to the lobe of the pistonphone. Thus, a 
fluctuating pressure is generated in the gauge head 
resulting in a vibration of the area enclosed by the pipette. 
An electret microphone (SENNHEISER© KE4-211-2) 
detects the actual pressure in the gauge head and by 
means of a controller the pressure can be maintained. The 
laser scanning vibrometer (PSV 300 from POLYTEC©), 
communicating with the control computer, scans defined 
points on the specimen’s surface and measures the out-of-
plane velocity at each point. In order to avoid 
measurement errors due to outside vibrations the setup is 
placed upon a vibration-isolated table.    

 

 
 

Fig. 1: Pipette aspiration setup  
 

B. Specimens 
 

The conventional material for modeling vocal folds is 
silicone rubber as its material properties are comparable 
to those of real vocal folds [11,12]. The samples in our 
investigations were made of the three-component 
addition-cure silicone Ecoflex 0030© (Smooth-On, Inc.), 
consisting of equal amounts of subcomponents part A and 
part B as well as a variable amount of silicone thinner T. 
The sample’s stiffness depends on the used amount of 
silicone thinner. The smaller the amount of silicone 
thinner, the higher is the elasticity modulus. Three 
different mixtures (A:B:T) are investigated in this work: 
same amounts of subcomponents and thinner (1:1:1), 
twice as much thinner compared to the subcomponents 
(1:1:2) and mixtures with three parts of thinner (1:1:3).  

With regard to a simple simulation model of the silicone 
samples, our specimens are cylindrically shaped with d = 
50 mm in diameter and h = 10 mm in height.  

As real vocal folds consist of several layers with 
different mechanical material parameters [14], multi-
layer samples have also been fabricated and analyzed. A 
two-layer sample has been taken into account. The base is 
a layer of a 1:1:1-mixture with 5 mm in height. This layer 
is covered with a 2 mm thick layer of a 1:1:2-mixture. 
Furthermore, a three-layer sample with an additional third 
layer of a 1:1:3-mixture with 1 mm in height has also 
been investigated. 

In order to compare the frequency dependent behavior 
of the silicone samples with real tissue, one vocal fold of 
a pig larynx has been excised and examined. 

 
III. RESULTS 

 
A. Investigations 

 
All investigations in this study were performed by 

using a pipette with an inner radius of r = 3 mm. In order 
to cover the frequency range of human phonation, an 
interval from 50 to 300 Hz is considered. The applied 
pressure for the specimens is adjusted by a controller to 
20 Pa over the whole frequency range. With the laser 
scanning vibrometer, the amplitudes of the velocity of 
about 70 points on the surface of the investigated samples 
have been measured at frequency intervals of ∆f = 1 Hz. 
The displacement is determined by integrating the 
velocity over time.  

 
 

Fig. 2: Comparison of the displacement profiles for the 
different specimens at 120 Hz 

 
Figure 2 exemplary displays the mean of the 

measured displacements at discrete positions within the 
pipette at a frequency of 120 Hz. Due to reflections of the 
pipette wall, the radial position is only plot until 2.5 mm. 
The displacement profile of the stiffest sample (1:1:1 
sample) shows a flat decay towards the inner pipette wall 
whereas the 1:1:3 sample shows the steepest slope. The 
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maximal displacement of the investigated multi-layer 
samples lies between that of the 1:1:1 sample and that of 
the 1:1:2 sample. With an inner pipette radius of 3 mm, 
this is obvious as the layer of the stiffest material is the 
thickest of the specimen and thus mainly determines the 
dynamic behavior of the sample. The maximum 
displacement of the pig vocal fold at 120 Hz is ca. 4.5 
µm, which is in between the maximum of the samples 
with mixing ratios of 1:1:2 and 1:1:3. This indicates that 
the real tissue has a different layer structure than the 
investigated multi-layer silicone samples.   

 
B. Finite Element Simulation 

 
In order to compare the measurement results to the 

results of a finite element simulation, a finite element 
model (FEM) has been designed using ANSYS© 

preprocessor. The simplified axially symmetric 2D-model 
of the three-layer cylindrical specimen is shown in Fig. 3. 
The bottom nodes’ motion as well as the region on which 
the pipette is placed on the sample are fixed in all 
directions. A constant pressure of 20 Pa is applied to the 
aspiration area. The different layers consist of materials 
that are assumed to be homogeneous and isotropic but 
with different elasticity modulus, damping factor and 
Poisson’s ratio. The input values for the dynamic material 
parameters of the different silicone mixtures are extracted 
from [7]. The mechanical displacements at 16 equal 
distant nodes on the aspiration area are calculated. The 
numerical simulations are performed with the finite 
element software package CFS++ (Coupled Field 
Simulation) [15] within a frequency range of 50-300 Hz 
with 100 linearly distributed steps.  

 

 
 

Fig. 3: Simplified rotationally symmetric 2D-FEM of the 
three-layer sample 

 
C. Comparison of measurement and simulation 

 
The results of the maximum displacements as a 

function of frequency for the investigated specimens are 
displayed in Fig. 4. The continuous curves show the 
measurement results, the dashed lines show the simulated 
characteristics. In general, the more elastic the material is 
the lower is the resonance frequency. For all silicone 
samples, the resonance frequency of both the 
measurement and the simulation are approximately 
identical. Furthermore, the absolute values of the 
measured curves agree with the simulated ones.  

However, close to the resonance frequency, the 
measured displacements are about 1-2 µm higher than the 
simulated ones. One possible reason for this may be that 
the region on which the pipette is placed on the sample is 
not totally fixed in all directions as a loss in fixation has 
been detected during the measurement. Moreover, 
material parameters calculated in [7], which serve as 
input for the simulation, have not been determined for the 
samples investigated in this study. Thus, a minor error 
due to the differences in the set simulation values for the 
damping factor and the complex elasticity modulus 
occurs. The measurement results of the multi-layer 
samples also show good agreement with the simulation. 
Regarding the results of the pig vocal fold, the resonance 
frequency is much lower than that of the multi-layer 
samples. 

 
 
Fig. 4: Measured and simulated maximum displacements 

over frequency for the different samples 
 
 

IV. DISCUSSION 
 

The presented results show that the pipette aspiration 
method can be used for locally resolved measurements of 
the mechanical properties of vocal folds. The maximum 
displacements and the displacement profiles of one-layer 
and multi-layer silicone samples as well as an excised pig 
vocal fold have been measured. It has been shown that for 
the measurements with a pipette with an inner radius of 3 
mm, the maximum displacements and thus the dynamic 
behavior of multi-layer samples are mainly determined by 
the thickest layer. In order to analyze the influence of the 
cover layers, further investigations will be made using a 
pipette with a smaller inner radius. In comparison to the 
measured characteristics of real tissue, the investigated 
silicone specimens show a much higher resonance 
frequency. To approach the frequency response of real 
vocal folds, the chosen layer thicknesses have to be 
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adjusted. But in general, the results prove the possibility 
to model a silicone sample whose behavior is close to that 
of real tissue. However, for this study the dynamic 
behavior of only one pig vocal fold has been measured. 
For further investigations, several pig vocal folds have to 
be examined so that the reproducibility of the results can 
be guaranteed.  

A comparison with a finite element simulation on the 
basis of the mechanical properties calculated in [7] shows 
that the absolute values as well as the resonance 
frequencies of measured and simulated data are 
approximately identical. This fact verifies the 
determination of the dynamic material parameters with 
the Inverse Method. Consequently, future researches will 
concentrate on an application of the Inverse Method to 
the presented pipette aspiration setup. Thus, our method 
could be used to determine the complex elasticity 
modulus, the damping factor and the Poisson’s ratio of 
investigated multi-layer samples and help in modeling the 
dynamic behavior of real tissue.  

 
V. CONCLUSION 

 
A simulation based method to determine the elasticity 

modulus of artificial and real vocal folds has been 
presented. Pipette aspiration technique is applied to take 
locally resolved measurements of silicone samples and a 
pig vocal fold. The measurement data is compared to a 
finite element simulation. The results of the estimation of 
dynamic mechanical properties by an Inverse Method [7] 
serve as input material parameters. The comparison of 
measurement and simulation shows accordance 
concerning the frequency responses of the investigated 
silicone samples. The examination of the pig vocal fold 
showed a much lower resonance frequency than that of 
the artificial multi-layer samples, indicating that the 
thickness ratios have to be adjusted to approach the 
behavior of real tissue. 

The advantage of our method to tensile tests [3,4] or 
rheometer systems [5,6] is that it is nondestructive. In 
comparison to the material characterization of one-layer 
samples with a vibration transmission analyzer [7], the 
benefit of the presented method is the possibility to 
determine the mechanical properties of multi-layer 
samples, the structure of which is similar to that of real 
vocal folds. Moreover, this method offers locally resolved 
measurements and could thus be a possible mean in 
improving the clinical care of human voice. 
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Abstract: laryngeal cancer may necessitate a com-
plete removal of the larynx. consequently, the re-
quired sound source for voiced communication is 
lost. alternatively, a substitute sound signal can be 
generated by tissue vibrations in the pharyngo-
esophageal (pe) segment. the quality of the substi-
tute voice significantly depends on the vibration 
characteristics of the pe segment. for investigation 
purpose, the tissue vibrations are detected by endo-
scopic interventions with a high-speed camera and 
are quantified by a biomechanical multi-mass model. 
as pseudoglottal vibrations present variations in 
frequency and amplitude we suggest an expansion of 
the biomechanical pe model for a time-dependent 
multi-mass model. additionally, we propose a block 
based optimization procedure to fit the model dy-
namics to real pe vibrations. first results demon-
strate the performance of the time-dependent model 
and the optimization procedure being comparable to 
those of the non-stationary pe model and the time-
dependent vocal fold model.  
Keywords: pe segment, model optimization 

I. INTRODUCTION 

The tasks of the larynx are the separation of the eso-
phagus and the trachea as well as the generation of the 
sound source necessary for voiced communication. Due 
to cancer a laryngectomy may be necessary, i.e. removal 
of the complete larynx at which laryngeal functions are 
lost. However, the functions can be “reconstructed” by a 
surgical intervention (Fig. 1) [1]. At first the esophagus 
and the trachea are separated. To preserve breathing, the 
trachea is sewn into a respiratory notch in the frontal 
neck, the so called tracheostoma. The pharynx is di-
rectly connected with the esophagus at which the scared 
tissue in the changeover is called PE segment
(pharyngo-esophageal segment). To allow for a substi-
tute sound source, a valve is inserted to connect trachea 
and esophagus. Closing the tracheostoma forces the air 
stream from the lungs to pass the valve and the PE seg-
ment. The scarred tissue is stimulated for oscillation 
what generates the sound source for tracheo-esophageal 
voice production [2]. 

The intelligibility of the tracheo-esophageal substi-
tute voice is drastically reduced compared to a healthy 
voice [3]. Moreover a broad variability in quality exists 
[4]. The latter is mainly determined by the vibration 
patterns of the PE-segment [5]. For a quantitative analy-
sis, the oscillations of the PE-segment are recorded by a 
high-speed camera (Fig. 1, Fig. 2). The time-signal of 
the opening area of the PE-segment (pseudoglottis) is 
extracted (Fig. 2) and is modeled by a stationary biome-
chanical multi-mass model (PE-MMM) [6]. However, 
the time-signal presents variations in amplitude and 
frequency, see Fig. 2. Thus we suggest the expansion of 
the PE-MMM to a time dependent model (PE-MMM(t)) 
by applying time dependent model parameters. For the 
simulation of real PE vibrations, the model parameters 
of the PE-MMM(t) are fitted by a block based optimiza-

paraMeter optiMiZation for a tiMe-dependent Multi- Mass 
Model for the pharynGo-esophaGeal seGMent 
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fig 1: endoscopic examination setup of the pe vi-
brations by a high-speed camera. closing the tra-
cheostoma forces the air stream from the lungs to 
pass the valve and stimulate the tissue in the pe 
segment for oscillation.  

fig 2: left: endoscopic view of the pe segment. the 
black bead is the pseudoglottis. right: time signal of
the pseudoglottal opening area.  
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tion procedure to the non stationary time signal of the 
pseudoglottal opening extracted of the high-speed re-
cordings. The resulting model parameters objectively 
quantify the vibrations of the PE-segment.  

II. METHODS

Alike to the stationary PE-MMM, the pseudoglottal 
contour is modeled by 8 two-mass oscillators [6] that 
are coupled by horizontal and vertical springs kh

, kv and 
dampers rh

, rv. The masses are arranged in a horizontal 
plane and a closed shape (Fig. 3). The masses are addi-
tionally connected by horizontal couplings (ka

, ra) to 
anchors with fix positions. Each mass is capable to 
move within the whole plane at which its position at a 
discrete time step n is described by the 2D vec-
tor T

sisisi nynxn ))(),(()( ,,, x . The index 8,,1i  de-
scribes the ith mass element in the lower (s=1) and upper 
(s=2) plane, respectively. The time-dependent parame-
ters of the mass-spring oscillations are the masses 
mi,s(n), their rest positions xr

i,s(n), the horizontal anchor 
couplings kh

i,s(n), and the subglottal pressure Psub(n). 
The trajectories xi,s(n) of the mass elements mi,s obey the 
2nd Newtonian Law: 

d
i,s

c
i,s

h
i,s

v
i,s

a
i,ssisisisi mm fffffxx  ,,,,  .      (1) 

a
si,f , v

si,f and h
si ,f are the anchor, the vertical and the 

horizontal coupling force. c
si ,f is the force due to colli-

sions with other masses or horizontal coupling springs. 
The force d

si,f is the driving force generated by the glot-
tal airflow caused by the subglottal pressure Psub(n) [6].  

 For the simulation of real PE vibrations the contour 
and the area signal of the pseudoglottis are extracted 

from high speed recordings (HSR) [4]. Afterwards the 
area and contour of the model are fit to the extracted 
data. Thereto, the model parameters are adjusted by sets 
of 10 time dependent optimization parameters 
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The ‘hats’ indicate constant initialization values. A cost 
function 

222 )()()( dsa                       (3) 
consisting of three minimization criteria is defined to 
find adequate Q-values [6]. 
1) area consistency:
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with amodel(n) and aHS(n) being the glottal area 
generated by the model and extracted from HSR 
at the discrete time step n, respectively.  

2) intersection consistency:
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with asec(n) being the intersection area between 
amodel(n) and aHS(n). 

3) time-averaged distance:
For each time step the minimal distance di(n) be-
tween mass mi,s and the extracted contour is de-
termined. di(n) is normalized to the radius of a 
circle with same area as aHS(n): 
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 A block based optimization procedure is applied to 
minimize the objective function 7. The area signals 
aHS(n) and amodel(n) are split into blocks, each containing 
four oscillation cycles at which a cycle is defined from 
maximum to maximum. To assure smoothness, con-
secutive blocks have an overlap of 50%.  is minimized 
in each block by a combination of Adaptive Simulated 
Annealing and Powell’s direction set method. Though 
the complete block is minimized, the optimized parame-
ters of the second half of the block are rejected as they 
are optimized in the first half of the consecutive block. 
The resulting parameter sets P(n) are applied as model 

fig 3: pe-MMM(t) consisting of i=8 vertically and 
horizontally coupled mass-spring oscillators mi,s.
ka

i,s, kv
i,s and kh

i,s are the anchor, the vertical and
the horizontal couplings, respectively, of the lower
(s=1) and upper (s=2) plane. damping elements are
omitted. 
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tab 1: relative errors of Qi, Qp and Qr, averaged over the five runs, and the predefined Q-values of p*
1 and p*

2,
respectively. 

parameters for the PE-MMM(t) to generate the time-
dependent pseudoglottal openings at every time step n.
 The reliability and the capability of the optimization 
procedure are validated by applying the suggested 
method to synthetically generated data. Thereby, the 
generated model dynamics of predefined parameter sets 
P*(n) serve as presetting to be estimated by the optimi-
zation procedure. Two kinds of parameter sets are ap-
plied. P*

1 varies Qp and P*
2 varies Qi by linearly increas-

ing the concerning Q-value over time. All other Q val-
ues of P*

1 and P*
2 remain constant. The optimization 

procedure was applied five times to each parameter set. 
 To demonstrate the applicability, the optimization 
procedure is applied to two PE vibrations extracted 
from HSR. 

III. RESULTS

A. Validation by synthetic data sets 

The optimization results after fitting the PE-MMM(t) 
to the time signal of the synthetic data sets P*

1 and P*
2

are depicted in Fig. 4a) and 4b). The left columns show 
the course of QP, Qr and Qi ( 81i ) over time. The 
dashed lines are the predefined Q-values of P*, the solid 
lines are the optimized Q-values averaged over the five 
runs. The right columns present the relative error. 

The means of the relative errors are summarized in 
Tab. I. The mean errors of Qi have values between 4.5% 
and 15.5% with an average of 9.1% for P*

1, and values 
between 4.4% and 7.6% with an average of 6.4% for 
P*

2. The average over all Q-values is 9.1% for P*
1 and 

6.0% for P*
2.

B. Application to real PE vibrations 

Fig. 5 and Fig. 6 show the optimization results after 
fitting the PE-MMM(t) to real PE vibrations extracted 
from HSR. Fig. 5a) and 6a) depict the time signals of 
the pseudoglottal area. During the optimization the sig-
nal of the PE opening is split into blocks with four os-
cillation cycles, at hand three blocks. The optimization 
results of blocks 1 to 3 are depicted in Fig. 5b)-d) and 
Fig. 6b)-d). The solid line is the time signal of the PE 
area, the dashed line the area of the optimized PE-
MMM(t). The correlations for both curves in blocks 1 to 
3 are 98.2%, 97.8%, 98.5% for Fig. 5 and 98.0%, 
99.7%, 99.7% for Fig. 6.  

 Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 QP Qr

mean relative error P*
1 [%] 6.7 4.5 9.3 9.0 9.4 7.9 10.4 15.5 9.6 8.7 

mean relative error P*
2 [%] 6.1 5.0 7.0 6.5 4.4 7.6 7.2 7.6 4.6 6.9 

fig 4: optimization results of fitting the pe-
MMM(t) to the data set of p*

1 (a) and p*
2 (b). left

column: Q-values over time steps. the dashed lines
are the predefined Q-values, the solid lines are the
average of the optimized Q-values over the five runs. 
the right column depicts the relative error between 
the predefined values and the averaged optimized
values. 

fig 5: optimization result of fitting the pe-MMM(t)
to real pe oscillations extracted from hsr. a) time
signal of the pe opening area. b) to d) optimization
results within the individual blocks of the optimiza-
tion procedure. the solid line is the time signal of the
pseudoglottal area, the dashed line is the time signal
of the optimized model opening.  
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IV. DISCUSSION

To demonstrate the capability of the suggested opti-
mization procedure the model dynamics of the two pre-
defined parameter sets P*

1 and P*
2 were both optimized 

five times. The optimized Q-values present relative er-
rors in the range of 4.5% and 15.5% for P*

1 and 4.4% 
and 7.6% for P*

2 with averages over all ten Q-values of 
9.1% and 6.0%. The results show that the optimization 
works better in optimizing variations in Qi than varia-
tions in QP. Optimizations applying the stationary PE-
MMM show relative errors in the range of 4.9% to 
12.3% [6]. Our results are in the same order of magni-
tude. The mean error for the PE-MMM amounts for 
8.2% and lies between the here presented mean errors 
for P*

1 and P*
2. In comparison to the non-stationary 

multi mass model for the vocal folds that results in a 
mean error for the Q-values of 10.9% [7], the here pre-
sented PE-MMM(t) achieves better optimization results.  

To demonstrate the applicability of the PE-MMM(t) 
and the suggested optimization procedure, two area 
functions of real PE vibrations were extracted from 
HSR. The optimization resulted in correlations of the 
area functions of the model and the PE segment in the 
range of 97.8% - 99.7%. Correlations while applying 
the stationary PE-MMM amounts to 69% - 95% [6]. 
The non-stationary model of the vocal folds achieves 
correlations between 89% and 97% [7]. The results 
demonstrate the capability of the suggested PE-
MMM(t) to represent vibrations of the PE segment.  

The future application of the PE-MMM(t) will be the 
objective quantification of PE vibrations what is repre-
sented by the model parameters after fitting the model 

dynamics to the PE oscillations. These findings may 
help to improve voice rehabilitation by detecting re-
gions that have significant influence to the quality of the 
substitute voice. This knowledge can be used to im-
prove the surgical intervention during laryngectomy to 
optimize the scarring of the PE segment.  

V. CONCLUSION

First optimizations show that the performance of the 
suggested PE-MMM(t) is in good agreement with that 
of the stationary PE-MMM [6] and that of the non-
stationary multi-mass model for the vocal folds [7].  
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Abstract: the details in the formation of the primary 
acoustic sources in voice production during phonation 
are not yet fully understood. some acoustic sources 
are due to the unsteady flow evolving between the 
vocal folds, where a jet develops. the glottal jet flow 
downstream the vocal folds features characteristics 
which depend on the physiological conditions, e.g. the 
parameters in geometry, kinematics, material and 
fluid. a driven mechanical model of the vocal folds is 
used with the aim to study the flow details and the 
acoustic sources in the glottal jet. numerical 
simulations and experimental measurements of the 
flow are carried out. the results show topological 
characteristics of the glottal jet flow. When prominent 
ventricular folds are included in the vocal folds model 
the jet evolves differently due to the interaction with 
these supraglottal structures. they lead to a changed 
distribution and abundance of the flow acoustic 
sources and changed spectral properties of the flow 
close to the glottis. 
 
Keywords:  mechanical vocal folds model, ventricular 
folds, flow simulation, higher harmonics, spectral 
analysis 

 
I. INTRODUCTION 

 
The production of the voice is a complex process, 

which is influenced by a wide range of parameters [1]. In 
general voicing is a more or less coupled process of fluid-
structure-acoustic interaction. The singing and phonation 
regimes differ quite strongly from each other. Due to its 
complexity models of the respiratory system, in particular 
the trachea, the glottis and the vocal tract are generated in 
order to reduce the problem study to specific voicing 
aspects.  The “pressed” and “breathy” voicing types 
indicate the importance of the detailed knowledge of the 
generation of the primary voice source. Singing is a 
strongly coupled problem and represents a special area in 
the voicing research with regard to professional singers; 
whereas phonation is more amenable and has a wider 
range of application in everyday life. Extensive 
investigations are nowadays carried out with the aim of 
tackling voice disorders in phonation. The generation of 
the primary acoustic signal at the glottis is the first link in 

the chain of voice production. Herein, the overall output 
voice signal spectrum is partly influenced by the nature of 
the flow field downstream of the glottis. Several models 
exist for the investigation of the primary voice sources: 
theoretical / lumped mass models, computational fluid 
dynamics (CFD) models, and mechanical models [2]. 
These are also classified with regard to the degree of 
idealization into static, dynamic driven and self-
oscillating or 1-dimensional, 2-dimensional / 
axisymmetric or 3-dimensional (3-D) models. Most of 
these models incorporate only a very simplified geometry 
of the vocal tract. 

The time-dependent 3-D flow field in a driven vocal 
folds model [3], which considers the 3-D shape change of 
the glottis during the cycle of phonation, is considered in 
the present paper. 

The description of 3-D effects in vortex dynamics such 
as stretching and bending of vortex lines and the 
determination of the local pressure and velocity are of 
immense importance for the spectral characterization of 
the flow field. The temporal evolution of large and small 
scale flow structures including their interaction with 
supraglottal walls may change the spectral fingerprint of 
the flow field. Therefore, flow effects at different driving 
pressures, changed glottal and supraglottal configurations 
can be explored with regard to the resulting output flow 
patterns. In order to combine as best as possible their 
inherent advantages, experimental and numerical 
methods of flow investigation are applied simultaneous. 
 

II. METHODS 
 

The main physiological parameters of real vocal folds 
kinematics during phonation are replicated. The 
characteristic movement of the walls in the glottal region, 
e.g. the continuous deformation of the mucosal layer is 
achieved by means of two 3D contoured cams, which 
rotate in counter-direction [3]. Similarity of geometry, 
flow dynamics and fluid dynamic forces is kept in the 
model. Due to the low Mach number, the flow can be 
treated as incompressible. The time-dependent and 3D 
nature of the flow field downstream of the glottis requires 
flow analysis methods with appropriate temporal and 
spatial resolutions. 

The experimental model of the vocal folds is shown in 
Fig. 1. The cams which are covered with a membrane can 
be seen on the left hand side. On the right hand side of 
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the photograph supraglottal elements e.g. ventricular 
folds (VFs) which are optionally inserted into the test 
section downstream of the vocal folds model are 
indicated. Two variations of models of the VFs are 
available: first, rigid transparent models allowing 
distortion-free optical access into the flow field; second, 
models with a compliant surface layer and incorporating 
an air-cushion. The latter are used for pressure sensing 
the higher harmonics from the glottal jet flow or for 
selective activation of the compliant surface layer. 
 

 
 

Fig. 1: Photograph of the model of the vocal folds. 
 

 In the experiments a global driving pressure head 
across the glottal orifice is imposed. The close-to-glottis 
flow-dependent pressure difference is recorded.  The well 
established method of high speed flow visualization is 
used for accurate determination of temporal and spatial 
velocity information in selected measuring planes. The 
resulting glottal volume waveform is measured [3] and 
given as input for the inlet boundary condition in the 
numerical model. 

The Navier-Stokes equations for incompressible fluid 
flow are discretized with the Finite Volume method and 
solved numerically with the open source CFD code 
OpenFOAM. A block structured mesh of 1 million cells 
with variation in time according to the glottal kinematics 
is implemented. The solver uses a second order Crank 
Nicolson time stepping and as space discretization a 
second order TVD (total variation diminishing) scheme. 
The full transient 3-D flow field in the near-glottal region 
is simulated. The subgrid-scale turbulence is modeled 
implicitly. All simulations are carried out with the 
volume waveform synchronous to the imposed time-
varying motion of the 3D glottis model. 
 

III. RESULTS 
 
A. Flow structures 
 

Fig. 2 shows the experimental visualization of the flow 
in the mid-coronal plane at the maximum opening instant 
t/T0 = 0.25 of the glottal cycle. The case without (top) and 
with rigid (bottom) VFs has been studied. The character 

of the near field of the emerging glottal jet with its most 
energetic large coherent vortex structures is shown. 
Kelvin-Helmholtz instabilities are responsible for the 
roll-up of the jet edge. The jet front and the successive 
vortex structures are seen to interact with the VFs. The 
determination of the pressure fluctuations due to the jet 
edge instabilities is given in section C. 

 

 
 

Fig. 2: Visualization of the flow in the mid-coronal plane 
for transglottal pressure of Δp = 6 cmH2O at maximum 
opening instant t/T0 = 0.25 of the glottal cycle for two 
supraglottal configurations (a) and (b). 
 

Further flow results are shown from the numerical 
simulations which resolve the full 3D flow field in space 
and time in the glottal model. A preliminary study on 
resolution requirements, accuracy and convergence of the 
model has been carried out in [4]. There exist several 
velocity or pressure based tools for vortex detection. In 
Fig. 3 the Q criterion [5] is used to illustrate the 3-D 
vortex structures. Elliptic vortex rings are generated at the 
glottal orifice. These are strongly deformed due to self-
induction, interaction among each other and with the 
supraglottal walls, e.g. VFs. 
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Fig. 3: Representative isocontour of the Q-criterion of the 
flow field at the divergent closing instant t/T0 = 0.35 of 
the glottal cycle for both supraglottal configurations (a) 
and (b) from Fig. 2 at the transglottal pressure of Δp = 6 
cmH2O. 
 
The complex 3D unsteady vortex structures which are 
generated downstream of the glottal orifice are already 
subjected to break-down. 

 
B. Primary acoustic sources 
 

The distribution of the divergence of the Lamb vector 
l can be computed from the velocity u of the flow field 
and appears as a dominant acoustic source term in 
Lighthill’s wave equation [6]. The source term reads 
 

  (( ) )   l u u  .    (1) 
 
One example of this distribution is shown in Fig. 4. 
 
C. Power spectrum 

 
In Fig. 5 the normalized power spectra of the flow field 

velocity from the numerical simulation is compared for 
the cases without and with VFs in a center point at a 
downstream distance from the glottis corresponding to 
one vocal tract height. The differences are considerable. 
 

 
Fig. 4: Distribution of the Lamb vector divergence (black 
positive, grey 0, white negative value) of the flow field at 
the divergent closing instant t/T0 = 0.35 of the glottal 
cycle  in the mid-coronal plane for both supraglottal 
configurations (a) and (b) from Fig. 2. 

 
In order to determine the pressure fluctuations of the 

jet edge instabilities in experiment, a VF has been 
replaced with a VF model with a compliant surface layer 
and air cushion. The small amplitude of the pressure 
fluctuations poses a challenge in the measurement and 
analysis of the data. Fig. 6 clarifies the actual situation. 
The frequency spectra of two pressure measurements are 
shown in dimensionless form with the help of a Strouhal 
number Sr defined as 

 
meanSr f w / u       (2) 

 
where f is the frequency content of the pressure signal, w 
is the maximum width of the glottal gap and umean is the 
mean velocity in the glottal gap. On top the spectrum 
results from the reference pressure upstream of the vocal 
folds model. The spectrum below results from the integral 
pressure measured in the air-tight air cushion. The 
difference of both spectra yields the Strouhal number 
with a value of 0.27, which is supposed to be due to the 
shear layer instabilities interacting with the walls. This 
value is highlighted by the arrow in the spectrum and it 
correlates well with the frequency value from the 
numerical simulation in Fig. 5. 
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Fig. 5: Power spectrum of axial velocity in a center point 
at distance from glottis corresponding to one vocal tract 
height for both supraglottal configurations (a) and (b) 
from Fig. 2; Non-dimensional frequency related to 
fundamental frequency. 

 

 
Fig. 6: Mean normalized power spectrum of pressure 
sensed at upstream position (top) and by VF (bottom).  
 

IV. DISCUSSION 
 

The change in the vortex dynamics and the spectra at 
different supraglottal configurations are clearly shown. A 
negative slope of 3 dB per octave in the low frequency 
range up to the 10th harmonic is extracted the spectra in 
Fig. 5. Due to the jet edge interaction with the ventricular 
folds the higher frequency range of the spectrum in 
configuration (a) differs considerably from that in 
configuration (b). 
 

V. CONCLUSION 
 

Prominent ventricular folds leave a strong fingerprint 
in the spectra of the flow close to the glottis. The 
ventricular folds redirect part of the displacement flow 
into the lateral gap of the Morgani space which seems to 
stabilize the jet core at the exit of the glottis. In addition, 
the shear-layer roll-up is affected by the presence of the 
folds and vortex structures are interacting with the walls 
in this region. As a consequence, vortex dynamics and 
wall interaction is changed considerably when 
supraglottal structures are included in the models. These 
effects are well seen in the change of spectral content 
ithin the flow. Further studies in our lab now concentrate 
on possible feedback and jet-control by passive and 
active excitation of the ventricular folds wall.  
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Abstract: Synthetic models are used to study vocal fold 
flow-induced vibration. Advantages include 
reproducibility and vibration frequencies typical of 
human phonation. Limitations of recent models 
include lack of a mucosal wave, excessive inferior-
superior motion, and limited convergent-divergent 
motion. To overcome these limitations, a synthetic 
vocal fold model was developed that included separate 
epithelial and lamina propria layers. A corresponding 
finite element model was developed. High-speed 
imaging was used to quantify synthetic model motion, 
including videokymography and determination of 
three-dimensional marker trajectories. Both models 
exhibited similar characteristics in terms of vibration 
frequency (around 115 Hz) and maximum glottal 
width (just under 2 mm). The synthetic model onset 
pressure was 0.4 kPa, which is significantly lower than 
many previous synthetic models. These values are 
consistent with human phonation. Importantly, in 
both models mucosal wave-like motion was evident 
and alternating convergent-divergent intraglottal 
profiles were seen. These advantages will be useful in 
future experiments and simulations by providing 
models that exhibit more life-like response and 
motion. The two models are described, data are 
presented, significance of the models is discussed, and 
suggestions for future work are provided. 
Keywords : Vocal fold models, artificial models, finite 
element models 

 
I. INTRODUCTION 

 
Computational and experimental models are used to 

study vocal fold flow-induced vibration. Many recent 
models are based on some variation of the multi-layer 
structure presented by Hirano [1]. Computational models 
include high-fidelity Navier-Stokes flow solvers coupled 
with solid models that include cover, ligament, and body 
layers [2,3]. Synthetic models include epithelium-lamina 
propria configurations [4] and two-layer body-cover 
silicone models [5]. The recent two-layer synthetic 
models are useful because of their reproducibility, low 
cost, and ease of parameterization. They have a length 
scale similar to that of the human vocal folds, have layers 

with differing stiffness, and vibrate at frequencies typical 
of human phonation.  

Most recent synthetic models are currently limited by 
three features: unnaturally large inferior-superior 
displacement, lack of a clear mucosal wave, and higher-
than-desired onset pressure (usually 1 to 2 kPa, compared 
with 0.2 to 0.4 kPa for human phonation). These 
limitations have been attributed in part to the models’ 
cover layers being stiffer than the human cover. The 
Young’s modulus of elasticity values of the model covers 
have been around 2 to 3 kPa. By contrast, cover shear 
modulus values around 0.25 kPa (corresponding to 
Young’s modulus values around 0.75 kPa) at 100 Hz 
have been measured [6].  

To overcome these limitations, a synthetic vocal fold 
model was developed that includes a cover layer that, as 
is the case with the human vocal folds, included two 
distinct layers: a thin epithelial layer and an underlying 
flexible layer that represented the superficial lamina 
propria. This synthetic model and a corresponding finite 
element model are described below. Data are presented 
which demonstrate significant improvements in terms of 
model motion and onset pressure.  
 

II. METHODS 
 
A. Synthetic Model 
 

The synthetic model geometry is shown in Fig. 1. 
Silicone interior layers were fabricated according to the 
multi-layer rapid prototyping, molding, and casting 
procedures described in [5,7]. The epithelial layer was 
created by pouring a silicone mixture over the assembled 
interior layers. The epithelial layer thickness was 
estimated to be approximately 0.1 mm. Layer Young’s 
moduli were controlled by varying the pre-cured silicone 
mixture content; values for the different layers were 
approximately 11.8 kPa (body), 1.6 kPa (ligament), 0.2 
kPa (superficial lamina propria), and 49.8 kPa 
(epithelium). Tension was applied to a fiber thread that 
ran anteriorly-posteriorly within the ligament layer to 
reduce inferior-superior motion. High-speed video 
imaging (Photron SA3, 3000 frames per second) was 
used to capture model motion. 
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B. Finite Element Model 
 

The finite element model consisted of two-
dimensional, fully-coupled fluid and solid domains, as 
shown in Fig. 2. The solid model incorporated the same 
geometry as the synthetic model, but with a 50 m-thick 
epithelium. The material properties were also the same, 
with the exception that the superifical lamina propria 
layer material property was based on a nonlinear stress-
strain curve. This curve was governed by the equation  

 
() = 11.2(e10.5 − 1),     (1) 

 
where  is stress (Pa) and  is strain. This yielded a 
tangent modulus of 200 Pa at  = 0.05 and 972 Pa at  = 
0.2. The finite element model did not include a fiber. 

The fluid model used an incompressible, viscous, 2D, 
unsteady Navier-Stokes solver with a constant 600 Pa 
inlet pressure. The solid domain allowed for large strain 
and large deformation and included Rayleigh damping  
( = 101.67,  = 0.0001073) for energy dissipation.  

Solution was accomplished using the commercial code 
ADINA. A time step size of 10−4 and a second-order 
composite time marching scheme were used. For 
computational efficiency, medial-lateral symmetry was 
assumed. The fluid domain consisted of 7340/7641 1st-
order elements/nodes and the solid domain consisted of 
2359/2582 1st-order elements/nodes (see Fig. 3). A 
solution for 1500 time steps required approximately 3.2 
hours on a single 2.53 GHz Intel P9500 processor. 
 

III. RESULTS 
 

The synthetic model had an onset pressure of 400 Pa.  
At a pressure 20% above onset pressure (480 Pa), the 
vibration frequency was 114.5 Hz and the maximum 
glottal width was approximately 1.8 mm. These values 
compare well with those of human phonation.  

Importantly, mucosal wave-like motion was evident 
and the inferior-superior motion appeared to be lower 
than with previous two-layer models. To capture this 
wave-like motion, a hemilarynx configuration and two 
synchronized high speed cameras (Photron SA3, 3000 
frames per second) were used to track the medial surface 
position in a manner similar to that described in [8]. One 
sample image is shown in Fig. 4 in which ink dots placed 
on the model surface are visible. The medial-lateral 
trajectories (three-dimensional positions) of the dots in 
the center column were tracked over several oscillation 
periods, as shown in Fig. 5. A wave-like motion clearly 
propagated superiorly along the medial surface, and an 
alternating convergent-divergent medial surface profile 
was visible. Evidence of this convergent-divergent 
motion can also be seen in the kymogram shown in Fig. 6 
(obtained using a single high-speed camera and a full 
larynx configuration).  

 

 
 

Figure 1. Vocal fold model geometry and length scale. 
 
 

 
 

Figure 2. Computational fluid and solid domains. 
 

 

 
Figure 3. Finite element mesh. 

 
 

 
 
Figure 4. Image of the medial and inferior surfaces of the 
vocal fold model. Flow is from bottom to top. 
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Figure 6. High-speed kymogram of several periods of the 
synthetic model during flow-induced vibration. The 
pressure was 0.48 kPa and the frequency was 114.5 Hz. 

 

 
 

Figure 7. Finite element model glottal width vs. time. 
Top: entire simulation. Bottom: Two steady-state periods. 
 
 

The finite element model vibrated at 116 Hz with a 
maximum glottal width of 1.9 mm, which compares well 
with the synthetic model response. Glottal width vs. time 
is shown in Fig. 7. Steady-state vibration was achieved 
around 0.05 s. Still images of model motion are shown in 
Fig. 8, in which mucosal wave-like motion is evident. 

 
 
Figure 8. Finite element vocal fold model at four 
simulation times during one period after reaching steady 
state. Air flow is left to right. 

 
IV. DISCUSSION 

 
The synthetic and computational models exhibited 

similar characteristics in terms of vibration frequency and 
amplitude. Some differences in motion were observed; 
for example, unlike the synthetic model, the numerical 
model did not experience complete glottal closure during 
vibration. Differences in motion of the two models were 
attributed to four factors: differences in material 
properties (stress vs. strain relationships, Poisson’s ratio, 
and damping coefficients), three-dimensionality of the 
synthetic model versus two-dimensionality of the finite 
element model, difference in thickness of the epithelial 
layer, and presence of an anterior-posterior fiber in 
synthetic model. 

 
V. CONCLUSION 

 
Complementary synthetic and finite element models of 

the vocal folds have been developed and tested. The 
models were based on the same multi-layer geometry. 
Each included a cover layer that was comprised of a thin 
epithelial layer and a very flexible layer that was similar 
to the superficial lamina propria. Each also included 

A B 

C D 

Figure 5. Synthetic model medial surface profile at five instances of one oscillation. Dots denote positions of 
tracking markers, black lines are tracings of markers over time, and gray lines denote medial surface profiles. Air 
flow is from bottom to top. Axes denote distance in mm. Solid dashed line denotes location of plate against 
which synthetic model was vibrating. The pressure was 0.75 kPa and the frequency was 116.2 Hz. 
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ligament and body layers, and the synthetic model 
included a fiber imbedded within the ligament layer.  

In both models mucosal wave-like motion was evident. 
Alternating convergent-divergent intraglottal profiles 
were also seen. The vibration frequencies and glottal 
amplitudes were typical of adult human male phonation. 
Further, the synthetic model had an onset pressure that 
was much lower than previous models and that is 
comparable to human phonation. These advantages will 
be useful in future experiments and simulations by 
providing models that exhibit more life-like response and 
motion.  

For both models future work includes the use of 
anisotropic materials. Incorporation of a downstream duct 
(to simulate the vocal tract) in the synthetic model will 
also be important. For the finite element model, future 
work includes performing extensive numerical 
verification studies (e.g., ensuring that the solutions are 
independent of grid density and time step size), extending 
the model to three dimensions, and removing the 
symmetry condition. The latter will enable the study of 
asymmetric aerodynamics and vocal fold properties. 
Potential future work also includes investigation of the 
influence of epithelial layer thickness and of the material 
properties of the different layers on model response.  
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Abstract: We have developed a set of software tools to 
detect articulatory changes in the production of 
syllabic units based on acoustic landmark detection 
and classification. results from the application of this 
automatic analysis system to studies of parkinson’s 
disease and sleep deprivation show the ability to 
detect subtle change.   We are making these tools 
available as add-ons to systems such as Wavesurfer 
and r. 
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I. INTRODUCTION 

 
Acoustic evidence provides information on speech 

production, but that information is scattered across 
multiple frequency bands and multiple time scales. 
Landmark analysis [5,6] is one approach by which 
acoustic patterns characteristic of particular changes in 
speech movements are detected.   In this paper, we 
describe an extension of the landmark method to the 
detection of articulatory complexity in the production of 
syllables, by using clusters of landmarks as a measure of 
whether a string of (intended) syllables is produced in its 
canonical form (dictionary pronunciation), in a less 
complex   (CCVC   ->   CVC),   or   more   lenited   form 
(softened consonants).  We refer to this measure as a 
measure of syllabic complexity, and to our landmark 
cluster measure as a ―syllabic cluster‖ measure.  We have 
applied this approach successfully to measure speech 
articulation changes in Parkinson’s Disease, in infant 
speech development, in sleep deprivation, and other 
studies. 

The notion of syllabic complexity is illustrated as 
follows.   A word such as ―interesting‖ can have four 
syllables  in  its  canonical  form,  but  when  uttered  as 
/ɪnrɛstɪŋ/ it has three syllables with fewer consonants, and 
thus reduced articulatory complexity.    In landmark 
systems in general, different types of types and 
combinations of speech sounds are detected as different 
patterns  of  landmarks.     In  our  particular  system,  a 
syllabic landmark cluster is a sequence of consecutive 
landmarks  grouped  according  to  specific  rules.    For 
example: 

 
1. A syllabic cluster must contain a voiced region of at 

least 30 ms, corresponding to a syllable nucleus. 
 
2. A noisy sound such as ―s‖ (/s/) must hit a threshold 

of loudness before being detected. 
 

If uttered in a canonical fashion, the pronunciation of a 
word will show a characteristic pattern of landmarks for 
each syllable in that word.  As long as the syllables are 
uttered with the same acoustical characteristics, our 
measures will detect the same pattern of landmarks. 
However, if the syllables are uttered less canonically— 
perhaps with less extreme articulatory movements, less 
precise timing, or reduced aerodynamic support—--- then 
fewer landmarks will be detected.  Our version of the 
speech-acoustic landmark system thus can be used to 
detect  two  common  effects  in  speech  production:  (1) 
simplification of syllable onsets (e.g. ―string‖ /strɪŋ/ as 
/srɪŋ/), nuclei (e.g. ―diamond‖ /dɑɪmənd as /dɑmənd/) and 
rimes (e.g. ―pelt‖ /pɛlt/ as /pɛl/, and (2) fewer uttered 
syllables. 
 

II.   METHODS: LANDMARK SYSTEM 
 

Landmarks and Rules:  Our landmark analysis system 
is based on Stevens et al. [6], especially as developed by 
Liu  [5]  and  Howitt  [4].   The  speech  signal  is 
automatically partitioned into 5 frequency bands plus a 
voicing-status contour.  Abrupt landmarks are identified 
as  points  where  abrupt  changes  in  the  amplitude  of 
several frequency bands coincide in a specified pattern 
[5,6]. These landmark patterns are identified by 
comparison between ―coarse‖ and ―fine‖ temporal 
resolution. 

The system detects the following types of landmarks: 
 
1. g: glottis. Marks a time point at which voicing begins 

(+g) or ends (-g), based on the harmonic spectrum. 
2. s: syllabicity. Marks sonorant consonantal releases (+s) 

and closures (-s). 
3. b: burst.  Marks frication onsets or affricate/stop bursts 

(+b) and points where aspiration or frication ends (–b) 
due to a stop closure. 

4. V: vowel.   Marks a time point corresponding to 
maximum harmonic power. 
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The +/- b and +/- s ―abrupt‖ landmarks are identified 
from patterns of rapid change in the amplitude of several 
frequency bands.    The +/-g and V landmarks are 
identified from the harmonic spectrum. 

This system makes no attempt to identify phonemes, 
but it is sensitive to broad categories of speech sounds 
and  to  aspects  of  metrical  structure.    The  features  it 
detects are those known as ―articulator free‖ [6] because 
they are independent of the specific articulator used to 
produce the segment.    These features are instead 
associated with creation and release of constrictions in 
the vocal tract and  with the  acoustic consequences of 
those constrictions and releases. 

An example of how abrupt landmarks are determined 
from patterns across frequency and voicing bands is 
shown in Fig. 1.  An example of landmark location in the 
speech signal can be found in Fig. 2, which shows a 
spectrogram of the nonsense word /pʌtəkə/ repeated 10 
times in two breath groups by a native speaker of 
American English with moderate dysarthria due to 
Parkinson’s Disease. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1.   Spectral analysis of an utterance: 
voicing (bottom) and five frequency bands' energy 
waveforms.    (a) Too few bands show large, 
simultaneous changes in energy.  (b) All bands show 
large, simultaneous energy increases immediately 
before the onset of voicing, identifying a +b (burst) 
landmark. (c) All bands show large, simultaneous 
energy increases during ongoing voicing, identifying 
a +s (syllabic) landmark. 

 
 

 
 

Figure 2.  Ten repetitions of  /pʌtəkə/ by an American English speaker with moderate dysarthria due to Parkinson’s 
Disease.   Vertical lines above the waveform pane show +/- b, +/-s and +/- g landmarks.   Vertical lines below the 
waveform pane show Vowel landmarks as V. The period of silence shows the pause between breath groups. 

 
Use of the Landmark System to Characterize 

Differences in Speech Production:  The landmark system 
operates with empirically derived threshold values.   As 
discussed, abrupt landmarks are determined by the 
patterns of abrupt change across frequency and voicing 
bands; if the amplitude value of the signal in a particular 
set of frequency and voicing bands meets the 
predetermined threshold for abruptness, then a landmark 

is detected.  If the amplitude value of the signal in any of 
the frequency/voicing bands does not meet this criterion, 
then no landmark is detected. 

The operation of this system is shown by the pattern of 
V landmarks in Fig. 2.   As noted above, the speaker 
produced /pʌtəkə/ in two breath groups; the first seven 
repetitions  belong  to  the  first  breath  group,  and  the 
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following three repetitions belong to the second breath 
group.   This speaker showed a tendency to dysphonia 
typical of Parkinson’s patients, characterized subjectively 
as causing a harsh and breathy voice, and the dysphonic 
phonation was  more  marked in  the  late  portions of  a 
breath  group—presumably  because  reduced  breath 
support made it more difficult to sustain normal periodic 
vocal fold vibration.   Because the V landmarks are 
computed on the basis of harmonic power, and dysphonic 
vowels are produced with less harmonic power, fewer V 
landmarks will be detected on dysphonic voices.  This 
effect is shown in Fig. 2, where the first few repetitions in 
the first breath group are marked with V landmarks on 
the stressed syllable, while the last few repetitions in the 
same breath group show that no such landmarks have 
been detected.  Note that these repetitions were produced 
with vowels—this is evident in the spectrogram--but the 
vowels had too little harmonic power to be registered as 
V landmarks. 

Grouping Landmarks to Characterize “Syllabic 
Clusters”:   Fell & MacAuslan originally developed the 
syllabic cluster measure to detect the increasing syllabic 
complexity of utterances by young children [2, 3].  More 
recently,  we  have  applied  this  method,  termed  the 
Syllabic Cluster analysis, to speech uttered under normal 
and sleep-deprived conditions, and to speech by 
Parkinson’s Disease patients undergoing Deep Brain 
Stimulation (DBS) therapy. 

Cluster Rules:  The Syllabic Cluster analysis works by 
grouping sequences of detected landmarks into clusters 
that roughly correspond to syllabic units in the acoustic 
speech signal.   The grouping rules include categorical 
dependencies  as  well  as  dependencies  of  timing,  and 
were empirically determined from datasets of speech. 

For example, one such rule states that a gap of 30 ms 
in voicing, with whatever ±b’s immediately follow it, 
identifies a type of syllable cluster endpoint.  In contrast, 
burst-like noise that does not occur within 120 ms before 
a voiced region, or 80 ms after, is not part of a cluster. 
Indeed, we have found it useful to designate these types 
of isolated bursts as non-speech noise.   The syllabic 
grouping procedures are described in more detail in Fell 
et al. [2,3] and Boyce et al. [1]  The following is a list of 
examples of some common types of syllabic cluster that 
occur in speech: 

 
•  (+g,-g) - singleton V [vowel] or CV [consonant- 

vowel] syllables, where C is   voiced; 
•  (+g,-s) - V or voiced-CV syllables followed by a 

sonorant consonant and syllabic cluster; 
•  (+s, -g) - V or voiced-CV syllables, preceded 

by a syllabic cluster; 
•  (+g,-s,-g)   - VS syllable, where S is a sonorant 

consonant or voiced obstruent adjacent to the +g or -g; 
•  (+b,+g,-g)  -  syllable  beginning  with  fricative: 

(+b) marks the presence of frication; 

•  (+b,-b,+g,-g) - syllables with an initial plosives: 
(+b , -b) mark the beginning and end of the release. 

