
MODELS AND ANALYSIS
OF VOCAL EMISSIONS

FOR BIOMEDICAL APPLICATIONS

3rd INTERNATIONAL WORKSHOP

December 10-12, 2003
Firenze, Italy

Edited by
Claudia Manfredi

Firenze University Press
2003



Models and analysis of vocal emissions for biomed-
ical applications : 3rd international workshop: decem-
ber 10-12, 2003 : Firenze, Italy / edited by Claudia
Manfredi. – Firenze : Firenze university press, 2003.
http://digital.casalini.it/8884531543
Stampa a richiesta disponibile su http://epress.unifi.it

ISBN 88-8453-154-3 (online)
ISBN 88-8453-155-1 (print)
612.78 (ed. 20)
Voce - Patologia medica

Responsibility for the contents rests entirely with the authors. The editors and the organising committee of
the MAVEBA 2003 accept no responsibility for any errors, omissions, or views expressed in this publica-
tion.
No part of this publication can be reproduced, stored in a retrieval system, or transmitted in any form or
by any means without the permission of the editors. Permission is not required to copy abstracts of papers,
on condition that a full reference of the source is given.

Cover designed by: CdC, Firenze, Italy

© 2003 Firenze University Press

Università degli Studi di Firenze
Firenze University Press
Borgo Albizi 28, 50122 Firenze, Italy
http://epress.unifi.it/

Printed in Italy



 
 
 
 

 INTERNATIONAL PROGRAM COMMITTEE

S. Aguilera (ES) A. Barney (UK) D. Berckmans (BE) P. Bruscaglioni (I)
S. Cano Ortiz (CU) R. Carlson (SE) M. Clements (USA) J. Doorn (AR)
U. Eysholdt (D) O. Fujimura (JP) H. Herzel (D) D.Howard (UK)
A. Izworski (PL) M. Kob (D) A. Krot (BY) U. Laine (FI)
C. Larson (USA) F. Locchi (I) J. Lucero (BR) C. Manfredi (I)
C. Marchesi (I) W. Mende (D) V. Misun (CZ) C. Moore (UK)
X. Pelorson (F) P. Perrier (F) R. Ritchings (UK) S. Ruffo (I)
O. Schindler (I) A. Schuck (BR) R. Shiavi (USA) H. Shutte (NL)
J. Sundberg (SE) J. Svec (CZ) R. Tadeusiewicz (PL) I. Titze (USA)
U. Uergens (D) G.Valli (I) K. Wermke (D) W. Ziegler (D)

LOCAL ORGANISING COMMITTEE

C. Manfredi, Dept. of Electronics and Telecommunications, Faculty of Engineering - Conference Chair
P. Bruscaglioni, Dept. of Physics, Faculty of Maths, Physics and Natural Sciences - Conference Chair
F. Locchi, Dept. of Clinical Physiology, Faculty of Medicine.
C. Marchesi, Dept. of Systems and Computer Science, Faculty of Engineering.
S. Ruffo, Dept. of Energetics, Faculty of Engineering.
G.Valli, Dept. of Electronics and Telecommunications, Faculty of Engineering

SPONSORS

MPS - Banca Monte de' Paschi di Siena

ISCA - International Speech and Communication Association

AIIMB - Associazione Italiana Ingegneria Medica e Biologica

INFM – Istituto Nazionale per la Fisica della Materia





CONTENTS

Foreward  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Plenary lecture – Metin Akay, “Advances in signal interpretation. From music to medicine”.  . (text not
available)

Voice Disorders

E.P. Rosenfeld, D.W. Massaro, J. Bernstein, “Automatic analysis of vocal manifestations of 
apparent mood or affect”.  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-8

H.J. Fell, J. MacAuslan , “Automatic detection of stress in speech”. . . . . . . . . . . . . . . . . . . . . . . . . . . 9-12

A. Ozdas, H. Omar, R.G. Shiavi, S.E. Silverman, M.K. Silverman, D.M. Wilkes,
“Investigation of glottal flow spectral slope as possible cue for depression and near-term sui-
cidal risk”. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-16

Laryngectomy

J. Lohscheller, M. Döllinger, R. Schwarz, U. Eysholdt, U. Hoppe, “Modelling of the laryn-
gectomee substitute voice”. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19-22

K. Murakami, K. Araki, M. Hiroshige, K. Tochinai, “A study of a direct speech transform 
method on laryngectomee speech”.  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23-26

V. Misun, “External excitation of the vocal tract after laryngectomy”.  . . . . . . . . . . . . . . . . . . . . . . . 27-30

Special Session on Infant cry analysis

Plenary lecture - W. Mende, K. Wermke, “Time variations of the Fundamental Frequency
(Melody) and Resonance Frequencies in infant’s crying – key parameters for pre-speech 
development”.  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33-34

C. Manfredi, W. Mende, P. Bruscaglioni, K. Wermke, “Resonance development and formant 
tuning phenomena in infant’s crying”.  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35-38

H.J. Fell, J. MacAuslan, C.J. Cress, L.J. Ferrier , “Using early vocalization analysis for visu-
al feedback”.  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39-42

R. Sisto, C.V. Bellieni, D.M. Cordelli, G. Buonocore, “Cry features as a measure of pain 
intensity in newborns”.  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43-46

N. Bolfan-Stosic, A. Yliherva, G. Welch, ”Vocal identity - differences and similarities 
between children from Croatia and Finland”.  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47-50

R. Nicollas, M. Ouaknine, A. Giovanni, J. Berger, J.P. To, D. Dumoulin, J.M.Triglia, 
“Physiology of vocal production in the newborn”.  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51-54

Noise estimation/denoising

L. Helaoui, S. Ben Jebara, A. Benazza-Benyahia, “A two-channel speech denoising method 
combining wavepackets and frequency coherence”.  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57-60



E. Jafer, A.E. Mahdi, “Wavelet-Based Noise Estimation Techniques for speech enhancement”.  . . . 61-64

C. S. Lima, J. F. Oliveira, “HMM modelling of additive noise in the western languages con-
text”.  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65-68

E. Iadanza, F. Dori, C. Manfredi, S. Dubini, “Hoarse voice denoising for real-time DSP
implementation: continuous speech assessment”.  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69-72

A.M. Krot, H.B. Minervina, V.V. Sarapas, “An efficient method of speech signal reconstruc-
tion based on neural network and fast deconvolution algorithm”.  . . . . . . . . . . . . . . . . . . . . . . . . . . 73-75

Poster session

K. Funaki, “On packet loss concealment using time-varying speech analysis”.  . . . . . . . . . . . . . . . . 79-82

F. Gittel, T.D. Smith, A. Th. Schwarzbacher, E. Hilt, “VLSI Implementation of a LMS Based 
Adaptive Noise Canceller”. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83-86

M. Bostik, M. Sigmund “Speaker  stress  detection  by  analysis of  glottal  excitation”.  . . . . . . . . 87-90

J. Kleckova “An investigation of the speech production”.  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91-93

A. Petry, D.A.C. Barone, “Towards chaotic modeling of speech signals”.  . . . . . . . . . . . . . . . . . . . . 95-98

C.S. Lima, C.A. Silva, A.C. Tavares, J.F. Oliveira, “Blind source separation by independent
component analysis applied to electroencephalographic signals”.  . . . . . . . . . . . . . . . . . . . . . . . . . 99-102

C.S. Lima, J.F. Oliveira, “Spectral bi-normalisation for speech recognition in additive 
noise”.  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103-106

A.M. Krot, P.P. Tkachova, “Algorithm of phoneme identification using fast measurement of 
wiener kernels of speech signals”.  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107-110

A.M. Krot, H.B. Minervina, P.P. Tkachova, “Distinguishing and recognition of pathological 
speech based on estimation of control parameter of chaotic attractor”.  . . . . . . . . . . . . . . . . . . . . 111-114

A. Somkuwar and R.P. Singh, “Blind signal separation of vocal signals taken in noisy envi-
ronment”.  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115-117

Plenary lecture

Osamu Fujimura, “A generalized concept of prosody”.  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121-135

Mechanical models

C.H. Brown, F. Alipour, “Asymmetric and symmetric vocal fold oscillation in the excised 
squirrel monkey larynx”. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139-142

J. Horác̆ek, P. S̆idlof, J.G. S̆vec, “Numerical modelling of leakage-flow-induced vibrations of 
human vocal folds with Hertz impact forces”.  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143-146

S.L. Thomson, L. Mongeau, S.H. Frankel, “Physical and numerical flow-excited vocal fold 
models”. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147-150

C. Drioli, F. Avanzini, “Non-modal voice synthesis by low-dimensional physical models”.  . . . . . 151-154



Pathology classification

J.I. Godino-Llorente, T. Ritchings, C. Berry, “The effects of inter and intra speaker variabil-
ity on pathological voice quality assessment”. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157-160

O. Amir, T. Biron-Shental, “Do oral contraceptives really have an adverse effect on voice 
quality?”. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161-164

F.  Martínez, A. Guillamón and J.J. Martínez, “A suggested metric for cepstral arma based 
speech classification”. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165-168

D. Picovici and A.E. Mahdi, “Perceptually-based objective measure for non-intrusive speech 
quality assessment”.  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169-172

Special session on Singing voice

Plenary lecture - J. Sundberg, J. Bauer, “MR study of  articulation in high-pitched singing”.  . . (text not
available)

J. Bonada, A. Loscos, O. Mayor, H. Kenmochi, “Sample-based singing voice synthesizer 
using spectral models and source-filter decomposition”. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175-178

D.M. Howard, G.F. Welch, J. Brereton, E. Himonides, “Towards a novel real-time visual dis-
play for singing training”.  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179-182

D. Mürbe, G. Hofmann, F. Pabst, J. Sundberg, “Auditory and kinesthetic feedback in singing 
– significance  and effects of training on pitch control”.  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183-186

M. Kob and C. Neuschaefer-Rube, “Acoustic analysis of overtone singing”.  . . . . . . . . . . . . . . . . 187-190

C. Gabrielli, “Lucretius, song and music: a historical approach”.  . . . . . . . . . . . . . . . . . . . . . . . . 191-193

Devices

C. Bickley, M. Birnbaum, J. MacAuslan, “An assessment of fluency enhancement techniques 
for a telephone device for stutterers”.  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197-200

G. Belforte, M. Carello, A. Dileno, M. Morero, “Speaking valves: influence of the fatigue on 
the flow characteristics”.  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201-204

D. Breen, R. O’Neill, T.D. Smith, A.Th. Schwarzbacher, “VLSI implementation of a 
TSM/FSM algorithm”. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205-208

Voice/hearing impairment

J. Kleckova, J. Krutisova, “Some experiments in the Czech spontaneous speech recognition 
domain”.  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211-213

B. Resch,  W.B. Kleijn, “Time synchronization of speech”.  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215-218

M. Kammoun, K.Ouni, A. Bouzid, N. Ellouze, “A classification methodology of hearing 
impaired pathologies based on dtw technique applied on vocal audiometry”.  . . . . . . . . . . . . . . . 219-222



A.M. Marotta, F.J. Fraga, “Comparison of two frequency lowering algorithms for digital 
hearing aids”.  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223-226

Numerical models

K. Dedouch, J. Horác̆ek, T. Vampola, J.Vokrál, “Velofaryngeal insufficiency studied using 
finite element models of male vocal tract with experimental verification”. . . . . . . . . . . . . . . . . . . 229-232

X. Niu, J.P.H. van Santen, “A formant-trajectory model and its usage in comparing coartic-
ulatory effects in dysarthric and normal speech”.  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233-236

E. O’Leidhin and P. Murphy, “Preliminary glottal source modeling for pathologic voices”.  . . . . 237-240

K. Prikryl, “Modelling the creation of Czech vowels by means of  the vocal folds  model and 
the  models of vocal tracts”.  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241-244

Pathology detection

T. Li, Il-suh Bak, C. Jo, “The effect of normalization on parameters in discrimination of 
pathological voice using artificial neural network”.  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247-250

A. Van Hirtum, M. Guarino, A. Costa, P. Jans, K. Ghesquiere, J.-M. Aerts, P.L. Navarotto,
D.Berckmans, “Automatic detection of chronic pig coughing from continuous registration in 
field situations”.  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251-254

C.J. Moore, K. Manickam, S. Shalet, T. Willard, S. Jones, “Spectral entropy signature of 
speech perturbation in adult acquired growth hormone deficiency”.  . . . . . . . . . . . . . . . . . . . . . . 255-258

C. Maguire, P. de Chazal, R.B. Reilly, P.D. Lacy, “Identification of voice pathology using 
automated speech analysis”. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259-262

Voice analysis

T. Hirvonen, U.K. Laine, “Comparison of objective and subjective classification of unvoiced 
stop consonants in stop-vowel syllables”.  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265-268

J. Szaleniec, M. Modrzejewski, W. Wszolek, “Application of acoustic analysis of speech sig-
nal for evaluation of intubation-related damages of the speech organ”. . . . . . . . . . . . . . . . . . . . . 269-272

H. Kuwabara, “Analysis and evaluation of nasalized [g] consonant in continuous japanese”.  . . 273-276

F.R. Drepper, “Topologically equivalent reconstruction of instationary, voiced speech”.  . . . . . . . 277-280

M. Hagmüller, G. Kubin, “Poincaré sections for pitch mark determination in dysphonic 
speech”.  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281-284

Author index  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285-286



FOREWARD

On behalf of the organising committee, we would like to welcome all the participants to the 3rd International
Workshop on Models and Analysis of Vocal Emissions for Biomedical Applications, MAVEBA 2003, held
10-12 December 2003,  Firenze, Italy.
The workshop is organised every two years, and aims to stimulate contacts between specialists active in
research and industrial developments, in the area of voice analysis for biomedical applications. The
Workshop aims at offering the participants an interdisciplinary platform for presenting and discussing new
knowledge in the field of models and analysis of speech signals and images, both as far as adults and
children voices are concerned.
The scope of the Workshop includes all aspects of voice modelling and analysis, ranging from fundamental
research to all kinds of biomedical applications and related established and advanced technologies.
Some of the relevant topics are: linear and non-linear analysis and modelling of the normal and pathological
voice source, for parameter definition and quantification, analysis of pathological voices, for diagnostic and
classification purposes, enhancing voice quality during rehabilitation and after surgery, development of vocal
prostheses and devices for impaired. Moreover, protocols and reliable objective parameters are among the
Workshop topics. Strong focus of interest is in understanding the relationship between speech and
neurological dysfunction (e.g. epilepsy, autism, schizophrenia, stress etc.) and the interaction with hearing
impairment. Finally, singing voice analysis is also considered, with emphasis on pitch control for training
purposes.

This third edition of the Workshop has gained great interest from the international scientific community,
with more than 60 papers received, all of high scientific level, covering the most relevant fields of research
in voice analysis. Moreover, two plenary lectures and two special sessions exploit specific themes: infant
cry, singing voice, music and medicine, prosody.

We would like to thank the members of the organising committee and all the reviewers, who gave freely of
their time to assess the highly disparate work of the workshop, helping in improving the quality of the
papers.

We have also benefited from the efforts of the administrative staff within our University, office for Research
and International Relations, and the Department of Electronics and Telecommunications, that devoted a lot
of time and efforts to make this workshop a successful one. Special thanks to our University Orchestra and
Chorus for their generous participation.

Finally, our gratitude goes to the supporters and sponsors, who contribute much to the success of the
MAVEBA workshop.

Dott. Claudia Manfredi
Conference Chair

Prof. Piero Bruscaglioni
Conference Chair
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Abstract: Skilled clinicians are able to integrate lin-
guistic, paralinguistic, and non-linguistic cues in the 
assessment of mood disorders.  This project identified 
duration- and amplitude-based aspects of the speech 
signal that can be measured automatically by com-
puter and which provide paralinguistic information 
about the apparent affect of a speech sample.  A 
group of 40 experimental subjects produced 1584 
spoken renditions of sentences, in 3 conditions, unin-
structed, depressive, or manic.  An automatic speech 
recognition system extracted 10 paralinguistic pa-
rameter values from each of these spoken responses.  
Psychotherapists have a relatively uniform model of 
depressive and manic speech patterns, which shows 
up in distinct paralinguistic features of their speech 
when simulating these states.  Several features are 
significantly different in the three simulated emotional 
states and these features can be detected automati-
cally. 
Keywords: automatic, speech recognition, mood, affect.

I. INTRODUCTION 

Skilled clinicians are able to integrate linguistic and 
non-linguistic cues in the assessment of mood disorders. 
This ability is part of what makes a skilled clinical inter-
view the preferred method of assessment for mood disor-
ders. Among all the non-linguistic aspects of a patient’s 
behavior, non-linguistic aspects of speech may be the 
easiest to record and analyze. These paralinguistic aspects 
of the manner of speaking can be collected unobtrusively 
and analyzed objectively. Previous research has identified 
stable patterns of acoustic indicators of mood and emo-
tion [1-15]. Among many reported patterns, sad or de-
pressive speech tends to be quieter, slower, with longer 
pauses, lower in pitch and more monotonous than normal 
speech. 

This research project [16] identified certain duration- 
or amplitude-based aspects of the speech signal that can 
be measured completely automatically by computer and 
which provide paralinguistic information about the ap-
parent affect of a speech sample. Specifically, the project 
identified measurable physical differences in speech sig-
nals that can be used to estimate how depressed or elated 
a person would sound to a panel of experienced clini-
cians.

The purpose of the project was the development and 
evaluation of techniques that may contribute to the meas-
urement of affective states like depression. This project is 
an empirical study preliminary to building an integrated 
computerized instrument for administering structured 
interviews to patients, via the telephone, that can provide 
non-obtrusive, objective data that may improve assess-
ment accuracy and validity. The project created a corpus 
of elicited speech and developed an automatic analysis of 
the recordings. The experiment reported here accom-
plished two preliminary objectives: 
A. Replicate the reported relations between timing and 

amplitude of speech and perceived affect, for exam-
ple, by [9, 11], but using fully automatic means; 

B. Find and verify additional temporal manifestations of 
affect in speech signals. 

The project focused on answering three main questions: 
1) Which measurable paralinguistic characteristics of 

speech (e.g. response latency, speech rate, ampli-
tude) can be reliably related to the simulated mood 
of a speaker?  

2) Which of these characteristics can be derived auto-
matically from the acoustic signals of spoken re-
sponses to test questions? 

3) Which observed measures of paralinguistic vari-
ables show significant differences across speakers, 
and which show significant differences only within 
speakers? 

II. METHODOLOGY 

The data collection procedure followed a single ses-
sion experimental design, wherein each speaking subject 
took a seven-minute speaking test by telephone, three 
times in succession, under three different conditions: 
once without instruction, once instructed to speak as if 
severely depressed, and once instructed to speak as if 
they were extremely manic (the order of the second and 
third conditions was counterbalanced). The seven-minute 
speaking test is a “sample” form of the PhonePass SET-
10, a language test developed by Ordinate Corporation in 
California [17] to measure spoken English proficiency. 

The experiment compared acoustic variables extracted 
from the speech samples corresponding to the unin-
structed (or “normal”) renditions, to the same variables 
from the speech samples that the speaking subjects in-
tended to be simulations of depressive and manic speech. 

AUTOMATIC ANALYSIS OF VOCAL MANIFESTATIONS 
OF APPARENT MOOD OR AFFECT  

E. P. Rosenfeld1, D. W. Massaro2, J. Bernstein1
1Ordinate Corporation, Menlo Park, California, USA 

2Department of Psychology, University of California at Santa Cruz, USA
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Analysis of data from this experiment was intended to 
determine whether or not there were observable differ-
ences in the speech samples according to the speakers’ 
intentions.  

Subjects: The Speaking Subjects comprised 40 psycho-
therapists who were all native speakers of English, be-
tween the ages of 30 and 71; mean age was 53 years old. 
Of the 40 speaking subjects, 23 were women and 17 were 
men. Each speaking subject spent approximately 35 min-
utes of time in the experiment. 

Instrumentation: The PhonePass SET-10 Sample Form 
comprises a set of 32 items administered in a 7-minute 
telephone call. Each item presents a recorded prompt 
over the telephone that solicits a spoken response from 
the subject that is recorded via telephone. The items used 
in this experiment form part of a single test form that 
prompts a subject to speak 32 times. Items of five differ-
ent types are presented to the examinee: first, six one-
sentence readings, then eight elicited repetitions of sen-
tences, then eight opposite words, then eight short-answer 
questions, and, finally two open questions – each allow-
ing the subjects thirty seconds to deliver their response. 
Most items elicit one-sentence responses or one-word 
responses that are about 0.5 to 5 seconds in duration.  

Assuming that the average response length is six words 
and an average word has four phonemes, with 26 spoken 
responses measured per subject per condition, the data set 
potentially contains about 624 dependent measures per 
subject condition and more than 1800 dependent meas-
ures per speaking subject.  

Ten dependent variables were measured:  
TST:  total speaking time (milliseconds) 
TPT:  total pause time (milliseconds) 
TUT:  total utterance time (milliseconds) 
ROS:  rate of speech (phonemes/second)  
ART:  articulation rate (phonemes/second) 
LAT:  response latency (milliseconds) 
MPD:  mean pause duration (milliseconds) 
SDP:  segment duration probability (log probability) 
PDP:  pause duration probability (log probability) 
MaxSA: maximum speech amplitude (signal value) 

III. RESULTS

The results are presented numerically in Tables 1 and 
2.  Table 1 presents the data grouped across subjects, 
each cell showing the mean and standard deviation of 
each sample of 480 responses (12 selected responses x 40 
subjects) per condition as measured on each of the 10 
paralinguistic acoustic parameters under study. Table 2 
presents the data organized by within-subject, within-
item differences when the Speaker Subjects responded to 
the same item with two different intended moods. 

The data as presented in Table 1 represent a compari-
son of groups of Speaking Subjects according to their 
instructed intentions. Table 1 presents measures that de-

scribe the central tendency and dispersion of the paralin-
guistic parameters of the responses when these Speaking 
Subjects talked in three different moods, as these parame-
ters were automatically estimated by the speech recogni-
tion and signal processing internal to the PhonePass sys-
tem. 

The columns in Table 1 are ordered D – N – M (De-
pressed, Normal, Manic) in the expectation that the pa-
rameter values will generally be increasing or decreasing 
in that order. That is, from the literature, one would ex-
pect the Normal value of most of these parameters to be 
between the Depressed and the Manic value. This pre-
sumed ordering was observed for seven of the ten para-
linguistic parameters in this study.  

Table 2 presents the data in a way that is more relevant 
to the ultimate question: how well would one expect an 
automatic system to detect changes in a known speaker’s 
paralinguistic parameters under the instructions of this 
experiment. Table 2 presents paired differences. Each 
normal item response by each subject is a control on the 
measures for that item in the other two conditions. This 
way of treating the data should eliminate expected inter-
subject and inter-item variance, yielding smaller standard 
errors of the mean, while the mean differences are 
approximately equal to the differences in the means for 
the various moods. This expected reduction in variance 
should promote rejection of the null (no-difference) hy-
potheses. 

Table1:  
Mean, s.d. of Parameters for Intended Mood (N=480)
Param D (=Depressed) N (=Normal) M (=Manic) 

 mean s.d. mean s.d. mean s.d.
TST 2891.67 985.83 2556.67 787.10 2234.92 925.30

TPT 178.60 360.61 40.29 192.50 124.67 580.90

TUT 3070.27 1148.26 2596.96 836.97 2359.58 1276.64

ROS 9.72 1.97 11.37 1.68 13.06 2.72

ART 10.15 1.73 11.50 1.62 13.33 2.39

LAT 1360.21 759.0 656.79 287.60 533.58 498.38

MPD 20.12 41.24 4.57 20.43 12.51 59.16

SDP -5.23 0.39 -4.90 0.29 -5.05 0.27

PDP -2.63 0.93 -2.32 0.79 -2.20 0.82

MaxSA 6.62 4.24 9.96 4.74 15.35 8.23

Table 2: Within-Subject Within-Item Paired Differences 
Param D-N

(N = 375)
M-N

(N = 373) 
M-D

(N = 386) 

 mean s.d. mean s.d. mean s.d.

TST 344.80 595.62 332.44 730.24 655.80 838.19
TPT 141.07 399.59 56.94 413.48 76.14 517.90
TUT 485.87 809.41 275.50 989.47 731.94 1163.39
ROS -1.75 2.14 1.66 2.53 3.32 2.69
ART 1.43 1.85 1.79 2.22 3.15 2.26
LAT 672.96 697.75 136.59 465.24 806.27 739.19
MPD 15.38 44.77 6.34 54.71 8.88 67.12
SDP -0.34 0.43 -0.15 0.37 0.19 0.46
PDP -0.33 1.09 0.03 0.94 0.40 1.15

MaxSA 3.41 4.05 5.35 6.72 9.00 7.44
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To test the significance in the differences in the mean 
parameter values, as shown in Table 1, across the popula-
tion of speaking subjects and across the various sets of 12 
items measured per call, a t-test for two population means 
with variances unknown and unequal [18] was used. The 
results indicate that 29 of the 30 observed differences in 
means are significantly different from zero (t > 1.96, p = 
0.05), and even under the stricter criterion corrected for 
10 simultaneous variables (t > 2.81), 26 of the 30 t-tests 
are still significant (p < 0.0025). All four of the compari-
sons that fail the stricter significance test, TPT (M-D), 
MPD (M-N, M-D), and PDP (M-N), are based in part on 
the measures of pause time in the manic experimental 
condition.  

A simple and conservative test of the statistical sig-
nificance of the differences between intended normal, 
depressive and manic speaking on the 10 paralinguistic 
acoustic parameters is a sign test [19]. The sign test as-
sumes related samples, considered in pairs where mem-
bers of the pairs can be ranked. The sign test does not 
assume that the data under study carry more than ordinal 
information, and it does not assume a normal distribution. 
The differences in 28 of the 30 possible comparisons are 
statistically significant (z > 1.96, p = 0.05). Only the 
manic-normal differences for TPT and MPD fail to reject 
the null hypothesis of no difference. If a 10-variable cor-
rection is accepted, and the rejection region is divided by 
10 so that p < 0.0025 is the criterion for significance, the 
boundary of significance for the statistic increases from 
1.96 to 2.81.Under this stricter criterion and with a test 
that makes no assumptions about distribution shape, 28 of 
the 30 tests show the mean difference to be significantly 
different from zero. Note that differences with values of 
zero were not counted in the calculation of the sign test. 

A convenient measure of discriminability is “d-prime” 
(written d ). The parameter d  is a standardized difference 
between two means [20]. Table 3 displays the value of d

for depressed speech when this condition is to be dis-
criminated from normal speech. The d  is a normalized 
standard score. A d  value of 0.0 indicates that there is no 
information useful in discriminating the depressed speech 
samples from the background expectation of normal 
speech. Larger d  values indicate greater discriminability 
in a parameter and greater usefulness for automatic cate-

gorization of signals.  

IV. DISCUSSION

The data are generally consistent with an alternative 
hypothesis that psychotherapists have a relatively uni-
form model of depressive and manic speech patterns that 
do show up in their simulations and agree with the pat-
terns reported in the literature. Of the parameters (often 
vaguely specified in the literature) that seem to have an 
analog in the parameters of this experiment, the signifi-
cant observed orders are uniformly in accordance with 
published literature reviews, as is shown in Table 4. 

Many of the statistical tests show effects that are ex-
tremely unlikely under the null hypothesis, yet the single 
parameter d  values are not particularly large, which indi-
cates that a device that used any single one of these pa-
rameters to classify an unknown person could make a 
substantial number of errors. The d  values are generally 
greater for the within-speaker comparisons, which sup-
ports the intuitive and expected result that a device or a 
person would do better using paralinguistic information 
to discriminate among the moods of a known person than 
to identify the moods of an unknown person.  From a 
single voice recording by itself, a listener can presumably 
recognize a mood shift in a friend more reliably than that 
same listener could classify the mood of a stranger. 

All ten of the paralinguistic acoustic variables that 
were studied had statistically significant association with 
one or the other of the two moods (depressed or manic) 
that were intentionally simulated by the psychotherapists 
who served as speaking subjects; eight out of ten parame-
ters were significantly different in both moods from the 
uninstructed (normal) condition. Two variables failed the 
test of significance for the manic speech only in manic 
versus normal comparisons. 

When analyzed within subject and within item, both 
simulated moods are significantly different from the un-
instructed (normal) mood in nine of the ten parameters, 
instead of the eight of ten in the group comparison. The 
only failure of significance was in one manic versus nor-

Table 3: Values of d  for depressed vs. normal 
speech within- and across-subject groupings
Parameter d  (population d  (person-item) 
TST  0.376 0.819 
TPT  0.478 0.499 
TUT 0.477 0.849 
ROS  0.902 1.155 
ART  0.805 1.097 
LAT  1.226 1.365 
MPD  0.478 0.486 
SDP  0.962 1.120 
PDP  0.365 0.436 
MaxSA 0.744 1.192 

Table 4: Agreement of significant experimental results 
from literature reviews 
Parameter Significant 

Order
Scherer (1986) 
agrees

Murray & Arnott 
(1993) agree 

TST D > N > M yes yes 
TPT D > N > M no info no info 
TUT D > N > M yes yes 
ROS M > N > D yes yes 
ART M > N > D yes yes 
LAT D > N > M no info no info 
MPD D > N , D > M no info no info 
SDP N > M > D no info no info 
PDP M > N > D no info no info 
MaxSA M > N > D yes yes 
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mal comparison. 
Certain conditions of this experiment limit the scope of 

the conclusions. The foremost limitation concerns the use 
of psychotherapists as subjects. The variety of initial 
speaking patterns and courses of change over time that is 
found in real clinical populations is simply not found in 
the speech data from people simulating moods. Likewise, 
there is no possibility to compare the speech data with 
concurrent scores on cognitive, emotional, physiological, 
or motor-performance tests. Thus, none of the hypotheses 
about the cognitive or psychomotoric nature of mood 
disorders as discussed by [7] or by [14] can be tested with 
this new data. Finally, an important limitation is that 
voice fundamental frequency (F0) was not measured and 
therefore not analyzed. 

V. CONCLUSION

Psychotherapists can imitate (without any instruction or 
guidance) some of the vocal patterns of depressed and 
manic people in a way that is relatively consistent over 
the population of therapists and is also consistent with the 
paralinguistic changes reported in the literature on speech 
in emotion and mood disorders.  For many traditional 
paralinguistic parameters, the ordering of {depressed, 
normal, manic} is monotonic increasing or decreasing.  
Generally, for the psychotherapists simulating mood or 
pathology, the depressed direction from normal is more 
reliably and distinguishably produced. 

The differences in paralinguistic parameters between 
groups of people when speaking normally and when 
simulating moods are very significant, but these differ-
ences may be relatively difficult to use for mood identifi-
cation from any single one of the duration- or amplitude-
based parameters that were studied in this project. 

If these results can be replicated with an appropriate 
clinical population, then this study provides a system and 
the core of an algorithm for rating the paralinguistic evi-
dence of mood disorders by telephone, automatically, on 
demand. Note that to be useful or interesting, the system 
does not have to be highly accurate, it may suffice that 
the system performs as well as a skilled therapist, and 
only on that aspect of the therapist’s judgment that relates 
to manner of speaking. 
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Abstract: We have developed software based on the 
Stevens landmark theory to extract features in 
utterances in and adjacent to voiced regions.  We then 
apply two statistical methods, closest-match (CM) and 
principal components analysis (PCA), to these 
features to classify utterances according to their 
emotional content.  Using a subset of samples from the 
Actual Stress portion of the SUSAS database as a 
reference set, we automatically classify the emotional 
state of other samples with 75% accuracy, using CM 
either alone or with PCA and CM together.  The 
accuracy apparently does not depend strongly on 
measurement errors or other small details of the 
present data, giving confidence that the results will be 
applicable to other data. 

Keywords :  automatic detection, emotion, speech, 
stress 

I. INTRODUCTION 

 If computers are to interact with humans in a natural 
way, they will need a speech interface that recognizes 
emotional as well as linguistic content of speech.  Scherer 
et al [1998] argue that modeling of speaker states and 
emotions can improve the quality of automatic speech 
recognition, speech synthesis, and speaker verification 
and that such emotion effects are relatively robust to 
changes in the phonetic context.  Imagine your computer 
responding with sympathy when you are sad, explaining 
things more simply when you are frustrated, or speaking 
calmly to you when you are stressed.   
 Speech scientists have been able to identify a number 
of acoustic speech parameters that correlate with the 
speaker's emotional state.  Johnstone & Scherer [6] report 
that analysis of glottal opening and closing characteristics 
proved useful in interpreting the emotion-dependent 
characteristics of the acoustic waveform.  Quast [10] 
identifies a number of parameters that appear to carry 
crucial information, e.g. location of the sentence foci, 
intensity values, relation of the fundamental frequencies 
(F0) at the focus and ends of the sentence, speech rate, 
and spectral histogram.   
 There have been few attempts and limited success at 
actually recognizing and classifying affect in speech.  
Roy and Pentland [11] used six acoustic measurements 
(F0 mean and variance, Energy variance and derivative, 
open quotient, and spectral tilt) to classify spoken 

sentences as approving or disapproving.  They achieved 
65% to 85% classification accuracy for speaker 
dependent, text independent data.  Their results suggest 
that energy and F0 statistics may be effectively used for 
automatic affect classification.  Stolcke et al. [14] used 
prosodic cues as part of a statistical approach to model 
dialogue acts in conversational speech.  They achieved a 
71% accuracy in labeling act-like units such as statement, 
question, agreement, disagreement, and apology. 
Dellaert et al. [1] applied several statistical pattern 
recognition techniques to classify utterances according to 
their emotional content.  For the purposes of 
classification they used only pitch information extracted 
from the utterances.  They also introduced a spline 
approximation of the pitch contour to extract features. 
Their best method resulted in a 20.5% error rate in 
classifying four emotions: happiness, sadness, anger, fear. 
Human performance at the same task resulted in an 18% 
error rate. 
 We have had success in applying landmark detection 
coupled with Principal Component Analysis in detecting 
significant differences in the vocalizations of typically-
developing and at-risk infants [2, 3, 4] and in detecting 
fatigue in adult speech [8].  Here, they apply similar 
techniques to classifying stress in speech. 

II. THE DATA

 We are using the Actual Speech Under Stress portion 
of the SUSAS (Speech Under Simulated and Actual 
Stress) database [5].  A common highly confusable 
vocabulary set of 35 aircraft communication words make 
up the database. All speech tokens were sampled using a 
16-bit A/D converter at a sample rate of 8kHz.  We are 
using samples recorded under four conditions: neutral - 
Neutral Speech, medst - low Dual-Tracking task stress, 
hist - high Dual-Tracking task stress, and scream - 
Scream Machine Roller Coaster stress.  We have 
restricted this study to the four male speakers: m1, m2, 
m4, who have a General USA Accent; and m3: who has a 
Southern USA Accent.   
 We formed a base of features for classification using 
only the first sample of each of the 35 words for each 
speaker in each emotional state whenever such samples 
were present.  Table 1 shows the number of words for 
each speaker/emotional-state used to create the base. 

AUTOMATIC DETECTION OF STRESS IN SPEECH 

H. J. Fell1, J. MacAuslan 2 
1College of Computer and Information Science, Northeastern University, MA, USA 

2Speech Technology and Applied Research, Lexington, MA USA 
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Table 1: Number of words used to
create the base for classification

neutral medst hist scream
m1 35 35 35 29
m2 34 35 35 29
m3 34 35 35 23
m4 35 35 35 23

 We then created test cases for classification using the 
second sample of each of the 35 words for each speaker 
in each emotional state whenever such samples were 
present.  Table 2 shows the number of words for each 
speaker/emotional-state test case. 

Table 2: Number of words per sample
for the 16 test cases

neutral medst hist scream
m1 35 35 35 15
m2 8 35 35 24
m3 34 35 34 15
m4 35 35 35 2

III. METHODOLOGY

 We listened to many words in the SUSAS Actual 
Stress database before attempting to perform automatic 
classification.  One subjective impression was that the 
vowels were longer, relative to word duration, in the 
medst and hist words than in the corresponding neutral 
words.  Another impression was that the consonants were 
clipped, shorter and less structured than their neutral 
correspondents.  To model these impressions, we needed 
to extract more than pitch information. 
 Using software that we have developed [2, 3, 4] based 
on the Stevens landmark detection theory [7, 13] for the 
recognition of phonetic features in speech, we extracted 
measurements on twenty-five features from the ~35-word 
sets of speech samples.  These served to summarize the 
speaker, state, and sample. 

From Syllables: 
Timing: 
mean duration, mean duration of voicing, mean voiced 
fraction (i.e. mean of voiced duration/total duration), 
maximum and mean voice onset time (VOT), maximum 
and mean offset time, mean rate (i.e. mean of 1/duration), 
mean voiced rate (i.e. mean of 1/voiced duration). 
Pitch (F0):
median and mean F0, fraction of syllables in which the 
pitch rises (falls) during the first half (second half) of the 
syllable.  
Structure:
mean, median, and maximum number of landmarks per 
syllable. 

From Words: 
Pitch: 
root mean square standard deviation of F0, relative range 
of pitch (see below), 10th,  50th, and 90th percentile value 
of the relative range, 10th,  50th, and 90th percentile value 
(over all the words) of the "central" F0 value, i.e., the 
value in the middle of the word. 

 The relative range of pitch: defined as the maximum 
(over each word) of the 90th percentile values of the pitch, 
minus the minimum of the 10th percentile values, divided 
by the median value (over the word).  Thus, it is a non-
negative number, and typically less than 1.  We divide by 
the median F0 so that the results are not strongly skewed 
for irrelevant reasons, such as a generally lower F0 for 
men than women.      
 For each state, we normalized the four speakers’ data 
by comparing their values for each of these features to the 
mean and standard deviation σ of all four in that state. 
Specifically, we subtracted the mean and then divided by 
a certain variability measure.  This measure consists of σ
and an a priori estimate of measurement error, combined 
in RSS (root sum-of-squares) fashion.  Thus, for example, 
the squared measure for an F0-related feature consists of 
the sum of the observed four-subject value of that 
feature’s variance σ2 plus (5 Hz)2, because 5 Hz 
represents an estimate of the irreducible measurement 
uncertainty for F0.  Such irreducible measurement 
uncertainties depend primarily on the recording 
environment or computational details (for F0, at least). 
 Observe that this normalization process yields feature 
values of zero mean and approximately unit variance for 
the base cases.  As 25-element vectors, then, the 
normalized base-case summaries have norm (Euclidean 
length) ~ 25½.

When comparing one speaker/state/sample summary 
to another, we simply evaluate the RSS of the vector of 
differences in feature values.  By construction, this also 
produces values ~ 25½ to 50½ when comparing two base 
cases, and we might anticipate similar or even smaller 
results when comparing two samples from the same 
speaker and state.  In fact, this was routinely observed. 

To identify a state from a test set of 
speaker/state/sample, we hypothesize a state, normalize 
the corresponding summary using the mean and 
variability parameters for that state, and compare to each 
of the base cases of the state.  Across all speakers and 
states defining the base, 16 summaries in all, the lowest 
RSS difference identifies the closest-matching, or CM, 
state (and, in principle, speaker). 
An important refinement is available.  Of the 16 sub-
ject/state normalized feature vectors that define the base, 
some linear combinations may be redundant.  Eliminating 
these would improve the robustness of the results, 
because the redundant components would otherwise tend 
to model inappropriately small details of the data, i.e., 
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“noise”.  Principal Components Analysis (PCA: 
equivalently, singular value decomposition, SVD) 
determines the extent to which this occurs among the set 
of vectors.  In this case, the first three PC’s accounted for 
99% of the total variance, suggesting both a high degree 
of linear dependence and a high degree of linear 
predictability. 

IV. SOFTWARE AND ALGORITHMS

 Our landmark detector is based on Stevens' acoustic 
model of speech production [13]. Central to this theory 
are landmarks, points of abrupt spectral change in an 
utterance around which listeners extract information 
about the underlying distinctive features. They mark 
perceptual foci and articulatory targets.  Our program 
detects three types of landmarks:  

glottis (+g, -g): marks the time when the vocal folds 
start  and stop vibrating;  

sonorant (+s, -s): marks sonorant consonantal 
closures and releases; 

burst (+b, -b): aspiration/frication ends due to stop 
closures. 

Our analysis is based on a low-resolution 
spectrogram.  The SUSAS signals are sampled at 8 kHz 
and analyzed into a small number, nominally 32, of 
separate, frequency intervals of ~256 Hz each.  An 8 kHz 
rate provides information only up to 4 kHz, but this is 
sufficiently high to include at least 3-4 formants for an 
adult and to show the distinction between voicing and 
other speech sounds: fricatives, stop releases, bursts, etc. 
(See Fig. 1.)   

Figure 1: Waveform and Landmarks (top)
and Spectrogram (bottom)of “eighty” as
spoken by male 2 in high stress
conditions.

To locate the landmarks, spectral intervals are 
grouped into six broad bands.  An energy waveform is 

constructed in each of the six bands, the time derivative 
of the energy is computed, and peaks in the derivative are 
detected.  These peaks thus represent times of abrupt 
spectral change in the six bands. Energy in bands 2 (1200 
- 2500 Hz.) and 3 (1800 - 3500 Hz), e.g., provides 
evidence of voicing or, in some cases, of bursts.  The 
distinction between these is readily made in the time 
domain (voicing persists much longer than bursts) as well 
as by appeal to information in the other spectral bands: 
voicing provides a power spectrum that decays with 
frequency approximately as 1/frequency2, whereas most 
other speech sounds have flatter spectra. 

V. RESULTS AND DISCUSSION

 Our small study with sixteen test cases, as seen in 
Table 3, resulted in a 25% error rate.  

Table 3: Results of the CM (closest-
match) comparison. Boldfaced values represent 
correct identification of speaker state.  *The listed states 
had nearly equally small distances. 

neutral medst hist scream

m1 neutral neutral neutral scream

m2 neutral medst neutral scream

m3 neutral hist*
neutral

hist scream

m4 neutral medst hist scream

 To test the stability of the results, we performed a 
Principal Components Analysis (PCA, or, equivalently, 
singular value decomposition, SVD [9]).  This permitted 
us to discard several of the principal components (PCs) 
that described only noise-level variations in the data. 
Retaining eight of the original 16 PCs, accounting for 
95% of the variance, produced only small variations in 
the results, and no overall degradation in accuracy. 

Table 4: Results of the PCA/CM
comparison. Boldfaced values represent correct 
identification of speaker state.  *The listed states had 
nearly equally small distances. 

neutral medst hist scream

m1 neutral neutral neutral
hist*

scream

m2 neutral medst neutral scream

m3 neutral hist*
neutral

hist scream

m4 neutral
hist*

medst hist scream
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 Inspection of the Tables reveals that the classification 
has no errors for the neutral or scream states.  
Furthermore, most errors occurring in the other states are 
manifest as neutral, that is, the closest-match algorithm 
selects the “conservative” interpretation that the data 
represent no departure from the neutral state. 

VII. CONCLUSION

We have shown that a simple knowledge-based analysis 
of American English speech and some measures of F0 can 
classify a speaker’s emotional state among four choices 
moderately well.  We achieve 75% accuracy when 
comparing new data from a speaker that is already 
represented among the base cases.  PCA indicates that 
this result does not depend sensitively on small details 
such as noise level.  We are currently investigating the 
performance when the speaker is not so represented. 
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Abstract: When reviewing his clinical experience in 
treating suicidal patients, one of the authors observed 
that successful predictions of suicidality were often 
based on the patient’s voice independent of content. In 
this study we investigated the discriminating power of 
an excitation-based speech parameter, the glottal flow 
spectrum. There were two sets of subjects, male and 
female. Each set consisted of 10 high-risk near-term 
suicidal patients, 10 major depressed patients, and 10 
non-depressed control subjects. As a result of two 
sample statistical analyses, the slope of the glottal flow 
spectrum, was a significant discriminator in five of six 
comparisons (p<0.05). A maximum likelihood 
classifier, developed by combining the a posteriori
probabilities of two features, yielded correct 
classification scores between 60 and 95%. 
Keywords: Speech, glottal flow spectrum, suicide, 
depression, classification 

I. INTRODUCTION

 Identification of individuals at imminent suicidal risk 
is often one of the most important judgments that 
clinicians must make. This task requires gathering and 
weighing of a variety of information and data from 
numerous sources by experienced clinicians [1]. These 
methods help in categorizing individual patients as “high 
risk”, but they are not sufficient to determine if a patient 
is at imminent risk. Stephen and Marilyn Silverman 
describe suicidal speech as similar to depressed speech 
but exhibiting significant perceptual changes in its 
qualities when a patient becomes near-term suicidal. The 
exhibition of these qualities was often a decisive factor in 
alerting the clinicians to the need to take preventative 
action [2]. These clinical findings together with the 
literature on the clinical importance of a patient’s voice in 
psychiatry led to the hypothesis that near-term suicidality 
may be associated with changes in speech production and 
articulation that differ from non-suicidal persons. Our 
own studies are showing this [3][4]. 
 Many studies have been done using the fundamental 
frequency. However, the fundamental frequency provides 
information only about the duration of the glottal cycle. 

Besides fundamental frequency, glottal flow waveform was 
also reported to be altered as a result of excessive tension 
or lack of coordination in the laryngeal musculature under 
emotional stress [5].  Investigation of this phenomenon 
showed an increase in the amount of high frequency energy 
in the glottal pulses under emotional stress. In this paper, 
we explore the significance of the slope of the glottal flow 
spectrum (spectral tilt) as an indicator of near-term suicidal 
risk.  

II. DATABASE FORMULATION

 Glottal flow spectral analyses were performed on sets 
of audio recordings for males and females. Each set 
contained 10 near-term suicidal patients, 10 depressed 
patients, and 10 non-depressed control subjects collected 
from existing databases. All the patients used in this 
research were white Caucasians between the ages of 25 and 
65.  Because of the inability to record psychiatric speech in 
controlled settings, all of the speech samples were recorded 
during real-life situations (i.e., therapy sessions, suicide 
notes left on tapes, etc with various tape recorders at 
various recording environments). A high-risk, near-term 
suicidal patient was defined as one who has committed 
suicide or attempted suicide and failed within minutes to 
weeks from the time of their voice recordings. The audio 
recordings of the depressed and control groups were 
extracted from the database of an ongoing study in the 
Vanderbilt University Department of Psychiatry. The 
control group was comprised of depressed individuals who, 
after receiving cognitive therapy or pharmacotherapy, were 
judged to be no longer depressed and not in need of further 
treatment. The selected non-depressed control subjects met 
the following criteria: 1) a Hamilton rating scale (17 item 
version) for a depression score of 7 or less [6]; 2) a Beck 
depression score of 7 or less [7]. The depressed patients 
met the following criteria: 1) major depressive disorder as 
defined by the research diagnostic criteria [8]; 2) a Beck 
depression score of 20 or greater; 3) a Hamilton rating 
scale for depression score 14 or greater. 
 All of the selected audio recordings were digitized 
using a sixteen-bit analog to digital converter. The 
sampling rate was 10 KHz, with an anti-aliasing filter (i.e., 
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5KHz low-pass) precisely matched to the sampling rate. 
The digitized speech waveforms were then imported into 
a MicroSound Editor where silence pauses exceeding 0.5 
seconds were removed to obtain a record of continuous 
speech. Thirty seconds of continuous speech from each 
subject were stored for analyses. 

III. METHODS

A.  Glottal Spectral Slope Feature Extraction 

 Vocal tract effects were removed from the speech 
spectrum while estimating glottal flow spectrum. It was 
assumed that the frequency response of the vocal tract 
shapes the speech spectrum for different vowels and 
glottal flow spectrum stays the same for all vowels. 
Therefore, the glottal flow spectrum can be estimated if 
energy normalized frames from voiced speech spectra are 
averaged to remove the effects of vocal tract shaping. The 
averaged vocal tract response will have an all pass 
characteristics if a wide variety of vowel spectra are used, 
and the average energy normalized frames will yield the 
glottal flow spectrum. This approach provides a 
representation that reflects the properties of glottal flow 
waveform. 

A1.  Estimation of Glottal Spectrum 
a) The patient speech is broken into segments 

containing 256 samples.  
b) Voiced and unvoiced speech detection is 

performed on each segment. However, only 
voiced segments are retained for analysis. The 
method used is based on wavelets and developed 
by Ozdas [4]. 

c) The periodogram for each voiced segment is 
calculated using the discrete Fourier transform. 

d) Each periodogram is normalized by its energy. 
e) All normalized periodograms are then averaged to 

remove the effects of varying vocal tract 
response.  

f) The average energy of all voiced segments is then 
used to scale the average normalized 
periodogram back to its original amplitude. This 
is the glottal flow spectrum estimate. 

A2 Estimation of Glottal Spectral Slope 
 The spectral slope is calculated using a least squares 
line fit on a log-log scale is performed over 300-3000 Hz 
frequency band of the glottal flow spectrum. The slope 
given by the least square error approximation gives the 
glottal spectral slope for each patient. Fig. 1 shows an 
example of the estimation procedure. 

Fig. 1: Glottal Flow Spectrum and estimation of slope 

B. Comparative Statistical Analyses and Classification 

B1. Statistical Tests 
 Two-sample (i.e., control-depressed, control-suicidal, 
and depressed-suicidal) t-tests were performed separately 
on glottal spectral slope estimates to determine any 
statistically significant differences in means [9]. 

B2. Maximum Likelihood Classifier 
In order to evaluate the discriminating power of the 

slope among groups, a Maximum Likelihood (ML) 
classifier was developed for each parameter. The ML 
classifier employs the Probability Density Function (PDF) 
of each class to make a decision as to which class PDF 
results in the closest match for a test data sample. The 
PDFs of the class distributions were assumed to be 
unimodal Gaussian and were generated by using the means 
and variances estimated from the training samples. Given 
the trained class model, classification of the test samples 
was accomplished according to Bayes' decision rule, where 
a test subject was assigned to the class for which it had the 
maximum a posteriori probability for its set of 
observations.  

Ideally, this procedure is conducted by splitting 
the total data set into a training set and a test set. Because 
of the limited number of patients in this case, 
Lachenbruch's holdout procedure was employed [10]. This 
procedure is very useful for small data class sizes because 
it makes it possible to use the same subject for both training 
and testing rather than using only half of the data for each 
part.  
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IV. RESULTS

A. Magnitude of Glottal Slopes 

The estimated magnitudes of the slopes of the glottal flow 
spectra for each subject are given in Figs. 2 and 3. 

Fig. 2: Magnitude of Glottal Slopes for Males 

Fig. 3: Magnitude of Glottal Slopes for Females 

Notice that the controls have the highest values and the 
depressed subjects the lowest values. 

B1.  Statistical Test
 The p-values for pair-wise comparison of the means 
are shown in Table 1.  

Table 1. P-Values for Mean Comparisons 
of Spectral Slope Estimates 

P-Values Female Male 

Control/Depressed 0.0000 0.0000 
Depressed/Suicidal 0.0005 0.0035 
Control/Suicidal 0.1156 0.0266 

The means of the groups of spectral slope values are 
significantly different ( p < 0.05) for five of the six 
comparisons. The only comparison that is not different is 
the one between control and suicidal females. 

B2.  Maximum Likelihood Classifier 
 The ML classification results for glottal flow spectral 
slope are presented in Table 2.  

Table 2. ML Pairwise Classification 
Results (%) For Spectral Slope Estimates 

% Classification Female Male 

Control/Depressed 95 90 
Depressed/Suicidal 85 75 
Control/Suicidal 60 60 

The ML classifier yielded overall classification scores 
between 60% and 95%. The highest between depressed and 
control classes and the lowest between suicide and control 
classes. This was consistent in the male and female 
populations. 