 
III. METHODS: APPLICATION 

 
Parkinson’s Disease Study: In one study using the 

Syllabic Cluster measure, we contrasted speech as 
produced by Parkinson’s Disease (PD) patients who were 
receiving Deep Brain Stimulation (DBS).  In the typical 
progression of Parkinson’s Disease, patients show 
clinically significant levels of unintelligible speech later 
than they show gross motor symptoms.  Thus, patients in 
DBS programs may not be showing clinically overt signs 
of dysarthric speech.  However, the application of DBS 
therapy can sometimes cause their speech intelligibility to 
worsen, and this is both a matter of clinical concern and 
scientific interest.   The data described in Fig. 3 come 
from a study of 12 Control vs 15 PD patients who had 
undergone surgery for Deep Brain Stimulation (DBS) 
repeating the syllable /ka/.  The aim of the study was to 
detect subtle and/or overt changes in speech production 
when DBS stimulus was OFF vs. ON. 

Sleep Deprivation:   In another study, we used the 
Syllabic Cluster analysis to test whether speech 
articulation changes as a result of sleep deprivation. 
Studies of both speech articulation per se, and listener 
perceptions of change, have shown conflicting results to 
date [1].   In our study, the speech of 17 speakers of 
American English (9 female, 8 male) was recorded at 8 
hour intervals over 32-40 hours without sleep.  (Not all 
subjects completed the final session.) Subjects read aloud 
the Rainbow Passage each time.     To control for the 
possible effect of familiarity with the speech materials, 
another set of 15 subjects (7 male and 8 female) read 
aloud the Rainbow Passage at 8-hour intervals while 
maintaining a normal sleep schedule. 
 

III.  RESULTS AND DISCUSSION 
 

Parkinson’s Disease Study: The mean cluster rate in 
rapid repetitions of the syllable /kɑ/ decreases (a) 
between Control vs. PD speakers, and (b) as a result of 
DBS. The differences were significant at the .01 level. 

Sleep Deprivation: The first two sessions were 
combined as the Early, or Rested, condition. The last two 
sessions were combined as the Late, or Sleep Deprived 
condition.   As Fig. 4 shows, Syllabic Cluster rate 
decreased between the Early and Late sessions.    This 
difference was significant at the p < .05 level by a 
binomial (sign) test.     In contrast, the Early vs. Late 
sessions were not significantly different for speakers 
performing  the  identical  task  while  following  their 
normal sleep schedule (p > .10 by a binomial (sign) test. 
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VI. CONCLUSION 
 
 

 
 
 
 
 
 
 
 
 
 

Figure    3. The mean rate of Syllabic Cluster 
occurrence for 12 age and gender-matched control 
subjects (Control) vs 15 speakers of American English 
with Parkinson’s Disease (PWP) across Stimulus ON and 
Stimulus OFF conditions. 

 
 

 
Figure 4.    The mean rate of Syllabic Cluster 

occurrence  for 17 speakers of American English reading 
the Rainbow Passage aloud in Early vs. Late sessions of 
a 30-40 hour period without sleep. 

 
 
 
 

 
 

Figure 5.    The mean rate of Syllabic Cluster 
occurrence for 15 speakers who read the Rainbow 
Passage aloud in Early vs. Late sessions while following 
their normal sleep patterns. 

The Syllabic Cluster analysis based on acoustic 
landmark detection appears to be sensitive to articulatory 
differences in speech production scattered across multiple 
frequency  bands  and  multiple  time  scales.  The 
Parkinson’s Disease results suggest this analysis provides 
a rough measure of a speaker’s ability to repeat speech 
materials with a certain level of articulatory precision at a 
particular speech rate.    The Sleep Deprivation results 
suggest that speech articulation does indeed change with 
sleep deficit in a way that reduces the rate at which well- 
formed syllabic clusters are produced and that this change 
is not due to familiarity with the speech materials.  Both 
sets of results suggest the analysis is sensitive to very 
subtle changes that listeners do not always detect.   The 
automatic nature of the analysis facilitates evaluation of 
large amounts of data. 

We are currently developing a set of software tools for 
automatic landmark detection, and classification into 
syllabic cluster patterns, to be available as add-ons to 
systems such as Wavesurfer and R. 
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Abstract: a short-time spectral analysis of 
normophonic and dysphonic voices is presented. this 
analysis has been performed on recordings of both 
sustained vowels and running speech for comparison 
purposes. the reported results indicate that 
pathological voices tend to have a higher 
concentration of energy in the lowest frequencies (20 
to 300 hz) and less energy in frequencies from 630 to 
1,270 hz. additionally, pathological voices tend to 
experience quicker variations in spectral energy from 
770 to 1,720 hz. 
Keywords: Speech analysis, spectral analysis, correlation 

I. INTRODUCTION

The acoustic analysis of voice for clinical purposes has 
traditionally been made on sustained vowels [1] and a set 
of parameters measuring voice instability are of common 
use in clinical software for voice analysis [2]. However, 
extrapolating the use of such measures to running speech 
seldom provides good results [3], since the stationarity 
assumption only holds for sustained phonations. As for 
spectral domain, the lack of stationarity can be handled 
by means of short-time spectral measures. Thus, short-
time spectral analysis may be useful for analyzing voice 
quality in running speech [4]. Within this paper, a short-
time spectral analysis of normophonic and dysphonic 
voices is presented. This analysis has been performed on 
recordings of both sustained vowels and running speech 
for comparison purposes.  

For the spectral analysis, the speech segments of the 
processed recordings have been passed through a filter 
bank so as to split the signal into the 22 first critical 
bands of the human auditory system, as identified by 
Zwicker [5]. For each band, the instantaneous energy has 
been computed and, subsequently, the autocorrelation 
function of each band energy sequence has been 
calculated. Both the absolute values of instantaneous 
energy and the width of the autocorrelation functions 
have been analysed. The reported results allow 
identifying relevant differences in spectral energy 
between normophonic and dysphonic voices. In addition, 
the width of the autocorrelation function is used as a cue 
for spectral stability. Results indicate that dysphonic 

voices tend to be more unstable than normophonic voices 
but only in bands above the 8th one (over 770 Hz) 

II. MATERIALS

Processed voice recordings were taken from the Voice 
Disorders Database distributed by Kay Elemetrics [6]. 
Specifically, a subset of 53 normophonic and 173 
dysphonic voices was selected [7]. For each voice two 
recordings were available: one corresponding to a 
sustained phonation of the vowel /æ/ and another 
corresponding to running speech, namely a fragment of 
the rainbow passage: “When the sunlight strikes 
raindrops in the air, they act as a prism and form a 
rainbow. The rainbow is a division of white light into 
many beautiful colors. These take the shape of a long 
round arch, with its path high above, and its two ends 
apparently beyond the horizon”. For all recordings, the 
sampling frequency was 25 kHz and they were 
normalized in amplitude to have unit mean square value. 

III. METHODS

Speech detection was performed on recordings 
corresponding to running speech. Specifically, a simple 
detector based on short-time energy and short-time zero-
crossing rate was used [8]. Subsequently, both sustained 
vowel recordings and speech segments in running speech 
recordings underwent the same process. The first step 
consisted in the following time-frequency representation. 

The short-time spectrogram of a discrete-time signal 
can be written as: 

( ) [ ] [ ] DFT

2 ( )j k n pLN pL
N

p
n N pL

S k x n w n pL e
π− −+

=− +

= −∑  (1) 

where p  is the frame number, DFT/k N  is the normalized 
frequency, L  is the number of samples between 
consecutive frames, [ ]w n  is the framing window which 
has a length equal to 2 1N +  and DFT 2 1N N≥ +  is the 
number of points of the discrete Fourier transform (DFT). 

Defining the framing window to be symmetric and if 
[ ] 0w n n N= ∀ > , then (1) can be written as follows: 
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Since (2) has the form of a convolution, the sequence 
of values of the spectrogram corresponding to the kth

frequency can be written as a convolution followed by 
decimation by a factor L:

( ) [ ] [ ] [ ]( )*p k k n pL
S k S p x n h n

=
= =  (3) 

being 

[ ] [ ] [ ]DFT

2

k

j kn
j nN

kh n w n e w n e
π

Ω= =   (4) 
While the usual spectrogram has a common window 
[ ]w n  for all values of k, the formulation in (3) allows  

defining different windows for different frequency bands, 
hence [ ]kw n  instead of [ ]w n .

For the herein reported work, [ ]kw n  were chosen to be 
hamming windows with odd length. The specific length 
of each one was selected so that its -3 dB bandwidth 
matched the width of the kth critical band. The odd 
lengths allowed integer group delays that permitted 
subsequent time alignment of all the 22 resulting 
sequences. Also, each value of kΩ  was selected such that 

· / 2k sf πΩ  was equal to the center frequency of the kth

band. Fig. 1 provides an overview of the whole scheme. 
In a second step, the instantaneous energy, i.e. square 

modulus, of every filter’s output was calculated: 

[ ] [ ] 2
i ie n x n= . Last, the normalized autocorrelation 

function of each energy signal was computed. 
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Figure 1. Filterbank that splits the signal into the 22 first 
critical bands. 

After (5), the band energy decorrelation time was 
defined as the highest time shift · sm f , being sf  the 
sampling frequency, for which [ ] 0.5i mρ ≥ . The concept 
of decorrelation time is illustrated in Fig. 2. 
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Figure 2. Top: Autocorrelation of the energy signals 
corresponding to two bands (critical bands 1 and 10). 
Both decorrelation times have been indicated with 
double arrows: the longest corresponds to band 10 
and the shortest to band 1. Bottom: Autocorrelation 
of all 22 band energy signals plotted as gray levels. 
The continuous line indicates the dependence of 
decorrelation time on band number.  

IV. RESULTS

For both sustained vowels and running speech, the 
instantaneous band energies [ ]ie n  were averaged to yield 
22 mean band energies per voice record. In the case of 
sustained vowels, averaging was performed along the full 
record lengths while for running speech averaging was 
carried out only along speech segments. Fig. 3 shows the 
median and the 25th and 75th percentiles of the mean band 
energies for both sustained vowels and speech segments 
in running speech. In dysphonic voices, there is a 
significantly larger portion of energy distributed in 
critical bands 1 to 4 with respect to the case of normal 
voices. In the case of sustained vowels, this feature 
corresponds to a notably lower amount of energy in bands 
8 to 10 (770 to 1,270 Hz). In running speech, the 
difference in energy along the first bands is lower and the 
spectral range for which dysphonic voices have less 
energy spans from the 7th to the 14th critical band (630 to 
2,320 Hz). 
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Figure 3. Energy distribution along the 23 first critical 
bands for sustained vowels (top) and speech 
segments in running speech (bottom). Continuous 
lines represent the median value among all 
recordings, in gray for pathological voices and black 
for normal voices. Dashed lines indicate the 25th and 
75th percentiles. 

Within Fig. 4, the median and 25th and 75th percentiles 
of the band energy decorrelation times are depicted. In 
running speech, the expectation operator {}·E  in (5) has 
been applied only to speech segments. Shorter 
decorrelation times indicate faster decays in the 
autocorrelation function and this, in turn, is a cue of 
quicker variations in the characteristics of the signal 
( [ ]ie n  in this case). As shown by the graphs, 
pathological voices tend to have energy variations in high 
frequency bands significantly faster than normal voices. 
This difference seems to be relevant in bands above the 
15th one, i.e. frequencies above 2,500 Hz, for the case of 
sustained vowels. However, such trend does not occur 

equally in the case of running speech. In this case, results 
indicate a slighter trend of pathological voices to exhibit 
shorter decorrelation times in bands 8 to 12 (770 to 
1,720 Hz) but the distributions of decorrelation times 
almost completely overlap for bands beyond the 16th

(3,150 Hz). 

V. DISCUSSION

The reported results indicate that pathological voices 
tend to have a higher concentration of energy in the lower 
critical bands (1 to 3). Such fact, especially in what 
affects the first band (20 to 100 Hz), is related to the lack 
of periodicity of the voice. In fact, for fundamental 
frequencies above 100 Hz, the energy corresponding to 
the first band is only related to inter-period variations. In 
the case of running speech, articulation is one evident 
cause for aperiodicity and this is reflected by normal 
voices having more energy in the lowest frequency bands 
than in the case of sustained vowels. Typical phoneme 
durations around 100 ms [9][10] are related to frequency 
components in the range of hertzs or tens of hertzs, that 
is, frequencies corresponding to the lowest bands.  

In contrast, pathological voices have similar low-
frequency energies in both cases (sustained vowels and 
running speech); thus, for pathological voices the main 
cause for lack of stationarity does not seem to be 
articulation, but pathology itself. 

Considering these results, another common feature of 
both kinds of phonations, which should allow 
distinguishing between normal and pathological voices, is 
the ratio of low to high frequency energy; hence a 
measure of spectral tilt. Spectral tilt has been reported to 
be a good indicator of breathiness [11]. Herein described 
results indicate that spectral tilt, measured as the ratio of 
energy in bands 1 to 3 (20 to 300 Hz) to energy in bands 
7 to 10 (630 to 1,270 Hz), should also be a good indicator 
of dysphonia, both for sustained vowels and for running 
speech. The use of linear-phase filters in the filterbank of 
Fig.1 allows such ratio to be computed in short term, at 
rates up to sf .

As for the band energy decorrelation time, a measure 
of band energy variability, while for sustained vowels this 
measure provides a fair distinction between normal and 
pathological voices for the highest frequency bands, this 
is not the case for running speech. Only a minor 
discrimination ability is to be expected for bands 8 to 12 
(770 to 1,720 Hz). Yet, from the absolute value of the 
decorrelation time, a relevant indication can be obtained 
for the design of short-term spectral processing schemes: 
frame sequences with a rate below 100 frames/second 
(10-2 seconds/frame) would not be able to adequately 
capture the energy variability of pathological voices in 
bands above the 16th (3,150 Hz) for sustained vowels or, 
alternatively, the 13th (2,000 Hz) for running speech. 
Furthermore, for higher frequency bands a frame rate of 
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at least 1,000 frames per second seems to be required, 
due to decorrelation times in the order of 1 ms. 
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Figure 4. Distribution of decorrelation times of band 
energy sequences for sustained vowels (top) and 
running speech (bottom). Figure key is as in Fig. 3. 



Abstract: the ultimate goal of this research is to 
develop a tool for the automatic assessment and 
treatment of intonation and stress in dysarthric 
speech. in this paper, we deal with automatic sentence 
modality recognition in dysarthric speech. two classes 
of sentence modalities were used: declarative 
statements and declarative questions. statistics of 
prosodic features were used for the classification. 
three well-known classification algorithms were 
tested with two different sets of features. the database 
used consisted of healthy and dysarthric speakers 
pronouncing three different sentences in both 
modalities. the healthy speakers were used as the 
training set and the dysathric speakers as the test set. 
a global classification accuracy of 84% has been 
achieved.  
 
Keywords: dysarthric speech, intonation, pitch, energy 

 
I. INTRODUCTION 

 
Dysarthria is a collective name given to a group of speech 
disorders caused by degenerative damage in the 
components of the peripheral or central nervous system. 
These disorders affect a large population, especially 
adults, and are commonly observed in neurological 
diseases [1]. 
Intonation is a prosodic element that gives information 
about the distinction among the different types of 
utterances such as imperatives, declaratives and 
exclamations. Intonation also conveys information about 
the speaker’s state of mind. Intonation is related to 
changes in the fundamental frequency, intensity and 
timing of speech. The combination of different acoustic 
features gives information about the intonation modality 
[2]. 
Some research related with sentence modality recognition 
has been reported for different purposes such as 
automatic speech recognition [3] and prosodic assessment 
of language in hearing impaired children [4][5], among 
others. Previous research dealing with the 
characterization of intonation in dysarthric speech has 
been reported [6] but there are still no appropriate 
methods for the automatic assessment of intonation. 
Moreover, in human assessment, speech therapists often 

only indicate that the speech is monotonous or that the 
patient produces deviant intonation patterns. 

The objective of this work is to explore the feasibility 
of using statistic measures of prosodic features to 
automatically assess the degree to which a patient can 
successfully produce an intended intonation pattern. Such 
information could be helpful for speech pathologists to 
make a diagnosis of the dysarthric patient’s intonation 
efficiency. In this paper, we test a system for assessing 
whether a patient can produce the intonation for questions 
by building a classifier that can discriminate between a 
declarative question and the corresponding declarative 
statement in the Dutch language. The classifier is trained 
on speech from healthy speakers and the evaluation is 
done on speech from dysarthric speakers. 

 
II. MATERIALS AND METHODS  

A. Data 
The recordings used in this work were acquired by the 
authors on healthy (Control Group, CG) and dysarthric 
adult patients (Target Group, TG) from the Antwerp 
University Hospital, Belgium (UZA). 13 healthy speakers 
and 20 dysarthric speakers were recorded. Three 
utterances were recorded for each type of sentence 
modality (declarative question, DQ and declarative 
statement, DS intonation). The recorded sentence pairs 
are:   

1. Karen speelt tennis? / Karen speelt tennis. (Karen 
plays tennis? / Karen plays tennis.)  

2. Hij kocht een jas? / Hij kocht een jas (He bought a 
jacket? / He bought a jacket.)  

3. Je hebt de lotto gewonnen? / Je hebt de lotto 
gewonnen. (You won the lottery? / You won the 
lottery.)  

Each sentence from both CG and TG was perceptually 
classified in DQ or DS by four experienced speech 
pathologists on dysarthric speech from UZA. Some 
recordings were excluded from the experiments due to 
the lack of inter rater agreement, yielding a final set of 76 
sentences from normal speakers (41 DS and 35 DQ) and 
112 sentences from dysarthric speakers (82 DS and 30 
DQ). 
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B. System Description 
The general algorithm used in this work is described as 
follows: 

1. Extract the pitch and energy contours. 
2. Preprocess the pitch and energy contours 

(interpolation, smoothing, extraction of the 
voiced sections and normalization by the mean 
to reduce inter speaker variability). 

3. Extraction of the last 200 ms. Tilt parameters, 
energy and pitch statistical features extraction 
[7]. 

4. Extraction of statistical features from the energy 
and pitch contour in the whole utterance. 

5. Classification (1: DS; 2: DQ). 
The removal of the silences in the beginning and 

ending part of the recordings was performed so the next 
procedures were done using only the uttered interval 
(containing both voiced and unvoiced segments). The 
extraction of the pitch and energy contours was 
performed using PRAAT [8]. The autocorrelation method 
[11] was selected to estimate the fundamental frequency. 
Preprocessing steps include interpolation for the 
reconstruction of unvoiced segments and smoothing of 
the contours. Contour normalization was also included 
for reducing inter-speaker variability.  
 
table 1 summary of the set of global statistical 
features extracted from the f0 and energy contours. 
feature description 
Max Value of the maximum  
PosMax Position of the maximum 
Min Value of the minimum 
PosMin Position of the minimum 
DifMaxMin Absolute value of  

PosMax-PosMin  
FRange Range of frequency or energy Max-Min  
Mean Value of the mean 
Std Standard Deviation 
Skw Third statistical moment 
Kurt Fourth statistical moment 
Q1 First quartile 
Median Second Quartile 
Q3 Third Quartile 
IQRange Inter-Quartile Range 
IQRange-Std Absolute difference between IQRange-

Slope 
Slope First coefficient of the linear regression. 

 
Traditional statistical features like maximum, 

minimum, mean, quartiles, etc. were extracted from the 
whole utterance as well as features related to the rise and 
fall connection (RFC) model (maximum and minimum 
position). A summary of the set of statistical features 
used in the proposed system is shown in Table 1. As the 
ending voiced part of the intonation contour is indicative 

of the sentence modality, the last 200 ms of the utterance 
was extracted using PRAAT [8]. The intonation events in 
this segment (a: accents, b: boundaries) were described 
by means of three tilt parameters: initial Fo (Hz) at the 
start of the event, amplitude of the Fo excursion of the 
event (Hz) and tilt [9]. The Edinburgh Speech Tools 
Library [10] was the software used for the tilt parameters 
extraction. Statistical features related with the pitch and 
energy contours were also extracted from this segment, 
such as mean, maximum, and slope. 

For the evaluation of the features’ discriminative 
power and feature selection, five algorithms included in 
Weka [8] were used (BestFirst, Genetic Algorithm, 
Ranked Search, Linear Forward Selection and Random 
Search) [8] in a 10-fold cross validation. All the methods 
produced the same five features (4 features related to the 
pitch contour of the whole utterance and 1 related to the 
pitch contour of the last 200ms voiced segment of the 
utterance), as listed in Table 2. Features related with the 
energy contour were not selected by the five applied 
attributes selection methods. 

 
table 2 features selected by the automatic algorithms 
feature description 

related with whole fo contour 
Max Value of the maximum  
PosMax Position of the maximum 
PosMin Position of the minimum 
Slope First coefficient of the linear regression. 

related with the fo contour of the last 200ms 
Slope First coefficient of the linear regression. 

  
The classifiers tested for this application were:  

1. Support Vector Machine (SVM) [13] using a 
polynomial (inhomogeneous) kernel 
represented by following expression: 
 

K(xi; xj) = (xi
Txj +1)d    (1) 

 
Where d is the exponent of the expression. 
Each xi is a p-dimensional real vector that 
belongs to class yj. For training the system 
Platt’s Sequential Minimal Optimization 
(SMO) algorithm was used [14]. 

2. Decision Table (DT) using Best First as search 
algorithm [15].  

3. Decision Tree J48 [16].  
 

III. RESULTS AND DISCUSSION 
 

The algorithms mentioned above were applied on two 
sets of attributes: the full set of 41 features (16 statistical 
measures taken over both the whole pitch and energy 
contours, 3 statistical measures taken over both the pitch 
and energy contour of the last 200ms voiced part and 3 
tilt parameters taken only over the pitch contour of the 
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last 200ms voiced part) and the set of five features 
obtained after feature selection. The training was done on 
the healthy speakers group and the classification test was 
performed on the dysarthric group. 
 
A. Full set of features 
 

Table 3 shows the confusion matrix for the SVM 
classification using the full set of 35 features. 
 

table 3 confusion Matrix for svM 
Sentence 
Modality 

DS DQ 

DS 67 15 
DQ 10 20 

 
The global accuracy of this experiment is 77% of 

correct classification. Only 25 instances out of 112 were 
misclassified. From these cases 10 declarative questions 
were misclassified as declarative statements and 15 
declarative statements were misclassified as declarative 
questions. As we can observe in Table 3 with the use of 
the full set of features in SVM declarative statements are 
better recognized than declaratives questions. 

Results for the experiments using DT are shown in 
Table 4. The numbers reveal that 94 cases out of 112 
were correctly classified outperforming the previous 
results. From the 18 misclassified instances 5 declarative 
statements were misclassified as declarative questions 
and 13 declarative questions were misclassified as 
declarative statements.  
 

table 4 confusion Matrix for dt 
Sentence 
Modality 

DS DQ 

DS 77   5 
DQ 13 17 

 
 

table 5 confusion Matrix for J48 
Sentence 
Modality 

DS DQ 

DS 75   7 
DQ 15 15 

 
The global accuracy of correctly classified instances 

using the J48 classifier was 80%. Table 5 shows the 
confusion matrix for this experiment. There were 22 
misclassified instances and the class with the maximum 
number of errors was declarative questions with 15 errors 
(50% of DS). Globally, this classifier also outperforms 
the SVM classifier but it remains inferior to the DT 
classifier.   

The result from experiments where the full set of 
features is used for classification thus reveals the 

superiority of the DT classifier with an accuracy of 83% 
correctly classified instances.  

 
B. Reduced set of features after feature selection 
 

As mentioned before attribute selection (AS) was 
performed using five well-known algorithms. The results 
reveal that only five features related with the fundamental 
frequency contour and the slope of the last voiced part of 
the utterance were the most relevant attributes for the 
classification of the sentence modality. 

Table 6 shows the confusion matrix from the results 
of applying SVM classification. 95 instances out of 112 
were well classified representing 84% of the total number 
of utterances. Only 4 declaratives questions were wrongly 
classified as declarative statements but 13 declaratives 
statements were mistaken for declaratives questions. In 
this experiment, in contrast to the one with the full set of 
features, the declaratives questions are better recognized 
than the declarative statements. 

 
table 6 confusion Matrix for svM-as 

Sentence 
Modality 

DS DQ 

DS 69 13 
DQ 4 26 

 
 

table 7 confusion Matrix for dt-as 
Sentence 
Modality 

DS DQ 

DS 72 10 
DQ 13  17 

 
At first sight, unexpected results were obtained in the 

experiments using the DT classifier. In Table 7, the 
numbers show that the amount of errors increases from 
18 to 23 with respect to the experiments using the full set 
of features. In this case the number of correctly classified 
instances was only 89 (79%).  One possible reason for 
this result could be that the DT classifier has its own 
feature selector for constructing the model. When the full 
set of attributes was used, from 306 subsets of features 
the optimal subset for classification using DT was 
obtained. The selected attributes used for DT-AS are 
different from those estimated by DT itself and therefore 
the set of attributes obtained from the feature selection 
algorithms is suboptimal for the DT classifier. Thus, the 
version which uses the full set of attributes shows better 
results than the version with the attribute selection. 

The results from the application of J48 to the subset 
of selected attributes are to the same as the results of J48 
using the full features set.  In both cases the decision tree 
has the same structure. The features used by J48 in both 
cases are represented in Fig. 1. It can be observed how 
the J48 classifier only uses information about the slope of 
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the utterance and the slope of the last 200 ms to predict 
the sentence modality pattern. 

 
fig. 1  J48 structure. it was obtained using both full 
features set and attribute selection subset   
 
   In the experiments related to the use of the selected 
attributes for the classification the best results were 
obtained by the SVM-AS method (84% of well classified 
instances).  
 

V. CONCLUSION 
 

This study addressed the design of an automatic system 
to help in the intonation assessment of dysarthric speech. 
Features related with the pitch and energy contours were 
extracted for characterizing the intonation modality. 
Three different classifiers were compared in this study 
using two different sets of features (full set and selected 
subset). In the use of the full set of features DT algorithm 
has the best results but the well-known SVM outperforms 
these results for the sentence modality detection in 
dysarthric speech using a reduced subset of attributes 
with a global accuracy of 84% of correct classification.  
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Abstract: There is growing evidence that clinicians are 

becoming more receptive to automated computerized 

tools that assist in treatment decisions and outcomes. 

Automatic speech recognition (ASR), for example, has 

had some degree of success as an assistive technology 

(AT)  tool  for  individuals  with  mild  or  moderate 

dysarthria. Notwithstanding, for a large percentage of 

individuals  with  more  severe  levels  of  the  disorder, 

ASR has yet to achieve acceptable levels.  In this pa-

per, we explore the use of several acoustic measures as 

correlates of ASR performance for dysarthric speak-

ers. By automatically predicting the potential efficacy 

of  ASR  for  a  particular  dysarthric  speaker,  health 

care costs and waiting lists may be reduced as may de-

vice abandonment rates. Experiments with the “Uni-

versal Access” database of dysarthric speech suggest 

that some of the proposed measures achieve correla-

tions as high as 0.86 with ASR accuracy.

I. INTRODUCTION

Speech is an efficient modality of communication in 

human-to-human interaction and can also serve as a high-

capacity medium in human-machine interaction. Howev-

er, millions of individuals have severe motor impairments 

that make speech communication extremely difficult, or 

even  impossible  [3].  These  neuro-motor  impairments, 

collectively known as dysarthria, are characterized by un-

coordinated  and  imprecise  articulation,  and  atypical 

breathing, voicing, and prosody that result in a highly dis-

torted and unintelligible speech.  Dysarthria is often ac-

companied by other physical handicaps that inhibit other 

forms of physical activity making the use of one’s voice 

highly desirable. Recent advances in the automatic recog-

nition of dysarthric speech have demonstrated that many 

individuals with speech disorders can be reasonably un-

derstood with specialized recognition software [4]. How-

ever,  there remain many individuals with dysarthria for 

whom automatic speech  recognition (ASR) remains in-

sufficient,  and  for  whom alternative  forms  of  assistive 

technology (AT) need to be prescribed. 

Being able to accurately predict the success of ASR 

by  automatically  analyzing  a  patient’s  speech  signal 

would significantly expedite the AT prescription process, 

whilst also reducing device abandonment rates. This pa-

per describes a number of acoustic measures which have 

been used in the past to objectively characterize the quali-

ty  and intelligibility  of  both healthy [1]  and dysarthric 

speech [2]. The goal is to explore the usefulness of each 

parameter as a correlate of ASR performance. It is known 

that dysarthria affects articulation, breathing, voicing, and 

prosody, often resulting in unintelligible speech. There-

fore, we consider acoustic features that characterize the 

atypical vocal tract shape, vocal source excitation, tempo-

ral  dynamics,  and  prosody  characteristics  of  dysarthric 

speakers. More specifically, we explore the use of inter-

nal features computed by the speech quality measurement 

algorithm ITU-T Rec. P.563, standardized by the Interna-

tional  Telecommunications Union (ITU) [1].  While the 

algorithm has not been optimized for dysarthric speech, 

some of its internal features may be useful for this task as 

they measure  parameters  related  to  atypical  vocal  tract 

shapes  as  well  as  atypical  linear  prediction  coefficient 

(LPC) distributions.

Moreover,  we explore the use of novel acoustic pa-

rameters proposed recently for the purpose of objective 

intelligibility prediction of spastic dysarthric speech [2]. 

These new parameters characterize atypical vocal source 

excitation, disordered temporal dynamics, and disrupted 

prosody, factors which are prominent in dysarthria. Here, 

we provide a brief description of the innovative features; 

the interested reader is referred to [2] for further details. 

Experiments  with  a  publicly-available  speech  database 

show the acoustic  measures  investigated here as  strong 

correlates  of  ASR  performance  on  dysarthric  speech. 

Such findings suggest that these measures can be used to 

predict  the  potential  efficacy  of  ASR  for  disordered 

speakers, thus helping clinicians to better prescribe AT.

II. METHODS

A. Data Description
For computing the acoustic measures, we use a subset 

of dysarthric speech from the publicly available Universal 
Access (UA) Speech database from the University of Illi-
nois at Urbana-Champaign.  These data consist of single-
word utterances recorded from 9 speakers (2 female) with 
spastic dysarthria recorded with a seven-channel micro-
phone array, sampled at 16 kHz and digitized with 16-bit 
precision.  Since the ITU-T P.563 standard requires sin-
gle-channel  narrowband  (i.e.,  8  kHz  sampled)  speech 
data,  we further  downsample  the  UA-database  and use 
data from the sixth channel in the microphone array. This 
microphone was selected as it  was placed closer to the 
participant and had a higher signal-to-noise ratio. 

Each participant read 455 unique isolated words with 
some repetition  totaling  765  utterances  per  participant. 
The prompts consisted of repetitions of English digits, the 
26-word international radio alphabet, 19 word-processing 
commands,  and  the  most  common  100  words  in  the 
Brown corpus of written English. Each of these is repeat-
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ed three times by each participant. In addition, 300 un-
common words selected from children's novels digitized 
by Project Gutenberg are also included [5].

B. Automatic Speech Recognition (ASR)
Baseline ASR performance is evaluated using speak-

er-independent (SI) acoustic models trained via the leave-
one-out  method where data from all speakers except the 
test speaker are used for training. The trained model is 
then  evaluated  on  data  from the  test  speaker.  Each  SI 
model is trained on an average of over 8000 dysarthric ut-
terances. The acoustic feature vectors consist of 13 Mel-
frequency cepstral coefficients (MFCCs) including the 0th 

-order cepstral coefficient and their respective Δ and ΔΔ 
coefficients,  giving  39  dimensions  generated  every  10 
ms. Cepstral mean subtraction (CMS) is then applied. 

Acoustic  models  consist  of  40  left-to-right,  tri-state 
monophone  hidden  Markov  models  and  a  single-state 
short-pause model where state observation likelihoods are 
modeled  by  mixtures  of  16  Gaussians.  In  each  case, 
monophones are strung together into word networks ac-
cording to the CMU pronunciation dictionary. A word-
network where every word is preceded and followed by a 
silence model is used as a language model/task grammar. 
During decoding, a modified Viterbi algorithm is used to 
select the most probable word. All ASR accuracy results 
are reported in terms of word accuracy.

   C. Acoustic Measures

A number of salient acoustic measures have been pre-

viously  shown  to  characterize  the  quality  of  natural 

speech [1] and the intelligibility of dysarthric speech [2]. 

Below, a brief description of the measures are given; the 

interested reader is referred to [1,2] for more details.

C.1 ITU-T P.563 Algorithm

The ITU-T P.563 standard algorithm [1]  was devel-

oped for narrowband telephone speech.  As such,  it  de-

tects and characterizes three major classes of telephone 

speech distortions, namely, background noise (both addi-

tive and multiplicative), temporal distortions (mute, clip-

pings, interruptions) and unnaturalness (robotization and 

unnatural  male and female speech).  While the first two 

classes do not directly relate to dysarthric speech, we hy-

pothesize  that  internal  features  computed  by  the  algo-

rithm  and  used  to  detect  and  characterize  “unnatural 

speech distortions” may be useful for the task at  hand. 

More specifically, the algorithm makes use of speech sta-

tistics for unnatural voice detection, such as higher-order 

statistical evaluation (kurtosis and skewness) of cepstral 

and linear prediction analyses.  These are classical mea-

sures of the degree to which a statistical signal deviates 

from  the  Gaussian  distribution.  Kurtosis  measures  the 

‘peakedness’ of a distribution and skewness measures the 

asymmetry of a distribution. Linear prediction analysis of 

order  21 is performed and kurtosis and skewness  mea-

sures are computed for active speech. 

We also consider  five alternate  acoustic  parameters 

which were recently shown to correlate with subjective 

intelligibility ratings of spastic dysarthric speakers.  The 

measures  are  based on three so-called intelligibility di-

mensions, namely atypical  vocal source excitation, per-

turbation in speech temporal dynamics, and prosodic dis-

ruptions, as described below. 

C.2. Vocal source excitation and vocal tract information

Linear  prediction  analysis  has  been  widely  used  in 

speech  applications  to  separate  vocal  source  excitation 

and vocal tract information from the produced speech sig-

nal. Linear  prediction analysis assumes that  the current 

signal sample can be predicted by a linear combination of 

p previous samples. Under this format, the linear predic-

tion error (or LP residual) will correspond to the vocal 

source excitation signal [6]. It is known that for healthy 

voiced speech segments, glottal pulses will appear as im-

pulse-like peaks in the LP-residual signal, thus rendering 

the LP-residual distribution with a higher kurtosis [7]. On 

the other hand, severely dysarthric speech exhibits more 

prominent  noise-like  excitation  signals  (due  to  vocal 

harshness, for example), thus lowering the kurtosis value 

of the LP-residual distribution [2]. For mild to moderate 

dysarthric speech, it is expected that the kurtosis of the 

LP-residual distribution will lie between that of a Gauss-

ian and that  of  healthy natural  speech.  For the sake of 

completeness, the LP-residual kurtosis metric  κ is com-

puted according to:

κ
LP
=

N ∑
n=1

N

 r n −r 
4

∑
n=1

N

 r n −r 
2 2

−3  ,             

where r indicates the sample average of the LP-residual 

signal r(n) and N is the number of active speech frames. 

C.3 Disturbances in temporal dynamics

Both short-  and long-term temporal  dynamics mea-

sures are explored to investigate the effects of temporal 

disturbances of spastic dysarthric speech on ASR perfor-

mance. Speech temporal disturbances are mainly due to 

improper  placement  of  the  articulators,  slower  speech 

rate,  and rhythmic disturbances  [8].  Here,  a  log-energy 

rate of change measure is used to characterize the short-

-term  temporal  dynamics  of  the  speech  signal.  More 

specifically,  the  zeroth-order  cepstral  coefficient  c0 is 

computed as a measure of short-term log-spectral energy 

and the zeroth-order delta coefficient Δc0 is used as a mea-

sure of rate of change of log-energy [9].  In our simula-

tions, c0 is computed over 32 ms frames with 10 ms frame 

shifts and Δc0 is computed using a window of size 7. 

Statistics of the Δc0 distribution are used to character-

ize  disturbances  in  short-term (~100  ms)  temporal  dy-

namics. More specifically, the skewness computed from 



� 77

C samples  of  Δc0 distribution (represented  by  xi  in  the 

equation below) is used:

S
Δ
=

C∑
i= 1

C

 x
i
−x 

3

∑
i= 1

C

 x
i
−x 

2 3/2
,

where x indicates the sample average of xi.

     Long-term temporal dynamics information, in turn, is 

characterized by the rate of change of long-term (between 

512 and 1000 ms) speech temporal envelopes. Such rep-

resentation  is  often  termed “modulation spectrum” and 

characterizes slow energy fluctuations associated with the 

movement of the lips, the jaw, and other speech articula-

tors. Most of the useful linguistic information is in modu-

lation frequency components between 1 and 16 Hz, with 

spectral peaks around 4 Hz [11]. In [2] it was hypothe-

sized that prolonged phonemes, slower speech rates, and 

impaired co-articulation would cause a shift of the modu-

lation frequencies to below 4 Hz. With more intelligible 

speech,  the  modulation  frequency  would  spread  across 

higher modulation frequencies  as observed with natural 

speech [12].  The ratio of modulation spectral  energy at 

modulation frequencies less than 4 Hz to modulation fre-

quencies  greater  than 4 Hz was used to  measure  long-

term temporal dynamics [2]. This parameter, termed low-

to-high  modulation  energy  ratio  (LHMR)  in  [2],  takes 

into account  temporal  disturbances  of  irregular  speech, 

namely  prolonged  phonemes,  slower  speech  rates,  and 

impaired co-articulation of dysarthric speech. In order to 

emulate  psychoacoustic  precepts,  an  auditory-inspired 

modulation spectral  representation  is  used where  a 23-

channel  gammatone filterbank was used to emulate the 

processing of the cochlea and an 8-channel  modulation 

filterbank was used to aggregate modulation frequencies 

into eight bands [12]. A complete detail of the signal pro-

cessing steps involved in the computation of the LHMR 

measure can be found in [2].

C.4 Disordered prosody

Prosodic  disturbances  are  one  of  the  distinguishing 

factors of dysarthria and we explore how these  correlate 

with ASR performance. Here, the range and variance of 

the fundamental frequency (F0) [14] are used as acoustic 

parameters that characterize disordered prosody. Pitch es-

timates  are  computed  using  the  robust  adaptive  pitch 

tracker algorithm [15].

 III. EXPERIMENTAL RESULTS AND DISCUSSION

Table 1 shows the correlation coefficients attained be-

tween the investigated acoustic measures and ASR per-

centage accuracy over all speakers. As can be seen, the 

acoustic features  that  characterize atypical  vocal source 

excitation and unnaturalness of speech are highly corre-

lated with ASR performance on dysarthric speech. The 

LP-residual and LPC kurtosis, along with LPC skewness 

show strong positive correlations with ASR performance, 

with coefficients ρ ranging between 0.81 and 0.86. As ex-

pected,  the  LP-residual  of  relatively  intelligible  speech 

has a much higher kurtosis value (e.g., for M14) than se-

verely impaired speech (e.g., for F03). 

By contrast, the short- and long-term temporal pertur-

bation measures, namely SΔ and LHMR, show more mod-

est correlations with ASR performance, achieving a coef-

ficient of 0.62. Moreover,  the  range  and  variance  of 

the fundamental frequency (F0), which are used to mea-

sure prosodic disturbances, are shown to be strongly neg-

atively  correlated  with  ASR  performance.  Dysarthric 

speech is commonly considered monotone and “robotic,” 

thus it would be reasonable to expect lower pitch variabil-

ity and range in more severe cases of dysarthria (and con-

sequently,  lower  ASR accuracy).  The negative  correla-

tions, however,  suggest otherwise. While these findings 

may seem counterintuitive, they corroborate those report-

ed in [14] where the nature of prosodic disturbances was 

shown to vary with the severity of dysarthria. In particu-

lar, monotonicity was reported for mild dysarthric speak-

ers  only and higher  pitch variation/range was observed 

for speakers with severe disorders.

IV. CONCLUSIONS AND FUTURE WORK

This  work has  demonstrated  that  the  investigated 
acoustic measures can be indicative of the performance 
achieved with traditional isolated-word recognition sys-
tems. In particular, acoustic measures related to atypical 
vocal  source  excitation  and  unnaturalness  were  highly 
correlated with ASR performance.  As such, these mea-
sures can be used to assist clinicians in assessing the po-
tential utility of ASR systems for particular dysarthric pa-
tients. For example, if LPC analysis of a patient’s speech 
indicates LP coefficients with a high kurtosis, ASR sys-
tems are more likely to work as intended. In the future, a 
composite measure consisting of a weighted linear com-
bination  of  these  acoustic  measures  might  further  im-
prove the predictive ability of this approach. Moreover, 
we are interested in further analysis of the relationships 
between specific motor disablements, spectral character-
istics, and ASR performance. For example, prior research 
showed Pearson correlation coefficients of up to 0.95 be-
tween tongue motion and F2  formants for sonorants ut-
tered by dysarthric speakers [4]. 
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Table 1. Correlation ρ between investigated acoustic measures and ASR accuracy for 9 dysarthric speakers.

Speaker ID ASR 

% 

Accuracy

LP-

Residual 

Kurtosis

LPC 

Kurtosis

LPC 

Skewness

SΔ LHMR F0-Range F0-

Variance

F03 7.99 0.19 0.47 0.07 0.08 8.60 144.51 38.06

F05 34.80 1.22 4.32 0.48 0.44 5.04 121.23 36.37

M01 7.11 0.56 1.38 0.15 0.59 6.81 148.04 32.18

M04 3.39 0.36 1.21 0.18 0.31 6.86 122.96 30.56

M05 35.91 0.77 1.93 0.35 0.94 5.07 54.9 11.51

M07 21.41 0.38 1.30 0.14 0.44 9.20 116.79 28.96

M08 61.94 0.98 4.51 0.81 0.93 5.91 73.97 18.81

M14 50.49 1.29 5.49 0.93 0.57 4.80 27.29 6.43

M16 33.39 0.80 1.73 0.14 0.23 6.46 129.55 30.34

ρ coefficient 0.81 0.84 0.86 0.62 -0.62 -0.76 -0.67



Abstract: Neurological degenerative diseases are 
becoming a growing concern in modern society. The 
successful treatment of these diseases depend greatly 
in early detection. Speech has been routinely used by 
specialists as a valuable correlate in the assessment of 
pathological disease. Specifically voicing can serve as 
a very introspective correlate for this practice. The 
present paper uses a methodology previously 
employed in organic pathology voice quality 
assessment to explore to what extent specific low-level 
correlates of neurological diseases may be established. 
The methodology uses voiced recordings of sustained 
vowels to estimate vocal fold visco-elastic parameters 
from inverse filtering. These parameters show to be 
clearly influenced by unstable neuronal spiking 
resulting in tremor which affects many phonation 
cycles. The possible modeling of tremor could be used 
as an index to neuro-motor problems in phonation 
and help in differential diagnose of the pathology at 
an early stage. The paper presents examples on 
parameter estimations from study cases of spasmodic 
dysphonia and Parkinson Disease. Further 
development of research lines on this estimation 
methodology is also addressed. 
 
Keywords: Inverse Filtering, Vocal Fold Biomechanics, 
Parkinson Disease, Voice Quality Assessment, Tremor 

 
I. INTRODUCTION 

 
Classically Voice Quality Analysis has been focused to 

detect and establish the organic pathology in voice 
resulting from pathological alterations of larynx 
physiology. The study of other sources of dysphonic 
voice finding their ultimate reasons in the alterations of 
the neurological paths controlling phonation have been 
tagged as "functional" or "non-organic". Voice resulting 
from altered phonation due to neurological reasons may 
be a most valuable report of the etiology and progress of 
neural diseases affecting the production of voice, such as 
pathologies resulting in voice tremor [1]. These would 
include some kinds of spasmodic dysphonia, stammering 
and Parkinson. The possibility of early detection in the 
first stages of Parkinson's Disease (PD) may grant a 
better preventive treatment reducing the progress of the 

illness [2]. Monitoring treatment by objective methods is 
also an important goal, especially in modifying or 
defining new protocols. The deepest foundations of the 
methodology proposed in this paper are to be found in 
tracking the malfunctioning of neurological and 
neuromuscular paths involved in voice production (see 
Fig. 1). 

 
Fig. 1. Simplified view of main neural pathways involved in 
the production of phonation: 1. Links from linguistic 
neuromotor cortex to Basal Ganglion relay stages. 2. Branch of 
the X nerve acting on the naso-pharingeal switch. 3. Idem acting 
on the retro-lingual switch connected to the epiglottal switch. 4. 
Branch of the laryngeal nerve acting on the transversal and 
oblique arytenoid and cricothyroid muscles responsible for the 
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vocal fold adduction and abduction. 5. Branch of the vagus 
nerve (phrenic) actuating on the diaphragmatic muscles. 6. 
Feedback loop in Basal Ganglia damping muscular tone. 
 
These comprise links from the neuromotor linguistic 
cortex [3] to the subthalamic region [4] and through the 
laryngeal nerve and their associated pathways [5][6] to 
the muscles activating the thyro-arytenoid structure, 
responsible in the last term of vocal fold stretching, 
adduction and abduction (Superior Laryngeal Nerve, 
Internal and External Laryngeal Branches of the Inferior 
Laryngeal Nerve, Transverse and Oblique Arytenoid 
Muscles -TOAM-, and Cricothyroid Muscles -CM). Any 
alteration in the functionality of these pathways and in the 
associated muscles will result in temporary distortions of 
the parameters of tension and dynamic mass contribution 
of the vocal folds, both on the body and the cover 
biomechanics. Correlates of these alterations will be 
found in the pitch, and in long term jitter and shimmer, as 
the periodicity of these alterations may be of hundreds of 
milliseconds [7]. The aim of this paper is to give some 
phenomenological account in detecting and grading the 
neurological disease using biomechanical correlates 
obtained from the inverse filtering of voice. The 
technology has been tested in monitoring pre-post 
treatment of organic pathology, and due to its ubiquitous 
character can be applied as well to the neurological 
disease.   
 

II. METHODOS 
 
A database of voice recordings from neurological 
disease-affected patients is being recorded in Hospital del 
Henares of Madrid. This geographical area South East of 
Madrid is specially sensitive to PD. Being a heavy 
industrial area it is believed that some environmental 
factors may be responsible of the largest incidence of PD 
among the aging population compared to other regions of 
Madrid. For the preliminary and explorative character of 
the present study some specific cases are selected, these 
being strong spasmodic and PD voice samples, 
pathological voice of organic origin and voice from 
normophonic patients to serve as a contrast (all of them 
females). These voices are inverse filtered and some 
biometrical and biomechanical parameters are estimated, 
as the glottal closure sharpness, the mucosal/average 
ratio, the first two cepstral coefficients of the glottal 
source power spectral density, and the tension of the 
vocal fold body. It may be shown that these indices show 
a strong correlation with the spasmodic episodes both in 
their timely evolution and statistical dispersion. The 
methodology is based on the following steps: 
1. Three emissions of the vowel /a/ are recorded at 

44,100 Hz under normal phonation conditions. 
2. For specific statistical comparison they are low-pass 

filtered and re-sampled to 22,050 Hz. High-pass 

filtering at 25Hz is also applied to eliminate low 
frequency flickering effects. Frames of 0.4 s long are 
used in the analysis. 

3. Inverse Filtering is applied, and the glottal source is 
reconstructed [8]. 

Estimations of the glottal closure sharpness, 
noise/glottal ratio, dynamic mass and tension of the vocal 
fold body are derived following [8].  

 
III. RESULTS 

 
An episode of spasmodic dysphonia (SD) has been 

selected from the database to show the possibilities of the 
methodology, corresponding to a female voice (32 year 
old) manifesting about 2-3 spasms per second. The record 
is a segment of 0.4 s long from a sustained phonation of 
vowel /a/ (see Fig. 2 and Fig. 3).  

 
Fig. 2. Episode of spasmodic dysphonia. Templates from top to 
bottom: Voice signal. Inverse filtering residual. Glottal source. 
Glottal flow. 

 
Fig. 3. Left templates from top to bottom: Phonation cycle-
synchronous estimates of the dynamic mass component of the 
vocal folds, friction losses and body stiffness. Right templates 
from top to bottom: Statistical distributions of the left templates 
given as boxplots. 
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The voice segment studied is a part of a recording of a 
sustained /a/ 0.4 s long where an episode of spasm is 
clearly recognizable by the amplitude decay. The 
reconstruction of the glottal source (template c) does not 
show such a strong decay in amplitude. Pitch ranges from 
208-203 Hz in the sections out of the spasm to a 
minimum of 185 Hz during the spasm, following an 
almost regular fluctuation (tremor of about 2.5 Hz). It 
may be seen that the estimates of the dynamic mass of the 
vocal fold body, and especially the fold tension are highly 
correlated with the spasm, reporting changes of about 
25% and 50% of variation respectively. Similar 
fluctuations are found in other distortion parameters, such 
as the sharpness of the closure spike in the glottal source, 
the noise/glottal energy ratio and some cepstral 
parameters of the glottal source spectral density.  

 
Fig. 4. Phonation 0.4 s long from a patient affected from 
Parkinson Disease. Templates from top to bottom: Voice signal. 
Inverse filtering residual. Glottal source. Glottal flow. 

 
Fig. 5. Left templates from top to bottom: Phonation cycle-
synchronous estimates of the dynamic mass of the vocal folds, 
friction losses and body stiffness. Right templates from top to 
bottom: Statistical distributions of the left templates given as 
boxplots. 

 

A second example from a patient (72 year old) affected 
by Parkinson Disease (PD) corresponding also to female 
voice has been analyzed following the same 
methodology. The record is a segment of 0.4 s long from 
a sustained phonation of vowel /a/. The results of the 
analysis are reported in Fig. 4 and Fig. 5. In this case the 
changes in amplitude are not as relevant as in the 
spasmodic case. The reconstruction of the glottal source 
(c) does not show important changes in amplitude as 
well. Pitch ranges from 240-256 Hz following an 
irregular fluctuation (tremor) of about 5 Hz. The 
estimates of the vocal fold body dynamic mass and 
stiffness report changes of around 20% . To put the 
analysis into context at this point it would be worth to 
compare some overall results for these two cases against 
results from a normal female speaker and a pathological 
female speaker. The normal speaker (NF) is a 34 year old 
female, non-smoker not having reported any problem 
with voice, volunteering for the study. Normal condition 
was assessed by endoscopy and EGG. The case with 
organic pathology corresponded to a female 22 year old 
having been diagnosed from a left vocal fold cyst (LVFC) 
affecting the contralateral fold (contact lesion). The case 
was graded 2 (severe) in GRBAS scale. Endoscopy and 
EGG availed the diagnose. The acoustic processing of the 
four cases included the extraction of pitch, relative jitter 
and shimmer and the noise/glottal energy ratio (NGE). 
The stiffness of the vocal fold body was estimated as 
well. The results are given in Table 1 at the end of the 
paper.  

 
IV. DISCUSSION 

 
From the results in Table 1 the first consequence is that 

pathological data (except for PD) are clearly 
differentiated from normal data in the value of the 
dispersion (standard deviation) and in the stiffness of the 
vocal fold body. Mean values of the classical distortion 
estimates as jitter, shimmer or NGE do not show 
important differences among the pathological cases 
except in PD. This case shows distortion parameters 
which could be considered normal. The problem is that 
tremor in PD is observed as FM-modulations which do 
not leave clues in the jitter, whereas the SD case may be 
traced in shimmer. Going to the causes, it seems that the 
effects of FM-affected spiking producing tremor in SD 
may be observed on the specific muscles affecting vocal 
fold abduction and adduction (TOAM-CM) as well as in 
the muscles responsible for pressure build-up and 
sustenance in lungs during phonation (diaphragm). The 
influence of FM-affected spiking in the modulation of the 
vocal tract (naso-velar switch, glossomuscular and oro-
labial complexes) could also introduce changes in the 
production of voice, interfering with vocal-fold induced 
tremor. These differences may affect the results observed, 
as in the two cases studied. In the spasmodic case the 
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important changes in amplitude observed could be 
associated with some influence of the spasm on the 
diaphragm and other muscles inducing subglottal 
pressure, besides affecting strongly to the vocal fold 
stiffness as a result of the TOAM-CM action. The result 
during the spasm is a dystonic relaxation of the vocal 
folds (abduction) accompanied by a decay in subglottal 
pressure. The case of the PD patient may have to see only 
with the action of the TOAM-CM, resulting in a 
relatively cyclic dystonic behavior of the vocal fold but 
not in important changes of the subglottal pressure. It 
seems that parameters tracking amplitude changes as 
shimmer or APPQ measured directly on the glottal 
source, as well as the indirect estimates of vocal fold 
tension may serve as important marks to produce 
differential diagnose in tremor-affected dysphonias, and 
this line should be further studied. Other possible 
correlates could be the sharpness of the closure instant 
and the lowest cepstral coefficientes of the glottal source 
spectral profile. This means that the study of tremor as a 
result of neurodegenerative diseases may require complex 
time-frequency analytical techniques. Chaotic modeling 
of tremor in stiffness and other correlates, and Wavelet 
Transform may be good candidates out these studies. 

 
V. CONCLUSIONS 

 
The first conclusion from this phenomenological 
description is that tremor appears as a mark in certain 
biomechanical estimates of vocal fold dynamics as body 
stiffness. Therefore the monitoring and modeling of 
tremor could be based on the study of these correlates. 
Indications that differential diagnose could also be based 
in combined amplitude-stiffness indices are plausible 
enough for the issue to deserve further study. The 
analysis of the mentioned correlates estimated directly 
from the glottal source obtained after vocal tract 
inversion instead of whole voice may be a beneficial 
methodology to unveil and quantize the extent or degree 
of the spasmodic or tremor illness. As the 
characterization of tremor in voice shows quasi-cyclic 
information, techniques to model this characteristic as 
chaotic attractors, wavelets, or ARMA coefficients may 
be of much higher resolution than the analysis of full 
voice. The monitoring of neurological diseases is of most 
importance in a world where the aging of general 
population will demand important resources for health 
care. The early detection and monitoring of these 

problems may help in devising more efficient treatment 
protocols. Routine voice tests may help in this task. The 
validation of this methodology for PD is in due course in 
cooperation with the ENT and Neurology Services at 
Hospital del Henares. 
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Table 1. Parameter values for the four cases studied (standard deviations between parentheses) 
Subject/Parameter Pitch Hz Jitter % Shim % NGE % Stiffness (g.s-2) 
#346 (34y NF) 199 (1.15) 0.7 (0.6) 1.9 (1.3) 8.4 (0.5) 19542 (185) 
#341 (22y LVFC) 215 (7.04) 4.2 (3.6) 3.8 (2.4) 6.6 (1.9) 24857 (4487) 
#308 (45y SD) 199 (6.02) 1.5 (1.5) 6.5 (3.3) 8.9 (1.7) 22168 (2656) 
#337523 (72y PD) 248 (3.87) 0.7 (0.5) 1.4 (1.0) 6.5 (1.1) 25138 (988) 

 



Singing voice  
Invited Speaker and introduction: 

F. Fussi





the vocal score profile/voice ranGe profile ratio (p/p 
ratio) in artistic voice evaluation: application tested on 

opera and Musical sinGers 
 

Franco Fussi1, Nico Paolo Paolillo2 

 
1Centro Foniatrico USL Ravenna, Teatro Comunale di Bologna, Ravenna, Italy 
2ENT department Mandic Hospital (Merate-LC), Teatro alla Scala, Milan, Italy 

 
 
Abstract: performances of unsuited repertories to 
singer’s vocal and technical features can cause 
increasing risks of vocal effort (ve) and fatigue or 
glottis injury (Gi), then it’s important to find the 
right repertory for artist’s vocal and technical 
features. We made manual voice range profiles 
(vrp) and interviews regarding performed, studied 
or not studied roles in professional singers. the 
dynamic agility (da) curve, that is the differentials’ 
curve (note by note) between loud and soft phonation 
curves of phonetogram, was obtained from vrp. 
this type of curve allows us to assess the phonation 
system capacity all range long. We realised for each 
operatic and musical role a vocal score profile (vsp), 
that is a statistic method for vocal score semeiotic 
and accurately highlights the vocal role various 
musical features through histograms and numeric 
parameters (1). then we superimposed the da 
graphs on vsp graphs creating a new graph (p/p 
ratio) that gives a synoptic summary of suitableness 
of examined singers’ vocal and technical features in 
regard to considered role, revealing hard and critical 
moments eventually causing higher ve and Gi risks 
(2). at last we compared data from p/p ratio with 
those from interviews, valuating correspondence 
between subjective and objective data (3). 
this study describes explicative examples of graphs 
analysis; in all cases analyzed through p/p ratio we 
found easiness in data interpretation, reliability in 
suitableness evaluation and expectation, good 
correspondence between subjective and objective 
data. 
 
Keywords : vocal score profile, voice range profile, 
partiturogram, phonetogram, vocal effort. 
 

I. INTRODUCTION 
 
In the clinical management of the artistic voice is 
important to identify all the risk components of vocal 
fatigue or glottic damage.  
The choice of repertoires unsuited to technical and 
vocal features is one of  factors that increase the risk of 
vocal effort and fatigue. For this reason it is essential to 
predict and to assess the vocal cost in performing a 
specific role to avoid any risk of glottic damage. 
We examined opera and musical singers using a 
method we have developed The first part of the 
investigation was to evaluate singers’ feeling about  
 

 
characters’ features making interviews before analysis 
to assess accordance between subjective feeling and  
objective analysis, interviews after analysis to evaluate 
the reliability of a predictive evaluation and an accurate 
anamnesis to find relationships between the patient's 
medical history, such as any vocal desease or 
phonosurgery, and results of the analysis. 
 

II. METHODS 
 
We used VOCAL SCORE PROFILE, a statistic 
method for semeiotic of complete vocal score or 
partitura. It’s made counting presence of notes for each 
semitone in vocal score using the following scheme (on 
the top the duration of notes, on the left the tempo).  
Here is an example regarding the role of Mozart’s Don 
Giovanni: donna Anna. 
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It is possible to obtain percentages of presences for 
every tonal range such as low, middle, passage, high, 
prevalent octave and comfortable ranges. Here are two 
istograms for the comparison of the same previous 
roles.  
Using percentage of presence of notes for each semiton, 
we created an histogram called vocal score profile or 
partiturogram: below we can observe the tonal range 
semiton by semiton and on the right or on the left the 
percentage of presence.  
Here we have vocal score profile for donna Anna role. 
In this case we can note an high presence of middle, 
passage and high notes , a prevalent octave from A3 to 
A4 and a little percentage of presence of comfortable 
range notes. So we can confirm that this is a really 
difficult role, suitable to a lyric soprano. 
 
 

 
 
 
 

 
 
 
We made a voice range profile in a liric soprano, usual 
performer of this two roles in many important theatres  
under famous conductors. As you know VRP points 
out dynamic and frequency range of singers voice. 
 

 
 
Anyway it’s better to consider the Dynamic Agility, 
which is the value of differential between forte and 
piano calculated for each tone and allows to accurately 
value the phonation system capacity all range long. In 
this case we see a decreasing dynamic agility since 
middle tonal sector and a worsening in passage and 
high sectors 
 

 
 
Superimposing the dynamic agility graphs on vocal 
score profile graphs, we obtain a graph (we called P/P 
ratio) that gives a synoptic summary of suitableness of 
examined singers’ vocal and technical features in 
regard to considered roles, revealing the hardest and 
critical moments for the singer eventually causing 
higher vocal effort or injury risks. Below there is the 
tonal range, on the right the dynamic agility in dB and 
on the left the percentage of presence of notes. 

 
III. RESULTS 
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We note that in role critical zones, middle, passage and 
high ranges there’s an evident reduction of dynamic 
agility, revealing an high risk of vocal effort. The 
singers noticed that it’s a difficult role, expecially for 
high and passage notes and is more fatiguing than 
donna Elvira, the other soprano role in don Giovanni of 
Mozart. In singer’s feeling, the first act is easier than 
the second. 
 If we analyze graphs for each act we can point out this 
feeling: in fact in second act there’s an higher presence 
of passage and high notes, which make the part more 
difficult than in first act. 
 

 
 
Here we have graphs regarding donna Elvira role: we 
clearly point out that the lower presence of passage and 
high notes makes the role more accessible and easier 
for the vocal features of this soprano. 
 

 
 

The lyric soprano previously analyzed has sung donna 
Anna role more than 1 hundred times through 3 years 
on stage in many important theatres under prestigious 
conductions, sign of a good performance in that role, 
but with the final result consisting in phonosurgery and 
a current vocal folds damage.  
About donna Anna and donna Elvira roles in Mozart’s 
Don Giovanni, she told us: “Donna Anna requests a 
certain vocal tract from the first to the second act. The 
first act is for a lyric soprano with a very dramatic 
temperament, a quite hard script, always touching a 
medium-high tessitura and consequently quite tiring. 
On the other hand the second act is completely 
different, everything becomes lighter, the tessitura 
becomes higher and requests a lighter vocal tract. The 

difficulty is just in finding the right balance, both vocal 
and physical, between the first and the second act: it is 
necessary not to give too much during the first act and 
equilibrate the second act with respect to the first one. 
Referring to me, I felt more at my ease during the first 
act, perhaps also because I have a more full-blooded 
temperament. In the second act we can say that the 
thought of the second aria was warring me a bit; but 
obviously it is a marvellous part. I played it but at the 
end I felt a bit tired as if I had being using a bit too 
much the material and not the interest. On the contrary, 
during the first act I could even begin without 
vocalizing because I felt it as being mine. Further on I 
also sang the role of Elvira and I must say that I really 
felt at ease because it is a more natural script; it is more 
similar to the speaking way of a woman while Donna 
Anna represents the one who extremes the voice. In 
Donna Elvira both the recitative and ensemble parts are 
more natural and this because it is always written in a 
very natural tessitura. On the other hand Donna Anna 
is continuously in a medium / high-notes voice section 
also in the ensemble. This meaning that she must 
always sing in a low voice, in a very low voice. As a 
consequence who has not extreme facility in that zone 
can feel some tiredness, with respect to Donna Elvira 
who constantly remains coherent from the beginning to 
the end. It is role that must be sung with temperament, 
with expressiveness but for what was related to the 
vocal effort, to me the weaving resulted more 
comfortable”. 
Finally we can see here the Phonetogram of the 
actually most famous coloratura soprano in Italy, 
Desirée Rancatore, known interpreter of Zauberflute, 
Die Entfuhrung aus der Serrail, Lakmè, Lucia di 
Lammermoor, Rigoletto and wonderful Doll in Les 
Contes d’Hoffmann.  
About Blonde and Constance roles in Die Entfuhrung 
she told us:  “The difficulty of Blonde is in the weaving, 
as it is all central, in the tuned-up, especially those 
quite lower than Constance.  
 

 
 
On the other hand, in the aria she is a pure colour-full 
soprano, with sudden natural high E. Therefore it is 
necessary a Pure colour-full soprano to get facility with 
high notes; while the difficulty is in facing low notes. 
In Constance the difficulty consists in standing the 
whole role, because it is long and technically difficult. 
In my opinion she is not at all a colour-full soprano just 
to play the role; it is a very dramatic and expressive 
part. Besides there are two consecutive arias, such as 
Traurigkeit ward mir zum Loose and Martern aller 
Arten, which are completely opposite, for one is central, 
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lyric and sad, while the other in impetuous and 
dramatically colour-full. In such a case it is difficult to 
stand the two arias length”. 
In the utmost Constanze aria, our soprano has major 
effort on the high tones C5 and Cdiesis5, as she shows 
lesser differential from the H4 to the D5, and –as a 
paradox- she shows more differential comfort on the 
high notes after D5.  
The prevalent octave of the role is rather unbalanced 
towards high notes, in one range (A2-A4) that, 
according the phonetogram,  is more suitable for the 
singer, both in the aria and even more in the whole role. 
Besides the singer is at ease in the passage notes and in 
the well represented centers in the part. 

 

 
 

 
 

IV. CONCLUSION 
 

As a conclusion the relationship between 
phonetography of a singer and partiturogram of one 
role, allows us to make some consideration, useful for 
the singer, about his adequateness to the role iself in 
function of the larynx muscular effort, phonastenic 
probabilities, and the forecast of major or lesser rest 
necessities among the various performances. 
We conducted several tests of this type on many 
singers, 10 opera and 7 musical and we revealed that  
- P/P ratio is a reliable method to identify a suitable 
repertoire and to predict performance risks for vocal 
effort or glottal damage in performing unsuitable roles.  
- In low female voices it’s necessary always to evaluate 
both low and high vocal registers passages.  
- There is a precisely accordance between subjective 
singers’ feeling and objective analysis  

- There’s the possibility and reliability of a predictive 
evaluation, even if without knowledge of subjective 
feeling  
- We can find a relationship between the singers’ 
medical history, like any vocal desease (even if 
unknown) or phonosurgery, and analysis results.  
It’s very important to underline that a singer with 
unsuited dynamic agility to a specific role can all the 
same excel in performing it, even if with a higher vocal 
cost.  
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Abstract: in clinical management of singers it’s 
important to identify risk components of vocal fatigue 
and glottic damage, predicting and assessing the vocal 
cost of the various vocal performances to avoid any 
risk. despite many difficulties, we made dosimetries on 
singers (9 opera and 9 musical) during live theatre 
performances. 
our aim was to evaluate phonatory behaviours before, 
during and after performances to determine the actual 
amount of vocal load and the possibility of assessing 
vocal fatigue and performative potential risks through 
the identification of a vocal recovery index (vri). since 
the analysis of numerical data from apM (fo, spl, 
vocal doses) doesn’t immediately highlight the extent of 
vocal load, we decided to elaborate data in order to 
propose a new index: vri. We found that a lower vri 
corresponds to  difficult or  fatiguing moments, while 
the opposite happens in moments of vocal rest or 
recovery.  We  suppose  that  there  are  different 
threshold ranges between males and females and 
between different vocal classes, therefore it would be 
desirable to establish vri thresholds for references in 
evaluation of data from dosimetries. 
in this study we also show differences between opera 
and musical soloist singers and describe fo histogram 
like a real vocal score profile, spl histogram like an on 
stage relative dynamic agility and phonation density 
graph like an on stage phonetogram to point out many 
vocal features. finally, through this method, it could be 
possible to adapt technical and behavioural measures 
to  avoid  and  reduce  the  risk  of  vocal  fatigue  or 
damage. 
keywords : vocal dosimetry, vocal recovery index, 
vocal effort, vocal doses. 

 
I. INTRODUCTION 

 
In the clinical management of the artistic voice is 
important to identify all the risk components of vocal 
fatigue or glottic damage. 
The choice of repertoires unsuited to technical and vocal 
features, inadequate work planning, phonatory behaviours 
tending to hyperkinesis with very high total phonation 
times, due to amount of voicing during rehearsals, 
performances, breaks, teaching, private life, a  lifestyle 
that does not include a regular diet, regular sleep-wake 
cycles, use of drugs or doping substances, the 

environment in which it takes place the voice activity are 
all factors that increase the risk of performing 
complications. For this reason it is essential to predict and 
to assess the vocal cost of the various vocal performances 
to avoid any risk of glottic damage. 
 

II. METHODS 
 
Initially we conducted preliminary clinical assessments 
(anamnesis, tonal audiometry and videolaringostroboscopy 
to assess singers’ vocal health) and interviews to describe 
singers’ feelings about sung roles, by examining different 
points of the vocal score, to identify difficult or fatiguing 
moments and rest times. Later we started to make 
dosimetries on opera and musical singers during live 
performances in theatres, using the APM model 3200 on 
19 singers, 10 opera and 9 musical singers. 
The Ambulatory Phonation Monitor (APM) is a portable, 
wearable device for objectively documenting the key 
phonatory behaviors of a client over a full day of normal 
vocal activity. Specifically, APM measures the amount of 
time a client phonated, when the phonation occurred, and 
estimates the client’s vocal intensity (dB SPL) and 
fundamental frequency (F0) during all phonatory activity. 
This data can be viewed graphically and quantitatively 
through  APM software. The data essentially provides a 
“profile” of a client’s “typical” phonatory behaviors. 
During the period of monitoring. APM does not record 
the client’s speaking or singing, it only extracts phonation 
related parameters. [1,2]. The main parameters are: 
Phonation Time (total duration of phonation expressed as 
the total cumulated time and the percentage of time spent 
phonating for the time period of the displayed), 
Fundamental frequency, mode (values at which most 
phonation occurred in displayed data) and average [2], 
Sound Pressure Level and Vocal Doses (derived from 
mathematical processing of previous parameters).[1] 
These  are  the  Total  Cycles  of  Vibrations  (Dc:  total 
number of glottal cycles detected in displayed data) and 
the Total Distance Dose (Dd: estimate of “how far” vocal 
folds traveled in displayed data in meters).[3] 
Analyzing numerical data of frequency, amplitude and 
vocal dose we don’t immediately point out the extent of 
vocal load. It was therefore decided to assess the ratio 
between cycles of vibration dose (Dc) and total distance 
dose (Dd) in order to determine the average vibration 
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cycles made for each meter of distance traveled in the 
displayed examination.[4] 

 
III. RESULTS 
In this paper it’s shown the example of two 

experienced tenors who have performed at Teatro alla 
Scala in Milan two different roles in two operas by 
Giuseppe Verdi ( Radames in “Aida” and Jacopo in “I 
due Foscari”) and the example of two female musical 
singers performing different roles in the musical Cats by 
Andrew Lloyd Webber. The first example shows the 
examination of Radames tenor: the total length of the 
representation in 3 hours and 36 minutes for a PT about 
44 min. For the total duration of the opera the ratio 
between the two parameters (Dc/Dd) is 54 cycles per 
meter, i.e. 1.54 cm for a cycle. (Fig.1) 

 
 

radames – 1st Tenor – complete performance 

and most difficult and fatiguing moment, the aria in first 
act , 60.5 c/m. We also analyze the examples of two 
female musical singers, doing the same considerations. 
 
 

aria  “CELESTE AIDA”  – 1st  Act 
 

 
 
 
 
 
 
 

Dc/Dd 
 
 
 

PT  3:31 min 

Dc/Dd   30,2 c/m 
3,3 cm/cycle 

Fig.2 
 

break between 2nd and 3rd Act + non 
singing part during beginning of 3rd Act 

 
 
 

Dc/Dd 
 
 
 

PT  44,21 min 

Dc/Dd   54 c/m 
1,54 cm/cycle 

Fig.1 
 

During the  interview, the  singer has revealed that the 
most difficult moment of the entire opera is the beginning 
of the first act, corresponding to the aria “Celeste Aida”. 
By analyzing the parameters regarding only the execution 

 
 
 
 

PT  7:23 min 

Dc/Dd   208 c/m 
0,48 cm/cycle 

Fig.3 

 
Dc/Dd 
 

Speech and 
soft fonation 

 
 
 
 
 
 

Table 1 
of the aria, we get the result of a ratio Dc/Dd down to 
30.2 cycles per meter, that is 3.3 cm cycle: a clear 
reduction in this ratio; moreover the values of F0 and 
average amplitude are much higher. (Fig.2). 
Analyzing the time of the break between 2nd and 3rd Act 
and non singing part during beginning of 3rd Act, when it 
is  assumed  that  there  is  no  phonatory  fatigue,  but 
tendency to vocal recovery, we note a marked reduction 
of Average F0 and amplitude and a ratio Dc / Dd of 208 
cycles per meter, idest 0.48 cm cycle. From phonation 
density graph we can point out speech and soft phonation 
trend. (Fig.3) 
In summary we see that the moments considered the most 
difficult and fatiguing by the singer are characterized by a 
lower ratio Dc/Dd and a higher distance in centimeters 
travelled for each cycle; the opposite happens in moments 
of vocal rest or recovery. (Tab.1). Similar results for the 
second tenor: warming up value of ratio Dc/Dd 107 c/m 

vri (dc/dd) in different moments of the 
performance (aida tenor) 

•    Dc/Dd complete performance   54  c/m    1,54 cm/cycle 
 

 
•    Dc/Dd warm-up    53,3 c/m     0,98 cm/cycle 

 

 
•    Dc/Dd aria “celeste aida”    30,2 c/m  3,3  cm/cycle 

 

 
•    Dc/Dd break     208  c/m    0,48 cm/cycle 

 

 
•    Dc/Dd 3rd and  4th Act     82,3 c/m    1,2  cm/cycle 

 
 
The role of Grizabella in the musical Cats, a non-danced 
role,  and  the  role  of  Jennytutt-a-poys, a  danced  role. 
In the first role we conducted the recordings of double 
performance and of one night stands. (Tab.2) Dosimetry 
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•  RI double performance 

 
•  RI 1st  performance 


 

 


129  c/m   0,77  cm/cycle 

 
123  c/m   0,8  cm/cycle 

 
•  RI 2nd performance 

 


 
123  c/m   0,8  cm/cycle 

 
•  RI break 

 

 
•  RI one night  stand 

 


 

 


 
220  c/m    0,45  cm/cycle 

 

 
110  c/m     0,9 cm/cycle 

 

in  the  second  singer,  instead,  shows  a  value  of  VRI 
higher than the previous, sign of probably less vocal 
fatigue, despite the dance. 

Table 2 
vri  (dc/dd) in different moments of the 

performance (female musical singer) 

vocal  sectors  and  a  wider  range  in  speech  and  soft 
fonation sector than the latter. A 2006 study [7] shows 
that inability to produce soft phonation increases when 
vocal effort is present. In this case the chart can show a 
very small range of speech and soft phonation in the 
second tenor, even this sign of an increased vocal effort. 
(Fig.8) 
 

radaMes 
 

such as  a “Real” 
vocal score 

profile 
 
 
 
 
 

IV. DISCUSSION 
 

Making comparisons between the two tenors we found 
that the phonation time profile of the warm-up and first 
act shows that the profile of the first tenor is broken, a 
sign that he tends to rest and needs less warming-up than 
the latter, that instead works more with increased risks of 
voice fatigue. (Fig.4) 

 

 
radaMes 

 
 
 
Fig.5 

 
 
Jacopo foscari 

 

 
 
 
 
 
 
 
radames 

1st  act 

 
behavioural habits 

and 
resource ManaGeMent 

 
 
 
Jacopo foscari 

1st  act 
 
 

Fig.6 
 
 
 
 

Fig.4 

 
 
Jacopo foscari 

Our aim was to evaluate phonatory behavior before, 
during and after the performances to determine the actual 
amount of vocal load and therefore the possibility to 
assess  vocal  fatigue  and  performative  potential  risks 

 

The Fundamental frequency histogram could be 
considered such as a real vocal score profile. Here we see 
a substantial equality between the two tenors, a sign that 
the roles of the two operas have the same musical 
characteristics in the first act [5,6] (Fig.5) as also 
evidenced by the histogram of the vocal score profile. 
[8,9] (Fig.6). The SPL histogram, however, could be 
considered  as  such  as  an  on  stage  relative  dynamic 
agility. In this case the first tenor has a wider range of 
SPL compared to the second tenor, which uses high SPL 
for longer, a sign of higher vocal fatigue. [1,6] (Fig.7) 
The phonation density graph is like a phonetogram and 
can point out the vocal, technical and behavioral features. 
The first tenor has a wider phonetograpic range in all 

through the identification of a vocal fatigue or vocal 
recovery index. 
In recovery or rest periods the Dc/Dd ratio (VRI) 
increases, while it decreases during fatiguing periods. 
Certainly there are different threshold ranges between 
males and females and between different vocal classes, 
but we need more studies to explore this aspect. After all 
that we can consider the ratio Dc/Dd as a recovery index? 
Another consideration: the more voicing is fatiguing, the 
more distance for 1 cycle lengthens, thus indicating an 
hyperkinetic  tendency  and  therefore  a  greater  risk  of 
vocal folds damage when the distance traveled by a 
vibratory cycle increases. Results regarding the first 
musical singer previously analyzed (Tab.2) show again a 
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net increase of VRI in times of less fatigue or vocal rest, 
while there is a reduction in the most challenging 
moments, especially in one-night stands than in double 
performance, perhaps because of awareness to face many 
hours of work in double performance; this would induce 
the singer to save energy in order to not tire herself in two 
consecutive performances. 

 
 

radaMes 
 

 
such  as an “on 

staGe” relative 
dinaMic aGility 

 
 
 
 
 
 
 

Jacopo foscari 
 

Fig.7 
 

1st  tenor  - radaMes 
 

vocal, technical 
and  behavioural 

V. CONCLUSION 
 
The literature is still poor and so there are not many 
references. In the future it would be desirable to establish 
vocal fatigue or vocal recovery thresholds for a reference 
in the evaluation of data from the dosimetries. 
We had some difficulties: the size of APM is too large 
and cause discomfort to the dance and stage movements. 
The costumes are often too tight and it’s impossible to 
hide the tool. The singers often don’t feel safe to go on 
stage  with  discomfort  and  then  refuse  to   wear  it. 
We must clarify how to perform initial calibration in case 
of those singers who use both classical and modern way 
to sing during the same performance. 
Through this method it could be possible to adapt 
technical and behavioral measures to avoid or reduce the 
risk of vocal fatigue or damage. 
We must still understand whether the technique and voice 
features influence vocal dose parameters; for this would 
be useful to implement the dosimetry for the same role in 
different singers. We need more studies to establish 
standard fatigue and recovery thresholds and ranges and 
to assess the possible differences between males and 
females and between different vocal classes 
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     

     
 
  








       


       
      
      
     
     
      
   
     



           
     

      
     









      

   
      
   
       
       
        
     
        

        
   
     
       
      
       

 
   

       
      

       
       



   












  












  












  












  
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



      
       









      
     
     

        


       
     


      
       


    
      

       


 
        
   

        

       
      
     


       

      
       
       
      
     

      
      
    
     

        
       
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Abstract: since september 2010, a postural-
acoustic lab has been taking shape at the iMep 
school of Music and Music education in namur, 
belgium. 
thanks to recent developments about the postural 
system in the field of neurophysiology , as well as 
to progress in information technology and 
robotics, it is now possible to provide Music 
students with a modern set of tools leading to the 
optimizing of an ergonomic position in performing, 
regardless of the instrument. 
It’s about moving away from the sole system of 
“retro-control” to a system of anticipation, in 
other words, from a system of feedback to a system 
of “feedforward”. 
 

INTRODUCTION 
 

In this paper the following points will be addressed: 
-What are the benefits of the proposed approach in 
which three means of “retro-control” are applied 
simultaneously, as part of the musician’s strategy to 
verify posture as sound is emitted. 
-The notion of posture and posturology 
-Postural-acoustic laboratory developed at IMEP, 
Namur 
-Conclusions 
 

METHODS 
 

What are the benefits of the proposed approach in 
which three means of “retro-control” are applied 
simultaneously, as part of the musician’s strategy to 
verify posture as sound is emitted? 
There are a number of them. 
To begin with, this approach is about creating the 
conditions in which musicians learn to move from a 
system of feedback to a system of anticipation 
(“feedforward”).  This is the starting point that will 
allow musicians to go from a system of long loops, to 
a system of short loops. 
Secondly, this approach will offer a set of tools 
allowing musicians to gradually grow in 
independence regarding the ability to check whether 
the sound that  is actually being produced is the sound 
that they had the intention of producing. 
Musicians also can discover on a screen the relation 
between harmonics and voice quality 
This issue is of particular interest for singers, given 
the fact that in reality they don’t hear the actual sound 
that they are producing. 
 

 
Initially, this need for singers led to the idea of a 
postural-acoustic lab. It was then observed that it  
could be equally applicable to other instruments 
besides the voice. 
The concept of posture and posturology 
In order to fully understand how this postural-acoustic 
approach works, it is indeed necessary to mention a 
series of notions about posture as well as some 
elementary notions about the neurophysiology of the 
postural system. 
What would the definition of posture be? 
According to Paillard, posture refers to “the body 
attitude or to the position of the whole set of segments 
at any precise moment”. 
Based on this way of referring to posture, we can 
move on to the definition of posturology: 
According to Gagey, Posturology is the study of the 
geometrical and bio-mechanical organization of 
different segments of an individual in space and of the 
regulation process involved.  In this sense, it is the 
sum of neurological mechanisms which allow the 
balancing of these elements in space during the 
standing position or during the walking action. 
The notion of a postural system implies inputs and 
outputs, as well as a central computer processing the 
stream of information. 
The term “postural system” obviously includes the 
notion of “system”. 
By its own definition, a system is a combination of 
elements put together in a way that allows them to 
become a whole. 

 
In general, and in normal conditions, in terms of its 
referential elements the postural system is in balance. 
When taken away from its balance, it refers to inputs, 
which will in turn give information to a commanding 
system and a comparer. 
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These last two elements will influence outputs whose 
actions will bring the system back to balance. 
When referring to the system concerning the human 
body, the pattern as illustrated by Doctor Maurice 
Joris, President of the Belgian Society of Posturology 
is as follows: 
 “Posture is based on a notion of stability or balance, 
in other words, the fact of returning to the initial 
position after having left it. In order to obtain this 
stability, it is necessary to use a reliable postural 
system.  
In order to understand the logic behind the postural 
system, here’s a systems analysis. 

 
 
When the system moves away from its reference 
points, or from its maneuvering margin, it refers to 
inputs which are neurosensory chains, which in turn 
influence the cortex and subcortex through a “three-
lane highway”. 
These three routes are: 
-the path of conscious “self-perception” 
-the vascular mechanical-receptors described by 
Mittelsteadt 
-the spinal column according to Wike 
The neurosensory chains equally influence the 
cerebellum through specific paths. 
The cortex and the subcortex influence the 
neuromotor chains through the paths of the pyramidal 
and extrapyramidal system as well as through paths of 
the autonomous nervous system. 
The neuromotor chains give information thanks to the 
paths of the kinaesthesia (unconscious “self-
perception”) for the cortex and the subcortex. 
Attention should be drawn to the fact that  the 
neurosensory chains in which the eyes, the internal 
ear, the masticating system, the skin, as well as the 
mechano-receptors of the vascular system are found, 
are under the environment’s influence. 
The extra-cellular matrix, which is either modulator 
of facilitator, influences the cortex or the sub-cortex. 
The whole of these mechanisms of great precision 
should allow individuals to place themselves correctly 
in space, and to perceive their subjective vertical line 
as well as their physical vertical line. 
In reality, this process should happen quite naturally 
in most cases, but unfortunately, we are forced to 

acknowledge that there is often divergence.  The 
process of integrating the physical vertical line often 
takes place inaccurately.  People think that they are in 
a certain position while they really are in another. 
There is often a sensory conflict. 
This is the reason why it seems important to establish 
an approach offering a set of tools allowing people to 
correct these inaccuracies. 
For musicians it is imperative to be able to 
considerably adjust their position, in order to create 
the conditions that allow the production of the most 
performing sound, as close as possible to the reality of 
sound they aim for.  
Postural-acoustic Laboratory developed at the IMEP 
(School of Music) in Namur, Belgium. 
A Postural-acoustic Laboratory has been taking shape 
since 2010 at IMEP (School of Music and Music 
Education) in Namur, Belgium. 
Since 2003, with the aim of constantly improving the 
quality of teaching, experiments in the field of posture 
and acoustics began to take place. Unfortunately the 
Information Technology potential at the time didn’t 
allow for confirming or questioning the hypotheses 
being put forward through our approach. 
The core of the subject was to prove that: body 
posture has an influence on the quality of sound 
production, regardless of the instrument being played. 
Progress in Information Technology has allowed the 
way of functioning to evolve in a very positive way. 
In June 2009, a physiotherapy student came with the 
request of some assistance in her research for the end 
of her undergraduate studies. 
In June 2010, she presented the results of her work 
and research which had taken shape thanks to the 
resources (both technological and human) made 
available and put at her disposal by the IMEP. 
The subject of her research (end of studies project) 
was “The influence of Posture on Sound Quality in 
Students majoring in Voice Studies”.  
She managed to demonstrate that there was in fact a 
very close correlation between body posture and the 
quality of sound production. Based on these results, it 
became obvious that it was important for voice 
students to have access to a reliable and tangible set 
of tools. 
An article published by Professor Richard Miller and 
Juan Carlos Franco in the National Association of 
Voice Teachers’ Journal , followed in June 1995 by 
the Voice Teachers Association Bulletin already 
spoke about the “Spectography” of the singing voice. 
We became interested in this publication, and based, 
among other sources, on this particular one, we have 
shaped and brought together a series of elements put 
into practice in our School of Music, which are the 
object of our conference today. 
What are the functions of this approach or set of 
tools? 
-To establish a sound “identity card” from the time of 
enrollment to the school.  Students can record 
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themselves and become aware of the physical points 
of reference of the produced sounds. 
-To allow a linear follow-up of the way in which the 
sound is evolving throughout the five-year program. 
A computerized file gives students and teachers the 
opportunity to visualize the specific and objective 
physical characteristics involved in the production of 
sound, and how they are being transformed as this 
awareness grows through the application of the 
proposed approach. 
-To make use of a feedback procedure. 
Musicians are able to observe, either directly or in a 
re-play of a recording, on screen, the various 
significant curves of the produced sound. 
-To pursue a body attitude which is in correlation with 
the sound, by means of a feed-back procedure which 
is made possible in a visual manner through the use of 
large mirrors placed at a 45° angle. 
Musicians can see themselves simultaneously from 
the front and from the side, which facilitates the 
possibility of seeking the most suitable and ergonomic 
position, depending on the instrument being played. 
 
What are the elements needed for this postural-
acoustic laboratory? 

- A set of standing mirrors, placed at a 45° 
angle 

- A force platform, such as the “biorescue” 
type, allowing the musician to measure a 
series of points of reference, mostly foot 
tracks on the ground, and to control the 
center of pressure in the standing and still 
position, as well as while singing. 

- A microphone (Neumann type) linked to a 
sound card and to an Audio spectrographical 
analyzer. (City) 

Working session procedure: 
Take the case of a singer.  We ask him/her to stand on 
the platform, to check his points of pressure, to 
control verticality thanks to the mirrors, then to begin 
to sing in the required position. 
It’s possible to vary the points of reference, as 
follows: 
-head position backwards and forwards, left/right 
rotation of the cervical column as well as left/right 
inclination of the cervical column. 
-position of the tongue 
-Transfer of the center of pressure of the body, in 
various directions. 
-With a sound in the medium register as a starting 
point, we explore the other registers. 
-The spectogram will be evaluated according to the 
preceding combinations. 
-It’s crucial to evaluate how the basic overtones as 
well as the multiple overtones evolve. 
-The singer eventually recognizes the position in 
which the sound production will be at its best. By 
repeating the result again and again, he/she will 
memorize and engram it. 
 

CONCLUSIONS 
 
It’s important to provide a School of Music with the 
most advanced resources now available in order to 
allow an optimal development of the Students’ 
musical skills.  Thanks to the progress in Technology, 
as well as in the field of Posturology, we now have 
access to such resources. 
We are at the dawn of fascinating work, with an 
endless scope of research in various fields.  
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Abstract: Source of speech signal consist of voiced part 
and unvoiced part. In conventional source-filter model, 
those two sources are considered to be independent. 
But in real situation it is difficult to segregate the 
source into voiced and unvoiced part. Actual source 
consist of mixture of two sources and the ratio varies 
according to the contents or intention of the speaker. 
In this paper we tried to segregate the components of 
voiced and unvoiced while considering source models. 
Source signals are modeled based on residual signal 
measured from inverse filtering. Two kinds of source 
models are assumed. Each model parameters are 
optimized to the original speech signal using genetic 
algorithm. The resulting parameters were compared 
in terms of the mel-cepstral distance to the original 
signal, spectrogram and spectral envelope from the 
synthesized signal. 
Keywords :  Voice, source, model, synthesis, optimization 

 
I. INTRODUCTION 

 
Voice source can be utilized in various areas such as 

speech synthesis, speech recognition, pathological voice 
processing, speech coding etc. In speech synthesis, for 
example, voice source is very important because it has 
big effect on the quality of the synthesized speech in 
terms of naturalness, intelligibility and emotional 
expression. In other case, to measure the parameters of 
the disordered voice, there are many parameters which 
are related to voice source. There have been many 
previous researches which tries to measure the source 
informations from the speech signal [1] [2] [3] [4]. 

Voice quality can be measured in various ways. The 
most precise way to observe the vocal folds is biological 
measurements. But it is not easy and not convenient. So 
naturally the indirect measurement from acoustic speech 
signal is preferred. But because of some limits on the 
mathematical analysis methods, there is no single way to 
extract voice source parameters. One simple way is to 
estimate the source component from the numerical 
analysis. 

Multiple source estimation was carried out in previous 
researches in the area of speech coding and speech 
synthesis. But their method focused on the approximate 
estimation of source by frame based analysis method and 
the purpose was not on finding exact ratio from the 
specific source model. So our aim for this research is to 
estimate the two components and obtain the numerical 

ratio of the two sources from the analysis of speech signal 
considering specific source model. 
 

II. SOURCE ANALYSIS METHODS 

 
In this paper, we use the inverse filtering from the 

linear predictive analysis to estimate the voice source. 
LP(linear prediction) method is a well-known method 
which models a signal or a system into a form of 
mathematical function. It is the best method measuring 
residual signal from LP analysis to estimate the glottal 
activities [5]. 

According to the source-filter theory, voice source 
consist of impulse train, which represents voiced part, 
and random noise, which represents unvoiced part. In 
simple source model speech signal is divided into 
voiced/unvoiced/silence part on temporal basis. Only one 
kind of the three can be possible in simple model. But in 
real situation, voiced and unvoiced part cannot be clearly 
separated. So in mixture source model, two types of 
source are considered at the same time. Yegnanarayana 
et.al.[6] used an iterative algorithm to separate the 
periodic and aperiodic components based on spectral 
decomposition. 

In our research, we used a genetic algorithm to find an 
optimal level of noise sources in addition the voiced 
source, which is estimated from the residual signal. And 
we used a voice source model simulator to analyze the 
speech signal. 

 

 
Fig 1. Functions of the simulator 

 
III. VOIVE SOURCE MODEL AND BASIC ANALYSIS 

PROCEDURE 
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In this research, we considered two types of voice 
source signal. First one is unipolar source model, the 
other one is Klatt source model. 

Unipolar source model is a simplified impulse model 
from residual signal. For each pitch period of the residual 
signal, only the highest peak is chosen as a candidate of 
the source signal. The remaining pulses are set to zero. 

Klatt source model is a model which resembles to the 
shape of the actual glottal volume velocity. This model 
corresponds to the integration of the excitation, so this 
model can be compared to the integrated residual signal. 

Analysis of speech is done by conventional linear 
predictive analysis procedure. Residual signal is the 
reference source model which can be used to 
parameterize the voice source.  

The residual signal is used to generate approximated 
source signal based on pitch and amplitude informations 
of the residual signal. In each excitation position, 
unipolar and Klatt source shape is located.

 
 

IV. SOURCE OPTIMIZATION 

 
Genetic algorithm was used to find the optimal noise 

level of the source component. Genetic algorithm uses the 
random and statistical method to optimize cost function. 
Table 1 shows options for GA algorithm in this research. 
Maximum number of iterations are set to 700. These 
parameters for genetic algorithm are chosen by trial and 
error method. 

Figure 2 shows the flow of the optimization process. 
Based on original residual signal, noise component ratio 
is optimized to reduce the error between original speech 
and re-synthesized speech. On genetic algorithm, 
algorithm is iterated until the error becomes smaller than 
pre-specified range. 

As a cost function to be minimized, the following 
functions were used. 

 
For Klatt source model, 
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For unipolor residual, 
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Where A is the original residual, B is the modified 

unipolar impulse source model, C is the random noise 
signal and D is the optimized Klatt source model only 
voiced part.  

Figure 3 shows the process of optimization, one pitch, 
the Klatt source model used as voiced source model and 
white random noise used as unvoiced source component. 

Table 1. Options for GA algorithm 
Options Values 

Population Type Double Vector 

Population Size 200 

Creation Function Uniform 

Crossover Function Scattered 
Generation 700 

Hybrid Function fminunc 

Mutation Function Gaussian 
Elite Count 5 

Stall Generation Limit 100 

TolFun 1/inf 

TolCon 1/inf 

 

 
 

Fig 2. Flow of optimization process 
 

 
Fig 3. Error minimization from GA 

 
V. RESULTS 

 
Figure 4, 5 and 6 shows examples of comparing the 

original speech and the resynthesized speech in terms of 
time and frequency domain. And then figure 7, 8 and 9 
shows original signal and the result of the resynthesized 
signal after optimization in terms of time and frequency 
domain. 

Figure 9 shows us modified unipolar residual and Klatt 
model give us close similarity in terms of spectral 
component. But in terms of the melcepstral distance,  
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Fig 4. Synthesized signal from each model 

 

 
Fig 5. Spectrograms from synthesized signal 

 
Fig 6. Spectral envelope comparison 

for non-optimized case 
 

 
Fig 7. Synthetic signal for optimized source models 
 

optimized version of  the modified residual signal showed 
the closest to the original signal. In case of Klatt source, 
optimization process reduced the distance the distance 
considerably and it is useful to estimate noise component 
of the source in this way. 
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Fig 8. Spectrogram from optimized synthetic signal 
 

 
Fig 9. Spectral envelope comparison 

for optimized case 
 
Table 2. Spectral distance between original speech 

and each model 

Source Model Distance 

Modified Residual(MD_Res) 26.4 

MD_Res1 (Optimized) 25.3 

Klatt 181.5 

Optimized Klatt 148.6 

VI. CONCLUSIONS 

 
In this paper we tried to estimate voice source 

components by applying optimization procedure to 
estimate the voiced and unvoiced components from the 
speech signal. We used genetic algorithm as an 
optimization method. 

It is found out that addition of noise components with 
optimization procedure reduced error between the 
original signal and the synthesized signal when we use 
voice source models for research purposes. Analysis 
process for Klatt source model with additional noise with 
optimization process can be useful for the analysis of 
speech in various occasions such as speech synthesis or 
voice quality analysis or pathological voice analysis etc. 

In future research, it is required to reduce the spectral 
distance while adding noise components to the voice 
source in multiple frequency bands. 
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Abstract: rigid high-speed laryngoscopy is the state 
of the art examination technique for the 
visualization of vocal fold dynamics. however, due 
to the insertion of the rigid endoscope in the oral 
cavity the voice production process including the 
dynamics of vocal fold vibrations becomes impaired.  
therefore, the currently available computerized 
analysis procedures, which have been designed to 
enable a highly precise determination of vocal fold 
vibrations, measure vocal fold dynamics within an 
non-physiological condition. in this study the 
influence of rigid laryngoscopy on vocal fold 
dynamics and on the objectively derived voice 
measures are quantitatively investigated.  

 Keywords : rigid laryngoscopy, vocal fold, laryngeal 
imaging 

 

I. INTRODUCTION 
 

For the clinical examination of voice disorders rigid 
videostroboscopy is the most widely used examination 
technique to enable a visual inspection of vocal fold 
structure and dynamics. With the arise of modern 
larynx examination techniques such as kymography 
and high-speed imaging (HSI) a more accurate analysis 
of the underlying vocal fold vibration pattern became 
feasible. To derive a precise quantitative analysis 
diverse post processing procedures have been 
developed to extract vocal fold dynamics from the 
image data and quantify the degree of vibration 
symmetry and regularity [1].  

One of these analysis and visualization procedures 
based on HSI is the computer based phonovibrogramm 
(PVG). It is able to visualize the entire oscillation 
pattern separated for each vocal fold within a single 
image (PVG).  It was shown, that a highly precise 
quantification of vocal fold vibration parameters can be 
performed [2].  

Mainly all results obtained from current analysis 
approaches base on rigid laryngoscopy. However, 
during rigid laryngoscopy the formerly undisturbed 
process of voice production becomes impaired because 
of at least two reasons: the insertion of the endoscope 
within the oral cavity and due to the holding of the 
protruded tongue by the examiner. By protruding the 
tongue the physiological position of the larynx is 
changed with the epiglottis into a more anterior 
superior position and thus putting the larynx with its 
vocal folds into a higher state of tense [3,4,5].  
 
As a direct consequence quantitative measures, like e.g. 
PVG, derived from the endoscopic video data and 
likewise the acoustic signal do not reflect the normal, 
unimpaired physiological condition anymore.  

In this study potential alterations of vocal fold 
vibrations induced by rigid laryngoscopy were 
investigated and quantified.   

 

II. METHODS 
 

Forty healthy subjects (20 females and 20 males) 
with untrained voices and no clinical history of voice 
disorders were examined during sustained phonation of 
the vowel /i/ at a comfortable frequency and intensity. 
The mean age of the female group was 41 (+/-13.1) 
years and 37.6 (+/-14.4) years for the male group. Each 
subject was examined twice.  

Firstly, to derive information about the unimpaired 
condition vocal fold dynamics were examined using 
electroglottography (EGG) and acoustic recordings. 
EGG provides a relative measure of vocal fold closure 
without having equipment encumber the oral cavity [6].  
EGG and acoustic data were captured using the 
Laryngograph® (Ltd., London, United Kingdom) 
system.  

Following, a high-speed recording of vocal fold 
vibrations was performed by rigid laryngoscopy 
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accompanied by a second recording of the EGG and 
acoustic signal reflecting the impaired voice production 
condition. The laryngoscopic video and acoustic data 
were recorded using the Endocam 5562 high-speed 
camera system, Wolf Corp., Knittlingen, Germany. 

To detect alterations of vocal fold dynamics between 
the different examination situations a set of established 
parameters like fundamental frequency, jitter, shimmer 
and normalized noise energy (NNE) were computed 
from the EGG and acoustic data. Statistical analysis 
(Mann-Whitney-U-Test) was performed to identify 
potential significant changes between the different 
examination setups. 

 

II. RESULTS 
 

The results of the quantitative analysis of the 
acoustic and EGG data show that objective parameters  

 

representing vocal fold dynamics are significantly 
influenced by the examination situation. Firstly, during 
rigid endoscopic examination a significant increase of 
EGG detected fundamental frequency (p<0.05) could  
be identified. Average fundamental frequency was 
179.67 Hz during the uninfluenced examination 
situation and increased to 225.72 Hz during rigid 
laryngoscopy reflecting a different (higher) muscular 
tension of the larynx. Fig. 1 further shows the change 
of the computed EGG-Jitter and acoustic NNE-values 
derived from the two examination situations. 
Significantly (p<0.05) increased values of Jitter and 
NNE prove an augmentation of vocal noise during rigid 
endoscopy. Average EGG-Jitter increased from 0.27 to 
0.38%; NNE from -17.19 to -14.37. Accordingly, 
EGG-shimmer was significantly increased (p<0.001) 
during rigid laryngoscopy, rising from 1.85 to 3.55%. 
Fig. 2 displays the increase of perturbation measures in 
the shape of EGG-Shimmer (right) and fundamental 
frequency (left).  