V. DISCUSSION AND CONCLUSION

 Analyses of glottal spectral slope measurements 
indicated that both near-term suicidal and depressed 
patients exhibit significantly higher energies in the upper 
frequency bands of the glottal flow spectrum compared to 
healthy controls. These shifts are significantly different 
among most of the comparisons. The spectral content of the 
glottal spectra is more similar between controls and 
suicidal subjects while those for depressed subjects have a 
broader bandwidth. In addition it is possible to use the 
spectral slope to classify subjects as belonging to one of 
three groups. Evidence for similar energy shifts in long-
term energy spectra during depression and near-term 
suicidal states have been reported by various researchers 
[11].  Most of the studies that investigated this 
phenomenon have revealed that the speech of patients who 
suffer from major depressive illness contains more energy 
at higher frequency bands, which was shifted toward lower 
frequencies after treatment. Here, it is important to note 
that it is not possible to collect speech samples from 
suicidal persons shortly before their suicide attempts in a 
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systematic manner. Therefore expanding the database 
requires a considerable amount of time.  
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Abstract: This paper proposes and evaluates a new 
direct speech transform method with waveforms from 
laryngectomee speech to normal speech. Most 
conventional speech recognition systems and speech 
processing systems are not able to treat laryngectomee 
speech with satisfactory results. One of the major 
causes is difficulty preparing corpora. It is very hard 
to record a large amount of clear and intelligible 
utterance data because the acoustical quality depends 
strongly on the individual status of such people. Our 
proposed method focuses on the acoustic 
characteristics of speech waveform of laryngectomee 
people and transforms such characteristics directly 
into normal speech. The proposed method is able to 
deal with esophageal and alaryngeal speech in the 
same algorithm. The method is realized by learning 
transform rules that have acoustic correspondences 
between laryngectomee and normal speech. Results of 
several fundamental experiments indicate a promising 
performance for real transform. 
Keywords :  Esophageal speech, Alaryngeal speech, 
Speech transform, Transform rule, Acoustic 
characteristics of speech 

I INTRODUCTION

Speech is a perfect medium and the most common for 
human-to-human information exchange because it is able 
to be used without hands or other tools, being a 
fundamental contributor to ergonomic multi-modality. 
Much research have been developed to realize such 
advantages for human-machine interaction. Many 
applications are produced and they are recently 
contributing to human life. 

On the other hand, many people who are unable to use 
their larynxes are not able to benefit from such advances 
in technology although such assistance is expected. Both 
esophageal and alaryngeal speech, which laryngectomee 
people practice to enable conversation, are 
understandable and enable adequate communication. 
However, conventional speech processing systems are not 
able to accept them as inputs because almost all current 
systems deal with only normal speech. Many intelligible 
utterances spoken by normal people have to be prepared 
as learning data to construct useful acoustic models for 
the systems. It is easy to find a lot of corpora valuable in 
both quality and quantity in many languages. However, 
there are not many resources of laryngectomee or other 
disordered speech because it is very difficult to sample a 

number of intelligible and clear utterances. One of the 
major causes is dependence on individual status of speech
Thus it is not easy to obtain a high acoustic quality of 
corpora.

Fig.1 Processing of the proposed method 

We focus on laryngectomee speech waveforms 
themselves to transform them into normal speech. Many 
studies have attempted to transform laryngectomee 
speech to normal speech, for example: re-synthesizing the 
fundamental frequency or formant of normal speech[1], 
or by utilizing a codebook[2]. We propose a radically 
different speech transform approach which handles only 
acoustic characteristics. Fig.1 shows the processing 
stages of our method. The proposed method is realized by 
dealing with only the correspondence in acoustic 
characteristics of speech waveforms. Our basic 
conception is based on our belief that laryngectomee 
utterances contain acoustic characteristics although these 
are inarticulate and quite different from normal speech 
waveforms. Thus acoustic common and different parts 
extracted by comparing with two utterances within the 
same speech side have correspondences of meaning 
between two different types of speech. We generate 
transform rules and register them in a translation 
dictionary. The rules also have the location information 
of acquired parts for speech synthesis on time-domain. 
Deciding the correspondence of meaning between two 
speech sides is the unique condition necessary to realize 
our method.  

In a transform phase, when an unknown utterance of 
laryngectomee speech is applied to be transformed, the 
system compares this sentence with the acoustic 
information of all rules within the speech side. Then 
several matched rules are utilized and referred to their 
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Speech synthesis by  
concatenation of  

stored speech waveforms

Normal speech

Laryngectomee speech
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corresponding parts of the normal speech side. Finally, 
we obtain roughly synthesized normal speech utterance 
by simply concatenating several suitable parts of rules in 
the normal speech side according to the information of 
location. 

The boundaries of word, syllable, or phoneme are not 
important for our method because we acquire only 
acoustic common and different parts as transform 
knowledge by comparing speech utterances. 

We evaluate effectiveness of the transform rules 
through fundamental experiments and offer discussion on 
behaviors of the system. 

II. LARYNGECTOMEE SPEECH

Laryngectomee people try to acquire esophageal or 
alaryngeal speech as second speech to enable them to 
once again communicate effectively in society. The 
characteristics of these types of speech are explained in 
this section. 

2.1 Esophageal speech 

Characteristics of esophageal speech mainly depend on 
difference of sound source mechanism. Several 
remarkable features are as follows: lower fundamental 
frequency than normal speech, including a lot of noise 
and lower volume[3]. Moreover, differences on prosody 
and spectral characteristics of speech are also reported[4]. 

2.2 Aralyngeal speech 

Aralyngeal speech has an unnatural quality and is 
significantly less intelligible than normal speech. The 
utterances spoken using artificial larynx, are not able to 
contain any accent and intonation despite the speaker’s 
intention. The cause is that this device is only able to 
vibrate fixed impulse source. Therefore, it is impossible 
to express their emotion or intention with speech.  

2.3 Speech recognition for laryngectomee speech 

We need to reveal the actual performance of usual 
speech recognition for laryngectomee speech. We utilized 
Julius[5] as a speech recognition tool. The acoustic and 
language models in the system were constructed by the 
learning of normal speech utterances. Table 1 explains 
the result of recognition performance. It is very clear that 
the system is not able to treat laryngectomee speech 
without rebuilding the acoustic model of many 
esophageal or alaryngeal speech utterances.  

Table 1  Results of speech recognition. 

Type of  Speech Number of 
Utterances 

Accuracy of 
correct

words[%] 
Normal Speech 80 65.82% 

Alaryngeal Speech 119 29.61% 
Esophageal Speech 107 24.32% 

III. SPEECH PROCESSING

3.1 Speech data and spectral characteristics 

Various acoustic parameters specific to disordered 
speech have been developed and applied to many 
studies[6]. One such study has succeeded to show 
acoustic differences by a clustering method using these 
values between normal and disordered female voices[7]. 
However, we have focused on results of comparison 
experiments using only spectral analysis [4]. 

We recorded utterance data with 16bit and 48kHz 
sampling rate, and downsampled to 16kHz. These data 
were spoken by three people whose speech is normal, 
esophageal and alaryngeal, respectively. Table 2 shows 
parameters adopted for speech processing, and  
Table 3 shows these speaker’s characteristics. In this 
report, LPC Cepstrum coefficients were chosen as 
spectral parameter, because we focused on frequency 
characteristics of speech and could obtain better results 
than other representations of speech characteristics[8]. 

Table 2  Parameters for speech processing. 

Size of analysis frame 30msec
Frame cycle 15msec
Speech window Hamming Window
AR Order 14
Cepstrum Order 20

Table 3  Information of speakers. 

Type of Speech Age/Gender Speaker’s feature
Normal Speech 24/male Student 

Alaryngeal
Speech 70/male Operation in 1990

Esophageal 
Speech 65/male Operation in 1994

3.2 Searching for the start point of parts between 
utterances 

When speech samples were being compared, we had to 
consider how to normalize the elasticity on time-domain. 
We meditated upon suitable methods that would be able 
to give a result similar to dynamic programming[9] to 
execute time-domain normalization. We adopted a 
method to investigate the difference between two 
characteristic vectors of speech samples for determining 
common and different acoustic parts. We also adopted the 
Least-Squares Distance Method for the calculation of the 
similarity between these vectors.  

Two sequences of characteristic vectors named “test 
vector” and “reference vector” are prepared. The “test 
vector” is picked out from the test speech by a window 
that has definite length. At the time, the “reference 
vector” is also prepared from the reference speech. A 
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distance value is calculated by comparing the present 
“test vector” and a portion of the “reference vector". 
Then, we repeat the calculation between the current “test 
vector” and all portions of the “reference vector" that are 
picked out and shifted in each moment with constant 
interval on time-domain. When a portion of the 
“reference vector” reaches the end of the whole reference 
vector, a sequence of distance values is obtained as a 
result. The procedure of comparing two vectors is shown 
in Fig.2. Next, the new “test vector” is picked out by the 
constant interval, then the calculation mentioned above is 
repeated until the end of the “test vector”. Finally, we can 
get several distance curves results between two speech 
samples. 

Fig.2 Comparison of vector sequences. 

Fig.3 shows an example of the difference between two 
utterances. This applied speech sample is spoken by the 
same normal speaker and the contents of the utterances 
are the same. The horizontal axis shows the shift number 
of reference vector on time-domain and the vertical axis 
shows the shift number of test vector, i.e., the portion of 
test speech. In the figures, a curve in the lowest location 
has been drawn by comparing the head of the test speech 
and whole reference speech. If a distance value in a 
distance curve is obviously lower than other distance 
values, it means that the two vectors have much acoustic 
similarity.

Fig.3 Difference of utterances:”airmail.” 

As shown in Fig.3, when the test and reference speech 
have the same content, the minimum distance values are 
found sequentially in distance curves. According to these 
results, if there is a position of the obviously smallest 
distance point in a distance curve, that point should be 
regarded as a frame in the “common part” by evaluating 
the point by a decision method in our previous 
research[8]. Moreover, if these points sequentially appear 
among several distance curves, they will be considered a 
common part. At the time, there is a possibility that the 
part corresponds to several semantic segments, longer 
than a phoneme and a syllable. 

IV. GENERATION AND APPLICATION OF TRANSFORM 
RULES

4.1 Acquisition of transform rules 

Acquired common and different parts are applied to 
determine the rule elements needed to generate 
translation rules. At the time, there are three cases of 
sentence structure as the “rule types”. If two compared 
utterances were almost matching or did not match at all, 
several common or different parts are acquired, 
respectively. And the other case is that these utterances 
have both parts at the same time. Combining sets of 
common parts of both normal and laryngectomee speech 
become elements of the transform rules for rule 
generation. The set of common parts extracted from the 
laryngectomee speech, which have a correspondence of 
meaning with a set of common parts in normal speech, 
are kept. The sets of different parts become elements of 
the transform rules as well. 

Finally, these transform rules are generated by 
completing all elements as below. It is very important 
that the rules are acquired if the types of sentences in both 
speech sides are the same. When the types are different, it 
is impossible to obtain the transform rules and register 
them in the rule dictionary because we are not able to 
decide the correspondence between two speech sides 
uniquely. Information that a transform rule has are as 
follows: 

rule types as mentioned above 
index number of an utterance in both speech sides 
sets of start and end point of each common and 
different parts 

4.2 Transform and speech synthesis 

When an unknown utterance of a laryngectomee 
person is applied to be transformed, acoustic information 
of acquired parts in the transform rules are compared in 
turn with the unknown speech, and several matched rules 
become the candidates to transform. The inputted 
utterance should be reproduced by a combination of 
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several candidates of rules. Then, the corresponding parts 
of the normal speech in candidate rules are referred to 
obtain transformed speech. Although the final 
synthesized normal speech may be produced roughly, 
speech can directly be concatenated by several suitable 
parts of rules in the normal speech side using the location 
information on time domain in the rules. 

Table 4 Condition for experiments. 

Frame length of test vector 120msec 
Frame rate of both vectors 60msec 

Margin of time delay ±180ms, ±120ms 

V. RULE ACQUISITION EXPERIMENTS 

All data in experiments are achieved through several 
speech processes as explained in 3.1. We applied 80 
utterances of each speaker. The system is prepared with 
the same parameters throughout the experiments between 
both esophageal or alaryngeal and normal speech to 
evaluate the generality of the system. The conditions 
shown in Table 4 are also adopted in these experiments. 
The rule dictionary has no rule or initial information at 
the beginning of learning.  

We evaluate that the system could obtain a number of 
useful transform rules created by only the calculation of 
acoustic similarity. Moreover, location of parts on time-
domain is also evaluated because this characteristic 
expresses the accuracy of correspondence of parts to 
those in another speech side. We allow a margin for parts 
appearing in time domain, ±180ms and ±120ms to 
consider for individual uttering differences. When 
corresponding parts between two speech sides in a rule 
appear in appropriate location on time-domain with 
suitable length, the rule included these parts is regarded 
as a correct rule because the correspondences are able to 
be decided uniquely. Table 5 shows a number of acquired 
rules and those that have appropriate correspondence.  

Table 5 Comparison of correspondences of acquired rules.  

Speech 
Data

Num. 
of

Data

Num. of 
acquired 

rules
±180ms ±120ms

Alaryngeal
 normal 80 2,284 1,665 

[73.9%]
1,315 

[57.6%]
Esophageal 

  normal 80 1,378 1,055 
[76.6%]

846 
[61.4%]

V. DISCUSSION

Many appropriate rules are obtained in both 
experiments through the same parameters. The results 
shows common and different parts appear approximately 
close location on time-domain independent of speech 

type. They also indicate that calculation of acoustic 
similarity is able to be a criterion to partition 
laryngectomee utterances although these are not clear and 
intelligible and are not able to be dealt with in 
conventional speech recognition. Therefore, these rules 
indicate promising possibilities for speech transform. The 
number of appropriate rules from esophageal speech is 
lower than from alaryngeal speech. Noises accrued from 
injecting volumes of air into the esophagus are one of the 
major causes.  

We need to increase the number of speech utterances to 
obtain more suitable transform rules, and it is also 
necessary to consider the contents of utterances for more 
effective rule acquisition and application. 

VI. CONCLUSION AND FUTURE WORKS

In this paper, we have described the proposed method 
and have evaluated rule acquisition without being 
parameter tuning specific for esophageal or alaryngeal 
speech. We have confirmed that appropriate acoustic 
information is able to be extracted by calculation of 
acoustic similarity and that rules have been generated. 

We will have to implement transform experiments with 
a large amount of data, and confirm the synthesized 
speech in normal speech by listening. 
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Abstract: The vocal tract, along with the vocal folds, is
the organ generating the human voice. The vocal folds
alone generate what is called source voice which
differs depending on whether a person wants to speak
in a loud voice or in a whisper. The patients after
laryngectomy are not able to use the source voice for
voice generation because their vocal folds are
surgically removed.  Than it is necessary to use other
artificial possibility for source voice generation. The
paper deals with the external excitation of the vocal
tract, that is without the vocal folds engaged – after
totally laryngectomy.

the consonants based on the settings of the different parts
of the vocal tract.

The source voice for speaking in a whisper is 
generated by the jet as described in this paper, the jet is
replacing the voice prostheses as a result.

II. METHODOLOGY

 The diagram of the external vocal tract excitation for
speaking in a whisper  is presented in Fig.1. The
excitation is reached by the compressed air supplied by
the jet; in this case the jet is placed in the nostril at the 
sinus nasal beginning – Fig.1.Keywords : External excitation, laryngectomy, voice

The compressed air expands on the jet outlet and
generates noise with a continuous spectrum. The acoustic
waves generated are transported through the nostrils to
the guttural cavity where they excite formants of the
vowels studied.

I. INTRODUCTION

The vocal tract can also be excited by an external
source independent of the vocal folds´ activity.  The 
possibility of the external excitation of the vocal tract 
appears to be the supply of the compressed air through a 
jet placed in the sinus nasal – Fig.1.

Through a valve the compressed air is let into the jet
where the noise is generated with the continuous
spectrum. The acoustic waves thus generated pass
through the nostril as far as the vocal tract along with the
flowing air. These acoustic waves in turn excite the 
individual formants of the vowel concerned. The flowing
air generates the consonants based on the settings of the
different parts of the vocal tract.

jet

nasal cavity

enter into
Eustachian
tube

acoustic
 waves

pressure
vessel

frequency
analyzer

mouth
cavity

microphon

vocal
folds

velum

At this point it is necessary to meet both the 
conditions (acoustic waves creation and the air flow) so
that both vowels and consonants can be generated with
the convenient intensity.

The method of external vocal tract excitation can be
modified in different way:

e excitation by means of the external compressed air 
source (vessel) – Fig.1
the supply of the compressed air using a hose from 
the lungs of  another  individual
supply of the compressed air from the stoma of the 
patient himself.

Now we need  to emphasize that:
the consonants must be excited by the flowing air 
from the rear part of the mouth cavity

Fig.1 Diagram of external excitation of the vocal tract

the vowels can be excited by the acoustic waves in 
any position of the vocal tract; the most convenient
is  the position of the maximum amplitude of the
acoustic mode of the vocal tract cavity. This is on 
the rear side of the vocal folds to be removed.

The jet [3], [4] has specific geometric parameters, thus
it generates noise with the required flat shape of the
spectrum within the broadest possible frequency range.
This requirement follows from the need to excite at least 
three formants of each vowel. The flowing  air generates
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III. RESULTS b) the voice generation by means of electrolaryng
The spectra of both the vowels and consonants are

defined more correctly and more accurately in the
following case. The formants of individual vowels are
defined more distinctively – Fig.4. In the same way the
spectra of consonants are defined  more accurately – 
Fig.5.

We will present three cases of the voice generation in 
a patient after totally laryngectomy.  We will compare the
vowel spectra and consonant ones to be generated after
laryngectomy, further by using the electrolaryng and
finally generated by means of the external vocal tract
excitation to be defined above. More satisfactory spectra are produced as a result of 

the periodical compression of the vocal tract walls, which
is a necessary condition for the vowel formants
excitation. In the same way the mouth walls motion
causes the air motion in the mouth cavity, which is a
condition for the consonants excitation.

The voice spectra have been measured in front of the
mouth cavity.
Results of the voice spectra : 
a) the voice generation after laryngectomy

The patient was trying to speak without any additional
aids.  In Fig.2  there are vowel spectra presented to be
generated step by step in the following order :  a, e, i, o, u
and during 14 seconds.  In Fig.3  there are presented a
consonants in the following order : s, ch, f, r, s.

c)  the voice generation by using the external vocal tract 
excitation
The individual vowel and consonant spectra excited 

by an external source voice – see Fig.1, are presented in
Fig.6 and others.

From these spectra it is possible to define individual
vowel formants correctly and exactly.
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Fig.2 Spectra of vowels generated after laryngectomy

Fig.4 Spectra of vowels: a, e, i, o, u

1k 2k 3k

0

4m

0

2

4

6

8

10

12

14

[Hz]

[Pa]

[s] (time)

1k 2k 3k

0

20m

40m

0

2

4

6

8

10

12

14

16

18

[Pa]

[Hz]

[s] (Time)

Fig.3  Spectra of consonants generated after
laryngectomy Fig.5  Spectra of consonants: s, ch, f, r, s

It is clear from these spectra that quality of the voice
to be generated is insufficient. The communication of the
patient with other people is not satisfactory since the
source voice  cannot be generated in this case.

  The accurate determination of the formants of
individual vowel is easy due to the continuous shapes of
the spectra.
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 These spectra correspond to the spectra of the vowels
to be generated aloud and not generated in a whisper.  It
is due to the rear vocal tract section which is closed after
laryngectomy.

The vowel spectra to be excited by an external source
voice have the similar shapes as those  generated by the
people with healthy vocal folds.

The spectra of the noise generated by the jet stimulate
the excitation of the vowel formants while the flowing air
is a condition for  generating the individual consonants.
Therefore this method enables the excitation both the
vowels and the consonants.
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Fig.6 Spectrum of vowel „a“ excited by an external
source

400 800 1.2k 1.6k 2k 2.4k 2.8k 3.2k
0

4m

8m

12m

16m

20m

24m

28m

32m

36m

40m

[Pa]

[Hz]

Fig.7 Spectrum of vowel „e“ excited by an external
source

It is necessary to remember that the spectra in Fig.6
and the other figures are continuous because the vocal
folds prosthesis (jet) have been used for voice generation
in a whisper. So that this jet after compressed air 

expansion was generating the continuous excitation
spectrum of the vocal tract. 

400 800 1.2k 1.6k 2k 2.4k 2.8k 3.2k
0

2m

4m

6m

8m

10m

12m

14m

16m

18m

20m

[Pa]

[Hz]

Fig.8 Spectrum of vowel „o“ excited by an external
source
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Fig.9 Spectrum of vowel „i“ excited by an external
source
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Fig.10 Spectrum of vowel „u“ excited by an external
source

IV. DISCUSION
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Fig.11 Spectrum of consonant „ch“ excited by an external
source

If the vocal folds prosthesis for speaking in loud are 
used for external vocal tract excitation than the individual
vowels have a discrete spectra with corresponding
harmonic components structure. 

But it is necessary to say at this point that the
continuous spectra in Fig.6 and other correspond to the
speaking in loud.  It is due to the vowel formants position
on the frequency axis and which is the same when the
healthy vocal folds would be closed. In our case the vocal 
folds are removed, so that the setting up of the vocal tract 
is the same in both cases.

This method may be used both by the people with the
healthy vocal folds and by the patients who had their
vocal folds surgically removed (after totally
laryngectomy).

It is apparently rather difficult to acquire this method
and apply the principle of the vocal tract external 
excitation. Still we can state that having gained some
experience with it, people are able to communicate
satisfactorily using this method with those around them.

V. CONCLUSION

The paper describes an experimentally verified method
of the external excitation of the vocal tract. The external
source is the compressed-air supply in this case, coming
from an outer source, e.g. from a pressure vessel etc.

The air is supplied by means of a jet which is placed in
the nostril at the end of the sinus nasal. This situation
does not disconcert or restrict the patient in any way.
However the jet must have appropriate properties
particularly concerning the flat spectrum shape required,
generated by the air leaving the jet and expanding. The
spectrum must be generated within the frequency range
which is defined by the range of at least three formants of
all the vowels.

The method described may primarily provide a means
of communication for the patients who had their vocal

folds taken out in the total laryngectomy, unless the
patient uses a different aid for generating the voice, such
as „vocal folds substitutes“ for generating the guttural
voice or electrolarynx.

This method is also useful for defining, developing and
verifying the functionality of the different vocal folds
substitutes, without any surgical intervention needed.
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The ability to perceive and to produce the time varying 
fundamental frequency (melody) is an extremely 
important component of auditory information and a 
fundamental aspect of language. The fundamental 
frequency is an essential parameter of prosody.  

In adult language perception, prosody can guide the 
syntactic analysis of spoken sentences [1]. Concerning 
infant language perception it was shown that young 
infants recognize utterances in their language based on 
prosodic cues before they become sensitive to its 
segmental characteristics [see review in 2]. Speakers use 
the F0 modulation to stress particular elements in an 
utterance or to indicate the beginning or end of a 
syntactic phrase.  

Recently, Drayna et al. [3] demonstrated in a twin 
study the influence of genes on the ability to recognize 
correct pitch and melodies. They could show that the 
perception of pitch is highly heritable. Research 
examining patients with brain damage has indicated that 
melodic information may be processed primarily by a 
cortical system in the right hemisphere. A close link 
between the processing of melodies and the processing of 
language has been demonstrated in a recent study by 
Maess et al. [4] who found that music processing 
involves a neural network normally seen to be active 
during language processing. This finding strongly 
supports a direct relationship between the processing of 
language and music from a functional and 
neuroanatomical view.  

The importance of F0 and related parameters is also 
well described for infant’s and children’s sound 
production. The importance is not only given by research 
results in the framework of “cry-diagnosis”, but also by 
findings within the field of pre-speech development and 
language acquisition [5-10]. Moreover, the interaction 
between laryngeal (melody) and pharyngeal (resonance 
frequencies) activity is one of the key aspects for pre-
speech research [e.g. 11]. Tuning processes between the 
cry melody and resonance frequencies are preparatory 
activities for an intentional articulation in speech.  

BRIDGING FROM CRYING OVER BABBLING TO SPEECH BY 
USING A MATHEMATICAL MODEL

Melody (fundamental frequency (F0) as a function of 
time) is one of the essential features of prosody. We 
would like to outline, that different resolutions in respect 
of time and frequency as well as in the degree of 
smoothness are possible for melody analysis and sketch 
our approach to reduce the melody curves to smooth, 
simple arcs or plateaus with only one maximum (mono-
modal melodies). The smoothing is strong enough to 
have none or only one inflection point on each of the 
increasing/ decreasing flanks of the melody. In this sense, 
we use the term “shape” of the melody.  

Cry and babbling melody analysis are only 
qualitatively investigated so fare, because a suitable 
modelling-approach was lacking. Analysis of single F0 
values, measured at only a few marked points of the 
utterances, common in pre-speech research, are not 
sufficient for melody analysis. The diversity of melody 
curves of infant’s utterances is reducible to a manageable 
extent by the use of a minimal-parametric model. Our 
theoretical model has the form of double power-law with 
a non-linear kernel Y (1-Y) . The first exponent = *
expresses concavity/ convexity of the increasing flank. 
The exponent =(1- )*  expresses the concavity/ 
convexity of the decreasing flank. Both are power laws. 
This model allows separating the asymmetry of the arcs 
from kurtosis properties. The model is minimal-
parametric in the sense, that only two parameters ( , )
are scale-independent and it characterizes the shape of the 
melodies completely. The model describes the majority 
of produced melodies accurately and with amazing ease. 

The application of the model to melodies allows 
reliable comparisons and evaluations of intra- and inter-
individual differences. Therefore, the application of the 
proposed melody-shape-model to cries, babbling and 
speech sounds could considerably improve comparative 
studies on melodies by starting from a quantitative 
representation of the melody. It will be possible to define 
normal values and to measure objectively deviations from 
the norm.  
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A future significance of the melody analysis in 
combination with the study of resonance properties of the 
infant’s vocal tract we see in the following fields: Firstly, 
this approach seems to be promising for the field of “Cry 
diagnosis” with respect to the possibility to develop 
quantitative scores. Analogous scores for normative 
values of melody features of early babbling and speech 
sounds would be very helpful within the framework of 
studies of specific language disorders. The application of 
this or similar models can also help to develop early 
diagnosis tools under the presupposition that infants at-
risk for the development of specific language disorders 
are different with respect to prosodic features including 
melody features, rhythmical characteristics (time 
shrinking and expansion of melody) and intensity-melody 
interaction at very early ages. 
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Abstract: The tracking of resonance frequencies and 
the analysis of their interaction with the fundamental 
frequency (F0) allows a description of (pre-) 
articulatory activity in very young infants. Subjects 
are six healthy infants. Spontaneous cries were 
recorded weekly from the 4th until the 20th week. For 
resonance frequency estimation a spectral parametric 
technique was applied, which was based on 
autoregressive models whose order is adaptively 
estimated on subsequent signal frames [1]. Cry 
melodies exhibiting different degrees of complexity 
(e.g. single-arc-melodies, multiple-arc-melodies) were 
selected for analysis. We found that resonance 
(formant) tuning occurs much earlier than expected. 
Here we demonstrate the early occurrence of a tuning 
between resonance frequencies and the cry melody in 
infants from 8 weeks onward. A more intense tuning 
between the melody and the lower resonance 
frequencies was found beginning about the 2nd / 3rd

month. This tuning is interpreted as an early 
articulatory activity in infant’s crying. In a broader 
perspective it is attributed to a language-related 
behaviour preparing formant tuning in speech. 
Medical applications are seen for infants with 
disturbances of the vocal tract transfer function, e.g. 
infants with cleft-lip-palate. 
Keywords: cry melody, vocal tract resonance, formant 
analysis, pre-speech development

I. INTRODUCTION

In a preceding paper [2] we have outlined both, the 
high control capacity of mechanisms underlying 
laryngeal sound production in infants, and the interaction 
between laryngeal (melody) and pharyngeal (resonance 
frequencies) activity. The results of this earlier study 
provide good reasons to consider in more detail the 
resonance properties of the infant’s vocal tract during the 
earliest phases of pre-speech development.  

The hypothesis that cry melody patterns might be direct 
precursors of melodic features of speech is not new [3-8]. 
Meanwhile there is good evidence that the development 

of certain cries (mitigated cries) serves as a preparatory 
activity for language acquisition [9-11]. Tuning processes 
between the cry melody and resonance frequencies need a 
certain training - period before they are at disposal for 
intentional use, e.g. imitating surrounding speech sounds 
at the babbling age. Starting about the fourth month of 
life a rapid expansion of non-cry vocalizations (marginal 
babbling) occurs, including many vowel-like sounds and 
near-syllables [12, 13]. So, we should expect that 
intentional articulatory activity is developed well before 
this age. 

II. METHODOLOGY

SUBJECTS: We investigated six healthy, term-born 
German infants. All infants were without clinical history 
of pre- and postnatal illness and free of clinical signs of 
developmental or hearing disorders.  
DATA ACQUISITION: Spontaneous cries of all six 
infants were recorded in weekly intervals from the 4th to 
20th week. Cries were recorded in home environment by 
trained persons using a SONY-DAT-recorder (TCD-
D100). The sampling frequency was 48 kHz and the 
amplitude resolution was 16 Bit. 
DATA ANALYSIS: A set of 100 harmonic cries with a 
high signal-to-noise ratio was selected for analysis out of 
a total amount of 2000 recorded cries. Cry analysis was 
performed in a first step by an evaluation of broad-band 
and narrow-band spectrograms made with a CSL-4300-
Model (Kay Elemetrics Corp., NJ/ USA). In-depth data 
processing was performed by means of a software tool 
developed on a PC under Matlab 5 environment at the 
Dept. of Electronics and Telecommunications, Faculty of 
Engineering, University of Firenze, Italy.  
Fundamental frequency F0 is estimated by means of a 
robust two-step procedure [14]. As for formant 
estimation, the parametric AutoRegressive (AR) 
approach is applied. This method is particularly suited for 
newborn infant cries, which are characterised by higher 
resonance frequencies than those of adults. Many criteria 
have been defined for finding the best model order p, 
including both the estimated variance 2 and the model 
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complexity p in one statistics. The DME (Dynamic Mean 
Evaluation) model order selection criterion is applied 
here to the decreasing sequence of variance values, on 
subsequent data frames of varying length [1]. For 
comparisons, also fixed model orders were tested. We got 
better formant tracking than traditional approaches [1, 
15].

In the figures presented here resonance 
frequencies estimated with the AR-method are shown, as 
we found this method producing the most coherent 
resonance tracks. Note that the resonance frequencies in 
infant cries (roughly seen as spectrographic amplitude 
enhancements) are in most cases not yet identical to 
formants of speech sounds. We call these resonances 
“R1”, “R2” and “R3”, because it is not yet known how 
they are related to the vowel formants in later speech.  

In order to visualize the interaction between 
melody and time varying resonance tracks we made a 
special diagram. This diagram contains a background 
pattern with the melody and the corresponding harmonics 
(F0  first harmonic) together with the resonance tracks. 
This representation is well-suited to assess relations 
between resonance frequencies and harmonics of the 
melody up to the 7th harmonic of the melody.  

III. RESULTS

Here we present typical examples of melodies and the 
corresponding spectral resonance functions during crying 
for the age period 8 – 14 weeks. The selected examples 
demonstrate also developmental changes of tuning 
processes. In the oral presentation we will present 
developmental sequences of the mentioned tuning 
processes for all infants. We will show both, the lack of 
such tuning in crying of the youngest infants and the step 
by step development of melody–resonance–tuning in 
older infants. We found between three and four main 
resonance frequencies up to 10 kHz within the age range 
under investigation.  

During the first weeks of life, the resonance 
frequencies (particularly R1) were relatively constant 
without movements over the central part of the cry. At the 
age of about 8 weeks already a partial tuning between the 
first resonance frequency (R1) and the melody is 
observable.  

We could observe relatively longer periods of a strong 
resonance, where the resonance tracks take a course 
closely following a certain harmonic of the melody. In 
contrast to this, there were relatively fast transitions of 
resonance frequencies from one harmonic to the other. 
This fact allows us to conclude that there exists a longer 
time period of coupling of the resonance movement and 
the melody, which can be interpreted as the action of a 
neuro-physiological tuning mechanism between cry 
melody and resonance frequencies.  

Fig. 1 displays the first two resonance tracks (R1, R2) 
together with the cry melody and its harmonics. At the 
maximum of the first melody arc (at about 0.85 sec), R1 
and R2 show a strong resonance peak around the 5th

harmonic. 
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Fig. 1: First two resonance frequencies (black points) of 
a mitigated cry from a healthy infant at the age of 8 
weeks. They are displayed together with the cry melody 
(lowest line) and its harmonics. R1 and R2 show a 
conspicuous convergence toward a punctuated resonance 
(rectangle) at the 5th harmonic of F0 (bold line). 

R1 is moving step-wise from a resonance near the 
second harmonic at the beginning of the cry to the third 
harmonic. For about 30 ms R1 is fairly well-tuned with 
the third harmonic and is then moving toward the 5th

harmonic at the maximum of the first melody arc. R2 is 
relatively constant, exhibiting a resonance tuning at the 
7th harmonic for about 200 ms (0.4 – 0.6 sec); then R2 
moves to the 6th harmonic. Note that R2 seems to support 
the R1-melody-tuning by a short down shift to the 5th

harmonic exactly at the time point of the maximum of the 
first melody arc. The coordinated action of R1 and R2 
seems to stabilize the melody at its apex and produces a 
punctuated resonance. This is interpreted as a pre-
articulatory training process, which indicates an active 
neuro-physiologically controlled tuning. However, the 
infant did not repeat the tuning in the second melody arc. 
Although at the age of 10 weeks already more complex 
melodies (multiple-arc-melodies) are produced, we 
selected for reasons of comparability again cries 
consisting of a double-arc melody (Fig. 2a, b). In contrast 
to the punctuated resonance in Fig. 1 (8th week), the 
resonance track “R1” is coupled to the 6th harmonic over 
the whole cry (lasting resonance). Only in the transition 
region the melody-arc-tuning is lost, but immediately 
with the beginning of the second melody-arc the 
resonance tuning at the 6th harmonic occurs again. R2 
shows an independent course in relation to the melody in 
both cries (Fig. 2a, b). Both cries of the infant from the 
same day exhibit the same tuning phenomenon between 
the melody and R1. The regular recurrence of tuning 
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events supports the assumption that the observed tuning 
is not by chance, but a controlled behaviour.  
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Fig. 2a, b: Resonance frequencies (black points) of two 
double-arc cries (a, b) from a healthy infant at the age of 
10 weeks. In both cries the resonance frequency “R1” is 
coupled to the 6th harmonic of F0 (bold line). In the 
transition regions (within vertical lines) between both 
melody-arcs the tuning is lost (tuning is indicated by a 
rectangle). 
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Fig. 3: Enlargement of the region 3.2–3.5 log Hz of Fig. 
2a (source spectrum corrected).  

In Figure 3, the frequency region between 3.2–3.5 log Hz 
is zoomed in, in order to demonstrate the good tuning. 
Note that in Figure 3 a rather precise coincidence of 
melody and R1 in the strongest resonance regions results 
when the necessary frequency correction is made taking 
into account the slope of the laryngeal source spectrum. 
We did that after we observed that in the strong 
resonance regions (i.e., a close coupling of melody and 
resonance) the resonance frequency is mostly situated a 
certain ratio (approximately 13%) down a harmonic of 
the melody (Fig. 1, 2a, b, 4). We believe that this small 
but significant discrepancy of frequency is due to the 
spectral amplitude slope of the harmonics of the laryngeal 
source signal.  

In Fig. 4b, a selected example of a cry from an older 
infant (14th week) demonstrates a well-developed tuning 
between the first two resonance frequencies with 
harmonics of the melody (Fig. 4b).  
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Fig. 4: Results of the resonance frequency tracking of a 
mitigated cry from a healthy infant at the age of 14 
weeks. The first two resonance tracks (black points) are 
displayed together with the cry melody (lowest line) and 
its harmonics. This example demonstrates a well-
developed tuning (rectangles) between R1 and the 4th

harmonic and R2 and the 6th harmonic (bold lines). 
Tuning of higher resonances with the melody is hardly 
possible, because the harmonics are too dense at higher 
frequencies. 

IV. DISCUSSION

The results of previous studies [e.g. 16, 17] of resonance 
frequencies of infant cries are difficult to compare to the 
present results, because former studies provide only 
averaged values for resonance frequencies (formants) in 
pre-speech utterances. In contrast, the present study 
provides time functions of the resonance frequencies and 
investigates the interaction between these and harmonics 
of the melody. Our approach (tested in a preliminary 
study with twins [2]) allows investigating an (pre-) 
articulatory activity at a very early age and enables us to 
characterize developmental processes directed toward 
language acquisition. 
We could confirm our former results concerning 
developmental changes, but the more fine-grained 
analysis applied here (coupling analysis of resonance 
frequency and melody) allows discovering the tuning 
process in infant’s crying even earlier in life. In the 
preceding study [2] we found a coupling of the lower 
resonance frequencies to the melody or its harmonics in 
infant cries beginning at the age of 15 – 17 weeks of life. 
In the present study we observed tuning processes 
between the resonance frequencies and the melody, at 
least during short parts of the cry, much earlier (8th

week). At the age of 8 weeks we observed already 
coordinated actions of R1 and R2 during short parts of 
the melody. This behaviour seems to stabilize the melody 
at its apex. Later stages of development are mainly 
characterized by longer well-tuned times between the first 
two resonance frequencies and the melody. Already two 
weeks later the resonance frequency “R1” is coupled to a 
harmonic over the whole cry. Only in the transition 
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region between two melody-arcs the tuning is lost. At the 
age of 14 weeks, a well-developed tuning between the 
first two resonance frequencies with the melody regularly 
occurs and reflects a neuro-physiological maturation.  

V. CONCLUSION

The regularly occurring tuning as observed is probably a 
result of four factors: Firstly, the preceding “training” at 
earlier weeks. Secondly, the anatomical restructuring of 
the supra-laryngeal vocal tract at about 3 months [4], 
thirdly, a better control of sub-glottal air pressure at about 
3 months of life [21], and fourthly, a co-ordination 
between laryngeal and pharyngeal activity. At this age 
also more voluntary phonation occurs and the infant has 
to co-ordinate and exercise sub-glottal air pressure and 
laryngeal - pharyngeal control. The “training”- idea, 
suggested by Philip Lieberman already in 1986, is 
confirmed by our results of the present study. These 
tuning processes have undoubtedly a preparatory function 
for intentional articulatory activities at later ages. The 
analysis presented here supports strongly the assumption 
of a continuous development from the first infant’s sound 
productions to speech. So, this findings further support 
that cry development is an integral part within pre-speech 
development.  

REFERENCES

[1] A. Fort and C. Manfredi, “Acoustic analysis of 
newborn infant cry signals,” Medical Engineering & 
Physics, 20, pp. 432-442, 1998. 

[2] K. Wermke, W. Mende, C. Manfredi, and P. 
Bruscaglioni, “Developmental aspects of infant’s cry 
melody and formants,” Medical Engineering & Physics 
24, pp. 501-514, 2002. 

[3] M. M. Lewis, Infant Speech: A study of the 
beginnings of language. Harcourt Brace, New York, 
1936. Reprinted: Arno Press, New York, 1975. 

[4] P. Lieberman, “The physiology of cry and speech in 
relation to linguistic behavior,” in Infant crying. 
Theoretical and research perspectives, vol. 2, B.M. Lester 
and C.F.Z. Boukydis, Eds. New York: Plenum Press, 
1985, pp. 29-57. 

[5] K. Wermke and W. Mende, “Ontogenetic 
development of infant cry- and non-cry vocalizations as 
early stages of speech abilities,” in Proceedings of the 
3rd congress of the ICPLA, 9.-11.8.93, Helsinki/ Finland,
R. Aulanko and A.M. Korpijaakko-Huuhka, Eds. 
Helsinki: University Press, 1994, pp. 181-189. 

[6] W. Mende, K. Wermke, S. Schindler, K. Wilzopolski, 
and S. Hoeck, “Variability of the cry melody and the 
melody spectrum as indicators for certain CNS 

disorders,” Early Child Develop. Care,  65, pp. 95-107, 
1990.

[7] J. L. Locke, The child’s path to spoken language.
Cambridge, MA/London: Harvard University Press, 
1995.

[8] M. M. Vihman, Phonological Development. The 
Origins of Language in the Child. Oxford/Malden: 
Blackwell Publishers, 1996. 

[9] K. Wermke, W. Mende, H. Borschberg, and R. 
Ruppert, “Voice characteristics of prespeech 
vocalizations of twins during the first year of life,” in 
Pathologies of Speech & language: Contributions of 
Clinical Phonetics & Linguistics, New-Orleans, LA: 
ICPLA, pp. 1-8, 1996. 

[10] K. Wermke, Ch. Hauser, G. Komposch, and A. 
Stellzig, “Spectral analysis of prespeech sounds 
(spontaneous cries) in infants with unilateral cleft lip and 
palate (UCLP): a pilot study,” Cleft Palate Craniofac J., 
39 (3), pp. 285-294, 2002.  

[11] K. Wermke, “Untersuchung der Melodieentwicklung 
im Säuglingsschrei von monozygoten Zwillingen in den 
ersten 5 Lebensmonaten,” PhD Thesis, Humboldt-
University of Berlin/ Germany, 2002 

[12] B. Boysson-Bardies, How language comes to 
children; from birth to two years. Cambridge, 
MA/London: A Bradford Book, MIT Press, 1999. 

[13] D. K. Oller, The emergence of the speech capacity.
Mahwah/London: Lawrence Erlbaum Associates 
Publishers, 2000. 

[14] C. Manfredi, “Adaptive noise energy estimation in 
pathological speech signals,” IEEE Transactions on 
Biomedical Engineering, vol. 47, n.11, p.1538-1542, 
2000.  

[15] A. Fort, A. Ismaelli, C. Manfredi, and P. 
Bruscaglioni, “Parametric and non-parametric estimation 
of speech formants: application to infant cry,” Med. Eng. 
Phys., 18 (8), pp. 677-691, 1996.  

[16] H.L. Golub and M.J. Corwin, “Infant cry: a clue to 
diagnosis,” Pediatrics, 69, pp. 197-201, 1980. 

[17] M.P. Robb, Y. Chen, and H.R. Gilbert, 
„Developmental Aspects of Formant Frequencies and 
Bandwidth in infants and toddlers,“ Folia Phoniatr 
Logop., 49, pp. 88-95, 1997. 

[18] P. Lieberman, “The acquisition of intonation by 
infants: Physiology and neural control,” in Intonation in 
Discourse, C. Johns-Lewis, Ed. San Diego: College-Hill 
Press, 1986, pp. 239-257. 



3rd International Workshop MAVEBA 2003, 39-42
© Firenze University Press 2003, ISBN 88-8453-154-3 

Abstract: The Early Vocalization System (EVA) 
applies the Stevens landmark theory to infant 
vocalizations (babbles).  The landmarks are grouped 
to identify syllable-like productions in these 
vocalizations.  The visiBabble system processes 
vocalizations in real-time.  It responds to the infant’s 
syllable-like productions with brightly colored 
animations and records the landmark analysis.  The 
system reinforces the production of syllabic utterances 
that are associated with later language and cognitive 
development.  We report here on the development of 
the visiBabble prototype and our initial field-testing. 

Keywords :  acoustic analysis, babbles,  landmarks 

I. INTRODUCTION 

 Communication skills are vital to educational and 
vocational success.  Cerebral palsy, developmental 
apraxia (DAS), neurological insult/injury (e.g. head 
injury, encephalitis, meningitis), oral/motor dysfunction, 
cognitive impairments, tracheotomy, and deafness can all 
cause a child to be at risk for being non-speaking.  A 
child having any of these or other syndromes may not be 
able to produce a sound when he or she wants to, may 
produce a limited range of sounds (often vowels and 1-2 
consonants), or may not have learned to associate his or 
her sounds with meaningful referents [2].  During an 
intervention to promote speech-like vocalizations, non-
speaking children tended to have difficulty initiating 
sounds and participating in vocal imitation play. They 
produced atypical sounds such as elongated vowels, 
distorted consonants, and non-speech sounds. 

Because of the atypical sound production of infants in 
this population [8], traditional intervention strategies to 
prompt or respond to infant vocalizations may not be 
sufficient to promote change. Children at risk for being 
nonspeaking may produce a higher percentage of vowel-
like sounds (vocants) and consonant-like sounds 
(closants) during later development than would be 
expected for typically developing children. Without 
strategies to detect and respond appropriately to these 
sound approximations, listeners may not be able to tailor 
their activities and responses appropriately to children's 
sound productions. 

 There is considerable research to support the position 
that infant vocalizations are effective predictors of later 
articulation and language abilities [7, 10, 12].  These 
studies have been carried out on normally developing 
children and on children with a variety of early diagnosed 
problems.  These research studies emphasize the 
importance of early speech intervention for children at 
risk for being non-speaking.  They also point out the 
difficulty of providing sufficient speech practice and 
feedback for children with such atypical speech patterns 
through traditional forms of intervention and interaction.   

Closants and oral-cavity openings can be detected in 
the sound waveform from acoustic evidence of 
discontinuities in the spectrum of sound.  These 
discontinuities have been called landmarks by some 
researchers of adult speech [9, 13].  Landmarks that result 
from the creation or release of a narrow constriction or 
closure along the vocal tract are also found in pre-
linguistic vocalizations.  We can hypothesize that the 
development of the ability to produce sounds exhibiting 
landmarks is a necessary skill underlying the production 
of syllables. 

 Vocants appear early in the vocalizations of infants 
and are characterized by slowly time-varying spectral 
patterns.  These sounds result from movements of the 
tongue body, the jaw, and the lips, and are usually 
produced with the vocal folds positioned to vibrate.  A 
variety of vowel-like sounds appear as the infant learns to 
control the positioning of these articulators. [1]. 

 As babbling develops, the infant begins to coordinate 
control of the vocal folds and the velopharyngeal opening 
with control of the tongue blade and the lips, and the true 
consonants appear.  In the landmark model, the larynx 
and the velum are considered secondary articulators, and 
they are "bound" to control by the primary articulators, in 
that implementation of the laryngeal and nasal features 
depends, in some ways, on the implementation of the 
primary articulator.  This landmark model has proved 
useful in various applications concerning adult speech 
and has been successfully applied to analysis of infant 
vocalizations [3, 4, 5].    This analysis has, in turn, been 
used to formulate a “vocalization age” that clinically 
distinguishes between typically developing infants and 
infants at risk for later speech difficulties [6].  A 
vocalization age is a normative age-equivalence estimate 
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of the range of speech sounds (landmark sequences) 
expected for typically developing children. 

 The visiBabble system processes vocalizations in 
real-time.  It responds to the child’s syllable-like 
productions with brightly colored animations and records 
the landmark analysis.  The system reinforces the 
production of syllabic utterances that are associated with 
later language and cognitive development.  As a child 
interacts with visiBabble, the program collects and 
analyzes the infant’s utterances so that it can be used by a 
child as a toy/trainer or as a clinical or research 
implement. 

II. METHODOLOGY

A. The visiBabble System 
The visiBabble system includes a modern notebook 

computer (Dell Inspiron, 2.4 GHz Pentium 4 running 
Windows XP), a microphone, a 15” flat-panel display, 
and software, which carries out the following functions: 

• Landmark detection – detects landmarks in a 
child’s vocalizations in real-time. 

• Graphic feedback -- provides real-time visual 
response to sound input; 

• Data collection – records each session and saves 
the result as a wav file, collects data on the types and 
duration of vocalizations produced; 

• Experimental formats -- allows the system to run 
and data to be collected in single-case study formats. 

B. Finding Landmarks 
 Our landmark detector is based on Stevens' acoustic 
model of speech production [13]. Central to this theory 
are landmarks, points in an utterance around which 
listeners extract information about the underlying 
distinctive features. They mark perceptual foci and 
articulatory targets.  The program detects three types of 
landmarks:  

glottis: marks the time when the vocal folds start  
(+g) and stop (-g) vibrating;  

sonorant: marks sonorant consonantal closures (-s) 
and releases (+s) (e.g., voiced closants);       

burst: designates stop/affricate bursts (+b) and 
points where aspiration/frication ends (-b) due to 
stop closure. 

The visiBabble system can track simple aspects of the 
acoustic signal in real time, based on a low-resolution 
spectrogram.  That is, the signal is sampled at 16 kHz and 
analyzed into a small number, nominally 64, of separate, 
frequency intervals of ~256 Hz each.  A 16 kHz rate 
provides information up to 8 kHz, sufficiently high to 
include at least 3-4 formants for an infant and to show the 
distinction between voicing and other speech sounds: 
fricatives, stop releases, bursts, etc.  (These parameters 
are suitable for using the FFT and impose no delay of 
their own beyond 4 ms, i.e., 1/256-th of one second.)  The 

visiBabble system uses only one-half of these intervals 
because the others differ only in phase. 

The spectral intervals are grouped into six broad 
bands.  An energy waveform is constructed in each of the 
six bands, the time derivative of the energy is computed, 
and peaks in the derivative are detected.  These peaks 
represent times of abrupt spectral change in the six bands. 
Energy in bands 2 (1200 - 2500 Hz.) and 3 (1800 - 3500 
Hz), e.g., provides evidence of voicing or, in some cases, 
of bursts.  The distinction between these is readily made 
in the time domain (voicing persists much longer than 
bursts) as well as by appeal to information in the other 
spectral bands:  voicing provides a power spectrum that 
decays with frequency approximately as 1/frequency2,
whereas most other speech sounds have flatter spectra. 

For the poorly formed or unstable closants and 
vocants typical of infants, wide frequency bands are well 
suited to recognition:  Higher frequency resolution would 
require averaging over bands anyway.  It would require 
spending more time computing and – worse – more time 
sampling the signal for the initially higher resolution. 

C. Graphic Feedback
The visiBabble prototype responds to the child’s 

utterances with five different brightly colored animations 
that cycle to avoid habituation: (a train, a bird, a frog and 
two cartoon creatures that move across the screen).  It 
responds to the start of each syllable it detects by 
advancing the current animation one step.   

It determines that a syllable has started either by 
voicing onset or by a voiced closant that occurs at least 
100 ms after start of the previous syllable.  Admittedly, a 
syllable might start with a burst before the voicing onset 
but, to avoid responding to noise, visiBabble waits for the 
onset of voicing.  The system responds in no more than 
0.1 second of the corresponding acoustic event. 

C. Data Collection 
 As visiBabble runs, it makes a digital recording of 
the session in wav format.  It also saves a record of the 
times and types of landmarks it found during the session. 
A second program uses this landmark data to produce a 
syllable and utterance summary as shown in Table 1. 

D. Experimental Formats
Single case study designs [11] are particularly suited 

to our preliminary tests of visiBabble since they provide 
the freedom to conduct a study on a small heterogeneous 
group of subjects.  The prototype program can be run in a 
variety of “formats”: 

 1) Baseline (recording, no graphic display); 
 2) Response (graphic display is always present, while 

recording); 
 3) A-B-A (no display, display on, no display).  The 

length of A or B phases can be changed. 
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Data is collected during all phases of all formats to 
allow a comparison of behavior during the baseline and 
active phases.  The analyses of landmarks and syllables 
are conducted and recorded separately for the B phase 
and two A phases. 

E. Field Testing
 As part of the software development, a prototype of 

the system, visiSyl 1.2, was beta-tested by a typically-
developing one-year-old and is currently being evaluated 
in trials with four at-risk children, ranging in age from 28 
months to 7.5 years, and three premature but typically 
developing infants with ages, corrected for prematurity, 
from 8 to 11 months.  The system will be iteratively 
modified in response to the results of this field-testing.  

Preliminary questions on the use of the visiBabble 
include: 

1) What features of infant vocalization can the system 
respond to in real time? 

2) What graphic feedback do infants find appealing?   
3) What changes have to be made in the graphic 

feedback to avoid habituation? 
4) Do the infants show increased babbling during the 

treatment (B) phases? 
5) Do infants adjust the amplitude of their utterances 

in response to the visual reinforcement?   
6) Do infants adjust the pitch of their utterances in 

response to visual reinforcement? 
7) Do infants increase the variety of syllable types and 

complexity of their utterances? 
8) Is there any change in the distribution of utterances 

as an infant matures? 
9) Do parents perceive changes in their infants' 

vocalizations in response to the visiBabble program?    
The ABA design allows direct comparisons of the 

child’s productions (items 4 to 8) with and without the 
system’s visual feedback.  Both the rate and the variety of 
syllables may be tested for the stimulating effect of the 
system by several techniques.  

III. RESULTS 

Our beta-testing with a typically developing one-year 
old showed that our system was responsive to a child of 
that age.  On days when he wasn’t cranky, as reported by 
his parents, he showed an interest in the visual response 
screens.  These sessions were run by the child’s parents in 
a particularly noisy environment.  Noise from the heating 
system, a vacuum cleaner, parents talking, and the 
computer itself were often louder than the child and 
clearly affected the output.  The child was also very 
interested in the buttons on the display.   

As a result of these sessions, we now ask that the 
computer be placed behind the microphone and that 
observers, if they must speak, do so as quietly as possible 

and also behind the microphone.  We have also placed 
black tape over the display buttons. 