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1: Left: Boxplots of EGG-Jitter values obtained from the two different examination situations. Right: Boxplots 
of acoustic NNE values obtained from the two different examination situations. Both parameters are significantly 
increased as a result of the endoscopic examination. 
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Fig. 2: Data obtained from the two different examination situations. The continuous line represents positions where 
parameters remain constant in both examinations. The dotted line has minimum distance to all measurements 
reflecting the averaged linear relationship of parameters from both examination situations. Left: Scatterplot of EGG 
computed fundamental frequency values. Right: Scatterplot of EGG computed shimmer values. Both parameters are 
significantly increased as a result of the endoscopic examination. 

 

III. DISCUSSION 
 

The results of the study demonstrate an increased 
irregularity and thus alteration of vocal fold vibrations 
induced by rigid laryngoscopy. The vibration pattern 
of vocal folds is hereby influenced by the inevitable 
change of the subjects’ head position during the 
examination and by the endoscope within the oral 
cavity itself. Hence, when applying rigid laryngoscopy 
it has to be taken into mind that the examination 
situation itself influences significantly the dynamics of 
vocal folds. Particularly, when applying modern high-
speed imaging systems which facilitate principally 
more detailed information about vocal fold vibrations 
it has to be considered that the obtained parameters are 
likewise altered during the non-physiological 
examination.  

 

V. CONCLUSION 

Objective parameters reflecting vocal fold dynamics 
and acoustic voice signals are significantly affected by 
rigid laryngoscopy. Rresults obtained from high-speed 
videos and rigid endoscopy reflect vocal fold 
dynamics within a non-physiological state. Hence, 
normative values about undisturbed vocal fold 
vibrations are methodically difficult to obtain. 
However, a combination of flexible endoscopy and 
high-speed imaging would improve the accuracy of 
vocal fold analysis procedures. 
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Abstract: this paper presents a system for the 
automatic assessment of pathological voice quality 
according to the Grbas protocol, which uses a short 
time scheme and a characterization based on 9 
complexity  measures,  including  conventional 
nonlinear statistics and 7 entropy based features. the 
classification is carried out using three different 
multiclass classification strategies all of them based on 
Gaussian Mixture Models. the performance of the 
system is measured in terms of efficiency and a 
statistical agreement index. the results show that the 
complexity analysis provides relevant information for 
the automatic assessment of voice quality according to 
the Grbas protocol. 

 
Keywords:      automatic Grbas assessment, 
complexity measures, multiclass classification. 

 
I. INTRODUCTION 

 
In the clinical environment, evaluation of voice is 

usually carried out by means of a combination of 
perceptual evaluations and acoustic parameterizations of 
the speech trace. Perceptual evaluation consists on a 
subjective diagnosis of voice quality, based on 
comparisons with other voices, patients or with previous 
impressions of the same voice. The main problem is that 
a reliable perceptual analysis requires a standardized 
ability to avoid inter and intra listener differences in the 
evaluations [1]. Although the assessment based on 
acoustic parameters is becoming a usual technique of 
analysis, perceptual evaluation is still the most practiced 
method for the evaluation and clinical management of 
voice disorders [2]. Unfortunately, a good correlation 
between acoustic parameters and perceptual evaluation of 
voices remains unfound [3]. 

Perceptual evaluation has been widely criticized 
because its subjectivity. As a result, the reliability of the 
evaluation is not always adequate and auditory perceptual 
ratings  can  be  confounded  by  factors  such  as  the 
listener’s perceptual bias, the listener’s experience, the 
type of rating scale used, the listener’s fatigue, the 
perceptual sensitivity of the listener to a particular voice 
feature and to the voice sample being evaluated [4]. This 
situation can be improved using an  automatic system, 

 
which should provide accurate, reproducible and graded 
measures of a patient’s voice quality, helping speech and 
language therapists with the patient’s treatment and 
rehabilitation [5]. However, few efforts have been 
performed in this way due to lack of standardized 
protocols and also low correlation with objective 
acoustical analysis. Currently, the most widely accepted 
and recommend by The Japanese Society of Logopeadics 
and Phoniatrics and the European Research Group 
evaluation protocol is the Grade, Roughness, Breathiness, 
Aesthenia,  Strain  (GRBAS)  perceptual  rating  protocol 
[6]. It has been demonstrated that, on the basis of low 
intra-rater and inter-rater variances, the GRBAS protocol 
seems to be the most reliable and relevant perceptual 
voice quality evaluation [1]. 

On   the   other   hand,   the   complexity   analysis   of 
pathological  voices  seeks  to  quantify  the  effects  of 
nonlinear phenomena involved in the voice production 
process, due to changes in the dynamic properties of the 
vocal cords and laryngeal tissues because of the presence 
of pathology. This kind of analysis has demonstrated to 
provide more stable results than conventional acoustical 
analysis  when  the  voice  signals  do  not  present  a 
quasiperiodic structure [7]. Additionally, the information 
obtained using complexity analysis has demonstrated to 
be  relevant  for  the  evaluation  of  different  types  of 
laryngeal pathologies [7], and also complementary to the 
one obtained using conventional methods of 
characterization  (such  as  noise  measures  and  cepstral 
coefficients) for the automatic detection of pathological 
voices [8]. 

In  this  sense, this  work  explores the  discrimination 
capabilities   of   nine   complexity   measures   for   the 
perceptual evaluation of pathological voices according to 
the GRBAS protocol and their use in an automatic system 
for the assessment of voice quality. Since each scale of 
the GRBAS protocol can take one of four different values 
(classes), rating a voice according to it, can be seen as a 
multiclass problem Therefore, the classification is carried 
out using three different multiclass strategies based on 
binary Gaussian Mixture Models (GMM) classifiers: One 
vs   All,   All   vs   All   and   Hierarchical   (like   tree) 
classification. 

The  results  are  shown  in  terms  of  efficiency  and 
statistical  agreement  index.  The  subset  of  complexity 
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measures along with the classification strategy which 
provided the best result for each scale of the GRBAS 
protocol are also reported. 

 
II. METHODS 

 
In the first stage of the process, the speech signal is 

framed and windowed in order to perform a short-time 
analysis. This approach is well established in speech 
processing tasks, including speech recognition, or speaker 
identification  and  verification.  Nevertheless,  the 
nonlinear analysis of speech signals on a frame basis is a 
recent approach [8]. This analysis is supported by the fact 
that changes in the dynamics of a pathological voice can 
be presented during long periods of time or suddenly. 
Slow changes in the speech signal are related to the 
biological processes in which the properties of the tissues 
evolve. On the opposite side, sudden changes can be 
explained by the presence of extra masses or changes in 
the biomechanical properties of the tissues of the vocal 
folds, modifying the dynamic behavior during the voice 
production process, and producing abrupt variations in 
the vibration regime of the vocal fold that can be 
understood as bifurcations [9]. These phenomena can be 
better detected and characterized using a short-time 
scheme. The analysis was carried out using frames of 55 
ms with a 50% frame shift according to previous results 
[8], in which the frame length was selected taking into 
account criteria related to the minimum signal length that 
must be used for a good estimation of nonlinear features 
and also a minimum number of pitch periods for a good 
characterization of the signal stability.  In the following 
section each of the complexity measures used in the 
characterization stage will be exposed. 

 
A. Parameterization 

 
First of all, a complexity analysis of biomedical signals 

requires a previous reconstruction of the state space of the 
underlying system to be characterized. Such 
reconstruction is carried out using a mathematical 
procedure called embedding, which typically is based on 
the time-delay embedding theorem [10]. The embedding 
theorem establishes that, when there is only a single 
sampled quantity from a dynamical system, it is possible 
to reconstruct a state space that is equivalent to the 
original (but unknown) state space composed of all the 
dynamical variables. The points in the state-space form 
trajectories, and the set of trajectories from a time series 
is known as attractor. 

From each speech frame an attractor is reconstructed 
and  subsequently a  set  of  9  complexity measures are 
estimated. 

 
Largest Lyapunov Exponent (LLE): LLE is a measure 

of the separation rate of infinitesimally close trajectories 

of the attractor [10]. In other words, LLE measures the 
sensibility to the initial conditions of the underlying 
system, since one of the main characteristics of nonlinear 
systems is the possibility that two trajectories in the state 
space begin very close and diverge through time, which is 
a consequence of the unpredictability and inherent 
instability of the solutions in the state space. 
Theoretically, a positive value of LLE means an 
exponential divergence of nearby trajectories and 
consequently a more complex dynamic behavior in the 
attractor. 
 

Correlation dimension (CD): CD is a measure of the 
dimensionality of the space occupied by a set of random 
points or its geometry. Moreover, it characterizes the 
scaling properties of a distribution of points in an m- 
dimensional space (being m the dimension of the 
embedded attractor). The CD is the fractal dimension that 
has received more attention in the literature. This is 
mainly because its estimation is easier than others. 
Besides, it provides a good measure of the complexity of 
the dynamics, i.e. it measures the number of active 
degrees of freedom. 
 

Approximate Entropy (AE): In the field of nonlinear 
dynamics,  complexity  measures  often  quantify 
statistically the evolution of the trajectory in the 
embedded phase space. However, if a signal is considered 
as the output of a dynamical system in a specific time 
period, it is regarded as a source of information about the 
underlying dynamics; therefore, the amount of 
information about the state of the system that can be 
obtained from the signal can also be considered as a kind 
of complexity. The fundamental idea to measure the 
“amount of information” comes from the information 
theory, and is termed Entropy. Entropy is a measure of 
the uncertainty of a random variable [8]. The most 
employed measure in this context is AE,, which is a 
measure of the average conditional information generated 
by diverging points of the trajectory [8]. The advantage 
of using entropy based measures is that they measure the 
complexity of the signal without making assumptions 
about the nature of the process (deterministic or 
stochastic), whilst conventional nonlinear statistics such 
as LLE and CD assume that this nature is entirely [11], 
which cannot be asserted for voice signals. 

There are several modifications of AE published in the 
literature. Among them the most important is the Sample 
Entropy (SE), developed with the aim of obtaining a more 
independent measure than AE  with respect to the signal 
length. 
 

Recurrence and fractal scaling analysis: Considering 
that there is a combination of both deterministic and 
stochastic components in the voice signal during 
phonation  [11],  the  deterministic  component  can  be 



� 113

characterized by a measure called Recurrence period 
density entropy (RPDE) and the stochastic component by 
means  of  a  Detrendend  fluctuation  analysis  (DFA). 
RPDE quantifies any ambiguity that might exist in the 
fundamental frequency; the level of ambiguity is often an 
indicative of vocal dysfunction [11]. On the other hand, 
DFA characterizes the changing details of aeroacoustic 
breath noise in the voice and therefore it is sensitive to 
similar features in voice as Noise to Harmonic Ratio 
(NHR), but instead of NHR, DFA does not depend on a 
previous pitch estimation which is a difficult task for 
pathologic signals. 

 
Hidden Markov entropy measurements: Most of the 

complexity measures used in the state of the art to 
characterize pathological voices, are based on multiple 
comparisons of the points in the attractor to establish the 
neighborhood of each point according to a particular 
distance measure. From such comparisons, the diverging 
points of the attractor are determined. The neighborhood 
of a particular vector in the state space is then understood 
as a region of the space in which the distance between 
that vector and the others is lower than a certain value (r). 
However, the temporal information of the points in the 
attractor is not taken into account. Since the points in the 
attractor should follow an ordered path –at least with 
normal stable voices–, the Hidden Markov entropy 
measurements were formulated to quantify the amount of 
information about the state of the system, taking into 
account the dynamic information of the points in the 
attractor [8]. The dynamic of the points in the attractor is 
modeled as a hidden Markov process (HMP) throughout 
a discrete hidden Markov model (DHMM), which can 
also be seen as an estimation of the probability density 
function of the process; from this model three different 
entropy measures are estimated: the entropy of the 
Markov chain (HMC), and two empirical estimations of 
the DHMM entropy: Shannon entropy (HES) and Renyi 
entropy (HER). 

All the complexity measures described in this section 
have already been used for the characterization of voice 
diseases   and   also   for   the   automatic   detection   of 
pathological speech signals [7,8,11], showing relevant 
results. 

 
B. Classification 

 
As previously commented, each scale of the GRBAS 

protocol can take one of four different values (classes), 
therefore the classification of a voice according to such 
protocol can be seen as a multiclass classification 
problem. In this sense, the classification in this work is 
performed  using  three  different  multiclass  strategies 
based on binary classifiers, namely One-vs All, All-vs-All 
and Hierarchical, all of them employing GMM as the 
core of the pattern classifier stage. 

One vs all: In this approach, a binary classifier 
discriminates between a given class and the other nc−1 
classes.   For   this   approach,   the   number   of   binary 
classifiers required is N=nc, where the k-th classifier is 
trained with positive examples belonging to class k and 
negative examples belonging to the other nc−1 classes. 
When testing an unknown pattern, the classifier that 
provides the maximum output is considered the winner, 
and the label of this class is assigned to that pattern. 
 

All vs all: In this approach, a binary classifier is built to 
discriminate between every possible pair of classes, while 
discarding the rest of the classes. This requires 
N=nc·(nc−1)/2 binary classifiers. When testing a new 
example, a voting is performed among the classifiers and 
the class with the maximum number of votes wins. 
 

Hierarchical: Another way to address the multiclass 
classification  problem   is   to   perform   a   hierarchical 
division of the output space, i.e. arranging the classes like 
a tree. The tree is created in such a way that the classes at 
each parent node are divided into a number of clusters, 
one for each child node. The process continues until the 
leaf nodes contain only a single class. At each node of the 
tree, a simple classifier, usually a binary classifier, makes 
the discrimination between the different child class 
clusters. Following a path from the root node to a leaf 
node leads to a classification of a new pattern. This 
method uses N=nc−1 binary classifiers for an nc-class 
problem 
 
C. Experimental Setup 
 

Testing was carried out using a subset of the database 
developed by The Massachusetts Eye and Ear Infirmary 
Voice & Speech Laboratory. All available 226 voices 
(173 pathological and 53 normal) were presented to an 
experienced voice therapist in a randomized order and 
without providing any information about the diagnosis. 
For each speaker, both recordings (sustained vowel and 
running text) were made available to him and he was 
asked to provide a perceptual rating for each speaker 
according to the GRBAS protocol. The validation was 
performed using a leave-one-out crossvalidation strategy 
due to the small number of voice recorders belonging to 
some of the classes. 

. 
III. RESULTS 

 
Table I shows the set of complexity measures which 

perform better for each scale of the GRBAS protocol. 
From these results it is possible to know which 
characteristics provide the largest contribution to the 
automatic evaluation of each scale of the GRBAS 
protocol. The best sets of features were determined based 
on a brute-force search and discriminative criteria. Table 
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I also shows the efficiency achieved for every scale. It is 
also worth to note that, in most of the cases, the best 
performance was obtained by using a “One-vs-All” multi- 
class classification strategy. 

 
Table I. Best sets of complexity measures and efficiency 
obtained for each scale of the GRBAS protocol. 
Scale Set of features Efficiency [%] 

  G  CD, AE, SE, DFA, HMC 56.44   
  R  LLE, CD, AE, SE 55.11   
  B  LLE, SE, DFA, HES, HER 57.18   
  A  LLE  66.67   

S HMC  46.67 
 

Table II shows estimations of the statistical agreement 
index, Kappa, for each scale of the GRBAS protocol. The 
Kappa index measures the agreement between the 
classification provided by the system and the evaluation 
supplied by the specialist who labeled the database. For 
the sake of comparison, table II also shows the agreement 
obtained between to experienced medical specialist for 
the assessment of pathological voices according to the 
GRBAS protocol reported in [1].  The results show that 
although the agreement obtained by the system is still 
lower than the one obtained by two specialists, the results 
are comparable and therefore the information obtained 
from the complexity analysis and the classification 
methodology employed in this work can be useful for 
improving the automatic assessment of voice quality 
according to the GRBAS protocol. 

 
Table II. Kappa indexes obtained by the system for each 

  scale of the GRBAS protocol.     
  Scale  Kappa  Kappa in [1]   
  G  0.40  0.51   
  R  0.40  0.46   
  B  0.37  0.43   
  A  0.32  0.41   

S 0.24 0.34 
 

IV. DISCUSSION AND CONCLUSIONS 
 

The analysis of agreement between the automatic 
system and the rater who labeled the database showed 
that  the  performance  of  the  system  is  a  bit  lower 
compared to the agreement obtained by two experienced 
specialist reported by [1]. Nevertheless, the results show 
that  complexity analysis provides relevant information 
for this task. It is worthy to note, that the nonlinear 
analysis of speech signals is proposed as a complement of 
the analysis based on classical acoustic parameters. 
Therefore, it is very likely that, similar results to the 
obtained in [8] for the detection of pathological voices, 
can be reached by means of the combination of 
conventional  and   nonlinear  analysis,  improving   the 

automatic rate of voices according to perceptual criteria. 
The multiclass classification strategy showed interesting 
results, however, it remains open the problem of dealing 
with a small number of samples in some classes. 
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Abstract: This paper describes an algorithm which 
enables harmonic and noise splitting of the glottal 
excitation of voiced speech. The algorithm utilizes a 
straightforward harmonic and noise splitter which is 
utilized prior to glottal inverse filtering. The results 
show improved estimates of the glottal excitation in 
comparison to a known inverse filtering method.
Keywords: Voice quality, voice diagnosis, glottal 
inverse filtering  

I. INTRODUCTION 

Since the glottal volume velocity waveform serves as 
the source of (voiced) speech, it has an essential role in 
the production of several acoustical phenomena such as 
the regulation of vocal intensity [1], voice quality [2], the 
production of different vocal emotions [3] and voice 
pathologies detection related to vocal fold changes [4]. 
Therefore, accurate analysis and parameterization of the 
glottal pulseform is beneficial in several areas of speech 
science including both healthy and disordered voices. In 
this paper, two techniques are combined to yield an 
algorithm that estimates the harmonic and noise 
components of the glottal pulse. These techniques 
decompose the signal into a harmonic and noise 
component and gives rise to better glottal pulse 
estimations. This new algorithm was tested with synthetic 
and natural voices in order to characterize the algorithm 
behavior against an acoustic diversity. 

II. METHODS 

A. Algorithm overview 

The main goal of the study is to develop an algorithm 
that splits the waveform of the estimated glottal airflow 
into a harmonic and a noise component. The block 
diagram of the method is shown in Fig. 1.  

First (block 1), the speech pressure signal is divided 
into a harmonic and a noise component [5]. Secondly 
(block 2), the obtained harmonic component of the 
speech signal, denoted by h(n) in Fig. 1, is used as an 
input to glottal inverse filtering which yields an estimate 
of the vocal tract inverse filter (an FIR filter), denoted by 
V(z) in Fig. 1. Inverse filtering is computed with a 
previously developed automatic algorithm, Iterative 
Adaptive Inverse Filtering (IAIF) [6]. Thirdly, this FIR 

Fig. 1: Main block diagram of glottal harmonic-noise 
splitter. Signals s(n), h(n) and r(n) denote, respectively, 
the speech signal and its harmonic and noise components. 
Signals g(n), gh(n) and gr(n) denote, respectively, the 
glottal excitation, and its  harmonic and noise 
components. V(z) denotes the vocal tract transfer 
function. IAIF denotes the glottal inverse filtering 
algorithm [6]. 

filter is used in order to cancel the effects of the vocal 
tract from three signals: both from the harmonic and 
noise components obtained from the harmonic-noise 
splitter, and from the original speech pressure waveform. 
By further canceling the lip radiation effect using an 
integrator whose transfer function is simply given by  
H(z)=1/(1-0.99z-1), three glottal signals are obtained: the 
glottal pulse harmonic component, the glottal pulse noise 
component, and the glottal pulse, which are denoted in 
Fig. 1 by gh(n), gr(n), and g(n), respectively. Equations 
(1) to (4) express the resulting signals in Fig. 1.

s(n) h(n) r(n)= + (1)
g(n) v(n) (n) [h(n) r(n)]= ∗ ∗ +ℓ (2)

g(n) v(n) (n) h(n) v(n) (n) r(n)= ∗ ∗ + ∗ ∗ℓ ℓ (3)
h rg(n) g (n) g (n)= + (4)

The parameters v(n) and ℓ(n) denote the impulse 
response of the inverse model of the vocal tract and lip 
radiation effect, respectively. Equation (1) represents the 
harmonic-noise model, which serves as the basis for the 
harmonic-noise splitter. Inverse filtering is represented by 
equation (2). Equations (3) and (4) show that the glottal 
excitation consists of harmonic and noise components.

The harmonic-noise splitter is based on a model of the 
harmonic structure of speech, which is parameterized in 
frequency, magnitude and phase [5]. The block diagram 
of the harmonic-noise splitter is depicted in Fig. 2. 

In the first stage (block 1), the time domain input
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Fig. 2: Block diagram of the harmonic-noise splitter.  

signal is transformed into the frequency domain using an 
Odd-Discrete Fourier Transform (ODFT) [7]. ODFT is 
obtained by shifting the frequency index of the Discrete 
Fourier Transform (DFT) by half a bin:

2 1N 1 j (k )n
N 2

o
n 0

X (k) x(n)e , k 0,1,...,N 1
π− − +

=
= = −∑

(5) 

where the time-domain input signal is denoted by x(n) 
and the frame length is N. If x(n) is real, this frequency 
shift  makes the DFT samples above π a perfect mirror (in 
the complex conjugate sense) of the DFT  samples below 
π. A peak picking algorithm is used to estimate the 
harmonics of the ODFT amplitude spectrum. Next, the 
frequency, magnitude and phase of each harmonic are 
extracted (block 2) [7]. These parameters are then used to 
synthesize the spectrum of the harmonic structure of the 
input signal s(n) (block 3). The spectrum of each 
individual sinusoid is synthesized using the parameters 
extracted from that harmonic. 

The synthesized harmonic structure is subtracted from 
the signal s(n) and the result is regarded as the noise 
component. The spectra of both components are inverse 
transformed in order to get time-domain representations 
for the components (blocks 4 and 5).  

B. Performance assessment 

Experiments were conducted by using both synthetic 
and natural vowels. The estimated glottal excitation 
waveforms were parameterized with two known 
parameters: the Normalized Amplitude Quotient (NAQ) 
and the difference (in dB) between the amplitudes the 
first and second harmonic (DH12). The NAQ parameter 
is a time-based parameter that is extracted for each glottal 
pulse and it measures the pressedness of phonation from 
the ratio of the peak-to-peak flow and the negative peak 
amplitude of the flow derivative [8]. The DH12 
parameter is a frequency domain quantity and it measures 
the decay of the voice source spectrum [9]. Both 
parameters are independent of time and amplitude shifts. 
The relative error was used for NAQ since this parameter 
is a time-domain quantity that is typically measured on 
the linear scale and the absolute error was used for DH12 
because this parameter is typically expressed in the dB 
scale.

A synthesizer based on the source-filter and harmonic-
noise models was used to generate a set of test vowels. 
The source generation was based on Liljencrants-Fant 
(LF) model [10]. The fundamental frequency F0 was 
varied from 100 Hz up to 400Hz with an increment of 10 
Hz, in order to mimic both male and female speech. For 
each pitch, several vowel instances were generated by 
varying HNR from 9 dB up to 21 dB with an increment 
of 1 dB. The HNR is acquired as: 

h
10

r

EHNR 10 log
E

 

= ×  

 

(6)

Eh and Er denote, respectively, the energy of the harmonic 
component and the noise component of synthetic speech. 
The values of the LF model were selected according to 
Gobl [11] in order to involve three different phonation 
types (breathy, normal and pressed). The vocal tract filter 
was adjusted to synthesize the vowel [a] (F1= 664 Hz, 
F2=1027 Hz, F3=2612 Hz). All the data were generated 
using the sampling frequency of 22.05 kHz. 

In the second experiment, a database that included 39 
sustained waveforms of the vowel [a] uttered by 13 
subjects (7 males, 6 females) using breathy, normal and 
pressed phonation was used. The data were sampled with 
22.050 kHz and a resolution of 16 bits. From these 
signals, the most stable segments with duration of 200 ms 
were selected for the voice source analysis.  

III. RESULTS 

A. Experiments with synthetic voices 

This section presents the results that were obtained for 
synthetic voices when the glottal source was estimated 
with IAIF and the proposed method. The NAQ error and 
DH12 error were determined separately for each 
phonation type. In order to compress the results, a set of 
ranges were defined for F0 and HNR and the individual 
values obtained inside these ranges were pooled together.
For F0, the following three ranges were used: 100-200 
Hz, 210-300 Hz, and 310-400 Hz. The first two ranges 
correspond to typical pitch used by males and females, 
respectively. The third range represents F0 values typical 
in voices produced by children. For HNR, the following 
three categories were used: 9-15 dB, 16-21 dB, and 22-27 
dB. The first of these is typical for pathological voices 
while the second is characteristic to normal speech [12]. 
The last HNR range is related to voices which are highly 
periodic with a small amount of noise, such as the singing 
voice [13]. For each phonation type, the results are 
organized in tables that show the performance of NAQ or 
DH12 for the selected F0 and HNR ranges.  

Tables 1 and 2 show that the proposed algorithm yields 
smaller DH12 errors for all the F0 and HNR 
combinations analysed from pressed vowels. The mean 
NAQ error was smaller with the proposed method also 
for all the F0 and HNR combinations except for three 
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cases (F0 ranges 210-300 Hz and 310-400 Hz combined 
with HNR range of 16-21 dB; F0 range 310-400 Hz 
combined with HNR range 22-27 dB). 

Table 1: NAQ mean relative error (in percentage) for 
IAIF and the proposed method in the analysis of pressed 
synthetic voices.  

F0 (Hz)
IAIF HNR (dB) Prop. Meth. HNR (dB)

9-15 16-21 22-27 9-15  16-21 22-27  
100-200  27,8 14,8 22,6 13,0 11,2 15,5 
210-300 52,8 27,5 75,6 21,2 38,4 60,4 
310-400  64,7 68,9 131,3 55,9 101,1 151,0 

Table 2: DH12 mean absolute error (in dB) for IAIF and 
the proposed method in the analysis of pressed synthetic 
voices. 

F0 (Hz)
IAIF HNR (dB) Prop. Meth. HNR (dB)

9-15 16-21 22-27 9-15  16-21 22-27 
100-200 4,6 1,4 0,8 1,0 0,5 0,4 
210-300 14,3 3,6 4,0 4,7 2,4 2,0 
310-400 15,0 15,1 7,8 12,3 4,7 5,9 

Tables 3 and 4 indicate that the proposed method 
yielded smaller errors for all the F0 and HNR ranges in 
the NAQ measurements in modal phonation.  

Table 3: NAQ mean relative error (in percentage) for 
IAIF and the proposed method in the analysis of modal 
synthetic voices. 

F0 (Hz)
IAIF HNR (dB) Prop. Meth. HNR (dB)

9-15 16-21 22-27 9-15  16-21 22-27  
100-200  38,2 21,3 9,3 14,2 8,0 4,7 
210-300 68,9 38,2 16,7 24,4 11,4 10,8 
310-400  68,5 54,5 36,5 38,3 24,0 28,0 

Table 4: DH12 mean absolute error (in dB) for IAIF and 
the proposed method in the analysis of modal synthetic 
voices. 

F0 (Hz)
IAIF HNR (dB) Prop. Meth. HNR (dB)

9-15 16-21 22-27 9-15  16-21 22-27  
100-200  7,2 0,9 0,8 1,6 1,4 0,7 
210-300 15,7 6,4 3,8 5,4 1,0 1,9 
310-400  9,4 16,3 11,9 16,9 4,0 2,9 

For the DH12 error, the proposed method yielded 
larger distortion than IAIF only in two cases (F0 range of 
100-200 Hz combined with the HNR range of 16-21 dB; 
F0 range of 310-400 Hz combined with HNR range of 9-
15 dB). 

Tables 5 and 6 show results from breathy voices that 
are in line with those observed for modal phonation: the 
mean NAQ error is smaller for the proposed method for 
all the F0 and HNR categories analysed and the mean 
DH12 error was also smaller with the proposed algorithm 
in comparison to IAIF for all the F0 and HNR 
combinations except for few cases (F0 range of 100-200 

Hz combined with the HNR ranges of 16-21 dB and 22-
27 dB; F0 range of 210-300 Hz combined with HNR 
range of 22-27 dB). 

Table 5: NAQ mean relative error (in percentage) for 
IAIF and the proposed method in the analysis of breathy 
synthetic voices. 

F0 (Hz)
IAIF HNR (dB) Prop. Meth. HNR (dB) 

9-15 16-21 22-27 9-15  16-21 22-27  
100-200  56,9 37,0 16,5 25,8 11,6 12,0 
210-300 77,9 68,2 23,9 46,9 17,9 13,3 
310-400  83,8 80,7 45,8 54,4 31,6 18,9 

Table 6: DH12 mean absolute error (in dB) for IAIF and 
the proposed method in the analysis of breathy synthetic 
voices. 

F0(Hz)
IAIF HNR (dB) Prop. Meth. HNR (dB)

9-15 16-21 22-27 9-15  16-21 22-27  
100-200  9,8 4,6 2,4 5,3 5,1 4,3 
210-300 32,8 24,3 4,5 15,7 6,7 5,5 
310-400  21,0 28,2 13,3 20,8 9,1 5,7 

In summary, the results obtained for the synthetic 
vowels show that the proposed method yields smaller 
mean NAQ and DH12 errors for the majority of the 
sounds analyzed. In particular, we highlight that the 
proposed method yields improved estimation accuracy in 
conditions with large amount of noise and for high-pitch 
voices. This accuracy improvement depends on the 
phonation type being more pronounced for modal voices. 

B. Experiments with natural voices 

Results computed from natural speech are shown in the 
form of time-domain waveforms by involving both the
harmonic and the noise component yielded by the novel 
inverse filtering method.  

Figures 3 and 4 show waveforms computed from 
utterances produced by a male and female speaker, 
respectively. From both of these figures one can observe 
that the harmonic component is smoother than the glottal 
excitation waveform. In addition, low frequency 
fluctuations are not present in the harmonic component
and the noise component indicates amplitude 
perturbations at the instants of glottal closure. 

IV. DISCUSSION

Results obtained with synthetic voices show that the 
proposed method improves the estimation of the glottal 
waveform. The harmonic component given by the new 
algorithm is a more accurate estimate of the glottal source 
because the method is able to suppress the influence of 
noise which is always present in natural speech, 
particularly in pathological voices. The behavior of both 
algorithms was tested as a function of the noise level and 
fundamental frequency. The proposed method also 
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Fig. 3: Glottal excitation (top), its harmonic (middle) and 
noise (bottom) components estimated with the proposed 
method. A natural vowel [a] produced by a male speaker 
was used. The noise waveform is magnified 3 times for 
visual clarity. 

Fig. 4: Glottal excitation (top), its harmonic (middle) and 
noise (bottom) components estimated with the proposed 
method. A natural vowel [a] produced by a female 
speaker was used. The noise waveform is magnified 3 
times for visual clarity. 

enables joint estimation of the harmonic and noise 
components of the glottal waveform.  

Drawbacks of the proposed method are due to the 
harmonic-noise splitter, which may pass noise to the 
harmonic component and itself is also sensitive to the 
noise level. 

V. CONCLUSION

In this article, a method to estimate the glottal 
excitation based on a known automatic inverse filtering 
method, IAIF, and a harmonic-noise splitter was 
proposed. The new method was compared with IAIF in 
the estimation of the glottal excitation using experiments 
with both synthetic and natural vowels. 

The proposed method enables joint estimation of the 
harmonic and noise components of the glottal waveform. 
These components may be used in the evaluation of 
pathological voices since the separation enables 
characterizing the vocal folds dynamics as a function of 

noise produced in the speech production process. In 
addition, the noise component estimated by the proposed 
method can be used in speech technology in order to 
improve the naturalness of synthetic speech. 
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Abstract: In this paper, an improved Multiscale 
Product-based Method is evaluated for the open 
quotient (OQ) estimation from the noisy speech 
signal. The method consists of making the multi-
scale wavelet transforms coefficients product at 
three scales. Our proposed approach is based upon 
correlation functions computed on the negative and 
the positive parts of the speech Multiscale Product 
(MP). It operates without determining the glottal 
opening and closing instants. Over each frame, the 
pitch period is given by the first maximum of the MP 
negative part autocorrelation and the open phase is 
given by the first maximum of the inter-correlation 
between the negative and positive parts. OQ is the 
ratio of the open phase and the pitch period. Tested 
on the Keele University database, our new approach 
proves to be robust to noise degradation.  
Key words: open quotient, speech, multi-scale 
product, correlation, noise.  

I. INTRODUCTION 

According to the acoustic theory of the speech 
production, the acoustic source signal produced by the 
vibrating vocal folds is filtered by the vocal tract to 
produce the speech output signal [1]. For voiced speech, 
the glottal vibration is periodic, with the folds opening 
and closing repeatedly in a regular manner. Thus, one 
period of the voice source signal includes open phase 
and closed phase. During the closed phase, the vocal 
folds are in full contact and there is no air flow passing 
through the glottis. The open phase is itself divided into 
an opening phase during which the vocal cords begin to 
separate gradually and a closing phase during which the 
separated folds start to be in close. Therefore, during the 
open phase the air passes through the glottis and the 
vocal cords are totally or partially detached.  

The instant of vocal folds full contact is called the 
glottal closure instant (GCI) and one of vocal folds 
complete separation is the glottal opening instant (GOI). 
GCI and GOI are events of great interest for the glottis 
excitation. The open quotient is another interesting 
parameter characterising the source signal. It is defined 
as the ratio between the open phase and the cycle 
period. 

Inverse filtering (IF) is a common and useful 
technique for voice source analysis. The principle of the 
IF is to cancel the vocal tract effect from a recorded 
speech signal to acquire a glottal flow [2].  

Direct measurement of the glottis parameters from 
the radiated speech signal is still a challenging problem 
in speech analysis and synthesis domains. Though, 
numerous parameterisation approaches have been 
suggested. Time-based methods consist of detecting 
significant events such as glottal opening and closing 
instants to compute the glottis parameters [3], [4]. 
Frequency-based methods use the properties of the flow 
magnitude spectrum such as the level difference of the 
harmonics [5], [6]. In [7], Hanson uses the difference 
between the magnitudes of the first two spectral 
harmonics (H1 –H2) as an indication of the open 
quotient.  

The electroglottographic recordings are used by many 
researchers to extract the glottal source features. 
Recently, Henrich et al. have proposed a correlation-
based method called DECOM [8]. Her algorithm uses 
the correlation of the DEGG signal to estimate the 
fundamental frequency (F0) and the open quotient 
(OQ). 

In this study, we focus on applying the Henrich 
correlation algorithm on the speech MP to estimate the 
open quotient from a noisy speech. The idea is born 
from the fact that the speech MP is strongly close to the 
EGG signal. 

This paper is organised as follows. Section 2 reviews 
the principle of the multi-scale product analysis. Section 
3 describes the Correlation Multiscale Product-based 
method for measuring the open quotient from the 
speech signal. In section 4, we evaluate the performance 
of our approach on clean and noisy speech data. Section 
5 concludes this work. 

II. MULTISCALE PRODUCTS FOR SPEECH 
ANALYSIS  

Wavelet transform is a multiscale analysis widely 
used in image and signal processing. Due to the 
efficient time-frequency localisation and the 
multiresolution characteristics, the wavelet transforms 
are quite suitable for processing signals of transient and 
non-stationary nature. In [9], Mallat has shown that 
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multiscale edge detection is equivalent to find the local 
maximum of its wavelet representation. Glottal closure 
and opening instants are such events characterising the 
speech signal. The peak displaying the discontinuity in 
the wavelet transform is often damaged by noise when 
the scale is so fine or smoothed when the scale is large. 

To improve edge detection using wavelet analysis, 
the multiscale product method is proposed. The latter 
consists of making the product of the wavelet transform 
coefficients of the acoustic signal over three scales. It 
enhances the peak amplitude of the modulus maxima 
line and eliminates spurious peaks due to the vocal tract 
effect.  

The product of the wavelet transform of a function  
)(nf at scales is:  

)()( nfWnp
j

Sj∏= (1) 

Were )(nfWSj  represents the wavelet transform of 

the function )(nf at scale sj. 

The product )(np shows peaks at signal edges, and 
has relatively small values elsewhere. An odd number 
of terms in )(np  preserves the edge sign. 

The MPM was first related to the edge detection 
problem in image processing [10]. Besides, the MPM is 
proposed by Bouzid and Ellouze to extract crucial 
information concerning the vocal source from both the 
speech and the electroglottographic signal (EGG) such 
as glottal opening and closure instants, the fundamental 
frequency, the open quotient and the voicing decision 
[11], [12].  

III. MULTISCALE PRODUCT CORRELATION-
BASED METHOD FOR OPEN QUOTIENT 

MEASUREMENT 
  

As illustrated in Fig. 2, our proposed approach for 
the open quotient estimation from the speech signal 
operates following three stages. The first stage consists 
of computing the MP of a voiced speech signal and then 
dividing it into frames of a fixed length. The second 
stage consists of separating the speech MP into two 
parts: a negative part MPc which contains information 
concerning glottal closure peaks, and a positive part 
MPo which contains information about glottal opening 
peaks. The MPc signal is derived from the original 
signal by replacing any positive value by zero. In the 
same way, the MPo signal is derived from the original 
signal by replacing any negative value by zero. 

The third stage concerns the calculation of the inter-
correlation function between the positive and negative 

parts (MPo and MPc) to estimate the open phase, and 
the autocorrelation function of the MPc to estimate the 
pitch period over each frame. The open phase and the 
pitch period are respectively given by the non null index 
matching with the first maximum of the intercorrelation 
and autocorrelation functions. The open quotient is then 
deduced by calculating the ratio between the open phase 
and the pitch period.  

OQ estimation over a speech frame 

(2)

Voiced Speech 

WT scale 2 WT scale 3WT scale 1

Multiscale Product Signal 

MPM

Enframing 

(1)

First maximum 
detection

Autocorrelation of 
MPc

Pitch period  

Intercorrecation 
between MPo and 

MPc

First maximum 
detection

Open phase  

Ratio of the open phase and the pitch period 

(3) 

Positive part MPo Negative  part MPc

Fig. 1: Overview of the proposed method.  
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To compute the MP, we multiply the wavelet 
transforms of the speech signal at scales 2, 5/2 and 3 
using the quadratic spline function.  

To divide the MP signal into frames of a length N, 
we multiply it by a sliding rectangular window w[N]. 
The MP over a window of index i is given by the 
following equation: 

][][][ kwiNkMPkMPwi −= (2) 
Where k is within [1, N] and i is the frame index. 

The intercorrelation function between MPo and MPc 
over a frame i is calculated as follows: 

)()()(
1
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o
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As the same way, the autocorrelation function of 
MPc over a frame i is calculated as follows:  

)()()(
1
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N

l

c
wic +=∑

=
(4) 

Fig. 2 :  Speech MP and the autocorrelation function of  
its positive part. 

Fig. 3 : Speech MP and the inter-correlation between 
its negative part and positive one 

The non null index matching with the first 
maximum of the MPc autocorrelation function shown in 
the second part of the Fig. 2 corresponds to the pitch 
period which is defined as the distance separating two 
consecutive GCIs. 

Fig. 3 shows the speech MP followed by the inter-
correlation calculated between its positive and negative 
parts. The non null index matching with the first 

maximum of the inter-correlation function corresponds 
to the time between an opening peak and the 
consecutive closing peak which is termed as the open 
phase.  

IV. EVALUATION RESULTS  

In this section, we evaluate the performance of our 
proposed method for OQ estimation using the Keele 
University database. This database includes the acoustic 
speech signals and laryngograph signals (single speaker 
recording). Five adult female speakers (fi) and five 
adult male speakers (mi) with { }5,...1∈i are recorded 
in low ambient noise conditions using a sound-proof 
room. Each utterance consists of the same phonetically-
balanced English text. In each case, the acoustic and 
laryngograph signals are time-synchronised and share 
the same sampling rate value of 20 kHz [13].  

To evaluate the performance of our OQ estimator, 
we compute the standard deviation (σ ) of the error 
measured as a difference between the OQ estimated 
from the speech and the EGG signals.  

To study the noise effect on the accuracy of our open 
quotient estimator, we add noise to the original speech 
signal at various SNR levels. The noise is taken from 
the noisex-92 database [14]. Babble and vehicle noises 
are considered in this work. 

Table 1 shows the performance of our approach for 
OQ estimation from the clean and noisy speech.  

On clean speech approach estimates OQ with a 
standard deviation ranging from 0.03 for f2 to 0.08 form 
m5. It’s a considerable accuracy for estimating open 
quotient from the speech signal. In fact, works 
developed in this field usually use the EGG recordings. 

In the presence of noise at SNR levels ranging from 
5dB to -5dB, we can notice that the noise has 
insignificant effect on the accuracy of the proposed 
approach. The majority of speakers save the same 
standard deviation value when adding noise. For others, 
the deviation increases finely when the SNR level 
reaches -5 dB.  

V. CONCLUSION 
In this paper, we have proposed an improved 

Multiscale Product-based method for estimating the 
open quotient from clean and noisy speech signal. The 
proposed method exploits the correlation of the speech 
multiscale product which reminds the derivative of the 
EGG signal shape representing the global source 
activity.  

The OQ estimation is obtained by calculating the 
ratio of the open phase over the pitch period. The open 
phase is referred as the index non null of the first 
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maximum localised on the inter-correlation function 
between the positive and the negative parts of the 
speech MP. As the same way, the pitch period is the
non null index matching with the first maximum of the 
speech MP correlation function. 

Standard deviation between OQ estimated from the 
speech signal and OQ measured from the EGG signal is 
measured to evaluate our method. The evaluation is 
done on the Keele University database in a noisy 
environment. Noise is extracted from the noisex-92 
database. The proposed approach is proved to be 
accurate and robust. 
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Table 1 : Performance of Multiscale Product Correlation method for open quotient estimation using the Keele 
database on clean and noisy speech 

Standard Deviation (σ ) 
Female speakers         Male speakers 

Noise Type SNR 

F1 F2 F3 F4 F5 M1 M2 M3 M4 M5

Clean speech 0.06 0.06 0.05 0.03 0.04 0.07 0.04 0.04 0.05 0.08 
5 db 0.07 0.07 0.06 0.03 0.05 0.07 0.04 0.04 0.05 0.08 
0 db 0.07 0.07 0.06 0.03 0.05 0.07 0.04 0.04 0.05 0.08 

Babble -5 db 0.08 0.07 0.06 0.03 0.05 0.07 0.05 0.04 0.05 0.08 
5 db 0.07 0.06 0.05 0.03 0.05 0.07 0.04 0.04 0.05 0.08 
0 db 0.07 0.06 0.05 0.03 0.05 0.07 0.04 0.04 0.05 0.08 Vehicle -5 db 0.07 0.06 0.05 0.04 0.05 0.08 0.04 0.04 0.05 0.09 
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Objective measurement of the severity of dysphonia 
typically requires signal processing algorithms applied to 
acoustic recordings. Since Lieberman (1963) introduced 
the concept of perturbation analysis in the area of voice, 
the most dominant acoustic parameter in clinical practice 
is the classical jitter. However jitter measurements have 
some critical limitations. According to a widely accepted 
guideline, in sustained vowels of dysphonic voices, only 
perturbation measures less than about 5% (quasi-periodic 
voices) are reliable: this is related to period extraction 
methods. 
This means that traditional acoustic analysis programs 
available for clinical use are not suited for quality 
assessment of strongly irregular voices, as substitution 
voices (voices not generated by two vocal folds, 
particularly after total/partial laryngectomy) or spasmodic 
dysphonias. The basic protocol for multidimensional 
voice assessment as recommended by the European 
Laryngological Society (Dejonckere et al., 2001) 
specifically mentions that it is not suitable for a few very 
special categories of voices, as substitution voices and 
spasmodic dysphonia. Nevertheless a valid quality 
evaluation is essential for substitution voices, as in 
laryngeal oncology there may be different therapeutical 
options comparable in survival rate for the same nature 
and stage of cancer. In such cases, functional outcomes 
(voice, respiration, swallowing) gain major significance.  
The strong irregularity that characterizes the substitution 
voices is the major problem for usual acoustic analysis.  
This special session deals for a part with successful 
improvements of the traditional approach of the cycle-to-
cycle variability. A breakthrough was made possible by 
the development of a synthesizer of „ realistic ‟ 
pathologic voices, that cannot be recognized by expert 
listeners from true patient ‟ s voices, and where the jitter „ 
put in ‟ is exactly known. This allows to check as well the 
ability of pattern recognition of the human visual system 
as the validity of new algorithms for period detection, in 
different conditions of noise. The practical result is that 
the traditional threshold limit value of 5 % for jitter 
measures may be transgressed under some conditions that 
will be discussed. 
Furthermore, the question remains about the clinical 
value of perturbation measurements when analyzing 

running speech of patients with either substitution voices 
or spasmodic dysphonia. The same question is relevant 
for noise measurements. It still becomes clearer that the 
acoustic parameters that are in some way related to the 
selection of voiced/unvoiced parts of the signal are the 
most successful ones in discriminating either different 
types of substitution voices or therapeutical effect in 
spasmodic dysphonia. 
Another problem is the presence of tremor in some 
pathological voices: this mainly concerns neurological 
voices, and particularly spasmodic dysphonia, a focal 
laryngeal dystonia. 
The estimation of tremor attributes in a speech signal 
involves the accurate extraction of the signal that 
modulates the time-varying fundamental frequency. A 
new significant attribute of tremor is introduced. It 
derives from the time-varying characteristic of the 
modulation level, namely the deviation of the modulation 
level. The mean modulation level and its deviation are 
combined in a quality indicator trying to classify speakers 
according to the prevalence of tremor in their voice. This 
innovative approach can be tested on sustained vowels 
uttered by patients who suffer from spasmodic dysphonia 
before and after medical treatment. 
 

 
REFERENCES 

 
 
Dejonckere PH, Giordano A, Schoentgen J, Fraj S, 
Bocchi L, Manfredi C “To what degree of voice 
perturbation are jitter measurements valid ? A novel 
approach with synthesized vowels and visuo-perceptual 
pattern recognition.” Biomedical Signal Processing and 
Control, 2011 (in print). 
 
Manfredi C, Giordano A, Schoentgen J, FrajS,Bocchi L, 
Dejonckere PH, “Perturbation measurements in highly 
irregular voice signals: Performances/validity of analysis 
software tools” Biomedical Signal Processing and 
Control, 2011 (in print). 
 
Dejonckere PH, Giordano A, Schoentgen J, Fraj S, 
Bocchi L, Manfredi C  “Validity of jitter measures in non 

special session 
 

innovative Ways for acoustic analysis of non Quasi-
periodic voices  

 
P. H. Dejonckere 1 

 

1 Experimental ORL Cath. Univ. Leuven (B), Fed. Inst. Occup. Diseases Brussels (B), ORL-Phoniatrics Utrecht Univ. (Nl)  



� 125

quasi-periodic voices. Part I : Perceptual and computer 
performances in cycle pattern recognition.” 
LogopedicsPhoniatricsVocology, 2011 (in print). 
 
Manfredi C, Giordano A, Schoentgen J, Fraj S, Bocchi L, 
Dejonckere PH “Reliability of voice analysis software 
tools for highly irregular signals Part II: the effect of 
noise”LogopedicsPhoniatricsVocology, 2011 (in print). 
 
Dejonckere P.H., Bradley P., Clemente P., Cornut G., 
Crevier-Buchman L, Friedrich G, Van De Heyning P, 
Remacle M., Woisard V.,“A basic protocol for functional 
assessment of voice pathology, especially for 
investigating the efficacy of (phonosurgical) treatments 
and evaluating new assessments techniques”, Guideline  
elaborated by the Committee on Phoniatrics of the 
European Laryngological Society (ELS), Eur. Arch. 
Otorhinolaryngol.258, pp.77-82, 2001. 
 
Dejonckere PH, Neumann KJ, Moerman MBJ, Martens 
JP, “Perceptual and acoustic assessment of adductor 
spasmodic dysphonia pre- and post-treatment with 
botulinum toxin”, Proc. 3rd AVFA International Worshop, 
18th-20th May 2009, Madrid (Spain). 





ANALYSIS OF GLOTTAL CYCLE TREMOR AND JITTER BY
EMPIRICAL MODE DECOMPOSITION

C. Mertens1, F. Grenez1, V.Boucher2, J. Schoentgen1,3

1Laboratory of Images, Signals and Telecommunication Devices, Université Libre de Bruxelles, Brussels, Belgium
2Laboratoire de Sciences Phonétiques. Université de Montréal, Montréal, Canada

3National Fund for Scientific Research, Belgium

Abstract : The presentation concerns a method for track-
ing cycle lengths in voiced speech and analysing vocal
cycle lengh fluctuations. The tracking of cycle lengths is
based on a dynamic programming algorithm, which does
not request that the signal is locally periodic and the
average period length is known a priori. The obtained
cycle length time series is then decomposed into a sum
of intrinsic mode functions by means of empirical mode
decomposition. These mode functions are then assigned to
three categories, which are cycle length jitter, cycle length
tremor and trend owing to intonation and physiological
tremor. The characteristics of slow and fast perturbations
are reported.