Our current tests are being run by trained speech 
pathology students.  The system rarely responds to noise 
and whispering that can be heard in the background.  The 
exception to this is when such sounds overlap with the 
child’s utterances.  The results of a sample session are 
shown in Table 1.  Landmarks that were clearly caused 
by noise or adults were removed before the syllable 
analysis.   

The subject of this session was a 6 year old male child 
with cerebral palsy and cortical visual impairments (but 
who focuses intently on book pictures and loves TV). He 
is a symbolic communicator with signs and word 
approximations, limited range of vowel and consonant 
sounds (about 4 consonants in repertoire).  

IV. FURTHER DEVELOPMENT

There are several features we plan to add to the 
visiBabble system.  We have observed that some young 
infants are not always interested in our visual feedback. 
They may not be focused on the part of the screen where 
the bird is flying or the frog is hopping.  We will add 
feedback that occupies more of the screen, e.g. fireworks 
or large faces that wink or smile.  We may add sound or 
tactile feedback to the responses. 

Though our prototype system just responds to the 
detected start of syllables, it is also capable of responding 
to other aspects of the child’s vocalizations, e.g. variation 
in pitch or energy, the duration of syllables or utterances, 
or the complexity of syllables in terms of landmark 
structure.  We plan further tests with infants and children 
on these aspects of the system.  We envision a system 
where a speech pathologist, for example, might choose to 
work with a child on producing longer utterances and set 
the visiBabble system accordingly.   

For research purposes, we plan to add to the 
information saved by the visiBabble system.  We 
currently save a digital audio recording of each session 
and the landmark analysis as it was computed in real 
time.  From this, we are able to compute the syllables that 
visiBabble found and hence responded too.   In future 
systems, we will likewise record which response was 
displayed so that we might determine whether certain 
responses are particularly effective.  We will also save 
the pitch information as it was computed during the 
session.  Our summary program will then be augmented 
to classify syllables according to pitch contours as well as 
landmark content. 
 We hope to see visiBabble become a product that is 
useful as a clinical and research tool for work with at-risk 
infants or older non-speaking children.  We also intend to 
produce a version that can be used as a training toy for 
these infants and children. 
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Table 1:  Sample Summary of Data Collected During a 10 minute A-B-A visiBabble Session 
                 A1 - 2.5 minutes with no display; B - 5 minutes with responsive display; A2 - 2.5 minutes with no display
Syllables Entire Session A1 B A2
Type number average number average number average number average

duration duration duration duration
+g-g 7 0.164 6 0.167 1 0.144
+g-s 1 0.048 1 0.048
+s-g 1 0.120 1 0.120
+s-s 3 0.048 3 0.048
+b+g-s 1 0.016 1 0.016
+g+s-g 5 0.199 5 0.199
+g+s-s 3 0.109 3 0.109
+g-s-g 3 0.131 2 0.165 1 0.064
+s-s-g 4 1.211 4 1.211
+g+s-g-b 1 0.112 1 0.112
+g+s-s-g 3 0.230 2 0.265 1 0.161
+g-s-g-b 1 0.707 1 0.707
+s-s-g-b 1 0.273 1 0.273
+s+s 2 3.962 2 3.962
+g+s+s 1 3.318 1 3.318
+g+s-s-s-g 2 0.591 1 0.490 1 0.691
+g+s-s+s-s-g 2 0.972 2 0.972

Totals 41 0.590 0 NaN 35 0.562 6 0.750
Average Number of Landmarks per Syllable

3.049 NaN 3.029 3.167
Utterance Summary:

number avdur number avdur number avdur number avdur
33 0.756 0 NaN 28 0.728 5 0.911

Average Number of Syllables per Utterance:
1.242 NaN 1.250 1.200

ACKNOWLEDGEMENT
This work was supported in part by National Institutes of 
Health grant R41 DC005534. 

REFERENCES 

[1] C. Bickley, “Acoustic evidence for phonological de-
velopment of vowels in young children,” MIT Speech 
Communication Working Papers IV, 111-124, 1984. 

[2] C.J. Cress and L. Ball, “Strategies for promoting 
vocal development in young children relying on 
AAC: Three case illustrations,” Proc. Rehab. Eng. & 
Assist. Tech. Soc. North Am., RESNA Press, pp.44-
46, 1998. 

[3] H.J. Fell, L.J. Ferrier, D. Sneider, and Z. Mooraj, 
“EVA, An early vocalization analyzer: an empirical 
validity study of computer categorization,” Assets 
‘96,  pp. 57-61, 1996. 

[4] H.J. Fell, J. MacAuslan, L.J. Ferrier, Chenausky, 
“Automatic Babble Recognition for Early Detection 
of Speech Related Disorders,” Assets '98,  pp. , 1998. 

[5] HJ Fell, LJ Ferrier, C. Espy-Wilson, S.G.  Worst, E.A.  
Craft, K. Chenausky, J.  MacAuslan, G. Hennessey, 
“Automatic Analysis of Infant Babbling in EVA, the 
Early Vocalization Analyzer”, ASHA Proc., 2000. 

[6] H.J. Fell, J. MacAuslan, L.J. Ferrier, S.G.  Worst, and 
K. Chenausky, “Vocalization Age as a Clinical 

Tool,” Proc. ICSLP (Int. Conf. on Speech & 
Language Processing), Denver, September 2002.  

[7] T.S. Jensen, B. Boggild-Andersen, J. Schmidt, J. 
Ankerhus, and E. Hansen, E.  “Perinatal risk factors 
and first-year vocalizations: Influence on preschool 
language and motor performance ,” Develop. Med. & 
Child Neur., 30, pp. 153-161, 1988. 

[8]  K. Levin, “Babbling in infants with cerebral palsy” 
Clin. Ling. and Phonetics, 13 (4), pp. 249-267, 1999. 

 [9] S. Liu, “Landmark detection of distinctive feature-
based speech recognition,” JASA, 96, 5, Part 2, p. 
3227, 1994. 

[10] J.L. Locke, “Babbling and early speech: Continuity 
and individual differences,” First Language, 9, pp. 
191-206, 1989. 

[11] L.V. McReynolds, K.P. Kearns, Single Subject 
Experimental Designs in Communication Disorders,
Baltimore: University Park Press, 1983. 

[12] P. Menyuk, J. Liebergott, M. Shultz, M. Chesnick, 
and L.J. Ferrier, “Patterns of Early Language Devel-
opment in Premature and Full Term Infants,” JSHR
34, p. 1, 1991. 

[13] K.N. Stevens, S. Manuel, S. Shattuck-Hufnegel, and 
S. Liu, “Implementation of a model for lexical access 
based on features,” Proc. ICSLP, Banff, Alberta, 1,
499-502, 1992. 



3rd International Workshop MAVEBA 2003, 43-46
© Firenze University Press 2003, ISBN 88-8453-154-3 

Abstract: 

Keywords :  

 

 

Sub ects 
 

Procedure 
 

 



44 MAVEBA 2003

 

 
Statistical analysis of cry features in relation to A  
score  
 

≤

≥

 

≤

≥

≤ ≥



Special session on infant cry analysis 45

≥

≤ ≥

≤

≤ ≥

Crying as a sign, a symptom and a signal.

urs Res

Crying as a sign, a 
symptom and a signal.



46 MAVEBA 2003

Child ev,

Child ev

Curr Probl Pediatr

Child ev

Pediatrics

Clin  Pain

Pain

eonatal etw, 

Arch 
Pediatr

Paediatr Anaesth

 eonatal urs

Crying as a 
sign, a symptom and a signal.

Pediatr Res

BM

Med ng Phys



3rd International Workshop MAVEBA 2003, 47-50
© Firenze University Press 2003, ISBN 88-8453-154-3 

VOCAL IDENTITY - DIFFERENCES AND SIMILARITIES BETWEEN 
CHILDREN FROM CROATIA AND FINLAND 

Natalija Bolfan-Stosic1, Anneli Yliherva2, Graham Welch3

1Dept. of Logopedics, Laboratory for Hearing and Speech Acoustics 
Faculty of Education and Rehabilitation University of Zagreb, Croatia 

2Dept. of  Pediatrics and Adolescents, University Hospital of Oulu and Dept. of Saami, Finnish and Logopedics, 
University of Oulu, Finland 

3Institute of Education, School of Arts and Humanities, 
University of London, United Kingdom 

Abstract: The purpose of the present study was to 
find out if children between 8 and 10 years of age, 
from Croatia and Finland, are (i) able to identify 
appropriate voices from non-appropriate voices 
and (ii) are abusive in their voices. The third (iii) 
aim was to compare girls’ and boys’ vocal identity 
to each other. A structured questionnaire (Bolfan-
Stosic, 2000) was used to investigate the children’s 
voice habits. Results indicated that participant 
children did not differ with regard to country of 
origin. However differences appeared in relation 
to gender. The Croatian and Finnish girls (n=24) 
were better in identification of voice quality and 
vocal abuse compared to the Croatian and 
Finnish boys (n=16). It is suggested that future 
studies should continue to consider cultural 
environment in children’s identification and 
understanding of own voice status. 

Keywords: vocal identity, vocal abuse, pitch, 
loudness, school age, culture 

I. INTRODUCTION

A child’s awareness of his/her own voice 
status and the identification of excitement when 
abusing their own voice is still very little studied. 
Emotions can change child’s vocal timbre, loudness 
and pitch, such as in possible stress situations as non-
regular family settings, school or in some other 
similar environments. Voice is a mirror of human 
emotions, especially in the very formative and 
sensitive period of life – childhood. Vocal abuses in 
children are mostly exampled as screaming, crying, 
speaking too loud or too quietly, speaking too fast or 
too slow, and speaking on the rest etc. Abuse 
happens usually at home, at school or in the 
playground and could have an influence on habitual 
voice characteristics [1]. The researchers of child 
voice conclude that voice  

habits established at an early age may persist into 
adulthood [2]. For example, hoarseness is common 
among school-aged children and may cause severe 
organic changes in the vocal fold [3].  In a study 
published in Finland [4] school-aged children with 
voice disorders had also been given more general 
remedial education than those children with healthy 
voices. It seems important, therefore, to track 
children’s voice habits and to teach them how to 
identify when they are abusing their voices.  

II. METHODOLOGY

In the present study one section of a Vocal 
Identity Questionnaire [5] was employed to study 
participant children’s ability to identify nice and bad
voices. Pictures were used to help the children to 
understand the instructions.  The children’s  vocal 
abuse at home was also studied to find out if the 
child screams or yells a lot at home. The 
questionnaire was translated into Finnish language 
by one of the authors (AY) and then back into 
English to make sure the questions remain 
unchanged.  

The following variables were used in the data 
analyses: 

• ID = identification of differences between 
nice and bad voice 

• LOUD = identification of differences 
between three levels of voice loudness

• PITCH = identification of differences 
between three levels of voice pitch

• VOCABUSE = screaming or yelling at 
home 

Instructions: 

• First the voice teacher sang the vowel a
nicely whilst pointing to the white flower, 
and then badly, this time pointing to the 
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• black flower. The teacher then asks the 
child to listen to how the teacher sings and 
choose one picture that matches the sound. 
The same procedure is followed for the next 
two tasks where each child must recognize 
bad or nice vocal loudness and pitch whilst 
pointing to one of the bells and trees (there 
are three sizes of bells and trees 
corresponding to three levels of voice: loud-
normal-silent and high-normal-low).  

• The children evaluated themselves 
individually concerning whether they liked 
to scream or yell at home. The question is 
extracted from the Questionnaire as a 
variable of vocal abuse at home. 

Data coding variables and statistical analysis: 

ID, LOUD and PITCH: false answer = 1, correct 
answer = 2  

VOCABUSE: positive answer/yes = 1, negative 
answer/no = 2 

The statistical analysis was made by Statistics 
for Windows (version 6.0). The differences between 
girls and boys in the whole sample of Croatian and 
Finnish school-age children were analyzed using t-
tests and Analysis of Variance and correlation 
between girls and boys were computed by the use of  
Correlation matrices.  

III. RESULTS

The results (Table 1) indicate, that there are 
statistically significant differences in ID (i.e. 
identification of differences between nice and bad
voice) between girls and boys. The means also 
demonstrate differences in the LOUD variable as 
well, but these are not significant. Usually girls were 
better than boys (Fig.1). 

Table 1. Differences between the participant girls (N1=24) and boys (N2=16) from Croatia and Finland aged 
from 8 to 10 years in their identification of nice and bad voices (ID), voice loudness (LOUD) and pitch 
(PITCH) 

 Mean1 Mean2 SD1 SD2 N1 N2 t-value df p 
ID 1.80 1.42 .41 .35 24 16 2.41 38 .0210 
LOUD 1.80 1.50 .44 .50 24 16 1.64 38 .1097 
PITCH 1.63 1.50 .50 .83 24 16 .77 38 .4463 

ID = identification of differences between nice and bad voice, LOUD = identification of differences between 
three levels of voice loudness, PITCH = identification of differences between three levels of voice pitch, N 1 = 
girls from Croatia and Finland aged from 8 to 10, N 2 = boys from Croatia and Finland aged from 8 to 10 

0 1 1 2 2

ID

LOUD

PITCH

boys
girls

Fig. 1. Differences between the girls and boys aged from 8 to 10 years in ID, LOUD and PITCH according to 
the means.  
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In Table 2 there is a significant correlation 
shown between boys’ groups evaluations of vocal 
abuse and identification of nice and bad voices and 
also in three levels of voice loudness. In a group of 
24 girls we did not find any corresponding 

significant correlations. But we found statistically 
significant differences between children from two 
countries in three of the four variables which indicate 
identification of differences of the voice quality. 

Table 2. Correlations between Croatian and Finnish boys 
                                            
       ID LOUD PITCH VOCABUSE 
ID 1.00 .38 -.13 .68 
LOUD .38 1.00 .25 .77 
PITCH -.13 .25 1.00 .26 
VOCABUSE .68 .77 .26 1.00 
Significant at level < .05 

In Table 3 the differences between children of 
different ages by country are presented. The 
Finnish children from the oldest group (10 y) were 
best in ID (identification of nice and bad voices) 
compared to the other three groups. Both groups 
from Finland were better than the Croatian groups 
in ID and the younger group (8-9 y) from Finland 

were better in all three levels of LOUD than other 
three groups. The oldest Croatian children (10 y) were 
best in PITCH compared to other groups. Generally, 
the older children performed better in almost all the 
tasks (ID, LOUD, PITCH, VOCABUSE) than younger 
children, regardless of their country of origin. 

Table 3. Differences in ID, LOUD and PITCH between children of different ages from Croatia (G1, G2) and 
Finland (G3, G4).   
     
 ID ID LOUD LOUD PITCH PITCH    
 Mean SD Mean SD Mean SD df F p-value 

G1 1.50 .53 1.30 .48 1.30 .48 3 3.60 .0025 
G2 1.40 .52 1.80 .42 2.00 .00 3 3.60 .0029 
G3 1.70 .48 2.00 .00 1.40  .52 3 5.61 .0053 
G4 2.00 .00 1.50 .53 1.60  .52 3 5.00 .0053 
Significant at level < .05 
G1: children from Croatia age 8; G2: children from Croatia age 10; G3: children from Finland age from 8 to 9; 
G4: children from Finland age 10 

IV. DISCUSSION

The significant difference between participant 
girls and boys were in their identification of nice and 
bad voice.  Even though the girls performed better in 
their identification of nice and bad voices, they tend 
to have more longitudinal voice disorders according 
to the comprehensive Finnish study of school-age 
children [4]. On the other hand, there is also other 
evidence that girls’ maturation is faster than boys’ [6] 
which could be why they have better understanding 
and ability to find differences in different voice 
parameters is discern differences in cultural and 
economical background. Differences between the 
girls from Finland and Croatia and the boys from 
these countries were more significant than the 
cultural differences even though Finland and Croatia 

are very different countries both in cultural and 
economical background.  

The vocal identity develops by the age. The 
youngest children (8 y) may not be aware of their 
voice status and they abuse their voices at home or 
at school. Based on clinical experience, parents 
usually do not pay attention to their children’s 
voices even if the voices are very hoarse.  One 
reason is lack of knowledge. There are very few 
studies of children’s voice disorders and how to 
treat them. There is no some kind of “warning” 
program of vocal hygiene to alarm parents and 
society on different types of vocal abuse. On the 
contrary, voice is for the children more abstract than 
speech. It is easier for them to perceive for example 
singing, rate of speech ( too fast or slow) or 
misarticulations.  
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Children learn speech sounds by listening their 
mother tongue around them. They develop vocal 
identity, too. They have different voice model around 
and they observe, listen and imitate other people’s 
voices. If phoneticians ask themselves if children 
learn to discriminate all sounds very early, the voice 
researches could ask if children establish awareness 
of voice status or vocal identity before voice 
maturation.  

We found statistically significant differences 
between children from two countries in three of the 
four variables which indicate identification of 
differences of the voice quality. Although differences 
between children from these two countries were not 
so big as we expected. Could we find explanation of 
these outcomes in possible higher voice awareness of 
children from Finland? One possible explanation 
could derive from differences in schooling. If school 
provides children with musical education from early 
age, including focused development of voice and the 
development of communication skills, there may be 
greater awareness of appropriate vocal behaviours.  

In the future it could be interesting to study 
voice habits from the linguistic point of view. 
According to the language typological categorization 
the Croatian language belongs to the Indo-European 
languages and especially to the South-Slavic group, 
whereas the Finnish language to the Uralic group [7]. 
The Croatian and Finnish language belongs to 
different typological categories. The former is a 
typical flexion language with many prefixes, suffixes 
and word internal changes, and the latter an 
agglutinative language with many morphemes 
attached to word stem [7]. That difference might also 
be reflected in voice habits. For example the Finnish 
language is very monotonous with little changes in 
pitch, and maybe that is why the Finnish speaking 
children performed worse than the Croatian children 
in discriminating PITCH. These language bound 
features may also impact on vocal identity abilities. 

The results of the present study did not offer 
explicit answer concerning vocal identity differences 
or similarities between the children from two 
cultures. Instead it supported the universal 
phenomenon that girls’ maturation is faster than that 
of  boys’ even in vocal identity.   

V. CONCLUSION

According to the results we conclude that: 
1) Girls were better in ID (identification of nice and 
bad voices) than boys regardless of the cultural and 
economical background, which means that girls’ 
maturation is faster than boys’ in vocal identity. 
2) The Finnish children identify better nice and bad 
voices compared to the Croatian children. 
3) The younger group (8-9 y) from Finland 
identified the best LOUD (loud, normal or silent 
voice).  
5) The oldest Croatian children (10 y) were better in 
discriminating PITCH (high, normal or low voice) 
compared to other groups.  
6) Generally, the older children performed better in 
almost all the tasks (ID, LOUD, PITCH, 
VOCABUSE) regardless from which country they 
come from. In practice the younger children have 
more problems in identifying different voice 
parameters. 
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Abstract: Vocal folds of newborns are 
histologically different from children and adults. 
Reinke’s space is not clearly individualized. As 
shown by Titze, this structure is absolutely needed 
for vocal fold vibration [1]. The hypothesis for 
vocal production in newborn is that the air column 
generates itself the acoustic turbulences (vortex) 
from which the sound merges. Some other possible 
vibrators within the mammalian production 
system include the vocal tract [2].  
Acoustic analysis of excised larynx of 38 weeks-
time dead human foetus was performed. An 
acoustic analysis and a phase portrait were 
calculated on each recorded sample. A newborn 
cry was also recorded with the same DAT. 
Anatomical measurements were performed and a 
virtual model (Gambit) was designed to modelize 
turbulences with vocal folds in phonatory position 
(Fluent 6.0). All data were correlated with those 
obtained by Laser Doppler Velocimetry. 
The fundamental frequency of the sound produced 
by a fixed larynx was higher than those produced 
by fresh sample or newborn. Phase portraits are 
very different in each sample. High-frequency 
whirlwinds were modelized upon each vocal fold.  
Preliminary results suggest that newborn 
phonation is a vortex effect coupled with a 
vibration of supraglottic structures.  
Keywords:newborn,phonation, vocal folds, 
aerodynamic, modelization.

I. INTRODUCTION

As shown by Titze, Reinke's space is absolutely 
needed for vocal fold vibration [1]. So, the hypothesis 
for vocal production in newborn is that the air column 
generates itself the acoustic turbulences (vortex) from 
which the sound merges. Some other possible 
vibrators within the mammalian production system 
include the vocal tract (arytenoid cartilages, 
ventricular folds and epiglottis) [2]. All those 
potential vibrators can be coupled by mechanical or 
aerodynamic forces. So, there is no surprise that 
newborn cry generates nonlinear phenomena [2;3]. 
The aim of this work was to correlate acoustic and 
aerodynamic data, using excised larynx of 38 weeks-
time dead human foetus, and try to understand the 
physiology of newborn phonation. 

II. MATERIAL AND METHODS

Three excised larynx of 38 weeks-time dead human 
foetus were used for the study. They were chosen 
after discussion with pathologist who confirm that the 
cause of death was not a malformation of respiratory 
tract. One of the larynx was included in formaldehyde 
during 6 months to avoid mucosal vibration. The 
other two were “fresh” larynx and supraglottic 
structures were resected in one of them. The three 
organs were hang on the experimental bench of the 
“Audio-phonology clinical laboratory”, a Portex 
tracheal tube 2.5 mm was inserted in the trachea and a 
continue 4 l/mn airflow (corresponding to a 
physiological cry flow) was delivered. A sound could 
be generated with whole larynx (and not with the 
resected sample) and was recorded using a DAT 
(Aiwa DAT HDS1, microphone Sennheiser MKH 20 
P48). An acoustic analysis and a phase portrait were 
calculated on each recorded sample. Airflow was 
“marked” with incense and  a Laser (TSI Model IFA 
600, lengthwave 686nm _red_) was used to perform 
Doppler Velocimetry. A 135.5 mm focus was used 
allowing a 1.84 micrometers fringespacing. 
Laservec software performed calulations. Laser 
position was modified with an electronical control 
system with an accuracy of 1 micrometer. 
A newborn cry was also recorded with the same 
DAT.  
On the other hand, anatomical measurements were 
performed. A virtual geometrical model using 
Gambit software was made. It was then exported to 
Fluent 6.0 software to modelize turbulences with 
vocal folds in phonatory position. 

III. RESULTS

Acoustic datas are summed up with those graphs : 
first the temporal signal, second the Fourier 
transformation, and third the phase portraits. 
Temporal signal shows a "double source" signal on 
newborn cry. Fourier transformation is more 
intersting : it shows a fundamental frequency at 2650 
Hz for the fixed larynx, a fundamental frequency at 
725 Hz for fresh larynx. In the newborn cry sample, 
we can see a main frequency at 1000 Hz with its 
harmonics and another one around 2500 Hz which 
can be the result of  another source.  portraits shows a 
"noise" aspect for fixed larynx, a "neurological" 
aspect (very similar to those we found in Parkinson 
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disease voices) for excised fresh larynx and a 
deterministic chaotic attractor for newborn cry.  
Laser Doppler Velocimetry shows that speed (in blue) 
and turbulence intensity (in pink) profiles are really 
different in larynx with (left) and without (right) 
supraglottic structures. 
Modelization of whirlwinds was validated by Laser 
Doppler Velocimetry. So, we extracted calculated 
data to determine whirlwind frequency. This last was 
closely correlated to frequency found in excised fixed 
larynx. 

IV. DISCUSSION

All those results seem to show the importance of 
supraglottic structures in newborn phonation as 
shown by the impossibility to produce a sound when 
supraglottic structures are resected. Vocal folds 
generate a turbulence which probably induce 
supraglottic vibration. Vorticity by itself doesn’t 
explain voice generation but remains contributing to 
the voice signal as shown by the acoustic data.  
Laser Doppler Velocimetry and virtual model 
calculated by Fluent  software shows higher speeds 

at the anterior part of larynx. Objective measures 
performed confirm the validity of the virtual model.  
Further works are in process to try to establish the 
role of each supraglottic structure in newborn 
phonation. Others aerodynamic studies and models 
are still in process. 
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Figure 1 : Temporal signals, Fourier transformations and phase portraits represented in a 3 dimension space (3 
axis) of recorded samples 
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Figure 2 : Laser Doppler Velocimetry of larynx with (left) and without (right) supraglottic structures 

Figure 3 : Geometrical modelization of trachea and larynx with Gambit software 
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Figure 4 : Whirlwinds modelized with Fluent software (velocity fields in X and Z axis) 
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Abstract: In this paper, we are interested in mul-
tichannel speech denoising in the context of mobile
communications. The conventional method exploits
the “similarity” between the avalaible observations in
the sense of the coherence function, measured in the
Fourier domain. In this work, we alleviate the limita-
tions of this approach by assessing the coherence func-
tion in the Modulated Lapped Transform (MLT) do-
main. Indeed, the MLT allows to take into account
the local statistics of the underlying speech signal. Ex-
perimental simulations indicate the outperformance of
the proposed method w.r.t. the conventional method:
some distortions are reduced and the intelligibility is
enhanced.

I. INTRODUCTION

In order to guarantee a satisfactory quality and security,
mobile communications systems offer the functionality of
hands-free telephone. To this respect, several microphones
(and, loudspeakers) are placed inside the car and, hence,
several measurements of the speech signal are available
[1]. However, these signals are very often, corrupted by
noise (reverberation effects, echo, motor and wheels noise,
. . . ). Therefore, it is required to denoise the multichan-
nel observations. The most conventional denoising method
consists in exploiting the inter-channel “similarities”. Very
often, the retained similarity measure is the Coherence
Function (CF) [2], computed in the frequency domain [3].
Recently, an improved noise reduction procedure has been
achieved thanks to a coherence function calculated in the
Wavelet Transform (WT) domain [4]. In this work, we
are interested in investigating a more efficient denoising
method in the WT domain. To this regard, our contribution
is two-fold. Firstly, by analyzing phoneme by phoneme the
reconstructed signal, we emphasize the inadequacies of the
conventional frequency approach. Secondly, we propose to
compute a time-localized CF in order to take into account

the phonemes nature. More precisely, the time axis is split
thanks to the Modulated Lapped Transform (MLT) [6, 7].
This paper is organized as follows. In Section 2, we de-
scribe the background of our work. In Section 3, we
present the proposed denoising method. In Section 4, some
experimental results are given and some conclusions are
drawn.

II. BACKGROUND

2.1. Observation model

Two microphones record the speech signal s uttered by
the speaker during N0 instants. As a result of background
noise, the observation xm at time n, registred at the m-th
sensor is:

xm(n) = s(n)+ bm(n), n = 1, . . . , N0, m = 1, 2 (1)

where bm is the realization of the noise at microphone m,
assumed to be a zero-mean, wide-sense stationary process,
decorrelated from s. Furthermore, if the microphones are
separated by a large distance, the processes bm are as-
sumed to be mutually decorrelated. It is worth noting that
all the observations contain the same clean component. It
is obvious that such simplified observation model holds
only after a suitable delay-compensation [8].

2.2. Principle of two-channel denoising

A denoising procedure consists in estimating s from the
available registrations. The nonstationarity of the obser-
vations is handled by a frame-by-frame approach. More
precisely, the whole record set is split into overlapping
frames each one being of size N and in the sequel, we
will denote xm(l, n) the n-th sample of the l-th frame
(n = 0, . . . , N−1). Generally, the first step of a multichan-
nel denoising method consists in passing from the temporal
space to a suitable transform domain (of variable u). As a
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consequence, the temporal observations are mapped into
coefficients Xm(l,u) through a reversible linear transform
T :

{Xm(l,u)}u
�
=T [{xm(l, n)}N−1

n=0 ], m = 1, 2. (2)

Obviously, the transform T is expected to generate coef-
ficients whose processing is more tractable than the direct
processing of the temporal samples. Usually, the transform
T is taken as the Short Term Fourier Transform (STFT)
and u is the frequency variable. In [4], the wavelet trans-
form was also chosen as a T transform and, hence, u is
a time-scale variable. The principle of multichannel de-
noising consists in exploiting the similarities between x1

and x2. The temporal correlation is discarded because it
is not implicitly carry frequency information since it is not
possible to discriminate between signals with different fre-
quency components. This is the reason why the coherence
function C has been introduced:

C(l,u)
�
=

ΓX1X2(l,u)√
ΓX1X1(l,u)ΓX2X2(l,u)

, (3)

where ΓX1X1 , ΓX2X2 and, ΓX1X2 denote respectively the
auto- and cross- power spectral densities of X1 and X2. At
this level, it is worth noting that a common update of the
spectral densities is made in a recursive way:

ΓXmXm′ (l,u) = λΓXmXm′ (l − 1,u)
+(1 − λ)Xm(l,u)Xm′(l,u)∗

(4)
where (m, m′) ∈ {1, 2} and λ is a forgetting factor, em-
pirically set by the user. If |C(l,u)| is close to 0, the l-th
frame of coefficients consists of noise and it has to be sup-
pressed. More precisely, the average of the observation
coefficients is filtered as follows:

Ŝ(l,u) = |C(l,u)|
(

X1(l,u) + X2(l,u)
2

)
. (5)

Then, the inverse transform T −1 is applied to the pro-
cessed coefficients Ŝ in order to derive the estimate ŝ in
the time domain.

III. PROPOSED METHOD

3.1. Motivation

As mentioned previously, the STFT is usually chosen as
the T transform. However, this conventional method
presents some limitations. Our first contribution is to stress
these limitations by analyzing the temporal variations of
the denoised signal. In our experiments, the sentence “this
day, the chicken leg is a real dish,” uttered by a male
speaker, sampled at 8 kHz is considered (N0 = 32768).

The two observations are obtained by adding artificial
noise at each channel. In each frame (N = 256), the
registred signal is weighted by a Hamming window (over-
lapped at 66.67%). In spite of high values of the Signal-to-
Noise Ratio (SNR) obtained with very noisy environments,
a residual noise, commonly known as “musical noise”, re-
mains in ŝ during the (informal) perceptual tests. More
precisely, in [9], it has been noted that the amount and the
quality of noise reduction both depend on the phoneme
type: voyels are correcly enhanced but the voiced occlu-
sive phonemes, the fricative phonemes of short duration
and low magnitude are poorly reproduced. During pause
intervals, a modified background noise persists and it ham-
pers the listener. The objective of this work is to avoid as
much as possible, such artifacts. We aim at processing dif-
ferently the observation according to the phoneme type. To
this purpose, the transform T should provide coefficients
that are well localized in time and frequency in order to
take into acount the phoneme instants and the spectral fea-
tures. The Modulated Lapped Transform (MLT) performs
firstly an appropriate temporal segmentation then a local
Fourier analysis and it is an appealing tool since it offers
a flexibility in the choice of the intervals according to the
signal structure. For example, long (resp. small) inter-
vals could be envisaged for the stable (transition) parts of
a phoneme.

3.2. Proposed modification

In each channel, the whole registred sequence (of size N 0)
is subdivided into subblocks of length K . A MLT is ap-
plied to each subblock k as a transform T . The variable of
the transform domain consists of the block index k and the
frequency variable f : u = (k, f). It amounts to a wavelet
transform with the basis function pk(f, n) given by:

pk(f, n)
�
=

√
2
K

wK(n) cos[
π

K
(f +

1
2
)(n+

K + 1
2

)], (6)

where wK is the analysis window and the time index varies
from n = 0, . . . , 2K − 1 and the frequency index f varies
from 0 to K − 1. The window wK(n) is set so as to ensure
a maximum DC concentration:

wK(n) = − sin[(n +
1
2
)

π

2K
]. (7)

In the practice, the data xm are preprocessed : the over-
lapping parts if the window wK are folded back into the
interval then the standard fast discrete cosine IV algorithm
is used to calculate the expansion. More precisely, the re-
sulting coefficients Xm (m = 1, 2) can be expressed as
follows:

Xm(k, f) =
2K−1∑
n=0

pk(f, n)xm(k, n). (8)
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Once the coefficients Xm computed, the CF is consid-
ered for each block k of size K . Although a MLT pro-
vides a complete representation of the analyzed signal, it
is not time-invariant. As a consequence, the estimation er-
ror could be sensitive to the positions of the discontinu-
ities in the signal and, the reproduced signal could exhibit
Gibbs phenomena. Therefore, it is recommended to ap-
ply a Translation Invariant (TI) MLT [10]. It consists in
applying the proposed denoising procedure to the shifted
observation, for any feasible shift. Then, all the resulting
estimates are averaged over all the shifts.

IV. EXPERIMENTAL RESULTS

Performance criteria should be defined for a fair compari-
son between several denoising methods. Ideally, the qual-
ity of the reproduced signal ŝ should be assessed through
psycho-acoustical tests. In the practice, these perceptual
tests have a prohivitive cost because of the required spe-
cialized equipements. As a consequence, several objective
criteria have been defined [5]. In this paper, we will con-
sider the gain G (in dB) in term of SNR. However, in very
noisy environments, high values of G could eventually be
achieved but, at the cost of a great alteration of the spec-
tral features of s. Thus, it is recommended to use distances
that control the frequency content of the estimate ŝ as the
cepstral dcep, the Itakura dI and, the Itakura-Saito dIS dis-
tances.
In our simulations, we have used two test signals. The
first set (denoted set I) corresponds to the sentence de-
scribed in Subsection 3.1, which was artificially corrupted
and Monte-Carlo simulations were performed. The second
set (denoted set II) is a real speech sequence recorded by
two microphones distant from 5 cm placed in a Volvo car,
moving at 90 Km/h. The noise level is very high w.r.t. the
clean signal.

4.1. Local analysis

Table 1 indicates that the global gain G increases with the
size block K . This fact corroborates the relevance of the
time-frequency localized analysis performed by the MLT.
Besides, the improvement is considerable during the si-
lence parts (which form 40% of the whole record) since a
gain of around 9 dB is achieved whereas the average value
of the global gain is 3.5 dB. A finer analysis of Table 1 indi-
cates that the spectral alteration is more limited for differ-
ent values of K according to the considered phoneme. As
a result, we will retain the value K = 128 since it provides
a good tradeoff between the precision and the preservation
of the spectral content.

4.2. Global performances

Figure 1 provides the evolution of G versus the initial SNR
(average observation SNR) for the test set I (K = 128). It
clearly shows that an IT MLT is more advantageous than a
time-variant one whatever are the initial values of the SNR.
It can be noted that our method outperforms significantlty
the classical method. The latter becomes inappropiate for
weakly noisy environments on the contrary of the proposed
approach. However, slight improvements are obtained in
term of spectral alteration as shown in Figure 2.
Concerning real sequences (test set II), spectrograms are
considered in Figures 3-5. It is worth pointing out that
the denoised signal by the classical method is affected by
a musical noise (especially in the silence intervals). The
amount of such noise is reduced by the MLT-based ap-
proach. Another compelling of the proposed technique is
the dramatical enhancement of speech components.

4.3. Conclusion

In this paper, we have proposed a denoising method based
on a coherence function computed beteween the coeffi-
cients of the modulated lapped transform. The outperfor-
mance of this method in term of gain and residual musical
noise are very encouraging. Further investigations should
consist in selecting the wavelet basis according to an ap-
propriate criterion.
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Fig. 1. Test set I: resulting gain G (dB) vs the initial SNR
for all considered methods (block size K = 128).
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Fig. 2. Test set I: resulting dIT vs the initial SNR for all
considered methods (block size K = 128).
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Fig. 3. Test set II: spectrogram of the average observation
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Fig. 4. Test set II: spectrogram of the denoised signal by
the conventional method.
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Fig. 5. Test set II: spectrogram of the denoised signal by
the IT MLT based method (K = 128).

Table 1. Test set I: performances of the IT proposed
method with the block size K for SNRinit,1 = 8dB and
SNRinit,2 = 6dB.

K 512 256 128 64 32
G 2.82 3.30 3.69 3.79 3.88

whole dcep 10.49 9.91 9.45 9.30 9.34
set dI 0.61 0.60 0.58 0.57 0.59

G 0.45 1.15 1.56 1.42 1.25
“e” dcep 0.080 0.069 0.065 0.062 0.061

dI 0.227 0.183 0.131 0.143 0.192

G 6.1 7.89 8.52 8.65 8.63
“th” dcep 4.03 3.318 3.195 3.217 3.37

dI 1.873 1.997 2.155 2.053 2.126

G 2.766 3.03 3.09 3.37 3.88
“g” dcep 4.149 3.876 3.6 3.44 3.202

dI 1.723 1.532 1.639 1.594 1.471

G 8.46 9.11 9.43 9.56 9.6
silence dcep 32.98 31.5 30.72 30.87 31.16

dI 0.377 0.39 0.4123 0.44 0.53
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Abstract: In this paper, we describe the
implementation of three noise estimation algorithms 
using two different wavelet decomposition methods:
Second-generation and Perceptual wavelet packet 
transform. The three-presented algorithms are: (a)
smoothing based adaptive noise estimation, (b)
quantile based noise estimation and (c) minimum
variance tracking-based noise estimation These
algorithms, which do not need a speech activity
detector nor signal statistics learning histograms, are 
based on estimating the noise power from the noisy
speech itself. The performance of presented 
algorithms has been evaluated and compared for
different noise types and levels. A new robust noise
estimation technique utilizing a combination of the 
quantile-based and smoothing based algorithms has
been proposed. Reported results demonstrate how
these algorithms are capable to track different noise
types adequately but with varying degree of accuracy.

I. INTRODUCTION

Reliable noise estimation remains a challenging
problem in different speech enhancement systems.
Accurate instantaneous noise power estimation is crucial
for the success and robustness of any single-channel
speech enhancement system. Over the last few years, 
various noise estimation techniques have been proposed
and their performance evaluated. These include
techniques that are based on tracking the minima of the
noise power [1,2], and those, which utilize a quantile
computation algorithm [3-4]. Although efficient, all these
techniques involve relatively high computational
complexity.
   Three different noise estimation algorithms are
considered in this paper: (a) an adaptive technique with a 
smoothing parameter that depends on the estimated
subband signal-to-noise ratio (SNR) [5]; (2) a one-pass
quantile-based technique [6]; and  (3) a technique that is 
based on tracking the minimum variance of the subband
noisy signal [7], are considered. First, we describe the
implementation of these three algorithms using two signal
representation schemes that provide different resolutions.
The first is based on the application of second-generation
wavelet transform (SGWT) [8,9], and the second is based
on critical-band motivated perceptual wavelet packet
decomposition (PWPD) [10]. We then propose a new and
robust wavelet-based noise estimation technique that is

based on combining the best features of algorithms (1) 
and (2). This is then followed by performance evaluation
of all the above four-noise estimation techniques using a 
variety of speech signals distorted by different types of
noise. The evaluation has been affected by using an 
objective assessment measure based on the average
relative error between the true and estimated noise.

Wavelet-Based Noise Estimation Techniques for speech enhancement

E. Jafer, A. E. Mahdi
1Department of Computer and Electronic Engineering, University of Limerick, Limerick, Ireland

II. WAVELET-BASED SPEECH SIGNALS DECOMPOSITION

A. Second Generation Wavelet (SGWT)

Wavelet functions are traditionally defined as the
dyadic translates and dilates of one single mother wavelet
function. Such wavelet decomposition requires a regular
mesh and unbounded domain. Therefore, such
decomposition works well for infinite or periodic signals,
but special adaptations of the basis functions near the
boundaries are required in order to handle non-periodic
boundary conditions, which are often encountered in 
natural speech. The second generation wavelet transform
(SGWT) have been introduced to provide such
adaptations as well as maintaining other powerful
properties offered by classical WT such as time-
frequency localization, multi-resolution and fast 
implementation [8].  The basic idea behind the second-
generation wavelet is to first split a signal x(n) into an 
even set, {x (n): n even}, and an odd set, { x (n): n odd},
by predicting the odd signal from the even part. What is 
missed by the prediction is called the detail. The even
samples are then adjusted to serve the coarse version of 
the original signal. The adjustment is needed to maintain
the same average for the fine and coarse versions of the 
same signal. The above process can be summarized as
follows (see Figure 1): 1) Split data: even and odd, 2)
Predict odd using even: detail = odd  P (even) and 3)
Update even using detail: Coarse=even + U (detail).
The inverse transform can be easily constructed by
"rewiring" the forward transform. As illustrated in Fig.1,
the process of computing a prediction and recording the
detail is called a lifting step. In general, the lifting scheme
speeds up the implementation as compared to the case of
classical WT. All operations within one lifting step can
be done in parallel while the only the sequential part is 
the order of the lifting operations, resulting in an adaptive
wavelet transform . 
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Figure 1. Representation of the forward and inverse
SGWTs.

B.  Perceptual wavelet transform 

As widely used in perceptual auditory modelling, we 
utilise a wavelet packet decomposition (PWPD) scheme
which designed to represent the critical bands of a given
speech signal. The scheme, which was first proposed by
Black and Zeytinoglu [9], is based on an efficient 6-stage
tree structure decomposition using 16-tap FIR filters 
derived from the Daubechies wavelet function, and
provides for an exact invertible decomposition. For
speech signals sampled at 8 kHz, this decomposition
results in 18 critical bands.

III. DESCRIPTION OF THE NOISE ESTIMATION ALGORITHMS

A brief description of the three different noise
estimation algorithms and their wavelet-based
implementation are given in this section. In what follows
we assume that y(n) represents a band limited and 
sampled noisy speech signal, consisting of a clean speech 
signal s(n) and a noise signal w(n), such that y(n) = s(n)
+ w(n). The noisy speech is first decomposed into a
appropriate number of bandpass signals, yi(n), where i
denotes the subband index, using either the SGWT or the
PWPD, then framed using an appropriate sliding window.
Also,  will be used to denote the estimated

noise power (or noise variance) at frame p.

}{ˆ 22
iw wE

i

A. Adaptive smoothing-based noise estimation

In this technique, the noise and speech are assumed to be 
independent signals and that the noise power changes slowly.
This adaptive noise estimation technique is based on the use of
a smoothing parameter that is controlled by the estimated
subband posteriori SNR [5]. The subband noisy signal power

(or variance), , is estimated on a frame-

by-frame basis using [5]:
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where   is the estimated noise power calculated at

frame p, and N is the size of the frame. Similarly, the subband 
noise power is estimated using:

)(ˆ 2 p
iy

 (2) 

)(ˆ))(1()1(ˆ)()(ˆ 222 ppppp
iii yiwiw

where  is the estimate of subband noise power at 

frame p using a smoothing parameter, 
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for each frame p using the following formula: 
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B. Quantile-based noise estimation

A one-pass noise estimation algorithm is considered
here. After decomposition, each subband noisy signal is
framed into frames of length Lframe. Let Lwin > Lframe be the
length of a finite window observation of yi(n), ranging
from 200ms to 2000ms. The method involves first sorting
the previous set of data over the last
frames

M
1,,0),( win

p
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 in an ascending
order of their values according to the requirement of the
quantile-based approach [6]. The noise power in the ith
subband of the pth frame, , is then estimated as:
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Where  is an appropriate scaling factor and q = 0.2.
Here, Lframe and Lwin are chosen to be equal to 32 ms
and 512 ms, respectively, with the frames overlapped
by 50%.

C. Minimum variance tracking-based noise estimation

   The variance in this algorithm can be estimated on a
frame-by-frame basis, since both the noisy signal and the
noise are considered to be stationary over a short period
of time, such that. The noisy signal variance, , for

each band is calculated as:
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where
1

0

22
, )(1)(

N

k
inewy kpNy

N
p

i
 (7)

is the most recent approximation of the noisy signal
variance using the new data at frame p. The parameter i

is a smoothing factor chosen as 0 .95.045. i

The noise estimate is updated such that 
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C. New noise estimation technique

Based on the modification of the quantile-based method
and the addition of a smoothing parameter presented in 
Section 3.1, a new adaptive noise estimation technique is
proposed here.  The new technique proceeds as follows.
The noise power in the ith subband of the pth frame, ,
is estimated as in the standard quantile-based method
(Eq.5). This estimate of the noise power is considered
here to be equivalent to the   average of the noise
estimates used in eq.3. Based on this, a smoothing factor,

2ˆ
iw

i(p), is then introduced such that:
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Where  is the noise power in the ith subband
of the pth frame as calculated by using (Eq.5). As will
be discussed in Section.4, our experimental results
have shown that in most cases setting =1 and =0.5
result in the best performance of this new noise
estimation technique.

2
,quantilew

IV. PERFORMANCE EVALUATION

The performances of the given algorithms were 
evaluated on different speech signals sampled at 8 kHz,
as acquired from the TIMIT database.  The distorted
speech frames are overlapped by 50% and different types
of noise have been used to test the four noise estimation
techniques using the SGWT. The noisy speech signals

were decomposed into 6 bands (details) using the dB(7-9)
wavelet filter [8], and each of the four techniques was
then used to estimate the added noise. The real (solid
line) and estimated noise for band 2 of the decomposed
signal (0.5-1 kHz) resulting from each technique is shown
in Fig.2, for the cases of Pink noise. The second part of
the evaluation process deals with the perceptual wavelet
decomposition. Fig.3 shows the real and estimated noise
for band 8 of the decomposition, for the case of White
noise. In Fig’s 2 and 3, (a) corresponds to the adaptive
smoothing-based method, (b) quantile-based method, and
(c) the minimum variance tracking-based method. Also,
in (a), (b) and (c), a dashed line is used to mark the
estimated noise, while in (d) a dashed line is used to mark
the noise estimate obtained by a quantile-based method
and a dotted line for that obtained by the proposed
method.

To provide an objective performance measure, we also
calculated the average relative error factor in the
estimated noise defined as:

p w

wiw

frame i

i
pp

N
ARE 2

22 )()(ˆ1
(12)

Where Nframe represents the number of frames in the
test signal. Using this factor, tables 1 and 2 illustrate the
performance of the four presented noise estimation
techniques for one SGWT subband (band 3 for the
SGWT case and band 7 for the PWPD) over different
SNRs. Here, T1, T2, T3 and T4 refer to the first, second,
third and the proposed noise estimation techniques in the
sequence presented in Section 3.    It is obvious from this
evaluation that all the four techniques considered here
demonstrate capability in tracking various types of noise,
but their performance accuracy varies depending on the
rate of change of the noise under test. The minimum
variance tracking-based method seems to offer the best
performance in tracking the average noise variation. On
the other hand, the adaptive smoothing-based method
noise can track rapid changes of stationary and non-
stationary noise depending on the value of smoothing
parameter. Presented results also demonstrate that the
performance of the quantile-based noise estimation
method was improved when combined with the adaptive
noise estimation method, as proposed in our new noise
estimation technique. In particular, significant
improvement was achieved by the proposed method for
cases of speech signals of relatively low SNRs. The
presented noise estimation methods are of clinical interest
and can be employed to track the level of noise from
pathological speech signals.

For pathological voices, accurate estimated noise 
spectrum gives a good indication to the degree of the
perceived hoarseness.



64 MAVEBA 2003

Table 1: Average relative error ARE in band-3
WT for the four noise estimation methods.SG

V. CONCLUSION

Table 2: Average relative error ARE in band-7
PWPD for the four noise estimation methods.

Figure.2: Real and estimated noise using SGWT-
based   noise estimation with Pink at -5dB

a

b

c

d

Table 2: Average relative error ARE in band-7
PWPD for the four noise estimation methods.

The problem of wavelet-based noise tracking has been
investigated in this paper using two different decompositions
and three noise estimation approaches. The performance of
these approaches have been evaluated and compared under 
different noisy conditions. Our results demonstrate that all three
algorithms are capable of tracking both stationary and non-
stationary noise, but with varying degree of accuracy depending
on the level and rate of change of the noise under consideration.
Reported results also show that by modifying the standard
quantile-based algorithm, a new adaptive and robust noise 
estimation method with relatively superior performance to the
above three techniques for cases of high additive noise, can be 
achieved.

REFERENCES

[1] Rainer, M., "An efficient algorithm to estimate the
instantaneous SNR of speech signal '', Proc.
Eurospeech'93, pp. 1093-1096, 1993.
[2] Rainer, M, "Noise power spectral density estimation
based on optimal smoothing and minimum statistics '',
IEEE Trans. Speech and Audio Proc., 9(5): pp. 504-512,
2001.
[3] Stahl, V., A. Fischer, A, and Bippus, R., ” Quantile
based noise estimation for spectral        subtraction and
weiner filtering”, ICASSP’2000, Istanbul, 40: pp. 1875-
1878, 2000.
[4] Evans, N., and Mason, J., "Time-Frequency quantile–
based noise estimation", Proc.EUSIPCO 2002.
[5] Lin, L., Holmes, W., and Ambikairajah, E.,"An
adaptive noise estimation algorithm from speech
enhancement", Proc. Australian Conf. on Speech Science
and Techno. Melbourne, 2002.
[6] Qiang, F. and  Eric, W., ” A novel speech
enhancement system based on wavelet  denoising”,
Technical Report, OGI, School of Science and 
Engineering, Oregon,  2003.
[7]  Lin, L., Ambikairajah, E., and Holmes, W.," Speech
enhancement for nonstationary noise environment", Proc.
Asia-Pacific Conference APCCAS '02, 1: pp.177-180,
2002.
[8] Daubechies, I. and Sweldons, W.," Factoring wavelet
transforms into lifting steps", J. Fourier Analy. Appl.;
4(3): pp. 247-269, 1998.
[10] Black, M., and Zeytinoglu, M.,"Computationally

efficient wavelet packet coding of wide-band stereo audio 
signals", Proc. ICASSP'95, 3075-3078, 1995.

ARE-WHITE NOISESNR
T1 T2 T3 T4

10 2.56 2.20 0.47 2.30
5 0.9 0.66 0.46 0.87
0 0.43 0.47 0.50 0.31
-5 0.25 0.61 0.42 0.20

a

b

c

d

Figure.3: Real and estimated noise using PWPD-
based noise estimation with AWGN noise at -5dB

ARE-PINK NOISESNR
dB T1 T2 T3 T4
10 4.88 2.43 0.24 3.41
5 1.60 0.65 0.24 1.18
0 0.56 0.29 0.22 0.45
-5 0.23 0.58 0.20 0.18
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Abstract: This paper is concerned to the noisy speech 
HMM modelling when the noise is additive, speech 
independent and the spectral analysis is based on sub-
bands. The internal distributions of the noisy speech 
HMM’s were derived when Gaussian mixture density 
distributions for clean speech HMM modelling are 
used, and the noise is normally distributed and 
additive in the time domain. In these circumstances it 
is showed that the HMM noisy speech distributions are 
not Gaussians, however, fitting these distributions as a 
Gaussian mixture, only a little bit of loss in 
performance was obtained at very low signal to noise 
ratios, when compared with the case where the real 
distributions were computed using Monte Carlo 
methods. 

I. INTRODUCTION 

In the western languages the intonation does not make 
part of the linguistic message, so a very fine detail in 
frequency is not necessary concerning to speech 
recognition applications, becoming the signal envelope of 
the most importance. Therefore some spectral components 
are frequently grouped, for example by sum and each 
group is known as sub-band.  

Recently the importance given to the field of 
environmental/speaker adaptation has been increased in 
part to the difficulties in the obtaining of a feature 
extraction method sufficiently robust against these types 
of speech variability. The contemporary adaptation 
algorithms are mostly based on the MLLR algorithm [1], 
which can’t be able to separate speaker mismatch from 
environmental (additive and convolutional) mismatch. 
Alternative approaches can deal separately with an 
additive noise model and a convolutional noise model in 
both stationary [2] and non-stationary [3] noise conditions 
in order to separate these two types of distortions. 
However these algorithms are essentially based on 
cepstrum based features, which contributes to increase 
significantly the computational load once that a mapping 
between the cepstral and linear domains is required. In [4] 
[5] it is suggested that a proper spectral normalisation can 
be more useful than the cepstrum derived features in the 
noisy speech modelling, while [6] proposes an incremental 
adaptation algorithm based on spectral derived features. 
The next step is to investigate the drawbacks of using a 
gaussian mixture to model the internal distributions of the 
noisy speech HMM’s when using power spectral density 

based features jointly with additive noise in the linear (not 
cepstral) domain. This is the purpose of this paper.      

II. NOISE AND NOISY SPEECH STATISTICS 

The use of continuous observation density in HMMs is 
not restricted to the use of Gaussian mixtures. Although 
some restrictions must be placed on the form of the model 
probability density function (pdf) to ensure that the 
parameters of the pdf can be re-estimated in a constant 
way, any log-concave or elliptically symmetric density [7] 
can be used.  