Keywords : vocal frequency, vocal tremor, vocal jitter,
speech salience analysis, empirical mode decomposition

I. INTRODUCTION

In clinical applications of speech analysis, speech cycles
are detected to measure their lengths and amplitudes with a
view to investigating slow (vocal tremor) and fast (vocal jitter
and shimmer) perturbations of vocal frequency and speech
cycle amplitude. Often, such analyses are frame-based and
the cycle detection rests on the recursive detection and
storage of speech signal extrema that occur in the vicinity
of the instants of glottal excitation. To enable this selection,
one often assumes that voiced speech segments are pseudo-
periodic so that the peaks can be selected one by one on the
base of a prior estimation of the typical fundamental period.
The assumption of quasi-equal spacing is, however, valid
for modal voices only and not for pathological ones, which
may be characterized by large cycle-to-cycle fluctuations
in length or amplitude. Cycle insertion or omission errors
may therefore occur, which bias the acoustic cues of cycle
regularity.

Here, the speech cycle tracking does not rest on the
assumptions that the speech signal is locally periodic and
the average period length known a priori. We propose to
track speech cycles via a multiscale analysis that assigns a
salience to each signal peak. A signal peak is a signal sample
whose left and right neighbours are smaller. The salience of
a speech signal peak designates the time interval over which
this peak is a maximum. The vocal cycle detection method

relies on dynamic programming to extract a cycle sequence
the length perturbations of which is minimal. The cost
function involves the second order differences of successive
speech cycle durations as well as the cycle peak saliences.
The tracker does not rely on estimates of the typical cycle
length, as opposed to existing proposals involving dynamic
programming in the extraction of the vocal frequency or
glottal cycle length [1]. The obtained cycle length time
series is then decomposed into a sum of intrinsic mode
functions by means of empirical mode decomposition [2].
These mode functions are then assigned to three categories,
which are cycle length jitter, vocal tremor and trend owing
to intonation and physiological tremor.

Section 2 explains speech sample saliences, the tracking
of the speech cycles and the extraction of the empirical
mode times series, as well as the corpora. Section 3 reports
the results and discussion of the tracking of slow and fast
perturbations in speakers affected by vocal fatigue as well
as synthetic tremored sounds.

II. METHOD

A. Preprocessing

The speech signal is band-pass filtered by means of a finite
response (FIR) filter with cut-off frequencies equal to 60Hz
and 1000Hz to remove additive low frequency hum, additive
noise owing to turbulence as well as high-frequency formants.

The speech signal is then upsampled to Fs = 192kHz to
enable the peak positions to be measured with a precision
requested by the size of vocal jitter, which in modal voice is
expected to be < 1% of the typical cycle length.

B. Speech sample salience analysis

The salience of a signal sample (which may be a signal
peak or not) is defined as the length of the longest temporal
interval over which the signal sample is a maximum. A
property of the salience is that a sample with a large salience
has not necessarily a large amplitude and vice versa. For
instance, in voiced speech, speech cycles are often charac-
terized by a prominent signal peak that is the effect of the
glottal excitation. The salience of that peak is expected to be
high irrespective of the evolving signal amplitude.

The speech sample saliences have been obtained via a
multi-scale analysis based on a sliding analysis window of
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length N. Fast windowed salience analysis involves speeding
up the algorithm by computing left and right-hand saliences
and computing saliences for a subset of samples only. Details
are reported in [3].

The final speech sample saliences are comprised between
1 and 2N − 1. It is recommended to discard the N − 1
first and last sample saliences, that are conditioned by the
array boundaries. The sliding analysis window length must
therefore be chosen so as to minimize the loss of information
owing to the array boundaries and maximize the relevance of
the window-determined saliences with regard to the goal of
the multi-scale analysis.

Fig. 1 : Signal peak saliences of sustained vowel fragment [a]

Fig. 1 illustrates the peak salience values obtained for a
fragment of vowel [a]. One observes that the prominent signal
peaks due to the glottal excitation have a higher salience value
than other secondary peaks that are due to tract resonances.

C. Speech cycle tracking

For speech cycle tracking, no strong assumptions are made
with regard to the regularity of the cycle lengths. One
assumes that the vocal frequency is comprised between 60Hz
and 400Hz.

The first stage consists in ranking the signal peaks ac-
cording to decreasing salience and keeping those peaks the
salience values of which are greater than or equal to 150%
the length of the shortest possible cycle. The initial number
of peaks is therefore in excess of the number of expected
cycles because a typical salience value of a speech cycle
peak is equal to twice the cycle length.

The second stage consists in considering several candidate
cycle length time series obtained by means of the retained
peak distances and discovering via dynamic programming
the length series that has the smallest overall cycle duration
perturbation. The candidate cycle length series are built by
taking into account several signal peak sub-sequences on the
base of the local inter-peak durations and the peak salience
values, assuming that prominent speech cycle peaks owing
to the glottal excitation are characterized by large salience
values. This second stage comprises an initialization, search
and backtracking step. Details are reported in [4].

D. Vocal Jitter, vocal tremor and trend

The obtained vocal cycle length time series is then
constant-step interpolated by :

1) reconstructing the temporal axis as the sum of the
successive vocal cycle lengths,

2) interpolating the obtained series by means of cubic
splines and

3) resampling to obtain a time series of lengths sampled
at a constant sampling step.

The interpolated cycle length time series is decimated to
a sampling frequency equal to 150% of the average vocal
frequency. The decimated cycle length time serie is then
decomposed iteratively into several intrinsic mode functions
(IMF) by means of empirical mode decomposition [2], as
follows :

x(n) =
M

∑
i=1

IMFi(n)+ r(n) (1)

where IMFi(n) is the ith alternating function with respect
to the zero local mean and r(n) is a monotonic function,
called residue. For each IMFi, the spectrum and the abscissa
fG of the center of gravity of the spectrum are computed.
According to the value of fG, the IMFi is then assigned to
three categories : trend ( fG < 3Hz), vocal tremor (3Hz <
fG < 15Hz) and vocal jitter ( fG > 15Hz) and then added per
category. Fig 2 reports the result of this assignation for the
speech cycle time series of a French sustained vowel [a], for
instance.

E. Vocal cues

One acoustic cue is the abscissa of the center of gravity
of the low-frequency amplitude spectrum of the vocal tremor
cycle length series, computed in the frequency interval [3-
15Hz]. The boundary is fixed at 3Hz because cardiac beat,
breathing and bloodflow are expected to influence strongly
the spectrum below 3Hz. Two other cues are the standard
deviation of the vocal tremor or vocal jitter cycle length
time series divided by the average cycle length. These cues
characterize the excursion of the cycle durations with respect
to their average. The three cues are estimates of respectively
the modulation frequency and modulation depth owing to
tremor as well as jitter of the vocal frequency.

F. Corpus

The method has been applied to several corpora of
synthetic vowels [a] and to a corpus of French vowels [a]
sustained by a speaker in the framework of a voice loading
task. The latter involves studying the effects of vocal fatigue.
Synthetic vowels [a] have been generated with different
vocal jitter, vocal tremor and additive noise characteristics,
with a view to validating the present approach.
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Fig. 2 : Cycle length time series and its decomposition into vocal jitter, vocal tremor and trend (temporal and frequency domain)

Fig. 3 : Evolution of vocal cues with different vocal tremor, vocal jitter and additive noise characteristics

III. RESULTS AND DISCUSSION

A. Validation

The reliability of the tracking of the cycle length time
series via speech peak saliences and regularity constraints had
already been tested by means of modal speech signals, their
numerical derivatives and integrals as well as the co-recorded
throat microphone signals in [4]. Here, the reliability of the
vocal cycle perturbation extraction has been tested by means
of synthetic vowels, generated with different vocal tremor

amplitudes (Experiment 1), vocal jitter levels (Experiment 2)
and additive noise levels (Experiment 3). The default vocal
tremor frequency is fixed at 4Hz. Fig. 3 shows the results
of these experiments. One observes, for experiments (1) and
(2), that the coefficients of variation of the tremor time series
increase with the modulation depth and the coefficients of
variation of the jitter time series increase with vocal jitter.
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Fig. 4 : Effects over time of vocal fatigue

B. Vocal Fatigue

The results for voice loading are reported in Fig. 4.
Symbol � reports time series obtained for vowels [a]
sustained at a modal vocal frequency and symbol ∗ reports
results obtained for vowels [a] sustained at the highest
possible vocal frequency. One observes that the effects
over time of vocal fatigue are mainly an increasing vocal
frequency, a possibly decreasing tremor modulation depth
and an possibly increasing cycle length jitter. One also
observes that tremor frequency appears not to be affected by
fatigue.
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Abstract: A number of studies have shown that the 
amplitude of the first rahmonic peak (R1) in the 
cepstrum may indicate hoarse voice quality. The 
cepstrum is obtained by taking the inverse Fourier 
transform of the log-magnitude spectrum. The goal of 
the article is to apply cepstral analysis to a 
perceptually evaluated corpus of synthetic stimuli to 
learn about the link between the signal properties 
(fixed by the synthesizer parameters) and the first 
rahmonic peak. The synthetic stimuli have been 
generated by a synthesizer of disordered voices that 
has been shown to generate natural-sounding speech 
fragments comprising different vocal perturbations. A 
second objective is to examine the link between first 
rahmonic peak and perceived breathiness and 
roughness, link which has not been studied previously. 
The speech stimuli have been perceptually assessed by 
nine listeners according to grade, breathiness and 
roughness. A number of cepstral analysis alternatives 
have been implemented, including period-
synchronous temporal frames and harmonic-
synchronous band-limited analyses.  
Keywords :  cepstral analysis, synthetic disordered 
speech, first rahmonic amplitude 

I. INTRODUCTION 

Acoustic analysis has a central place within the context 
of the assessment of laryngeal function because the 
speech signal may be recorded non-invasively and it is 
the basis on which the perceptual assessment of voice is 
founded. Many voice disorders cause voiced speech to 
deviate from periodicity. Dysperiodicities may be caused 
by additive noise owing to turbulent airflow and 
modulation noise owing to perturbations of the frequency 
and amplitude of the glottal excitation signal. 
Dysperiodicities may also be due to intrinsically irregular 
dynamics of the vocal folds and involuntary transients 
between dynamic regimes [1].  
Several acoustic features that have been used to assess 

vocal fold function report the deviation of the voiced 
speech waveform from perfect periodicity. Vocal jitter 
and shimmer, for instance, are frequently used to 
summarize perturbations of the voiced speech cycle 

lengths and amplitudes, respectively. A signal that has 
shown promise as a global descriptor of voice quality is 
the cepstrum. Global descriptors designate features that 
report different voice qualities as patterns rather than 
focus on narrowly-defined properties of the speech 
signal.  
The cepstrum is defined as the inverse magnitude 

spectrum of the log-magnitude spectrum [2]. Because the 
logarithmic power spectrum of voiced speech consists of 
equally spaced harmonics, a peak occurs in the inverse 
Fourier transform of this signal (the cepstrum) at a point 
corresponding to the glottal period [3]. Previous studies 
have shown that the amplitude of the first rahmonic peak 
in the cepstrum (R1) is a global descriptor of glottal 
turbulence noise and modulation noise [4]. 

Although, it has been frequently observed that 
increased levels of noise and perturbations in the voice 
signal decrease R1, a formal description of cepstral peak 
R1 has been lacking. Murphy has provided a theoretical 
description of cepstral analysis of voiced speech with 
aspiration noise, which suggests that R1 is directly 
proportional to a geometric-mean harmonics-to-noise 
ratio [5]. He shows that R1 and the geometric-mean 
harmonics-to-noise ratio (measured spectrally) 
underestimate the actual geometric-mean harmonics-to-
noise ratio when averaged noise levels exceed harmonic 
levels. Limiting the number of harmonics in the analysis 
window overcomes this problem and in the case of 
period-synchronous analysis also alleviates the 
dependence of R1 on (temporal) window length and F0. 

For the present study, a corpus of synthetic sound 
stimuli has been obtained by means of a synthesizer of 
disordered voices [6]. It can mimic a wide range of 
speech source perturbations such as additive noise at the 
glottis, vocal frequency jitter, vocal shimmer, vocal 
frequency tremor, amplitude tremor, diplophonia, 
biphonation and random glottal cycles.  

The synthetic stimuli are vowels [a], [i], [u] and 
transients [ai] and [ia]. Each has been perceptually 
assessed by nine professional listeners according to 
grade, roughness and breathiness. 

The purpose of the article is to apply cepstral analysis 
to a perceptually evaluated corpus of synthetic stimuli to 
learn about the link between the signal properties (fixed 
by the synthesizer parameters) and the first rahmonic 
peak. A second objective is to examine the link between 
first rahmonic peak and perceived breathiness and 
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roughness, link which has not been studied previously. A 
number of spectral analysis alternatives have been 
implemented, including period-synchronous temporal 
frames and harmonic-synchronous band-limited analyses. 

II. CORPUS 

The synthesizer involves models of the glottal area and 
airflow through the glottis. The time-evolving glottal area 
is modelled by means of a nonlinear memoryless signal 
model that transforms a trigonometric driving function 
into the desired glottal area waveform. One attractive 
property of the model is that the frequency and harmonic 
richness of the glottal area are controlled by the 
instantaneous frequency and amplitude of the harmonic 
driving function. 

The glottal airflow rate is generated by means of an 
algebraic aerodynamic model involving the glottal area 
and including interactions between the glottis and the 
infra- and supra-glottal ducts. The propagation of the 
acoustic wave through the trachea and vocal tract is 
simulated by means of concatenated tubes. Wall 
vibration, viscous and thermal losses as well as acoustic 
reflection and radiation at the lips and glottis are taken 
into account. Modulation noise such as jitter or tremor 
and abnormal voice qualities such as diplophonia, 
biphonation and irregular vocal cycles are mimicked by 
means of stochastic or deterministic models of the time-
evolving instantaneous frequency or amplitude of the 
driving harmonics of the glottal area model. 

The ability of the synthesizer to mimic natural 
disordered voices has been demonstrated in the 
framework of several perceptual experiments [7]. 

The corpus comprises synthetic sounds [a], [i], [u], [ia] 
and [ai] which are one second long. The vowel → vowel 
transitions have been simulated by evolving linearly the 
tract area function from one vowel target to the next over 
an interval of 0.2 s in the middle of the one second 
interval. Each set is composed of 48 stimuli that combine 
three values of vocal frequency, four levels of frequency 
jitter and four levels of additive noise. The vocal 
frequency values are 100, 120 and 140 Hz. The jitter and 
additive noise have been fixed based on the independent 
advice of one phoniatrician and one speech therapist so 
that the stimuli are perceived as covering the full ranges 
of grade (G0 - G3), roughness (R0 - R3) and breathiness 
(B0 - B3) on the GRB(AS) scales. The area function of 
the vocal tract has been identical for all stimuli of the 
same vowel category [6]. 

Eight speech therapists and one phoniatrician have 
perceptually evaluated each set of synthetic sounds 
according to perceived “grade” (G), “roughness” (R) and 
“breathiness” (B) with four degrees per scale: 0 (normal), 
1 (feeble), 2 (moderate) and 3 (severe). The scores of G, 
R and B have been averaged over the nine judges. 

III. METHODS

A. First rahmonic amplitude (R1) 

Figure 1: Amplitude spectrum and cepstrum of sustained 
vowel [a] showing the first rahmonic amplitude. 

  
Figure 2: Dashed line: Log-magnitude spectrum. Solid 
line: Band-limited and offset-removed log-magnitude 
spectrum for an analysis frame of vowel [a]. 

• Full-band spectrum 

The computation of the amplitude of first rahmonic 
(R1) involves the following. The amplitude spectra of the 
hopped Hamming-windowed frames are averaged and the 
log-magnitude of the average is taken (Fig. 1). The 
cepstrum is obtained via the inverse Fourier transform of 
the log-amplitude average spectrum. First rahmonic R1 is 
located in the vicinity of the quefrency corresponding to 
the glottal cycle length. The analysis has been period-
synchronous, i.e. the lengths of the frame have been 
multiples of the vocal cycle length.  
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• Band-limited spectrum 

The computation of R1 implicates the same steps as 
previously. However, prior to the computation of the 
cepstrum, the log-average spectrum is limited to a fixed 
number of harmonics and the offset is removed (Fig.2). 

B. Correlation analysis 

The correlation coefficients of the amplitude of first 
rahmonic (R1) obtained via the different options (full-
band, band-limited) with the average perceptual scores 
for grade, roughness and breathiness have been 
computed.  

C. Multi-cue regression analysis 

The amplitude of first rahmonic (R1) has been 
regressed on the parameters of the synthesizer fixing 
additive noise, jitter and fundamental frequency. The 
phonetic category of the stimuli has been taken into 
account by a dummy variable: 1 for [a], 2 for [ai], 3 for 
[ia], 4 for [i] and 5 for [u]. 

IV. RESULTS 

A. Correlation analysis 
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Figure 3: Correlation of period-synchronous (6 cycles) 
band-limited R1 with perceptual scores GRB of vowel 
[a]. The dashed lines correspond to the correlations of 
full-band R1 with GRB. 

Fig. 3 displays the correlations of period-synchronous 
(6 periods) full-band and band-limited R1 with average 
perceptual scores for vowel [a]. One observes that R1 is 

highly correlated with the average scores of roughness 
and grade and  moderately correlated with breathiness. 
Limiting the spectrum to a feeble numbers of harmonics 
prior to computing the cepstrum enables improving the 
correlation with average perceptual scores. In particular, 
one observes that if the spectrum is limited to only two 
harmonics a correlation of 0.80 with the average 
breathiness scores is obtained. This correlation rapidly 
decreases to 0.55 when increasing the number of 
harmonics in the spectrum. 

The correlations obtained for vowel [i] are slightly 
smaller but similar to other vowels and vowel-vowel 
pairs.  

B. Multi-cue regression analysis 
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Figure 4 : Standardized regression coefficients of the 
additive noise and jitter control parameters predicting R1. 

The period-synchronous (6 periods) band-limited R1 
has been predicted via the additive noise, jitter and vocal 
frequency control parameters of the synthesizer and a 
dummy variable that takes phonetic category into 
account. Fig. 4 displays the standardized regression 
coefficients of the additive noise and jitter parameters. 
Vocal frequency and phonetic category do not contribute 
to the prediction of period-synchronous R1. Jitter 
contributes most. However, when the number of 
harmonics in the band-limited spectrum is smaller than 6, 
the contribution of pulsatile additive noise exceeds the 
contribution of jitter. Also, when the number of 
harmonics in the spectrum increases the correlation of R1 
with additive noise decreases (down to 0.35) while the 
correlation with jitter increases (to 0.85).   

V. DISCUSSION AND CONCLUSION

Correlations of full-band R1 with perceived 
roughness (ρ ≈ 0.85) and grade (ρ ≈ 0.80) are good. 
However, only a moderate correlation is observed with 
perceived breathiness (ρ ≈ 0.55). 

Limiting the spectrum to a feeble number of 
harmonics improves the correlation. The largest 
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improvement is observed for breathiness. Indeed, when 
the spectrum is limited to 2 harmonics, the correlation 
increases to 0.80. 

One has also observed that jitter contributes most to 
predicting the period-synchronous band-limited R1 
(Fig.4) when the number of harmonics in the spectrum is 
larger than 6. A possible explanation is that cue R1 
mainly reports modulation noise that broadens and 
decreases harmonic amplitudes and adds spectral 
sidebands. In the case of homogeneous modulation noise, 
spectral effects are proportional to the order of the 
harmonic. When the number of harmonics that is taken 
into account is feeble at low-frequencies, modulation 
noise effects are less prominent in R1 and the influence 
of additive noise, which is harmonic independent, 
increases. Fig. 5 displays the average spectrum for two 
vowels [a] with the same additive noise level and low and 
high vocal jitter levels. 

One observes that the correlation of roughness and 
grade with cue R1 increases (Fig.3) whereas the 
correlation of R1 with jitter decreases (Fig.4) when the 
bandwidth of the log-amplitude spectrum decreases. A 
possible explanation is that experiments reported 
elsewhere suggest that the perception of roughness is 
effected both by modulation noise and additive pulsatile 
noise.  

Figure 5 : Average spectrum for two vowels [a] with low 
(solid line) and high (dashed line) vocal jitter level. 

Some of these results may seem to contradict 
simulations reported in [5], which have shown that 
period-synchronous band-limited R1 evolves linearly 
with aspiration noise and non-linearly with jitter.

The main reason for the differences between both 
studies is that in [5]  experiments have been carried out 
on stimuli perturbed by one kind of noise only. Therefore, 
the effects of one type of perturbation are not masked by 
another type. In particular, the spectral effects of additive 
noise are not hidden by those of vocal jitter. 

 Additional experiments have therefore been carried 
out on synthetic disordered stimuli [8] resting on the 
synthesis model reported above, but involving one type of 
noise only. 

One then observes that period-synchronous (6 
periods) harmonic-limited R1 obtained from stimuli 
perturbed by the additive noise only is very well 
correlated with the noise level (ρ ≈  0.90). This 
correlation is larger than the correlation obtained for 
stimuli containing vocal jitter only (ρ ≈  0.80). 

Also, the synthetic stimuli used here are more natural 
than in [5]. Indeed, in [5] the purpose of the stimuli was 
not to mimic natural disordered voice and the noise 
characteristics also differ between both studies. 
Aspiration noise in [5] was synthesized by means of a 
zero-mean white Gaussian noise added to the glottal 
source, whereas in this study, additive noise is mimicked 
by means of Brownian noise, the amplitude of which is 
modulated via an affine function of the glottal airflow 
rate [7]. Also, in [5] vocal jitter is synthesized through 
time scaling of glottal waveforms, whereas here it is 
caused by small random perturbations of the 
instantaneous frequency of the driving function of the 
synthesizer. 
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Abstract: The framework of the presentation is the 
assessment of the ability of human raters or speech-
processing software to detect glottal cycles in speech 
sounds and measure their lengths in synthetic breathy 
and rough voices. The synthesis of hoarse voices 
designates the generation of speech sounds the timbre 
of which simulates the voice quality of dysphonic 
speakers. The added value of synthetically generated 
test stimuli is that the user may fix and know their 
properties exactly. The corpus comprises synthetic 
vowels [a] combining seven levels of frequency jitter 
and three levels of additive noise. The presentation is 
focused on the simulation of rough and breathy voices 
via frequency modulation of the glottal excitation 
model and addition of pulsatile noise at the glottis. 
Furthermore, the genuine glottal cycle lengths and 
glottal source to noise ratios are obtained to which 
lengths and ratios inferred via signal processing may 
be compared. The glottal cycle lengths are acquired 
by tracking the phase of the harmonic driving 
functions of the speech sound synthesizer. Actual 
glottal signal-to-noise ratios are measured by 
summing separately over the sound stimuli the 
squared clean volume velocity and pulsatile noise 
samples.  
 
Keywords: speech synthesis, breathiness, roughness, 
frequency jitter, amplitude shimmy, and additive 
glottal noise. 

 
I. INTRODUCTION 

 
The synthesis of breathy or rough voices designates the 

generation of speech sounds the timbre of which 
simulates the voice quality of dysphonic speakers. The 
framework of the present article is the assessment of the 
ability of human raters or speech-processing software to 
detect and measure the length of glottal cycles in severely 
hoarse voices. The added value of synthetically generated 
test stimuli is that the user may fix and know their 
properties exactly. Artificial speech sounds have 
therefore been used in the past to develop and test clinical 
analysis software the purpose of which is to obtain cues 

that describe a speaker’s voice quantitatively. A 
distinction between synthetic and artificial speech sounds 
may be apposite, however. Indeed, synthetic speech, 
whatever its purpose, is meant to be listened to by 
humans to whom it must sound intelligible and natural. 
The property of naturalness may be relevant because it 
causes synthetic speech to be perceived as human or 
nearly human so that a listener’s or a speech processing 
software’s response to the paralinguistic or extra-
linguistic (e.g. clinical) facets of the synthetic speech 
sounds are similar to their responses to genuine human 
stimuli 
 
 

II. METHODS 
 
A. Synthesis of disordered speech sounds 
 

 
Fig.1: Scheme of the synthesizer 
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The synthesis involves three modules (A) – (C) that 

feed each other from right to left in Fig. 1. The right-most 
module (A) is only active for initialization. Modules (B) 
and (C) are active during synthesis. The purpose of 
module (A) is the computation of the coefficients of 
distortion polynomials by means of which the glottal area 
is simulated [2]. The polynomial coefficients are obtained 
via a constant linear transform from the Fourier series 
coefficients of the template cycle, which has been a Klatt 
model of the glottal area [5]. 

The generation of signal cycles via polynomials and 
their control by means of the parameters of a driving 
sinusoid is known as nonlinear wave shaping. Wave 
shaping enables setting sample by sample the frequency 
of the glottal area and continuously evolving its shape 
between a quasi-sinusoid and the default template shape 
that is fixed via the coefficients of the wave-shaping 
polynomials.  

During synthesis, Module (B) simulates the glottal area 
based on a nonlinear transform of two harmonic functions 
via two distortion polynomials into the desired area 
waveform. The instantaneous frequencies of the 
harmonic driving functions are identical and they fix the 
frequency of the glottal area waveform. The identical 
amplitudes of the driving functions fix the open quotient 
and spectral brilliance (bandwidth) of the glottal area the 
overall amplitude of which is determined by a linear gain. 
When the driving amplitudes are equal to one, the 
nonlinear distortion model outputs the default shape and 
size of the Klatt area template. When the driving 
amplitude is small, the output of the wave-shaper is 
quasi-sinusoidal and a constant when the driving 
amplitude is zero. At the top of module (B) the sampling 
rate is equal to 176 kHz and 88 kHz at the bottom. 

In module (C), trachea and vocal tract are imitated by 
concatenations of short elementary cylinders. The 
number of ducts of the trachea is equal to 36. Their 
constant cross-section is equal to 1.2 cm2. The number of 
elementary cylinders mimicking the vocal tract is 
comprised between 40 and 45, depending on the vowel. 
The cylinder cross-sections have been fixed on the base 
of published data [7] [8] [9]. The acoustic wave generated 
at the glottis by the glottal volume velocity propagates 
through the trachea, where part of the wave is absorbed 
by the lungs, and vocal tract, where part of the wave is 
radiated at the lips giving rise to audible sound [10]. In 
addition, the model involves simulations of the acoustic 
interactions at the glottis of the trachea and vocal tract as 
well as of the losses owing to friction at and vibration of 
the tract walls, and also to passing heat through the walls 
[11][12]. The glottal volume velocity is simulated by 
means of an algebraic model of the glottal aerodynamics 
that is driven by the glottal area waveform and that takes 
into account sub and supra-glottal pressures to include 
effects of source-tract interactions [1]. Fig. 2 shows two 

cycles of the glottal area waveform and the corresponding 
volume velocity waveform. 

 

 
Fig.2: Glottal area and volume velocity as a function of 
time in number of samples. Top: glottal area, bottom: 

volume velocity. 
 
B. Simulation of voice disorders 

 
The simulations of voice disorder involve simple formal 
models of frequency modulation noise and additive noise 
owing to turbulence. Modulation noise models determine 
the driving function parameters at the top of module (B) 
and turbulence noise models co-determine the volume 
velocity generated at the glottis. The synthetic stimuli 
that have been prepared for the experiment that are 
reported in other presentations of the same session differ 
by their level of frequency jitter and level of additive 
pulsatile noise. The default (unperturbed) vocal 
frequency has been fixed at 100 Hz. Unusual glottal 
dynamics such as diplophonia or biphonation are not 
involved. 

Frequency jitter is simulated by means of small 
positive and negative noise samples that disturb the 
instantaneous phase ϴ of the harmonic driving functions 
that generate the glottal area as shown in Fig. 1. The size 
of the noise samples ξ is fixed by means of parameter b in 
formula (1) and their sign (plus or minus) is assigned 
stochastically with equal probability p. The small sample-
by-sample phase disturbances add up over one glottal 
cycle to the observed cycle length perturbations known as 
jitter [3]. They also cause shape perturbations of the 
glottal area, which are minor when the instantaneous 
perturbations are modal. Symbol f0 is the unperturbed 
vocal frequency and Δ is the sampling step. Fig. 3 shows 
an example of an extremely hoarse voice (b = 4.5, n1 = 
0.55) the purpose of which has been to test human as well 
as vocal cycle pattern recognition by machine.  
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Amplitude perturbations (vocal shimmy) of the 

speech cycles are generated via modulation distortion by 
the vocal tract transfer function that turns frequency 
perturbations of the glottal volume velocity into 
amplitude perturbations of the speech signal [4]. 
Intuitively speaking, cycle amplitude perturbations are 
the combined effect of perturbations of the volume 
velocity harmonic amplitudes owing to perturbations of 
the harmonic positions on the frequency axis. The 
amplitudes of the harmonics indeed change when their 
positions change because the vocal tract transfer function 
is not flat. 

Breathiness has been simulated by pulsatile additive 
noise, which simulates additive noise owing to turbulent 
airflow in the vicinity of the glottis.  Additive pulsatile 
noise here designates noise the size of which evolves 
proportionally to the glottal volume velocity. Aspiration 
noise designates audible noise owing to constant airflow 
through a static glottis or permanent glottal chink. The 
reason pulsatile noise has been added to the clean glottal 
volume velocity instead of static aspiration noise is that 
strong stationary glottal noise and voice segregate into 
two distinct auditory streams [6]. 

Glottal noise (2) is simulated by means of low-pass 
filtered white Gaussian noise the standard deviation of 
which is fixed and the samples of which are multiplied by 
the clean glottal volume velocity ug and delayed by 1 ms 
before they are added to ug. 

 
n1ug(n)+ n2  (2) 
 

The user selects the value of coefficient n1, which fixes 
the amount of pulsatile noise, and a constant offset n2 that 
mimics aspiration noise, which is small, compared to the 
pulsatile component. 
 
C. Tracking of glottal cycle length perturbations and 
glottal source to noise ratios 
 

Formulas (1) and (2) show that the simulation of 
modulation and additive noise involves stochastic 
components that impede predicting the amount of cycle-
to-cycle perturbations as well as the signal-to-noise ratio 
exactly. Also, synthetic cycle length perturbations and 
glottal turbulence noise are the output of models that are 
dependent on several parameters. These quantities, 
therefore, cannot be controlled manually. As a 

consequence, the reference quantities to which the user-
observed cycle lengths and glottal signal to noise ratios 
may be compared must be traced synthesizer-internally 
because they are neither directly controllable nor 
observable from the outside. 

 
 

 
 

Fig.3: Glottal cycles of an extremely hoarse voice. Top: 
Phase of harmonic driving functions; bottom: volume 

velocity 
 

 
The glottal cycle lengths have been obtained by 

tracking the phase of the harmonic driving functions. The 
onset of each glottal cycle is assigned to the time sample 
when the phase is reset from 2π to zero. The distance 
between two successive onsets obtains the genuine glottal 
cycle length in number of samples. Figure 3 shows a few 
cycles of the perturbed harmonic driving function phase 
(top) and perturbed and noisy volume velocity (bottom). 

The squares of the clean volume velocity and noise 
samples have been summed separately over the signal 
length. The log-ratio of both sums multiplied by ten is the 
signal-to-noise ratio in dB at the glottis. Even for signals 
rated as very breathy, this ratio is high (> 17 dB). The 
explanations are that speech sound radiation at the lips 
favors high over low frequencies, that is, the perceived 
noise is broadband compared to the glottal noise and the 
bandwidth of the noise is anyway larger than the 
bandwidth of the clean glottal volume velocity because 
the spectral slope of the latter is steeper. Also, the noise is 
pulsatile, that is, strong over part of the cycle and 
negligible over the rest. This means that the glottal noise 
energy averaged over the signal length is a flawed 
predictor of perceived breathiness. 
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III. RESULTS 
 
Table 1 summarizes a corpus of 21 two-second long 
sustained vowels [a] with gradual on and offsets. Each 
synthetic voice has a default frequency of 100 Hz and 
typically comprises 200 cycles. The corpus is a 
combination of seven (extreme) levels of cycle length 
jitter, corresponding to values of parameter b in formula 
(1) increasing from 0.315 to 4.5 and of three increasing 
levels of additive low-pass filtered white Gaussian noise, 
corresponding to values of parameter n1 equal to 0.15, 
0.35 and 0.55. The values of parameter n1 are fixed to 
cause B1, B2, B3 breathiness scores typical of disordered 
voices. The Table reports the relative cycle length jitter at 
the glottis in % and the volume velocity energy to noise 
energy log-ratio in dB corresponding to the seven jitter 
levels and three noise levels mentioned above. These data 
are obtained by tracking cycle lengths and noise 
synthesizer-internally as described in section C. 
 

IV. DISCUSSION AND CONCLUSION 
 
The performance of speech processing software as well 
as human raters when tested by means of this corpus is 
reported in separate presentations. 
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Tab.1: Relative cycle length jitter at the glottis in % and 
the volume velocity energy to noise energy log-ratio in 

dB for different values of parameters b and n1 
 

b n1 

Glottal 
cycle length 

jitter 
(%) 

Volume 
velocity to 
noise ratio 

(dB) 
0.315 0.15 2.6 28.8 
0.315 0.35 2.5 23.5 
0.315 0.55 2.6 17.5 
0.63 0.15 4.5 30.0 
0.63 0.35 5.3 22.7 
0.63 0.55 5.6 18.5 
1.26 0.15 9.5 29.4 
1.26 0.35 8.8 21.7 
1.26 0.55 10.0 17.4 
1.89 0.15 14.7 28.8 
1.89 0.35 14.7 22.9 
1.89 0.55 15.7 19.2 
2.52 0.15 21.9 29.4 
2.52 0.35 20.4 22.2 
2.52 0.55 20.9 18.6 
3.45 0.15 24.4 29.6 
3.45 0.35 24.1 22.7 
3.45 0.55 27.2 17.7 
4.5 0.15 31.4 29.2 
4.5 0.35 31.6 22.0 
4.5 0.55 35.8 18.5 
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Abstract - the objective of this work is the estimation of 
vocal tremor in patients with spasmodic dysphonia before 
and after treatment, and the comparison of their tremor 
characteristics with those estimated from healthy speakers. 
as an outcome, a new tremor attribute is introduced, the 
deviation of  the  modulation level and a novel method is 
proposed for classifying speakers according to the 
prevalence of tremor in their voice. results are consistent 
with subjective evaluations on patients who suffer from 
spasmodic dysphonia and confirm that the proposed 
method can be used for accurate estimation and objective 
ranking of the severity of tremor. 

 

Index Terms—voice quality, vocal tremor, dysphonia, 
deviation of modulation level 

 

 
I.  INT RO D U C T I O N 

Vocal tremor, a rhythmic change in pitch and loudness, 
appears both in healthy speakers and in speakers with voice 
disorders. In  normal speaking voice,  no  tremor  is  audible, 
but it can be elicited by emotions, either spontaneous or 
volitional (actors). Central (mostly degenerative) neurological 
diseases, particularly those involving cerebellum and basal 
ganglia, frequently elicit voice tremor. In spasmodic dysphonia 
(or laryngeal dystonia), task-related tremor (“spasms”) may 
considerably hamper fluency and intelligibility [1]. This work 
focuses on estimating tremor in speakers with spasmodic dys- 
phonia before and after treatment, and compares their tremor 
characteristics (level and frequency) with those estimated from 
healthy speakers. 

Acoustic analysis of tremor is usually based on the accurate 
estimation  of  fundamental frequency and  then  the  charac- 
terization of the fundamental frequency’s variations [2], [3]. 
Modulation frequency and  modulation level  are  prominent 
attributes  that  are  extracted  from  the  instantaneous funda- 
mental frequency [2], [3]. Previous studies in tremor analysis 
assume modulation frequency and modulation level being as 
time-invariant characteristics of tremor, by considering short- 
time analysis windows of speech. Then, stationary frequency 
estimation approaches are  used  for  the  estimation of  these 
tremor attributes, like the classical Fourier transform. How- 
ever,  tremor  characteristics  and  in  general  modulations  in 
speech are time-varying. Actually, analysis of large segments 
of speech showed interesting time-varying characteristics on 
vocal tremor [4], [5]. 

The detection of tremor attributes in a speech signal in- 
volves the accurate extraction of the signal that modulates the 
time-varying fundamental frequency. We employ a recently 

proposed method to extract time-varying tremor attributes; the 
level and the frequency of the modulating signal [6]. This 
method is applied to sustained vowels and decomposes the 
speech signal into its time-varying quasi-harmonics. Quasi- 
harmonics are components with frequencies which are near to 
be harmonics of a fundamental frequency. It has been shown 
that speech is better modeled as a sum of quasi-harmonics 
rather than a sum of harmonics [7]. Next, we will refer to the 
components rather to harmonics. After the decomposition of 
speech into components, one component is chosen for further 
analysis; the desired signal that modulates the component is 
extracted and its time-varying amplitude and frequency are 
estimated. 

This method is applied in speech vowels uttered by nor- 
mophonic speakers and speakers who suffer from spasmodic 
dysphonia before  and  after  imposed  on  medical  treatment 
[8]. Our analysis shows that the mean modulation level in 
dysphonic speakers is distinguishably greater than that in 
normophonic speakers. However, the modulation level is not 
the only criterion for classifying speakers as normophonic or 
dysphonic. This study introduces a novel attribute of tremor 
which derives from the time-varying characteristic of the 
modulation level, namely the deviation of the modulation level. 
The mean modulation level and its deviation are combined in 
a quality indicator trying to classify speakers according to the 
amount of tremor in their voice. It is shown that this objective 
classification of speakers matches subjective evaluations by 
experts in the case of spasmodic dysphonia patients. 

The organization of the paper is as follows. Section II 
describes briefly the tremor estimation method. Section III 
presents the analysis on normophonic and dysphonic speakers, 
introduces the proposed tremor classification method and 
compares the results with the subjective evaluations. Finally, 
Section IV concludes the paper. 
 
 

II.  ESTIM ATIO N O F VOC AL T R EM OR 
 

The method used for tremor features estimation assumes 
speech as a sum of time-varying sinusoids [7], [9]. The 
extraction of vocal tremor characteristics is carried out in three 
steps, following the procedure in [6]. The first step estimates 
the instantaneous amplitude and instantaneous frequency of 
every sinusoid component of the speech signal using a re- 
cently proposed AM-FM decomposition algorithm, the so- 
called Adaptive Quasi-Harmonic Model (AQHM)   [7], [9]. 
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AQHM is an adaptive algorithm which is able to represent 
accurately multi-component AM-FM signals like speech. In 
the second step, the very slow modulations (< 2H z), derived 
mainly from the pulsation of the heart, are subtracted from 
the instantaneous component. This is achieved by filtering the 
instantaneous component using a  Savitzky-Golay smoothing 
filter [10]. In the final step, the time-varying modulation 
frequency and the time-varying modulation amplitude of the 
analyzed instantaneous component are estimated by employing 
again  the  AQHM  algorithm  for  just  one  component. The 
time-varying modulation amplitude with an appropriate scaling 
corresponds to the modulation level. The scaling is necessary 
because the modulation amplitude is relative to the mean value 
of the instantaneous component and involves the normalization 
of the amplitude by this mean value. More details of the 
estimation algorithm are provided in [6]. 

 
III.  RE S U LTS  

A. Data Analysis 
The suggested tremor estimation method, as described in 

Section II, is applied to two different databases of sustained 

normophonic male speaker. It is worth noticing the high 
fluctuations of the component for the case of the dysphonic 
speaker in contradiction to that of the healthy speaker who 
keeps his voice almost steady in time. After treatment the 
dysphonic speaker achieves to stabilize his voice (lower panel 
of Fig.1). The tremor attributes of these signals, the modulation 
level and the modulation frequency, are depicted in Fig.2. The 
upper panel of Fig.2 shows the time-varying modulation levels 
of  a  normophonic and  that  of  a  dysphonic speaker before 
and  after  his  treatment. The  lower  panel  of  Fig.2  depicts 
the  corresponding modulation frequencies. As  it  can  been 
seen, the normophonic speaker appears to have much lower 
mean modulation level than the dysphonic speaker before 
treatment. Moreover, the modulation level of the dysphonic 
speaker before treatment presents high fluctuations over time. 
After treatment, both speakers have similar modulation levels; 
the modulation level of the treated dysphonic speaker has 
decreased significantly, meaning that the tremor is no longer 
audible after treatment. In all cases, modulation frequency 
values are quite comparable (lower panel in Fig.2). 

vowels to extract the time-varying modulation level and the                8 

time-varying modulation frequency. The first database consists                6 

of sixteen healthy subjects. Sustained vowels /a/,  /e/,  /i/, 
/o/ and /u/ of varying duration (2s − 8s) have been recorded. 

  dysphonic before treatment 
  dysphonic after treatment 

normophonic 

The second database was provided by the last coauthor (Prof. 
P. Dejonckere). Speakers in this database suffer from spasmo- 
dic dysphonia and are subjected to treatment (botulinum toxin 

2 
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injections). Recordings and subjective evaluations by experts 
have been made before and after the treatment. For every 
patient, the sustained vowels of /a/ are extracted to create the 
signals for our analysis. In the current study, five untreated 
speakers  could  not  be  analyzed  because  they  could  only 
provide phonemes with very limited duration (less than a 
second). 
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Fig. 2.  Modulation level and modulation frequency of a normophonic speaker 
and of a speaker with spasmodic dysphonia before and after treatment. 
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Significant results derive from the analysis of the two 
databases. Fig.3 shows the mean values of the two time- 
varying tremor attributes for  every normophonic speaker in 
the  first database; the  mean  modulation level (upper panel 
of  Fig.3) and  the  mean modulation frequency (lower panel 
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of Fig.3). Frequencies vary from 2 − 7H z, while the mean 
modulation levels  are  all  but  one  below  1% of  the  mean 
value of the instantaneous component for the corresponding 
normophonic speakers.  In  a  similar  way,  the  upper  panel 
of Fig. 4 shows the mean modulation levels and the lower 
panel of Fig.4 the mean modulation frequencies for dysphonic 
speakers before and after their treatment. Comparing Fig.4 and

 
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 

 
 

Fig. 1.   The time-varying instantaneous component of a normophonic speaker 
and of a speaker with spasmodic dysphonia before and after treatment. 

 
The upper panel of Fig.1 shows a typical example for the 

time-varying frequency characteristics of the first component 
(nearly the  fundamental frequency) for a  dysphonic and a 

Fig.3 it can be seen that the modulation frequencies are quite 
comparable  for  the  normophonic and  dysphonic  speakers. 
However, this is not true for the modulation level. Indeed, five 
out of six untreated dysphonic speakers have modulation level 
above 1% and seven out of nine treated dysphonic speakers 
have modulation level below 1%. This is more evident in Fig.5, 
where the modulation level for each dysphonic speaker before 
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and after treatment is illustrated. For the speakers coded as 
Lul, Roo and Stu the modulation level has decreased after 
treatment, while for Bru and Vro there is a slight increase in 
the modulation level after the treatment. The general trend, 
however, is that the treated patients have modulation level 
values below 1% of the mean value of their component and 
this is comparable with that of the normophonic speakers. 
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Fig.  3. Modulation  levels  and  modulation  frequencies  of  normophonic 
speakers. 
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Fig.  5.       Modulation  level  of  each  dysphonic  speaker  before  and  after 
treatment.
 
 
change of the tremor coordinates for dysphonic speakers after 
treatment. The beginning of the arrow corresponds to the 
tremor coordinates of the dysphonic speaker before treatment 
and the end of the arrow to the tremor coordinates after 
treatment. Each arrow is named after the speaker. The nor- 
mophonic speakers occupy the  low  left  part  of  the  graph, 
where the modulation level and the DML take low values, 
defining therefore a  “normophonic area” of these attributes. 
As  it  is  shown in  Fig.6,  the  untreated dysphonic speakers 
diverge from the normophonic area. The dysphonic speakers
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after treatment tend to reach the normophonic region as the 
arrows show. However, some patients (Roo, Bur) seem to have 
no improvement. Notice that for some treated speakers there is 
no estimation of their previous state (before treatment) since, 
due to the severity of their disease, their phonemes could not 
be analyzed (small signal duration). 

6 o   after treatment 
 

5 
 

4 
 

3 
 

2 
0 2 4 6 8 10 12 14 16 

Speaker id 

 
3.5 

 
3 

 
2.5  Roo 

 
 
Heu 

 
 
 
 
 
 
Bur 

 
Fig. 4.  Modulation levels and modulation frequencies of treated and untreated 
dysphonic speakers. 

 
As illustrated by the evolution of the modulation level in 

the  upper  panel of  Fig.2, the  deviation of  the  modulation 
level from its mean value is quite high in the case of the 
dysphonic speaker before treatment. This was also observed 
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in other dysphonic speakers from the same database. Based on 
this observation a new characteristic of tremor is introduced, 
which will be referred to as deviation of modulation level, or 
DML. It is worth noticing that this new tremor attribute is 
based on the capability of the suggested tremor-estimator to 
produce time-varying modulation frequency and modulation 
level, overcoming the limitations of short signal duration. 

Fig.6 combines the two characteristics, the modulation level 
and the DML in one graph for normophonic and dysphonic 
speakers; each  data  point  has  two  tremor coordinates; the 
DML and the mean modulation level. The arrows show the 
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Deviation of modulation level 

 
 
Fig. 6.     Mean modulation level as a function of its deviation for normo- 
phonic speakers and for speakers with spasmodic dysphonia before and after 
treatment.
 

The above analysis suggests that the modulation level and 
the its corresponding deviation are significant values defining 
tremor and these attributes can be used either for classifying 
speakers as normophonic or dysphonic, or for classifying 
speakers according to the severity of dysphonia. Furthermore, 
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it  may  be  used  as  an  objective measure for  the  patient’s 
progress evaluation before and after treatment. 

markers are to the line the more our method agrees with the 
subjective evaluations. 

 
B. Objective Tremor Classification Method 

As we saw in the previous section, the tremor signal that 
modulates an  instantaneous component differs  significantly 
in  a  healthy and  in  a  dysphonic speaker. The  outcome of 
our  analysis  is  that  the  instantaneous modulation level  of 
the untreated patients with spasmodic dysphonia present high 
variations in time. A dysphonic speaker appears to have higher 
modulation level and significant DML than a normophonic 
speaker. Therefore, we suggest the introduction of a quality 
indicator  that  classifies  speakers  according to  their  tremor 
value in their voice. The quality indicator is called Weighted 
Mean Tremor Value (WMTV) and is defined as: 

 

W M T V = wx + (1 − w)σ(x) , (1) 
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where x is the mean modulation level, σ(x) the standard 
deviation of the modulation level of the tremor signal, and 
w is a weighting factor. 

The severity of the spasmodicity of each speaker is ranked 
using  the  WMTV  with  a  40%  weighting  factor,  deriving 
from the analysis. Our classification is compared with the 
subjective ranking of tremor for the same speakers and same 
speech files. Both classifications are presented in Table I. The 
subjective evaluation was conducted by specialized doctors. In 
Table I the “-pre” ending corresponds to dysphonic speakers 
before treatment and  the  “-pos” to  the  dysphonic speakers 
after treatment. For instance, speaker Bur, according to the 
subjective evaluations, had a slight enhancement after surgery 
(from  1.00-Burpre to  0.94-Burpos). Notice,  that  there  are 
differences in the subjective and in the proposed objective 
classification. However, both evaluations “separate” the pa- 
tients with severe tremor. For example, both evaluations agree 
that patients Bur and Roo have high tremor despite treatment 
and that patients Heu, Stu, Lul, Plu and Ess have low tremor 
values after treatment. It is found that the correlation between 
our ranking and the subjective ranking is significant; the 
correlation coefficient is 0.72 and the p-value is 0.0024. 

 
A) Subjective classification B) Proposed classification 

 Normalized TR  WMTV 
Burpre 1.00 Heupre 1.00 
Burpos 0.94 Burpos 0.91 
Roopre 0.82 Burpre 0.85 
Stupre 0.71 Roopos 0.68 
Roopos 0.59 Roopre 0.56 
Vropre 0.53 Lulpre 0.39 
Vropos 0.47 Vropre 0.37 
Heupre 0.41 Stupre 0.33 
Knipos 0.41 Vropos 0.30 
Lulpre 0.24 Esspos 0.24 
Plupos 0.12 Plupos 0.20 
Esspos 0.06 Knipos 0.18 
Heupos 0.06 Stupos 0.18 
Lulpos 0.06 Heupos 0.15 
Stupos 0.0 Lulpos 0.11 

TABLE I 
DY S P H O N I C  S P E A KE R S  C L A S S I FIC AT I O N  BAS E D  O N : A ) S U B J E C T I V E 
E VAL UAT I O N , B ) D E S C E N D I N G WM TV ( W E I G H T I N G FAC T O R  = 40 % ) 

 
 

Fig.7 compares the two evaluations. The ideal match be- 
tween the two evaluations is the solid line. The closer the 

Fig. 7.    Subjective evaluation to WMTV evaluation. The solid line corre- 
sponds to the ideal match between the two evaluations. 
 
 

IV.  CO N C L U S I O N 

Our proposed method aims at estimating tremor in speakers 
with spasmodic dysphonia. Evaluation results show that it 
achieves to estimate accurately the time-varying characteristics 
of tremor. From the analysis in normophonic and dysphonic 
speakers, a new tremor attribute is introduced, the deviation 
of the modulation level. This attribute derives from the time- 
varying  characteristics  of  the  modulation  level  and  plays 
a  prominent role  in  the  objective classification of  speakers 
according to their tremor. The two significant attributes, the 
modulation level and its deviation are combined in one value; 
the weighted mean tremor value, or WMTV. It  was shown 
that WMTV is a quality indicator of tremor in voice and can 
be used as an objective measure for evaluating speakers with 
spasmodic dysphonia. 
 