Typically the clean speech features are modelled as a 
Gaussian mixture and generally the existing speech 
recognisers perform well in clean speech conditions. In 
noisy conditions the performance degrades in part due to 
inaccuracies in noise modelling, given that in some 
situations the noise is artificially generated thus, known. 
Using power spectral density features and Gaussian 
distributed additive noise strong evidences exist that the 
noisy speech distribution can’t be Gaussian. In fact if the 
noise is Gaussian distributed in the time domain it is well 
known from the statistics theory that it becomes 
exponentially (chi-square with two degrees of freedom) 
distributed in the power spectral density domain, which is 
the feature domain where the distribution of the noisy 
speech must be computed. Additionally, as usual, some 
power spectrum density components have to be grouped 
anyway (in our case by sum) in order to reduce the feature 
vector dimensionality, which will also be taken into 
consideration in the obtaining of the noisy speech 
statistics.  

An exponential distribution of parameter  is defined by 
the following probability density function 

)(1)( xUexf
x

x   (1) 

where U(x) is the unit step function. The exponential 
distribution is characterised by the fact that its mean is 
equal to its standard deviation, which is equal to . So, the 
periodogram distribution of a white noise Gaussian 
stochastic process with zero mean is a white noise 
exponential stochastic process with zero mean and =N 2,
where 2 is the signal variance and N the signal length. 
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Supposing HMMs with Gaussian sources then the clean 
speech y has a Gaussian mixture distribution where the 
distribution of each component of the mixture is given by 

2

2

2
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2
1)( y

yy

y
y eyf (2) 

Let y=(y[0], …,y[N-1])T, x=(x[0], …,x[N-1])T and 
z=(z[0], …,z[N-1])T be, respectively, vectors of clean, 
noise and noisy signals. If the noise is additive, y[n] is 
given by 

nxnynz , n=0, …, N-1. 

The autocorrelation function of the noisy speech can be 
obtained from the autocorrelation functions of the clean 
speech, the noise the respective cross correlation as 
follows

mnznzEmzz *)(
*mnymnxnynxE

mnynxmnxnxE **
mnynymnxny **

mnynxEmnxnxE **
mnynyEmnxnyE **
)()()()( mmmm yyyxxyxx

As the noise is speech independent, the two processes 
are non-correlated, so the cross-correlations in the above 
equation are null. Consequently the autocorrelation 
function of the noisy speech is simply the sum of the 
autocorrelation functions of the clean speech and noise.  

Let Y=(Y(0), …,Y(K-1))T, X=(X(0), …,X(K-1))T and 
Z=(Z(0), …,Z(K-1))T denote, respectively, vectors of 
spectral components of clean, noise and noisy signals. As 
the Fourier transform is a linear operation and the power 
spectral density is the Fourier transform of the 
autorrelation sequence, then for additive noise, and 
considering the analysis window too large the next 
expression holds 

222 )()()( kXkYkZ

Accounting to the nature of the speech signal 
2)(kY

in the above equation does not represent the true 
autocorrelation sequence of the speech once that the 
autocorrelation sequence of an autoregressive process is 
theoretically infinite. The segment analysis truncates the 
autocorrelation sequence. However, as this occurs in both 
the test and training and the autocorrelation of the noise is 
finite the above equation stays approximately valid. 

Therefore each component of the clean speech 
distribution generates jointly with the Gaussian noise a 
noisy speech distribution component (z) given by  

dyyfyzUyzfzf yxz )()()()(  (3) 

In reference [8] it is proved that the solution for the 
above integral is 
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where erf stands for error function which is defined by 
the integral 

dtexerf
x

t

0

22)(   (5) 

For high SNRs equation (4) roughly fits the Gaussian 
distribution given that the noise distribution approaches 
the impulse function.  

Figure 1 shows the difference between equation (4) and 
the Gaussian function for =2, 10, 50; mean of the 
Gaussian equals to 10 and variance equals to 100, 
therefore simulating a SNR=0 dB when =10.  

For high noises the noisy speech distribution is clearly 
non-Gaussian and so, the noisy speech distributions have 
to be changed from Gaussians as usually used, to the 
function defined by equation (4).  

By analysing in the sub-bands context the HMMs for 
clean speech model the sum of  n power spectral 
contiguous components, instead of only one power 
spectral component. Therefore, the solution for the noisy 

Figure 1. Distribution of the clean and noisy 
speech for =2, 10 (SNR=0dB), 50. 
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speech sub-band distribution can be obtained from 
equation (4) taking into account that the means and 
variances in each model must be divided by n, once that 
they model the sum of n random variables with Gaussian 
distribution and all with the same parameters. Therefore 
equation (4) holds for the noisy speech distribution, and it 
would still be necessary develop the distribution of the 
sum of n random variables each one with the distribution 
given by equation (4).  

An easier and equivalent solution is to develop the 
probability density function of the sum of n exponential 
distributed random variables as shown in equation (1) and 
perform the convolution of this function with a Gaussian 
function which models the sum of n power spectral 
components of the clean speech. 

Reference [8] shows that the distribution of the sum of n
random independents and identicaly distributed (according 
equation (1) variables is 
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Equations (2) and (6) allow to derive the probability 
density function as usual by convolving the two 
probability density functions  
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The above integral is difficult to calculate due to the 
term xn-1 where n is of the order of more than ten, once 
that the recognition systems nowadays use observation 
vectors dimensionality from tipically ten to forty (with 
dinamical characteristics) thus, much smaller than the 
normally used as FFT length.  

III. APROXIMATED DISTRIBUTION OF THE NOISE AND 
NOISY SPEECH 

By using the Central Limit theorem equation (6) can be 
approximated by 
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The nature of the Central Limit theorem approximation 
and the required number of variables for a specified error 
bound, depend on the form of the densities of the summed 
random variables. For most applications a number of 30 
random variables is adequate, however, for smooth 
distributions a number as low as 5 can be used. In our case 
we have 16 random variables and no smooth distributions 
thus, a considerable difference between the real and 
approximated function can be expected. This difference is 
shown in figure 2 for =10. However, in real situations 
is greater, (order of 107 at 10dB), the variance is in order 
of the square of  and the function defined by equation (8) 
fits best to the function defined by equation (6), what is 
expected by the inspection of figure 2.  

Under this approximation the noisy speech distribution 
(equation (6)) becomes 
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given that the convolution between two Gaussian 
functions is still a Gaussian function which mean and 
variance are equal to the sum of the initial means and 
variances, respectively. 

IV. EXPERIMENTAL RESULTS 

The loss in performance due to the using of equation (9) 
instead of equation (7), which was computed by numerical 
integration (exact method), was tested in an Isolated Word 
Recognition system using Continuous Density Hidden 
Markov models. The database of isolated words used for 
training and testing is from AT&T Bell. The used speech 
was acquired under controlled environmental conditions 
band-pass filtered from 100 to 3200 Hz, sampled at a 6.67 
kHz and analysed in segments of 45 ms duration at a 
frame rate of 66.67 windows/sec. Only the decimal digits 
were used. The noise has white noise characteristics, is 
speech independent and computationally generated at 
various SNR as shown in table 1. The goal is to compare 

Figure 2. Approximation of the sum of 16 
random i. i. d. variables with =10, by a 
Gaussian.
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the performance of the proposed approximation, exact 
solution and contemporary speech robust features. Some 
of these robust features are the OSALPC (One-Sided 
Autocorrelation Linear Predictive Coding), the 
conventional cepstrum with liftering (CEPS + liftering) 
and the well known MFCC (Mel-Frequency Cepstral 
Coefficients). In table 1, MMC stands for conventional 
Markov model composition in the power spectrum density 
domain by using the suggested approximation while NI 
stands for the numerical integration. Table 1 shows that 
the suggested approximation is as effective against 
additive white noise as the exact solution except for very 
low signal to noise ratios (-5db), where the loss in 
performance is even so very low. In both cases the noise 
parameters were learned from the periodogram method in 
a data segment of 100ms without speech. On the first six 
entries of the table 1, all the features are 8 static, energy 
and dynamic features excepting * (12 static + energy + 
dynamics) and ** (13 static + energy + dynamics). 

Table 1 – Performance of the proposed approximation 
SNR (dB) 15 10 5 0 -5 
LP 56.5 39.5 30 16.25  
OSALPC 98.25 92 65.75 32.25  
CEPS * 97.5 95 72 34.5  
+liftering 98.25 95 75.25 39  
MFCC ** 97.75 94.75 72.25 37.5  
OSALPC* 98.5 96.25 74.25 32.5  
MMC 98 96.75 92.5 91 78.5 
NI 98 96.75 92.5 91 80.25 

V. DISCUSSION 

The main advantage of using spectral based features 
instead of cepstral based features is the decreasing of 
computational load given that the mapping between the 
linear and cepstral domains becomes not necessary. In 
fact, as the noise is considered additive in the linear 
domain and the features adaptation is performed in the 
cepstral domain, a mapping from cepstral to linear domain 
and then an inverse mapping from linear to cepstral 
domain are needed (Parallel Model Combination). This 
decreasing in computational load is particularly important 
on environmental/speaker incremental adaptation where 
recently some effort has been made in order, for example, 
to separate speaker mismatch from environmental 
mismatch or adapting to non-stationary additive noise 

situations where the channel distortion is stationary. This 
situation requires training, of the combined HMM’s of the 
clean speech and noise, on the recognising speech 
(incremental adaptation) which becomes more easy if the 
internal distributions remain Gaussians. Additionally a 
proper spectral normalisation [4][5] can be more effective 
concerned to speech modelling than the cepstral based 
features, at least for some types of noise.  However, the 
main drawback associated with cepstral based features is 
related with the difficulty in the modelling of speech 
dynamics. In fact the adaptation of the dynamic 
coefficients is not possible, although some approximate 
solutions have been suggested. 
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Abstract: Voice hoarseness is mainly related to airflow 
turbulence in the vocal tract. It can be due to vocal
fold paralysis, polyps, cordectomisation or other
dysfunction, which alter regular speech production,
and is commonly treated as a noise component in the
speech signal. A denoising approach is proposed,
based on low-order singular value decomposition
(SVD) of matrices whose entries come from sampled
speech data frames, properly organised. A prototype
DSP board implementing the procedure was
developed. Objective quality indexes are proposed,
showing the results achieved with the proposed
method both on vowel and consonantal sentences.
Keywords: SVD, hoarse voice, DSP, continuous speech, 
real-time

I. INTRODUCTION

This paper deals with the problem of enhancing voice
quality for people suffering from dysphonia. This can be
due to vocal fold paralysis, cordectomisation or other
dysfunction, which alter regular speech production and
commonly cause more efforts to be used in speaking than 
for healthy people. Objective speech quality measures are 
reliable, easy to implement and have been shown to be
good predictors of subjective quality [7], [16]. The main
goal of the system presented here is to realise a mobile
hardware/software system for real-time voice denoising,
to obtain a more intelligible speech with small effort. The
method is based on the singular value decomposition
(SVD) of matrices whose entries come from sampled
speech data frames, properly organised [1]. SVD is
widely used for speech enhancement, mainly to improve
the performance of speech communication systems in a
noisy environment [2], [3], [4]. For the present
application, a fixed two-dimensional signal subspace
dimension was found sufficient for data filtering, thus
allowing real-time implementation. Objective quality
measures (PSD ratios, SNR) are defined and evaluated, in 
order to assess enhancement of voice and compare
results. The proposed approach was implemented on a
DSP board, by means of properly optimised C and
Assembler code. Thus, a simple portable device could be 
realised, as an aid for dysphonic speakers for diminishing 
effort in speaking, which is closely related to social
problems due to awkwardness of voice. 

II. DENOISING WITH SVD

The SVD is a numerically reliable and robust means
for estimating the space of clean data (signal subspace)
from the white noise corrupted data, and is thus
particularly suited for speech denoising [1], [5], [6], [7],
[8]. Despite its simplicity, the SVD approach was found
effective in increasing voice quality. Extensive
simulations were performed and detailed results are
reported in [9], [10]. This paper aims at testing the
method on continuous speech, to evaluate its performance 
on consonantal sounds mixed to vocalic ones. Moreover,
in order to measure performance, some simple objective
quality indexes will be introduced and evaluated. 

III. QUALITY MEASURES

Extensive research has been carried out in developing
both subjective and objective tests to ascertain quality,
but few results are available as far as correlation among
them is concerned [16]. In the following, some indexes
are proposed, closely related to the signal characteristics.
In this work it is assumed that “harmonic” range means

frequencies below kHzfth 4= , while “noise” range

indicates frequencies over this threshold. This threshold
is an empiric choice based on analysis of various speech
signals; we are currently tuning it using a wider dataset.
The subscript “non-filt” refers to the original signal,
while “filt” refers to the SVD-filtered signal. The
simplest measure is:

(1)

filtPSD

filtnonPSD

1010logPSD −=

representing the ratio of the PSDs, evaluated on the
whole frequency range;
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measures the ratio of the PSDs evaluated on the
“harmonic” range, while

)3(
)kHz4f(PSD

)kHz4f(PSD
log10PSD

filt

filtnon
10high ≥

≥
= −

is the ratio of the PSDs, evaluated on the “noise” range. 
A good denoising procedure should give PSD and

PSDlow values around zero (no loss of power), but high
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vocalic sounds) is taken out from the whole sentence,
giving good results. Fig. 4 shows very good values both
for the PSD on the whole frequency range (PSD=0.9 dB), 
and especially for the low and high frequency ranges
(PSDlow=0.941 dB; PSDhigh=22.041 dB), and
correspondingly a SNR value near to 11 dB (SNR=
11.094 dB). Fig. 5 confirms these results, being
comparable to those in Fig.1.

V. HARDWARE/SOFTWARE IMPLEMENTATION

The software development tool integrates a C
compiler/linker and the DSP/BIOS firmware for
implementing a basic kernel with run-time services [11].
The SVD algorithm is implemented by means of a two-
step procedure: first, the data matrix A is bi-diagonalised
applying a sequence of Householder reflections; second,
A is made diagonal using a modified QR algorithm [12-
16]. The criteria adopted to implement the hardware
platform are:

− High processing performance.
− Low power consumption/Low cost.

The board is supplied with analog front-end, capable to 
accept the audio signal as input and to furnish the output
processed signal at the output stereo jack. The DSP-based
board allows to process signals in the 0-48kHz
bandwidth. For further details see [17]. The developed
hardware was tested with real data in order to reach the
real-time processing requirements. 

VI. FINAL REMARKS

A simple approach for enhancing voice quality in
dysphonic subjects is proposed. The method applies SVD 
for data filtering, separating the clean signal from its
noisy component. The denoised signal is reconstructed
along the directions spanned by the principal eigenvectors 
of the signal subspace. For filtering purposes, the best
choice was found that of picking only the two dominant
eigenvalues, thus resulting in a low-cost procedure,
suitable for on-line implementation on a DSP board. The
tests with whole sentences, as well as voiced sounds only,
show that this method is suitable both for sustained
vowels analysis and for portable application devices.
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Abstract: In this paper we propose a new method of
speech signal restoration based on a well-known fast
deconvolution algorithm and a modern neural
network approach. Such a combination inherits the
adaptive capability from a neural network as well as
the effective inverse filter calculation. According to
our expectations, the experimental results reveal the
fact that the new method is superior to the
traditional ones.
Keywords: Neural network, signal restoration, fast
inverse deconvolution

I. INTRODUCTION
There are a number of reasons, which lead to the speech
corruption, for example, a vocal tract pathology or
pronunciation deficiencies. An efficient reconstruction
of such a signal helps to understand and increase the
quality of further signal processing. The reconstruction
of digital signals can be reduced to the search of a filter,
which is inverse to the one that causes the distortion [1],
[2]. If the value of the impulse response is known, the
distorted signal can be reconstructed with absolute
accuracy [2], [3]. There are several different iterative
and non-iterative methods for solving the inverse
filtering problem (with or without noise) [2]. A neural
network filter can solve this problem, but the training
phase requires a lot of computation time in order to
archive the minimum. There is an efficient fast filtering
algorithm for inverting linear convolution by means of
sectioning method combined with effective real-valued
split radix fast Fourier transform algorithm [4], [5]. In
this paper, our purpose is to combine the adaptive
capability of neural network for the specification of
impulse response of the distorting effect and calculation
power of fast deconvolution algorithms for a signal
reconstruction.

II.NEURAL NETWORK FOR THE SPECIFICATION

OF THE DISTORTION EFFECT

The model of the restoration filter, showing Fig.1, is
composed of two components.

Neural
Network -

Fast
deconvolution

algorithm Restored
signal

Etalon
signal

Input
signal

Fig. 1. The restoration structure.

One component is neural network, and another is fast
deconvolution algorithm. Neural network estimates the
impulse response of the distortion effect. The impulse
response could be used for vocal tract pathology
diagnostic or pronunciation deficiency classification.
Then we use fast deconvolution algorithm for the signal
restoration. Difference between standard signal and
restored one is used as the training data for the neural
network.
A feed-forward three-layer neural network structure can
be used to identify the distortion function showing
Fig.2.

Fig. 2. The structure of a multi-layered neural network
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In a most simple case, a feed forward neural network is
specified by the following expressions  [6]:
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where x is the vector of input data, w is the weights
coefficients of the neural network, f is neurons
activation functions. Sigmoid is typically used as
activation function:
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 The w parameters are determined by means of teaching
the neural network, i.e. minimizing the functional
suitable for the problem being solved.  While building
the neural network approximation of a certain function
U = U (x) according to the final number of its samples
(x, U) with p = 1,…,P , the optimization of the difference
between the output values of the neural network and the
sampled values of the function being modeled takes
place as a certain norm, for example:
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The given problem is solved with the help of standard
optimizing methods.

III. FAST RESTORATION ALGORITHM OF
DIGITAL SIGNALS

A known overlap-add method is taken as a basis of
this algorithm. This method is used for the direct
problem - filtering. We will consider the digital filtering
of signals by inversion of an LC of the form:

y h x m N Mm m n n
n

m

= = + −−
=

∑ , , ,..., ,0 1 2
0

(4)

where xn is the incoming one-dimensional signal, ym is
the distorted signal and hn is the impulse response
which describes a linear FIR-filter. Since the direct
method of inverting cyclic convolution (CC) matrix
(circulant) seldom gives positive result (there are zeros
in Fourier spectrum of impulse characteristics), the
relationship of circulant and triangular Toeplitz
matrices, which always have inverse matrices, is

investigated. According to the proposed approach [3],
[4], [5], triangular Toeplitz matrices of LxL size are
complemented to the LC matrices of (2L-1)xL size.
Then the LC matrices are transformed to the square
matrices of CC of 2Lx2L size by complementing them
with zeros.

 The algorithms based on calculating triangular
Toeplitz matrices by means of twice the dimensions can
be written as follows [3], [4], [5]:

(1) for i= 1 we compute a 2L-point CC of the form
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(2) for i ≥ 2 we form the (N-1)-point sequence
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The computational complexity of algorithm (3)-(5) is
given by expressions:

M(R) O((6log L 12 L 5)R),2= + − (6a)
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A(R) O((18log L 20 L 9)R),2= + − (6b)

which  show a gain over the initial algorithm  [7], the
computational complexity of which is characterized by
relations :

M(R) O( . (L 2 )R),= +125 5 (7a)

A(R) O(1.25(L 2 8 /(5L))R)= − + . (7b)

Thus, despite the view held by the author [7], the cost
of solving inverse filtering problems using inversion of
an   LC   by   sectioning   [2],[3],[4]   is  reduced  by
using  FFT  algorithms (in this case, the real-valued
split-radix FFT (RFFT-SR) algorithm [1],[2] one of  the
best).  As a result we comes to the matrix of CC two
times larger in size then the initial Toeplitz one, but it
can be calculated on the basis of effective fast
algorithms.

The proposed fast inverse convolution algorithm for
reconstructing distorted signals by sectioning the
inverse convolution and using the RFFT-SR algorithm
was programmed. A computer experiment was
performed in which distorted sequences of P=1024-
4096 readings were reconstructed, using impulse
responses of various lengths (N=65, 129, 257, 513
elements). When impulse response is quite long (N
≥257), the signal is reconstructed 1.6 times faster on
average by the proposed algorithm than with the
approach based on the algorithm of [7]. The advantage
is especially pronounced when the sequence is fairly
long, of length (P≥2048).

IV. CONCLUSION

In this paper, a new approach of neural network filter
combined with the fast algorithm based on the
sectioning   method  and  the  efficient   real-valued FFT

algorithm has been proposed. The filter reduces the
training time in contrast to traditional neural network
filters. Moreover, this filter possesses adaptive
capability than the traditional inverse filters.
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Abstract: Demand of IP telephone is increasing more and
more as broadband IP network is being commonly used by
many people. In VoIP, packet loss concealment (PLC) is one
of the key subjects to keep speech quality since packet loss
occurs in IP network. PLC methods based on Linear Pre-
dictive coding (LP) method have been proposed in which LP
coefficients and LP residual are repeated to recover speech
corresponding to the packet loss. However the repetition
would not perform well in any speech frames. This paper
presents a novel PLC method based on time-varying speech
analysis and synthesis, in which AR parameters can be pre-
dicted owing to its time-domain function of AR parameter.
Three kinds of AR parameter prediction methods by means
of time-varying analysis are evaluated subjectively and ob-
jectively and novel PLC scheme switching the AR prediction
methods with respect to F0 prediction gain is proposed.
Keywords: VoIP, PLC, Time-varying speech analysis

I. INTRODUCTION

Recently broadband IP network becomes to be commonly avail-
able, consequently VoIP (Voice Over IP) is being paid attention
more and more since IP telephone makes it possible to cut a cost
for telephony. In best effort type of IP network packet loss oc-
curs due to transmission error, packet collisions, or so on while
PSTN network keeps its quality. In VoIP, accordingly packet
loss concealment (PLC) scheme is required to keep quality of
transmitted speech. Several PLC algorithms have already been
proposed[1][2][3][4][5][6]. These can be categorized into the
following four types. (1) Waveform for the last correctly re-
ceived frame is repeated on the packet loss frame[1][2]. (2) Lin-
ear Predictive coding (LP) analysis is carried out with decoded
PCM speech and the residual is calculated on the last correctly
received frame. On the packet loss frame speech is recovered by
filtering with the repeated LP coefficients and residual[3][6]. (3)
Speech coding parameters on the last correctly received frame
are used to compensate the LP coefficients and excitation on the
packet loss frame[4]. (4) Special transmitted codes are defined
to be robust against the packet loss[5].

(1) is low-complexity method and can be realized easily.
However discontinuity of speech occurs on frame boundaries.
Although (3) is commonly used, it depends on speech coding
algorithm. On the other words it can not be applied to other
speech coding algorithms. (4) determines all of packet form.
Hence, it can not be applied to other speech coding methods as
well. (2) is coder independent and maintains backward com-
patibility. However, the LP coefficients repetition would not
always perform well for any speech frames.

We are interested in type (2), namely low delay and
receiver-based PLC method which operates decoded PCM
speech and can be applied to any speech coding and adds no
algorithmic delay.

In this paper, new receiver-based PLC scheme using time-

varying speech analysis is proposed. Time-varying speech
analysis methods estimating the parameter sample by sam-
ple have already been proposed[7][8]. On the other hand
complex-valued speech analysis for analytic signal has al-
ready been proposed[9][10]. Analytic signal is complex-
valued signal. These methods can achieve more accurate
spectral estimation due to the attractive feature of analytic
signal. However, these can not extract time-varying feature
from speech signal. We have already proposed time-varying
complex AR (TV-CAR) speech analysis methods for analytic
signal[11][12][13][14][15][16].

In these TV-CAR speech analysis methods, AR parameters
are modeled by complex basis expansion as a function of time.
These methods can estimate the parameters for each sample on
the analysis interval as well as can predict the parameters for
each future sample. This feature may perform well for PLC. To
compensate the parameters on packet loss frame, the estimated
parameters at last sample on last correctly received frame and
the parameters on current packet loss frame predicted by the
analysis parameters on the last frame can be utilized. Hence,
it is expected that these can realize better quality of recovered
speech than LP coefficients repetition.

II. TV-CAR SPEECH ANALYSIS

A. Speech production model
In time-varying complex AR analysis, target signal is an ana-
lytic signal defined as in Eq.(1). Analytic signal is complex-
valued signal whose real part is observed speech signal and
imaginary one is Hilbert transformed signal of real part.

� � � � � 
 � � � � � � � � � � � � �� � (1)

where � � � � � , � � � � , and � � � � � denote an analytic signal at time� , an observed signal at time � , and a Hilbert transformed signal
for the observed signal � � � � , respectively. Since analytic signals
provide the spectra only over the range � � � � � , analytic signals
can be decimated by a factor two. In Eq.(1), analytic signal is
divided by the term of

� � in order to adjust the power of an
analytic signal with that of the observed one.

Speech production model, viz. time-varying complex AR
(TV-CAR) model is defined as follows.

� �� � � � 
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where � � � � � , � �� � � � , � , � are complex-valued input, complex
AR parameter, AR order, order of complex basis expansion, re-
spectively.


 �� � � � is any kinds of complex basis function, such
as complex Fourier basis


 �� � � � � � � � � � � � � �
or first order poly-

nomial


 �� � � � � ! # 
 �$ � � � � � . Complex parameter & �� ( �
is esti-

mated for each frame and AR parameters for each sample are
calculated by Eq.(2). Moreover, by using Eq.(2) one can not
only estimate AR parameters for each sample, especially cen-
ter sample or last sample of the frame but also can predict AR
parameters for future sample due to the function of time.

B. MMSE algorithm
MMSE-based TV-CAR speech analysis[11] is adopted to pre-
dict AR parameters for packet loss frame. It is expected that
complex analysis can realize better speech quality for wide-
band speech coding such as[17] due to twice band width of an-
alytic signal. However it is difficult to realize Hilbert transform
on the following correct frame after the packet loss frame. In
this paper, PLC method is constructed by using the real-valued
MMSE algorithm for observed real-valued speech signal.

III. PLC METHOD

Proposed PLC scheme treats AR parameters and excitation
separately. Fig.1 shows block diagram of the proposed PLC
method.

On correctly received frame decoded PCM speech is ana-
lyzed by AR analysis and residual is calculated and then the pa-
rameters and residual are stored in buffer. AR synthesis is car-
ried out to generate the speech with AR parameters and residual
in this frame.

On packet loss frame AR parameters and excitation are pre-
dicted by the stored parameters and residual calculated on the
last correctly received packet. AR synthesis is carried out to re-
cover the speech on packet loss frame using the predicted AR
parameters and excitation.

 AR analysis Inverse Filtering  AR filter

AR parameter

Excitation
Prediction

Excitation

AR parameter 
Prediction

) * , - / 1 2 , 3 1 *

AR parameter

4 , 6 7 8 9 , ; <
Buffer

Buffer Buffer

 AR filter

Excitation

Fig.1: Block diagram of PLC algorithm

A. Prediction method of AR parameter
In LPC method, LP coefficients on last correctly received
packet are repeated to predict the coefficients on packet loss
frame[3][4][6].

The following three kinds of AR parameter prediction
methods using MMSE-based time-varying speech analysis are
proposed.

1. Prediction method(1): AR parameter estimation at last sam-
ple on the last frame

Time-varying analysis can estimate the AR parameters for each
sample. AR parameters at last sample on the correctly received
frame can be estimated by Eq.(2). It is thought that the param-
eters at last sample are more similar to those on next frame. In
the prediction method (1), the parameters estimated at the last
sample by Eq.(2) are used for the parameters on next packet loss
frame.

2. Prediction method(2): AR parameter prediction at the cen-
ter sample on packet loss frame

Time-varying analysis can predict the AR parameters in future
due to the time-domain function of Eq.(2). In the prediction
method (2), the parameters predicted by Eq.(2) at the center
sample on packet loss frame are used.

3. Prediction method(3): AR parameter prediction at each
sample on packet loss frame

In the prediction method (3), the parameters predicted by Eq.(2)
at each sample on packet loss frame are used.

B. Prediction of excitation

Excitation is predicted by repeating the residual of the last
correctly received frame with the last fundamental period for
voiced frame and frame length for unvoiced frame, respectively.
In order to avoid unnatural sound amplitude of excitation is re-
duced to 80 %.

C. Synthesis

On correctly received frame as well as on packet loss frame AR
synthesis is done to generate speech signal in order to keep the
filter state updating. On packet loss frame bandwidth expan-
sion is operated by using Eq.(4) to avoid unnatural sound as
well. AR parameters are linear-interpolated over LSP between
frames.

� > � � � � � � � � � � � @ B D F � � � H � ! # L # B B B # � � (4)

IV. EXPERIMENTS

The proposed PLC methods are compared with two conven-
tional methods, waveform repetition and LP coefficients rep-
etition.

A. Analysis Condition

Five kinds of PLC algorithms shown in Table 1 are evaluated.
Method(0) is the PLC method repeating speech with the last
fundamental period for voiced frame and with frame length
for unvoiced frame. Analysis conditions for each analysis are
shown in Table 2. Analysis order � is 14 for both methods. In
time-varying analysis order of expansion � is 2 and first order
polynomial is adopted as a basis function.

Speech data are 8 N O Q S T sampled sentence data converted
from ATR database data, whose speakers are male /MYI/ and
female /FKN/. Packet length is set to be L @ N V X � Y T . Speech
analysis length Z and shift length [ are set to be the same as
packet length. Packet loss is generated randomly at ! @ ] .

Table 1: PLC method

Speech Analysis AR Prediction

Method (0) Repetition
Method (1) LPC Repetition
Method (2) Time-varying analysis Prediction method(1)
Method (3) Time-varying analysis Prediction method(2)
Method (4) Time-varying analysis Prediction method(3)

Table 2: Analysis Conditions
Speech Analysis � � Z N V X � Y T [ N V X � Y T

LPC 14 - 20 20
Time-varying analysis[11] 14 2 20 20
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B. Predicted spectra

Fig.2 shows the predicted spectra by proposed AR predic-
tion methods and LP coefficients repetition. (a) shows the
speech waveform /ruge/ without packet loss. (b) shows the
speech waveform /ruge/ with 2 packet losses, (4800,4960) and
(5600,5760). Amplitude corresponding to the loss frames is
zero in (b). (d) and (h) indicate the estimated spectra by LPC
and time-varying speech analysis, respectively. (c),(e),(f),(g) in-
dicate the predicted spectra by means of method (1),(2),(3),(4),
respectively. In (c),(e),(f),(g), the predicted spectra are plotted
on the loss frames and the estimated spectra by speech analysis
are plotted on the other frames. Note that linear-interpolation
over LSP is done on frame boundaries. Spectra are being plotted
every � � � � � � 
 � 
 � . Fig.2 suggests that proposed AR prediction
methods are suitable for stationary voiced frame and not suit-
able for unvoiced frame while LPC method manages to predict
appropriate parameters for unvoiced frame.
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(h) Estimated spectra by method(4)(time-varying analysis)
Fig.2: Estimated and predicted spectra

C. Listening test

In order to evaluate five kinds of PLC methods preference test
is organized. Listeners are 5 adult males and 5 adult females.
5 sentences uttered by male speaker and 5 sentences uttered
by female speaker are used. Listeners select their preference
for each pair sentence. The number of pair sentence is 250
which includes same sentence pair generated by the same PLC
method. Fig.3 presents the selected number for each method.
Fig.3 demonstrates that LPC method (LP coefficients repetition)

can achieve best recovery than other PLC methods. The reason
why the proposed methods are not superior to LPC method is
that the proposed methods can predict inappropriate AR param-
eters for unvoiced frame although the proposed methods can
predict appropriate AR parameters for voiced frame, as shown
in Fig.2.
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Method(3) Method(4)
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Fig.3: Selected Number

D. Spectral distance

Spectral distance between AR parameters estimated by speech
analysis and AR parameters predicted by the speech analysis
parameters on the last frame with four kinds of PLC method(1)-
(4) is calculated. Speech analysis conditions are the same as in
Table 2.

Fig.4 shows 14-th order LPC cepstral distance for method
(1) to (4). In Fig.4, solid line, dotted line, dashed and dotted line
and dashed line denote the distance for method(1),(2),(3),(4),
respectively. X-axis denotes frame number in future and Y-axis
denotes cepstral distance. 10 sentences uttered by male speaker
and 10 sentences uttered by female speaker are used. Fig.4
demonstrates that LPC method can predict more suitable AR
parameters than other methods. It can be expected that the pro-
posed methods can achieve better prediction for voiced frame,
especially for stationary voiced frame. Therefore, speech frame
is classified into 4 modes by using the following F0 prediction
gain � � .

� � � � � � � � ! #
$ & !'( ) $ + - / 1 2 4 -

$ & !'( ) $ + - / 1 2 4 - 6
78 $ & !'( ) $ + - / 1 2 4 / 1 2 6 < # 4

=> -
$ & !'( ) $ + - / 1 2 6 < # 4 -

(5)

where A B C E , F and G H are speech signal at time C on the last
frame, frame length and estimated fundamental period on the
last frame, respectively. Modes are classified into 4 by criteria
shown in Table 3.

Table 3: Mode Selection
Unvoiced or � � K � mode 0 Unvoiced

2 L � � K � mode 1 Voiced
5 L � � K N mode 2 Voiced� � O N mode 3 Voiced

Mode 0 means unvoiced mode. Mode 1 to 3 mean voiced mode
and mode 3 is the stationary voiced mode.

Fig.5 shows 14-th order LPC cepstral distance for each
mode in next frame. In Fig.5, each bar means the distance for
mode 0, mode 1, mode 2, mode 3, and average from left to
right, respectively. Fig.5 demonstrates that method (2) achieves
better prediction than LPC except for mode 0. Method (2”)
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is similar to method (2) in which AR parameters estimated at
center sample on the last frame are used as the recovered pa-
rameters. Method (2”) offers best prediction for mode 0 while
method (2) offers best prediction for mode 1 to 3. We can ex-
pect that switching of method(2) and method(2”) with respect to
voiced or not may achieve better prediction than LPC method.
The prediction methods for future sample, method (3) and (4)
can not achieve good prediction. The reason is that predicted
length is too long. In method (3) parameters at 10 � � � � � � of
future sample are predicted and in method (4) parameters for
20 � � � � � � of future samples are predicted. In order to examine
the limitation of the prediction in future, spectral distance from
10 to 80 sample in future are calculated. The results are shown
in Fig.6. In Fig.6, solid line, dotted line, dashed and dotted line
and dashed line denote the distance for mode 0,1,2,3 and av-
erage, respectively. Fig.6 demonstrates that in mode 3 better
prediction is accomplished and the limitation of prediction is
40 sample(5 � � � � � � ) in future while appropriate AR parameters
can not be predicted in mode 0, 1, 2. By taking these facts into
account, we can conclude that switching of method (2) and (2”)
with respect to voiced or not may achieve better prediction than
LPC. The method (3) and (4) may achieve better prediction of
parameter in only mode 3 up to 5 � � � � � � in future.
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According to informal listening test the switching PLC
method achieves better recovery for packet losses than LP coef-
ficients repetition.

V. CONCLUSIONS

This paper has proposed receiver-based PLC algorithms based
on time-varying AR analysis. Three kinds of AR prediction us-
ing time-varying analysis have been proposed and evaluated by
using listening test and spectral distance. Novel PLC methods
in which AR prediction is switched with respect to mode for the

last frame have been proposed. According to informal listening
test the novel PLC method achieves better speech recovery. For-
mal listening test is continuous way.
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Abstract: To better integrate disabled persons is 
a continuous aim in a modern 
society. For handicapped people, robots are 
used to support the personal freedom and 
provide more convenience. These robots need to 
be controlled by voice which requires a reliable 
working speech recognition system.      
Therefore, algorithms that can improve the 
quality of speech and thus support the detection 
of the speech information are highly desirable.

This paper introduces a hardware 
implemented and optimised Adaptive Noise 
Canceller (ANC), which can be utilised in 
speech detection devices to reduce the noise 
intensity of the speech to be recognised. In 
addition, it can also be used to improve the 
speech quality in information transfer systems. 
The evaluation results show how the circuit is 
able to reduce the unwanted components within 
a speech signal and therefore, the system is able 
to increase the speech quality. Furthermore, any 
prior knowledge of the surrounding 
environmental properties is not needed.
Keywords: Noise Cancelling, LMS, VLSI 

I. INTRODUCTION

This paper describes the VLSI hardware 
implementation of an Adaptive Noise Canceller 
(ANC) which is able to filter an input speech signal 
to provide noise reduced output speech. To achieve 
this goal, the digital filter, which is the main 
section of the ANC, needs to adjust its frequency 
response continually to the changing conditions of 
the surrounding environment. Therefore, an update 
functionality must be introduced. This functionality 
is based on the Least Mean Square (LMS) 
algorithm [1]. The method of least mean square 
adaptive filtering takes advantage of the quasi – 
periodic nature of the speech signal to form an 
estimate of the clean speech signal at time t. This 
estimation is derived from the value of the signal at 
time t-T which represents the actual time shifted by 
one estimated pitch period. The principle of this 
method is shown in Figure 1. To describe this 
approach, some considerations have to be taken 
into account. In practice, an a priori knowledge to 
adjust the filter response is not available. The 
output of the FIR filter used for this 
implementation is given by 

L

i
i Tinxbny

0
)()(  (1) 

where x is the noisy speech signal, L is the filter 
order and T is the analysed pitch period for the 
speech signal. The bi represent the filter 
coefficients updated sequentially according to the 
LMS algorithm. The filter provides an estimate of 
the clean input signal y(n). One possibility to 
extract the necessary reference from the input 
signal is to estimate the additive noise during the 
silent speech segments when only the noise occurs. 
The problem is, that noise is rarely stationary and 
the detection of silence speech parts is not error 
free. In addition, this method can not be applied for 
quantisation noise. The difficulty of forming a 
reference noise signal is solved by extracting a 
reference signal from the original speech xs(n). Due 
to the quasi periodic nature of speech, a section of 
speech delayed by its pitch period x(n-T) is highly 
correlated to the original speech xs(n) but 
uncorrelated to the additive noise xn(n). The 
derivations of [1] describe that by minimising the 
energy of the estimation error e(n), the output of 
the filter, and consequently the system output will 
be a signal y(n) that is the best least square fit of 
the input speech signal xs(n). As can be seen in (2), 
the error signal is defined as the difference between 
input signal and estimated filter output. 

)()()( nynxne  (2) 

This error signal is used to update the filter 
coefficients and thus to adjust the filter response.

Tnnn Xnebb )(21  (3) 

Each coefficient bn+1 is updated using the 
corresponding present coefficient and a correction 
term which is formed by the filter tap values shifted 
by the pitch period (Xn-T), the estimation error and 
the step size µ. This factor controls stability and 
rate of convergence. The ANC starts with an 
arbitrary coefficient vector, the algorithm 
converges in the mean and will remain stable as 
long as the parameter  is greater than zero but less 
than the reciprocal largest eigenvalue max of the 
matrix R [1].  
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Figure 1: Adaptive Filtering Approach 

The correct pitch period of the input speech is 
extracted using the Average Magnitude Difference 
Function (AMDF) [6]. This function was chosen 
because no multiplications are performed and thus, 
lower area and power consumption can be 
achieved.  In addition, a voiced / unvoiced 
classification was implemented [2] which is based 
on a short term energy determination, zero 
crossings count and a min / max ratio calculation of 
the values within an AMDF frame. This 
classification functionality is used to bypass the 
filter until the first estimated pitch period and to 
keep the filter coefficients constant during 
unvoiced sections of the speech. 

II. IMPLEMENTATION

For the hardware implementation the ANC was 
split into different modules with separate 
functionalities. They were implemented using the 
ES2 ECPD 0.7µm CMOS technology. All designs 
were written in abstract VHDL and synthesised 
using the Synopsys Design Compiler without any 
design constraints. Figure 2 shows a block diagram 
which describes the structure. The ANC consists of 
two main sections, the Pitch Detector [2] and the 
Adaptive Filter [3]. It uses the incoming speech 
samples to provide the noise reduced output signal. 
Two different clock frequencies are used, an 8kHz 
clock to read in the input samples and a clock 
frequency of 22MHz to perform all the necessary 
calculations within one slow clock period. The 
filter order was chosen to be 10 and its coefficients 
are represented by a 23 bit vector to ensure 
sufficient accuracy of the filtering process. A 
converter was implemented to change the default 
two’s complement number system to a signed 
magnitude system. This procedure lowers the 
amount of switching in the Adaptive Filter section 
and thus it reduces the power consumption.   
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Figure 2: Block Diagram of the ANC 

III. SYSTEM PERFORMANCE & RESULTS

The performance of the Adaptive Noise Canceller 
is demonstrated and benchmarked using noisy 
synthetic speech signals which were filtered by the 
ANC. The synthetically produced input signals that 
were used are a vowel ‘A’ with a fixed pitch 
frequency of 125Hz and a real speech phrase “Her 
wardrobe consists of only skirts and blouses” with 
variable pitch frequencies as well as voiced / 
unvoiced sections. The formant frequencies which 
form the vowel ‘A’ are f1=730Hz, f2=1090Hz, and 
f3=2440Hz. All signals are distorted by White 
Gaussian Noise (WGN) and have a signal to noise 
ratio (SNR) of 5dB to 10dB. The results of those 
tests are presented in Figures 3 to 12. The 
magnitude spectra of a noisy and filtered vowel 
(after detecting the pitch and convergence of the 
adaptive filter) with a SNR of 10dB are shown in 
Figures 3 and 4. For reasons of clarity, they have 
been normalised and only the range from 0 to 0.5 is 
presented. It can be seen that the filtered version 
retains the spectral shape of the input signal with 
the formant frequencies remaining prominent. 
Hence, the perceptual characteristics of the signal 
are, in the main, unchanged. Furthermore, the noise 
component is reduced in the filtered signal, being 
particularly noticeable in the higher frequencies 
from 2000Hz to 4000Hz where it is nearly 
completely reduced. However, in the region 0Hz to 
1500Hz, although the adaptive filter manages to 
reduce the noise, remnants of the noise component 
and some attenuation of the lower harmonics can 
be observed. 
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Figure 3: Enlarged Spectrum of a noisy Vowel ‘A’ with 
Pitch Freq. 125Hz and SNR=5dB

Figure 4: Enlarged Spectrum of a filtered Vowel ‘A’ 
with Pitch Freq. 125Hz and SNR=5dB

Figure 5: Spectrogram of a noisy Vowel ‘A’ with Pitch 
Freq. 125Hz and SNR=5dB

Figure 6: Spectrogram of a filtered Vowel ‘A’ with 
Pitch Freq. 125Hz and SNR=5dB

Figure 7: Spectrogram of a noisy Vowel ‘A’ with Pitch 
Freq. 125Hz and SNR=10dB

Figure 8: Spectrogram of a filtered Vowel ‘A’ with 
Pitch Freq. 125Hz and SNR=10dB

Figure 9: LAR Distance Measure Result, Pitch=125Hz, 
Input Signal SNR=5dB

Figure 10: LAR Distance Measure Result, 
Pitch=125Hz, Input Signal SNR=10dB

Figure 11: Spectrogram of noisy   Synthetic Real 
Speech, SNR=10dB

Figure 12: Spectrogram of filtered Synthetic Real 
Speech, SNR=10dB



86 MAVEBA 2003

Figures 5 to 8 show the performance from the 
spectrogram perspective of the distorted signal and 
of the filtered signal respectively. Again, the 
figures show clearly that the noise component of 
the higher frequencies 2000Hz to 4000Hz is well 
reduced but that in the region of 0Hz to 1500Hz 
some noise remains and the harmonic attenuation 
persists over time. Thus, it must be concluded that 
the filter reduces the noise component while not 
significantly changing the perceptual characteristic 
of the speech signal. Figure 9 and 10 present the 
corresponding results of applying the Log Area 
Ratio (LAR) distance speech quality measure [4] to 
the distorted and filtered signals. This measure is 
based on finding a set of Linear Predictive 
Coefficients (LPC) for each frame of the 
distorted/filtered speech signals and the original 
clean speech, transforming them into Log Area 
Ratio (LAR) coefficients [4] and then calculating 
the difference between them. This measure was 
shown to have a correlation coefficient of 0.62 with 
subjective speech quality assessment data [5]. 
Figures 9 and 10 demonstrate the speech quality 
improvement using vowels with SNRs of 5dB and 
10dB. It is shown that the LAR distance is 
shortened by 17% (5dB) and in the case of 10dB 
SNR the distance is even reduced by 28%. Finally, 
the performance of the ANC is visualised using a 
distorted real speech phrase. The spectra of the 
original and distorted signal are shown in Figures 
11 and 12. The spectral shape of the voice 
information remains after the filtering process and 
the broad band noise energy is noticeably reduced. 
Furthermore, it can be seen that the energy of the 
speech information containing spectral sections of 
the speech signal are kept after filtering. 

IV. CONCLUSIONS

The objective of this paper was to describe an 
Adaptive Noise Canceller which was successfully 
developed and implemented in hardware using 
VLSI design techniques in conjunction with a 
VHDL development environment. Two 
components, a Pitch Detector and an Adaptive 
Filter were incorporated into the ANC with 
additional hardware optimisation of the structure. It 
has been shown that the developed structure is able 
to reduce noise in a distorted speech signal using 
objective speech measures. Furthermore, the 
frequency components of the signal, which are the 

bearers of information, are almost unaffected. 
Additionally, subjective listening tests have shown 
that the audibility of a noisy speech signal is 
significantly improved after processing. An 
insertion into hearing aids, speech recognition 
systems that aid the handicapped or mobile 
telephony devices is unproblematic as the silicon 
area of the whole system is only 14.5mm2 (based 
on the 0.7µm library) and is therefore suitable for 
such purposes.

In summary, this paper has presented that an 
effective filtering performance under real 
conditions is given by the ANC device.  It is able to 
adapt its behaviour to suit different input signals 
and environments without the need to provide an 
additional reference source. 
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Abstract: In this contribution the recognition of stress 
and emotional state is analysed by speech signal 
analysis using Liljencrant-Fant’s model. It is based on 
the knowledge that some parameters of glottal pulses, 
obtained by this model, are changed owing to stress, 
hence they are suitable for the detection of speaker’s 
stressed (“abnormal”) state. Two procedures for the 
analysis of these parameters are described in detail. 
The first of them is an analysis of parameters of 
randomly chosen speech parts (of phonetically 
constant length) that makes fewer demands on 
segment selection, the second is an analysis of speech 
parts going one by one in time. The methods were 
applied to sound recordings made at “stressed” oral 
examinations at a university. The results obtained 
show the applicability of these parameters and 
methods especially for speech analysis when we have 
at our disposal a signal recorded in the “normal” 
(steady) state of speaker. 
Keywords:  stress, glottal excitation 

I. INTRODUCTION 

The usually used methods for identifying stress and 
other emotional states [1] usually start from the time 
distribution of single phonetic parts of words or 
sentences. Speech influenced by psychical stress can be 
identified e.g. by different time lengths of the concrete 
phonemes or by different time lengths of speech pauses 
between words [2], [3]. Statistical evaluation is also often 
used to examine e.g. the distribution function of the first 
two formants or the distribution of time samples. Also 
used are classifiers based on the pitch period detection 
and its variation in time. All procedures described above 
have one common factor, namely that a long time record 
has to be processed (for statistical methods it is 
necessary). In the present contribution the method of 
recognizing stress and some other emotional states, based 
on the analysis of one or a few period of speech signal is 
discussed. The low time requirements (from the 
viewpoint of the length of speech signal not computation) 
of the method are paid for by the need to own a sound 
record of the speaker at “normal” state and if it is possible 
of the some phonetic content. The description of the 
analysis of the speech signal using Liljencrant-Fant’s 
(LF) model can be found in [4]. This model estimates 
parameters of glottal pulses (Ee, ωg, α and ε in Fig. 5) 
and can also be used for speech signal synthesis and the 
parameters of this model it is possible to imitate the voice 

of a specific person. Some parameters of glottal pulses, 
obtained by the LF model, are especially suitable for 
“abnormal” speaker state identification [5]. In the 
following sections two procedures for processing the 
obtained LF parameters are described and their results are 
compared in the conclusion. The first procedure is an 
analysis of the parameters computed from randomly 
chosen parts (of phonetically constant length) that makes 
fewer demands on the selection of segments, and the 
second procedure is an analysis of the parameters 
obtained from speech parts going one by one in time. The 
methods were applied to sound recordings made at a 
diploma work defence, under the influence of speakers’ 
examination stress. 

II. SPEECH DATA 

It is really difficult to obtain realistic voice samples of 
speakers in various stressed states, recorded in real 
situations. There are not many corpora designed to allow 
the study of speech under stress. A typical corpus of 
stressed speech from a real case is extracted from the 
cockpit voice recorder of a crashed aircraft. The only 
publicly available corpus is the SUSAS database of 
stressed American English. Two of our own databases 
[10] were created for use in our experiments; a database 
of stressed speech and a database of alcoholic speech. 

However, for our studies conducted within the research 
of speech processing in noise and stress we used our own 
database, namely the SZZ database, consisting of data 
collected during oral final examinations at our Institute of 
Radio Electronics. The recorded utterances were 
manually examined (including both examination of the 
waveform and parameter contour, and listening) and then 
endpoints of words were determined. In this way, a 
number of pauses and irrelevant extraneous voices were 
eliminated. This material contains stressful phases 
(improvisations relating to unknown technical problems) 
and other phases with lower stress (during discussions 
relating to known technical problems). The hardware and 
software were hosted by a PC hooked up to the local net 
for automatic backup of the recorded speech files. The 
recording platform is set up to store the speech signals 
„live“ in 16-bit coded samples at a sampling rate of 22 
kHz. Thus, the acoustic quality of the records is 
determined by the speaking style of the students and the 
background noise in the room. For the experiment, only 
voiced speech segments were used because of our 
previous experience. 

SPEAKER  STRESS  DETECTION  BY  ANALYSIS  
OF  GLOTTAL  EXCITATION 

M. Bostik, M. Sigmund  
Department of Radio Electronics, Brno University of Technology, Brno, Czech Republic 
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III. METHODS USED

Fig. 1 shows the block diagram of a system for 
obtaining the LF parameters from continuous speech. 
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Fig. 1  Block diagram for the LF parameters estimation. 

The function of the single blocks in Fig. 1 is described 
in detail in the following. 

- Segment selection 

Before we can start to analyse speech segments it is 
necessary to choose, by some suitable method, speech 
signal parts that are suitable for analysis. It is, for 
example, unsuitable to analyse unvoiced parts if our aim 
is to obtain and to describe glottal pulses of the vocal 
apparatus. The next criterion for the selection can be e.g. 
the difficulty of selection and selection effectivity 
(effectivity is to be understood in this case as the ratio of 
the sum of time lengths of the chosen segments from a 
concrete set of speech data and the whole time length of 
the set). If we choose a concrete phoneme from the 
speech data, the selection effectivity is small and the time 
length of speech data increases (if we want to preserve 
the level of statistical reliability).  

The main aim of this work is to find a suitable 
procedure for segment selection for “abnormal” speaker 
state identification. Two methods were used and tested. 
The first method assumes that the LF parameters of the 
glottal pulses are rather constant and do not change much 
during the speech due to coarticulation. Then it is 
possible to choose voiced segments randomly, 
independently of the position in the utterance, see Fig. 2. 
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Fig. 2  Random segment selection, up – continuous 
speech, down – chosen segments  

situated one by one in time. 

The second method assumes that the LF parameters of the 
glottal pulses are changed during the speech. Then it is 

necessary to choose voiced segments one by one in time, 
in dependence on the position in the speech, see Fig. 3.  
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Fig. 3  Segment selection one by one in time, up – 
continuous speech, down – chosen segments.

A further limitation is that we have to have 
phonetically identical utterances of “normal” and 
“abnormal” speech. 

- Estimation of glottal pulse waveform 

For the glottal pulse estimation, several methods 
exist [5]. The well known and effective method is the 
transfer function estimation of vocal tract with 
subsequent inverse filtering. This algorithm is one of the 
basic methods of speech signal processing, further 
information can be found e.g. in [5], [6], another similar 
algorithm is presented in [7]. For illustration, Fig. 4 
shows a primary speech signal and its excitation signal 
obtained by inverse filtering. 
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Fig. 4  Time waveform, up – speech signal (phoneme 
“a“, down – speech signal after inverse filtering.

- Approximation using the LF model 

Now, it remains to mention the computation and 
properties of LF parameters. Glottal pulse approximation 
using the LF model uses, as the approximation curve, the 
exponential function combined with harmonic function. 
That can be seen in Eq. (1) and Eq. (2). Vectors vg1(n)
and vg2(n) are two parts of the approximation curve and 
together they form approximation function vg, see Fig. 5. 
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Variables Top, Te, Tc and time interval Ta are important 
parameters and their meaning can be clear from Fig. 5. 
Approximation is limited to the time interval 

cop TtT ≤≤ . The remaining variables Ee, ωg, α and ε
are the LF parameters sought. It is possible to obtain them 
by some of the iterative methods. The parameters are 
determined by criteria of the minimal average quadratic 
deviation of the approximating and the approximated 
function. All procedures described here were 
implemented using mathematical software Matlab on the 
modified PC with a professional sound card. 
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Fig. 5  Time waveform of the approximation function and 
the meaning of individual parameters.

IV. DATA EVALUATION

The methods described above were applied to speech 
data recorded at “normal” and “abnormal” state of the 
speaker. Records of both states were phonetically 
identical. The results presented in [5] show that only 
some of the LF parameters Ee, ωg, α and ε are suitable 
for speaker state recognition. As mentioned above the 
main aim was to show the dependence of analysis results 
on the methods for segment selection. The procedures 
described in the previous section (see Fig. 2 and Fig. 3) 
were used for the selection of segments and the results 
were evaluated by the following procedure: 

- for both methods of segment selection ten sets 
were created, each set contains six segments, see 
Fig. 2 and Fig. 3. Recordings of one male speaker 
were used. Six parameters were deduced from the 
fact that a phoneme 40 ms long contains just six 
fundamental periods (thus in this case segments 
too) with frequency 150 Hz. In the case of more 

segments in the set, the selection effectiveness will 
decrease below admissible limits, because longer-
time phonemes occur in speech less frequently. 

- for each segment of the speech the glottal pulses 
were estimated by using an estimation of linear 
prediction error, by cepstral coefficients [8] or by 
ARMA modelling [9]. 

- for each set of segments the LF parameters were 
computed. In Fig. 6 the parameter α is shown in 
dependence on the segment from which it was 
computed. 

- for each set of segments the average value of the 
corresponding parameter (µNormal, µStress) and 
dispersion (RNormal, RStress) were computed. So, we 
obtained ten average values and ten dispersion 
values for ten sets of segments.  
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0.2

0.25

α

segment

µNormal

µStress

R
N

or
m

al
R

St
re

ss

Fig. 6  Values of the parameter α for one segment – one 
set is shown, phoneme “a”, segment                  

selection one by one in time. 

In Fig. 7, the values µ and R are shown in dependence 
on the set from which they were computed. 

1 2 3 4 5 6 7 8 9 10
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0.1

0.15
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0.25

set

µ

µNormal(set)

µStress(set)

RNormal(set)

RStress(set)

Fig. 7  Average values of the parameter α and its scatter 
for individual sets -  ten sets, phoneme “a”, segment  

selection one by one in time. 

V. RESULTS

The results of the described algorithms with the final 
output shown in Fig. 7 are plotted in the diagrams in 
Fig. 8 and Fig. 9. 
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scatter for individual sets, phoneme “a”, selection one by 

one in time (upper diagram is identical with Fig. 7). 
Dashed line is “normal“ state. 
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Fig. 8b  Average values of the LF parameters and their 
scatter for individual sets, phoneme “a”, randomly 
chosen segments. Dashed line is “normal“ state.
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Fig. 9a  Average values of the LF parameters and their 
scatter for individual sets, phoneme “e”, selection one by 

one in time. Dashed line is “normal“ state. 
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Fig. 9b  Average values of the LF parameters and their 
scatter for individual sets, phoneme “e”, randomly 
chosen segments. Dashed line is “normal“ state.

VI. CONCLUSION 

By comparing of the diagrams in Fig. 8a and Fig. 8b, 
upper diagram for parameter α, it was found that the 
results are better if the segments were chosen one by one 
in time (greater differences between the parameters for 
“normal” and “abnormal” speaker state). Similar 
conclusion can be drawn for phoneme “e” too, parameter 
α. On the other hand, the parameter ε is almost 
independent of the method of segment selection, for both 
analysed phonemes. Generally, it can be said that the 
analysis of the segments going one by one in time 
provides better results. The parameters are not only more 
different for single states than in the case of the random 
segment selection, but the results are also less scattered.  
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Abstract— Processing spontaneous speech deals with problems
that are influenced by the several facts. This paper reports an
investigation of the production of real and non-words in two
normal speaker groups. Group 1 consists of 10 young people -
5 women and 5 men (mean age 23 years) and group 2 consists
of 5 older women and 5 older men(mean age 52 years). The
speech material used in study consisted of two repetitions of
10 real, 10 pseudo-real and 10 non-words. The speech data
were subsequently digitized (16 KHz) and the following were
measured: response latency, utterance duration and duration.
The results are presented and discussed within a dual-route model
of speech production. 1

Keywords: Spontaneous speech, phonetic and phonological
representation, direct and indirect route.

I. INTRODUCTION

Processing spontaneous speech deals with problems that
are influenced by the following facts: (i) speakers make
mistakes and correct themselves, produces false starts and
use ungrammatical constructions; (ii) the acoustic signal pro-
duced by a human speaker is mapped onto a written form
by a speech recognizer - this mapping is rarely completely
correct. This introduces two levels of uncertainty into the
processing of speech, which make the task of linguistically
analyzing a spoken utterance in a speech processing system
doubly hard. In addition, the dialog context imposes strict
time constraints. Some psycholinguistic research suggests that
may be two routes which employed in phonetic encoding. One
route involves storage of frequently used syllables in a mental
syllabary (”direct” route) and second is used for novel or low
frequency syllables (”indirect” route). The former encoding
route is more dependent on on-line computational resources.
Dual route models have been proposed for other cognitive
functions such as reading aloud [2]. Some of measures that
have been used to gauge the employment of direct and indirect
routes have included response latencies and the duration of
utterances, where greater values for both measures would be
interpreted as a sign of the greater planning and encoding
demanded by the ”indirect” route. The current study aims to
investigate whether dual routes may be encoding of real and
non-monosyllabic words elicited via a repetition task, in two
groups of speakers. This is done by investigating the response
latencies, utterance and word durations of monosyllabic real

1The work presented in this paper was partly supported by the Grant Agency
of Czech Republic under contract number 201/02/1553.

words, pseudo- words and non-words, elicited via a repetition
task. Experiments and first results are given.

II. METHODS

Two groups of subjects participated in the study. Group 1
were all students in tertiary education. Group 2 consisted of
10 adult women and men speakers ranging in the age from 45
to 61 years, who worked in tertiary education. All speakers
had no speech, language or hearing difficulties.

A. Speech Material

The speech material used in the experiments consisted of
two repetitions of 10 monosyllabic real, 10 monosyllabic
pseudo-real (containing articulatory sequences that are likely
to have been encountered before in real Czech words and
conforming to Czech phonotactic constraints) and 10 mono-
syllabic non-words (containing articulatory sequences that are
unlikely to have been encountered before in real Czech words.
For example (English) monosyllabic real word ”soap” [’seup],
pseudoreal word ”sote” [’seut] and monosyllabic non/word
”soekf” [’seukf]. This gave a total of twenty tokens for each
of the word groups, which were randomized into a single list.
Subjects were instructed to repeat each word on the list after
the experimenter.

B. Durational measures

Speech pressure waveforms, wideband FFT spectrograms
and LPC analyses were used to obtain the durational acoustic
measures. The measures that were taken were:

� response (or repetition) latencies - these were measured
from the end of the experimenter’s prompting utterance
to the utterance start of the participant’s utterance,

� utterance durations - these were measured form start to
the end of the entire utterance,

� word durations - these were measured from the start to
the of the stimulus word.
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III. RESULTS

The response latency, utterance duration and word duration
values for the monosyllabic real words, pseudo- words and
non-words are given in Table 1 for the both Group1 and Group
2.

TABLE I

MEAN AND STANDARD DEVIATION VALUES FOR RESPONSE LATENCY,

UTTERANCE DURATION, WORD DURATION (ALL GIVEN IN MILLISECONDS)

BY GROUP AND WORD FREQUENCY FOR REAL WORDS, PSEUDO-WORDS

AND NON-WORDS.

Group 1 (number 10)
Measure Non Pseudo Real

Response latency 144,8 (90,7) 102,0 (80,6) 108,1 (75,9)
Utterance duration 666,2 (89,9) 656,2 (63,0) 639,1 (71,4)

Word duration 519,0 (95,0) 513,1 (58,1) 500,0 (71,1)

TABLE II

MEAN AND STANDARD DEVIATION VALUES FOR RESPONSE LATENCY,

UTTERANCE DURATION, WORD DURATION (ALL GIVEN IN MILLISECONDS)

BY GROUP AND WORD FREQUENCY FOR REAL WORDS, PSEUDO-WORDS

AND NON-WORDS.

Group 2 (number 10)
Measure Non Pseudo Real

Response latency 224,5 (116,2) 177,1 (93,9) 160,1 (86,9)
Utterance duration 713,8 (147,6) 718,9 (97,9) 699,9 (95,0)

Word duration 572,0 (148,0) 578,2 (91,0) 562,9 (85,9)

A series of repeated measures was carried out on the data
for combined data of Group 1 and Group 2, for measures:
response latency, utterance duration and word duration a
repeated measures indicated that there were significant differ-
ences. A series of post-hoc parried T-tests indicated significant
differences in the response latencies of non-words and pseudo-
words. Both significant comparisons showed longer response
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Fig. 2. Mean utterance duration [ms].

latencies for the non-words. No significant differences were
found between the response latencies of the pseudo-words
and real words. In addition, significant group differences were
found between the response latencies of Group 1 and Group2.
In the case of utterance duration, there were also significant
differences. A series of post-hoc parried T-tests indicated sig-
nificant differences between the utterance durations of pseudo-
words and real words,with the pseudo-words being longer than
real words. No significant differences were found between the
utterance durations of the non-words and pseudo-words, or the
non-words and real words. Again significant group differences
were found between the utterance durations of Group 1 and
Group 2.

IV. DISCUSSION

There is some evidence in the data reported here to suggest-
that there may be differences in the phonetic encoding of the
real words, pseudo-words and non-words. These differences
are illustrated by the significantly slower response latencies of
the non-words when compared to those of the pseudo-words
and real words. Response latency, is a difficult parameter to
interpret. It is difficult to ascertain to what degree responce
latency is determined by either auditory recognition or motor
encoding, or endeed both. Therefore it not clear wheter the
results reported here are evidence for differences in motor en-
coding and/or auditory recognition. Although not significant,
hovewer, the word and utterance duration for the non-words
and pseudowords for both groups displayed trends og being
longer than those of the words. these findings could be inter-
preted as some evidence for a greater areliane on ”indirect”
route mechanism in the motor encoding of the non-words and
pseudo-words that were elictid in this study, with greater time
required for their production. It has been suggested that dual-
routes may be operating in speech encoding [3], [5], with
novel and low frequency word/syllables being largely reliant in
”indirect” mechanisms. There were some differences between
the data of non-words versus pseudo-words and real words.
Although there were some trends in the data, there was a
general lack of significant differences between the utterance
and word durations of real words and pseudo-words, and
those of real words and non-words. This finding could be
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explained by the fact that the real words used in the study were
relatively low frequency words, and were therefore, probably
phonetically encoded using some degree of ”indirect” route
resources. The non-words consisted of articulatory sequences
that were less likely to have been encourtered in a word
context, and were therefore also more likely to have been
reliant on ”indirect” route mechanisms than either the real
or pseudo-words. The word stimuli used in this study were
all, therefore, more likely to have been encodedusing some
level of ”indirect” route mechanisms. However, the issue of
how much auditory recognition affected the pattern of results
should not be overlooked in this study. Some of patterns in
the response latency data may reflect fast lexical access in the
case of real words, but failed lexical access in the case of the
non-words. This issue merits some futher investigation within
the model of dual/route phonetic encoding.

V. CONCLUSION

The results of repeated measures indicated significant age-
effects in the response latencies, utterance durations and word
durations of Group 1 and Group 2. The older subjects displayd
longer response latencies compared to the younger subjects.
This could be interpreted as evidence either a greater level of
planning time, or less auditory recognition to motor encoding
processing, or indeed some degree of both, was required
by the older subjects in the production of the non-words,
pseudo-words and real words. The utterance and word duration
were also significantly longer for the older subjects compared
to the younger subjects. This suggests a slower articulation
rate in the older subjects and could be interpreted either as
evidence for some degree of atrophy in the efficiency of motor
speech production, with increasing age. The real and non-
words phonetic encoding is one of importance to a number
fields, including psycholinguistics, linguistics, and artificial
speech recognition. The expiriences of this study will be used
in the project of the develpoment and design of an user-
friendly communication interface enabling an easy interaction
of handicapped persons with information systems.
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Abstract: This paper shows how the chaotic systems 
theory can be applied to the modeling of speech 
signals, whose dynamics is highly complex. We verify 
that, when using a theory that is able to model 
nonlinear features, speech signals present a highly 
nonlinear behavior, which could not be inferred from 
a linear theory. 
Keywords: Chaos theory, speech modeling, nonlinear 
dynamical systems, Lyapunov exponents, time series

I. INTRODUCTION

Many physical phenomena present a complex behavior 
with fluctuations over time. Biological signals, such as 
electroencephalograms (EEGs), electrocardiograms 
(ECGs), vocal sounds, and measures of arterial blood 
pressure, represent a great challenge for analysis and 
modeling.  

A detailed model of the vocal tract should consider the 
time variation of vocal tract shape, the vocal tract 
resonances, losses due to heat conduction and viscous 
friction at the vocal tract walls, nasal cavity coupling, 
softness of the vocal tract walls, the effect of subglottal 
(lungs and trachea) coupling with vocal tract resonant 
structure and radiation of sound at the lips [1]. A time-
varying linear filter can model the effects of some of 
these factors, but the remaining ones are very difficult to 
model. Some techniques have been proposed in the 
literature to analyze the non-linearities of dynamical 
systems. The Chaos theory offers a set of techniques that 
can perform this analysis in complex signals that present 
deterministic chaos. Many nonlinear dynamical features 
can be extracted from chaotic signals, such as fractal 
dimension, entropy and Lyapunov exponents. These 
features may be used with speech processing systems and 
potentially improve their accuracy [2-13]. 

However, the application of Chaos theory techniques 
assumes that the signal under analysis is stationary and 
comes from a system with chaotic components. This 
assumption must be criteriously verified. In this paper, 
we will explore the possibility of using Chaos theory 
techniques in speech signals. Furthermore, we will verify 
when and under which conditions they can be applied. 
Our initial goal is to use the techniques shown in this 
paper to analyze non-pathologic speech signals. Once we 
have seized the effectiveness of the techniques 
application, we want to toward our focus to analyze 
problematic speech production. 

II. CHAOS IN TIME SERIES

Any time series is considered chaotic when it is 
obtained from a stationary state of a dynamic system that 
presents nonlinearities and sensitivity to initial 
conditions. Sensitivity to initial conditions means that a 
small variation in the conditions that the system is 
embedded will produce a significant modification in the 
system behavior. The sensitivity to initial conditions is 
directly related to chaotic systems. 

There are many ways of verifying the existence of 
chaos associated to a time series. Initially, the trajectory 
of the possible attractor associated to the time series must 
be reconstructed in a proper state space. Attractor is a 
contraction in certain areas in state space, such that all 
trajectories nearby converge to it. Chaotic time series 
have chaotic attractors. It is possible to know if an 
attractor is chaotic or not by evaluating pairs of 
trajectories whose initial conditions are very close. If they 
diverge, on average, at a positive exponential rate given 
by the largest Lyapunov exponent, the attractor is chaotic. 
Thus, the existence of a positive Lyapunov exponent is a 
certain evidence of existence of chaos in the time series 
analyzed [8] [2] [14-15]. 

The analysis that must be used to evaluate speech 
signals, in a search for chaotic characteristics, assumes 
that data were obtained from a system’s stationary state. 
It is known that speech is not stationary during a time 
window of seconds, since the vocal articulatory apparatus 
is continuously changing its configuration to produce 
different sounds that compose the speaker utterances and 
sentences. On the other hand, small time windows of 
speech (few dozens of milliseconds) can be considered as 
stationary, because the variation of vocal tract 
configuration is slow [1][16-17]. Thus, the search for 
chaotic components must be accomplished using 
successive small windows of speech. 

III. ANALYSIS OF CHAOS IN SPEECH

In this paper, we explore the possibility of using an 
important nonlinear dynamic feature in order to improve 
traditional modeling of phonological speech production. 
This characteristic, known as Lyapunov exponents, 
quantifies the sensitivity of a dynamical system to initial 
conditions. When an attractor associated to a time series 
is chaotic, the average exponential divergence of nearby 

TOWARDS CHAOTIC MODELING OF SPEECH SIGNALS  
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1Unidade de Gestão do Conhecimento Computação, Universidade Luterana do Brasil, Canoas, Brazil 
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trajectories is quantified by estimating the largest 
Lyapunov exponent. For time series produced by a 
dynamical system, the presence of a positive value for the 
Lyapunov exponents indicates the presence of chaos. 
Furthermore, in many applications it is sufficient to 
estimate only the largest value of the Lyapunov spectrum. 

Rosenstein et. al. [15] proposed a method to estimate 
the largest Lyapunov exponent (λ1) from time series 
composed by a very limited number of available samples. 
Good results were obtained for estimating the largest 
Lyapunov exponent of known systems using just 100 to 
1000 samples. This characteristic is quite important when 
dealing with speech, once a speech signal can be 
considered stationary only during a small window of 
approximate 30ms. 

The first step is the reconstruction of the attractor’s 
trajectory in an appropriate state space. After, the nearest 
neighbor of every vector of the reconstructed trajectory is 
found. A constraint that two nearest neighbors have a 
temporal separation greater than the mean period of the 
time series must be satisfied. Doing this, it is possible to 
consider the pair of neighbors as belonging to different 
trajectories. When considering two trajectories whose 
initial conditions are very similar, the trajectories diverge, 
on average, at an exponential rate characterized by the 
largest Lyapunov exponent (λ1), as follows  

d j (i) = C j eλ1 (i∆t)      (1) 

where d j (i) is the distance between the jth pair of nearest 
neighbors after i steps (equals to i∆t seconds where ∆t is 
the time series sampling period) and Cj is the initial 
separation between the neighbors. 

Applying the natural logarithm to both sides, the 
previous equation becomes  

ln d j (i) = ln C j  + λ1 (i∆t)   (2) 

If the logarithm of the distance evolution between 
every pair of neighbors is monitored, they will appear as 
a set of approximately parallel lines, each with a slope 
proportional to λ1. The largest Lyapunov exponent is then 
estimated by applying least-squares method to best model 
the mean line. Fig. 1 shows the logarithm of the mean 
distance evolution between every pair of neighbors from 
the reconstructed state space vectors of a 30ms window 
of speech. It is easy to verify its positive slope, which 
indicates a positive value for the correspondent largest 
Lyapunov exponent.  

The process of estimating largest Lyapunov exponent 
from an approximate stationary speech signal, with 
duration of tens of milliseconds, can be repeated to every 
window of a long term speech signal, no matter its length. 
Thus, a complex, long term and not stationary speech 
signal can still be analyzed by Chaos theory, and its 
Lyapunov exponents (one for every window) can be 

estimated. These time-dependent largest Lyapunov 
exponents may show regions where the speech signal can 
or can not be considered chaotic. 

Fig. 1: Logarithm of the mean distance evolution between 
every pair of neighbors from the reconstructed state space 

vectors of a 30ms window of speech 

IV. EXPERIMENTAL RESULTS

In order to verify the existence of chaotic components 
in speech signals, it was accomplished an experiment that 
uses speech samples from different speakers. The 
experiment used 30 ms windows and from every window 
the trajectory of a possible associated attractor was 
reconstructed. After that, the largest Lyapunov exponent 
was estimated from every reconstructed trajectory, using 
the Rosenstein method [15]. Fig. 2 illustrates the process 
of largest Lyapunov estimation in a speech window. The 
repetition of this process in every window of speech 
signal provides the time variation of the largest Lyapunov 
exponent. 

The estimation of time variation of the largest 
Lyapunov exponent values from speech signal in fig. 2 is 
shown in fig. 3. Fig. 3 shows the largest Lyapunov values 
as black dots in the figure and, in order to maintain the 
relation with time, the waveform of the speech is also 
plotted using gray color in background. It is possible to 
note that not all windows of speech have positive largest 
Lyapunov exponents. This occurs mainly in the transition 
of words where  coarticulation or silence between words 
can produce negative Largest Lyapunov exponents. We 
have also noted that, if we don’t dispose of an adequate 
number of samples to estimate the Lyapunov exponent, 
this can increase negative exponents estimation, due to 
the implementations of computational algorithms. This 
occurs mainly with signals sampled at reduced rates. 

In order to deal with the analysis of chaotic nature of 
speech signals, we have to process more than just one 
speech data file. More truthful results can be obtained 
when the Largest Lyapunov estimation is applied to a 
large set of different speakers. So, this process was 
repeated, producing the estimation of 1000 Largest 
Lyapunov exponent values, using data from 50 different 
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speakers of varied ages. In this case, these speakers have 
produced the utterance composed by a random sequence 
of different numbers. The aim of using a random 
sequence of numbers is to avoid a “mechanical” 
repetition of speech, since the next number in the 
sequence is not memorized. Furthermore, the numbers in 
an unknown sequence are usually spoken slowly and 
correctly, providing a better combination of phonemes.  

Fig. 2: Largest Lyapunov estimation process from a 
window of speech 

Fig. 3: Largest Lyapunov exponent estimation from 30 
ms windows (applied every 10 ms) of speech signal in 

fig. 2 

The generated Largest Lyapunov exponents’ histogram 
is shown in fig. 4. The speech data were recorded at 
44100 Hz sampling rate, and we have used 30 ms 
windows, extracted at every 10 ms. Analyzing fig. 4, we 
can notice the existence of chaos in the majority of 
reconstructed attractors. The amount of time required to 
estimate the largest Lyapunov values was expressive. Fig. 
5 shows the variation of CPU processing time for speech 
windows of varied lengths. The processor used in the 
measures was an Athlon processor, running at 1.1GHz. 

Fig. 4: Largest Lyapunov exponents histogram, using 50 
different speakers 

Fig. 5: CPU Processing time required to extract largest 
Lyapunov exponents from speech windows of varied 

lengths 

V. CONCLUSION

We have presented in this paper an approach to 
characterize speech signals by introducing the Largest 
Lyapunov exponents estimation in the analysis of data 
from paired people. Chaotic components were detected in 
speech signals, which validate the use of many nonlinear 
dynamical features, such as fractal and multifractal 
dimension, entropy, etc, in several speech classification 
systems. This method also presents high potential to be 
used in the characterization of unpaired people speech 
production, which will be done in the sequence of the 
presented work. 
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Abstract: Independent Component Analysis (ICA) is a 
statistical based method, which goal is to find a linear 
transformation to apply to an observed 
multidimensional random vector such that its 
components become as statistically independent from 
each other as possible. 
Usually the Electroencephalographic (EEG) signal is 
hard to interpret and analyse since it is corrupted by 
some artifacts which originates the rejection of 
contaminated segments and perhaps in an 
unacceptable loss of data. The ICA filters trained on 
data collected during EEG sessions can identify 
statistically independent source channels which could 
then be further processed by using event-related 
potential (ERP), event-related spectral perturbation 
(ERSP) or other signal processing techniques. This 
paper describes, as a preliminary work, the application 
of ICA to EEG recordings of the human brain activity, 
showing its applicability.  

I. INTRODUCTION 

An important application of multichannel EEG is to try 
to find the location of a epileptic focus (a small spot in the 
brain where the abnormal activity originates and then 
spreads to other parts of the brain) or of a tumor, even 
when they are not visible in a x-ray or CT scan of the 
head. 

Blind Source Separation (BSS) concerned to signal 
processing applications is an application area which main 
goal is the recovering of independent source signals, after 
they are linearly mixed by an unknown medium. This 
source separation is achieved by using recordings of 
several sensors. A classical example of blind source 
separation is the cocktail party problem, where several 
people are speaking simultaneously in the same room. The 
problem is to separate the voices of the different speakers, 
by using recordings of several microphones in the room.  

Some acceptable solutions for the blind source 
separation problem have been found in the neural network 
and statistical signal processing fields. The classical 
application of the ICA model is blind source separation. In 
contrast with decorrelation techniques such as Principal 
Component Analysis (PCA), which ensures that output 
pairs are uncorrelated, the ICA maximizes the degree of 
statistical independence among outputs using contrast 
functions approximated by the Edgeworth expansion of 
the Kullback-Leibler divergence [1]. Therefore when 

compared with the PCA, ICA imposes the much stronger 
criterion that the multivariate probability density function 
of output variables factorizes. Finding such a factorization 
requires that the mutual information between all variable 
pairs go to zero. While decorrelation only takes account of 
second-order statistics, the mutual information depends on 
all higher-order statistics of the output variables. Although 
ICA can be seen as an extension of the PCA and factor 
analysis it is really a more powerful technique, capable of 
finding the underlying sources when these classical 
methods fail completely.  

As the problem of determining brain electrical source 
from patterns recorded on the scalp surface is 
mathematically undetermined the joint problem of EEG 
source identification, segregation, localization and 
removing artifacts becomes very difficult. Recent efforts 
to identify EEG sources have focused mostly on 
performing spatial segregation and localization of source 
activity. The problem of both source localization and 
source identification have been investigated by using the 
ICA algorithm. Independent sources can be derived from 
highly correlated EEG signals and without regarding to 
the physical location or configuration of the source 
generators, by using the ICA algorithm, however, 
canceling these noise sources is a central, and as yet 
unsolved problem in EEG signal processing.  

One of the most successful method is mainly based on 
ICA of an artificial neural network by using an adaptive 
algorithm. In the adaptive case, the algorithms are 
obtained by stochastic gradient methods. When all the 
independent components are estimated simultaneously, the 
most popular algorithm in this category is natural gradient 
ascent of likelihood, or related contrast functions like 
“Infomax”. The experiments described in this paper were 
obtained by using a kind of extended “Infomax” algorithm 
for the EEG analysis.    

II. RELEVANT ICA THEORY 

The ICA algorithm allows to separate N independent 
sources from N sensors under the constraints that the 
propagation delays of the unknown “mixing medium” are 
negligible, and the sources are non-log and have 
probability density functions (pdf’s) not too unlike the 
gradient of a logistic sigmoid. Therefore the EEG signal 
must be recorded by N scalp electrodes and the correlated 
signals are used to separate N unknown “independent 
brain sources” that generated these mixtures.  



100 MAVEBA 2003

Before proceeding we have to make a clear distinction 
between ICA, which is a theoretical method with different 
applications, and blind source separation, which is an 
application that can be solved using various theoretical 
approaches, including but not limited to ICA. One of these 
approaches is the PCA, which is a decorrelation technique, 
so ensuring that output pairs are uncorrelated <yi, yj=0>, 
for all i and j. Decorrelation only takes account of second-
order statistics. In contrast the ICA is based on the much 
stronger criterion of statistical independence which 
requires all higher-order correlations of yi to be zero. The 
relation between Principal Component Analysis and ICA 
is evident. Both methods formulate a general objective 
function that define the 'interestingness' of a linear 
representation, and then maximize that function. A second 
relation between PCA and ICA is that both are related to 
factor analysis, though under the contradictory 
assumptions of Gaussianity and non-Gaussianity, 
respectively. The affinity between PCA and ICA may be, 
however, less important than the affinity between ICA and 
other methods. This is because PCA and ICA define their 
objective functions in quite different ways. PCA uses only 
second-order statistics, while ICA is impossible using only 
second-order statistics. PCA emphasizes dimension 
reduction, while ICA may reduce the dimension, increase 
it or leave it unchanged. However, the relation between 
ICA and nonlinear versions of the PCA criteria is quite 
strong. 

Suppose y1, y2, …, yN random variables with joint pdf 
given by f(y1, y2, …, yN). If the random variables yi are 
statistically (mutually) independents then the joint pdf can 
be factorized since 
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where )( iy yf
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denotes the marginal density of  yi. If the 
random variables yi are statistically independents, then for 
any functions g1 and g2 one has 
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which is clearly a stricter condition than the condition of 
uncorrelatedness given by 

jiyEyEyyE jiji ,0  (3) 

However for the special case of joint Gaussian 
distribution, independence and uncorrelatedness are 
equivalent [2] and ICA becomes in these cases not 
interesting or impossible.  

A simple neural network algorithm based on 
information maximization (Informax) was derived by Bell 
and Sejnowski [3] and is able to separate super-Gaussian 
(sparse) independent components. A source si can be 
distinguished from mixtures xi by considering the activity 

of each source statistically independent of the other 
sources. This means that their joint probability density 
function, measured across the input time ensemble 
factorizes. Therefore the mutual information between any 
two sources, si and sj is zero: 
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where E{.} denotes mathematical expectation. The 
sources si are assumed to be temporarily independent, 
while the observed mixtures of sources, xi are statistically 
dependent on each other, therefore the mutual information 
between pairs of mixtures, I(xi,xj) is in general positive. 
The problem of blind source separation consists in finding 
a matrix W such that the linear transformation  

WasWxI    (5) 

re-establishes the condition I(yi,yj)=0, for all i j. 
Consider the joint entropy of two non-linearly 

transformed components of u:
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where ui=g(yi) and g(.) is an invertible, bounded 
nonlinearity. The nonlinear function provides, through its 
taylor series expansion, higher order statistics which are 
necessary to establish independence. 

The maximization of the joint entropy is obtained by 
maximizing the individual entropies, H(u1) and H(u2) and 
minimizing the mutual information I(u1,u2). In general the 
maximization of H(u) minimizes I(u) and when the mutual 
information reaches the value zero the two variables 
become statistically independents. The algorithm attempts 
to maximize the entropy by iteratively adjusting the 
elements of the square matrix W, by using small batches 
of data vectors drawn randomly from {x}. Without 
substitution, one has 
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The term (WTW) is the natural gradient and avoids 
matrix inversions speeding up the convergence. The form 
of the nonlinearity g(u) is crucial in the performance of the 
algorithm and its ideal form is the cumulative density 
function (cdf) of the distributions of the independent 
sources. 
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Assuming that the complexity of the EEG dynamics 
can be modelled as a relatively small number of 
independent brain processes, the EEG source analysis 
problem satisfies ICA assumption. The foremost problem 
in interpreting the output of ICA is determining the 
number of input channels, and the physiological and/or 
psychophysiological significance of the derived source 
channels.  

III. EXPERIMENTAL RESULTS 

The extended ICA algorithm was tested in both 
simulated data, as shown in figure 1, and in real data as 
shown in figure 2. Figure 1a) shows four independents 
generated signals that are then linearly mixed resulting the 
signals shown in figure 1b). Figure 1c) shows the result of 
the extended ICA decomposition algorithm applied to the 
signals shown in figure 1b), which obviously does not take 
into consideration the linear transform from which the 
signals obtained in figure 1b) were obtained from the ones 
shown in figure 1a). 

By comparing figures 1a) and 1c) we can conclude that 
the result of the decomposition is satisfactory since the 
order, polarity and amplitude of the output only have a 
simple changing. 
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The extended ICA algorithm was also applied to the 
analysis of 10 EEG recordings of the human brain activity. 
To ensure signal stationarity the time index was permuted, 
and the 10-dimensional time vectors were presented to a 
10->10 ICA network one at a time. First and second order 
statistics were removed in order to speed up the 
convergence, so the data were first pre-whitened. The 
learning rate was annealed from 0.03 to 0.0001 during 
convergence. After each pass through the whole training 
set, the value of correlation between the ICA output 
channels and the value of change in the weight matrix 
were checked, and the training was stopped when the 
mean correlation among all channel pairs was bellow 0.06 
and the ICA weights had stopped changing appreciably.  

EEG recordings of the human brain generally include 
either super-Gaussians signals (ERPs for example), or 
sub-Gaussian signals (for example working frequency 
disturb and EOG). So ICA appears suited for this kind of 
applications as shown in figure 2 where the 
experimentation was done in real EEG data.   

Figure 1a). Four signals generated independently  

Figure 1b). The Signals shown in figure 1a) after 
passed through a random mixed matrix. 

Figure 1c). Signals after ICA decompose 

Figure 2. EEG real data separated by ICA 
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The first row on the left of figure 2 shows a normal 
EEG data, the second row is a close and open eye’s EEG 
data and finally the third row is a working frequency 
disturbing. These original signals were mixed as in the last 
case of synthetic data and the ICA algorithm realized the 
blind source separation. The results are very promising 
taking into consideration that the target signals include 
both super-Gaussian and sub-Gaussian sources. 

IV. DISCUSSION 

This paper has focused on the application of ICA to 
the analysis of  EEG, which proved a reasonable 
efficiency.  

Apart from the brain signals, signals from other 
organs, as for example from the heart system have similar 
problems with artifacts and could also benefit from ICA 
techniques. In general biomedical signals are a rich source 
of information about physiological processes, but they are 
often contaminated with artefacts or noise and are 
typically mixtures of unknown sources summing 
differently at each sensor. Besides other interesting 
questions such as to understand the nature of the sources, 
ICA seems to hold a great promise, for blindly separating 
artifacts and decomposing the mixed signals into 
subcomponents that may reflect the functionality of 

distinct generators of physiological processes, which must 
also be interpreted in the near future.  
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Abstract: The changing on peaks structure of the 
speech spectrum is perhaps the most important cause 
of degradation of speech recognition systems under 
adverse conditions. Another drawback concerned to 
the additive noise effect occurs on the flat spectral 
zones which are usually raised proportionally to the 
noise level. These combined effects on both the peaked 
and the flat spectral zones can be alleviated by trying 
to restore its original structure, which assumes noise 
knowledge. However, the random nature and the 
variability of the noise, the difficulty in discriminating 
speech pauses, among others, discourage the use of 
noise estimates as the basis of robust speech 
recognition algorithms. Alternative approaches based 
on normalisation procedures become very promising 
since the noise effect can be alleviated without any 
knowledge regarding to its existence. This paper 
suggests a spectral normalisation that though being 
different can be viewed as a noise estimation procedure 
in a frame by frame basis, so assuming the clean 
database as lightly corrupted. This speech 
normalisation is used to restore the normalised speech 
spectrum. This normalised spectrum is then re-
normalised by a baseline spectrum normalisation 
method, which concentrates essentially in the speech 
regions of small energy, since in these regions the noise 
is more dominant, so they require a better degree of 
robustness. 

I. INTRODUCTION 

In [1] it is argued that a proper spectral normalisation, 
which concentrates essentially on the speech regions of 
less energy, could improve significantly the robustness of 
speech recognition systems when operating under additive 
noise conditions. From a theoretical point of view, the 
spectral regions with small energy would need more noise 
robustness, given that for the same noise level they are 
more corrupted. The spectral regions of small energies 
usually correspond to unvoiced sounds regions, which are 
spectrally not very well defined. Roughly speaking nearly 
half of the consonants can be classified as unvoiced, while 
the other half and the vowels are generally classified as 
voiced. Generally the importance of the vowels in 
classification and representation of written text is very 
low; however, most practical automatic speech recognition 
systems rely heavily on vowel recognition to achieve high 
performance. Consequently, the spectral regions which 

contains higher speech energy seems to be usually more 
important in speech recognition under difficult conditions 
once they are generally less corrupted. On the other hand, 
the spectral regions with small energy are more corrupted, 
thus they need a larger degree of robustness.  

Others authors [2] have also given an increasing 
importance to the spectral regions of small energy of the 
speech signal, although by using alternative approaches. 

The algorithm proposed in [1] does not take into 
consideration the properties of the voiced speech regions, 
which are usually characterised by “peaked” spectral 
zones. These portions of spectrum are flattening, as the 
noise becomes more and more dominant which degrades 
the system performance. 

The algorithm proposed in [3] tries to cope with this 
limitation by restoring partially both the original spectral 
“peaks” and the flat spectral regions where the signal 
power is increased by the wide band noise effect. This 
approach assumes the clean database lightly contaminated 
and the noise power is estimated in a frame-by-frame basis 
by the lowest power of all the sub-bands in each segment. 
The algorithm does not assume noise existence, in the 
sense that the features are extracted exactly in the same 
way in both noisy and noise free conditions. One 
drawback associated with this algorithm is concerned to 
the noise estimate which includes a significant amount of 
speech characteristics that is proportional to the number of 
spectral components that constitute a sub-band. This can 
mean that to many speech characteristics can be 
disregarded in the restoration of the clean speech 
normalised features. Another drawback of the algorithm 
proposed in [3] is that the spectral peaks classification is 
based on heuristics, which is obviously undesirable. In 
order to overcome these drawbacks the algorithm 
proposed in this paper differs from the algorithm proposed 
in [3] essentially in the following aspect: 

The frame by frame spectral normalisation is done 
before the baseline normalisation instead of after it, 
assuring that the spectrum that will be processed by the 
baseline spectral normalisation is always the normalised 
spectrum (by the small spectral component), which is not 
very dependent on the noise level. 

 The results show a significant improvement in 
performance when compared with the baseline method 
when used alone [1] and an interesting improvement in 
performance when compared with the algorithm proposed 
in [3].  
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II. BASELINE SPECTRAL NORMALISATION 

The baseline spectral normalisation defined in [1] is 
motivated by the fact that the additive noise is not a 
narrow band noise, thus its spectrum is reasonably 
dispersed in frequency. Additionally a mechanism 
adequate to dealing with non-stationary additive noise 
situations, which frequently occurs in practical situations, 
is needed. One solution can be trying to extract the 
distribution of the speech energy along the spectrum, 
normalised by the total energy of the speech within the 
segment. Therefore noise variations can be attenuated 
once that which is really measured is the relative and not 
the absolute distribution of the spectral energy of the 
speech signal.  

The baseline normalisation process consists in a 
division of the frequency band in sub-bands given that 
usually a very fine detail in frequency is not required for 
western languages speech recognition applications. The 
method is based on the power spectral density components 
and consists in dividing the speech power inside each sub-
band by the total short-time speech power. The power in 
each sub-band is obtained by summing the components of 
the power spectral density inside the sub-band. All the 
sub-bands have the same number of spectral components 
and any spectral component is shared by different sub-
bands, thus avoiding increases of statistical dependence 
between sub-bands (feature components). The background 
noise contributes simultaneously to increase the sub-band 
and total power, which contributes for stabilising the 
amplitudes of the feature vectors. 

To best understand this reasoning, consider Si denoting 
the speech power in sub-band i and S denoting the short 
time speech signal power of the considered segment. 
Similarly, let Ni and N denote the power of the noise in 
sub-band i and the short time noise power, respectively. 
So, the ith component of the observation vector for clean 
and noisy speech are given respectively by 
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Figure 1 shows the clean speech and noisy speech 
spectral power normalisation features for 240 ms of the 
word “zero” where each sub-band has 16 power spectral 
components. The SNR is 0 dB.  

If the noise is stationary then its short time power 
equals its long time power. Note that this is not true for the 
speech due to its non-stationary property, but as an 
approximation we will consider that the short time speech 
signal power equals the long time speech signal power. 
Under this constraint, S and N can be related by the signal 
to noise ratio (SNR). Therefore the next expression holds 
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If the noise has white noise characteristics the 
environment will shift the clean speech vector by a noise 
dependent vector Ci(N), which can be calculated by 
subtracting equations (1). 

Let l, the number of components in each sub-band and 
L the FFT length. Then N and Ni, considering flat noise 
spectrum, are related by the quotient l/L. By using these 
considerations, the calculation of the shift vector imposed 
by the environment is accomplished by subtracting 
equations (1) and becomes [1] 
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Equation (3) shows that if the speech has a flat power 
spectrum density, the means of Ci(N) become null as Si/S
equals l/L. Thus, this normalisation process becomes 
optimal in the sense that the environment does not affect 
the means of the speech features. This means that this 
normalisation procedure provides some noise robustness 
to unvoiced speech segments, where neither the speech 
nor the noise are spectrally well defined. More details can 
be found in [1] 

III. ADDITIVE WHITE NOISE EFFECT AND PRE-PROCESSING 
APPROACH 

Figure 1 shows that the noise effect, in the proposed 
power spectral baseline normalisation domain, is raising 
the “flat” spectral zones while the “peaked” spectral ones 
are “flatten”. In fact equation (1) in noisy conditions 
(equation shown on the right) shows that, for sub-bands 
with high speech power, as the amount of noise in the sub-
band is much smaller than the total amount of noise, the 
speech features in that regions are decreased 
proportionally to the amount of contaminating noise. For 
sub-bands with small speech power the opposite happens, 
given that the sum of all the coefficients extracted in each 
segment is unitary. As the spectral flattening is 
proportional to the amount of contaminating noise, for low 
signal to noise ratios the “peaked” spectral regions almost 
disappear, which is the main origin of degradation in 
performance under noisy conditions.  
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Figure 1. White noise effect in the power 
spectrum density normalization domain in the 
beginning of digit “zero”. Dashed line 
represents noisy speech features. 
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The main goal of a robust features extraction method is 
providing robustness against noise or other sources of 
variability by ignoring its presence. Although the noise 
can be compensated, the effectiveness of this approach 
becomes very dependent on the accuracy of the noise 
estimate, which is a very hard task in practical situations. 
Hence our main goal was searching for a compensation 
process independent of the noise level or characteristics, 
although the proposed baseline normalisation assumes a 
wide band additive noise for maximal performance. More 
details can be found in [1]. 

In this context we propose the following two steps 
approach: 

1) For task uniformity in clean and in noisy conditions 
the clean database must be considered lightly 
contaminated. Trying to clean completely the database, 
which can be viewed as another kind of normalisation, 
represents a procedure compatible with the noise 
compensation paradigm, however if the procedure is not 
particularised for any kind of noise, it can be used without 
concerning to the noise existence. Hence, under noisy 
conditions the features extraction method can compensate 
for the noise existence taking into account the noise level, 
which can be estimated in a frame-by-frame basis, 
becoming the procedure compatible with real time 
applications.  

2) The estimated noise level, which really constitutes a 
spectral normalisation by the smallest spectral component. 
This speech component, which has small significance and 
is proportional to the amount of noise must be used to 
alleviate the noise effect. Then the baseline spectral 
normalisation algorithm [1] can be more efficient since the 
noise effect was a priori reduced.  

IV. PROPOSED NOISE COMPENSATION 

To cope with the additive noise effect we propose 
estimating the noise power in each segment, which can be 
viewed as a secondary normalisation procedure (the first 
normalisation procedure is behind the normalisation 
proposed in the baseline system [1]) by taking the value of 
the lowest component of the power spectrum density in 
each speech frame.  

We propose alleviating the noise effect by subtracting 
the estimated noise level from all the others components 
of the feature vector. Therefore the power spectral 
components of the speech must be changed so that 

             
otherwiseP

PPPP
c

i

iiii
i ,

min,min
           (4) 

where Pi denotes the amplitude of the ith component of 
the power spectral component of the speech, and ci
denotes the ith component of the normalised spectrum 
(observation vector) that will be processed by the baseline 
spectral normalisation algorithm proposed in [1]. The 
spectral normalisation procedure described by equation (4) 
reduces clearly the noise effect since a factor (lower 
spectral component in each segment) that is proportional 

to the noise level is subtracted from all the others spectral 
components. Additionally the speech characteristics 
described by the smallest spectral component are 
maintained since this component is included in the 
observation vector. However these mathematical 
operations involving all the spectral components can 
increase the statistical dependence among them, which is 
undesirable regarding to the HMM modelling. In this 
context the baseline spectral normalisation procedure 
helps to decorrelate the data since the data are grouped  
and processed inside the group independently of the data 
inside the other groups. 

 Therefore considering wide band noise its effect is 
reduced in terms of means. It is obvious from equation (1) 
that the variance effect is also reduced by the baseline 
normalisation procedure once that each observation is 
divided by the power of the speech segment. 

This a priori noise effect attenuation obtained by 
spectral normalisation in each frame shows better 
effectiveness than the a posteriori noise effect attenuation 
described in [3] as can be observed by comparing figure 2 
and figure 3. It is clear that in figure 3 the recovered peak 
structure is more closed to the peak structure of the clean 
speech than the recovered peak structure in figure 2. 
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Figure 2. Spectral speech structure recovered by the 
algorithm proposed in [3] for the first half of the word 
“eight” at an SNR of 0 dB. Normal line stands for 
clean speech. 
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V. EXPERIMENTAL RESULTS 

The proposed algorithm was tested in an Isolated 
Word Recognition system using Continuous Density 
Hidden Markov models. The database of isolated words 
used for training and testing is from AT&T Bell. The used 
speech was acquired under controlled environmental 
conditions band-pass filtered from 100 to 3200 Hz, 
sampled at a 6.67 kHz and analysed in segments of 45 ms 
duration at a frame rate of 66.67 windows/sec. Only the 
decimal digits were used. The noise has white noise 
characteristics, is speech independent and computationally 
generated at various SNR as shown in table 1. The goal is 
to compare the performance of the proposed and 
contemporary speech robust features. Some of these 
robust features are the OSALPC (One-Sided 
Autocorrelation Linear Predictive Coding), the 
conventional cepstrum with liftering (CEPS + liftering) 
and the well known MFCC (Mel-Frequency Cepstral 
Coefficients). In table 1, MMC stands for conventional 
Markov model composition in the power spectrum density 
domain, Norm. stands for the baseline normalisation 
procedure described in [1], N. + MMC stands for Markov 
model composition in the baseline power normalisation 
domain [1], PR stands for the post-processing spectral 
restoration procedure proposed in [3] and BN stands for 
the bi-normalisation proposed in this paper. Table 1 shows 
that the suggested spectral multi-normalisation features 
are more effective against additive white noise than both 
the baseline normalisation, which is more effective than 
some robust features used nowadays, and the PR 
algorithm proposed in [3].  For SNR greater than or equal 
to 5 dB the baseline spectral normalisation outperforms 
the conventional Markov model composition (MMC) 

when the noise parameters are learned from the 
periodogram method in a data segment of 100ms without 
speech. As in the Parallel Model Combination, the 
distortion can be integrated (compensated) in the 
composite model increasing thus the recogniser 
performance [1]. On the first six entries of the table 1, all 
the features are 8 static, energy and dynamic features 
excepting * (12 static + energy + dynamics) and ** (13 
static + energy + dynamics). 

Table 1 – Performance of the spectral normalisation 
SNR (dB) 15 10 5 0 -5 
LP 56.5 39.5 30 16.25  
OSALPC 98.25 92 65.75 32.25  
CEPS * 97.5 95 72 34.5  
+liftering 98.25 95 75.25 39  
MFCC ** 97.75 94.75 72.25 37.5  
OSALPC* 98.5 96.25 74.25 32.5  
MMC 98 96.75 92.5 91 78.5 
Norm. 98.5 97.75 93.75 88 42.5 
PR 99.25 98.25 95 89.75 61.5 
BN 99.25 98.5 95.75 90.75 64.25 
N.+ MMC 99.5 98.75 97.25 92.25 84.75 

VI. DISCUSSION 

The main advantage of this bi-normalisation process is 
the recognition performance obtained when no knowledge 
of the noise statistics exists. As a robust extraction 
features, the suggested method seems to be superior to the 
most used nowadays. Additionally, for white noise and at 
SNR greater than or equal to 5 dB it presents better 
performance than a standard noise compensation 
technique, which assumes integral noise knowledge. In 
fact for high Signal to Noise Ratios the spectral 
normalisation where the distortion is ignored outperforms 
the Markov model composition where the distortion is 
learned from a small amount of isolated noise samples and 
incorporated into the system. If isolated noise samples 
exist, the noise can be estimated and this knowledge can 
be incorporated into the system, and consequently 
increasing the recogniser performance.  
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Abstract: The nonlinear speech signal decomposition
based on Volterra-Wiener functional series is
described. The solution of speech recognition
problem by means of measuring Wiener kernels is
proposed. The recognition system of speech signal is
considered for speech phoneme identification.
Keywords: Nonlinear signal decomposition, Wiener
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I. INTRODUCTION

For speech signal recognition problem solving there
are a variety of paradigms and approaches. Among them,
we can mention a statistical approach [1], [2], [3], a
nonlinear dynamic method using neural networks [4], a
dynamic programming method and so on. These methods
include modeling of an acoustic processor’s
performance. In different systems, the acoustic processor
varies in complexity. Nevertheless, it is desirable for the
acoustic processor to take into account analyzed acoustic
signal peculiarities. This reason require, in general case,
implementation of the acoustic processor in the form of a
nonlinear model.
   Among the different approaches to synthesis of a
nonlinear model is that it should be based on the
Volterra-Wiener functional series [5], [6]. This
approach allows identification and modeling of systems
without additional preliminary information about their
structure. This method was developed for solving
problems of identification of nonlinear dynamical
systems (NDS) in control theory and of analysis of
physiological systems in biology. These facts are
premise for the usage of this approach to solve the
speech signal recognition problem.
   This paper presents the nonlinear model of the
acoustic processor based on Volterra-Wiener functional
series. We show the usage of this nonlinear
decomposition for speech phoneme identification.

II.LINEAR AND NONLINEAR DECOMPOSITION
OF SIGNAL INTO SERIES OF FUNCTIONS AND

FUNCTIONALS

   It is well known that linear signal )(ty  (for example,

music signal) in the time t  can be represented as an
output of a linear dynamic system (LDS) of the kind:
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(1)
where the input signal )(tx , or its Fourier image

)( kX ω , acting on LDS generates the output signal

)t(y , and the transfer function )( kH ω is  an impulse

response LDS function )(th in frequency domain:

.)(
1

)(
0

dteth
T

H ti
T

k
kωω −∫= (2)

   As concerns a majority acoustic signals (including
speech signal), these signals are the product of strongly
nonlinear dynamical systems, i.e. they are nonlinear
processes.
   According to [5], [6], [7], [8] the output NDS signal
can be represented by means of the Volterra-Wiener
series as follows:
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where θ  is a state parameter, ]1,0[∈θ ,

( )
m21 kkkm ,...,,H ωωω  are Wiener kernels of m-

order (the first order Wiener kernel is the transfer
function (2) of linearized NDS)
   Comparing (1) with (3), we can see that above-
mentioned linear decomposition is a particular case of
this nonlinear decomposition, similarly LDS is the
specific case of NDS.

III. IDENTIFICATION ALGORITHM BASED ON

MEASURING THE WIENER KERNELS ON FINITE
INTERVALS

   When NDS model based on Volterra-Wiener series is

realized on a computer, discrete input nx  and output

ny signals and Wiener kernels ]n,...,n[h mm 1  have a

finite duration in time; that is why a refinement of the
relations (3) is required.

   To represent one-dimensional sequences ny and nx
with the finite length N  in frequency domain, we use
coefficients of discrete Fourier transform (DFT) Yk  and
Xk respectively. Analogously, for a frequency
representation of Wiener kernels hm[n1,…,nm], their
multidimensional analogs are needed, i.e. the
coefficients of m-dimensional DFT's ]k,...,k[H m1m .

    The identification scheme of discrete NDS is similar
to Wiener's circuit for determining m -order kernel [5].
This scheme can be presented as follows: white

Gaussian noise with zero mean and variance xD , is

given by the inputs of the unknown NDS and a known
system as a bank of m complex exponential filters with
the multiplying outputs. Then the output signals from
the unknown and known systems and bank are
multiplied and the result signal is averaged [6].
   The DFT-image of kernel ]n[h 1  can be calculated

as follows [7], [8]:

x

*
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   According to relation (4), ][1 kH is the sample of

transfer function )(1 ωH  for the stationary LDS

identified on the basis of stationary white noise }.{ nx

   The DFT-image of kernel ],[ 212 nnh  can be

estimated in an analogous manner [7], [8]:
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   The work [8] shows that DFT-image of kernel
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IV. THE RECOGNIZER OF PHONEMES OF
BELARUSIAN LANQUAGE BASED ON ITS

W IENER KERNELS M EASURING

   The nonlinear decomposition (3) can be used for
identification of a group of phonemes (in particular,
sonorous phonemes of Belarusian language) by means
of the m-order multidimensional nonlinear filters.
   As concerns a phonetic structure of Belarusian
language, the following classification is used [7], [8].
All the phonemes of Belarusian language are divided
into two groups: the first group has vocal (vowel) ones
and the second group has consonant ones.
The vocal phonemes are again divided into labial once
( Î, Ó) and nonlabial once (À, Ý, I{ Û}); the sound Û is
not considered as individual phoneme since in
Belarusian language it appears only after hard
consonants and is modification of the phoneme I.
   The consonants are classified by the  two blocks
involving the ten groups [7],[8]:

The labial (the block A):
1. Labial-labial, hard: Á, Ï, Ì , Â, ¡.
2. Labial-labial, politicization (soft): Á', Ï ', Ì ' , Â'.
3. Labial-dental, hard: Ô.
4. Labial-dental, soft: Ô'.