RE F E RE N C E S 
 

[1]  P. H. Dejonckere, K. J. Neumann, M.B.J. Moerman, and J.P. Martens. 
Perceptual and Acoustic Assesment of Adductor Spasmodic Dysphonia 
Pre-and  PostTreatment  with  Botulinum  Toxin.   Proceedings  Madrid, 
2009. 

[2]  W. S. Winholtz and L. O. Ramig. Vocal tremor analysis with the vocal 
demodulator. Journal of Speech Hearing Research, 35:562–573, 1992. 

[3]  J. Schoentgen.  Stohastic models of jitter.  Journal of Acoustic Society 
of America, 109:1631–1650, 2001. 

[4]  J. Kreiman, B. Gabelman, and B.R. Gerratt. Perception of vocal tremor. 
Journal of Speech, Language and Hearing Research, 46:203–214, 2003. 

[5]  H. Ackermann and W. Zeigler. Acoustic analysis of vocal instability in 
cerebellar dysfunctions. Annals of Otology, Rhinology and Laryngology, 
103:98–104, 1994. 

[6]  Y. Pantazis, M. Koutsogiannaki, and Y. Stylianou. A Novel Method for 
the Extraction of Vocal Tremor. In MAVEBA, Florence, 2009. 

[7]  Y.  Pantazis, O.  Rosec,  and  Y. Stylianou.    Adaptive  AM-FM  Signal 
Decomposition with Application to Speech Analysis.  IEEE Trans. on 
Audio Speech and Language Processing, 19(2):290–300, February 2011. 

[8]  D.I. S Luhring, M. Moerman, J.P. Martens, D. Deuster, F. Muller, and 
P. Dejonckere. Spasmodic Dysphonia, Perceptual and Acoustic Analysis: 

Presenting New Diagnostic Tools. Eur Arch Otorhinolaryngol, 2009. 
[9]  Y. Pantazis, O. Rosec, and Y. Stylianou. AM-FM Estimation for Speech 

based on a Time-varying Sinusoidal Model.  In Interspeech, Brighton, 
2009. 

[10]  A. Savitzky and M.J.E. Golay.  Smoothing and differentiation of data 
by simplified least squares procedures. Analytical Chemistry, 36:1627– 
1639, 1964. 



Abstract: in this paper, empirical mode decomposition
(eMd) is proposed as an alternative method in the
framework of acoustic analysis of disordered speech 
for the purpose of clinical evaluation of voice. the
empirical mode decomposition algorithm decomposes
adaptively a given signal into oscillation modes 
extracted from the signal itself. the proposed
approach for objective assessment of vocal
dysperiodicity consists of two steps. in the first step, 
the dysperiodicity is estimated by using the
generalized variogram. in the second step, the
estimated dysperiodicity is decomposed into several
narrow-band oscillating components via the eMd 
algorithm followed by a computation of the segmental 
signal-to-iMf ratio (sirseG) which is used as an
acoustic marker for vocal dysperiodicity assessment.
the proposed method is evaluated on a corpus
comprising 251 normophonic and dysphonic speakers.
results show that the acoustic marker involving some
selected iMfs outperforms that obtained from a full-
band analysis in terms of correlation with perceptual 
scores.
Keywords: vocal dysperiodicities, empirical mode
decomposition, disordered speech.

I. INTRODUCTION

Objective measures for quality assessment of voice of 
dysphonic speakers provide a severity index of the
disorder which enables clinicians to monitor the progress
of patients and document quantitatively the perceived
degree of hoarseness. Different acoustic markers have
been used to characterize the speech of dysphonic
speakers; however the reliability and accuracy are still an 
issue.

Recent approaches for vocal dysperiodicities esimation
in continuous speech are based on  long-term  prediction
[1] and generalized variogram [2]. In [3], the
performance of multiband segmental signal-to-
dysperiodicity ratio has been investigated in terms of the
correlation with scores of perceived hoarseness on a
corpus comprising a total of 22 speakers with
normophonic and dysphonic subjects.
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More recently, the performance of the methods has
been evaluated on much larger corpora (a total of over
900 speakers sustaining sounds and producing connected
speech). It has been concluded that multi-band segmental
signal-to-dysperiodicity ratio correlates more strongly
with the perceptual assessment of the degree of
hoarseness than the full-band analysis [4].

Although, experimental results obtained in [4] have
shown that multiband analysis outperforms one full-band
analysis, the multiband approach requires a large amount
of data. Indeed, to avoid the risk of overfitting when
carrying out multi-band analysis, one should have a large
size corpus that enables to compute multiple regression
coefficients so that this analysis can not be carried out
when only limited data are available. Moreover, the
selection of the frequency bands for the analysis is
questionable.

In this paper, we propose an alternative approach based
on the empirical mode decomposition (EMD) algorithm
[5] to filter the dysperiodicity estimated via the
generalized variogram. Rather than a priori fixing the 
number of filters and their corresponding frequency
bands, the method decomposes adaptively the
dysperiodicity in many narrow-band components, named
intrinsic mode functions (IMFs), the number and the
frequency content of which are data-driven. A segmental
signal-to-IMF ratio (SIRSEG) can be defined for each 
IMF.

II. METHODS

A. Vocal Dysperiodicity Estimation

Voiced speech is characterized as a quasi-cyclic
waveform. When the speech signal is cyclic and the cycle
amplitudes change smoothly, it is possible to predict the
present cycle on the base of some previous cycle. Most of 
the disorders originate from the vocal system and 
frequently result in an increase in the dysperiodicity of
voiced speech sounds.

the dysperiodicity may be estimated via the minimum
of the following expression named the generalized
variogram [2]:

Claudia Manfredi (edited by), Models and analysis of vocal emissions for biomedical applications : 7th international workshop : August 25-
27, 2011, ISBN 978-88-6655-009-9 (print) ISBN 978-88-6655-011-2 (online)
© 2011 Firenze University Press
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The weight a is a positive number to be computed and 
index n positions speech samples within the analysis 
frame. Boundaries Tmin and Tmax are, in number of
samples, the shortest and longest acceptable glottal cycle
lengths. They are fixed to 2.5 ms and 20 ms, respectively
(i.e. 50 Hz ≤ F0 ≤ 400 Hz).

B. EMD-based Vocal Dysperiodicities Assessment

The proposed method for objective measure of vocal
dysperiodicity in disordered speech consists of two steps.
In the fist step, the generalized variogram-based approach
is used to estimate the dysperiodicity. In the second step,
the dysperiodicity is decomposed adaptively into locally
oscillating components called intrinsic mode functions
(IMFs) via the empirical mode decomposition (EMD)
algorithm developed by Huang et al. for multi-component
nonlinear and nonstationary signals analysis [5]. The
EMD is a time-frequency analysis tool that does not
require a priori fixed function basis like conventional
time-frequency representations (e.g. Wigner-Ville
distribution or the wavelet transform). The EMD 
effective tool to decompose the dysperiodicity into
several narrow-band components so that each component
can be processed separately.  Each IMF component has a
zero-mean value and only one extreme between zero-
crossings.

Let e(n) be the energy-normalized vocal dysperiodcitty
estimated via the generalized variogram-based approach.
The iterative sifting process for estimating the IMFs
involves the following steps:

1. Initialize the algorithm: j=1, initial residue r0(n)=e(n)
and fix the threshold δ

2. Extract local maxima and minima of rj-1(n)

3. Compute the upper envelope Uj(n) and lower envelope
Lj(n) by cubic spline interpolation of local maxima and 
minima, respectively

 4. Compute the mean envelope

5. Compute the jth component hj(n)=rj-1(n)-mj(n)

6. hj(n) is treated as rj(n). Let hj,0(n)=hj(n) and mj,k(n),
k=0, 1,. . ., the mean of the upper envelope and lower
envelope of hj,k(n), then compute hj,k(n)=hj,k-1(n)-mj,k-1(n)
until

7. Compute the jth IMF as IMFj(n)=hj,k(n)
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9. Increase the sifting index j and repeat steps 2 to 8 until
the number of local extrema in rj(n) is less than 3.

Each IMF is a narrowband AM-FM component that
can be characterized by its instantaneous frequency. The
signal can be reconstructed exactly by summing all the J
IMFs

To summarize the amount of dysperiodicity within an
utterance, for each IMF component, segmental signal-to-
IMF ratio (SIRSEG) is computed as the ratio of the signal
power to the IMF power:

where M is the segment length in samples and K is the
number of segments in an utterance.

The acoustic marker SIRSEG provides an objective
measure of the relative power of a narrow-band filtered 
version of dysperuidicity compared to the power of the
signal.

C. Corpus and Perceptual Assessment

Speech data used in the present study were used
elsewhere [4]. The corpus comprises concatenations of
two Dutch sentences followed by vowel [a]. Dutch
sentences (“Papa en Marloes staan op het station. Ze
wachten op de trein.”) have been produced by 28
normophonic and 223 speakers with different degrees of
dysphonia. Five judges have evaluated the corpus
involving the concatenation of the sentences and vowel
[a] perceptually. The five judges are professional voice
therapists with at least five years of experience in clinical 
voice quality ratings. Each judge has rated, from 0 to 3,
the item “grade” of the (G)RABS scale. “Grade”
represents the degree of hoarseness or voice abnormality.
The five perceptual scores per stimulus have been
averaged.

III. RESULTS AND DISCUSSION

The performance of the acoustic cue obtained using
empirical mode decomposition-based filtering is 
investigated and compared to that of the segmental
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signal-to-dysperiodicity used in [5]. For each stimulus,
the dysperiodicity has been estimated via the generalized
variogram and the dysperiodicity traces have been
decomposed using the EMD algorithm. The 
decomposition of the dysperiodicity via the EMD
algorithm yields more than 20 IMFs, however, only the
first ten IMF components have been used in our
investigation because they contain more than 90 % of the
total energy of the dysperiodicity.

In order to determine the contribution of each of the
ten IMFs and to investigate whether summing some
specific IMF components enables improving the overall
correlation with perceptual scores of hoarseness, a set of
45 traces per stimulus have been formed as follows. For 
each subset of the first k IMFs (k=1 . . . 10), k traces are 
obtained by summing the last j IMFs (j=1 . . . k).

For each trace, segmental signal-to-IMF ratio has
been computed for the whole data. Pearson’s product
moment correlations of segmental signal-to-IMF values
with average hoarseness scores of the corpus are shown
in Fig. 1. The labels of the horizontal axis are the values
of the lower order of the IMF included in the sum when
forming a trace and the labels of the vertical axis are the
values of the correlation. An acoustic marker in a good 
agreement with the quality of voice must be strongly
correlated to scores of the perceived degree of
hoarseness. Fig. 1 shows that the correlation tends to
increase in absolute value as the IMF components of
orders 6 to 8 are included in the trace. The higher
correlation R=-0.74 is attained at the IMF order 8 and the
correlation decreases beyond this order. The empirical
mode decomposition-based filtering results in a higher 
correlation between SIRSEG values and hoarseness
scores for the IMF components 6 to 8 than the one (R=-
0.7) obtained by a full-band analysis, i.e., between
SDRSEG and hoareness scores and the difference is 
statistically significant. For more illustration, Fig. 2 
shows the correlation of SIRSEG values with average
hoarseness scores for each IMF component and Fig. 3
displays the estimated SIRSEG values versus the average
hoarseness scores. 

The quartiles of SIRSEG values for each IMF
component are shown in Fig. 4. As can be observed a
given quartile of SIRSEG values takes different values 
for different IMF components. The quartiles attain their 
minimum values at the fifth IMF component and tend to 
increase as the order of the IMF increases or decreases.
For IMF components of order lower than 5 the difference
between the minimum and the maximum values of
SIRSEG is greater than this difference for IMF
components of order higher than 5 which is an indication
of the difference in the concentration of SIRSEG values,
i.e. the difference in the correlation between SIRSEG
values and average hoarseness scores for IMF
components of order greater than 5 and those of order
lower than 5.
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figure 1: Illustration of the effect of the different IMF
components on the value of the correlation between
SIRSEG values and average hoarseness scores assigned
by five judges. Each symbol corresponds to some subset
of IMF components included in the computation of the
SIRSEG values.

figure 2: Pearson’s product moment correlation between
SIRSEG values and average hoarseness scores assigned
by five judges for different IMF components. Only one
IMF component is included in the computation of the
SIRSEG values.

A possible explanation of the strong correlation
between SIRSEG values and average hoarseness scores is 
as follows. The estimated dysperiodicity is still correlated 
to the signal even this correlation is weak. As a 
consequence, each IMF obtained from the decomposition
of the dysperiodicity contains an amount of the signal
which is the smallest for the IMF components of orders 6 
to 8 resulting in the highest correlation of  SIRSEG 
values with average hoarseness scores. 
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figure 3: Estimated SIRSEG vs average perceived grade
scores for the IMF component j=8.

figure 4: Quartiles of segmental signal-to-IMF values
for different IMF components.

In order to investigate the characteristics of the
pertinent IMF components in terms of frequency bands,
the power spectrum of IMFs 6, 7 and 8 for a speaker that
has been  assigned an average perceived grade score of 1
is shown in Fig. 5. The central frequencies of the
respective bands are 1030 Hz, 690 Hz and 480 Hz. These
results are in a good agreement with the values of the cut-
off frequency  of the filter that gives rise to high
correlation between the acoustic marker and the average
perceived grade scores [4].
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figure 5: Power spectum density of IMF components 6,
7 and 8 for a speaker that has been  assigned an average
perceived grade score of 1. 

IV. CONCLUSION

In this paper, empirical mode decomposition algorithm
has been used to analyse vocal dysperiodicities in 
disorderd speech. The EMD has been used as a filter bank
to decompose the dysperiodicity estimated by means of 
the generalized variogram into several narrow-band
oscillating components (IMFs) and then segmental
signal-to-IMF ratio corresponding to each IMF
component has been used as an acoustic objective
measure for vocal dysperiodicity assessment. The 
proposed approach has been tested on a large corpus
comprising 251 normophonic and dysphonic speakers.
Experimental results have shown that for some selected 
IMFs, EMD-based filtering results in a stronger
correlation between SIRSEG and average scores of 
perceived hoarseness than that achieved by the
conventional full-band generalized variogram analysis.
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Abstract: a new multipurpose voice analysis tool 
named biovoice2, suited for the analysis of strongly 
irregular signals and long sentences, is applied on 
voices of patients diagnosed with adductor spasmodic 
dysphonia before and after treatment with botulinum 
toxin injection. the speech material consists of 40 
short German sentences phonetically selected to be 
constantly voiced. nine acoustic parameters were 
taken into account from all those estimated with 
biovoice2. significant improvement of voice quality 
was estimated by a subset of these parameters related 
to increased voicing, improved regularity of vocal fold 
vibration, reduction of spasms and faster speech rate. 
biovoice2 proves to be a useful tool for objectifying 
voice quality also in case of strong signal irregularity.   
 
Keywords: spasmodic dysphonia, voice analysis, 
acoustic parameters, botulinum. 

 
I. INTRODUCTION 

 
Spasmodic dysphonia (SD) is a particular voice 

disorder characterized by involuntary movements of one 
or more muscles of the larynx during speech.  
The most common form of this pathology is the adductor 
SD (ADSD) that is considered in this study. The ADSD is 
expressed with different severity from case to case, from 
mild cases that present only a slight tremor of the voice 
and occasional breaks to cases where severe spasms of 
the vocal cords make it impossible to speak, preventing 
airflow through the glottis. In such cases the patient’s 
work and social life are compromised and this can also 
frequently lead to severe depression [1]. 
With (AD)SD, deviant acoustic events as aperiodicity, 
phonatory breaks and frequency shifts perturb fluency 
and intelligibility. These voices thus require specific 
acoustic parameters for an exhaustive analysis [2-4].  
The present study is based on a new multipurpose voice 
analysis tool, named BioVoice2, developed under 
MatLab environment, capable to deal with highly 
irregular voice signals as those under study.  
The aim of the present study is to test the ability of 
BioVoice2 to evaluate the improvement in patient’s voice  
 

 
quality using objective parameters and, accordingly, the 
effectiveness of the medical treatment that consist of 
botulinum toxin injection in the vocalic muscles. 
 

II. METHODS 
 
Currently most of the software tools for voice analysis 
have limitations related to the level of irregularity in the 
voice and to their applicability to running speech instead 
of sustained vowels only [5]. To overcome these 
limitations, we designed a multipurpose program, 
BioVoice 2 that is applicable to the analysis of a wide 
range of voice signals, including the analysis of long 
sentences (several minutes of connected speech) other 
than short ones or sustained vowels only.  
The main targets in designing BioVoice 2 were: 
 
 Implementing a robust and reliable fundamental 

frequency (F0) estimation and a Voiced/Unvoiced 
(V/U) selection procedure, applicable to quasi-
stationary/noisy signals such as highly hoarse, 
irregular voices and/or sentences; 

 
 Allowing for the analysis of long sentences (several 

minutes) other than short ones or sustained vowels 
only; 

 
 Giving the user a simple Graphic User Interface 

(GUI) that does not require any manual setting by the 
user, thus being well suited also for non-expert users.   

 
BioVoice 2 performs the analysis of audio files resulting 
in objective parameters that are considered useful by 
clinicians in the diagnosis of voice disorders. It has been 
successfully tested on synthesized sustained vowels 
giving better results than most commonly used software 
tools when applied to strongly irregular and hoarse voice 
signals [9]. The main parameters of interest in the present 
work are: 
 
f0: the fundamental frequency is estimated with a two 
steps procedure. First, Simple Inverse Filter Tracking is 
performed, obtaining a raw F0 estimation and its range of 
variation         where   = lowest F0 value and    = 
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highest F0 value. In the second step, F0 is estimated 
inside         with the Average Magnitude Difference 
Function (AMDF) approach [9]. The program provides 
F0 tracking and its mean, standard deviation, minimum 
and maximum values. 
pvf: the ratio between the number of voiced frames and 
the total number of frames, that depends on the breaks 
which are present in the voice: the more the pauses, the 
less the PVF.  
pvs: the percentage of voiced speech frames, which 
means the ratio of voiced frames over the frames that 
have been classified as speech in a previous step of 
analysis. Speech frames are those in which the zero 
crossing rate is less than 3000 zero-crossings per 
milliseconds and the energy exceeds a threshold value 
that depends on the signal characteristics. Hence PVS 
should be higher or equal to PVF. On a sustained vowel 
and for a healthy voice, PVS is ideally 100%. As a 
general rule the better the voice, the higher both PVF and 
PVS.  
pfu: the percentage of frames that have an unreliable F0 
among the total number of frames. This parameter is 
therefore a measure of the fundamental frequency F0 
instability. Frequency variations make F0 unstable. In a 
frame F0 is evaluated as unreliable if it has a deviation of 
more than 25% compared to the average F0 value over all 
voiced frames. In this case the better the voice, the lower 
the PFU percentage. 
vl90: the 90th percentile of voicing length distribution, 
defined as the maximum number of consecutive voiced 
frames found. The sharp breaks featuring the voice of 
patients with SD reduce this parameter.  
duration: the total time required to the patient for 
pronouncing sentences. As a general rule a healthy voice, 
that is more fluent, will have a shorter duration than a 
pathological one.  
In addition BioVoice 2 evaluates the time duration of the 
voiced and unvoiced part of the signal, and the average 
length of voiced frames (mean duration of voicing, 
Mdv). 
Jitter: a measure of the degree of variability of the period 
length. It gives a measure of the aperiodicity of the signal 
measuring the changes in fundamental period T0=1/F0 
from period to period.  Of course, good voices have low 
jitter.  Jitter J is evaluated here according to Eq.1:                          

N-11 T -Ti i+1N -1 i=1J =                            (1)N1 TiN i=1




 

  Where N is the number of frames and Ti is the i-th 
period length.                                     
corrected jitter: the correction means that only frames 
with reliable F0 are taken in account. F0 is reliable if it 
has less than 25% deviance from the mean value of F0 of 

all voiced frames. The formula for Corrected jitter is the 
same as for the jitter. 
nne: Normalized Noise Energy is a noise estimation 
method that relies on a comb filtering approach: it is the 
ratio of the energy between the harmonics and the whole 
signal energy [8]. 
Moreover, BioVoice2 allows for the estimation of the 
signal spectrogram, formants, Power Spectral Density 
and other parameters related to the kind of voice signal 
under analysis (adult male, adult female, newborn cry and 
singing voice) that are not described here. Plots and 
tables can be displayed, printed and saved in an easy way. 
Details can be found in [5]. 
To test the capability of BioVoice2 of analyzing long 
sentences in a reliable way, 24 audio files (12 pre- and 12 
post-treatment) from 12 German patients diagnosed with 
ADSD are considered here. Each patient read a 
standardized list of 40 German sentences for a total 
duration of about 2’30”. These sentences are phonetically 
selected by clinicians for being constantly voiced. This is 
in fact supposed to increase the sensitivity for detecting 
interruptions of vocal fold vibrations induced by SD.  
Audio files are provided in uncompressed audio wave 
format with sampling frequency Fs= 44.100 Hz and 16 
bit of resolution. All the recordings were made in a quiet 
room by one of the authors of this work. 
 

III. EXPERIMENTAL RESULTS 
 

Table 1 reports the mean value of the parameters 
previously described, obtained from pre and post-
treatment recordings. From Table 1 a clear trend towards 
better voice quality is shown (post-treatment values 
higher or lower than pre-treatment ones, according to the 
specific parameter). 
 
Table 1 – Mean value of the acoustic parameter computed 
by BioVoice2. 

parameter  pre post 
pvf % Mean 51.80 69.45 
pvs % Mean 52.82 69.54 
pfu % Mean 50.29 44.81 

Jitter % Mean 14.63 13.76 
corrected Jitter % Mean 6.12 6.24 

vl90 [s] Mean 0.0008 0.0160 
duration [s] Mean 142.07 137.68 

Mdv [s] Mean 0.277 4.03 
nne [db] Mean -17.49 -17.58 

Mean f0 [hz] Mean 180.65 188.62 
std f0 [hz] Mean 46.05 50.05 

 
These results show that the parameters PVF, PVS, VL90 
as well as MDV are strongly indicative of voice 
improvement, while for the other parameters the pre-post 
difference seems less significant.  
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Figure 1 shows the difference between pre- and post-
treatment values of the most relevant acoustic parameters 
that are PVF, PVS, VL90 and MDV.  
 

 

 
Fig. 1: Upper: mean value of VL90 and MDV (seconds). 
Lower: mean value of PVF, PVS, PFU (%) for pre-post 
treatment data. 
 
Moreover the Wilcoxon test was applied on each 
parameter separately. Results are reported in Table 2. 
 
Table 2 – Results of the Wilcoxon test for all the acoustic 
parameters. 
 

Wilcoxon’s test 
Parameter P 
meanf0 0.5186 
std f0 0.3804 
pvf 0.0269 
pvs 0.0161 
pfu 0.3394 
Jitter 0.8501 

corrected jitter 0.8984 
nne 0.9697 
vl90 0.0342 

duration 0.7334 
Mdv 0.0425 

 
As expected, only few of the acoustic parameters reveal a 
significant post- vs. pre- improvement. Specifically these 
parameters are: PVF, PVS, VL90 and MDV. In particular 
Jitter, Corrected jitter, PFU, NNE and even duration show 
no statistically significant differences and are thus not 
suited for evaluating the improvement of voice quality 
with the present data. As these parameters have different 
measurements units and ranges a standardization step was 
performed according to the following equation [7]: 

                                     (2)i
i

x x
Z




  

Where    is the variable to be standardized,  ̅ is its mean 
value and   is its standard deviation.  
Figure 2 shows the boxplot of pre- post-treatment data for 
all the acoustic parameters considered here. On each box, 
the central mark is the median, the edges of the box are 
the 25th and 75th percentiles respectively, and the 
whiskers extend to the most extreme data points that are 
not considered outliers. The small circles are the outliers. 
Data are standardized according to Eq.2.  
The plot confirms the best results obtained with 
parameters PVF, PVS, VL90 and MDV.  
   

IV. DISCUSSION 
 

Results in Table 2 show that only four of the whole 
acoustic parameters considered here are capable to point 
out a significant post- vs. pre-treatment improvement in 
voice quality. These parameters are all related to the 
increased voicing capability of the patient after medical 
treatment.  
Hence only the acoustic parameters that are in some way 
related to the selection of voiced/unvoiced parts of the 
signal are successful in the analysis of a long sentence, 
while other, and also jitter, seem to have less relevance. 
This result suggests that a different analysis should be 
performed on fluent speech other than that usually made 
on sustained vowels or short sentences.  
Results are in agreement with previous studies made on 
the same speech material where a different analysis 
program was used [7]. However, differently from [7], 
with BioVoice2 more parameters, such as a noise 
measure, F0 and its standard deviation can be included in 
the analysis.   
Moreover, a new parameter was introduced here for the 
first time, namely the mean duration of voiced frames, 
MDV. From the preliminary results presented here (Table 
1 and Table 2), this parameter seems indeed to be very 
promising in evaluating the quality of voice in long 
sentences.  
 

V. CONCLUSION 
 

A new multipurpose voice analysis tool is presented 
here and its performance is evaluated on fluent speech 
coming from patients affected by adductor spasmodic 
dysphonia. Even if the data set consists of a limited 
number of patients, significant changes in the value of 
acoustic parameters were found comparing the pre- and 
post-treatment recordings, pointing out the improvement 
of voice quality after botulinum toxin treatment. Some 
parameters such as jitter, already proved valid in the 
analysis of short sentence or sustained vowels, seem to 
lose meaningfulness when evaluated on long sentences. 
Even the PFU parameter, that is a measure of the  
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fundamental frequency instability, seem to lose its 
capability in evaluating the voice signal in long 
sentences.  
However, the proposed tool is successful in objectifying 
the increased voicing and the improved regularity of 
vocal fold vibration after treatment. One newly defined 
parameter, the mean value of voiced frame duration, 
seems very promising in evaluating voice quality 
improvement when applied to long sentences. Future 
work will be devoted to refining the tool in order to 
reduce the computational time while preserving its high 
resolution capabilities and robustness against noise. The 
tool will be also tested on a new corpus of synthetic 
signals with varying F0 and formants that should mimic 
fluent speech. 
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Fig. 2: Boxplot of pre-post treatment acoustic parameters. 
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Abstract: vocal fatigue is a voice symptom which is 
frequently reported by professional voice users. 
teachers, singers, actors and other professions that 
require prolonged voice use are especially at-risk 
group.  the  vocal  fatigue  results  in  auditory 
perceptual and acoustic changes in the voice signal 
and can lead to serious pathological conditions. the 
present study has examined acoustic manifestations of 
the vocal fatigue in pronunciation teachers who seem 
to be particularly susceptible vocal and articulatory 
fatigue. in the paper detailed acoustic analysis of the 
data obtained is presented. the results of the acoustic 
analysis showed a consistent dependency between 
acoustic parameters and vocal fatigue. 
Keywords: vocal fatigue, acoustic analysis, professional 
voice users 

teachers seem to be particularly susceptible to fatigue. 
They have to repeat articulation drills in front of the 
students many times and correct continuously their 
pronunciation which demands a high level of vocal effort 
and excessive muscular tension of articulators. As a 
consequence of this vocal overloading the pronunciation 
teachers often suffer from dysphonia and benign lesions 
such  as nodules. Identifying vocal fatigue in its initial 
stage is important to prevent voice disorders. 
Consequently,   objective   methods   to   evaluate   voice 
quality under fatigue are required. Acoustic measures 
could be used as objective criteria to identify at-risk 
professionals and facilitate intervention strategies to 
prevent pathological conditions. 
 
 

II. METHODS 
I. INTRODUCTION 

 
Voice   problems  are  known   to  be   common   among 
professional  voice  users  worldwide.  Teachers,  singers, 
actors and other professions that require prolonged voice 
use  are  especially  identified  as  an  at-risk  group  for 
developing vocal disorders. A voice symptom which is 
frequently reported by professional voice users is vocal 
fatigue which is a complex multifaceted phenomenon that 
presents  a  challenge  for  both  research  and  clinical 
practice. The symptoms of vocal fatigue are various and 
explained  by  the  physiologic   mechanisms  of  vocal 
production. There exist  many studies on  vocal  fatigue 
providing various concepts of the phenomenon. However, 
they do not offer a universally accepted definition of it. 
The vocal fatigue can be viewed either as a voice disorder 
caused  by  other  pathological  voice  conditions or  as a 
separate  voice  problem  resulting  from  prolonged  and 
excessive voice use [10]. In this study the vocal fatigue is 
understood   as   a   separate   phenomenon   caused   by 
excessive   professional   voice   load   which   results   in 
auditory perceptual  and  acoustic  changes  in  the  voice 
signal and can lead to serious pathological conditions. 
Teachers form a large group of voice professionals and 
their  voice  problems  have  been  focused  on  in  many 
studies  [3-5,  7,  8].  The  present  study  has  examined 
acoustic manifestations of the vocal fatigue in 
phoneticians who teach pronunciation. The pronunciation 

 
A. Subjects 
The methodologies that attempt to induce vocal fatigue in 
experiment participants vary across numerous works on 
the vocal fatigue [1-9]. In most studies the vocal fatigue 
is induced artificially as a result of reading or speaking 
tasks of various types. The results described are 
inconsistent and often conflicting. 
The  conditions  of  our  experiment  seem  to  be  more 
realistically challenging. 
10 female teachers were recorded before and after their 
workdays.  All  the  participants  were  pronunciation 
teachers at the Department of Phonetics, Saint-Petersburg 
State University with average work experience of 7 years. 
No one had pathological voice problems. 
B. Protocol 
The participants were asked to read at habitual loudness a 
four   minute   phonetically   representative   text   before 
classes in the morning. After continuous teaching for 8 
hours they were asked to record the same text. Each of 
the participants reported symptoms of a high degree of 
vocal fatigue after the workday such as a high level of 
muscular  tension/discomfort,  hoarse  voice  quality, 
breathy   voice   quality,   unsteady   voice,   inability   to 
maintain  typical  pitch,  dry  throat  etc.  The  recordings 
were made in the recording studio at the Department of 
Phonetics, Saint-Petersburg State University. Multi- 
channel   recording   system   Motu   Traveler,   capacitor 
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microphone AKG and WaveLab program were used. The 
recordings have a sample rate of 44100 Hz and a bitrate 
of 16 bits. 
C. Material Annotation 
To perform the detailed analysis of the non-fatigued and 
fatigued speech the recorded material was annotated at 6 
levels. The annotation captured the maximum amount of 
phonetically and prosodically relevant data. The six 
annotation layers are as follows: 
Layer 1 – pitch marks; 
Layer 2 – phonetic events labeling; 
Layer  3  –  real  phonetic  transcription  (it  is  performed 
manually and reflects the sounds actually pronounced by 
the speakers); 
Layer 4 – ideal phonetic transcription (this layer is 
automatically generated by a linguistic transcriber in 
accordance with a canonical set of rules); 
Layer 5 - orthographic transcription; 
Layer 6 – prosodic transcription. 
Layers 1 and 2 contain information on various phonetic 
events: epenthetic vowels, laryngalization, and 
glottalization etc. The phonetic events were annotated 
manually by expert phoneticians. 
Prosodic  transcription  on  Layer  6  includes  labels  for 
pause and tone unit boundaries and labels for non-speech 
events such as breathing, cough etc. 
The fundamental frequency periods were detected 
automatically by means of the Wave Assistant program. 

The results of the automatic procedure were checked and 
corrected manually. 
Layer 3 contains narrow phonetic transcription. It reflects 
the  sounds  actually  pronounced  by  the  subjects.  The 
„ideal‟ transcription found at Layer 4 was generated in 
accordance with a set of phonological rules without 
reference  to  the  actual  sound.  As  a  result,  Layer  4 
contains a canonical phonetic transcription of the speech 
sample. The transcription symbols used were a version of 
SAMPA for the Russian language. Symbols for vowels 
contained indication of the sound‟s position regarding 
stress. To produce the real phonetic transcription, the 
speech signal was manually segmented, transcribed and 
peer-revised by expert phoneticians. 
Ideal phonetic transcription was generated automatically 
by an automatic transcriber. The labels were placed 
automatically   to   coincide   with   the   label   positions 
produced manually on the real transcription layer. 
Procedure of automatic labeling is based on calculating 
the  Levenshtein  distance.  Automatic  labeling  is  not 
perfect due to the mismatch of ideal and real phonetic 
transcriptions and drawbacks of the automatic transcriber. 
Therefore, the results of the automatic procedure were 
further manually corrected. 
Fig. 1 below shows the multilayered annotation of the 
sound material. 

 

 
Figure1. The Multilayered Material Annotaion. 

 
 

III. RESULTS 
 

The  vowels  and  sonants  in  the  before  (non-fatigued 
voice)   and   after   (fatigued   voice)   recordings   were 
analyzed for mean fundamental frequency (F0), mean 
duration (vowels, consonants, pauses), intensity range, 
pitch range values. Variables of maximum and minimum 
F0 were also obtained. The vowels were additionally 
analyzed for perturbation (jitter and shimmer). The 
acoustic features which correlated with vocal fatigue state 
were extracted from the recorded material. 

A. Fundamental Frequency Variation (non- 
fatigued/fatigued speech) 
The analysis of F0 features shows that the mean pitch 
value tends to be higher in fatigued speech across all the 
subjects. The pitch range increases significantly due to 
the increase of upper range value. The mean lower range 
value stays practically unchanged. 
Table 1 shows the mean fundamental frequency variation 
across all the subjects in both material types. 
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type of 
Material 

Mean 
pitch, 

hz 

pitch 
range, 

hz 

pitch 
max, 
hz 

pitch 
min, 
hz 

non- 
fatigued 

242 212 351 139 

fatigued 253 308 445 137 

 

consonant 
types 

duration increase 

%, ms 
stops 10,3 7,5 
fricatives 10,7 9,3 
affricates 13,7 4,8 
all consonants 7,4 5,2 

 

type of 
Material 

laryngalization, % 

non-fatigued 1,5 
fatigued 1,2 

 

vowel duration increase duration decrease 
% ms % ms 

a 3 2,4   
e 10.2 6,2   
i 7.1 3,6   
o 14.7 11   
u   1.3 0,4 
ɨ 6.1 3,1   

all 
vowels 

 

6 
 

4,3   

 

Table 1. The Mean Fundamental Frequency Variation Table 4. The Increase of Consonant Duration ( fatigued 
speech) 

 
 
 
 
 
 
 

Among common fatigue symptoms which are frequently 
reported by researchers there is a creaky voice quality 
which is marked by significant decrease in pitch value 
and pitch breaks (laryngalization) [6,7,10]. 
However,  the  analysis  of  our  material  shows  that  the 
mean duration of laryngalized speech segments turns to 
be less in fatigued speech than that of in non-fatigued 
one. 
Table 2 shows the ratio of laryngalized speech segments 
to the whole text recorded. 

 
Table 2. The ratio of laryngalized speech segments to the 
whole text recorded 

 
 
To obtain more data on duration variation in the fatigued 
speech, pauses were also analyzed. The number of pauses 
in the recorded material varied with a subject. Some of 
them made more pauses in the fatigued state (in 
comparison with a non-fatigued one), while the others 
made  fewer  pauses  when  fatigued.  However,  in  both 
cases the mean pause duration increased in the fatigued 
speech. That means that under fatigue it took a subject 
more time to pause. 
 
Table  5.  The  Mean  Pause  Duration  (both  types  of 
material) 
type of 
Material 

Mean pause duration, ms 

non-fatigued 478 
fatigued 567 

 

B. Duration Variation (non-fatigued/fatigued speech) 
The tables below show the mean variation of sound 
duration in the fatigued speech in comparison with that of 
the same sounds in the non-fatigued speech. 

 
Table 3. The Variation of Vowel Duration (fatigued 
speech) 

 
C. Articulatory Fatigue Manifestations 
The comparison of ideal and real phonetic transcription 
showed the following changes of articulation caused by 
fatigue. 
In table 6 we compare the ideal phonetic transcription 
reflecting the way the speech sample is supposed to be 
pronounced according to the canonical transcription rules 
of  the  Russian  language  and  the  real  phonetic 
transcription  reflecting  the  way  it  actually  was 
pronounced by the subjects recorded. 
 
Table 6. Ideal vs. Real Transcription. 

 

 total Match Mismatch elision 
non- 

fatigued 
100 84.7 9.05 6.25 

fatigued 100 81.2 10.8 8 
 
 
 

As it is shown in the table above, all vowels increased in 
duration  except  /u/.  The  increase  ranges  from  3%  to 
10.2%. 
The duration  of  consonants tends to increase as  well. 
Table  4  shows  the  duration  variation  across  different 
types  of consonants according to the manner  of 
production. The duration did not vary with 
voiced/voiceless sound quality. 

Table 6 reveals that percentage of phoneme mismatch 
(the number of the expected sounds replaced by other 
sounds) and elisions (the number of the expected sounds 
which are actually not pronounced at all) is higher in the 
state of fatigue. 
 
 

IV. DISCUSSION 
 

The voice acoustic analysis performed before and after 
the working day can contribute to objective voice 
examinations useful in diagnosis of dysphonia among the 
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pronunciation teachers. The pronunciation teachers seem 
to be a most highly vocally demanding profession and the 
fact should be taken into account in developing safety 
work standards and regulations. The 8 hour work load a 
day is obviously excessive and can lead to pathological 
conditions. 

 

The perspectives for future works are 1) to test more 
subjects including male ones, 2) to investigate degrees of 
vocal fatigue and correlating acoustic parameters, 3) to 
identify critical threshold of vocal fatigue basing on 
acoustic analysis, 4) to investigate whether physiologic 
and/or neurologic fatigue (e.g. induced by sleep 
deprivation,  physical  exercise  etc.)  causes  the  same 
effects on the acoustic signal, 5) to compare the acoustic 
manifestations of vocal and non-vocal fatigue. 

 
V. CONCLUSION 

The results of the acoustic analysis showed a consistent 
dependency between acoustic parameters and vocal 
fatigue. After a working day F0 values were higher, the 
duration of vowels and consonants increased; pitch and 
loudness range values increased. Measuring jitter and 
shimmer did not give consistent results. The differences 
in the acoustic parameters after a vocally loading working 
day mainly seem to reflect increased muscle activity as a 
consequence of excessive vocal loading 
As well as acoustic manifestations of the fatigue state it is 
also  necessary  to  consider  articulatory  changes  as  a 
fatigue symptom. It especially matters for pronunciation 
teacher profession which demands not only a high level 
of vocal effort, but also excessive muscular tension of 
articulators. 
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Abstract: the aim of the present study was to 
evaluate patient-report of vocal discomfort by means 
of a portable device, designed for the continuous 
assessment of voice disorders with real-time coupling 
of acoustic and patient self-evaluation measures.  
10 teachers were equipped with the portable device 
embedding our vocal discomfort software during 3 
days in their professional settings. they had to note 
their vocal discomfort during the day on a visual 
analogue scale (vas) ranging from 0-100 units, 
either spontaneously, or following an auditory 
prompt.  
the adequacy of the device and of the software was 
evaluated by a questionnaire addressing the 
wearability of the device, the easiness of the software, 
the adequacy of the scale and the subjects’ annotation 
behavior.  the adequacy of the scale was further 
examined by the analysis of the vocal discomfort 
ratings and their change in value across time.  
the results show good wearability, easiness, and 
annotation behavior scores, subjects made regular 
annotations even without auditory prompting. the 
discomfort scores generally increased during a 
working day.  
the real-time embedded tracking of patient reported 
vocal discomfort in professional settings can thus be 
advantageously performed by a portable device, 
embedding our auto-evaluation software. 
Keywords :  vocal discomfort, real time embedded 
tracking. 

 
I. INTRODUCTION 

 
Voice assessment is usually carried out in voice 

laboratories. Although it is advantageous because of the 
possibility to perform measures in a reproducible 
setting, the assessment is however limited for patients 
whose voice problems arise only in specific situations, 
as for example teachers in a working environment [1, 
2]. The possibility to complete voice laboratory 
measurements with real-life assessments would be 
valuable in the diagnostic phase of a voice disorder, for 

treatment outcome evaluation and for patient monitoring 
purposes [3].  
 

We are in the development phase of a portable 
device, designed for the continuous assessment of voice 
disorders with real-time coupling of acoustic and patient 
self-evaluation measures. The aim of the present study 
was to evaluate the adequacy of this device and the 
software developed on this platform for patient-report of 
vocal discomfort.    
 

II. METHODS 
 

Subjects were 10 teachers (8 women, 2 men), mean 
age 35 (Standard deviation - SD: 8,45). Two were 
teaching in kindergarten, four in primary schools and 4 
in secondary school.  All subjects judged their 
professional voice use as intense, none reported 
suffering from dysphonia. Each subject was equipped 
with the portable device, embedding our software 
allowing the notation of vocal discomfort. The notation 
is performed by the displacement of a cursor along a 
VAS ranging from 0 – 100 units divided in three 
colored compartments labeled “low”, “moderate” and 
“high”. A validation button has to be pressed to confirm 
the notation. The last two notations made by the subject 
were kept visible on the screen. The position of the 
cursor and the time in seconds is recorded continuously; 
every activation of the validation button is registered. 

Subjects were tested in their professional settings for 
three consecutive weeks, always on the same day (eg : 
one subject was tested on three consecutive Mondays 
while another was tested on three consecutive 
Tuesdays). A condition where the subjects were asked 
to make their vocal discomfort notations spontaneously 
and a condition where they were reminded every 30 
minutes by an auditory prompt  were tested in a 
crossover design where subjects were randomly 
assigned to either group A (auditory prompt on the 1st 
3rd week) or group B (auditory prompt on the 2nd week).   

As the final objective of this project is to couple 
continuous audio-recordings with the auto-evaluation of 
the patient, a microphone was fixed on the subjects’ 
collar in order to test the entire device, although no 
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sound was recorded at this time of the study. Written 
and oral information on the use of the device and the 
software were given to each subject.  

The adequacy of the device and of the software was 
evaluated by a questionnaire addressing the wearability 
of the device, the easiness of the software, the adequacy 
of the scale and the subjects’ annotation behavior.  The 
questionnaire was answered each test day, answers were 
given on a 10 cm long VAS.  The adequacy of the scale 
was further examined by the analysis of the vocal 
discomfort ratings and their change in value across 
time. 

Moreover, subjects were asked to give us a duty 
roster for each of the test days where they also could 
report any comments that could be of interest regarding 
their vocal use.  

 
III. RESULTS 

 
A. General results. 
 

All subjects were able to participate on the three days. 
29 out of 30 questionnaires were returned. Discomfort 
notations were collected on 23 out of 30 days. 6 subjects 
exited the software by mistake during one or two test 
days. Subjects wore the device for a mean of 7,3 h (SD: 
2h) and made a mean of 10,4 annotations per day (SD 
8,6), the mean interval between annotations was 49,4 
min (SD: 28,1 min). Validations of the same vocal 
discomfort value that were made in an interval of less 
than 10 minutes were not taken into account, indeed 
subjects 2, 5 and 6 made abnormal amounts of 
validations in a short duration of time (up to 16 
validations in the lap of 123 seconds), which was 
regarded as an artifact.  

The auditory prompts were heard on 4 out of 15 days, 
and on 2 of those days, the subjects had exited the 
software by mistake. No computations regarding the 
prompt condition have thus been carried out.  
 
B. Adequacy of the device and the auto-evaluation 
software. 
 

The questions regarding the device’s wearability 
obtained a mean score of 6,8 each (SD: 3,5) (see Fig. 1).  

The questions regarding the easiness of the software 
obtained mean scores of 8 (SD: 2,6), 7,1 (SD: 3,1) and 
7,8 (SD: 3) (see Fig. 2).  

The questions regarding the adequacy of the scale 
obtained mean scores of 7,9 (SD: 2,7), and 8,1(SD: 2,6) 
(see Fig. 3).  

The questions addressing the subjects’ annotation 
behavior obtained a mean score of 5,6 (SD: 2,4) and 6,9 
(SD: 3,1) (see Fig. 4).  
 

 
fig. 1 Wearability (95% confidence interval. Q1: Was 
the device bulky to wear? 0: Very bulky, 10 Not bulky at 
all. Q2: Was the device annoying to wear? 0: Very 
annoying, 10: Not annoying at all.) 

 

 
 

fig. 2 easiness of the software (95% confidence 
interval. Q3: Was the software easy to understand, Q4: 
was the cursor easy to move? 0: Not at all, 10: Very 
easy. Q5: Did you remember to validate after your 
notation? 0: Never, 10: Always.)  

 

 
 

fig. 3 adequacy of the scale (95% confidence interval. 
Q6: Was the scale adequate for noting your vocal 
discomfort? Q7: Were the labels helpful in noting your 
vocal discomfort? 0: Not at all, 10: Very ) 

 

 
 

fig. 4 subjects annotation behavior (95% confidence 
interval) (Q8: Did you forget to note your discomfort? 0: 
Always, 10: Never. Q9: Did you omit to note your 
discomfort to avoid getting disturbed in your activities? 
0: Always, 10: Never.) 
 

B. Vocal discomfort measures. 
 

Fig. 5 shows the mean discomfort value (computed 
on the three consecutive days) for each subject. On the 
first annotation of the day, the mean discomfort value 
over the subjects was 11,3 (SD: 10,5), and 41,1 (SD: 

Q3  Q4    Q5 

Q6     Q7 

Q8     Q9 
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30,1) on the last annotation of the day. Subjects two, six 
and eight did not show an increase of their mean vocal 
discomfort value during the day.  

Looking more closely at their answers (Fig. 6), we 
see that subject six and eight show overall null and flat 
vocal discomfort responses. Subject two has a similar 
answer pattern on day three but on day two, we see that 
there are increases and decreases of his vocal discomfort 
until the last hour of the day where it decreases below 
its initial value; this subject revealed having had a great 
vocal use on that day, apart from the last hour, where he 
kept quiet while his students made exercises.  

 
 

 
fig. 5 Mean vocal discomfort values.  
(T1: First validation, T2: Last validation.)  
 

Different patterns of vocal discomfort value changes 
during the day can be observed (Fig. 6), some subjects 
give flat responses that do not evolve during the day 
(subjects 8, 6 and subjects 2 and 7 on day 2), some 
subjects have responses that evolve in a saw tooth 
pattern (subject two on day three, subject seven on day 
one and three and subject two on day two and three) and 
some subjects have responses that evolves gradually 
over the day (subjects 1, 4, 5, 9 and 10).  

We see that subject 6, 3, 9, 5 and 10 have consistent 
vocal discomfort patterns over the test days while 
subjects 2 and 7 have not. Subject 2 reported that he had 
a trainee on day 2 that did class instead of him while he 
had an intense voice use on day 1. Subject 7 indicated 
that there was a strike on day 2, she had less students 
than usual and reported less intense voice use on that 
day.  
 

IV. DISCUSSION 
 

The adequacy of the device and the software was 
confirmed by high wearability and easiness scores, the 
subjects did not find the device bulky nor annoying to 
wear, the cursor was reported easy to move and to place 
on the right spot and it was easy to remember validating 
changed discomfort values.  

The adequacy of the scale was confirmed by high 
scores at the questions evaluating the scale, it was 
regarded as highly adequate for the notation of vocal 
discomfort and the labels were rated as helpful. 

 

fig. 6 Mean vocal discomfort values for each 
subject on each test day. Every half hour is plotted 
on the X-axis. Discomfort values are plotted on the 
Y-axis. (D: Day.)  
 

The subjects reported that they seldom consciously 
omitted to report their vocal discomfort but they were 
more susceptible of forgetting to make the notations. 
Nevertheless, a mean of 10,4 notations were made with 
a mean interval of less than one hour. The adequacy of 
the scale was further supported by the overall increase 
in voice discomfort ratings over time, related to greater 
vocal load as the working day progressed. We stopped 
the recordings of the vocal discomfort at the end of the 
working days, in future studies where we will be able to 
follow subjects during a longer time, a decrease of the 
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vocal discomfort values would be expected with a 
reduced vocal load after work.  This study was done in 
subjects who reported no dysphonia, it will be 
interesting in future studies to observe how these values 
are impacted by a vocal disorder.  

Although the auditory prompt was not heard in a 
majority of cases, frequency of annotations was high 
and a reminder does not seem to be needed to obtain 
regular ratings over a day.   

Seven days of data were lost due to subjects exiting 
the software, the implementation of a password 
controlled lock could prevent for that in the future.  
 Several subjects made spontaneous comments about 
the fact that the device had helped them to get conscious 
of their vocal use during a day and of their vocal 
discomfort, which they had not been reflecting over 
before their involvement in the study. This indicates that 
our software could be useful not only for diagnostic and 
outcome measures purposes but also in the context of 
vocal load monitoring in vocal professionals.   
 