The lingua (the block B):
5. Front, dental, hard: Ä, Ò, Ç, Ñ, (Z), Ö, Ë, Í .
6. Front, dental, soft: Ç', Ñ', Z’, Ö', Ë', Í '.
7. Front, alveolar, hard: Æ, Ø, Ž, ×, Ð.
8. Middle, soft: J(É).
9. Back, hard: (Ã), (Ê), ã, Õ.
10. Back, soft: (Ã'), (Ê'), (ã'), (Õ').
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   According to this classification we have a recognizer
in the form of the nonlinear filter banks consisting of 10
Volterra-Wiener filters which can include from 1 to 7
nonlinear multidimensional (m-order) filters (or Wiener
kernels). Each of them can be stimulated by the white
noise or another type of testing signal. Then each
phoneme (there are from 1 to 7 ones for each
corresponding Volterra-Wiener filter) can be recognized
as one from Wiener kernels based on the afore
mentioned identification scheme (see Sect. III). As the
final result, each phoneme corresponds to itself
functionally, i.e. to a certain Wiener kernel [7], [8].

In the case of the other type of signal (colored noise,
tone plus noise, etc.), the identification scheme can be
built by analogy [9].

V. COMPUTER REALIZATION OF NONLINEAR
DECOMPOSITION FOR SPEECH PHONEME

SIGNAL RECOGNITION

    It is well-known the main point in designing
automatic speech recognition systems is the modeling of
speech signal variability. There exist two kinds of
variability: temporal and acoustic. In the best manner,
the temporal variability can be modeled by hidden
Markov models  [3], [10]. The acoustic variability is
more complicated for modeling because of its nonlinear
nature [10].
   In this connection we will use the nonlinear
decomposition based on Volterra-Wiener functional
series for modeling and recognition of speech phoneme
signals.
   The recognition system (acoustic processor) of speech
phoneme signals based on functional Volterra-Wiener
decomposition operates in two stages. The first stage
permits finding of speech phoneme standards, while the
second stage realizes an acoustic recognition procedure.
   During the first stage (Fig. 1), speech phoneme signal
samples enter the input of recognition system (a
phoneme belonging from the phoneme alphabet is
supposed to be measured) while a test signal (a white
noise) enters on the second input. The input speech
signal decomposition into functional is carried out in the
block for finding m Wiener kernels. Then an average of
obtained kernels for several samples of the chosen
phoneme is fulfilled in the block of sampling average.
As a result, a final estimate of Wiener kernel is obtained
from the output of the block of input signals
characterizing a phoneme [8]. The obtained set of
kernels for enough large number of samples is a
phoneme signal standard . Such a set of kernels is found
for all phonemes belonging to a phoneme alphabet of
the recognition system [8].
   During recognition stage (Fig.2), a real speech signal,
as well as white noise, enter as input to the system (let

us note that the signal belonging to a phoneme is not
known) [8]. The Wiener kernel estimations are
calculated based on input signals into the speech signal
decomposition block (they characterize a chosen speech
signal relative to input white noise). The obtained kernel
estimations are given to a classifier, together with
phoneme standards found earlier. The classifier makes a
decision on what kind of phoneme the input signal
belongs to. A sequential or parallel classifier can be
used as the classifier; among these classifiers are based
on neural networks or applied in statistical pattern
recognition (for example, Bayes or Wald classifiers) [8].
   From the description of stages functioning, it follows
that operation of input signal decomposition into
Volterra-Wiener functional series is carried out both the
speech recognition signal stage and the phoneme
standard finding one. As a result, the Wiener kernels are
measured. Unlike training stage, which requires a large
enough training sample (with a view of proximate
Wiener kernels finding), the speech recognition stage
permits us to estimate the Wiener kernels only
approximately , i.e., with errors, because a real
(workable) speech signal is limited by the short length
of sample. It is obvious that the computational error is
greater for the second case. In this connection, it is
important to develop efficiency both in time and in
accuracy methods for Wiener kernels measuring in the
case of small lengths of the speech signal.
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Abstract: This paper investigates the approach for
revealing pathological speech signal based on
estimating specific geometric structure of Lorenz
attractor in a chaotic regime. Analysis of the Lorenz
attractor on the basis of proposed nonlinear
decomposition into matrix series is developed. This
analysis permits to estimate the values of characteristic
parameters (including control one) of Lorenz attractors
and predict their evolution in time. This paper shows
that estimation of control parameter of Lorenz attractor
in the chaotic regime permits to distinguish even very
similar speech signals.
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decomposition

I. INTRODUCTION

   The nonlinear dynamical systems (NDSs) with self-
organization named as complex systems are investigated
with great activity in last decades. A complex NDSs
functioning is closely connected with the presence of
chaos in their behavior. The NDSs behavior can be
described on the basis of construction of chaotic
attractor in m-dimensional Euclidean state-space.
Chaotic behavior occurs for many various processes in
different natural and engineering objects. In particular,
dynamic model of Lorenz [1] describes well-known
Rayleigh-Benard convection phenomenon. Investigation
of system of Lorenz model equations permitted to reveal
so-called control parameter whose a specific value
leads to chaotic solution of state of this model. Phase
trajectories of Lorenz equation system in chaotic regime
are characterized strange alternative properties: on the
one hand, they diverge (because of positive Lyapunov
exponents), on the second hand, they attract to the
limited domain of phase space called an attractor.
Strange attractor of Lorenz demonstrates chaotic
behavior of fully deterministic system of nonlinear
equations [2]. At the same time, Lorenz attractor has a
specific geometrical structure and can be characterized

by means of fractional fractal dimension. Thus, analysis
of Lorenz attractors for different values of its control
parameter gives a possibility to develop high sensible
measurement method for recognition of pathological
speech signals. In this connection one of the aims of
this report is development of analysis of Lorenz attractor
based on proposed nonlinear decomposition into matrix
series [3], [4]. This analysis permits to estimate the
values of characteristic parameters (including control
one) of Lorenz attractors and predict their evolution in
time. Using results of this quantitative analysis it is
proposed an approach to distinguishing and recognition
of pathological speech signals from normal ones.

II. THE  MATRIX  DECOMPOSITION  FOR

OPERATORS OF NONLINEAR DYNAMICAL SYSTEM

INTO STATE-SPACE

   With point of view of behavior analysis the
continuous NDS is described in state-space by the
relations [5], [6]:
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 is a nonlinear vector  function, ( )⋅2f  is

nonlinear scalar function, )()( tu mv  is a state-space

vector belonging the state-space U , t denotes by a

time, m is a dimension of U , x(t) and y(t) are input
and output signals respectively). In general, we suppose
that x(t) ≠ 0, i.e. we consider the NDS with a nonzero
input signal. We study behavior of the solution for the

relation (1) near to a specific standard state )(tu ∗v being

considered as an undisturbed one permanently
disturbed by external actions or internal fluctuations on
a value )(tvv rr =  [5]. For this NDS we will linearize the

function ( )⋅1f
v

 near the state )()( tuu m∗∗ = vv
. In this case

we have to use the matrix nonlinear decomposition
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proposed in [3] for expansion in matrix series of the
vector function ( )⋅1f

r
 into state-space. According to [3]

a change of vector-function into state-space can be
decomposed into matrix series of the kind:
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We also suppose a  zero state 0)(
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under investigation. Taking into account this condition
the decomposition (3) becomes :
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III. RESULTS OF NUMERICAL ANALYSIS OF LORENZ

ATTRACTOR BASED ON MATRIX DECOMPOSITION

In [1] Lorenz investigated convective movement of
liquid by means of numerical solutions of respective
differential equations. Bénard experiment considered by
Lorenz is such that a horizontal liquid layer of infinite
length in the gravity field (with a positive coefficient of
volume extension) is warming from below [2] , [7].
   Lorenz attractor of continuous complex NDS can be
written by a system of three ordinary differential
equations [1], [2] :
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where a  and b  are dimensionless constants to
characterize the system (for example, a = 10 and b
=8/3), c is an external control parameter proportional to
∆T [2] : c = Rà/Ràñ ∼ ∆T, besides, Rà is a Rayleigh's
number [7] and Rac is its critical value [2]. The variable
u1  is proportional to the velocity of the circulating
liquid, u2 characterizes a difference of temperatures
between the ascending and descending flows of liquid,
u3 is proportional the deviation of temperature profile
from equilibrium value.

Because in the general case the Lorenz’s model is
nonintegrable, its solutions can be found by means of
numerical methods if three parameters a , b and c are
fixed. The parameter c (connected directly with the
Rayleigh number Ra in the Rayleigh-Bénard experiment,
i.e. with the temperature difference) is a bifurcation or
control parameter [1], [2], [5], [6], [7]. It has been
programmed on the basis of Java the numerical
integration of Lorenz system of three ordinary nonlinear
differential equations (5) with the following parameters:

a = 10;
b = 2.66;
c= 24.27.

This program also reproduces geometric locus of Lorenz
attractor in the projection on two-dimensional state-
subspace (see Fig.1). The domains (marked by different
colors) correspond various regimes of movement of the
point on the Lorenz’s attractor: those regions, where
acceleration of point movement is positive, are drawn by
the rose-coloured, while regions corresponding to the
negative acceleration of the point are marked by the
yellow or green colors (besides, green color points to
the large deceleration).
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   Fig.1 Geometric locus of Lorenz attractor on the
plane and matrix analysis its current state

Using the matrix notation the system of equations (5)
can be represented by means of the following vector
functions:
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According to Sect. II we shall study how the vector

function f
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depends upon the considerable variable
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Taking into account (7) we can find the change of the
vector function (6) as follows :
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Applying the matrix decomposition (2) to (8) we can
evaluate the following terms of matrix series :
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By substituing (9a) and (9b) in (2) it is not difficult to see
that vector function (8) can be approximated by only
linear (9a) and quadratic (9b) terms  :
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It has been mentioned above, Fig. 1 illustrates the
numerical analysis of a Lorenz attractor on the basis of
matrix decomposition in accord with (9a,b), (10). Because
the values of the first and second order derivatives can
be calculated by means of numerical methods (for
example, based on Runge-Kytta method) we can

estimate ),( ∗∆ uvf est rr
 from a computational experiment.

In result, as it follows from (10), we can estimate the
values of  parameters of Lorenz’s attractor:
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Formulas (11a)-(11c) solve the task of identifying the
current dynamical state of a Lorenz attractor; in
particular, the relation (11b) determines the value of
control parameter permitting to reveal chaotic regimes in
Lorenz NDS functioning.

IV. VERY ACCURATE MEASUREMENT BASED ON

COMPARING MODEL AND RECONSTRUCTED

CHAOTIC ATTRACTOR

   Let {snn=0,1,2,…,N-1} is a known speech phoneme
signal obtained from a healthy person under
investigation (i.e. {sn} is a personal phoneme standard),
n is a discrete time, N is a duration of signal. Let
{xnn=0,1,2,…,N-1} is a measured signal obtained from
the same person during a period of medical observation
of this person. When the “true” samples of signal are
known, the fitted values can be compared with them by
defining an error measure  e as follows :
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where sn is a member of the “true” samples of  known
signal. We also examine the sensitivity of the fit to noise
added to the data.
   The main idea of this method is an estimation of the
measure of proximity e  through changing structure of
chaotic attractor under observation (in particular, Lorenz
attractor). First of all, we choose a chaotic attractor as
Lorenz attractor with the control parameter c = 24.27.
Such value of control parameter, as it has been
mentioned above, corresponds to a chaotic regime of
Lorenz attractor (see Fig.1). Therefore, we can store the
phase portrait of Lorenz attractor with c  = 24.27 in the
memory as a standard and then compare it with a
reconstructed Lorenz attractor. The reconstructed
Lorenz attractor is built on the basis of numerical
integration of Lorenz system (5) by means of respective
program tool with the value of control parameter c equal
to :

c = 24.27  + e .

Taking into account the highest sensibility of chaotic
attractor from its control parameter we can expect a
variation of the standard structure even if e« c.
Really, computer experiments with usage of the
mentioned Java program based on Runge-Kutta scheme
give us the following results :

      The total number of points for solution:  100000;
      The initial point  (u1 ,u2 , u3 ) = (1,1,1);
      The sampling value in time : h = 0.0001;
      The parameters of Lorenz system :

a  = 10.00;
b  =  2.66;
c =  24.27.

       The local error : ≤8 ∗10-6 .

   Thus, even a measured signal xn  is very similar to the
standard one sn for the same person then the
proposed approach permit us to reveal this error through
the variation of the phase portrait of standard chaotic
attractor.
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BLIND SIGNAL SEPARATION OF VOCAL SIGNALS TAKEN IN NOISY 
ENVIRONMENT 
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ABSTRACT: The separation of independent 
sources from mixed observed data is a fundamental 
and challenging signal processing problem. A 
method for directly extracting clean speech 
features from noisy speech is implemented. This 
process is based on independent component 
analysis (ICA) and a new feature analysis technique 
to reduce the computational complexity of the 
frequency-domain ICA. For noisy speech signals 
recorded in real environments, this method yielded 
consider-able performance improvement. Thus the 
process for extracting clean speech features can be 
performed without recovering the actual source 
signal.   

I. INTRODUCTION

  Noise robustness is a very important issue in 
the field of automatic speech recognition. 
Microphones have been used to achieve noise robust-
ness, and blind source separation has been 
implemented to enhance the noisy speech signal. For 
the speech recognition process, however, only clean 

speech features are required. Therefore, instead of de-
noising the noisy speech signal in the preprocessing 
step, it is computationally more efficient to directly 
extract the clean speech features from noisy speech. 
The blind signal separation (BSS, fig.1) is an approach 
to estimate original source signals using only the 
information of the mixed signals observed in each 
input channel. This technique is applicable to the 
realization of noise robust speech recognition and high 
quality hands-free telecommunication systems. 

It may also become a cue for auditory scene analysis. 
In many practical situations, one or more desired 
signals need to be recovered from the mixtures only. A 
typical example is vocal signal or speech signal 
observations made in an acoustic environment in the 
presence of background noise. Other examples include 
Biomedical signals, sonar applications and cross talk 
in data transmission. The vocal signal separation 
problem is sometimes referred to as the cocktail party 
problem. When several people in the same room are 
conversing at the same time, it is remarkable that a 
person is able to choose to concentrate on one of the 
speakers and listen to his or her speech flow 
unrestrained. A signal separation pre-process would be 
desirable in such circumstances. The terminology 
‘blind source separation problem’ has been coined by 
[1], they have done their work on adaptive blind signal 
processing .and blind source separation technique 
based on second order statistics .The possibility of 
noise corrupted sources raises the issue of robustness. 
A statistical procedure is called robust if it still works 
well reasonably well when model the model 
assumptions from which it is designed is more or less 
violated .In this respect it is of interest to consider the 
independent component analysis (ICA) introduced by 
[2]. The separation process is based on ICA. In which 
Three signals are linearly separated from three mixed 
speech microphone recordings. The Technique given 
by [3] have been applied to calculate ICA directly to 
feature level. A “small-band” approach is implemented 
to average out fast Fourier transform (FFT) points in a 
frequency range and apply ICA directly to feature 
levels. To remove the mixed noise, this requires only 
one un-mixing network for each small band. This 
technique shows that the method yielded considerable 
performance improvement for weak signals also. 
Mixture of signals which is in the analog form is 
converted into digital form by using software Cool- 
Edit (SyntrilliumTM software USA) for further 
processing This technique is implemented in MatlabTM

environment. 

II. METHODOLOGY

The signals recorded by M microphones are given by 
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j  =1……M  

Where si is the source signal from a source i, 
xj is the received signal by a microphone j, and h ji is a 
P point impulse response from source i to microphone 
j . In this paper, we consider a three-input, three-output 
convolutive BSS problem, i.e., N = M  = 3.the 
convoluted mixture can be obtained according to 
figure1, where two signal can be mixtured by 
microphone arrey. The frequency domain approach t 
convolutive mixtures is to transform the problem into 
an instantaneous BSS problem in the frequency 
domain. The most basic and necessary preprocessing 
of signal is centering, i.e. subtract its mean vector so as 
to make a zero-mean variable. Another useful 
preprocessing strategy in ICA is to whiten the 
observed variables. This means that before the 
application of the ICA algorithm (and after centering), 
we transform the observed vector linearly so that we 
obtain a new vector which is white, i.e. its components 
are uncorrelated and their variances equal unity. In 
other words, the covariance matrix of equals the 
identity matrix. Spectral analysis, the kth band energy y 
(k) can be expressed as  

Where k = 1 .. . . .K and X (n) is the value of 
the nth FFT point. Fk and lk  denote the index of the 
first and last point of the kth band and K denotes the 
number of bands respectively. Use of this method can 
improve the recognition performance in noisy 
environments by smoothing the spectrum components. 
Additionally, fever-unmixing network are required in 
frequency domain approach. This method can improve 
recognition performance in noisy environments by 
smoothing spectrum components. Additionally results 
in much less number of unmixing networks. 

III. RESULT

The result is that the individual signals could 
be recovered from the mixture of signals and then the 
problem of receiving the individual signals from the 
mixture of signals that is the cock tail party problem is 
solved. 

IV. DISCUSSION

 Independent component analysis aims at 
extracting unknown components from multivariate 
data using only the assumption that the unknown 
factors are mutually independent. Since the 
introduction of ICA concepts in the early 80s in the 
context of neural networks and array signal 
processing, many new successful algorithms have been 
proposed that are now well-established methods. Since 
then, diverse ICA applications in telecommunications, 
biomedical data analysis, feature extraction, speech 
separation, time-series analysis and data mining have 
been reported. Biomedicine is one important research 
area where the above techniques has proven their 
success. The use of ICA in electroencephalography, 
magnetoencephalography or in the extraction of the 
fetal electrocardiogram (ECG) from maternal 
recordings are some examples of it. In the ECG, ICA 
also has been applied to the separation of breathing 
artifacts, and other disturbances. The above technique 
can be used in Voice Extraction by on-line Signal 
Separation. 

V. CONCLUSION

By applying the fast ICA technique in 
frequency domain for speech signal more robust 
performance is obtainable. Thus the process for 
extracting clean speech features can be performed 
without recovering the actual source signal.  Also, the 
frequency-domain approach is implemented with less 
number of un-mixing networks for noisy speech signal 
recognition. 
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Abstract: According to the C/D model, the base 
function for each utterance comprises a skeletal 
structure represented by a syllable-boundary pulse 
train and melodic control functions that are linked to 
individual syllables. The melody includes vocalic, 
tonal, and some other control variables. The concept 
of prosody may be generalized to include all base 
function aspects according to this concept. Melodic 
time functions are represented by phonetic status 
contours, dimension by dimension, i. e. syllable-based 
pseudo-step functions with occasional interpolations 
for phonological underspecification. The quasi-
stationary target values for each syllabic segment are 
enhanced or reduced according to the syllable 
magnitude. Consonantal perturbation functions 
represented by elemental gestures are superimposed 
onto these control variables of the base function and 
their ballistic movement patterns as impulse responses 
to each syllabic excitation pulse have amplitudes 
according to the syllable magnitude. Jaw opening 
cotains a prosodic component that directly reflects the 
syllable magnitude, which determines an abstract 
syllable duration. Some examples of mandibular, 
vocalic and tonal variables associated with durational 
variation are discussed with empirical data, referring 
to two recent PhD dissertations by Caroline Menezes 
and Patrizia Bonaventura. 
Keywords :  C/D Model, phonetics, prosody, syllable, 
boundary. 

I. INTRODUCTION

Prosody is traditionally considered as suprasegmental 
characteristics of speech signals that are outside the 
phonemic segmental description [Lehiste 1970]. 
Phenomena such as voice fundamental frequency (F0) 
variation (often called intonation), segmental durations, 
and acoustically silent periods (pauses) are typical 
variables that are treated as prosodic characteristics of 
speech signals. Recent research in speech production 
points out the inaccuracy of this traditional concept of 
prosody. Experimental studies on articulatory movement 

patterns as well as acoustic analyses have revealed, for 
example, significant variability of vocal tract filter 
functions or corresponding formant frequency patterns, 
due solely to prosodic variables such as syllable 
prominence. Such prosodic variables are controlled as a 
function of various communicative meaning or 
expressiveness, including focus or contrastive emphasis, 
in realistic conversational speech [Gu et al. 2003, 
Fujimura 2000a, Erickson 1998, Maekawa 1996, 
Fujimura 1990, Laver 1980]. In terms of the voice source 
signal, in addition to the fundamental frequency and 
intensity, other quasi-stationary spectral properties have 
been discussed as variables representing voice quality in 
relation to prosodic control [Fant et al.1985, 
Pierrehumbert 1989, Fant et al. 2000]. Besides quasi-
stationary speech parameters, temporal fluctuation of the 
source signal which varies within an utterance, as well as 
variation among utterances depending on the type of 
phonation has also been studied (see Estill et al. [1996] 
and Kawahara et al. [2001]). 

The C/D model [Fujimura 1992, 2000a, 2002] takes a 
new view, defining a generalized concept of prosody to 
be represented by the base function as a whole, separated 
from the temporally local functions representing 
consonantal perturbation [Öhman 1967]. Fig. 1 shows a 
block diagram of this model. In this depiction of speech 
organization patterns, phonemic segments no longer play 
any role; the «segments» as the basic concatenative units 
of speech organization are syllables. Each syllable 
comprises phonological features and corresponding 
gestural manifestations in its phonetic implementation. 
Syllable boundaries eventually become obscure as the 
phonetic signals are implemented [Leben 1999], but in 
acoustic signals, there are apparent discontinuities 
frequntly, due to the nonlinearity of the mapping from 
articulatory movement variables to acoustic signal 
parameters. Such discontinuities observed in the acoustic 
signals correspond to the traditional acoustic segmental 
boundaries. The base function (see below) has its skeletal 
structure and melodic variables. The latter, variable by 
variable for different physiological control dimensions 
separately, are temporally linked to each syllable of the 
skeletal structure..  

A GENERALIZED CONCEPT OF PROSODY  

Osamu Fujimura 
The Ohio State University 

Fujimura.1@osu.edu 
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II. BASE FUNCTION: SKELETON VS. MELODY

According to the C/D model, a speech utterance is 
phonetically represented by its base function and 
superimposed consonantal perturbation. The base 
function has a skeleton and melody. The skeleton of the 
base function embodies the rhythmic organization of the 
utterance, and it is represented by a syllable-boundary 
pulse train. Each pulse, representing either a syllable or a 
boundary, has its own magnitude. A unique characteristic 
of the C/D model is to associate the syllable or boundary 
magnitude directly to the temporal property of the 
concatenative unit, i. e., an abstract duration of the 
syllable or boundary. Some temporal modulation of this 
basic organization of articulatory movement patterns is 
added, as seen in phrase-final elongation phenomena, 
exhibiting interaction between syllables and boundaries.  

The syllable, as an abstract concatenative unit, has a 
target value to represent the phonetic status in each 
dimension of the base function, usually, but not always, 
as a stationary (time-free) scalar value. Typically, the 
concatenated string of syllables, with intervening 
boundaries, forms, in each of its dimensions, a pseudo-
step function of time called a phonetic status contour, 
with some (abstractly) inserted function (such as 
interpolation) for the intervening boundary. Such effects 
of boundaries may be observed for a syllable string as a 
whole simultaneously (e. g. phrase-final elongation or 
pause), or only in some phonetic variables of the syllable 
string (e. g. tonal features for a yes-no question). Such 
manipulation of control variables is often observed in 
tonal control in relation to phonological feature 
underspecification (see, e. g. Shih & Kochanski [2000] 
and Xu [1999, 2001]). Part of such boundary effects was 
traditionally discussed as Sandhi rules, in terms of 
discrete alteration of phonological features as contextual 
effects.i

A boundary generally has its dynamic gestural 
manifestation in the temporal vicinity of the occurrence 
of the boundary pulse. A boundary may also manipulate 
the time scale, common for all control dimensions, by a 
continuous temporal modulation function, for example, 
manifesting a period of silence or a phrase-final 
elongation of articulatory and/or phonatory gestures 
[Fujimura 1990]. 

III. VOICE QUALITY INCLUDING F0 CONTROL

Speech production control, according to the 
source-filter theory [Fant 1960], has two aspects: source 
and filter. If the source signal is produced by vocal fold 

vibration, it controls properties of voice quality. 
Loudness and pitch are the most widely recognized 
psychoacoustic characteristics of voice. Physically, we 
often consider the voice fundamental frequency and 
acoustic pressure signal intensity as primary variables 
that determine pitch and loudness, respectively, with 
some interaction both in production and perception. 
However, there are many other physical correlates of 
independently controllable voice quality; some are used 
commonly in conversational speech, for conveying 
specific communicative meanings. Stress, as a measure of 
phonetic control of each syllable, is an abstract concept, 
primarily related to the respiratory effort in the concrete 
process of speech production [Ladefoged 2001].  

 Stress has many physical correlates. A higher 
subglottal pressure typically raises voice pitch and 
loudness together and, unless specific voice quality 
control is executed, a higher intensity of the voice signal 
is accompanied by a higher F0 and vice versa. It should 
be noted, however, that this default correlation could be 
reversed on purpose, even in routinely observed 
conversational phrases. For example, as illustrated by a 
CD diagram in Fig. 2, a sarcastic expression of a sentence 
‘That’s wonderful!’ may exhibit a deliberately lowered 
F0 with stress attached to the word ‘wonderful’, affecting 
its main-stressed first syllable. In such an utterance, the 
default rise of F0 due to an enhanced respiratory effort is 
overridden by a special suppression of F0 accompanied 
by an alteration of the voice source spectrum. Such an 
alternation of voice quality would be observed as a 
boosting up of the high frequency components of the 
voice source signal [Pierrehumbert 1989, Fujimura et al.
1995]. In this situation, however, the extended syllable 
duration of the main-stressed syllable of the emphasized 
word remains to be perceived as a strong indication 
(prominence) of the stress. Increased syllable duration is 
another primary manifestation of phonetic stress. In terms 
of the C/D model, the skeleton of the sentence utterance 
with an emphasis on ‘wonderful’ remains with an 
enlarged syllable triangle (see Fig. 2), enhancing all 
syllable gestures including, in particular, jaw opening. 
Voice quality control also affects temporal perturbation 
of voice periodicity. It is understood generally that voice 
quality changes considerably according to the expressive 
style in conversational speech. The sarcastic utterance 
mentioned above is just one example. Almost any 
emotion ranging from sorrow to anger or retreat to 
aggression, as well as delight to frustration, is expressed 
by the choice of marked voice quality along with a choice 
of particular linguistic forms.  
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In Japanese (e. g., Tokyo dialect), which does not use 
stress but pitch accent for lexical distinction, stress 
pattern is controlled only in phrasal phonetics, in terms of 
manipulation of syllable magnitudes, for example, for 
marking focus placed on a word [Fujimura in press].
Manifestation of emotion in Japanese also may be 
reflected in voice quality of the entire utterance. 
Sometimes, it may be observed most clearly in a 
particular part of an utterance, such as toward the end of 
an utterance. It may be associated with a choice of a 
particular sentential particle, but often the emotion is 
expressed just by changing the «tone» using a regular 
sentential particle, such as ‘ka’ for questioning. Thus, for 
example, ‘Soo desu ka’ (Is that so?) can be a question 
simply verifying the dialogue partner’s statement, or an 
expression of incredulity, or perhaps an expression of 
indifference, all using syntactically the same question 
form. The difference in the communicative meaning, 
which typically is quite obvious to the listener even in a 
relatively calm conversation with limited F0 variation, 
can be observed reliably by measuring the voice source 
spectrum. Maekawa studied the amplitude ratio between 
the fundamental and second harmonics near the end of 
the utterance (vowel [a] in the example above) 
[Maekawa, personal communication]. Erickson [2002] 
reported articulatory characteristics of sad speech in a 
recorded telephone conversation in comparison with 
simulated sad and normal utterances of the same 
sentences in English.  

IV. PROMINENCE EFFECTS ON ARTICULATORY AND 
PHONATORY GESTURES

 Emphasizing a word in an utterance affects 
various physical correlates including (spectral) voice 
quality as discussed above. In addition to the change of 
the vocal fold vibration pattern, which determines the 
voice source characteristics, the vocal tract configuration 
changes, related to the effect of stress on jaw opening and 
the vowel-proper gesture for the syllable; the F-pattern 
(formant frequencies) is also systematically affected 
accordingly. The change in position of the larynx, related 
to the tonal phonological features, also may affect the F-
pattern. Usually, the first formant is the most noticeably 
affected by prominence control of different kinds. 
Erickson [2002] reports on the effect of contrastive 
emphasis due to correction of a word on high and low 
vowels, in American English sentence utterances. Her 
data show that jaw opening is increased for high vowels 
as well as low and mid vowels, while the tongue surface 
is not elevated for high vowels by emphasis [Erickson 
2002], Fig. 3 illustrates such effects of emphasis on 

tongue body position for the American English tense high 
front vowel /i/, comparing emphasized vs. unemphasized 
words. In this case, the tongue body position is affected 
by emphasis mainly in its front-back position.  

Presumably, the lingual and labial articulatory 
gestures that characteristically deviate for the given 
vowel, relative to a neutral vowel articulation, are 
enhanced when the syllable magnitude is increased (see 
also Fujimura [2002]). In the case of low vowels, as in 
the Pine Street data, the enhancement of the inherent 
vowel gesture of the tongue cooperate with increased jaw 
opening in lowering the tongue surface for more 
prominent syllables. Therefore, jaw opening can be taken 
directly as an indication (proportional measure) of the 
syllable magnitude, even though the proportionality 
coefficients as contributing factors cannot be assessed. In 
the case of high vowels, the two effects of syllable 
magnitude enhancement more or less cancel each other 
between the jaw gesture and the tongue proper gesture 
relative to mandible position [Fujimura in press-a], as we 
see in Fig. 3. In such a case, the primary effects of 
prominence we can observe are the enhancement of 
advancing/retracting gesture (and lip protrusion gesture 
for a rounded vowel) along with the durational effects 
(see Fujimura [2000b]). 
 An interpretation by the C/D model of such an 
articulatory effect of syllable magnitude is depicted in 
Fig. 4. This speculative figure illustrates an example 
sentence of ‘That’s the most important’, uttered in a 
neutral intonation pattern without particularly 
emphasizing a word. The tongue body is retracted for the 
back vowel /o/ in the nominal vocalic gesture (dot-dashed 
curve), according to the phonological feature 
specification {back}. This inherent gesture for 
phonological backness is implemented as a tongue body 
retracting, as a deviation from the neutral 
advanced/retracted posture of the vowel articulation. 
According to the syllable magnitude, which, for this 
syllable, with nuclear stress, exceeds a reference level 
(indicated by a horizontal solid line in the next-to-top 
panel going across syllable triangles), the tongue 
retraction gesture is shown to deviate more strongly 
(dashed curve for «retracting») than the nominal gesture 
(dash-dotted curve).  
 The mandible lowering (dashed curve, lowest 
panel) in this figure reflects the syllable magnitude 
control, which is represented by the height of each 
syllable triangle in the next-to-top panel of the figure. 
Note that the syllable triangles are similar to each other 
with the same (symmetric) angles regardless of their size. 
This implies, according to the assumption of the C/D 
model, that the (abstract) syllable duration is proportional 
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to the (abstract) syllable magnitude. In this figure, phrase-
final lengthening is caused by a boundary (the small half 
triangle in the middle of the next to top panel) between 
two consecutive syllables, which may be implemented in 
part as a silent period, if the boundary is large enough in 
magnitude. For vocalic gestures, the increment of the 
phonetic implementation in each relevant dimension is 
assumed to be proportional to the excess of syllable 
magnitude (see above). For consonantal gestures, shown 
in the top panel, impulse response functions (IRFs) for 
elemental gestures are amplified according to the syllable 
magnitude, since the syllable pulse excites each IRF, as a 
linear system response.  
 Menezes [2003] analyzed formant frequency 
variation in the low vowel of /aJ/ in ‘five’ and ‘nine’ in 
different phrasal positions of street addresses such as 
‘599 Pine Street’, when one of the digit is corrected 
repeatedly (Blue Pine data, see Erickson [1998] and 
Erickson et al. [1998]). This dissertation demonstrated by 
detailed data analyses including some perceptual 
evaluation, that jaw opening maneuvering, along with 
syllable duration, as predicted by the C/D model, is a 
robust measure of syllable magnitude that is controlled by 
the correction, confirming previous reports. Fig. 5 
illustrates, for one of four speakers, this mandibular effect 
of contrastive emphasis, which is consistently observed in 
all speakers. In other words, given the same low vowel, 
maximum jaw opening during the syllable is a reliable 
measure of intended emphasis (by correction). This was 
shown to be consistent with perceived emphasis as well. 
In addition, Menezes & Honda [2002] showed that raised 
F0 was not a reliable measure of emphasis. Fig. 6 
demonstrates some variability of F0 patterns with respect 
to the effect of contrastive emphasis due to focus in 
correcting utterances. Menezes et al. [2002] also found 
that listeners did not judge emphasis consistently based 
on pitch patterns.  

V. TEMPORAL MODULATION AND PHONETIC PHRASING

As mentioned above, according to the C/D model, the 
syllable magnitude directly relates the magnitude of 
articulatory gestures to the temporal span of each 
syllable, even though the observed jaw opening and 
acoustic syllable duration are both affected also by other 
concomitant factors. Maximum jaw opening is 
determined, according to this theoretical prediction, by 
the abstract syllable magnitude in the prosodically 
controlled component of this articulatory gesture, while 
the inherent vowel gesture, according, in particular, to the 
phonological vocalic feature high vs. low, also 
contributes to the mandibular position. On the other hand, 

the syllable magnitude dictates the underlying syllable 
duration, while the observed acoustic syllable duration, 
however it may be defined, is affected also by boundary 
effects, which cause, notably, what is called phrase-final 
lengthening [Lehiste 1980]. 

Even the movement of the crucial articulator for the 
given demisyllable (combination of the consonants and 
the vowel for the initial or final half of the acoustic 
syllable pattern, see Fujimura [1976, 1979]) shows 
somewhat affected temporal characteristics depending on 
the adjacent boundary. Patrizia Bonaventura, analyzing 
the iceberg patterns of the crucial articulators in the Pine 
Street data, addresses this issue in her forthcoming Ph.D. 
dissertation. Menezes [2003] also discussed a tentative 
interpretation of phrasing strategies used by different 
speakers in the Blue Pine data, as manifestation of 
(repeated) corrections. Mitchell in his MA thesis [2000] 
(also see Mitchell et al. [2000]) provided an early 
discussion of such issues.  

By analyzing a Red Pine database more recently 
acquired by Erickson, Bonaventura examined the iceberg 
movement patterns of the consonantally crucial 
articulator in /faJv/ and /naJn/ in detail. In the time 
function display of  the vertical position of a selected 
flesh point of the crucial articulator, the slope (speed of 
movement) when the pellet position passes a fixed 
vertical position (iceberg threshold, see Fujimura [1986]) 
was examined in large numbers of utterances by three 
speakers. In Fig. 7, the time origin for each curve was 
shifted to make the group of curves to pass a fixed 
iceberg threshold coincide in time (see Fujimura [1986]). 
The syllable in this example is /naJn/. The slope of the 
demisyllabic movement of the tongue blade (about 1 cm 
behind the tip) varies slightly depending on the extent of 
vertical movement for each demisyllable. Fig. 7 
compares the initial and final demisyllables, [na] and 
[aJn], respectively.  

Fig. 8 shows, correspondingly, scatter plots of the 
speed of tongue tip movement at the iceberg crossing 
point against the total vertical distance of excursion for 
each demisyllable. It is seen in this scatter plot that for 
the initial demisyllables in this set of data, there is a clear 
linear relation between the iceberg threshold crossing 
speed and the distance of the demisyllabic movement. 
That means the larger the distance of descent from 
consonant to vowel, the faster the speed of (downward) 
movement. On the other hand, for the final demisyllable, 
the scatter plot shows a much more dispersed pattern. The 
correlation varies somewhat from speaker to speaker and 
depending on other factors, but this tendency is 
consistently observed in our data.  
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Depending on whether the  (digit) is emphasized or 
not, by correction, the excursion is larger or smaller, but 
there are other factors that affect the excursion distance: 
the separation of the two conditions, emphasized vs. not 
emphasized, is not very clear-cut. In the case of final 
demisyllabes, the boundary of various magnitudes 
immediately follows. A boundary of sufficient magnitude 
may cause deceleration of the movement in the 
immediately preceding time domain. Since the extent of 
this deceleration varies depending on the boundary 
magnitude, and the boundary magnitude varies depending 
on various factors from utterance to utterance as well as 
speaker strategies, the movement speed is not as 
consistent as in initial demisyllables. It seems, however, 
that emphasis conditions does not determine the speed of 
demisyllabic movement directly, while it does affect jaw 
opening consistently as a tendency. In any case, the 
iceberg analysis provides us, as demonstrated earlier 
[Fujimura 1986, 1990, 2000a, Mitchell 2000, Menezes et 
al. 2002, Menezes 2003], with a useful tool for evaluating 
the timing of each demisyllable, and thereby a reliable 
measure of duration of each syllable. Boundary 
magnitudes can be evaluated based on the syllable timing 
and duration, and the pattern of phonetic phrasing for the 
given intention of prosodic control can be examined. 

Phonetic phrasing, in the C/D model, is a numerical 
phenomenon with continuously variable boundary 
magnitude, as observed in the syllable-boundary pulse 
train. In contrast, the phonological phrase structure, as 
discussed, for example, by Selkirk [1984], is a discrete 
organization of a linguistic form as its inherent property. 
The phonological structure, when it is implemented, is 
continuously modified by the phonetic environment of 
the utterance. Phonetic phrasing patterns can not be 
discussed without quantitatively defined boundaries. 
Considering only acoustically observed silent period as 
the phrase boundary is a naive concept, but there has 
been no theory to the author’s knowledge that provides a 
descriptive framework for defining abstract general 
boundaries with their quantitatively defined strengths 

The C/D model proposes such a descriptive framework 
of phonetic structure. It defines an abstract syllable 
duration, which can be inferred from observable 
articulatory signals, at least under favorable phonetic 
situations, e. g., Pine Street data using a very limited 
phonologic materials uttered in widely varied prosodic 
conditions. By using such simple materials with respect 
to vowels and consonants, we can infer, at least 
approximately, syllable magnitudes of syllables as the 
function of stress. By using a fixed low vowel, as in 
‘five’, ‘nine’, and ‘Pine’, we can assume that jaw opening 
directly reflects syllable magnitude to first 

approximation. By calculating syllable duration using the 
assumption that it is proportional to the syllable 
magnitude, we can evaluate the gaps between consecutive 
syllables.  

Once we understand the basic nature of the temporal 
organization of speech using simple lexical materials, we 
then can proceed to study properties of specific and 
varied vowels and consonants, according to the 
theoretical framework of the C/D model. Then using a 
large variety of syllabic (segmental) as well as prosodic 
conditions in natural or semi-natural conversational 
speech, we can test the validity of the theory in terms of 
consistency. Original assumptions can be revised 
according to empirical findings and refinement of system 
parameters, as a process of successive approximation can 
be obtained. This seems to be the only methodology to 
discover the abstract organization principles of infinitely 
complex conditions that determine observable properties 
of speech signals. We are only at the beginning stage of 
this ambitious research program. Without such a basic 
exploration of the newly described phonetic principles, 
speech will never be understood, and speech technology 
will never see a true breakthrough. 

1 Note that, according to the C/D model, phonetics 
describes properties of phrases in an utterance, while the 
lexicon is a phonological system, which must be 
implemented as phrases in utterances. 
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Fig. 1: C/D Model (block diagram) 
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Pitch Status 1 shows the default pitch levels according to the syllable magnitudes. Pitch 
status 2 shows the marked pitch control for pitch lowering. The smooth curve is the result 
of implementing the pitch status step function (a kind of coarticulation). 

Fig. 2: Low pitch for stressed syllable in a sarcastic utterance of ‘That’s wonderful’. 
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Fig. 3:  Emphasized (black) vs. neutral (red) (see Erickson [2002])
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Fig. 4: ‘That’s the most important’ (CD diagram) 
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Fig. 5: Mean maximum jaw opening and F1 for different emphasis conditions and digit 
position in a 3-digit sequence (female speaker [Menezes, personal communication]). All 
digits in (repeated) correcting utterances have larger jaw opening and F1 than those in 
reference. For middle digit, the direct effect of emphasis on the corrected digit is 
particularly strong in this speaker. 

Fig. 6: Mean peak F0 for different emphasis conditions and positions in 3-digit sequence 
(same speaker/session as in Fig. 5 [Menezes, personal communication]). Note that for the 
final digit, in this speaker, F0 is considerably lowered when the digit is emphasized by 
(repeated) correction (the right-most bar of the middle 3-bar group) compared with the 
neutral utterances (in the left group) or in the unemphasized digits in the correcting 
utterances. 
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70 Iceberg curves – initial demisyllable 
(Tot. 72, 2 missed, because all values above threshold) 

Speaker 3, word ‘nine’ 

LEGEND: Reference curves = black and solid;  
Non-emphasized curves = green and dashed;  

Emphasized ones = red and dotted 

The set of curves includes emphasized and unemphasized digit in correcting utterances of three-
digit street addresses in different intra-phrase positions of the digit strings, spoken by the same 
speaker. 

Fig. 7 (a): C-V movements (time functions) for the initial demisyllable of ‘five’,  
temporally aligned by the iceberg threshold crossing time. 
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72 Iceberg curves – final demisyllable 
Speaker 3, word ‘nine’ 

LEGEND: Reference curves = black and solid;  
Non-emphasized curves = green and dashed;  

Emphasized ones = red and dotted 

Fig. 7 (b): V-C movements (time functions) for the final demisyllable of ‘five’, 
temporally aligned by the iceberg threshold crossing time. 
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70 Iceberg curves – initial demisyllable  
speaker 3, word ‘nine’ 

The large marks indicate those cases where an obvious pause follows. Different shapes of 
the data points indicate different position in the three-digit string. 

Fig. 8 (a): Scatter plot showing the movement speed at iceberg threshold crossing vs.
excursion distance. There is a slight linear dependence of speed on excursion. 
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72 Iceberg curves – final demisyllable  
speaker 3, word ‘nine’

Fig. 8 (b): Scatterplot showing derivative at crossing vs. excursion for the final 
demisyllable, which are often followed immediately by boundaries of various 

magnitudes.  
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Abstract:  The larynges of nine squirrel monkeys 
were harvested, dissected, mounted on a tapered 
pseudotracheal tube, and phonated using heated 
and humidified air.  The patterns of oscillation of 
the vocal folds were videotaped with stroboscopic 
illumination, and simultaneous measurements of 
airflow, subglottal pressure, and audio signal were 
obtained.  The pressure wave and audio signal 
were subjected to spectral and phase portrait 
analysis methods.  It was found that the left vocal 
fold tended to oscillate at lower subglottal pressure 
compared to the right vocal fold. This resulted in 
unilateral oscillation.  Bilateral oscillation was seen 
at higher subglottal pressures.   Patterns of 
symmetric and asymmetric bilateral oscillations 
were observed.  

I. INTRODUCTION

The squirrel monkey larynx exhibits at least four 
different regimes of oscillation including biphonation, 
staccato phonation, and aperiodic phonation, as well 
as periodic phonation with overtones [1].  These 
various regimes of oscillation are exhibited 
“naturally” in the excised squirrel monkey larynx 
without any attempt to manipulate differentially the 
stiffness, mass, or elongation of the left and right 
vocal folds.  In the present study we examined 
selected cases from our data set in which bifurcations 
between symmetric and asymmetric patterns of vocal 
fold oscillation were observed as a function of 
changes in subglottal pressure, while vocal fold 
elongation and adduction were held constant.  Of 
particular concern here is the observation that as 
subglottal pressure is incremented and the threshold 
for phonation is achieved, the pattern of vocal fold 
oscillation is frequently unilateral, the right vocal fold 
is relatively immobile and oscillation is nearly 
confined to the left vocal fold.  It is as if the 
mechanical properties of the left and right vocal folds 
differ with the right vocal fold exhibiting greater 
stiffness. At other levels of subglottal pressure 
bilateral motion of the two folds is observed, and the 
bilateral oscillations may be either synchronized or 
asynchronized.  The goal of the present study was to 
examine the acoustic significance of transitions 
between asymmetric and symmetric patterns of 
oscillation. 

II. METHODOLOGY

Subjects:  Excised squirrel monkey larynges were 
obtained from the Squirrel Monkey Breeding and 
Research Resource, University of South Alabama.  
The Squirrel Monkey Breeding and Research 
Resource, housing approximately 500 animals, is the 
largest squirrel monkey colony in the United States, 
with a low annual mortality of about 5%.  The 
larynges of nine monkeys were harvested from 
animals which suffered a natural spontaneous death.  
No monkeys were killed for the purpose of conducting 
this research.  Larynx ID 1630, 4510, 90780 and 2618 
were extracted from adult female Bolivian squirrel 
monkeys (Saimiri boliviens boliviensis).  Larynx ID 
1232 was removed from an adult female Guyanese 
squirrel monkey (Saimiri sciureus sciureus).  The 
remaining three larynges were harvested from the 
Peruvian subspecies (Saimiri boliviensis peruviensis).
Of these, Larynx ID 410 was harvested from an adult 
male, while larynx ID 742 and 90004 were obtained 
from adult female specimens. 

Figure 1: Mounted larynx with control sutures. 

Apparatus and Procedure:  Experiments were 
conducted in an IAC single-walled both in which the 
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interior surfaces were covered with Sonex foam to 
reduce acoustic reflections.  Each larynx was 
dissected and trimmed, and the false vocal folds were 
removed.  The tracheal tissue and larynx was mounted 
on a pseudotracheal tapered rigid tube (3mm average 
diameter), positioned on a laboratory bench, and the 
tracheal axis was oriented in the vertical position, 
exposing the glottis to a camera and recording 
apparatus.  Adduction was controlled by two sutures 
attached to micrometers which pulled together the 
arytenoid cartilages.  In one condition, the length of 
the vocal folds was not manipulated, and the larynx 
was permitted to phonate freely without any 
attachments to the thyroid tissue.  In the second 
condition, vocal fold length was manipulated.  A 
surgical suture pulling the thyroid cartilage against the 
cricoid cartilage controlled the length changes.  No 
attempt was made to apply asymmetrical adjustments 
to differentially lengthen the left and right vocal folds.   
Figure 1 shows a squirrel monkey larynx mounted on 
the pseudotracheal tube. 
 The pseudotracheal tube received air from 
the building’s oil and water free compressed air 
supply.  The air was heated to 37o C via a Concha 
Therm III Servo Control Heater (RCI laboratories, 
Arlington Heights, IL), and was humidified to 
approximately 100% relative humidity.  The mean air 
pressure below the glottis was monitored with a wall-
mounted water manometer (Dwyer No. 1230-8), and 
the mean flow rate was monitored with an in-line 
flowmeter (Gilmont rotameter model J197).  The top 
view of the larynx and vocal folds was videotaped 
(Sony model DC-102) for later image analysis, and 
for stroboscopic images, a Pioneer DS-303ST 
stroboscope was employed.  The audio recordings of 
the signal were obtained with an Shure (model 48) 
microphone also positioned 10 cm above the glottis, 
the analog signals were recorded on a Sony model 
PC-108M Digital Audio Tape (DAT) recorder, and 
simultaneously filtered, sampled, digitized (12-bit 
A/D, 44.2 kHz sample rate) and stored on a Gateway 
personal computer.  The digitized time series data 
were analyzed with MATLAB or TFR signal 
processing software.   

III. RESULTS

Each larynx was readily phonated, and each larynx 
exhibited samples of both stable phonation, and 
samples of irregular phonation characterized by non-
linear phenomena.  In the present study we kept 
subglottal pressure to 40 cm-H20 or less.  In this 
preparation, variations in subglottal pressure of 40 cm 
H20 or less produce fluctuations in the amplitude of 
voicing that matches the range in amplitude of 
vocalizations recorded from nonhuman primates [1]. 
Summed across all nine larynges we recorded 546 
samples of phonation. 

At the onset of phonation over half of the 
samples exhibited unilateral phonation where 

oscillation was virtually confined to the left vocal fold 
and the right vocal fold was nearly immobile.  As 
subglottal pressure was incremented, airflow 
increased and motion in the right vocal fold was 
initiated.  We did not encounter examples were 
unilateral oscillation was observed in the right vocal 
fold, and the left vocal fold was nearly stationary.  
Figure 2 shows the audio waveform FFT for larynx ID 
2618 at subglottal pressures of 29 and 39 cm-H20
respectively.  At a subglottal pressure of 29 cm-H20
oscillation was nearly unilateral with good oscillation 
in the left vocal fold and very little motion in the right 
vocal fold.  At a subglottal pressure of 39 cm-H20, 
synchronized bilateral oscillation was observed.  The 
amplitude of the second harmonic increased markedly 
when bilateral oscillation was established.   

Figure 2: A (top panel) FFT of a unilateral oscillation, 
B (bottom panel) FFT of a synchronized bilateral 
oscillation. 

Figure 3 shows a similar example of this 
phenomenon for larynx ID 2683.  At a subglottal 
pressure of 23 cm-H20 oscillation was unilateral, and 
synchronized bilateral oscillation of the vocal folds 
was observed at a subglottal pressure of 32 cm-H20.  
At intermediate subglottal pressures this larynx 
exhibited bilateral oscillation, but the left and right 
folds oscillated out of phase with one fold “closing” 
as the other fold was “opening”.  In Figure 3 bilateral 
phase shifted oscillation is shown for a subglottal 
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pressure of 24 cm-H20.   As was observed in Figure 2, 
synchronized bilateral oscillation was associated with 
a prominent second harmonic of the fundamental 
frequency, and a third and fourth harmonics were also 
evident. 

Figure 3:  A (top panel) FFT of unilateral oscillation, 
B (middle panel) FFT of a bilateral phase shifted 
oscillation, C (bottom panel) FFT of bilateral 
synchronized oscillation. 

These findings suggest that in the squirrel 
monkey the vibrations in the tissue in the left half of 
the larynx are not strongly coupled to those in the 
right side of the larynx, and this increases the 
possibility that different frequencies or modes of 
oscillation may be established simultaneously within 

the laryngeal complex.  Figure 4 shows the waveform 
recorded from a pressure transducer, the FFT of this 
waveform and the phase portrait of this waveform for 
complex bilateral oscillation for larynx ID 1232.  In 
this case the vibration patterns in the left and right 
vocal folds were not synchronized or coupled with 
each other.  This is shown by the fact that the 
frequency peaks in the FFT were not harmonically 
related, and the phase portrait was elliptical. 

Figure 4: A (top panel) FFT of a low-pass filtered 
pressure signal measured 2 inches below the vocal 
folds during asymmetrical bilateral oscillation, B 
(bottom panel) phase portrait for the above case.  The 
x-axis displays the position of the signal, the y-axis the 
derivative. 

IV. DISCUSSION

In three previous studies that focused on the 
nonlinear behavior of vocal fold vibration, nonlinear 
behavior was experimentally induced by 
asymmetrically manipulating the stiffness of the two 
vocal folds [2,3], or the tension and length of the two 
folds [4].  Berry and his colleagues noted that only 
occasionally were asymmetric patterns of oscillation 
observed for symmetric folds [4].  In contrast, in the 
present study, several patterns of asymmetric 
oscillation were observed, and these phenomena 
occurred readily without any experimental 
manipulation to induce asymmetries in the stiffness, 
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length or tension of the vocal folds.  These 
observations are consistent with the idea that the 
magnitude of the coupling between the left and right 
vocal folds may differ prominently between species, 
and anatomical studies may help elucidate the 
differences between the laryngeal tissues of species 
that exhibit lax or tight coupling.   

The present findings were also consistent with the 
idea that the membrane characteristics of the left and 
right vocal fold differed such that the right vocal fold 
exhibited functionally greater mass or stiffness 
compared to the left fold.  Unilateral oscillation was 
almost entirely confined to the left vocal fold, and 
symmetrical bilateral oscillation tended to require 
greater airflow and subglottal pressures.  Careful 
anatomical studies may reveal left-right asymmetries 
in the tissue complex that may account for this 
phenomenon.   

As shown by Giovanni, Ouaknine, Guelfucci, 
Yu, Zanaret, and Triglia, if the two vocal folds 
differed in their relative stiffness, then the frequency 
and amplitudes of oscillation of the vocal folds would 
differ, and could result in a signal characterized by the 
nonlinear phenomenon of an asymmetric attractor [3].  
In this case the amplitude of the signal should wax 
and wane according to the nonlinear combination of 
the oscillations of the two folds. These mechanisms 
may account for the characteristics of the sample 
shown in Figure 4.   