V. CONCLUSION 
 
The real-time embedded tracking of patient reported 
vocal discomfort in professional settings can be 
advantageously performed by a portable device, 
embedding our auto-evaluation software. This study 
confirmed the validity of the scale we have developed 
for the tracking of changes in self-reported vocal 
discomfort in voice professionals. 
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Abstract: voice problems have become a major 

occupational health issue within the teaching 
community, as they frequently result in work 
absenteeism and need for professional re-orientation. 
four main risk factors have been identified: voice 
loading, general health condition, environmental 
factors and psycho-emotional factors (occupational 
stress and frustration). 
In order to specifically consider the ‘stress’ aspect, we 
investigated voice complaints and voice-related 
quality of life in the teachers of a special education 
setting: the national military academy  for future non-
commissioned officers, actually adolescents in the age 
12 to18. the outcomes were compared with those 
from recent reports about similar studies in common 
secondary schools in different european countries and 
in the usa. our results demonstrate that the specific 
military teacher’s population considered in this study 
clearly shows significantly lower prevalence of voice 
problems than comparable teacher’s populations in 
‘common’ secondary schools.  
on the other hand, we investigated two specific 
groups of teachers supposed to have a heavier 
physical voice load than classical teachers: teachers of 
physical education and swimming teachers (in 
secondary schools). concerning these  two classes of 
teachers, the clear overall similitude with classical 
teachers provides a strong argument to consider that 
vocal load and environment is not the sole – or by far 
the most important – cause of voice complaints. 
 
Keywords: teachers, voice load, psycho-emotional 
complaints, stress. 

 
I. INTRODUCTION 

 
Voice problems have become a major occupational 

health issue within the teaching community, as they 
frequently result in work absenteeism and need for 
professional re-orientation. Four main risk factors have 
been identified [1-3]: voice loading (amount of teaching 
hours weekly), general health condition (upper airway 
infections, allergy, hearing loss, gastro-esophageal 
reflux…), environmental factors (noise, room acoustics, 

etc.), and psycho-emotional factors (occupational stress 
and frustration). Several recent publications suggest that 
the latter could play an important role. Actually the 
“stress” factor seems to consist of two components: the 
fear for aggressions and violence [4] and the lack of 
adequate coping strategies [5]. A growing number of 
misbehaving pupils and an increase in the size of the 
classes could account for deterioration in the last years 
[6]. 
In order to specifically consider the „stress‟ aspect, we 

investigated voice complaints and voice-related quality of 
life in the teachers of a special education setting: the 
national military academy  for future non-commissioned 
officers, actually adolescents in the age 12 to18. The most 
obvious difference between these specific surroundings 
and a normal secondary school is the discipline 
constraint, due to selection of the pupils, strict internal 
regulations and punitive sanctions (exclusion). The 
outcomes were compared with those from recent reports 
about similar studies in common secondary schools in 
different European countries and in the USA. Our 
working hypothesis is that enhanced discipline reduces 
stress in the teachers. 
On the other hand, we investigated 2 specific groups of 

teachers supposed to have a heavier physical voice load 
than classical teachers: teachers of physical education and 
swimming teachers (in secondary schools). 

The literature is however controversial: E.g. [7]  
found evidence for a higher risk to develop voice 
problems in teachers of physical education while [8] 
found no difference, although the teachers of physical 
education reported shouting much more (also in open air) 
compared to the other types of teachers. 

In the current study, a comparison has been made 
among 3 matched groups: classical teachers, teachers of 
physical education and swimming teachers , in the same 
secondary schools.  

   
II. METHODS 

 
The basic tool for these studies was a questionnaire, 

including the Voice Handicap form, a validated, widely 
spread instrument for quantifying voice related quality of 
life, to be filled in by all teachers. Beside the VHI, the 
questions pertained to: 

deterMinants of voice-related syMptoMs and coMplaints in 
different cateGories of teachers : the iMportance of the 

psycho-eMotional coMponent 
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- general information ( gender, age ….) 
- health condition ( general complaints / smoking 

& drinking habits / hearing / airway / reflux 
etc…) 

- detailed information about career and teaching 
conditions 

- a Yes/No statement: “ In general, is your voice 
for you a problem ?” 

- the Voice Handicap Index [9]. 
The questionnaire had to be filled in anonymously. 
 

III. RESULTS 
 
A. Military teachers 
73 fully completed questionnaires were suitable for 
analysis. 28 were incomplete. The response ratio was 
70%. All were males. 
 
(i) Prevalence of voice problems: 
One single teacher (1%) gave a positive answer on the 
general Yes/No statement. Reference values for teachers 
are 52% [10], >55% [11] 59% [3], 43% [12], 54% [13]   
and for the general population 29% [14, 15] and 5% [11]. 
 
(ii) The median value for the VHI-score in our study was 
5 (percentile 25: 2,8 and percentile 75: 10,3). The 
normative values (Median value, percentiles 25 & 75) 
are: 
- Working population without occupational voice use: 5 
(2-10) 
- General population:    6 (2-12) 
- Voice professionals:   7 (2-13) 
- Teachers secundary school:  8 (3-15)  
 
[16, 11, 3, 17, 18, 19, 20, 21]. 
 
B. Physical education teachers and swimming 

teachers, compared to classical teachers of the same 
schools 

 
For this experiment 176 completed questionnaires 

were collected from teachers (physical education teachers 
and swimming), and 27 from swimming teachers. The 
response rate was 86%. The questionnaires of 59 healthy 
class teachers and 92 healthy physical education  teachers 
were available for statistical analysis. 

The median age of the classical teachers was 44,0, 
with a median of 16,0 working hours per week and 12,0 
working years in education there were 63% male teachers 
and 37% female teachers.  

The physical education teachers had a median age of 
37,5; 21,0 working hours a week and the average of their 
years working as a physical education teacher was 13,7 . 
There were 59% male physical education teachers and 
41% female teachers.  

Analysis of results fails to show any difference 
between the three groups for the total VHI score, but a 
possible bias for swimming teachers is that they work in 
average a significant lower amount of hours per week. 
For the physical education teachers no significant 
difference of the VHI-total is found between the male 
(median 9,0) and the female teachers (median 10,0) (p = 
0.17). 
 

 
Figure 1: Boxplot of the VHI scores of the physical 
education teachers, the classical teachers and the 
swimming teachers 
 

IV. DISCUSSION AND CONCLUSIONS 
 

As far as comparative values are available, they 
indicate that our group of military teachers does not differ 
– as a general rule -  in a biasing sense from the general 
population of secondary school teachers in the 
Netherlands or Belgium. The average age of our sample 
is 40 +/- 8,8 years, and the average age of all teachers in 
the Netherlands is 45. In our sample there are 77 % males 
and 23 % females, while in general in the Netherlands the 
proportions are 64 and 36 % for the secundary school 
teachers [22]. 

The voice loading for the military teachers and the 
environmental factors were – as far as possible - 
controlled, and appear to be not more favorable in the 
military academy than in a normal school. In our sample 
95% of the teachers worked full-time while in Flanders 
this % is 65. In our sample , the average duration of the 
teaching career was 14,1 +/- 8 years. There were 25 – 30 
pupils per class. All classrooms were visited and found 
quiet (the campus is at distance of town and highroad). 

The general health condition is difficult to compare 
with the general teaching populations, as adequate 
statistics are lacking, but it could be that military teachers 
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– being for a part themselves military – have a better 
general condition than their colleagues from „common‟ 
secundary schools. An indicator is that 58% of our 
military teachers actively practice sport. This is a possible 
bias. However, in our sample 40 % of the teachers were 
currently smokers. 

Our results demonstrate that the specific teacher‟s 
population considered in this study clearly shows 
significantly lower prevalence of voice problems than 
comparable teacher‟s populations in „common‟ secondary 
schools. Further, the psycho-social impact of voice 
problems considerably differs from what is known about 
secondary school teachers in general. The VHI scores of 
the military teachers are comparable to those of normal 
subjects without occupational voice use, and lower than 
those of the general population. 

The specific surroundings and particularly the 
discipline context of the military academy seem to 
considerably reduce the stress related to teaching 
activities.  

Except that the aspect “general health condition” 
should be investigated more in depth, as a possible partial 
bias, this study supports the hypothesis that psycho-
emotional factors and occupational stress play an 
important role as risk factor for voice problems in 
teachers.   

Concerning the physical education teachers and the 
swimming teachers, the clear overall similitude with 
classical teachers provides a strong argument to consider 
that vocal load and environment is not the sole – or by far 
the most important – cause of voice complaints.  
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Parkinson's disease (PD) is a slowly progressive and 
highly debilitating disease of the central nervous 
system, affecting 8,000,000 or more people the world 
over.  By the time the disease is diagnosed, 60% of 
nerve cells in the substantia nigra are degenerated and 
80% of dopamine is depleted in the striatum.  There is 
an urgent need for cost-effective methods to detect the 
disease in its early phases, to differentiate it from other 
diseases, and to monitor its progression and its 
response to treatment. Parkinsonian speech is 
characterized by abnormally low voice intensity, with 
vocal decay, poor voice quality, reduced prosodic pitch 
and loudness inflection, imprecise vowels and 
consonants, dysrhythmia and short rushes of speech, 
mumbling, and reduced speech intelligibility 
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Acoustic analysis of Parkinsonian speech is 
noninvasive, precise, valid, reliable and cost effective.  
Recently, there have been new acoustic analysis 
methods to capture different aspects of these speech 
abnormalities.  The purpose of this seminar is to 
describe these methods, present empirical findings, and 
discuss the advantages, disadvantages, and potential 
solutions of these methods.  Ultimately, a combination 
of these and other new methods is likely to yield a 
powerful way to detect early signs of PD, and to 
characterize and monitor the disease as it progresses or 
in response to treatment.  These issues are addressed by 
the following presenters: 
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Abstract: Parkinson’s disease (pd) symptom severity 
is typically quantified using the standard clinical 
metric Unified Parkinson’s Disease Rating Scale 
(updrs) which spans the range 0-176 (0 denotes 
healthy). This assessment requires the patient’s 
physical presence in the clinic, is time consuming, and 
relies on the clinical rater’s subjective evaluation and 
experience; practice has shown that expert clinicians 
might differ by as much as 4-5 updrs points in their 
evaluations. We had previously developed a statistical 
machine learning framework which enables accurate 
and objective quantification of average pd symptom 
severity using exclusively speech signals. for this 
purpose, we evaluated 132 speech signal processing 
algorithms (dysphonia measures), which attempt to 
capture distinctive characteristics in PD subjects’ 
voice. on a very large database of about 6,000 
phonations, we could replicate the clinical experts’ 
assessments within less than two UPDRS points’ 
error. in this paper, we focus on identifying the most 
successful of the original 132 dysphonia measures in 
estimating updrs using five robust feature selection 
techniques. We demonstrate that we can improve on 
our previous findings using only 15 dysphonia 
measures, where the selected measures also tentatively 
indicate the most representative pathophysiological 
characteristics in male and female pd voices. 
 
Keywords:  Parkinson’s disease, telemedicine, Unified 
Parkinson’s Disease Rating Scale, feature selection 

 
I. INTRODUCTION 

 
Parkinson‟s disease (PD) is a crippling 

neurodegenerative disorder and it is estimated that more 
than one million people in North America alone are 

affected [1]. Reported incidence rates vary, but are in the 
range 10-20/100,000 [2]. Age is the single most 
important risk factor [2], and since the population is 
growing older, rates can be expected to rise further in the 
years to come. PD symptom monitoring requires the 
subject to make frequent physical visit to the clinic, and 
the dedicated time of expert clinicians in order to assess 
their general condition. Using a range of empirical 
physical tests, clinicians subjectively evaluate and map 
symptoms to a widely used metric known as the Unified 
Parkinson‟s Disease Rating Scale (UPDRS). This scale 
ranges from 0-176, where 0 denotes symptom-free and 
176 total disability. 

Building on recent evidence linking PD progression 
with vocal performance degradation [3], we have 
developed a statistical machine learning framework 
exploring the relationship between speech patterns and 
UPDRS [4-7]. In our studies we have used a collection of 
widely used speech signal processing algorithms 
(dysphonia measures) and have proposed a few novel 
algorithms [5], [8]. In this study, we review the most 
successful algorithms for estimating average PD 
symptom severity, and investigate plausible physiological 
explanations for this result. In order to decide on the most 
successful dysphonia measures out of the 132 from our 
most recent study [5], we use five new feature selection 
methods for choosing the best subset of dysphonia 
measures. 
 

II. DATA 
 
We use the speech-PD database originally presented by 

Goetz et al. [9], which we later summarized in [4] and 
[5]. This database was collected as part of a large clinical 
trial which involved a purpose-built telemonitoring 
device developed by Intel Corporation called At-Home 
Testing Device (AHTD). Various data, including tremor 
and dexterity tests, are involved, but we focus exclusively 
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on speech signals. We processed 5875 sustained vowel 
“ahh…” phonations from 42 people with PD who were 
diagnosed up to five years at trial onset, and who were 
followed up for a period of six months. All subjects 
remained non-medicated during the AHTD trial, and each 
subject was asked to complete the tests weekly. We have 
six phonations for each test session: four at a comfortable 
speaking level, and the remaining two at twice the initial 
loudness level (but without shouting). The phonations 
were recorded in the subjects‟ homes with a head 
mounted microphone. The voice signals were sampled at 
24 kHz with 16 bits resolution and were recorded directly 
to a USB memory stick attached to the AHTD. Clinical 
UPDRS assessments were available at the trial baseline, 
after three months and six months. Supported by clinical 
findings which suggest that PD progression in early non-
medicated subjects is approximately linear [10], to derive 
weekly UPDRS scores we used straightforward piecewise 
linear interpolation going exactly through the measured 
UPDRS values [4-7]. Further details regarding the device 
and the data can be found in [9] and [5]. 

Based on previous findings that males and females have 
distinct vocal PD characteristics [5], we investigate data 
from males (4010 phonations) and data from females 
(1865 phonations) separately.   
 

III. METHODS 
 

We aim to characterize the PD speech signals using the 
132 dysphonia measures of [5], select the most useful 
dysphonia measures using a range of feature selection 
(FS) algorithms, and map the selected subset to UPDRS. 
Of particular interest is to identify the features that are 
common to the majority of the FS schemes, and attempt 
to decipher what pathophysiological PD characteristics 
these features reveal. 
 
A. Computation of features 
 

We compute 132 dysphonia measures for each 
phonation, using all the algorithms described in [5]. All 
algorithms are presented in detail in that study, and have 
been written using the Matlab software package. To 
summarize, the 132 features computed include 30 jitter 
variants (perturbations of the fundamental frequency), 21 
shimmer variants (perturbations of the amplitude), 42 
Mel Frequency Cepstral Coefficients (MFCCs), 8 
fundamental frequency (F0) related measures (standard 
deviations, and differences of the fundamental frequency 
of each speech signal from the corresponding average 
fundamental frequency of age- and gender-matched 
healthy controls), 4 harmonics-to-noise (HNR) and noise-
to-harmonic (NHR) ratios, and 27 additional dysphonia 
measures. These 27 dysphonia measures leverage exploit 
concepts related to: inability to sustain prolonged 
phonation, departure from periodicity in glottal opening 

and closure times, increased signal to noise ratio, and 
vocal differences compared to the average age- and 
gender-matched population.  

Elsewhere, we have introduced the Recurrence Period 
Density Entropy (RPDE), Detrended Fluctuation 
Analysis (DFA) and Pitch Period Entropy (PPE) [8], and 
also Vocal Fold Excitation Ratio (VFER) family of 
measures, the Empirical Mode Decomposition Excitation 
Ratio (EMD-ER) family and the Glottal Quotient (GQ) 
[5]. RPDE quantifies the uncertainty in the measurement 
of the pitch period. DFA quantifies the stochastic self-
similarity of turbulent noise in the speech signal. PPE 
quantifies the inefficiency of voice F0 control. The VFER 
family focuses on glottal pulses and forms signal-to-noise 
ratio measures, relying on energy, the Teager-Kaiser 
Energy Operator (TKEO), and entropy concepts. A 
similar concept motivates the EMD-ER family, which 
initially decomposes the speech signal into constituent, 
time-varying frequency-like components. The first 
components contain high frequencies in the signal 
(roughly attributable to noise), whereas the latter 
components represent power-like quantities. The GQ 
measures attempt to form a more sensitive jitter-type 
approach, relying on actual glottal cycle perturbation 
rather than F0 perturbation. 
 
B. Feature selection 
 

A common problem in applications with many features 
is the curse of dimensionality: a reduced feature subset 
may enhance the learner‟s performance and also 
promotes model interpretability [11]. That is, a reduced 
feature subset may enable insight into the underlying 
mechanisms of the system. Previously, we used two FS 
algorithms: the Least Absolute Shrinkage and Selection 
Operator (LASSO) and the elastic net [11]. Here, we 
complement these findings using five additional FS 
algorithms. Our rationale is to identify the features which 
are consistently selected and which with very high 
probability are the most useful in this application. 

We used the following additional FS algorithms: 1) 
minimum Redundancy, Maximum Relevance (mRMR) 
[12], 2) the importance score of the Random Forest 
learner [13], 3) the ReliefF algorithm [14], 4) Information 
Gain (IG) [15] and 5) Sparse Bayesian Multinomial 
Logistic Regression (SBMLR) [16]. Investigation of the 
specific properties of each of the FS algorithms is beyond 
the scope of this study. 

We run each FS algorithm in a 10-fold cross-validation 
setting: we randomly select 90% of the available data and 
based on this dataset we select features; the process is 
repeated a total of 10 times, each time with a new 90% 
randomly selected data points. Then, for each FS 
algorithm we select the subset which appeared most often 
in the 10 repetitions. This is the output of each FS 
scheme, and this output is used in the subsequent 
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mapping stage.  To facilitate comparison, we focus only 
on the first 15 choices of each FS algorithm. 
 
C. Feature mapping and generalization  
 

As in our previous study [5], we use the Random 
Forests (RF) learner, mapping the dataset comprising the 
selected feature subset to the response (UPDRS). For 
details of RF we refer to Hastie et al. [11]. The 
generalization performance of the model is estimated 
using 10-fold cross validation, with 100 repetitions for 
statistical confidence. For each repetition we randomly 
permute the original data, and then use 90% of the data 
for training and the remaining 10% for testing. The error 
metric we minimize is the out of sample mean absolute 
error (MAE):       ⁄ ∑ | ̂    |   , where  ̂   is the 
predicted UPDRS and    is the actual UPDRS for the ith 
entry in the training or testing subset, N is the number of 
phonations in the training or testing subset, and Q 
contains the indices of that set. MAEs over the 100 cross-
validation repetitions were averaged. 

 

IV. RESULTS 
 

We summarize the results of the FS algorithms in 
Table 1 for males, and Table 2 for females. Then, we use 
these selected feature subsets as input to the RF learner 
and compute the out of sample MAE, which is expressed 
in the form mean ± standard deviation (last row in Tables 
1 and 2). Interestingly, the lowest MAE is given when the 
features provided by ReliefF or RF are input to the RF 
learner. As in [5], it appears that UPDRS in males can be 
estimated more accurately. 

The choices of the FS schemes are interesting: overall, 
there is good agreement on the most useful features, 
suggesting we can be confident that these features may be 
the most representative of the PD pathophysiological 
status. It appears that MFCCs dominate in the male 
dataset, and F0-related measures dominate in the female 
dataset, verifying our previous findings [5]. Some of our 
recently proposed dysphonia measures are consistently 
selected across FS schemes; we elaborate on their 
properties in the following Section. 

 

table 1: Selected dysphonia measures from five feature 
selection algorithms for males. The resulting out of sample 
mean absolute UPDRS estimation error (last row) uses these 
15 features as input into the Random Forest learner. 

LASSO mRMR RF ReliefF IG SBMLR 

6th MFCC VFERNSR,TK

EO DFA 6th MFCC VFERNSR,TK

EO 8th MFCC 

8th MFCC 6th MFCC 7th MFCC DFA 
𝐹𝐹0,𝑆𝑆𝑆𝑆𝑆𝑆
 𝐹𝐹0,𝑒𝑒𝑒𝑒𝑒𝑒 6th MFCC 

VFERSNR,TK

EO 7th MFCC 6th MFCC 5th MFCC 0th MFCC 7th MFCC 

VFERmean 8th MFCC 4th MFCC 7th MFCC DFA 9th MFCC 

8th delta 
MFCC 

10th delta 
MFCC 

VFERNSR,TK

EO 8th MFCC 6th MFCC 3rd MFCC 

12th delta 
MFCC 1st MFCC 2nd MFCC 3rd MFCC 

𝐹𝐹0,𝑚𝑚𝑚𝑚𝑚𝑚
 𝐹𝐹0,𝑒𝑒𝑒𝑒𝑒𝑒 4th MFCC 

0th MFCC 3rd MFCC 8th MFCC 4th MFCC 
𝐹𝐹0,𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
 𝐹𝐹0,𝑒𝑒𝑒𝑒𝑒𝑒 5th MFCC 

2nd MFCC Log 
energy 3rd MFCC 9th MFCC IMFenergy 10th MFCC 

3rd MFCC VFERSNR,TK

EO 
Log 

energy 10th MFCC 
𝐹𝐹0,𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃
 𝐹𝐹0,𝑒𝑒𝑒𝑒𝑒𝑒 2nd MFCC 

2nd delta 
MFCC 5th MFCC 1st MFCC 11th MFCC 8th MFCC IMFNSR,TKEO 

3rd delta 
MFCC stdF0Praat 9th MFCC Log 

energy VFERentropy HNRstd 

Std 𝐹𝐹0,𝑆𝑆𝑆𝑆𝑆𝑆 11th MFCC 11th MFCC 12th MFCC 3rd MFCC 11th MFCC 

9th MFCC HNRstd 
𝐹𝐹0,𝑆𝑆𝑆𝑆𝑆𝑆
 𝐹𝐹0,𝑒𝑒𝑒𝑒𝑒𝑒 2nd MFCC Log 

energy 12th MFCC 

7th MFCC 4th MFCC 
𝐹𝐹0,𝑚𝑚𝑚𝑚𝑚𝑚
 𝐹𝐹0,𝑒𝑒𝑒𝑒𝑒𝑒 

𝐹𝐹0,𝑚𝑚𝑚𝑚𝑚𝑚
 𝐹𝐹0,𝑒𝑒𝑒𝑒𝑒𝑒 VFERmean 0th MFCC 

4th delta 
MFCC 9th MFCC 

𝐹𝐹0,𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
 𝐹𝐹0,𝑒𝑒𝑒𝑒𝑒𝑒 

𝐹𝐹0,𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
 𝐹𝐹0,𝑒𝑒𝑒𝑒𝑒𝑒 7th MFCC 1st MFCC 

2.43±0.24 1.91±0.18 1.52±0.15 1.49±0.14 2.16±0.21 1.72±0.18 

 
 

table 2: Selected dysphonia measures from five feature 
selection algorithms for females. The resulting out of sample 
mean absolute UPDRS estimation error (last row) uses these 
15 features as input into the Random Forest learner. 

LASSO mRMR RF ReliefF IG SBMLR 

Log 
energy 

Std 
𝐹𝐹0,𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 

1st MFCC 4th MFCC Std 
𝐹𝐹0,𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 

0th MFCC 

Std 
𝐹𝐹0,𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 

Log 
energy 4th MFCC Log 

energy 6th MFCC 4th MFCC 

10th MFCC VFERSNR,TK

EO 
Std 

𝐹𝐹0,𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 
0th MFCC 

𝐹𝐹0,𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃
 𝐹𝐹0,𝑒𝑒𝑒𝑒𝑒𝑒 2nd MFCC 

PPE 10th MFCC 0th MFCC 2nd MFCC 1st MFCC Log 
energy 

12th MFCC 12th MFCC Log 
energy 

Std 
𝐹𝐹0,𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 

0th MFCC IMFSNR,ener

gy 

IMFSNR,TKEO JitterF0TKE

O,std 2nd MFCC DFA HNRmean 
Std 

𝐹𝐹0,𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 

8th MFCC 3rd MFCC Std 𝐹𝐹0,𝑚𝑚𝑚𝑚𝑚𝑚 1st MFCC NHRmean IMFSNR,entr

opy 

11th MFCC 1st MFCC HNRmean Std 𝐹𝐹0,𝑚𝑚𝑚𝑚𝑚𝑚 Std 𝐹𝐹0,𝑚𝑚𝑚𝑚𝑚𝑚 IMFNSR,TKEO 

IMFNSR,SEO Std 𝐹𝐹0,𝑚𝑚𝑚𝑚𝑚𝑚 6th MFCC 5th MFCC Log 
energy 

Shimmer
% 

GNEmean 0th MFCC NHRmean 7th MFCC JitterTKEO,m

ean VFERentropy 

3rd delta 
MFCC 

12th delta 
MFCC 12th MFCC 6th MFCC JitterTKEO,st

d 
Std 𝐹𝐹0,𝑚𝑚𝑚𝑚𝑚𝑚 

HNRstd 11th MFCC 10th MFCC 10th MFCC 3rd MFCC HNRmean 

5th MFCC 4th MFCC 5th MFCC PPE JitterTKEO, 

5-95 prc 
OQstd closed 

cycle 
2nd delta 

MFCC HNRmean 8th MFCC 3rd MFCC 5th MFCC 
Std 

𝐹𝐹0,𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 
GNESNR,TKE

O GNEmean VFERSNR,TK

EO 11th MFCC 2nd MFCC 1st MFCC 

2.73±0.23 2.28±0.21 2.22±0.24 2.14±0.25 2.34±0.27 2.61±0.25 
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V. DISCUSSION 
 
We have used the dataset from [5] where 132 

dysphonia measures were deployed in order to estimate 
UPDRS. We explored the data using five popular FS 
algorithms in order to determine the most useful feature 
subset for estimating UPDRS. In doing so, we have 
matched (female dataset) and also outperformed (male 
dataset) our previous results [5] using less than half the 
features. More importantly for our purposes, reducing the 
number of features promotes physiological understanding 
about what these dysphonia algorithms are measuring in 
PD. The present findings strongly reinforce our previous 
finding [5] that it may be beneficial to partition the data 
according to gender. 

For males, the most important features appear to be the 
mid-range MFCCs, DFA, and VFERNSR,TKEO. The 
MFCCs have traditionally appeared in speaker 
identification applications and have only relatively 
recently been introduced in the study of dysphonias [17]; 
our findings strongly support their use for monitoring 
Parkinson‟s disease symptom progression. This finding 
indicates that it is probably necessary to focus on formant 
resonances, as well as F0 and amplitude. That DFA is 
consistently selected verifies that increased turbulent 
noise is a feature of male PD voices. VFERNSR, TKEO being 
selected indicates that it is interesting to look at different 
frequency bands and determine signal to noise ratios in 
these bands; in particular, our experiments suggest that it 
may be useful to characterize frequencies above 2.5 kHz 
as „noise‟, and frequencies below this as „signal‟, in order 
to define signal to noise ratios [5]. 

For females, we note that in addition to MFCCs, F0-
related measures are often selected. This perhaps stems 
from the physiological observation that normal vibrato is 
exacerbated in low fundamental frequency voices (that is, 
males) [18]. Although robust dysphonia measures to 
normal vibrato have been proposed (higher order jitter 
measures, PPE), we speculate that these approaches can 
only guard against low physiological tremor. This could 
suggest that vocal vibrato in females might be effectively 
removed using these robust vibrato-removal approaches, 
whereas the (comparatively larger) vibrato in males may 
not. Thus, robust F0 perturbation measures could indicate 
vocal pathology in females which might be otherwise 
overshadowed in males due to increased normal vibrato. 
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Abstract: acoustic analysis of speech is a powerful, 
noninvasive, and cost effective tool to study different 
aspects of motor speech disorders such as the 
dysarthria associated with pd.  in this presentation 
we will discuss the rationale for using acoustic 
analysis, its advantages and disadvantages, and 
methods to overcome these disadvantages. as an 
example, we will address the use of vowel space area 
(vsa) in the study of dysarthric vowel articulation in 
pd.  although the vsa is theoretically driven, it is 
highly sensitive to inter-speaker variability, which, 
statistically speaking, introduces noise.  this noise can 
mask important differences that do exist between 
speakers with and without pd. some of this noise can 
be reduced by logarithmic transformation of the 
formant frequencies.  however, even with this 
transformation, some statistical noise might be still 
present.  recently sapir and colleagues introduced 
two acoustic metrics -- the vowel articulation index 
(vai) and its inverse, the formant centralization 
ratio (fcr) -- that are theoretically driven and 
empirically tested.  these metrics show promise as 
they effectively reduce inter-speaker variability noise 
while maintaining high sensitivity to vowel 
centralization (the latter reflecting abnormally 
reduced (hypokinetic) articulatory movements in pd).   
data will be presented of   38 individuals with 
parkinson's disease and 14 healthy controls whose 
speech was effectively differentiated by the vai, but 
not the vsa, yet the   logarithmically scaled vsa 
(lnvsa) did significantly differentiate between  
dysarthric and normal speech,  although not as 
strongly as the vai.   

Keywords: parkinson disease, acoustic analysis, speech 
 
 

i. introduction 
 

Individuals with Parkinson's disease (PD) often 
suffer from hypokinetic dysarthria, a neuromuscular 
disorder of voice and speech, resulting and characterized 
by reduced vocal loudness, monotone voice, and 
imprecise consonants and vowels. 

 
Most types of dysarthria, including that associated with 
PD, are characterized by articulatory undershoot, i.e., 
reduced range of articulatory movements, to the extent 
that the intended place and degree of vocal tract 
constriction are not fully achieved.  This undershoot is 
likely to result in vowel formant centralization; i.e.,  
formants that normally have high center frequencies tend 
to have lower frequencies, and formants  that normally 
have low center frequencies tend to have higher 
frequencies [1,2].   
A common way to represent this centralization is with the 
VSA [3].  In English, the VSA is usually constructed by 
the Euclidean distances between the F1 and F2 
(frequency) coordinates of the corner vowels /i/, /u/, and 
/a/ (triangular VSA), or the corner vowels /i/, /u/, /a/, and 
/ae/ (quadratic VSA) in the F1-F2 plane.   The formula of 
the VSA constructed with the vowels /i/, /u/ and /a/,   is 
ABS((F1i*(F2a–F2u)+F1a*(F2u–F2i)+F1u*(F2i–
F2a))/2).   
Due to articulatory undershoot and subsequent 
centralization of vowels, the VSA in the speech of 
individuals with dysarthria is expected to be compressed 
relative to that of normal speech (Kent & Kim, 2003).  
Improvement in speech due to natural recovery or 
treatment effects should be reflected in the expansion of 
the VSA toward normalcy (e.g., Sapir et al, 2003).   
Although several studies demonstrated the ability of the 
VSA to differentiate between dysarthric and normal 
speech and to monitor treatment effects (e.g., Liu et al., 
Sapir et al, 2003), other studies failed to do so,  even 
though a trend toward centralization of vowels was 
evident (e.g., Weismer et al., 2001).  The reasons for the 
inconsistent performance of the VSA are not clear, 
although interspeaker variability appears to be a major 
factor. Interspeaker variability in vowel formant 
frequencies and VSA is expected due to numerous factors 
(cf. Sapir et al., 2010), the most obvious of which are 
anatomical differences, such as those associated with 
gender and age (re: size and shape of the vocal 
tract).  
It is clear that to improve differentiation between 
dysarthric and normal speech, the acoustic metric must be 
minimally sensitive to interspeaker variability and 
maximally sensitive to vowel formant centralization.  
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Recently, Sapir introduced two acoustic metrics that are 
designed to be minimally sensitive to interspeaker 
variability and maximally sensitive to vowel formant 
centralization.  These metrics include the Vowel 
Articulation Index (VAI), expressed as 
(F2i+F1a)/(F2u+F2a+F1u+F1i), and its inverse, the 
Formant Centralization Ratio (FCR), expressed as 
(F2u+F2a+F1u+F1i)/ (F2i+F1a). (Sapir et al., 2006; Sapir 
et al., 2010). Note that in the VAI the numerator is likely 
to decrease and the denominator is likely to increase with 
vowel formant centralization, whereas in the FCR the 
numerator is likely to increase and the denominator to 
decrease with vowel centralization.  Importantly, at least 
in American English, the normal VAI values should be 
close to 1.0, as the sum of formant frequencies in the 
denominator is very similar to the sum of formant 
frequencies in the numerator.  Thus, the VAI may be 
considered a function that normalizes the relationships 
between the vowels across speakers.   The purpose of the 
present study is to demonstrate the  ability of the VAI, 
VSA, and LnVSA, to differentiate between normal and 
abnormal vowel articulation.  We predicted that the VAI 
will perform best and the VSA worst.  We also predicted 
that the LnVSA will perform better than the VSA because 
logarithmic scaling of formant frequencies tend to reduce 
interspeaker variability.    
 

ii. Methods 
 

Subjects.  The subjects in this study participated in 
our previous study (Sapir et al., 2010).  They all spoke 
American English as their first language and the majority 
of them resided in Tucson Arizona or Denver Colorado.  
Of these individuals, 38 had idiopathic Parkinson's 
disease (PD) (19 M, 19 F) with dysarthria of different 
levels of severity, and 14 individuals (7 M, 7 F) served as  
healthy, age-matched and gender-matched controls (HC).  
The VAI and VSA were constructed from the frequencies 
of the first (F1) and second (F2) formants of the vowels 
/i/, /u/, and /a/. These frequencies were also 
logarithmically scaled for the construction of a 
logarithmic version of the VSA (henceforth, LnVSA). 
The vowels /i/, /u/, and /a/ were extracted from the  
phrases “The blue spot is on the key,”  “The potato stew 
is in the pot” and “Buy Bobby a puppy” (target words: 
“key”, “stew”, and ”Bobby") or the  phrase “The stew pot 
is packed with peas" (target words "stew", "pot", "peas"), 
with several repetitions of each of the phrases.  Details of 
the recordings and acoustic analysis are described 
elsewhere (Sapir et al., 2010).   
 

iii. results 
 

The main findings of this study are summarized in Table 
1.  The table shows the means and SDs for the two groups 
(PD, HC) and for three acoustic metrics (VSA, LnVSA, 

VAI), as well as t-test results and p values for 
significance.  Also, the coefficient of variation (CV) for 
the two groups and three metrics (VSA, LnVSA, VAI) 
are shown at the bottom of the table.  Effect size (ES) 
measures (Cohen, 1988) are also used to indicate the 
clinical significance of the differences between the two 
groups the degree.  In general, a value of 0.80 and higher 
indicates highly significant differences between the two 
groups.  A value of 0.50 a medium effect and a value of 
0.20 indicates a small or a negligible effect. As can be 
seen, the VSA does not significantly differentiate 
between the two groups (PD vs. HC).  The LnVSA 
improves performance considerably, whereas the VAI 
performs best, both statistically and in terms of a large 
effect size. 

 
table 1.  The ability to differentiate between the 
dysarthric and normal vowel articulation by the VSA, 
LnVSA, and VAI.  CV = Coefficient of Variation ; ES= 
Effect Size (>0.8 large, 0.5 medium, 0.2 small effect). 
 

  

 
VSA 
(Hz) 

 

 
LnVSA 
(LnHz) 

 

VAI 
 
 

PD 
(n=38)  

  
Ave= 

 
232120 

 
0.23 

 
0.96 

 
 SD= (96155) (0.08) (0.08) 
     

HC  
(n=14) 

  
Ave= 

 279524 0.28 1.05 
 SD= (68810) (0.07) (0.08) 
     

t-test  p= 0.0579 0.0099 0.0006 
   ES= 0.57 0.77 1.24 
     

PD  CV= 41% 33% 8% 
     

HC  CV= 25% 24% 7% 
 
 

iv. discussion 
 

These findings strongly suggest that by reducing 
interspeaker variability and by maximizing sensitivity of 
the acoustic metric to the differences between normal and 
abnormal speech one can improve the reliability and 
validity of the acoustic analysis.  Our task is to do the 
same for other acoustic metrics of speech.   

Once we have acoustic metrics that comply with these 
two criteria, we can combine the different acoustic 
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metrics and use more sophisticated analyses to 
differentiate between normal and abnormal speech and to 
monitor changes associated with disease progression and 
treatment effects.  Finally, we addressed only one issue 
related to improving speech signal processing for clinical 
and research processes.  There are other important factors 
that we should consider, such as the problem of recording 
speech in a noisy environment, using inappropriate 
recording equipment and procedures, and choosing the 
wrong speech tasks to elucidate and register  the speech 
abnormalities in PD. 

 
 

v. conclusions 
 

Unlike the VSA, the VAI is a powerful acoustic 
metric to reduce interspeaker variability and enhance 
sensitivity to dysarthric vowel articulation. 
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Abstract: parkinsonian speech is characterized by 
abnormally  low  voice  intensity,  with  vocal  decay, 
poor   voice   quality,   reduced   prosodic   pitch   and 
loudness inflection, imprecise vowels and consonants, 
dysrhythmia and    short    rushes    of    speech, 
mumbling,    and    reduced speech intelligibility. 
recently, there have been new acoustic analysis 
methods to capture different aspects of these   speech 
abnormalities.   in   this   review,   selected studies are 
summarized in order to illustrate the application   of 
acoustic    analysis    of    speech    for    the objective 
measurement and quantification of different aspects of 
parkinsonian dysarthria. 

 
Keywords : parkinson´s disease, acoustic analysis of 
speech, hypokinetic dysarthria, dysprosody, vowel 
articulation, syllable repetition, motor speech 
performance 

 
I. INTRODUCTION 

 
Parkinson´s disease (PD) is a neurodegenerative 

disorder characterized by  progressive loss of 
dopaminergic neurons, primarily in the substantia nigra 
pars compacta, [1]. According to the Braak staging, PD 
begins as a synucleopathy in non-dopaminergic structures 
of the lower brainstem or in the olfactory bulb with 
subsequent rostral progression and affection of the 
substantia nigra [2]. The progressive dopaminergic loss is 
associated with a variety of motor and non-motor deficits 
in  PD  patients.  In   addition  to   the   most  ostensible 
symptoms as muscular rigidity, tremor, bradykinesia and 
postural instability, many patients develop a distinctive 
alteration of speech characterized as hypokinetic 
dysarthria. In a survey, the prevalence of dysarthria in PD 
was about 70% [3]. Dysarthria can emerge at any stage of 
the disease and worsen in the later stages [4, 5], causing a 
progressive loss of communication and leading to social 
isolation. Based upon the perceptual analysis of a large 
sample  of  dysarthric  speakers,  Darley,  Aronson  and 
Brown  primarily  defined  a  salient  cluster  of  deviant 
speech dimensions in Parkinsonian dysarthria including a 
harsh breathy voice quality, reduced variability of pitch 
and loudness, reduced stress, imprecise consonant 
articulation and short rushes of speech interrupted by 
inappropriate periods of silence [6, 7]. Together, these 

features give hypokinetic dysarthria its distinctive gestalt 
of a flat, attenuated and sometimes accelerated quality [6, 
7]. Logeman and colleagues established a general profile 
of hypokinetic dysarthria in a group of 200 PD patients, 
where almost 90% had voice disorders characterized by 
hoarseness, roughness, tremulousness and breathiness [8]. 
About half of the speakers featured articulatory problems, 
and 20% had speech rate abnormalities characterized by 
syllable repetitions, irregularities of syllable length and 
excessive speech pauses.  According to  this  study,  the 
authors supposed voice abnormalities to be the prominent 
attribute of hypokinetic dysarthria with the assumption of 
further subgroups including articulatory and speech rate 
deviations. In a further investigation on a large group of 
PD  patients  performed  by  Ho  and  colleagues,  voice 
impairment was present even in the early stages of the 
disease with additional articulatory deficits and 
disturbance of fluency in the more advanced stages of PD 
[4]. Though, changes of speech rate and regularity were 
also  observed  in  a  subgroup  of  only  mildly affected 
patients leading to the hypothesis that fluency deficits 
might be  an isolated feature of hypokinetic dysarthria 
independent from voice and articulatory impairment [4]. 
Since this first systematic characterization of hypokinetic 
dysarthria,  there  has  been  a   wealth  of   subsequent 
investigations  based  upon  perceptual,  acoustical  and 
electrophysiological methods which further refined the 
description  of  speech  disturbance  in  PD.  However, 
although there is some evidence for a manifestation of 
hypokinesia and muscular rigidity of the vocal tract, there 
is   still  ambiguity  concerning  the  pathophysiological 
mechanism  of  the  different  aspects  of  Parkinsonian 
speech disturbance in detail. 
In  this  presentation  it  will  be  shown,  that  acoustic 
analysis of voice and speech in PD and related movement 
disorders may be a helpful instrument to gain further 
insight into the underlying pathophysiology by objective 
and quantifiable measurement of distinctive speech 
parameters and might therefore serve as a “window into 
the disease”. 
 

II. METHODS 
 

In the different investigations, acoustic analysis of 
speech was based upon a standard reading task consisting 
of four complex sentences [9, 10, 11] or a simple syllable 
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repetition  paradigm  where  participants  were  asked  to 
repeat a single syllable in a self-chosen steady pace [12, 
13]. Speech samples were digitally recorded and analyzed 
using the software PRAAT [14]. For the description of 
intonation, fundamental frequency variability (F0SD) and 
fundamental frequency range  were  applied.  Aspects of 
speech velocity and fluency were illustrated by total and 
net speech rate (TSR and NSR), pause ratio (PR%) and 
the fraction of intra-word pauses related to overall speech 
pauses (Pinw%). Furthermore, the acceleration of speech 
rate in the course of reading was defined as articulatory 
acceleration (AA). The  vowel articulation index (VAI) 
first established by Roy and Sapir [15] was used for the 
measurement of vowel articulation. Concerning syllable 
repetition capacity, the relative coefficient of variance of 
syllable length (COV) was introduced as a  measure of 
steadiness in the course of the performance. 

Participants consisted of different samples of patients 
with PD, age- and gender-matched healthy speakers and – 
in one investigation – of patients with progressive 
supranuclear palsy (PSP). At the time of examination, all 
patients were under stable dopaminergic medication. 
Global motor impairment of all patients was rated 
according  to  the  Unified  Parkinson´s  Disease  Rating 
Scale (UPDRS) and Hoehn&Yahr stages. 

 
 
 

III. RESULTS 
 

A. Progression of dysprosody in PD over time [9] 
 

In a group of 50 patients with PD which were tested 
and re-tested after at least 12 months (mean 25 months) 
according to  the  reading task,  TSR and  NSR declined 
from first to second examination, especially in the male 
patients, but showed no significant differences to the 
control  group.  The  course  of  pitch  variation  revealed 
some  gender  particularities.  Whereas  female  patients' 
pitch variability declined over time, male patients' 
intonation variability remained relatively stable. F0SD in 
male and female patients with PD were significantly 
reduced compared with the control group in the first 
examination and the follow up as well. Progression of 
prosodic impairment over time showed no correlation to 
disease duration or UPDRS motor score. 

 
B. Vowel articulation in PD [10] 

 
In a group of 68 patients with PD with mild dysarthria 

(1 point according to the "speech" item 18 of UPDRS) 
and 32 age-matched control persons, vowel articulation 
and speech rate were measured. F1 and F2 frequency 
values  of  the  German  vowels  /a/,  /i/,  and  /u/  were 
extracted from defined words within the reading text. 
Description of vowel articulation was based on measures 

of VAI. As main results, VAI values were significantly 
reduced in male and female PD patients as compared with 
the accordant control group. NSR was negatively 
correlated to VAI only in female PD speakers. No 
correlations were seen between vowel articulation and 
UPDRS and stage of disease. Obviously, some aspects of 
altered speech performance in PD seemed to feature some 
gender-specific patterns. 
 
C. Acoustic analysis in PSP [11] 
 

Based upon the reading task, 26  patients with PSP 
were examined in comparison to a group of 30 patients 
with PD. In the PSP group, NSR, F0SD and Pinw% (as a 
measure of precision of consonant articulation) were 
significantly reduced, whereas %PR was prolonged as 
compared with the PD group. Only in the male PSP 
patients, vowel articulation was found to be impaired. 
Global speech performance – as rated by perceptual 
impression – was worse in the PSP group in comparison 
with the PD group and showed a correlation to some 
distinct speech dimensions obtained by acoustic analysis. 
 
D. Stability of syllable repetition in PD [12] 
 

Based upon the  syllable repetition task, 73  patients 
with PD and 43 healthy speakers were tested concerning 
the capacity to steadily repeat a single syllable (/pa/) in a 
self-chosen isochronous pace. COV of interval length and 
the change in interval length with successive utterances 
were measured for the description of pace stability 
throughout the performance. Then, participants had to 
identify irregularities of 30 played-back audio tests. 
Patients   with   PD   showed   significant  difficulties  in 
steadily executing a syllable repetition task with a 
significant  elevation  of   COV   and   showed   a   clear 
tendency to pace acceleration in the course of the 
performance. However, there were no differences in the 
correct auditory identification of rhythm irregularities 
between the PD group and controls. As compared to 
healthy controls, the PD group featured disabilities in 
performing a steady sequence of utterances, which cannot 
be explained solely by impaired acoustical feedback 
mechanisms. The pattern of pace disturbance showed 
similarities with the finding of speech acceleration and 
rhythm irregularity in the course of reading or more 
complex conversational speech and therefore might share 
the same pathophysiology. 
 
E. Instability of syllable repetition in the course of the 
disease [13] 
 

As previously shown, Parkinsonian speakers show a 
tendency to articulatory acceleration and have difficulties 
to keep the steady pace of repeated syllables. The aim of 
the subsequent study was to analyse the stability of motor 
speech performance based upon the  syllable repetition 
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paradigm during the course of disease to find a potential 
marker of disease progression in PD. 58 patients with PD 
and 35 controls were tested and re-tested after at least 12 
months (mean 33.40 months). In the PD group, motor 
impairment was similar at first and second visit. 
Participants had to repeat the syllable /pa/ in a self chosen 
steady pace. Besides the calculation of COV as a measure 
of  instability  of  repetition,  the  “percental  pace 
acceleration in  the  course  of  the  performance” (%PA) 
was further introduced. Patients with PD showed a 
significant elevation of COV and %PA indicating an 
instability of syllable repetition and a tendency to pace 
acceleration in the course of performing. Furthermore, in 
the PD group, COV and %PA showed a significant 
deterioration from first to second examination. Instability 
of steady syllable repetition in PD showed characteristic 
changes  during  the   course   of   the   disease,   but   no 
correlation with general motor impairment. 

 
 

IV. DISCUSSION 
 

The aforementioned investigations can serve as an 
example for the application of acoustic analysis of speech 
in  PD.  Since  certain  parameters  of  dysprosody  and 
stability of syllable repetition feature distinct patterns of 
deterioration in the course of disease and seem to be 
independent from global motor impairment, these speech 
variables might have the potential to serve as marker of 
disease progression. Furthermore, vowel articulation as 
measured by VAI seemed to be impaired even in 
Parkinsonian patients with only mild dysarthria (when 
perceptually  rated)  and   might  therefore  turn  out  to 
become a useful tool for the early detection of subclinical 
speech impairment in PD. 

 
Instability of syllable repetition in PD might be 

interpreted as dysfunction of planning, preparing and 
executing  basic  motor  speech  sequences  which  share 
some  similarities with  the  impaired execution of 
repetitive limb movements and therefore might indicate a 
shared pathophysiology. 

 
In  a  small  series  of  patients,  acoustic  analysis  of 

several distinct speech variables was able to differentiate 
Parkinsonian speakers from patients with PSP. Since in 
PSP, the neuropathological changes are more widespread 
than in PD, comprising basal ganglia as well as pontine 
and further brainstem and sometime cerebellar regions, 
the resulting dysarthria in PSP is more severe and may 
include hypokinetic, spastic and ataxic components which 
might be detected by acoustic analysis of speech. 

 
One main limitation of the presented investigations 

might be he the fact that all patients were under 
dopaminergic medication at the time of the examination 
and therefore, therapeutic or detrimental effects of the 

medication on the different speech variables cannot be 
ruled out. However, according to previous studies of our 
group, instability of syllable repetition on the one hand 
and several further speech parameters had shown no 
significant changes under short- and long-term 
dopaminergic stimulation [16, 17].  These findings justify 
the hypothesis that certain aspects of Parkinsonian 
dysarthria are independent from dopaminergic 
transmission. 
 
 
 

V. CONCLUSION 
 

According to  the  exemplified studies,  acoustic 
analysis  of  speech  in  PD  and  related  disorders might 
serve as a non-intrusive and easy applicable instrument 
for the measurement and monitoring of different speech 
dimensions. Furthermore, it might be helpful to generate 
and verify hypothesis about pathophysiological relations 
between speech and  general  motor performance in  PD 
and might therefore serve as a “window into the disease”. 
 