V.  CONCLUSION

The data suggest that the mechanical 
properties of the left and right vocal fold differ with  

the right vocal fold exhibiting greater stiffness.  The 
data also suggest that the coupling between the left 
and right vocal folds is comparatively weak in  
the squirrel monkey.  The left vocal fold tends to 
oscillate with greater amplitudes and at lower 
subglottal pressures compared to that observed for the 
right vocal fold. These phenomena result in unilateral 
and bilateral patterns of oscillation of the vocal fold. 
In some cases the absence of coupling results in 
asymmetric patterns of bilateral oscillations. 
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Abstract: Mathematical model of the vocal folds
self-oscillations excited by aeroelastic
mechanism is presented. A two-degrees-of-
freedom element on an elastic foundation with a
generally defined shape vibrating in the glottal
airflow approximates the vocal fold. The Hertz
impact model is considered for the contact forces
during the vocal folds collisions. The model’s
vibratory patterns and resulting flow values are
similar to those of the real vocal folds. The
model is expected to be helpful in design of
artificial voice prosthesis.
Keywords: Biomechanics of voice, aeroelastic
instabilities, flutter, divergence, post-critical
behaviour of the aeroelastic system, nonlinear
vibrations, impact oscillator.

I. INTRODUCTION

    A linear two-degrees-of-freedom aeroelastic
model was originally developed by the authors in
order to study the influence of different geometrical
and elastic properties of the vocal folds on
phonation thresholds [1,2]. The inviscid
incompressible 1-D fluid flow theory is used in the
model for expressing the unsteady aerodynamic
forces. The numerical solution yields the natural
frequencies, damping, mode shapes of vibration and
the instability thresholds of the system directly by
solving an eigenvalue problem. The thresholds are
given by aeroelastic instabilities of divergence or
flutter type. The developed aeroelastic model is
able to provide qualitative information on
conditions for a soft voice onset or for breathy
voicing [2]. In order to study also the conditions of
small glottal openings and large vibration
amplitudes, the model was generalised by taking
into account the non-linear aerodynamic terms [3].
Results of numerical simulations in the time
domain were in good agreement with the previous
solution in the frequency domain, when a linear
approximation of the aerodynamic forces for
calculation of the stability boundaries was used.
    The present paper introduces the Hertz model for
modelling the impact forces between the vocal
folds. Nonlinear dynamic and aerodynamic forces
are implemented into an aeroelastic model of the
vocal folds and the postcritical behaviour of the
system after loosing the stability is simulated. This
allows complete numerical simulations of self-
oscillations of the vocal folds during phonation.

The parameters of the model, i.e., the mass,
stiffness and damping matrices are approximately
related to the geometry, size and material density of
real vocal folds as well as to the known or
prescribed fundamental natural frequencies and
damping.

II. MATHEMATICAL MODEL
    A vibrating element of the length L with mass m
and moment of inertia I with two-degrees-of-
freedom (rotation and translation TV=(V1(t), V2(t))
=((w2-w1)/2l, (w1+w2)/2) supported by an elastic
foundation and vibrating in the wall of a channel
conveying air is used to approximate the vocal fold
oscillations (Fig. 1).
    Vibrations of one vocal fold are modelled by the
equations of motion of an equivalent three mass
system on two springs [1,2]:

0FVKVBVM , (1)
where KBM ,,  are the mass, damping and
stiffness (2x2) matrices, respectively, and the
aerodynamic excitation forces F are given by the
perturbation pressure txp ,~  of the fluid flow in the
glottis:
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h is the channel depth and the distances l, L1 define
the two springs positions; and KMB 21  is
assumed.
    Aerodynamic forces are calculated from the
unsteady Euler and continuity equations:
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where A(x,t) = h H(x,t) is the channel cross-
sectional area; t and U(x,t) are the fluid density
and velocity; P(x,t) is the pressure.
    After separation of steady and unsteady
components:

txpxPtxPtxuxUtxU ,~,,,~, 00 ,
xatxwHtxH ,, 0      (5)
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the equation (4) yields the following equation for the
perturbation velocity and pressure:
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Introducing the velocity potential 
x

u~  the

perturbation pressure can be expressed as
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Considering small vibration amplitudes:
0Hw , the boundary conditions at the channel

inlet and outlet:
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and following the derivations in [1-3], the nonlinear
perturbation pressure can be expressed as
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where the coefficients xKi  (i=1,2,…,16) given by
complicated algebraic expressions can be found in
[3].
    Hertz model [4] of impact is implemented in the
aeroelastic model for the vocal folds collisions. The
impact force FH  is generally considered as

ybykF HHH 12/3 , ,
13

2
2 rEkH    (10)

where E is Young modulus,  is Poisson ratio and
r is the radius of the impacting body surfaces.
    The input parameters for numerical analysis
were considered to be approximately of the same
order as the data known for the vocal folds from
literature. The geometry of the vocal fold was
approximated by the following concave function
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From here the co-ordinates of the contact point can
be determined as
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The impact Hertz force can be expressed as

2/3
0max HykF HH , where kH  730 Nm-3/2 for

E=8 kPa and =0.4 [5] and where the damping
coefficient was neglected (bH=0);
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 is the height of the channel

and g is the glottal half-width (see Fig. 1a). A
correction on the static subglottal pressure:
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which is constant during the vocal folds collision
( 000 UU ), gives after integration of the pressure
psub in the interval max,0 xx  the resulting forces
in Eq. (1) during vocal folds contact:
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Fig. 1 - Two-degrees of freedom model.
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    For numerical simulations the equation of motion
(1) was transformed into the system of four 1st order
ordinary differential equations:
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and 4th order Runge-Kutta method was used for the
calculations. The functions 21 , ff  are determined
differently for contact (Hertz forces and static
pressure - see Eq. (14)) and non-contact
(aerodynamic forces – see Eq.(2)) regimes.
    The density, thickness and length of the vocal
folds were taken as follows: h =1020 kg/m3, L =
6.8 mm, h =10 mm [1-3]. From these data there
were calculated: the eccentricity e, the total mass m
and the moment of inertia I; the air density was
considered as kg/m3, L1=L/2 and l=0.344 L.
A tuning procedure was used to adjust the stiffness
(c1, c2) of the elastic foundation and the damping
coefficients 21 , in order to approximate the
natural frequencies f1, f2 and 3dB half-power
bandwidths  f1 =23 Hz and f2 =29 Hz of both
resonances by values measured on true vocal folds
[1].

III. RESULTS

    Typical simulation output is demonstrated in Fig.
2, where the motions tw1  and tw2  of the
masses m1 and m2 are shown in the phase planes
(left part) and in time domain (right upper part with
marked impact duration) as well as the glottis

opening tS  and perturbation subglottal pressure
tp~  at x=0 (right lower part of Fig. 2). The motion

of the vocal fold is regular with one impact during
one period and with calculated open quotient
OQ=0.71 for the oscillation cycle. The motion of
the vocal fold is animated in Fig. 3. The spectrum
of the airflow velocity at the outlet t,Lu~  is shown
in Fig. 4. The resulting vibrational frequency F0,
which is determined by the flutter frequency, is
between the natural frequencies f1=100 Hz and
f2=105 Hz. The forces loading the mass m2 during
the self-oscillations are shown in Fig. 5, where Fel,
Fa, Fin, Fp, FH denote the elastic, aerodynamic,
inertial, subglottal pressure and Hertz forces,
respectively. When the second natural frequency f2
was increased from 105 to 150 Hz and the flow
velocity U0 increased from 2.4 to 3.5 m/s,
everything else unchanged, the glottal area tS
showed subharmonic oscillations (Q=0.40 l/s,
OQ=0.87 - see Fig. 6). Oscillations without impacts
(OQ=1) were observed for the same parameters
when U0 was further increased to 4 m/s (Q=0.46 l/s
- see Fig. 7). In general, the results were influenced
by variation of the coefficient kH in the interval
100-10 000 Nm-3/2 only very slightly.

IV. CONCLUSIONS

    The presented model based on aeroelastic theory
enables to model the vocal fold self-oscillations in
time domain after crossing the phonation thresholds
given by the critical flow velocities (volume flux)
needed for loosing the system stability. The input
geometrical and material parameters of the model

Fig. 2- Numerical simulation for fluid velocity U0=2.4 m/s (Q=0.27 l/s), g=0.3 mm, f1=100 Hz, f2=105 Hz.
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are closely related to the properties of real vocal
folds [6].
    The preliminary results show that the model
reflects the basic vibration regimes and general
types of dynamic behaviour of real vocal folds

known from clinical observations such as modal
and non-modal phonation, regular, stationary
motions with collisions as well as, in special cases,
the subharmonic and chaotic oscillations.
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Fig. 3  - Numerical simulation of the vocal fold motion during one oscillation cycle for data as in Fig.2.
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Abstract: Self-oscillating physical and numerical
models of the vocal folds were investigated. The
physical model was cast into an idealized shape of the
vocal folds, on a 1:1 length scale with the human vocal
folds, using a flexible polyurethane rubber. The
model in a hemilaryngeal configuration experienced
flow-induced oscillations at a frequency of 90 Hz and
onset pressure of 1.2 kPa. The numerical model was a
two-dimensional finite element model of the vocal
folds and vocal tract. The flow was calculated
throughout the flow domain using the incompressible,
two-dimensional Navier-Stokes equations. The
aerodynamics and vocal fold dynamics were fully
coupled. Regular, self-sustained oscillations were
predicted at a frequency of approximately 275 Hz.
The influence of supraglottal duct length on vocal fold
motion is discussed. The capabilities and limitations
of the models are discussed, and areas for further
development are identified.
Keywords: Physical model, finite element analysis,
vocal fold models

I. INTRODUCTION

The primary source of sound in the vocal tract is the
modulation of the glottal airflow by the vocal folds
opening and closing periodically. The motion of the
vocal folds depends on the pressure loading on their
surfaces due to the airflow. In turn, the airflow through
the vocal tract is altered by the presence and motion of
static and dynamic laryngeal structures. Consequently,
there is a continual exchange of energy between the vocal
folds and the airflow. The flow-structure interaction is of
utmost importance in the region near the glottis.

To study the interaction between airflow and structural
dynamics in a vocal tract model (either physical or
numerical), the motion of the vocal folds must be coupled
to the airflow within the vocal tract, and not externally
driven (using a vibration generator, for example). This is
achieved by developing models of the vocal folds which
are flow-excited; that is, which move solely due to the
glottal airflow.

Previous experimental studies of flow-induced
oscillations of the vocal folds have been performed using
human larynges [1], excised canine larynges [2], a vocal
fold cover model [3], and membranous-type models [4,5].
Studies using canine or human subjects have the
advantage of physiological realism, but have
disadvantages of limited subject acquisition, and high

maintenance requirements. Differences between subjects
also limit the scope of potential parametric studies.

Self-oscillating numerical models include the original
two-mass model [6] and subsequent modifications [7,8].
More complex vocal-fold models have been developed
using two- and three-dimensional finite element methods
[9]. This approach is promising because of the greater
accuracy in predicting complex flow and structural
behavior, such as flow separation, turbulence, and vocal
fold collision. The insight gained from two- and three-
dimensional models can be used to improve predictions
of the computationally inexpensive multi-mass models.

This paper summarizes recent efforts to develop self-
oscillating physical and numerical vocal fold models,
which exhibit similarity with the human vocal folds, for
use in studying laryngeal flow-structure interactions and
in predicting dynamic vocal fold behavior.

II. PHYSICAL VOCAL FOLD MODEL

A. Methodology

The physical model was constructed using a three-part
polyurethane rubber compound (EvergreenTM with
EverflexTM, available from Smooth-On, Inc.). The
stiffness of the cured rubber could be varied by adjusting
the mixing ratios of the three compounds. A tensile test
on the rubber used in the experiments yielded a Young’s
modulus of approximately 4 kPa. This modulus is in the
range of that found in vocal fold tissue [10].

The rubber was cast into the shape of the rigid model
used by Scherer et al. [11]. This shape was chosen for
eventual comparison of dynamic data with published
static results. Note that the length scale of the model of
ref. [11] was increased by a factor of 7.5; the flexible
model reported here was on the same size scale as the
human vocal folds.

A coronal cross section of the model, which was
uniform along its 1.5 cm anterior-posterior length, is
shown in Fig. 1. The vocal fold was mounted over a rigid
circular tube, which was connected to an upstream

PHYSICAL AND NUMERICAL FLOW-EXCITED
VOCAL FOLD MODELS

S. L. Thomson, L. Mongeau, S. H. Frankel
School of Mechanical Engineering, Purdue University, IN, USA

2.5°

50°
0.84 cm

1.1 cm
Figure 1. Outline of the cross section of the physical and
vocal fold models.
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compressed air source. A rigid plate was placed opposite
to the vocal fold (laterally) in a hemilarynx configuration.

B. Results

Fig. 2 shows three images obtained during one cycle of
oscillation with a 1.5 kPa subglottal pressure. The
images were obtained using a high-speed digital camera
(Memrecam fx K3, NAC Image Technology) at a rate of
3000 frames per second. The maximum lateral
displacement of the rubber was approximately 2.3 mm.
Fig. 3 shows the glottal area over four cycles, calculated
using the high-speed images; the maximum area is
indicated by the dashed line. The open quotient (time
open/period) was 0.79 and the skewing quotient (time of
increasing area/time of decreasing area) was 1.17.

The vocal fold model oscillated at an onset pressure of
1.2 kPa with a fundamental frequency of 89 Hz. It was
found that lower frequencies and oscillating pressures
were obtained by either casting the physical model to a
length longer than 1.5 cm, and/or using a different
compound mixing ratio to produce a material with lower
stiffness. Reducing the stiffness, however, tended to
lower the tear strength of the material. The fundamental
frequency was measured for subglottal pressures ranging
from 0.9 kPa (which was just above the offset pressure)
to 1.5 kPa. The frequency increased with increasing
subglottal pressure at a rate of approximately 10 Hz/kPa.

C. Discussion

The fundamental frequency of 89 Hz was in the range
measured in excised human and canine larynx studies; the
onset pressure was slightly greater than values reported in
the literature [12].

The increase in frequency with subglottal pressure was
slightly lower than reported values in the range of 30–70
Hz/kPa obtained in different studies using excised canine
and human larynges [12]. This difference may have been
due to either the homogeneity and/or isotropy of the
rubber material. The human vocal folds are non-
homogeneous, and much of the tissue layers are
transversely isotropic. The influence of including
different layers with differing mechanical properties and
including transverse isotropy in the physical model is a
subject of current efforts.

The physical model demonstrated several capabilities.
First of all, it operated at a frequency and subglottal
pressure encountered in human phonation. The
differences in onset pressure and frequency-subglottal
pressure relationship were relatively small. Thus these

preliminary results indicate that further results obtained
using this model may be reasonably applied to human
phonation. Current studies are underway to obtain data
for further comparison with data obtained using excised
larynges. Another benefit of the similarity between the
model and the vocal folds is that the Reynolds, Strouhal,
and Mach numbers are on the same order as those
encountered in human phonation, eliminating the need for
trade-offs commonly necessary when using models of
different length scales.

A further advantage is the relative accessibility of the
materials and ease of construction. The process is
repeatable, and small changes in the geometry can be
incorporated for purposes of parametric studies. This is
difficult, if not sometimes impossible, in excised
larynges. Studies into the long-term life of the model are
underway.

III. NUMERICAL VOCAL FOLD MODEL

A. Computational Domain and Method

A two-dimensional numerical model of the vocal folds
and surrounding airflow was developed. The flow was
modeled using the Navier-Stokes equations for two-
dimensional (planar), laminar, incompressible, isothermal
flow. The vocal folds were represented by a two-
dimensional continuum. The commercial software
ADINA (ADINA R&D, Inc.) was used to generate the
model. ADINA has been used in other studies involving
biological fluid-structure interactions [13].

The domain, illustrated in Fig. 4, consisted of fully-
coupled fluid and structural sub-domains, and included
the subglottal, glottal, and supraglottal regions. For
computational efficiency, it was assumed that the flow
was symmetric about the centerline (line BC), and the
flow over only one vocal fold was modeled. Ld denotes
the length of the duct downstream of the vocal folds,
which was varied between 4.9 and 18.9 cm.

The vocal fold shape and dimensions were the same as
shown in Fig. 1. The pre-phonatory glottal half-width dg

was 0.5 mm. The vocal fold was allowed to move in the
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Figure 4. Schematic of the computational domain.
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x- and y-directions, except where it was rigidly attached
to the vocal tract wall (line AD). A constant, uniform
pressure pi = 0.8 kPa was applied at the inlet (AB). The
outlet pressure pd was set to zero along CD. The flow
was air with density 1.2 kg/m3 and viscosity 1.8×10-5

kg/m s. Different material properties were assigned to
different regions representing the cover, ligament, and
body layers of the human vocal folds. The layers were
assigned the following properties: Poisson’s ratio = 0.45;
density = 1070 kg/m3; Young’s modulus = 4 kPa (cover),
2.74 kPa (body), 2.26 kPa (ligament). For reference, the
corresponding values defined in the finite element model
used in [9] were: Poisson’s ratio = 0.9; Shear modulus =
0.53 kPa (cover), 1.05 kPa (body), 0.87 kPa (ligament).

The layers of the two-dimensional models were
isotropic. To simulate transverse isotropy, as well as the
out-of-plane stiffness encountered by the three-
dimensional vocal folds when deformed, spring elements
were connected between the element nodes and ground.
The springs constants were 11.7 N/m (cover), 98.4 N/m
(body), and 18 N/m (ligament).

B. Computational Simulation Results

Modal analysis predicted the first three frequencies to
be f0 = 224 Hz, f1 = 255 Hz, and f2 = 269 Hz. Fig. 5
shows the displacement of the inferior and superior
medial vocal fold tips vs. time for Ld = 18.9 cm. Regular
self-sustained oscillations at a frequency of
approximately 275 Hz were achieved by time t ~ 50 ms.
This is slightly greater than the third modal frequency.
The finite element model of Alipour et al. [9] exhibited
flow-induced oscillations at the frequency corresponding
approximately to roughly the average of f0 and f1. The
reason for the present model oscillating at a frequency
just greater than f2 is not clear. The amplitudes of the
inferior and superior points were approximately 0.25 and
0.17 mm, respectively. The motion of the points was
approximately 108° out of phase due to the alternating
converging-diverging orifice shape.

The influence of duct length was investigated by
performing simulations with Ld = 4.9, 8.9, and 18.9 cm.
Results showing the lateral displacement of the superior

medial vocal fold tip are shown in Fig. 6. The amplitude
significantly decreased when the duct length was
shortened. Decreasing the duct length from 18.9 to 4.9
cm resulted in the frequency decreasing by ~ 1%.

Plots of the vorticity in and immediately downstream
of the glottis over the glottal cycle are shown in Fig. 7 for
Ld = 8.9 cm. The converging-diverging shape is evident,
and it is seen that the medial surface altered between
concave and convex shapes. The flow separated near the
glottal exit radius when the glottis was convergent,
straight, or only slightly divergent, but separated further
upstream in the glottis when the glottis was more
divergent. The vorticity plots in these images are
qualitatively similar to those obtained using driven-wall
direct numerical simulations [14].

C. Discussion

The numerical model oscillated at a frequency and
pressure comparable to that found in human phonation,
with material properties and boundary conditions similar
to those of the vocal folds. In the current model, the
Young’s modulus of the cover was greater than that of
the ligament. In the human folds the cover is more
flexible; current efforts are focused on investigating the
influence on vocal fold vibration of the relative stiffness
of the different layers. (Allowing for such a study
highlights the value of numerical flow-excited vocal fold
models with fully-coupled flow and structural domains.)

The two-dimensionality of the model provided greater
predictive capabilities of flow phenomena, such as flow
separation, while avoiding the prohibitive cost of three-
dimensional simulations. Vocal fold collision was not
allowed in the simulations, although efforts are underway
to include this effect.

The results demonstrated the importance of duct length
in the simulations. The decrease in amplitude with
decreasing duct length was attributed to: (1) differences
in pressure distribution due to different duct lengths,
resulting in different pressure loadings on the vocal folds,
and (2) increased inertia from the added mass in the
longer ducts. Further investigation of this topic is
planned, as well as of trends such as frequency-subglottal
pressure dependence (as discussed in Section II) for
comparison with available measured data.

Figure 5. Lateral displacement vs. time of the inferior,
medial vocal fold tip (——) and the superior, medial
vocal fold tip ( ). Ld = 18.9 cm.
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Figure 6. Lateral displacement of the superior, medial
vocal fold tip vs. time. —— : Ld = 18.9 cm; – – – : Ld =
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IV. CONCLUSIONS

Two self-oscillating models, one physical and the other
numerical, were introduced and results were presented.
Because of the their dynamic similarity with the human
vocal folds, they demonstrated the potential for further
studies involving laryngeal fluid-structure interactions.

The physical model of the vocal folds was presented
which demonstrated dynamic behavior similar to data
obtained using excised larynges. The model was cast to
the size and idealized shape of the vocal folds using an
isotropic flexible polyurethane rubber. Flow-induced
oscillations were observed at an onset pressure of 1.2 kPa
and frequency of 89 Hz. The frequency increased at a
rate of approximately 10 Hz/kPa, which was lower (but
on the same order of magnitude) as previously measured
data using excised larynges. Studies underway include
further characterization of the model and comparison
with available data, adding layers of different stiffness to
the model, and investigating methods of making the
model transversely isotropic.

The level of detail in the fluid and structural domains
of the numerical model allowed for superior predictive
capabilities over one-dimensional multi-mass models,
while avoiding the prohibitive computational cost of
three-dimensional models. Several areas of current
interest were discussed, including studying the influence
of the relative stiffness of the different layers, including
vocal fold collision, and comparing further results with
available measured vocal fold data.
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Abstract: The synthesis of different voice qualities by 
means of a low-dimensional glottal model is
discussed. The glottal model is based on a one-mass
model provided with a number of enhancements that 
make it suitable to the aim of the study. The
simulation of modal and non-modal phonatory
regimes is discussed. Both symmetric and non-
symmetric configurations are explored. The class of
models under consideration is shown to be able to
reproduce a broad range of phonation styles and to
provide interesting control properties.
Keywords: physical models of vocal emission; non-
modal phonation types.

I. INTRODUCTION

   The possibility of reproducing different voice
qualities by means of a voice synthesis tool has been
explored for different applications such as emotive and
natural-sounding speech synthesis [1], pathologic voice
assessment [2], analysis of voice quality [3], [4], [5].
Many of the acoustic and perceptual features of an
individual’s voice are believed to be due to specific
characteristics of the quasi-periodic excitation signal
(glottal flow waveform) provided by the vocal folds.
Accordingly, source models have received considerable
attention and they come today in a number of versions,
the most important ones being the parameterization by
analytical functions, such as the LF-model [6], and the
physiological modeling of the glottis, such as the multi-
mass models [7], [8].
   Most source models come with a set of controls to
manipulate the pulse shape. The LF-model is provided
with parameters for the control of the glottal pulse open 
phase, return phase, and closed phase durations, with
parameters for the control of spectral tilt and the high-
frequency content of the spectrum, and with parameters
to control the diplophonia observed, for example, in
laryngalized or harsh voice [3]. As for physical models, 
the direct control of the pulse shape is usually less
simple, due to the large amount of parameters which are 
physically motivated but not always connected in a
clear way to the characteristics of the glottal pulse. On
the other hand, many authors have explored the effect of 
asymmetries in the mechanical components with respect 

to non-modal and pathological phonation types (e.g.,
[9]).
   In this paper we explore the use of a class of low-
complexity physical models loosely based on the
Ishizaka&Flanagan’s one- and two-mass models, and
on Titze’s mucosal wave model, with the specific aim
of reproducing non-modal phonation modalities. The
use of simplified physical models is justified by the
interest raised recently in the field of natural-sounding
speech synthesis, in which the possibility of generating
a wide range of phonatory styles and voice qualities is
highly desirable.
   The paper is organized as follows. Section II gives an
overview of the voice production model under
investigation. In Section III the experimental setting is
introduced and results from the simulation of the model 
are presented for both balanced and imbalanced
configurations. In Section IV the conclusions are given.

II. VOICE PRODUCTION MODEL

   The voice production model assumed is a source-filter
scheme in which the volume velocity at the glottis is
produced by a physical model and the vocal tract is
represented by a parallel of four formant filters. The
glottis model adopted here is a low-dimensional body-
cover model in which the lower edge of the folds is
represented by a single mass-spring system k; r; m
and the propagation of the displacement is represented
by a delay line of length T [10], [11]. The coronal cross-
section of the model is illustrated in Fig. 1. The
equations of the aerodynamics of the model can be
found in the referenced papers and will be not repeated
here. Briefly, the structure is a one-mass model with a
propagation line aimed at simulating the propagation of 
the motion along the thickness of the fold. A second-
order resonant filter represents the oscillating folds, an
impact model reproduces the impact distortions on the
fold displacement and adds an offset x0 (the resting
position of the folds). The driving pressure Pm acting
on the folds is computed from the flow and the fold
displacement using Bernoulli’s law. A flow model
converts the glottis area given by the fold displacement
into the airflow at the entrance of the vocal tract. The
glottis area is computed as the minimum cross-sectional
area between the areas at lower and the upper vocal fold 
edge, and the flow is assumed proportional to the glottal 
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area. The propagation line is an approximation of the
vocal cord along the thickness (vertical) direction and
reproduces the vertical phase difference of the vibration 
of the cord edges, and it is an essential element for the
production of self-sustained oscillations without a vocal 
tract load.

Fig. 1: Low-dimensional body-cover model of the vocal
folds. From bottom to top, Pl is the lung pressure, Pm is 
the driving pressure acting on the vocal folds, m, k, and 
r represent respectively the mass, stiffness, and
damping of the fold, T represents its thickness, x1 and x2

are the fold displacements at entrance and exit of the
glottis, and Pi is the pressure at entrance of the vocal
tract.

III. SYNTHESIS OF VOICED SOUNDS WITH 

DIFFERENT VOICE QUALITIES

   The model adopted here has demonstrated to be
successful in reproducing the essential dynamics of
voice source and has shown to be able to reproduce real 
glottal flow waveforms, when extended with an
opportune data-driven parametric component [10], [12]. 
Here we focus on the control of the phonation quality
offered by this class of physical models. In particular,
we look at the possibility of reproducing convincing 1)
breathy, 2) pressed or creaky, and 3) bifurcated
phonation types.
   The differentiated glottal volume velocity produced
by the model is convolved with a vocal tract filter to
provide a lip pressure signal for perceptual evaluation of 
the synthesis.

A. Symmetric structure

A bilaterally symmetric one-delayed mass model is
assumed for this section. Model refinements and
strategies to produce the target voice quality
modifications are described in the following.
Breathy phonation is characterized by the presence of a 
turbulent aspiration noise combined with the periodic
component. The rendering of this phonation type is not
always trivial due to the fact that the noise component
has a precise phase relation with the periodic voiced
component, and a white noise source added to the
airflow can sometimes lead to the perception of two
distinct sources. n improvement to this aspiration noise
model is that of reproducing the amplitude modulation
given to the noise by the opening and closing of the
glottis. A noise component modulated by the airflow
amplitude is thus added to the airflow. Figs. 2 b) and c)
shows the result of the simulation for increasing noise
component. Fig. 2 d) shows a typical situation of
breathy phonation in which the glottis is never
completely closed at back, and a DC component is
summed to the periodic flow.

Fig. 2: Differentiated glottal flow waveforms generated
by the symmetric model: a) normal; b) and c) increasing
breathiness; d) breathy with dc component.

Fig. 3: Relation between the propagation line length (in
samples), the resulting pitch, and the resulting closed quotient 
CQ.
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Pressed or creaky phonation is characterized by a
narrow airflow pulse (small open quotient) and by a low
fundamental frequency. An action on the propagation line
length showed to be an effective mean to control the
pulse closed phase duration. A physiological
interpretation of this parameter can be easier if we look
at the propagation line length as the part of the fold
actually involved in the oscillation, instead of as the
thickness of the whole vocal fold. It is also to note that
for all the model configurations tested, the parameter T
affects the closed phase duration of the pulse as well as
the pitch of the glottal pulse. Fig. 3 shows the relation
between the propagation line length (in samples), the
resultant pitch, and the resultant closed quotient CQ,
defined as the ratio of the closed phase duration to the
period length. The fold mass, damping and tension were 
respectively m = 0.1 g, r = 0.085 Nsm-1, k = 40 Nm-1,
resulting in a resonance frequency fc = 100 Hz and
selectivity factor Q = 0.7441 at sampling rate 22050 Hz.

Fig. 4: Bifurcations occurring in the low-dimensional
model with symmetric configuration when the length T
of the delay line representing the propagation of the fold 
displacement is slowly varied over time.

   Bifurcated phonation is characterized by the presence
of period-doubling or sub-harmonics which result in
large irregularities in the time domain, usually
perceived as a ”rough” voice quality. Bifurcated
phonation and irregularities appear occasionally in
normal phonation and speech, but is often symptomatic
in voice pathology. Often instabilities and sub-harmonic
components are the result of tension and mass
imbalance of the left and right vocal fold. Asymmetric
configurations of the glottal model are explored in the
next section. Even with a symmetric configuration,
however, we observed the presence of such dynamic
behavior when the length of the propagating delay-line
was set to values extremely high with respect to the

pulse duration. The fold mass, damping and tension
were respectively m = 0.05 g, r = 0.002 Nsm-1 , k = 80
Nm-1 , resulting in a resonance frequency fc = 200 Hz
and selectivity factor Q = 31 at sampling rate 22050 Hz.
An empirical rule for the production of bifurcations in
the balanced configuration turned out to be the adoption 
of a considerably high Q factor. Fig. 4 shows the
spectrogram of the voiced sound generated by
continuously rising the propagation line length. Two
clear bifurcation regions can be observed for values of
T around 200 and 300.

B. Asymmetric structure

   In this section, asymmetries are included in the low -
dimensional model described in Section II. Earlier
studies have already observed the phenomena arising in 
multi-mass models when the mechanical properties of
the folds are made asymmetric [13], [14]. In particular,
imbalance in bilateral tension and mass, a configuration 
usually related to unilateral paralysis, has been
extensively explored. Typically, non-stationary regimes
are observed when the mass and tension of the two folds 
are imbalanced. An asymmetry parameter Qi ?  (0, 1] is 
introduced, which is used to compute the right-hand
fold mass and stiffness as kr = Qi kl and mr = ml /Qi. Fig. 
5 shows the simulated fold displacements for different
values of Qi. The values used for the mass-spring
system for this examples were m = 0.17 g, r = 0.02
Nsm-1, k = 64 Nm-1, corresponding to a fundamental
period of 100 Hz for the balanced configuration.

Fig. 5: Fold displacements (left and right; lower edge:
solid line, upper edge: dashed line) for various
imbalanced configurations. a) symmetrical; b) and c)
asymmetrical.

   Fig. 6 shows the spectrogram of the synthesis when
the asymmetry parameter Qi is slowly varied over time. 
Two bifurcation regions are clearly visible as Qi

approaches the values 0.51 and 0.55.

IV. CONCLUSIONS

   The dynamic behavior of a low-dimensional one-mass
model with delayed mass has been investigated, both
for balanced and imbalanced configurations. In the
balanced configuration normal, pressed, breathy
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phonation styles were obtained, as well as bifurcation
phenomena in some regions of the parametric space. In
general the synthesis results were judged convincing on
the basis of informal perceptual evaluations. In the
imbalanced configuration, typical non-stationary and
bifurcated regimes were observed. The class of low-
complexity models presented is characterized by a wide 
variety of dynamical behaviors and offers in some cases 
a simple control interface to switch from modal
phonation to non-modal phonatory regimes. The
computational efficiency of the model suggests that this 
could be useful in real-time speech synthesis
application.

Fig. 6: Bifurcations occurring in the low-dimensional
model with asymmetric configuration when the
asymmetry parameter Qi is slowly varied over time.
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Abstract: This paper describes some methodological 
issues to be considered while facing the task of the 
objective assessment of voice quality from patients 
with laryngeal cancer. Earlier research works showed 
that the automatic assessment of voice quality could 
be addressed by means of short-term and long-term 
time-domain, and frequency-domain parameters 
extracted from electroglotographic (EGG) signals, 
and using Artificial Neural Networks (ANN) such as 
Multi-layer Perceptron (MLP) [1]. However, despite 
the good results, further research has showed that the 
choice of cross-validation techniques used for the 
pattern recognition can greatly influence the ability of 
the system to learn and to generalise. In particular, 
this paper is concerned with the effects of intra and 
inter speaker variability during cross-validation and 
hence on the reliability of pathological voice quality 
assessment. For this study, a database of male subjects 
steadily phonating the vowel /i/ was used, and the 
quality of their voices was independently assessed by a 
speech and language therapist (SALT) according to 
their 7-point ranking of subjective voice quality. 
Although it is found that by carefully selecting the 
datasets used to train and validate the ANN to 
minimise intra speaker variability reduces the 
classification accuracy, most of the time the ANN only 
misclassifies by only one point. 

Keywords: Voice quality, classification, neural 
networks, cross-validation.

I. INTRODUCTION

The effectiveness and importance of the acoustic and 
EGG analysis of pathological voices have been proven by 
many experimental researches. The starting point of this 
work is that carried out in [1]. This work proposed an 
Artificial Neural Network (ANN) based framework to 
evaluate the voice quality into a 7 point scale using short 

term and long term parameters extracted from the EGG 
signal with an accuracy over 90%. Such work used 50 
speakers whose EGG signal were recorded before the 
treatment. However, due to the limited number of 
patients, the training and validation datasets used to 
develop the ANN used multiple frames taken from the 
signals recorded for some of the patients. As a result the 
ANN learnt both the intra and inter speaker variations in 
the data. This could lead to artificially high classifications 
with small datasets, with the system effectively 
recognising a speaker in the dataset, rather than assessing 
voice quality from the parameters derived from signal 
recorded from different speakers. 

This study has reconsidered the training and validation 
of ANNs used for voice quality assessment in the light of 
these intra and inter speaker variations 

II. CROSS VALIDATION

Pattern recognition techniques by themselves do not 
give an indication of how well the learner will do when it 
is asked to make new predictions for data it has not 
already seen. One way to overcome this problem is to not 
use the entire data set when training a learner. Some of 
the data should be removed before training begins. Then 
when training is done, the data that was removed could be 
used to test the performance of the model on “new” data. 
This is the basic idea for cross validation.  

The holdout method is the simplest kind of cross 
validation. The data set is separated into two sets: the 
training and the validation set. The function approximator 
fits a function using the training set only. Then the 
function approximator is asked to predict the output 
values for the unseen data in the validation set. The 
advantage of this method is that it takes no longer to 
compute. However, its evaluation can have a high 
variance. The evaluation may depend heavily on which 
data points end up in the training set and which end up in 
the validation set, and thus the evaluation may be 
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significantly different depending on how the division is 
made.  

K-fold cross validation improves the holdout method. 
The data set is divided into k subsets, and the holdout 
method is repeated k times. Each time, one of the k 
subsets is used as the validation set and the other k-1 
subsets are put together to form a training set. Then the 
average error across all k trials is computed. The 
advantage of this method is that it matters less how the 
data gets divided. Every data point gets to be in a 
validation set exactly once, and gets to be in a training set 
k-1 times. The variance of the resulting estimate is 
reduced as k is increased. The disadvantage of this 
method is that it takes k times as much computation to 
make an evaluation. A variant of this method is to 
randomly divide the data into a validation and training set 
k different times. The advantage of doing this is that you 
can independently choose how large each test set is and 
how many trials you average over.  

Leave-one-out cross validation is to split the P 
patterns into a training set of size (P-1) and a validation 
set of size 1 and average the squared error on the left-out 
pattern over the P possible ways of obtaining such a 
partition. This is called leave-one-out (LOO) cross-
validation. The advantage is that all the data can be used 
for training -none have to be held back in a separate 
validation set. The evaluation given by leave-one-out 
cross validation error is good, but it is computationally 
expensive.  

For this work the k-fold cross validation method has 
been used, because the leave-one-out was considered 
very time consuming.  

III. DATA PROCESSING

The procedures used in extracting the parameters in 
this paper are broadly similar to those used in [1] which 
contains more detail than we will look at here, the main 
changes are due to the nature of the two different 
systems. In the earlier study there was a large amount of 
manual judgement and adjustment at various stages to 
obtain the best set of extracted parameters, because the 
long term aim for this work is to be used in a system used 
by non-technical users it was necessary to fully automate 
the extraction procedures, thus losing some accuracy in 
the process. The signal was first stationarised to remove 
drift, split into 50 ms. frames (Hanning windows 
overlapped by 25 ms.) then the autocorrelation was taken 
to remove some of the noise components. In the next 
stage silent frames were removed by comparing zero 
point crossing and short term amplitudes with that of a 
sample of silence (recorded at the same time as the data 
samples). Following on from this voiced and unvoiced 
frames were separated using a cepstral based approach 

described in [2], here we are looking for a pronounced 
peak indicating the presence of a fundamental frequency. 
This was originally done by a user but in the current work 
we attempt to detect this peak with a fairly simple peak 
finding algorithm, in any such attempt a trade off has to 
be made and after much experimentation the system errs 
on the side of rejecting frames as to be sure that all 
passed frames do actually contain speech. 

After the Power Spectrum Density (PSD) is calculated 
for each frame the frames are pooled to create the 
Fundamental Harmonic Normalisation (FHN) from which 
we can extract some of the long term parameters, again 
some user interaction was previously required here but 
this has been replaced with a peak finding algorithm. 
Once both the PSD and FHN have been calculated they 
are both fitted with Gaussian Mixture Models (GMM) in 
order to reduce the number of parameters needed to 
describe the signals. This proved difficult to automate, 
especially with the more damaged voices, and the 
algorithm still has a tendency to try to fit Gaussians to 
peaks that prove not to be harmonics. Once the GMMs 
are fitted the parameters are extracted as in the previous 
work [1]. The parameters extracted are 15 short term 
parameters of the mean, standard deviation and amplitude 
of the Gaussians fitted to the fundamental frequency and 
the first 4 harmonics (if they exist) and 4 other short term 
parameters, those of the value of the fundamental 
frequency in each frame (Fo), the noise threshold (No), 
the FHN Noise Energy (FHNNE) -based on the 
Normalised Noise Energy (NNE) [4], but derived from 
the FHN spectrum- and the Residual Harmonic Error 
(RHE). Along with these are extracted 3 long term 
parameters, those of  the mean fundamental frequency for 
a sample (MFo), a measure of the jitter of the 
fundamental frequency between frame (JFo) and the 
percentage of voiced versus unvoiced frames (V+). The 
data extracted from the speech data and used for the ANN 
classification tests comprised of 3 long-term parameters 
(MFo, JFo, V+) and 17 short-term parameters. Full 
details of the data processing and extraction of these 
parameters can be found in [3]. 

IV. THE CLASSIFIER

A widely used architecture has been used for this 
purpose: a three layered feedforward perceptron (MLP). 
The Learning algorithm used is backpropagation with 
adaptive momentum [4]. The training was carried out 
along 400 epochs. The activation function used at each 
node is sigmoidal, and the number of neurons of the input 
layer is 20, the same number as the parameters extracted. 
This input data was normalised to between [-1,1] before 
being supplied to the net. The output layer has 7 neurons 
that are activated for every single class.  
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V. DATABASE USED

The data used to develop the system was captured off-
line under clinical conditions at the Christie and 
Withington Hospitals in Manchester, using an 
Electrolaryngograph PCLX system [6]. This system is 
used to capture electrical impedance (EGG) signals using 
pads placed either side of the neck synchronously with 
acoustic signals captured using a microphone. Both EGG 
and acoustic data channels were captured synchronously 
at 20 kHz for up to 3 seconds while the subject phonated 
the vowel /i/ as steadily as possible. Although speech data 
was recorded for both male and female patients, the 
largest pathological group was male, so it is these speech 
signals that were used in the study, For each patient the 
SALT made a subjective voice quality assessment using a 
7-point ranking.  
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Fig.  1: Distribution of the voice disorders database 

The database contains about 50 males voices recorded 
just before treatment, six months after treatment and one 
year after treatment (150 files), showing in general an 
improvement of the voice quality. Fig 1 represents the 
number of files for every class.  

In the earlier study only the pre-treatment registers 
were used and the training and validation datasets were 
developed extracting the 30% of the frames for validation 
and 70% for training. So both datasets contained 
information about all the speakers stored in the database.  

In this research, the pre and post-treatment registers 
were used. This approach ensure that the same speaker 
belongs to different categories, depending on the stage of 
the treatment. It enforces the ANN to learn the speaker 
independent features, and so minimise the effects of the 
intra-speaker variations.  

The results have been obtained cross validating using 
the k-fold cross method. It is less time-consuming than 
the leave-one-out, but provides a good idea of the ability 
of the system to classify according to our criteria. 25 
different datasets have been developed for every MLP 
size. The training datasets contain frames that belong to 7 
speakers, whereas the validation dataset contains frames 

belonging to 3 different speakers. The pre-treatment and 
post-treatment recordings were mixed together in order to 
ensure that the system is not able to recognise speaker 
dependent features. This approach ensures that the ANN 
is forced to classify according the quality of the voice, 
keeping aside the features inherent to the speaker, due to 
the fact that the same speaker belongs to different 
categories depending on the stage of the treatment  

VI. RESULTS

Fig 2 shows the results obtained. In the left column are 
shown the frame and file (the whole recording) accuracy 
of the system using the EGG signal parameterised as 
explained above. The right column shows the results 
using the same parameterisation approach over the 
glotogram extracted from the acoustic data by means of 
pitch asynchronous inverse filtering techniques [7]. The 
file accuracy has been obtained by aggregating the 
assessments for every frame in the file. The results have 
no significant variation on the MLP size, showing a better 
behaviour with EEG signal than with the glotogram 
extracted by inverse filtering.   

As was expected results are worse than in the earlier 
study, but it can be seen that when the ANN misclassifies 
a speaker it generally does so by only one point on the 
SALT’s 7 point scale. 

VII. CONCLUSIONS

The modest scores (∼40%) could either be due to the 
ability to discriminate the features extracted, or due to the 
MLP not being able to separate the prototypes correctly. 
However it is shown that most of the time, the classifier 
misclassifies by only one class. When interpreting these 
scores it has to be kept in mind that the SALT 
classifications were made by perceptual evaluation, and 
sometimes the experts do not agree on the evaluation of a 
voice sample. It is well known that there is an intra and 
inter-evaluator judgement variability, due to the fact that 
it depends a lot on their own expertise and subjective 
criteria about how a normal voice should be.  

Despite of the modest scores, this system is able to 
provide an objective approach to the assessment of voice 
quality. For the future work, it should be tested with a 
larger database to improve the accuracy of the system, 
and it has to be tested using on-line with a Clinic. 
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Abstract: Traditionally, oral contraceptives are 
considered to have adverse effect on women's voice 
quality. The purpose of this study was to evaluate the 
impact of oral contraceptives on voice quality, using 
acoustic analysis. Acoustic vocal parameters of seven 
women who use oral contraceptives and seven women 
who do not were measured repeatedly during the 
menstrual cycle. Repeated-measure analyses-of-
variance were performed to test for group differences. 
Results did not reveal an adverse effect in the oral 
contraceptive users group. Moreover, amplitude and 
frequency perturbation, as well as noise-to-harmonics 
ratio values within the test group were found to be 
significantly lower than those observed among the 
control group; indicating a more stable voice quality.  
Keywords: voice, vocal-quality, perturbation, 
hormones, oral-contraceptives 

I. INTRODUCTION 
The interaction between the human larynx and ovarian 

hormones has been previously demonstrated. Several 
researchers have discovered receptors for androgen, 
estrogen and progesterone in the gingival epithelium [1] 
and in the vocal folds [2,3]. The effect of these sex 
hormones on the human voice has been previously 
demonstrated in different cases of endocrine dysfunction. 
Such vocal changes include increase in vocal instability, 
hoarseness and pronounced lowered pitch [4].  

Vocal changes related to hormonal balance were also 
reported in relation to the menstrual cycle in healthy 
women. Specifically, vocal changes were observed either 
at the premenstrual phase [5,6] or shortly prior to 
ovulation [7]. It should be noted that these changes in 
vocal quality were reported primarily among professional 
voice users and less so among non-professionals voice 
users. While the mechanism underlying these voice 
changes is not clear yet, it is assumed that the 
physiological changes which occur during the menstrual 
cycle impact voice quality. For example, the lowered 
pitch during the premenstrual phase is assumed to be the 
result of the edema and venous dilatation observed in the 
vocal folds at that time [4]. It was also suggested that 
changes in ovarian hormones levels could affect laryngeal 
neuromotor control [7], which in turn, could affect vocal 
stability and quality. It is interesting to note that the two 
phases along the menstrual cycle in which vocal changes 
were reported in the literature (premenstrual phase and 

prior to ovulation) are also marked by a significant and 
abrupt change in hormonal balance. 

Oral contraceptives present an exciting setting in which 
hormones could interact with voice production. Most 
modern birth control pills are designed to maintain 
constant levels of estrogen and progesterone along the 
menstrual cycle therefore preventing ovulation. Because 
birth control pills maintain a steady hormonal balance, it 
seems logical to expect that women who use birth control 
pills will show diminished voice changes along the 
menstrual cycle, in comparison with women who do not 
use the pill. However, review of the literature on the 
effect of birth control pills on voice quality revealed only 
a limited number of studies which addressed this 
question. These studies included occasional reports of 
adverse androgenic voice changes (e.g. virilization, and 
mainly lowered pitch) among women who use the pill 
[8], and were explained by the relatively high hormonal 
doses used in birth control pills in the 1960s and 1970s 
[9]. Based on these studies, otolaryngologists, voice 
specialists and speech-language pathologists generally 
suggest that professional voice-users refrain from using 
oral contraceptives [10]. In addition, using the pill is 
typically regarded as a risk factor when clinically 
evaluating voice disorders. 

Modern birth control pills, however, contain markedly 
lower doses of estrogens and progesterones with less 
androgenic metabolites. Thus, smaller androgenic effect 
can be expected. In a previous study that evaluated voice 
quality among women who use low-dose oral 
contraceptive formulations, using subjective measures 
[8], no voice changes were reported as a result of using 
the pill. Recently, two preliminary studied were reported, 
that compared acoustic parameters of voices produced by 
women who use the pill with voices of women who do 
not [11,12]. Results of these studies revealed no adverse 
effect on the voices of those women who use the pill. 
Moreover, amplitude perturbation (shimmer) and 
frequency perturbation (jitter) values among the pill-users 
were reported to be lower than those observed among the 
non-users. The purpose of the present study was to 
expend on the scarce knowledge regarding the effect of 
modern low-dose oral contraceptives on the voices of 
healthy women, through the use of acoustic-analysis 
evaluation. 

II. METHODOLOGY 
A group of young and healthy women volunteered to 

serve as participants in this study. Seven women who 
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used birth control pills (Pill group) and Seven women 
who did not (Control group) were selected from the initial 
group of 30 students at Tel-Aviv University according to 
the criteria described bellow. The Pill group had a mean 
age of 23.96 years (range: 22-26), a mean weight of 58.29 
kg (range: 52-70) and a mean height of 166.8 cm (range: 
160-174). Three of the seven women in the Pill group 
used the oral contraceptive Meliane© (Schering AG, 
Berlin, Germany) with 0.075 mg gestodene and 0.02 
ethinylestradiol; and two women used Harmonet©

(Newbridge CO. Kildare, Ireland) which has identical 
formulation to Meliane©. One women used Gynera©

(Schering) with 0.075 mg gestodene, and 0.03 mg 
ethinylestradiol, and one used Microdiol© (Oragon 
International Inc., Roseland, NJ) with 0.15 mg 
desogestrel and 0.03 mg ethinylestradiol. Since the four 
preparations used by the women in the Pill group are so 
similar in composition, and because all these 
compositions are considered low-dose formulations, it 
was decided to regard them as one group. All women in 
this group reported no omission in pill taking during the 
time of the study and the three preceding months. The 
Control group consisted of seven women who did not use 
any hormonal contraceptive prior or at the time of the 
study. Mean age for this group was 22.00 years (range: 
20.3-24.5), mean weight was 54.57 kg (range: 45-65) and 
mean height was 165.6 cm (range: 155-173).  

All women ruled out any speech or voice disorder and 
were also assessed by two experienced speech-language 
pathologists to confirm the diagnosis. None of the women 
had a history of formal voice or singing training, as well 
as smoking or substance abuse. In addition, no history of 
pregnancies, hormonal imbalances and neurological 
problems were reported. All women reported regular 
menses and menstrual cycle of 28-32 days.  

All women were recorded repeatedly over a period of 
35-40 days. While our preliminary observations did not 
reveal a significant effect for menstruation-cycle phase, 
we still decided to consider it as a possible confounding 
factor, based on previous reports in the literature [5-7]. 
Thus, each subject’s menstruation cycle was divided into 
six consecutive and equal intervals. The six intervals 
were defined such that interval 1 includes the days of the 
menses and interval 6 includes the four days preceding 
the following menses. The remaining days of the 
menstrual cycle were divided equally to four intervals: 2 
to 5 respectively. Each woman was recorded at least 
twice during each interval, totaling approximately 20 
recording sessions for each participant.  

Each recording session consisted of two recordings of 
the Hebrew vowel /i/ (similar to the vowel in the word 
“heed”) and two recordings of the vowel /a/ (similar to 
the vowel in the word “father”) in isolation. Each vowel 
was produced for 3-5 seconds, in a random order that was 
changed between subjects and sessions. Recordings were 
performed individually in a quiet room. Signal was 

recorded onto TDK (Tokyo, Japan) data cartridges, using 
a Sony TCD-D100 (Tokyo, Japan) digital audio tape 
recorder and a Sony ECM-T150 headset-microphone. 
Sampling rate for the recording was set at 44.1 kHz. 
Acoustic analyses were performed after each recorded 
vowel was fed to a voice analysis computer program 
(Multi Dimensional Voice Profile-MDVP, model 5105, 
Ver. 2 [Kay Elemetrics, Lincoln Park, NJ]). 

Four acoustic parameters were measured for each 
vowel production: Mean fundamental frequency (F0), 
which quantifies the number of complete cycles produced 
by the vocal folds per second; Jitter, which quantifies 
frequency instability (perturbation) along the voice 
sample; Shimmer, which quantifies amplitude instability 
(perturbation) along the voice sample; and Noise-to-
Harmonics Ratio (NHR) which compares the ratio 
between the aperiodic to periodic components in the 
voice signal. Note that for Jitter, Shimmer and NHR,
lower values typically represent a healthier voice, 
whereas higher values are generally associated with less 
stable and lower quality voice [13]. 

Statistical analyses were performed using four separate 
repeated-measure analyses of variance; one for each 
acoustic parameter. The two vowels (/i/ and /a/) and the 
six menstrual-cycle intervals (1 through 6) were treated 
as repeated factors, while Group (Pill versus Natural) was 
regarded as the between-subject factor. 

III. RESULTS 
A. Group Differences

 Based on the individual data collected, group means 
were calculated for each acoustic parameter at all six 
intervals and two vowels. Table 1 presents these data. As 
can be seen, jitter, shimmer and NHR values in the Pill 
group were generally lower than those observed in the 
Control group, while F0 values were generally higher in 
the Pill group. 
 Statistical analysis revealed a significant group 
difference across all intervals and vowels for jitter (F1,12
= 6.29, P = 0.027), shimmer (F1,12 = 7.32, P = 0.019)
and for NHR (F1,12 = 5.47, P = 0.037). Group differences 
for the F0 parameter were found to be non-significant (P
> 0.05); yet in most conditions, the Pill group had a 
slightly higher F0 mean values than the Control group.  