 
 

REFERENCES 
 
[1] C.D. Marsden “Parkinson´s disease.”     J. Neurol. 
Neurosur. Psychiatry, vol. 57, pp. 672-81, 1994 
[2] H. Braak , J.R. Bohl, C.M. Müller, O. Rüb , R.A. de 
Vos et al. “The staging procedure for the inclusion body 
pathology associated  with  sporadic Parkinson´s disease 
reconsidered.” Mov. Disord.,; vol. 21, pp. 2042-51, 2006 
[3] L. Hartelius, P. Svensson. “Speech and swallowing 
symptoms   associated   with   Parkinson´s  disease   and 
multiple sclerosis: a survey” Folia Phon. Logop., vol. 46, 
pp.9-17, 1994 
[4] A. Ho, R. Iansek, C. Marigliani , J.L. Bradshaw, S. 
Gates. “Speech impairment in a large sample of people 
with Parkinson’s disease.” Behav. Neurol., vol. 11, pp. 
131-37, 1998 
[5] W.J. Mutch, A. Strudwick S.K. Roy, A.W. Downie. 
“Parkinson´s  disease:  disability,  review,  and 
management.” BMJ, vol. 293, pp. 675-77, 1986 
[6] F.L. Darley, A.E. Aronson, J.R. Brown. “Differential 
diagnostic patterns of dysarthria.” J. Speech Hear. Res., 
vol. 12, pp. 249-62, 1969 
[7] F.L. Darley, A.E. Aronson, J.R. Brown. “Clusters of 
deviant speech dimensions in the dysarthrias.” J. Speech 
Hear. Res., vol. 12, pp. 462-96, 1969 
[8]   J.A.   Logemann,  H.B.   Fisher,   B.   Boshes,   E.R. 
Blonsky. “Frequency and cooccurrence of vocal tract 
dysfunctions in the speech of a large sample of 
Parkinsonian patients.”  J. Speech Hear. Dis., vol. 43, pp. 
47-57, 1978 
[9] S. Skodda, H. Rinsche, U. Schlegel. „Progression of 
dysprosody  in   Parkinson´s   disease   over   time   –   a 



180

longitudinal study.“ Mov. Disord., vol. 24, pp. 716-22, 
2009 
[10] S. Skodda, W. Visser, U. Schlegel. ”Vowel 
articulation in Parkinson´s disease.” J. Voice, 2010 (epub 
ahead of print) 
[11]  S.  Skodda,  W.  Visser,  U.  Schlegel.  ”Acoustic 
analysis of speech in progressive supranuclear palsy.” J. 
Voice, 2010 (epub ahead of print) 
[12] S. Skodda, A. Flasskamp, U. Schlegel. ”Instability of 
syllable   repetition   as   a   model   of   impaired   motor 
processing: is Parkinson´s disease a “rhythm” disorder ?” 
J. Neural. Transm., vol. 117, pp. 605-12, 2010 
[13] S. Skodda, A. Flasskamp, U. Schlegel. ”Instability of 
syllable repetition as a marker of disease progression in 
Parkinson´s disease: a longitudinal study.” Mov. Disord., 
vol. 26, pp. 59-64, 2011 
[14]  P.  Boersma, D.  Weenik.  “PRAAT: a  system  for 
doing phonetics by computer.” Report of the Institute of 
Phonetic Sciences of the University of Amsterdam, 1996, 
available at: http://  www.fon.humuva.nl/praat 
[15]   N.   Roy,   S.L.   Nissen,   C.   Dromes,   S.   Sapir. 
”Articulatory  changes  in   muscle  tension  dysphonia : 
evidence of vowel space expansion following manual 
circumlaryngeal therapy.” J. Commun. Disord., vol. 42, 
pp. 124-35, 2009 
[16] S. Skodda, W. Visser, U. Schlegel. ”Short- and long- 
term dopaminergic effects on dysarthria in Parkinson´s 
disease.” J. Neural. Transm., vol. 117, pp. 197-205, 2010 
[17] S. Skodda, A. Flasskamp, U. Schlegel. ”Instability of 
syllable repetition in Parkinson´s disease – influence of 
levodopa and deep brain stimulation.” Mov. Disord., vol. 
26, pp. 728-30, 2011 



Abstract: parkinson’s disease (pd) is a neurological 
illness characterized by progressive lost of 
dopaminergic neurons, primarily in the substantia 
nigra pars compacta. changes in speech associated 
with hypokinetic dysarthria are a common 
manifestation in patients with idiopathic pd. the aim 
of this study is to investigate the feasibility of 
automated acoustic measures for the identification of 
voice and speech disorders in pd. the speech data 
were collected from 46 czech native speakers, 24 with 
early pd before receiving pharmacotherapy 
treatment. We have applied several traditional and 
non-standard measurements in combination with 
statistical decision-making strategy to assess the 
extent of vocal impairment of recruited speakers. 
subsequently, we have applied support vector 
machine to find the best combination of 
measurements to differentiate pd from healthy 
subjects. this method leads to overall classification 
performance of 85%. admittedly, we have found 
relationships between measures of phonation and 
articulation and bradykinesia and rigidity in pd. in 
conclusion, the acoustic analysis can ease the clinical 
assessment of voice and speech disorders, and serve as 
measures of clinical progression as well as in the 
monitoring of treatment effects.

Keywords:  parkinson’s disease, speech disorders, 
hypokinetic dysarthria, acoustic analysis, biomedical 
application 

I. INTRODUCTION 

Following the recent findings on the pathogenesis of 
Parkinson’s disease (PD), increased interest has been paid 
to the nonmotor symptoms indicating an early affection 
of the lower brainstem that may precede the accession of 
the main motor signs of PD [1].  
     As a part of the nonmotor symptoms, voice and speech 
disorders are still considered to occur inconstantly and to 
tend to be nonspecific, making them of little diagnostic 
usefulness in early disease. On the other hand, previous 

research has shown that deficiencies in speech affect 
approximately 75-90% people with PD [2, 3]. The most 
salient features of PD speech impairment include deficits 
in the production of vocal sounds and motor involvement 
of articulation [3-5]. Moreover, it has been demonstrated 
that PD-related dysarthria can affect all different speech 
subsystems including respiration, phonation,
articulation, and prosody [6, 7].  Patients with PD can 
manifest abnormalities related to all dimensions of speech 
including monoloudness, monopitch, imprecise 
articulation, variable speech rate, hoarseness, reduced 
stress, speech disfluencies, inappropriate silence, and 
others [7]. 
     To clinically test voice and speech disorders, there are 
various vocal tests that have been proposed to assess the 
extent of these symptoms including sustained phonation, 
diadochokinetic (DDK) task (diadochokinesis connected 
with articulation), and variable reading of sentences or 
spontaneous speech [8, 9], that can be subsequently
assessed with various traditional and novel acoustic 
measurements [10]. In our studies, we focus to 
characterize the speech and voice disorders in the early 
stages of PD, where the progression of speech symptoms 
is not affected by medication. In order to find PD-related 
speech features and separate patients with PD from 
healthy control (HC) persons, we use several traditional 
and novel acoustic measurement techniques as well as 
statistical learning or decision theory.  

II. DATA 

     We used the database of PD speech recordings which 
we reported in [11]. From 2007 to 2009, a total of 46 
Czech native participants were recruited for this research. 
24 of these subjects (20 men and 4 women) fulfilling the 
diagnostic criteria for PD were examined immediately 
after the diagnosis was made and before the symptomatic 
treatment was started. As a control group, 22 persons (15 
men and 7 women) with no history of neurological or 
communication disorders were included. None of the 
participants had been under voice therapy and all gave 
their consent to the vocal tasks and recording procedure.  
     The speech data were recorded in a quiet room with a 
low ambient noise level using an external condenser 
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microphone placed at approximately 15 cm from the 
mouth and coupled to a Panasonic NV-GS 180 video 
camera. The voice signals were sampled at 48 kHz, with 
16-bit resolution; the video material was not used. All 
subjects were recorded at the time of a single session with 
a speech pathologist. Each participant was instructed to 
perform at least two times three vocal tasks including 
sustained phonation, diadochokinetic task, and running 
speech as a part of a larger protocol. Detailed description 
of the recording and data can be found in [11]. 

III. METHODS 

We aimed to characterize the PD speech performance, 
applying the statistical decision-making theory to several 
acoustic measurements to explore how PD-related vocal 
symptoms differ from the speech performances of the 
wider norm of healthy speakers. Subsequently, we 
designed quick vocal test in order to reduce the time 
required for voice investigation, represent all speech 
subsystems, and create reliable assessment in practice, 
and tested performance of this test in separating PD 
subjects from HC participants. Finally, we search for a 
possible correlation of the voice parameters with respect 
to the duration and severity of disease. 

A. Characteristics of voice and speech disorders  

We have mainly focused on four speech subsystems 
including phonation, respiration, articulation, and 
prosody. For each of these subsystems, we computed 
several acoustic measures; all the algorithms are 
described in [10]. In examining phonation of PD 
speakers, we computed 4 features including jitter (the 
extent of variation of voice range), shimmer (the extent of 
variation of expiratory flow), noise-to-harmonics (NHR), 
and harmonics-to-noise (HNR) ratios (the amplitude of 
noise relative to tonal components in speech) [12]. In 
examining respiration, we used 1 feature of Sound 
Pressure Level Decline (SPLD – measure the ability to 
maintain intensity level). In examining articulation, we 
calculated 3 features including DDK rate (number of 
syllable vocalizations per second), Robust Formant 
Periodicity Correlation (RFPC – quantifies the accuracy 
of articulation), and Spectral Distance Change Variation
(SDCV – quantifies the clarity of articulation) [10]. In 
examining prosody, we used 3 features including 
fundamental frequency variation (F0 SD), intensity of 
voice variation (Intensity SD), and number of pauses
[10]. 

Two-sided Wilcoxon rank-sum test was performed to 
find differences between groups. To explore the extent of 
PD-related vocal impairment, we applied the Wald task
decision-making theory to features’ Gaussian kernel 
densities [13]. As a result, for all the features, the subjects 
were classified as PD (dysarthric speech performance), 

HC (intact speech performance), or “not sure” (indecisive 
situation – performance of wider norm of healthy people). 
The higher quantity of classifications as PD is associated 
with progression of PD vocal impairment, the higher 
quantity of classifications as HC is associated with 
healthy speech performance.  

B. Identification of voice and speech disorders 

In order to create reliable assessment in clinical 
practice, there is a need to test and find the optimal 
combination of acoustic measurements that gain a useful 
amount of information for separating early PD from HC. 
Therefore, we constructed a feature vector with 8 
representative measurements including jitter, shimmer, 
NHR, HNR, SPLD, RFPC, SDCV, and F0 SD. To reduce 
dimensionality of the data and find the combination of 
acoustic measurements with the best classification 
accuracy, the exhaustive search of all possible 
combinations of features was performed using the method 
from statistical learning theory called support vector 
machine (SVM) [14]. The SVM classifier with Gaussian 
radial basis kernel was applied because it allows smooth, 
curved decision boundaries. On the basis of the decision 
boundary, the SVM classifier enables to build a 
predictive model which decides whether a subject belong 
to the PD or HC group. The choice of optimal SVM 
parameters was determined by an exhaustive search over 
a range of values. Cross-validation with the leave-one-out 
method was used to validate reproducibility (for possible 
new outcome samples) of SVM classifier; the 50 iteration 
was used for validation of each combination.  

C. Relationships between acoustic features and severity 
of disease 

 In addition to speech data, for each of the PD patients, 
we have administered the duration of disease prior to 
recording, stage of disease according to the Hoehn & 
Yahr (HY) scale (disability scale comprised of stages 1 
through 5, where 5 is most severe), and global motor 
impairment according to the Unified Parkinson’s Disease 
Rating Scale (UPDRS) III (motor rating scale from 0 to 
108, where 108 represents severe motor impairment). 
UPDRS III contains 27 items, each scored from 0 (no 
disability) to 4 (severe disability). We have also 
administered the three UPDRS III composite subscores 
including bradykinesia (sum of the UPDRS III items 23, 
24, 25, 26), postural instability and gait disorders (PIGD 
- sum of UPDRS III items 27, 28, 29, 30), and rigidity
(UPDRS III item 22). Subsequently, the Person product-
moment correlation was used to find relationships 
between acoustic features and HY stage, duration of PD, 
UPDRS III score, and UPDRS III composite subscores. 
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IV. RESULTS

Table 1 summarizes the comparison of subject 
parameters and speech parameters between Parkinsonian 
speakers and control group. The final data obtained were 
composed of 116 recordings (56 from the PD patients, 
and 60 from HC individuals). After applying the Wald 
task, we have found that 18/24 patients with PD indicate 
some form of vocal impairment that differs from the 
speech performance of the wider norm of healthy people. 
None of the HC speakers reached the specific dysarthric 
performance of patients with PD. 

From all possible tested measurement combinations, 4 
features including NHR, SPLD, RFPC, and F0 SD 
obtained the best classification score of 85.02%. The 
classification performance of the entire measurements 
subset was 81.67%. From individual measures, F0 SD 
obtained the best classification accuracy of 81.30%. The 
maximal correct overall classification accuracy was 
76.40% using only sustained phonation, and 71.35% 
using only the DDK task.  

In PD patients, there were no statistically significant 
correlations between the vocal parameters and the stage 
or duration of the disease. Accordingly, there were no 
statistically significant correlations between the vocal 
parameters and UPDRS III scores. However, the partial 
subscore of bradykinesia significantly correlated with the 
measure of articulation SDCV (R = -0.44, P < 0.05) and 
measures of phonation including jitter (R = 0.42, P < 
0.05), NHR (R = 0.43, P < 0.05), and HNR (R = -0.44, P
< 0.05). Admittedly, the subscore of rigidity correlated 
with HNR (R = -0.43, P < 0.05). There were no 
significant correlations between the vocal parameters and 
the UPDRS subscores of PIGD and speech. 

V. DISCUSSION

 Fig. 1 summarizes the procedure and results of the 
two-minute vocal test that was employed to evaluate 
voice and speech disorders in a group of patients with 
unmedicated PD in comparison to HC people. For the 
sake of acoustic analysis, the measurements were 
designed as robust as possible with respect to a possible 
real-time automatic evaluation in a common acoustic 
environment and with the presence of contradictory 
factors such as individual differences in voice and speech.  
The acoustic measures were used as features for 
classification of probands into the PD and HC groups. 
Despite the limited number of speech samples, the best 
classification accuracy gains performance of 85% was 
reached using the combination of four measures, each of 
them representing deficits in one of the speech 
subsystems related to PD.  

 According to our results, the deficits in speech 
prosody appear to contain the greatest amount of 
information in assessment of early PD-related vocal 

impairment. Similarly, reduced melody in running speech 
captured by F0 SD measurement was found in other 
studies in PD patients, both treated and untreated with 
dopaminergic drugs [7, 15, 16]. On the other hand, 
several previous studies suggested that the most salient 
features of PD speech are related to phonatory and 
articulatory impairment [3, 4]. Indeed, our findings of 
increased values in jitter, shimmer, and NHR/HNR that 
may be clinically interpreted as hypophonia, voice 
hoarseness, and tremolo are in agreement with a previous 
report on untreated patients with PD [15]. However, in 
PD patients treated by dopaminergic drugs, only the jitter 
values were increased compared to controls while 
shimmer values were similar to those of controls, and the 
NHR/HNR findings were controversial [16].             

VI. CONCLUSION

In conclusion, our newly designed configuration of 
vocal tests appears suitable for identification of voice and 
speech disorders in early stages of PD where it can 
accurately differentiate PD patients from HC. It consists 
of vocal tasks commonly used in most of the research 
studies examining PD-related voice and speech disorders 
[7]. Furthermore, the measurement methods can be 

table 1: List of results of acoustic measures with 
mean±SD values and statistical comparisons between 
Parkinsonian and healthy groups.   
                 Subjects Difference 

PD  HC  between 
  (n = 24) (n = 22) PD and HC 
subject parameters 
  Age (year) 60.92±11.24 58.73±14.61 P = .46 
  Male  n = 20 n = 15 n/a 
  Female n = 4 n = 7 n/a 
  Duration of PD (month) 31.29±22.25 n/a n/a 
  HY stage 2.19±0.48 n/a n/a 
  UPDRS III score 17.42±7.14 n/a n/a 
sustained phonation 
Phonation 
  Jitter (%) 0.91±0.68 0.33±0.21 P < .001 
  Shimmer (%) 8.57±4.60 3.25±1.57 P < .001 
  NHR (-) 0.22±0.25 0.04±0.03 P < .001 
  HNR (dB) 14.05±6.01 22.55±4.28 P < .001 
ddk task 
Respiration
  SPLD (1/s) 5.68±2.99 3.85±3.01 P < .05 
Articulation
  DDK rate (syll/s) 6.01±0.60 7.16±0.71 P < .001 
  RFPC (-) 0.43±0.14 0.58±0.10 P < .001 
  SDCV (-) 0.14±0.03 0.17±0.03 P < .01 
running speech 
Prosody 
  F0 SD (semitones) 1.52±0.43 2.62±0.75 P < .001 
  Intensity SD (dB) 7.15.±1.42 8.66.±1.49 P < .001 
  No. pauses (pause/s) 3.24.±0.85 3.83.±0.70 P < .01 
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performed automatically with sufficient accuracy and 
without assistance of speech pathologist. In the future, 
when precise automatic assessment of boundaries 
between vowels and consonants etc. become feasible, the 
quick vocal test can be extended using new measurement 
methods such as for example novel acoustic measure of 
formant centralization ratio [17] which was proposed to 
robustly differentiate dysarthric from healthy speech. 
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figure 1: Schematic diagram depicting the recording of 
the PD patient’s speech signals through the vocal test. 
Signals are calculated using speech signal processing 
algorithms and evaluated using the SVM-based model.  
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Abstract: this paper presents the implementation of a 
dsp based acquisition and elaboration system for 
voice pathologies early identification. the proposed 
system performs real-time spectro-acoustic analysis of 
acquired voice samples and gives a visual feedback to 
alert about “potential” presence of anomalies in vocal 
robes. the prototype can also be used for 
rehabilitation purpose after medical treatment or 
surgery. 
Keywords:  vocal tract pathologies, dsp technology, 
portable device, screening. 

 
I. INTRODUCTION 

 
 The identification of vocal tract diseases is carried out 

in clinical laboratories through invasive methods such as 
endoscopy. The analysis of vocal signal is a non-invasive 
method used for preliminary diagnosis and follow-up [1], 
and thus interests both medical doctors and engineers [2-
7]. Vocal tract pathologies can be early identified by 
using signal voice analysis performed directly by patients 
or in a general doctor office. 

We have been working on a project aimed to study and 
apply bioengineer techniques to vocal signals using 
otorhynolaryngoiatric expertise and experiences for the 
design and validation of a general purpose voice signal 
analysis system. Such a project aimed to: (i) improve 
vocal tract prevention providing home-care instruments, 
(ii) increase mass population screening, (iii) allow early 
vocal tract diseases detection and (iv) support 
rehabilitation phases improving follow up management 
0[8-9]. 

This paper presents some experiences of using a 
portable digital signal processor (DSP)-based device for 
vocal signals acquisition and analysis, device resulting 
from the current status of the above described project. 
Tests have been performed on real data obtained from the 
University Magna Graecia otorhinolaryngoiatric 
laboratory, implementing time-frequency analysis of 
acquired voice samples. The tests show capabilities of the 
proposed device to give real-time feedbacks about  
 

 
 
relation between vocal signal anomalies and laryngeal 
pathologies. 

 
  

 
II. METHODS 

 
The designed device presents the following modules: 

(i) a microphone connected to the audio circuit and 
available on the board via 3.5 mm stereo jacks for vocal 
signal acquisition; (ii) A/D conversion; (iii) DSP 
processor for filtering and processing; (iv) output leds for 
patient feedback. It requires portability and usability with 
minimum weight and size; to this end the ADSP-BF537 
Blackfin Processor (Analog Devices/Intel Micro Signal 
Architecture (MSA)) is used 0.  

The DSP based device implements: (i) a preprocessing 
algorithm for data filtering, (ii) a voice signal feature 
extraction based on Short Time Fourier Transform 
(STFT), and (iii) the classification procedure based on the 
analysis of fundamental frequencies and (non) harmonic 
components.  

Input information about patient sex and age have to be 
set before performing the analysis.  

 
A. Preprocessing  
 

The first stage of DSP processing consists of the digital 
filtering of vocal signals to improve the quality. The 
system is customized to implement different types of 
Butterworth filters (high-pass, low-pass, pass-band and 
stop-band) and specify the relative parameters (cut-off 
frequencies and orders) through push buttons available on 
the board. The advantage of Butterworth filters is their 
smooth and monotonically decreasing frequency 
response. More specifically, a Butterworth filter is an 
Infinite Impulse Response (IIR) filter. IIR filters, also 
known as recursive filters, operate on current and past 
input values and current and past output values. 

Equation (1) defines the direct-form transfer function 
of the used IIR filter: 
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where b0…bNb-1 are the Nb forward coefficients, and 
a1…aNa-1 are the Na reverse coefficient. 

 
B. Voice signal feature extraction 
 

The pathological voices are non-stationary signals 
because the frequency contents change over time. So, the 
Fourier Transform, that identifies the frequency 
components, does not allow to easily derive information 
about when and how these frequencies are actually 
present. For this reason, a time-frequency analysis is 
needed to detect temporal and spectral characteristics of 
the signal. 

Short Time Fourier Transform (STFT) has been 
implemented on the DSP. To elaborate the STFT of the 
whole signal, it is divided into several blocks through a 
sliding window and then the Fast Fourier Transform 
(FFT) is applied to each data block to obtain the 
frequency contents. 

The STFT is computed according to the following 
equation (2): 
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The discrete signal xn=x(nTs), where n=0, . . . , N −1 

and Ts is the sampling period, is multiplied by the 
window function wn,m, whose position varies in time, to 
obtain short-time segments. Specifically, the window 
function is defined as wn,m = w(nTs + m∆T), where 
m=0,1,. . . , m∆T is the starting instant of the window and 
∆T = NTs is its duration. Then, the FFT is applied to each 
time segment. 
 
C.  Classification procedure 
 

The spectrogram resulting from the STFT are 
represented in a numerical matrix S[N×M] where N is the 
number of frequencies and M is the number of samples; 
S[i,j] contains the power value of the jth sample 
corresponding to the ith frequency of the STFT of the 
vocal signal. 

The procedure for the detection of pathological voice 
uses the information of fundamental frequency, first and 
second harmonics. The average power values of such 
frequencies are evaluated from S and compared with 
normality thresholds defined by the clinicians. Procedure 
evaluation also considers sub-harmonics and non-
harmonics power values. 

A procedure named isPathological is implemented on 
the DSP for pathological voice identification. The 
harmonic and sub-harmonic thresholds (Th0, Th1, Th2, 
SubTh0, SubTh1, SubTh2) need to be given as input to 
such procedure.  

 
 

III. RESULTS AND DISCUSSION 
 

The designed device works in stand-alone mode or 
connected to a computer; in stand-alone mode, the device 
can be used by the patient directly that receives a visual 
feedback about the status of his voice. The PC-connected 
mode is mostly used by clinicians to configure the device 
to be furnished to patients and/or to gather information 
after it has been used.  

The device has been tested on a data set gathered from 
the otorhinolaryngoiatric laboratories of University of 
Catanzaro, consisting of 31 patients of different ages and 
sex: 8 healthy (Subj1-Subj8) and 23 not healthy (Subj9-
Subj31). Results are reported in Table 1. The system 
works correctly in all cases of healthy (normal signal); it 
returns a wrong diagnosis in 8 out of 23 not healthy 
subjects even if 4 out of 5 are related to Reinke’s Edema 
pathology and 3 out of 6 to presence of  nodules. This is 
mostly due to defect that this kind of pathologies require 
endoscopy analysis, i.e. even specialist visual and 
acoustic signal analysis is not sufficient for an early 
correct identification. Finally, results have been stored in 
PC-mode, and tests have been double checked by using 
standard spectrographic tools analysis, confirming the 
results of  the portable device. 

 
 

IV. CONCLUSION 
 

In this paper a portable DSP-based system for the real-
time acquisition and analysis of pathological voices is 
presented. The device is part of a project aiming to realize 
a mass population screening, early vocal tract diseases 
detection and voice rehabilitation. The device, that is 
associated with software tools for device configuration 
and signal analysis, is able to acquire, process the vocal 
signal and performs the analysis in time frequency 
domain. It can work in stand-alone mode, giving a visual 
LED-feedback to the patients about the voice, and in PC-
based mode, showing the analysis results to clinicians for 
further studies. The prototype has been tested on a dataset 
of normophonic and pathological subjects and tested also 
on signals acquired from patients before and after 
medical treatments, showing its capability of being used 
for rehabilitation purposes. 
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table. 1: results of the procedure 
Medical Diagnosis Subjects [Subj] F0 [Hz] Output Procedure 

HEALTHY 

Subj 1 288,303 Healthy 
Subj 2 143,659 Healthy 
Subj 3 221,747 Healthy 
Subj 4 176.334 Healthy 
Subj 5 214,156 Healthy  
Subj 6 217,218 Healthy 
Subj 7 264,244 Healthy 
Subj 8 218,609 Healthy 

NOT HEALTHY 
(CHEP CHP) 

Subj 9 123,32 Not Healthy 
Subj 10 227,937 Not Healthy 
Subj 11 143,657 Not Healthy 
Subj 12 182,148 Not Healthy 
Subj 13 89,724 Not Healthy 
Subj 14 125,391 Not Healthy 
Subj 15 225,571 Not Healthy 

NOT HEALTHY 
(DISFUNCTIONAL 

DYSPHONIA) 

Subj 16 210,337 Not Healthy 
Subj 17 286,723 Not Healthy 
Subj 18 249,66 healthy (wrong answer) 

NOT HEALTHY 
(REINKE’S 
EDEMA) 

Subj 19 181,776 healthy (wrong answer) 
Subj 20 129,32 Not Healthy 
Subj 21 133,917 healthy (wrong answer) 
Subj 22 214,705 healthy (wrong answer) 
Subj 23 116,803 healthy (wrong answer) 

NOT HEALTHY 
(NODULES) 

Subj 24 277,491 Not Healthy 
Subj 25 228,539 healthy (wrong answer) 
Subj 26 228,03 Not Healthy 
Subj 27 252,982 Not Healthy 
Subj 28 281,474 healthy (wrong answer) 
Subj 29 218,369 healthy (wrong answer) 

NOT HEALTHY 
(POLYPS) 

Subj 30 156,01 Not Healthy 
Subj 31 213,922 Not Healthy 
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Abstract:    in this study we investigate voice 
productions of normal speakers and patients with 
varying vocal fold adduction deficiencies using a non-
invasive method to measure spatial vibrations of the 
larynx. the current version accv4 of our 
acceleration sensor device was used.  The study’s 
primary goal is to find out whether lesions of vocal 
folds lead to additional spatial vibration modes 
compared to a non-disordered voice.  our results allow 
to assume that the composition of spatial vibra- tion 
modes at the skin over the cricothyroid ligament may  
depend  on the symmetry of vocal fold movements. 

Keywords:  acceleration sensor, vocal fold adduction 
deficiencies 

 
 

I.  INTRODUCTION 

 
We use the current version ACCV4 of our acceleration 
sensor device to measure spatial vibrations of the skin of 
the neck covering the larynx. These vibrations are driven 
in part by the subglottal sound pressure and also indirectly 
by the vocal folds.   We suspect that the movement of 
each vocal fold is passed on via their own arytenoid 
cartilage to the left or right part of the cricoid cartilage, 
respectively.  The cricoid cartilage is situated at the lower 
part of the cricothyroid ligament [3]. Therefore, a path of 
vocal fold vibrations to the skin over this ligament can be 
assumend.  Both the subglottal sound pressure and the 
symmetric vocal fold movements result in skin and sensor 
movements in the ventral and dorsal direction.  These 
movements were attributed to the subglottal sound 
pressure alone in our previous studies [1], [4], [5], [6], [7]. 
Any deviations of vocal fold movements from symmetry 
could cause additional skin and sensor movements in 
lateral 

and/or cranial and caudal direction.  We attempt to 
quantify the amount of asymmetry of the skin and sensor 
movement by an analysis of the spatial sensor movement. 

II.  METHODS 

A.    Acceleration Sensor 

In this study the spatial vibrations of the current version  
ACCV4  of  the  acceleration  sensor  device are recorded 
simultaneously with the nasal and oral sound pressure 
signal captured separately through a Rothenberg mask. 

Preceeding versions of the acceleration sensor de- vice 
ACCV4 were presented in [4], and [5]. The relevant aim 
in this study is its ability to track the spatial movement of 
the body tissue with a high bandwidth. 

 

 
 
 

Figure 1: Acceleration sensor device 

 
The acceleration sensor device is shown in Fig. 1. The tip 
T is mounted at the acceleration sensor A. 
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Both are held by spiral springs in the suspension ring S. 
The suspension ring is glued to the handle H that also 
contains electrical connectors to conduct the analog 
signals to an external preamplifier by a cable. 

The acceleration sensor A consists of three ADXL202E 
two axis microelectromechanical acceleration sensors that 
are glued to different planes of an aluminium cube.  The 
tip T is a plastic screw fixed at the cube by a counter nut.  
The electronic components are soldered to a flexible 
printed circuit board (PCB). The force of the tip T to the 
neck is about 

0.2 N – which proved  to  be strong  enough to  keep 
tissue contact but is hardly noticed by the spaker. 

The  arrangement  of the  ADXL202E chips  tracks the  
acceleration  along each spatial  direction  at  two different 
points of the cube.  Hence, this six signals are sufficient to 
compute the spatial vibrations of the body tissue. 

B.    Sensor  Placement 

The glottis is located in the larynx and separates the 
supraglottal from the subglottal cavity.  It lies behind the 
thyroid cartilage.   A soft tissue – the  cricothyroid 
ligament – connects the lower end of the thyroid cartilage 
to the cricoid cartilage.  The vocal fold vibration is passed 
on through the thyroid, arytenoid, cricoid cartilage, and 
the cricothyroid ligament to our sensor, respectively. 

 

 
 
 

Figure 2: Sensor at neck 

The cricothyroid ligament can be found by touching the 
larynx with a finger and searching for a small soft gap in 
the elsewhere hard larynx structure.  The sensor tip T is 
placed perpendicular to the neck and pressed gently to  the  
soft  gap until  the  suspension 

ring S touches the skin as shown  in Fig. 2. Now the 
speaker is asked to speak.  The correct placement of the 
sensor is immediately seen in the amplitude display of the 
six accelerator channels.  The amplitude of the two 
channels corresponding to the tip axis rise to high levels, 
the other  four stay  at  low levels.   In many cases this 
situation holds for several minutes. Sometimes the 
perpendicular position of the  tip to the neck is lost and 
the signal amplitude distributes over more than two 
channels.  In that case the session is paused and the sensor 
is arranged correctly again. In our recordings usually the 
sensor device was held by an assistant. 

C.    Speech sounds 

Speech sounds are recorded via two electret micro- 
phones mounted in the oral and nasal section of a 
Rothenberg mask.  In this study both sounds are added 
and used for labelling the short and long vowels.  The 
lower part of the mask is visible in Fig. 2. The mask was 
held by the speaker. 

D.    Recordings 

The recordings were made in a consultation room that was 
not sound treated.  Eight channels were recorded 
simultaneously, six channels of the acceleration sensor  as  
well  as  the  oral and the  nasal  sound of the Rothenberg 
mask.  The first order 5 kHz RC-lowpass recommended 
by the ADXL202E data sheet was implemented  by 
analog hardware.   All  channels  were digitized with a 
sampling rate of 48 kHz. The RME soundcard offers only 
AC coupling, hence no static ac- celeration signals like 
the gravitation vector are avail- able as a direction 
reference in the evaluation. 

As speech material sustained vowels (e.g.  [i:], [a:] [u:]) 
produced at the subject’s normal pitch were used for this 
study. 

E.    Spatial  analysis 

A segment stable for about a second is located manu- ally 
in the sound of one of the sustained vowels.  The temporal 
sampel indices n = 1, . . . , N correspond to that segment. 
To study the modes of vibrations of the sensor,  the 
samples ai (n) of the six sensor channels are arranged in 
columns 

ai  = (ai (1), . . . , ai (N ))∗,  i = 1, . . . , 6 (1) 

 
where ∗ denotes transposition.  The columns are put 
together to form the N ×6 matrix of acceleration data 

 
A = (a1 , . . . , a6 )   . (2) 
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Each row of A may be viewed as a sample of the six 
dimensional vector valued sequence of acceleration 
measurements. 

Whereas the mechanical sensor axes are not perfectly 
aligned parallel and perpendicular, no measurement of 
these deviation was done and hence no correction can be 
attempted.  According to the data sheet  of the  sensor  
chip ADXL202E, the  cross  axis sensitivity of each 
sensor chip is ±2% or −34dB.  It stems from axis 
misalignments and inherent  sensor errors.   Sensor 
assembly misalignments of 1 degree would result in 
additional cross sensitivity of about −39dB. 

To find independent modes of vibration in the acceleration  
vector sequence  A,  the  6 × 6 correlation matrix is 
computed 

 

RA = A∗A    . (3) 

The eigen decomposition of this correlation matrix 

RA = V∗ΛV (4) 
 
results in the diagonal matrix 

 
Λ = Diag(λ1 , λ2 , . . . , λ6 )  (5) 

 
of non-negative eigenvalues 

 
λ1  >= λ2  >= · · · >= λ6  >= 0 (6) 

 
and in the orthogonal matrix 

 
V = (v1 , v2 , . . . , v6 )  (7) 

 
containing the eigenvectors vi  as columns. 

According to Ineq.(6), the eigenvalues are arranged in the  
order  of descending  magnitude  starting  with the  largest  
eigenvalue  λ1 .  The eigenvalue λ1  represents the energy 
of the major vibration mode.  The direction of the major 
vibration mode is given by the corresponding eigenvector 
v1 .  Similarly, the second vibration mode is given in 
energy and direction by λ2 and v2. Due to the symmetry 
of the correlation matrix, the eigenvectors corresponding 
to different eigen-values are always orthogonal.   The case 
of equal or multiple eigenvalues with its associated 
subspace is not considered here further, since it never 
appeared in our measurements and it is very  unlikely  due 
to measurement noise. 

The orientation of the major vibration mode is basically  
perpendicular  to  the  skin  at  the  neck, along the  ventral  
and dorsal  direction.   The second mode vibrates along a 
line in the plane spanned by the lateral and the cranial and 
caudal direction.   In order to quantify the symmetry of the 
sensor movement we propose the ratio between the 

energies of the major and the second vibration mode 

σ = λ1 /λ2  (8)  

A large σ corresponds to a dominant major vibration 

mode and a weak second vibration mode.   In this 
situation the vibration of the cricothyroid ligament in 
lateral and/or cranial and caudal direction is weak 

– a highly symmetric vibration.  On the other hand a 
stronger vibration mode in lateral and/or the cranial and 
caudal direction reduces σ and corresponds to a more 
asymmetric vibration. 

Since energy ratios may result in large figures the 
logarithmic decibel scale 

 
σdB = 10 log σ (9) 

 
is more familiar and often preferred.  Both versions of the 
proposed symmetry measure σ and σdB  will  be shown in 
Tab.1. 

F.    Speakers 

We investigated normal voices produced by two speakers  
with  no known speaking  or hearing  problems  as  a 
control  group.   Additionally,  three  patients with varying 
vocal fold adduction deficiencies resulting  from unilateral  
and bilateral  paralysis  of the  recurrent  nerve were  
considered  [2].  This kind of pathology is a frequent 
cause of deficient vocal fold adduction.  Patients 
compensate or do not use compensatory strategies for the 
adduction deficiency. Our three patients cover a wide 
range of physiological constellations.  They were 
classified on the basis of the observed vocal fold 
adduction, judged from laryngoscopic and 
videostroboscopic recordings of their vocal folds  during 
phonation  by an experienced  ENT physician.  The 
clinical judgements were made during consultation. 

III.  RESULTS 

The acceleration sensor device was previously used to get 
indirect access to the subglottal sound pressure and to 
measure the resonance parameters of the sub- glottal 
cavity [5]. It records the spatial components of the 
acceleration of its moving part.  The analysis is based on 
the eigen decomposition of the correlation matrix of the 
acceleration vector.  The projection to its main component 
was assumed to be driven mainly by the subglottal sound 
pressure.  Now the strength of the second largest 
component is compared to the strength of the main 
component. 
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 norm. 
voice 

unilat. 
uncomp. 

unilat. 
comp. 

bilat. 
comp. 

σ 15 
23 4.7 12 133 

σdB 
12dB 
14dB 7dB 11dB 21dB 

 

 
Table 1: Symmetry measure σ for normal adduction 
behaviour and different vocal fold adduction deficien- 
cies. 

 
 
 
 
 
 
 
 
 
 
Tab. 1 shows the resulting ratios of the underlying 
different vocal fold adduction behavior.  Normal voices 
(norm. voice) having relative regular adduction behaviour 
(first column in Tab. 1) show a ratio of 15 and 23. The 
first vibration modes for these individuals are 12dB and 
14dB stronger than their second modes. 

Our first patient with uncompensated unilateral vocal fold 
paralysis (unilat. uncomp.; second column in Tab. 1) 
produces  a much stronger  second vibration  mode which 
is  only 7dB weaker  than  the  first mode. This result may 
indicate non-symmetric vocal fold movements. 

Our second patient with compensated unilateral vocal fold 
paralysis  (unilat.  uncomp.; third  column in Tab. 1) offers 
results very closed to those of nor- mal voices.  
Consequently, compensation of vocal fold paralysis may 
restore symmetric vocal fold movements. 

Finally, our third patient with compensated bilateral vocal 
fold paralysis (bilat. comp.; fourth column in Tab. 1) 
shows a very weak second vibration mode which may be 
caused by a high degree of symmetry in the vocal fold 
movement. 

A closer look to the eigenvectors of our speakers confirms 
that the major mode vibrates, as conjectured, in the ventral 
and dorsal direction.  The second vibration mode turns out 
to have always a component in the cranial and caudal 
direction. An additional lateral component in the second 
vibration mode is only seen with the second patient, not as 
expected with the first one. 

 
IV.  DISCUSSION 

In the present study voice productions of normal speakers 
and patients with varying vocal fold adduction 
deficiencies were investigated.    Instrumentally the 
current version ACCV4 of our acceleration sensor device 
was used.  In extension to our previous approaches the 
spatial capabilities of the sensor were 

made use of. To measure the amount of symmetry of the 
vocal fold vibration the energy ratio of the first and 
second vibration  mode was proposed  and evaluated.   It 
seems  to  mirror  the  symmetry  condition of the vocal 
fold vibration despite of the underlying complex coupling 
path via arytenoid cartilage, cricoid cartilage, and the 
cricothyroid ligament. 

V.  CONCLUSIONS 

Phonation behavior of patients with vocal fold adduction 
deficiencies resulting from unilateral and bi- lateral 
paralysis of the recurrent nerve show varying degrees of 
symmetry in their vocal fold vibration. The proposed  
symmetry  measure  of the  energy  ratio  of the first and 
second vibration mode properly represents this situation.  
These observations encourage a further look at other 
phonation qualities to find out whether this symmetry 
measure is still applicable. 
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Abstract: occupational voice disorders are observed 
with increasing frequency in otolaryngological 
consultations. devices have been developed that 
provide objective data on the way individuals use 
their voices throughout the day outside the clinic. 
however they do not provide information about the 
acoustic indexes of voice quality. a critical point is 
also the choice of the sensor.  
the device here proposed could be defined as a 
“portable laboratory” for voice analysis, its main 
advantage being the reliability of estimated 
parameters from both sustained vowels and running 
speech.  a prototype has been set up on a dsp board 
and tested on short sustained vowels. foreseen 
applications include: basic research, medico-legal, 
quantification of voice plasticity, vocal 
function exercises during rehabilitation, voice 
disorders, short term feedback in singing voice, etc. 
 
Keywords :  voice analysis, dosimeter, portable device, 
occupational voice disorders 

 
I. INTRODUCTION 

 
The development of modern information 
telecommunication technology plays an increasingly 
important role in facilitating access to some diagnostic 
services, particularly in creating medical diagnostic 
applications small enough to fit into objects already in 
common use, such as cell phones. 
Occupational voice disorders are observed with 
increasing frequency in otolaryngological consultations 
[1]. Speech therapists in voice clinical services rely on 
documenting information on therapy progress recording 
the examination/therapy session to diagnose the voice 
quality more precisely comparing the voice quality of the 
patient at the beginning, during and at the end of the 
therapy session and to review the evaluation later. 
To this aim voice dosimeters and voice accumulators 
have been investigated, and suitable definitions of vocal 
load and dose have been given and applied to 
professional speakers and singers [2-9]. 
However few devices have been implemented, mostly 
based on a contact transducer (accelerometer) attached to 
the front part of the neck. A cable connects the 

accelerometer to the hardware module in a waist pack 
worn by patients. These devices provide data on the way 
how individuals use their voices throughout the day, 
outside the clinic, avoiding relying solely on subjective 
self-reports. In particular APM [10] records the total 
speaking time and sound level over a period of several 
hours. Quantitative measures of when, how long, how 
loud, and at what pitch the client vocalizes are obtained 
and a real-time feedback is provided, through a small 
vibrotactile unit. This information is very useful to 
identify those situations which might cause vocal fold 
damage. Other products implement similar voice quality 
parameters and indexes [11, 12]. Nevertheless they do not 
provide information about the acoustic indexes of voice 
quality. Another drawback with existing devices is the 
possible discomfort and embarrassment due to the contact  
transducer and the need of being returned to the clinic to 
download data into a PC for analysis using specific 
software. Moreover, a critical point is of course the 
correct wearing of the accelerometer that again could 
require clinical expertise.  
The device here proposed differs from those above 
mentioned as is will be completely contact-less, the 
transducer being a small microphone.  It could be defined 
as a “portable laboratory” for voice analysis, its main 
advantage being the reliability of estimated parameters of 
both sustained vowels and running speech and easy 
usage. Foreseen applications are: 
 Research, to understand the early effects of fatigue on 
voice quality and/or the early mechanisms of vocal 
forcing. 
 Medico-legal, by means of so-called “realistic 
provocation” test for  patients that show a normal voice 
at the moment one examines them, but acknowledge a 
lot of voice symptoms during daily life. 
 Quantification of voice plasticity in realistic conditions 
of use in voice professionals. 
 Post-surgical monitoring and vocal function  exercises 
during rehabilitation or for stuttering, dyslexia, 
psychogenic dysphonia, etc, where indirect interaction 
with the therapist could be more comfortable and 
effective.  
 Occupational voice disorders (speakers, call center 
operators, teachers etc. with chronic voice over-use) to 
monitor how vocal folds react to the daily load and to 
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receive immediate feedback about possible risks. A 
long-term usage of the device could be foreseen over 
the days or weeks in subjects who are at risk for the 
development of voice pathologies, for easily available 
monitoring to be used by the voice clinician. 
 Short term feedback in singing voice, while trying 
different vocal behaviours/voicing styles etc., e.g 
measuring the singer's formant and checking which one 
provides the best 'brilliance' to dominate the orchestra. 

 
II. METHODS 

 
A prototype has been set up on a DSP board that 
evaluates voice basic parameters and provides a 
LED/audio feedback that advices the patient for any 
abnormal vocal emission. The aim is to implement it on 
an object of common use, such as a cell phone, in order to 
overcome patient’s distrust against medical devices. Data 
(audio files and parameters) could be saved on the device 
and possibly submitted to a PC for further analysis. This 
could be accomplished e.g. by means of MMS messages.  
Voice quality indexes: On the prototype, voice quality 
analysis is based on the following indexes: fundamental 
frequency (F0), along with its irregularities (Jitter, J, and 
Relative Average Perturbation, RAP), and hoarseness 
(Normalised Noise Energy, NNE). This is a subset of 
functions coming from a new user-friendly tool for voice 
analysis, named BioVoice [13] developed under Matlab 
R2009b, that can be easily extended to other relevant 
parameters related to vocal load.   
Great attention is devoted to the selection of 
voiced/unvoiced frames as well as th F0 estimation, as 
reliable estimates of other parameters depend upon it. The 
choice of the techniques adopted   results from a detailed 
comparative analysis of F0 extraction methods, with 
applications both to synthetic and real data in case of 
mild to severe dysphonia, showing enhanced performance 
against other approaches [14, 15]. 
The DSP prototype: The routines for F0 and voice quality 
evaluation, developed under Matlab (release 2007b), 
were translated into C++ code (Microsoft Visual C++ 
6.0) and optimised in order to run on the DSP board 
TMS320C6713, that is provided with a larger internal 
memory (192 kB) and faster clock (225 MHz) with 
respect to the one previously used [16].  The new DSP 
board allows for implementing many computations 
directly on a data buffer inside the internal memory. The 
buffer also allows for fewer transfers of data from 
external to  internal memory. Moreover, floating point 
variables were implemented.   
The board can work independently or connected to a 
laptop or PC (Fig. 1) for launching the debug and for 
showing on the monitor some plots as result of 
computations. The new DSP was also provided with the 
software required for audio signal recording through a 
microphone that must be connected to the MIC-IN input. 

 
 
Figure 1: The DSP board connected to a laptop for further 
analysis and display of plots.  
 
The microphone: A high quality voice recording should 
differentiate this system from existing ones, to allow for 
the evaluation of voice quality parameters and subtle 
differences induced by e.g. changing something in the 
voicing technique. Hence, the microphone plays a basic 
role in the device as it is required to be used in field. 
According to [17], if ambient noise or reverberation are a 
problem, as in this application, a head mounted 
omnidirectional microphone (that however reduces 
portability) or a directional microphone are suggested.   
At present, the device works with a fixed distance of the 
mouth from a directional microphone. Recordings must 
be performed in a quiet environment. Users are carefully 
instructed and warned about these points, though a 
control has been implemented to test minimum 
amplitude, signal power and background noise 
requirements, in order to guarantee a satisfactory signal 
level while avoiding saturation. If such requirements are 
met, the signal analysis starts, according to the 
implemented algorithms. Otherwise, a devoted 
LED/audio alarm advices the patient that the recording 
must be repeated.  
On the prototype the size of the data frame is limited to 2 
s of recording, with Fs = 44 kHz sampling frequency, but 
of course longer frames are foreseen. More details can be 
found in [18]. 

As for any portable clinical device, before leaving the 
clinic to pursue her/his daily activities, the patient will 
receive instruction about how and when use the device. 
The clinician has to customize the device for each patient 
to elicit the audio/video alarm when a particular 
threshold, such as an irregularity value, is exceeded.  

 
III. RESULTS 

 
The new board has been tested on two sets of voice 
signals (sustained /a/ vowel). The first set consists of 40 
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pre-post surgical recordings with different degrees of 
hoarseness due to different pathologies (polyps, oedemas, 
cysts, tyroplastic prosthesis etc). The second set comes 
from healthy subjects recorded in non-protected 
environment, to test robustness against environmental 
noise. 
The mean values of the parameters F0, ANNE, J, and 
RAP were considered. The same computations were 
performed on both the DSP and the Matlab program 
running on a standard PC.  
Table 1 shows some results from a subset of pathological 
signals (lines 1-8) and from male healthy subjects (lines 
9-12). Only the results obtained from the DSP are 
reported, as they coincide up to the last digit with those 
obtained with Matlab. The computational time was 30-50 
s on DSP, and 13 s on PC. Notice that the computational 
time could be greatly reduced if a reliable initial range of 
variation for F0  is available that avoids a first step for F0 
estimation.   
 

IV. DISCUSSION 
 
At present the proposed device is at a first stage of 
development, both as far as the implemented parameters 
and the hardware requirements are concerned. Adding 
other parameters of clinical relevance poses relatively 
simple problems, mainly concerning computational time, 
that could be solved with dedicated hardware or other 
techniques such as sending data to a server connected to a 
PC for visualization and further analysis with devoted 
tools (e.g. BioVoice). Parameters could include formants, 
spectrogram and PSD, as well as statistical results and 
plots on the whole recording period. 
Sending data could be done through the GPRS/UMTS 
network (e.g. MMS messages) that should warrant for 
privacy, as the user could be identified through the 
telephone number available on a SIM card obtained only 
presenting a personal document and signing a legal 
document. The device could be provided with a HDD or 
memory card to store data and a USB connection to 
download data on a PC. 
Moreover, an optimised version of the software could be 
developed to be downloaded as an application for mobile 
phones or i-phones. 
The voice quality enhancement problem against 
environmental noise and/or simultaneous presence of 
other speakers rises more difficulties that could be 
partially solved applying e.g. blind source separation 
techniques or neural network algorithms to teach the 
phone to recognise the voice of the user against other 
voices or sounds. Another possibility could be that of 
applying spectral subtraction techniques, that would 
require having two microphones installed on the device. 
The first microphone should be very close to the mouth, 

as in usual mobile phones, while the second one should 
be mounted at a certain distance.     
Also sound pressure level (SPL) should be taken into 
account. Some commercially available SPL meters do not 
need a calibration and will be investigated in future work  
Another characteristics could be adding the possibility for 
the subject to indicate (by means of a button) relevant 
moments: the patient pushes on a button when he/she 
starts perceiving fatigue or burning throat, or other 
symptoms. Comparing voice quality before-during-after 
the button is pushed could give useful information in real 
time so that the patient could immediately react. 
To keep the device user-friendly, at the output the user 
will be advised for abnormal phonation with intuitive 
audio/visual messages only. In-depth analysis is deferred 
to the complete analysis tool, available on a laptop or PC. 
 

V. CONCLUSION 
 
A DSP prototype is proposed for a contact-less portable 
device to be used by a patient in order to extract 
important parameters of vocal behaviour when pursuing 
normal activities. In addition to the important objective 
data the device provides, a real-time audio/video alarm is 
implemented, as a feedback tool to help patients to 
remind  abusive vocal behaviours during routine daily 
activity and help the patient to learn how to modify vocal 
behaviour and achieve desired vocal function as defined 
by the clinician. This feature may enhance therapy 
carryover and expedite the patients rehabilitation process. 
The proposed device could be useful for clinicians to 
monitor results of phonosurgery and to obtain objective 
acoustic data for statistical and scientific purposes 
avoiding expenses and time consumption to the patient 
under study. 
Clinicians as well as speech therapists and psychiatrists 
could have benefits to obtain objective acoustic data for 
statistical and scientific purposes, avoiding a waste of 
money and time to the patient under study. 
The possibility of making use of a simple and reliable 
self-monitoring tool, for non-expert users, with no 
restrictions on accessibility and logistics, will allow 
sensitising people on a still underestimated subject, such 
as the prevention of vocal apparatus pathologies 
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