B. Menstrual-Cycle Interval Differences 

The effect of menstrual-cycle interval was tested 
across the six intervals for each parameter. No 
statistically significant differences were found among the 
six intervals for either of the acoustic parameters 
measured (P > 0.05). In addition, no significant Group X 
Interval was found for any of the parameters (P > 0.05). 
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Table 1. Mean and standard deviation (in parentheses) for Fundamental Frequency (F0), Jitter, Shimmer and 
Noise-to-Harmonics Ratio (NHR) of the Pill (P) and Control (C) groups for the Vowels /a/ and /i/ at 
Each of the Six Menstruation-Cycle Interval 

   Interval 
Vowel Parameter Group 1 2 3 4 5 6 

/a/ F0 (Hz) P 214.92 
(17.29) 

216.81 
(19.98) 

217.32 
(23.31) 

218.59 
(23.55) 

212.57 
(15.52) 

211.95 
(21.15) 

  C 211.63 
(29.37) 

214.93 
(26.49) 

213.17 
(29.23) 

212.20 
(28.68) 

215.97 
(.97)

214.02 
(30.85) 

 Jitter (%) P 1.00 
(.52)

.76
(.35)

.81
(.37)

.89
(.29)

.83
(.24)

.89
(.29)

  C 1.34 
(.35)

1.51
(.38)

1.26
(.35)

1.25
(.22)

1.43
(.32)

1.39
(.36)

 Shimmer  
(%) 

P 3.33 
(1.13) 

2.37
(.50)

2.66
(.46)

2.70
(.24)

3.10
(1.18) 

2.77
(.44)

  C 4.09 
(1.44) 

3.99
(1.26) 

3.96
(.95)

3.93
(1.13) 

4.10
(1.03) 

4.01
(1.23) 

 NHR P .127 
(.013) 

.118
(.012) 

.122
(.013) 

.122
(.019) 

.133
(.018) 

.13
(.019) 

  C .133 
(.010) 

.129
(.010) 

.135
(.013) 

.136
(.012) 

.140
(.014) 

.13
(.008) 

         
/i/ F0 (Hz) P 223.19 

(26.15) 
227.07 
(25.99) 

228.60 
(27.66) 

228.39 
(28.33) 

222.40 
(20.81) 

218.89 
(26.96) 

  C 220.06 
(25.67) 

222.54 
(20.86) 

221.21 
(25.09) 

221.18 
(21.99) 

224.70 
(27.03) 

219.81 
(30.61) 

 Jitter (%) P 1.39 
(.43)

1.46
(.41)

1.23
(.53)

1.25
(.35)

1.37
(.52)

1.27
(.67)

  C 1.87 
(.40)

1.54
(.70)

1.69
(.37)

1.77
(.70)

1.62
(.53)

1.89
(.91)

 Shimmer  
(%) 

P 2.80 
(.62)

2.50
(.41)

2.68
(.76)

2.39
(.32)

2.44
(.26)

2.42
(.51)

  C 3.88 
(1.56) 

3.44
(1.53) 

3.78
(1.57) 

3.38
(1.22) 

3.52
(1.68) 

3.59
(1.46) 

 NHR P .128 
(.024) 

.117
(.019) 

.109
(.015) 

.117
(.027) 

.125
(.013) 

.11
(.017) 

  C .129 
(.026) 

.123
(.015) 

.124
(.009) 

.123
(.018) 

.125
(.017) 

.13
(.028) 

C. Vowel Differences

Vowel difference between /a/ and /i/ was not defined 
as a primary research question in this study. However, 
since differences in fundamental frequency and other 
acoustic measures were previously demonstrated to be 
vowel related, it was decided to include Vowel as a 
possible confounding factor in the analyses. As 
expected F0 was significantly higher for the vowel /i/ 
compared to /a/ (F1,12 = 15.00, P = .002). This vowel 
difference is in keeping with previously established data 
[13]. Statistically significant vowel differences were 
also found for jitter (F1,12 = 20.56, P = .001) and for 
NHR (F1,12 = 20.962, P = .001). Specifically, jitter 
values for the vowel /i/ were significantly higher than 
for the vowel /a/, while NHR values were significantly 
lower for the vowel /i/. These results are also in keeping 

with the literature [13], thus help to validate the current 
results. No vowel difference was found for the shimmer 
parameter (P > 0.05).

In order to approximate the follicular and secretory 
phases within menstrual cycle, data were rearranged, 
collapsing intervals 1 through 3, and 4 through 6. 
Statistical analyses of the modified set of data yielded 
identical results for all comparisons reported above, for 
group, interval and vowel differences.  

IV. DISCUSSION
The results of the present study did not reveal an 

adverse effect of birth control pills on voice. Moreover, 
our results indicate that in all four acoustic parameters 
tested, women who use the pill performed better than 
the women in control group. Specifically, women in the 
pill group demonstrated reduced amplitude and 
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frequency perturbation (shimmer and jitter) and had 
lower NHR values which represent a clearer voice. 
Lower values of these three parameters are regarded as 
indication of a more healthy voice [13]. These results 
can be interpreted to show that the more stable voice 
quality presented by the women in the pill group could 
be attributed to a more stable hormonal balance which 
is maintained by the oral contraceptives they use. In 
contrast, women in the control group are affected by the 
natural changes in serum levels of estrogen and 
progesterone which occur during the menstrual cycle. 
The hormonal changes along the menstrual cycle induce 
histological changes in muscles, mucus and laryngeal 
glandular cells; hence these women's voice quality is 
less stable [4].  

Oral contraceptives are traditionally viewed by voice 
professionals as potentially hazardous for the female 
voice [10]. The main reason for this view is the concern 
from androgenic effect of progesterone derivates on the 
female larynx. The most common effect caused by 
androgens to the female voice is virilization, which is 
primarily characterized by lowered pitch (F0). Our 
results indicate that women who use the pill did not 
exhibit any lowering in fundamental frequency. In fact, 
F0 values for the Pill group were generally higher than 
those observed in the control group, although these 
group differences did not reach statistical significance. 
The reason for the contradiction between the current 
results and the traditional view of oral contraceptives as 
a potential hazard, stem probably from the difference 
between the formulations used in pills in the past and 
the low-dose formulation which are commonly used 
presently. Based on these results, it is suggested that the 
traditional approach towards oral contraceptives as a 
potential risk factor for voice, should be reevaluated. It 
should be kept in mind, though, that our participants 
were not professional voice users or performers, hence 
it is possible that somewhat different results could be 
observed within that specific population.   

The results presented here are in agreement with the 
Wendler et al study [8] who reported no adverse voice 
effect associated with low-dose pills. However, while 
their results were drawn from subjective evaluation 
made by listeners, the current results are based on 
acoustic measurements that are more reliable and are 
potentially sensitive to small physical differences. The 
current results are also in agreement with the two 
preliminary studies that were conducted using similar 
methodologies but utilizing a different voice analysis 
program [11,12]. The relation between the acoustic 
results presented here and subjective evaluation of voice 
quality should be also further explored. 

V. CONCLUSION
The present study utilized acoustic tools to examine 

the effect of oral contraceptives on voice quality. 
Results challenge the traditional approach which views 
oral contraceptives as a potential risk-factor for voice. 

Based on the results presented here and in two recently 
published studies that used similar methodologies, it 
appears that low-dose monophasic oral contraceptives 
were not found to negatively affect voice quality. 
Instead, the four parameters that were included in the 
analysis improved among the women who used the pill. 
Obviously, further study is needed to better understand 
the interaction between female hormonal balance and 
voice quality, as well as the effect of different oral 
contraceptive formulations (for example, monophasic 
versus multiphasic) on voice production and quality. 
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Abstract:  In this paper, we purpose a theoretical 
development of a metric for speech classification based on 
cepstral features obtained from ARMA models. Thus 
working with an ARMA model as a complex rational 
function, is possible to define a metric d(M,M´) between two 
stable ARMA models M, M´ by means of the cepstrum 
coefficients of the models. This metric may be calculated 
algorithmically as a finite sum in the pole-zero domain. We 
suggest that the metric can be used in at least two 
circumstances: first, we might a large number of signals that 
come from various types of pathological sources and we 
wish to classify them; alternatively, we might the underlying 
models Mi corresponding to several pathological voices and 
we wish to classify a voice (modeled as M, say) from one of 
those.  In that case, we compute d(M,Mi) for each i and we 
guess the (Mi) closest to the model M.

Keywords:  ARMA model, cepstrum, distance 
measure, classification, pathological voice 

I. INTRODUCTION 

All speech/speaker classifier include a signal 
processing that converts a speech waveform into features 
useful for further processing and a decision rule based on 
a metric [1]. 

Recent suggestions show that speech production may 
be a nonlinear process, see [2, 3, 4]. These authors 
assume the rather natural hypothesis that nonlinear 
processes occur in speech production, due to: turbulent 
air flow produced in the vocal tract; nonlinear neuro-
muscular processes that should occur at the level of vocal 
cords and the larynx; nonlinear coupling, during speech 
production, between different parts of the vocal tract. On 
the other hand, the “cepstrum” represents a 
transformation on the speech signal with two important 
properties: 

• Representatives of component signals are 
separated in the cepstrum. 

• Representatives of component signals are linearly 
combined in the cepstrum. 

In this way, the cepstral coefficients provide an efficient 
computation of the log-spectral distance of two frames 
[5].

To study the problem of to obtain a decision rule we 
suggest a decision techniques based on the computation 
of a distance, which quantifies the degree of dissimilarity 
between the features vector associated with pairs of 
events.  

Taking into account this consideration, in this paper, we 
purpose a theoretical development of a metric for speech 
classification based on cepstral features obtained from 
ARMA models.   

It is worth pointing out that the application of methods 
of classical speech processing to the analysis of medical 
speech signals during the last years and to date have been 
dealt by many research groups.

Section II deals with the methods to obtain the 
previous metric. This metric may be calculated 
algorithmically as a finite sum in the pole-zero domain. 
Section III presents the summary and conclusions of the 
paper.

II. METHODOLOGY

Cepstral analysis is used in a variety of applications 
such as speech processing, radar and sonar, etc. Another 
area in which cepstra shown up, is that of distance 
measures between models and/or signals. For 
requirements of invariance with respect to the 
measurement scale, it is desirable that distance to be a 
function of the ratio between the spectra of processes, i.e., 
of the difference between the cepstra. Several cepstral 
distances for ARMA models were defined in [6], [7], [8]. 

It is said the time series (xn) follows ARMA(p,q) 
model if 

1,)()()( 0
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(1)

where (un) are unknown input elements, G is the gain of 
the model  and (ak) and (bl) are the ARMA parameters 
with b0=1. Alternatively, if we work in the z-domain the 
system function is 
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where a0=1 and , (αk) and (βl)  are the poles and zeros of 
the model, respectively. 

We can associate an ARMA model with a nonzero 
complex rational function. The cepstrum is the inverse 
Fourier Transform of the logarithm of the power 
spectrum and, for ARMA models, this will reduce to 

[ ] n

n
n zczFzFLog −

+∞

−∞=

∗
∑=)/1()(               (3)

where F(z) is system function of ARMA model, [6]. The 
(cn), that form a hermitian sequence nn cc −

∗ = , are the 
cepstrum coefficients.

Note 1: An alternative interpretation of the cepstrum 
of an ARMA model is given by the next result: If F(z) is
the transfer function of a stable and minimum phase 
ARMA model, then the cepstrum coefficients are the 
coefficients of the Laurent expansion of function 

[ ])/1()( zFzFLog ∗  that is valid on an open annulus 

21 rzr << , with 0<r1<1 and r2>1, [11]. 
Note 2: For stable and minimum phase ARMA 

models, the cepstrum is causal, i.e., 0,0 <∀= ncn .
The definition for the distance between two stable and 

minimum phase AR models given by [6] can be adapted 
to the ARMA case. 

Definition 1: For stable and minimum phase ARMA 
models M, M´ with system functions F and F´ and 
cepstrum coefficients (cn) and (c´n), respectively the 
metric d is defined as 
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Note 3: d is a pseudometric, because if  (cn), (c´n) are 
such that ´

nn cc = Nn∈∀ and ´
00 cc ≠ , then 

d(F.F´)=0. There is a standard method of turning a 
pseudometric space into a metric space, [9]. 

The associated cepstral norm for an ARMA model is 
defined as follows. 

Definition 2: For stable and minimum phase ARMA 
model M with system function F and cepstrum 
coefficients (cn), the cepstral norm of this model is 
defined as 
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Note 4: Let (cn) the cepstrum coefficients of ARMA 
model M and consider the double infinite Hankel matrix 
H
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The Hilbert-Schmidt norm of H is given by 
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Because the right –hand side is equal to the cepstral norm 
defined in (5), we obtain 

HScep
HLogF =2 .

The Hilbert-Schmidt norm of that Hankel matrix, i.e., 
the Hilbert-Smchmidt-Hankel norm of F(z), denoted by 

HSH
zF )( , is related to the poles and zeros of system 

function F(z) in the following result. 
Theorem 1: Let F(z) be the system function of a stable 
and minimum phase ARMA(p,q) model M. The cepstral 
norm of F(z) is then equal to 
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where (αk) and (βl)  are the poles and zeros of the model, 
respectively, and ( )⋅Re  denotes the real part. 

Proof: An equation, relating the cepstrum coefficients 
with the poles of an AR model, is well know in the 
speech processing literature, [6]. A similar equation, for 
an ARMA model can also be derived in a straightforward 
manner as follows. This equation may be stated as 
follows.  For a stable and minimum phase ARMA model 
with system function given by (2), Log[F(z)] is an 
analytic function in the open annulus zr < , 0<r<1,
[10], and can be represented by the Laurent expansion 
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Expressing the system function F(z) in terms of its 
poles and zeros and using the identity: 
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By comparing equations (9) and (10) we get 
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Now we can express the cepstral norm of F(z) that is 
defined in (2) in terms of its poles and zeros 
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Finally, using the identity 1,
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and the properties of complex conjugation, we obtain 
equation (8). 

It is important that the expression (5) reduces to a 
finite sum in the pole-zero domain because it shows that 
the infinite sum (5) converges. 
Note 5: Consider two stable and minimum phase ARMA 
models of order p, q and p´, q´ with system functions F(z) 

and F´(z) and cepstra nc  and ´
nc , respectively. The 

cepstral distance between the ARMA models M and M´ is 
defined in (4) as 
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Consequenly, the distance between the ARMA models M
and M´ is
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and applying (8) the distance value can be obtained by 
means of a finite sum in the domain pole-zero. 

As an example, we take the fifth-order ARMA model 
with poles i1.09.0 ± , i8.02.0 ± and 95.0−  and 
zeros i82.05.0 ±− , i7.01.0 ±  and 92.0 . The 
cepstral norm has been  calculated by computing the 
finite sum  (8), obtaining a value of  5.089. In the other 
hand, this cepstral norm may be calculated 
algorithmically as a truncated sum. Table 1 shows the 
magnitude of resulting error in the sum of this series 
when is truncated after N terms.  

Table 1. 
N 50 75 100 125 

Error 0.0281 0.0033 0.0004. 0.0001 

III. CONCLUSION

In this paper, we have shown that the ceptral distance 
between two stable and minimum phase ARMA models 
that was introduced by [6] may be calculated 
algorithmically as a finite sum in the pole-zero domain. 
We suggest that the metric can be used in the area of 
modeling and analysis of pathological voice in at least 
two circumstances. First, we might a large number of 
signals that come from various types of pathological 
sources and we wish to classify them. Having first fitted 
ARMA models to each signal, we could construct a 
distance matrix, that is, a  matrix D whose (i,j)th element 
is the distance between the models of ith and jth signals. 
By performing the cluster analysis on D, the signals are 
classified. Alternatively, we might the underlying models 
Mi corresponding to several pathological voices and wish 
to classify a voice (modeled as M, say) from one of those.  
In that case, we compute d(M,Mi) for each i and we guess 
the (Mi) closest to the model M.



168 MAVEBA 2003

REFERENCES 

[1] R.L. Klevans and R.D. Rodman, Voice Recognition.,   
Artech House, 1997 
[2] M. Banbrook and S. McLughlin, “Is speech chaotic? 
Invariant geometrical mesures for speech data”,  IEEE 
Colloquium on Exploiting Chaos in Signals Processing, 
8/1-8/10, 1994.  
[3] A. Kumar and S.K. Mullick, “Attractor dimension, 
entropy and modeling of speech time series", Electronics 
Letters, Vol.26, No.21, 1990, pp. 1790-1791. 
[4] H.N. Teodorescu,, F. Grigoras and V. Apppei, 
“Nonlinear and nonstacionary Processes in Speech 
Production”, Int. J. of Chaos Theor. And Appl, Vol.  5, 
No. 3, 1996, pp. 1453-1457.  
[5] Papamichalis, P.E. Practical Approaches to Speech 
Coding. Prentice Hall, Englewood Cliffs, NJ, 1987 
[6] L.B. Rabiner and B.H. Juang, Fundamentals of Speech 
Recognition, Prentice-Hall, 1998. 
[7] R. J. Martin,  “A Metric for ARMA Processes”, IEEE
Transition and signal processing, vol. 48, pp. 1164-1170, 
2000. 
[8] K. D. Cock and cols.,  “On a cepstral norm for an 
ARMA model and the polar plot of the logarithm of its 
transfer function”, Signal Processing, vol. 83, pp. 439-
440, 2003.
[9] I.J. Madox, Elements of functional analysis, 
Cambridge University Press, 1970. 
[10] A. Kaderli and A. Salim Kayham., “Spectral 
Estimation of ARMA Processes using ARMA-Cepstrum 
Recursion”, IEEE Signal Processing Letters, vol. 7, pp. 
259-261, 2000. 
[11] M.K. Ablowitz and A.S. Fokas, Complex Variables.  
Introduction and Applications, Cambridge University 
Press, 1997. 



3rd International Workshop MAVEBA 2003, 169-172
© Firenze University Press 2003, ISBN 88-8453-154-3 

PERCEPTUALLY-BASED OBJECTIVE MEASURE FOR NON-INTRUSIVE 
SPEECH QUALITY ASSESSMENT

D. Picovici and A.E. Mahdi 
Department of Electronic and Computer Engineering, University of Limerick, Limerick, Ireland 

Abstract: This paper proposes a new perceptually-
based method for assessing speech quality and 
evaluates its performance. The method is based on 
comparing the received speech to an appropriate 
reference representing the closest match from a pre-
formulated codebook. The codebook holds a number 
of optimally clustered speech parameter vectors 
extracted from a large number of various undistorted 
clean speech records. The objective auditory distances 
between vectors of the distorted speech signal and 
their corresponding matching references are then 
measured and appropriately converted into an 
equivalent subjective score. The optimal clustering of 
the reference codebook is achieved by using a dynamic 
k-means method. Efficient data mining technique 
known as Self-Organising Map is used to match the 
distorted speech vectors to the references. Speech 
parameters derived from Bark spectrum analysis, and 
Mel-Frequency Cepstral coefficients (MFCC) are used 
to provide speaker independent parametric 
representation of the speech signals as required by an 
output-based quality measure. 
Keywords: Speech Processing, Perceptually-Based 
Speech Quality, Perceptual Quality Measure.

I. INTRODUCTION

Most existing objective assessment methods for speech 
quality in modern voice communications systems require 
measuring some form of distortion between the input 
(transmitted) and output (received) speech signals. 
Processing steps typically include normalisation of signals 
powers, time alignment between input and output records, 
and determining a distance value which is used to estimate 
the equivalent subjective quality score. In practice the 
input speech record may not be available in all situations. 
For these situations an alternative technique is necessary 
to evaluate the quality of the transmitted speech using 
only the received signal. Such an approach could have 
numerous applications. The most practical application is 
non-intrusive monitoring the performance of 
communications systems. However this approach is not 
easy to realize due to the wide-ranging variability of the 

transmitted speech resulting from different speakers with 
different vocal tract and pitch characteristics. 

In an attempt to consider this problem, this paper 
proposes a new perceptually based technique for objective 
prediction of speech quality, which utilizes a new efficient 
data-mining algorithm known as the Self-Organizing Map 
(SOM). The technique is based on comparing the output 
speech signal to an artificial reference signal that is 
derived from a dataset of clean undistorted speech 
records. The performance of the proposed algorithm is 
tested with speech from a number of male subjects, 
distorted by a modulated noise reference unit (MNRU) 
under different conditions. 

II. SELF-ORGANIZING MAP

The self-organising map (SOM) [1] is one of the most 
well-known neural network models, which has proven to 
be a powerful tool for clustering of data, correlation 
hunting and novelty detection due to its unsupervised 
learning and topology preserving properties. The model 
implements a nonlinear topology preserving mapping 
from a high dimensional input data space onto a low 
dimensional network or grid of neurons (usually 1D or 
2D). Each neuron i of the SOM is an n-dimensional 
prototype vector mi = [mi1,…,min] where n represents the 
input space dimension. On each training step, a data 
sample x is chosen and the unit mc closest to it (the best 
matching unit, BMU) is identified from the map. The 
prototype vectors of the BMU and its neighbours on the 
grid are moved towards the sample vector. The new 
position is than given by: 

mi = mi + (t) hwi(t) (x mi)                                     (1) 
with (t) representing the learning rate at the time t and 
hwi(t) is a neighborhood kernel centered around the winner 
unit w. Both the learning rate and neighborhood kernel 
radius decrease monotonically with time. During the step-
by-step training, the SOM behaves like elastic net that 
folds onto the “cloud” created by input data. 

Due to its high efficiency and robustness, the SOM 
method has been used in the proposed measure to achieve 
the required matching process. 
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III. OBJECTIVE SPEECH QUALITY MEASURES

Over the last decade, researchers and engineers in the 
field of objective measures of speech quality have 
developed different techniques based on various speech 
analysis models. Currently, the most popular techniques
are those based on psychoacoustics models, referred to as 
perceptual domain measures [2]. In these measures,
speech signals are transformed into a perceptually related 
domain using human auditory models. Most available
objective assessment techniques are based on an input-to-
output approach. In input-to-output objective assessment
methods, as depicted in Fig.1, the speech quality is 
estimated by measuring the distortion between an “input”
or a reference signal and an “output” or received signal. 
Using a regression technique, the distortion values are
then mapped into estimated quality.

Currently there are a number of techniques that can be 
classified as perceptual domain measures. Examples of 
these include the Perceptual Analysis Measurement
System (PAMS) and the ITU-T Perceptual Evaluation of 
Speech Quality (PESQ) measure [3],

There are three problems with the input-to-output
speech quality measures. First, it is very difficult to 
achieve accurate synchronization between the input and
the output signals. Secondly, the measurements can be 
seriously affected by background noise, as in the case of
mobile networks, and hence would not provide true
measure of the network’s quality of service. Thirdly, in
some situations the original speech is not available, as in 
case of mobile communications or satellite 
communications. Output-based measures, which do not
need the input, are thus highly desirable.

IV. NEW OUTPUT-BASED APPROACH

A new approach for a robust output-based objective
speech quality measure, which correlates well with
predicted subjective test, is detailed here. The approach, 
which is similar to that reported in [4], is based on
comparing the output speech to an artificial reference 
signal representing the closest match from a database
derived from undegraded speech material. The approach,
which is depicted in Fig. 2, uses two different perception-
based parametric representations of speech that have been
shown effective in suppressing speaker-dependent details:

the Bark Spectrum analysis [5] and Mel-Frequency
Cepstral coefficients (MFCC) [6]
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The general processing steps for the proposed output-
based assessment approach are outlined below:

a) Establishment of datasets of high quality undegraded 
source and distorted speech records. The speech data are 
subjectively rated in terms of Mean Opinion Score
(MOS).

b) Segmentation of the source (reference) and received 
(output) speech records into appropriately overlapped 
frames.

c) Derivation of an appropriate reference signal: this
process involves the derivation of perceptually based 
speaker-independent speech parameter vectors from the 
distorted test (received) signal using two techniques: the 
Bark spectrum analysis and the Mel-Frequency Cepstral
coefficients. Similar parameter vectors are also derived 
from a large data set of undegraded source speech records.

d) Application of clustering and classification
techniques: this process involves three tasks. First the
derived parameter vectors from the undegraded speech are 
clustered to produce a reference codebook corresponding
to high quality speech. Secondly, the test vector is 
correlated with the clustered vectors stored in reference 
codebook in order to determine the best matching unit.
Thirdly, by tracking the composition of the selected
cluster, a best matching vector to the test vector is
identified and an objective-auditory distance measure
between the two vectors is computed. For the clustering, a 
dynamic and improved algorithm has been used (see
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Fig 2: Block diagram of the new output-based approach
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Fig. 1: Perception-based Approach to Quality Estimation
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section IV sub-section A). The SOM has been used to
perform the classification and determination of the best
matching cluster and reference vector.

e) Distortion measure: due to the absence of the input
speech, high quality clean speech records are used to 
formulate an artificial reference. The proposed objective
measure is based on measuring the degree of mismatch
between the distorted speech vectors and its best matching
vector from the reference codebook. This has been
affected by computing the median minimum distance 
(MMD), as described in Section IV subsection B.
f) Mapping the measured auditory distances into predicted
subjective scores: finally, linear regression is used to map
the measured distortion indicator, described in (e) above,
into corresponding subjective quality score such as the 
Mean Opinion Score (MOS).

A. Determination of Number of Clusters

The k-means algorithm aims to minimize the sum of
squared distances between all the data points and the
cluster centre. The main inconvenience of this procedure
is the determination of the best value of k that provides
the optimum clustering for a given application. To 
alleviate this problem, the proposed objective quality 
measure uses a dynamic k-means method to determine the
optimum number of clusters. The method starts by
choosing K initial clusters centres z1, z2, … zK. The 
coefficients of the reference vectors are distributed among
the K clusters. To achieve the best clustering arrangement
which results in a compact number of well separated
clusters, two measurements are performed: the intra-
cluster distance which is simply the average distance 
between a point and its cluster centre, and the inter cluster
distance or the distance between the cluster centres, 
defines as:

K

i Cx
i

i

zx
N 1

21cluster-intra (2)

,K,i ; jK-,,izz ji 1121),min(cluster-inter
2

(3)
where x represents a given coefficient (point), N the
number of points in a cluster, K  the number of clusters
centres, zi is the cluster centre of cluster Ci and .
denotes an Euclidean distance operation. In order to
determine the best clustering, the above two
measurements are combined to give a ‘validity’ factor
defined by:

cluster-inter

cluster-intra
validity (4)

Since we want to minimise the intra-cluster distance and 
this measure is in the numerator, we consequently want to
minimize the validity measure. We also want to maximize

the inter-cluster distance measure, and since is in the 
denominator, we again want to minimize the validity
measure. Therefore, the clustering which gives a 
minimum value for the validity measure will tell us what
the ideal value of K is in the k-means procedure. 

B. Computation of the MMD 

The Euclidean distance from a test vector xl of the lth
frame of the received speech signal to a reference vector 
ym of the mth frame, which has been identified as the
BMU, is detailed as: 

][][),( ml
T

mlmlmldis yxyxyxyx      (5) 

where T denotes transpose operation. After the distances
for all frames are found, the median minimum distance
(MMD) index for the received signal is computed as: 

 DMM = medianL [dis (xl, ym)] (6)

where L is the number of frames in the received signal. 
The above distance measure provides an objective
indication of the degradation in the received speech 
signal. Larger distances imply lower speech quality and
vice versa. 

V. RESULTS AND DISCUSSION

The proposed output-based measure has been tested
with speech distorted by a modulated noise reference unit 
(MNRU) under seven different conditions as those used in 
[7]. The tests were conducted on seven different cases 
with three levels of difficulty, using around 10 seconds of 
test speech signals taken from male subjects only. For
each case, two versions of the proposed output-based
quality measure are applied: the first is based on the use of
the Bark spectrum analysis, and the second is based on the
use of the MFCC.
For the first level (test cases 1 and 2), the proposed
method was tested and trained using speech records from
the same male speaker. Accordingly this represents the
easiest possible test case. The main difference between
these cases and a standard input-to-output objective
measurement is that there is no frame-level time
alignment between the input and output speech. For the
second level of difficulty (cases 3, 4 and 5) two different
male speakers, M1 and M2, were used and the spoken text
was different. The third level (cases 6 and 7) is when the
spoken text of the test speech was different from that of
the reference speech and the speakers were also different. 
Correlation coefficients between the estimated and the
actual subjective MOS of the test speech records for all 
the above cases are shown in Table I. 

 Inspection of the Table. I indicates the followings:
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  For the first five test cases, the speech quality 
prediction of both versions of the proposed output-based 
measure seems to correlate very well with the actual MOS 
scores. Modern input-to-output based speech quality 
measures can typically achieve correlation in the range 
from 0.8 to 0.9. In contrast, the correlation coefficients for 
these five cases represent the upper limit of performance 
for an output-based algorithm, which has limited access to 
information compared to the input-to-output based 
approach.

 For the last two test cases the correlations with the 
actual MOS scores were comparatively lower. In addition 
the version of the proposed measure that is based on the 
Bark spectrum analysis seems to perform relatively better 
than that which is based on the MFCC. The last two test 
cases were repeated using longer speech records with 
duration of 30-50 seconds. The correlation coefficients 
were 0.9143 for Bark Spectrum and 0.9175 for MFCC 
Coefficients.

Table. I: Correlations between objective and subjective 
scores

CORRELATION
COEFFICIENTSTest

Case
Training 
Datasets

Testing
Datasets Bark

Spectrum 
MFCC
Coefficients

1 M1 M1 0.9950 0.9762
2 M2 M2 0.9986 0.9410
3 M1, M2 M1 0.9953 0.9638
4 M1, M2 M2 0.9988 0.9410
5 M1, M2 M1, M2 0.9881 0.9653
6 M1 M2 0.8869 0.7145
7 M2 M1 0.8256 0.7121

Aldo the system, as proposed here, has been designed to 
assess speech/voice quality for telecommunications 
networks, it can easily be adapted for biomedical 
applications. This can be done by replacing the subjective 
listening scale described in the paper (i.e. MOS) by an 
appropriate medical-based scale such as GRBAS [8]. The 
authors are currently working on these types of 
applications in collaboration with two departments from 
University of Florence: Department of Electronics and 
Telecommunications, and Department of Physics. 

VI. CONCLUSIONS

In this paper a new output-based speech quality 
measure, which uses Bark Spectrum analysis and Mel-
Frequency Cepstral coefficients, was introduced. The 
measure is based on comparing the output speech to an 
artificial reference signal that is appropriately selected 
from optimally clustered reference codebook, using the 
SOM approach coupled with an enhanced k-means 
technique. The codebook is formulated from a number of 

undistorted clean speech records taken form a variety of 
speakers. As part of an-going evaluation work, 
performance of the proposed measure were tested with 
speech distorted by modulated noise reference unit under 
different conditions. Test results indicated that the 
proposed output-based is generally effective in predicting 
the corresponding subjective speech quality, and is fairly 
robust against speakers and content variations. Further 
study is well underway to investigate the optimal 
clustering process, length of the frame size used to 
process the speech and its associated overlap, as well as 
the use of the SOM model for both clustering and 
matching process. 

It is also indicated that the current work can be easily 
modified to be suitable for biomedical applications. 
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Figure 2: The EpR model
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Abstract: This paper is a review of the work contained 
in the insides of a sample-based virtual singing 
synthesizer. Starting with a narrative of the evolution 
of the techniques involved in it, the paper focuses 
mainly on the description of its current components 
and processes and its most relevant features: from the 
singer databases creation to the final synthesis 
concatenation step. 

I. INTRODUCTION 

The voice generation is typically explained as a 
source/filter system, in which a voiced/unvoiced 
excitation is filtered by the vocal tract resonances. The 
voiced excitation corresponds to the glottal pulses that 
originate the vocal fold vibrations whether the unvoiced 
excitation corresponds to the turbulent airflow that arises 
from the lungs. The voice filter is characterized by a set 
of resonances called formants that have their origin in the 
voice organs lengths and shapes (trachea, esophagus, 
larynx, …). This filter modulates the timbre of the sound 
by dynamically changing the amplitude, center 
frequencies and bandwidths of the resonances by moving 
the voice organs. 

Some of the singing synthesizers developed since the 
beginnings of such discipline have focused in the 
source/filter decomposition (physical models based); 
others, rather than focusing on how the sound is 
produced, have focused on the perception of the sound 
(spectral models based); and others, such as the 
synthesizer we present in this paper, have tried to 
combine both models. 

The system can be roughly described by a singer 
database, an input, an expression module and a synthesis 
engine (see Fig. 1). The input contains the melody and 

the lyrics of the song plus some expression controls. The 
expression module converts this input into an internal 
low-level synthesis score, and the synthesis engine reads 
this synthesis score, fetches the required samples from the 
singer database and transforms and concatenates them to 
obtain the synthetic output signal. 

II. VOICE AND SPECTRAL MODELING 

Since our system is a sample based synthesizer in 
which samples of a singer database are transformed and 
concatenated along time to compose the resulting audio, 
we have always considered the task of finding the most 
appropriate and the highest quality transformation 
techniques a crucial issue.  

We initially used SMS [1] as the basic transformation 
technique with the addition of a time domain delta-based 
excitation to mimic the singer’s voiced excitation [2]. 
SMS had the advantage of decomposing the voice into 
harmonics and residual. Both components were 
independently transformed, so the system yielded a great 
flexibility. But although the results were quite 
encouraging in voiced sustained parts, in transitory parts 
and consonants, especially in voiced fricatives, harmonic 
and residual components were not perceived as one.  

Intending to improve our results, we moved to a 
spectral technique based on the phase-locked vocoder [3] 
where the magnitude spectrum is segmented into regions, 
each of which contains a spectral peak and its 
surroundings. These regions can be then freely shifted in 
amplitude and frequency. Regarding the phase spectrum, 
the relation between harmonics found at the beginning of 
each glottal period is kept after transformations [4]. On 
top of this technique we developed a frequency domain 
voice model that consists of an excitation curve, a set of 
resonances and a residual envelope. We call it EpR 
(Excitation plus Resonances) [2]. The excitation curve 
models the voiced source using an exponential decay 
function and a low frequency resonance. The vocal tract 
is modeled using the rest of the resonances and the 
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residual envelope stores the differences between the 
model and the spectral shape defined by the harmonics 
(see Fig. 2). 

III. SINGER DATABASE

About two hours of dry singer performance 
recordings are required to build a database. The singer is 
asked to follow a detailed recording script that covers 
most possible phonetic contexts and several expression 
aspects [5]. These recordings are then segmented and 
analyzed using the spectral analysis algorithms. In order 
to speed up this process two free software toolkits [6, 7] 
are used as phonetic aligners between the audio files and 
the recording scripts. The resulting data fills the phonetic 
and the expression libraries and is stored in a set of files 
organized in tree structured folders. 

The phonetic database contains timbres, steady-states 
and articulations. The timbre section stores the voice 
model (EpR) of different vowels at different pitches and 
dynamics, the steady-state section contains long sustained 
vowels at different pitches, and the articulation section 
contains an organized list of diphonemes samples at 
different pitches. 

The expression database contains note and vibrato 
templates intended to keep some basic expression aspects 
of the singer’s voice and therefore increase the 
naturalness of the synthesis. Note templates model 
singer’s attacks, releases and transition behaviors in 
different musical and intentional contexts. These contexts 
are described by a set of meaningful labels, like sharp 
attack, legato transition or sexy release. Each template 
stores a set of controls (pitch, loudness, EpR excitation 
curve, breathiness, roughness) obtained from the analysis 
of the sample, each of which can be later used in 
synthesis to reproduce the voice excitation changes for 
each expressive context. Vibrato templates store the 
singer’s excitation behavior for different types of vibrato 
and tremolos; basically they keep the pitch and the EpR 
excitation curve. Each template is segmented into attack, 
body and release parts. The body segment is mirror-
looped at synthesis if needed.  

IV. INPUT SCORE

The input score is an ASCII text file based on the 
METRIX control language [8] that contains the score of 
the song. Not only lyrics and notes can be specified, but 
also high level controls and all the possible music 
information that the system is capable to interpret. To 
achieve naturalness in the synthetic voice, the system 
defines some musically meaningful controls [5]. The idea 
is to cover the maximum situations that can appear in a 
real singing performance in order to avoid a lack of 
expression control that could bring about non-natural 
results.  

The input score contain the so-called note parameters 
and control parameters. The note parameters refer to a 
specific note of the score and describe note attributes 
such as pitch, duration, loudness, lyrics, dynamics, 
vibrato, attack / release types, roughness, etc., while the 
control parameters refer to the whole song and describe 
song attributes such as singer, tempo, etc. Below you can 
see an example of input score where the lyrics are fly me.

V. BUILDING THE SYNTHESIS SCORE 

The expression module generates an internal low-
level score (synthesis score) out of the input METRIX. 
This score is structured into several tracks and control 
envelopes, some of which are shown in Fig. 3. The 
phonetic track shows the articulations and steady-states to 
be fetched from the DB and their corresponding 
durations, which are calculated trying to make them as 
close to the original database sample durations as 
possible. The note and vibrato tracks contain information 
on the note and vibrato templates that must be applied at 
synthesis and their corresponding durations. The 
envelope controls (vibrato depth and rate, pitch, pitch 
var, loudness, etc) express their behavior along the 
performance with a time-varying function. 

In addition to the note and vibrato templates, several 
models have been created to cover a wide variety of 
possibilities. However, templates extracted from real 
recordings are preferable to get a more authentic 
expressivity, although they may not sound natural when 
the synthesis context in which they are applied is far from 
the template context. 

The phonetic track is filled out taking into account 
that the vowel onset should match the begin time of the 
note. Besides, as already mentioned, taking the original 
sample duration is preferable since this way we avoid 
time-scaling transformations, but this is not always 
possible because all required articulations must fit into 
the note segment. On the other hand, whenever the added 
duration of the articulations is less than the target note 
segment duration, a steady-state is added to fill out what 
is left. 

Score_Info
{
 Tempo: 90 
 Meter: 4/4 
}
InstrumentInfo { Robert } 

begin
   t1   Robert NoteNumber: Ab2 
    Duration: t0.5 
    Lyrics: "f l aI" 
    Loudness: 0.6 
    AttackType: "soft" 
   t1.5  Robert NoteNumber: G2 
    Duration: t1 
    Lyrics: "m I" 

Loudness: 0.3 
    VibratoType: "wet" 
    VibratoRate: [(0,1)(1,0.6)] 
    VibratoDepth: [(0,0) (0.5,1)(1,0.7)] 
    ReleaseType: "long" 
end
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In the synthesis score there are two envelope controls 
that specify the output synthesis pitch. The first envelope 
(Pitch) stores the absolute pitch values that come out 
from the notes specified by the input score. On the other 
hand Pitch var stores relative pitch variations due to 
changes originated by some phonetic combinations, such 
as certain voiced consonant - vowel combinations (b-a) in 
which the pitch decreases during the consonant sound. 

In synthesis, the relative values of the pitch var 
envelope and the expression templates are added together 
to the absolute pitch values. In the case that an attack or 
release template is specified, the pitch variations of this 
template are applied when synthesizing to obtain a pitch 
curve similar to the one in the template. In the case of 
note transitions, the process is the same but whenever no 
template is specified, a pitch model is applied that 
overwrites the absolute pitch track of the score, like 
shown in Fig. 3, so to avoid pitch discontinuities. This 
pitch model has to be carefully generated to obtain a 
natural sounding pitch curve in the output synthesis. A 
mathematical model has been designed to produce 

smooth pitch transitions between notes and allow the 
control of some parameters like duration, shape and 
synchronization to phonetics and musical rhythm. This 
synchronization is basically attained by reaching the 
target pitch at the onset of the vowel of each syllable. In 
Fig. 4 we can see a more detailed drawing of this pitch 
model. The distance between begin pitch and max pitch,
as well as between min pitch and end pitch, depends on 
the note interval (the bigger the interval, the bigger the 
distance, but with some limitations for big intervals). On 
the other hand, the transition curvature depends on both 
the note interval and the transition duration and its slope 
is restricted to a maximum value in order to guarantee 
smooth pitch variations in short transitions. 

V. SYNTHESIS ENGINE

A. Sample transformations 

The synthesis engine reads the synthesis score and 
retrieves the required samples and templates from the 
singer database selecting those units that are closer to the 
synthesis context (mainly pitch is considered). Once we 
have retrieved the samples, some transformations [4] are 
applied to match the synthesis score: transposition, 
equalization, time-scaling, loudness modification, vibrato 
and voice excitation based transformations. Finally, the 
transformed samples are concatenated to compose the 
resulting synthetic performance.

Transposition is applied to match the synthesis score 
pitch. Therefore, the transposition factor is calculated as 
the synthesis pitch divided by the sample pitch. This 
factor is calculated frame by frame. In terms of the 
spectral technique, harmonic peak’s regions are shifted in 
frequency and harmonic peak’s phases are corrected 
without altering the phase synchronization between 
harmonics. 

Equalization is used to obtain transformations on 
timbre. When transposing, it is used to keep the original 
timbre but it can be applied as well to get generic timbre 
transformations. Equalization is achieved by shifting in 
amplitude the harmonic peak’s regions so to match the 
desired timbre envelope. 

Time-Scaling is applied to samples in order to match 
their durations with the synthesis score durations. The 
time-scale ratio is sometimes applied in a non-uniform 
way so that the synchronization between control 
parameters, phonetic and note tracks is not altered. For 
example, the phonetic articulation that contains the vowel 
onset should not change the timing of the vowel onset. 
Besides, in the case of abrupt phonetic changes, these 
should not be smoothed so not to degrade the 
intelligibility. The transformation is obtained by repeating 
or dropping some frames and interpolating them [9]. 

For loudness modification, database samples are 
considered to be sung at normal loudness, unless 
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otherwise specified. Thus, sample loudness is changed to 
match the synthesis score value. The transformation can 
be achieved by applying an equalization filter obtained 
from a recorded template where the singer sang a 
crescendo or a decrescendo. This filter represents the 
timbre envelope differences between the sample 
estimated loudness and the target loudness. 

For vibrato transformation, the pitch and EpR 
excitation changes enclosed in the vibrato template are 
applied to the audio samples. The little nuances of the 
singer’s vibrato are kept even after altering its depth and 
rate, and the EpR voice model allows the harmonics to 
follow the resonances as their frequency is modified, thus 
emulating the real situation.  

Besides, some voice excitation based transformations 
can be applied to improve the naturalness and 
expressiveness of the synthetic voice, such as roughness, 
whisper and breathiness. Roughness is obtained by 
adding sinusoids to the spectrum in a way that glottal 
periods become irregular. Whisper comes out of 
equalizing an unvoiced excitation with the timbre 
envelope. Finally, breathiness is succeeded by adding 
together whisper and equalization effects and lowering 
the harmonic’s peak adjoining bins.   

B. Sample concatenation 

The last step in the synthesis engine is the 
concatenation of samples. Once we have transformed the 
samples, we have to deal with the spectral shape and 
phase discontinuities that appear when connecting them. 
With the aim of minimizing such discontinuities, 
amplitude and phase corrections are spread out along a 
set of transition frames that surround the boundary [4]. 
The results are quite smooth and good enough in most 
cases. Sometimes, however, a gap in brightness can be 
heard, especially when connecting samples that have 
been transposed with rather different factors, due to the 
fact that although there are no harmonic peak’s amplitude 
or phase discontinuities, there do exist harmonic peak’s 
regions amplitude and phase shape gaps. This problem is 
inherent to only consider harmonic peak’s discontinuities 
when connecting samples, thus our algorithm should be 
expanded to consider inside region characteristics. 

VI. CONCLUSION

The system we present is able to generate synthetic 
performances with quite successful results. However, the 
more different from the database the synthesizer is asked 
to sing, the more artificial synthesis gets (it is difficult to 
make the system sing hip-hop using an opera singer 
database). Some of this difficulty arises from the fact that 
the synthesizer has been thought to preserve not only the 
timbre personality of the singer from which the database 
is created but also his/her expressivity. 

 In this sense, work has to be done to improve 
transformations naturalness, especially when the 
synthesis context is far from the original context in which 
the sample that is being transformed was recorded.  

Other improvements directions include working on 
expression dependent timbre transformations and getting 
into a higher level transformation description in which 
the system could generate an expressive performance 
automatically out of the melody, the lyrics, the singer, 
and an expressive label such as sweet or aggressive. 
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Abstract: Real-time visual displays have found
application to be tested as part of a recently funded
pilot project to investigate the usefulness or otherwise
of computer displays in the singing studio. Following
previous work that suggests that simple displays of a
small number of analysis parameters are generally the
most effective, the system makes available analyses
plotted against time that relate to: pitch, spectral
ratio, larynx closed quotient and vocal tract area.
These can be viewed singly, multiply or in
combination. The algorithms used will be described as
well as previous analysis experiments that indicate
their potential usefulness. A number of example
output screens will be illustrated to indicate how users
interact with the system. The on-going testing
paradigm will also be described which is designed to
establish whether or not displays such as these can be
used in the singing studio to any useful advantage.
.
Keywords : visual displays, singing, vocal tract display

I. INTRODUCTION
This paper describes the technology to be emplyed in a

project during which the application of real-time visual
feedback technology in the singing studio will be
investigated, both during lessons and outside during
private practice. In general, science and artistic musical
performance tend to use different language codes and
symbolisation for knowledge, and often, their ontological
standpoints are different. Whilst it is not known to what
extent these two language codes are reconcilable, the
benefits from the application of technology have been
demonstrated in many other fields, including the arts.
There is no longer a widespread culture of technology
phobia in non-scientific fields of human endeavour.

The standard pedagogical model employed in the
conservatoire studio typically involves weekly/twice
weekly lessons with an expert, supported by private
practice and performance. The teacher is engaged in a
psychological translation of the student’s performance,
for example by turning musical gestures into language,
and the student is engaged in a further translation of the
teacher’s verbal and visual feedback into adapted singing
performance. A dual possibility thereby exists for the
misinterpretation of information. Anything that can
provide more robust and easily understandable feedback

to both teacher and student would seem to be worthwhile,
and this forms the basic premise to investigate the use of
technology in the signing studio.

A

B

C
Figure 1: An illustration of the learning process for pitch
in singing based on [1, 2]. Time is from left to right in
these plots.
KEY: (A) the basic interaction between teacher and
learner; (B) the on-going traditional learning process,
and (C) the way in which real-time visual feedback can
impact the learning process. KR = knowledge of results
from an external source; CP = critical learning period.

Welch [1, 2] develops a model to characterise the
learning process, taking pitch as an example, and this is
illustrated in Fig. 1. During the traditional interaction
between teacher and student, a model is provided, the
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student makes an attempt vocally, and the teacher
provides feedback to the student. A key issue in relation
to this feedback is the gain the student makes in regard to
knowing what s/he is supposed to be achieving in terms
of a result, an external assessment being referred to as
“knowledge of results” or “KR” as indicated in Fig. 1-A.
Understanding what is required and how to recognise it is
a vital aspect of the learning process.

Following feedback on a vocal response, the student
subsequently will make another attempt as illustrated in
Fig. 1-B. This is the nature of the traditional singing
pedagogical process. The use of real-time visual feedback
enables feedback to be provided during the student’s
vocal response, enabling modifications to be made
immediately and their concurrent effect to be observed
(see Fig. 1-C). Apart from the more obvious advantage of
removing the time lag between a vocal response and the
feedback that is inevitable without real-time provision,
the student is able to make another attempt immediately
based on observations of the feedback provided during
the previous attempt as appropriate.

Quantifiable parameters have been identified that vary
with training and experience for: (a) actors [3], (b) adult
singers [4, 5], as well as (c) girl and boy cathedral
choristers [6]. Real-time visual feedback has been
previously used successfully with primary school
children [7, 8] and adult singers [9, 10]. Our experience
suggests that technological applications are only of
potential benefit if they are easy to use by non-specialists
and provide information that is meaningful, valid and
useful. Such robust information can then underpin
feedback to provide more accurate formative and
summative assessments.

II. DISPLAYS TO BE EMPLOYED
A. Consultation with the community

A one day workshop was held with a group of singing
teachers, the authors, and interested colleagues who
research in the areas of speech and/or singing. The
purpose of this event was to review existing displays that
might be useful in the context of the singing studio, and
to produce a specification for the software to be
employed in the project. Colleagues were reminded that
the project is not about testing the effectiveness of the
technology itself, but to establish its potential usefulness
or otherwise. Specific research questions include:

• the extent to which teachers and students will
accept and make use of technology in the studio

• the ease-of-use of the technology, both in the
studio and elsewhere for private practice

• the nature of the data offered by the technology
• how the data can be integrated into singing

teaching and learning
• the readiness with which the data can be

interpreted and utilised

• whether the technology overly intrudes into the
learning and teaching experience

• any potential perceived threat posed to the
teacher and/or the student by the use of
technology.

In order to make the technology be potentially widely
applicable, a windows-based PC implementation was
targetted. Existing possibilities for real-time displays
were demonstrated, and the following were identified as
being appropriate as tools for use in the singing studio for
this project:

• fundamental frequency against time
• spectral ratio against time
• vocal tract area
• summary vocal tract area measures against time
• side view camera.

Each of these is described and illustrated below.

B. Fundamental frequency against time
The measurement of fundamental frequency (f0) has

been the subject of considerable research [e.g. 10]. No
one technique exists that is accurate for all subjects,
covering the complete human pitch range uttered in any
acoustic. The choice of a technique should be matched to
the situation where it is to be used. A real-time display
must not exhibit any delay to the user, it should be
accurate operating over a wide f0 range for singers, of the
order of C2(65Hz) to C6(1047Hz). A peak-picking
system was employed that was originally developed in
analogue form for use in cochlear implants [12], and
subsequently applied in the SINGAD system [7, 8]. Each
of the elements of its circuit has been implemented in
C++, and an example plot of f0 against time is shown in
Fig. 2.

Figure 2: A display of fundamental frequency against
time for a sung ascending and descending two octave
arpeggio.
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C Spectral ratio against time
A key element in singing training is that of voice

projection, and one acoustic consequence of this is the
appearance of a peak in the output spectrum in the region
2.5kHz to 4kHz, known as the singer’s formant [e.g. 13].
The ratio of the energy in this band to the energy in the
total signal is calculated. This measurement is
constrained between 0 and 1 providing the full band
extremes encompass the singer’s formant band. In this
implementation, these are set to (100Hz to 4000Hz) and
(2500Hz to 4000Hz) respectively. These values can be
changed by the user. Fig. 3 shows an example plot of this
ratio against time for the vowel /a:/ sung in a projected
and non-projected style.

Figure 3: Example ratio against time display for/a:/ sung
alternating between a non-projected.(lower ratio values)
and a projected style (higher ratio values).

D Vocal tract area
A display of the vocal tract area can be obtained via a

lattice filter model derived from a linear predictive
analysis of the vocal output [14]. This models the vocal
tract in terms of the areas (or diameters/radii) of a set of
equal length tubes between the glottis (space between the
vocal folds) and the lips. Fig. 4 shows an example vocal
tract area display for a sung /a:/ vowel, where the glottis
and lips are at the left and right edges of the display
respectively.

There are, however, limitations associated with this
representation. Firstly, it strictly only models non-nasal
voiced sounds, due to the assumptions employed in linear
prediction. Secondly, the output area values have no
absolute area reference, and therefore they are arbitrary.
They are usually therefore normalized either to a fixed
glottis width (this is adopted in Fig. 4), or to a fixed
maximum value. Finally, there are situations where more
than one set of tube areas provides a solution, and results
can be presented that could not be articulated by a human
vocal tract. Due to the integrated nature of the solution
process, it is not obvious how it might be constrained, for

example, to vocal tract configurations that are physically
possible.

It is for this reason that summary plots of the average,
minimum or maximum vocal tract area against time will
be incorporated.

Figure 4: Example vocal tract area display for a sung
/a:/ vowel . The glottis and the lips are at the left and
right hand side of the plot respectively.

E Summary vocal tract area against time
The mean, minimum and maximum vocal tract area is

calculated for each frame of input data, and these can be
plotted against time. A plot of the mean area against time
is shown in Fig. 5. An important aspect of singing
training relates to the degree of perceived openness of the
vocal tract, or the degree of constriction, and it is
suggested that some indication of this may be given
through reference to minimum vocal tract area against
time.

Figure 5: Example display of mean vocal tract area
against time for /a:/ sung alternating between a non-
projected.(lower values) and a projected style (higher
values).

F Side view camera
Singers often make use of a mirror during training for

feedback on their posture. With a computer display, it is
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possible to make use of a camera with the result
displayed on screen. We shall employ a camera to enable
singers to view their posture from the side to enable the
straightness of their spine to be observed. The screen will
be placed at head height to encourage a vertical head
position.

III. DISCUSSION AND CONCLUSIONS
A set of displays to be employed in real-time in singing

studios has been described. These are being integrated by
a professional programmer into a complete system with
the side view camera output, in which the user is given
control over which single or arbitrary set of displays s/he
wishes to use. Appropriate control over processing and
display parameters will be provided to the user via
standard menus and dialog boxes. In this way, attention
can be drawn to individual parameters displayed alone, or
to multiple parameters as familiarity and confidence
grows, and areas of interest can be zoomed in on as
desired. This system will provide the computer-based
display system to enable the usefulness or otherwise of
technology in the singing studio to be assessed.

An action research methodology is to be employed for
this assessment, in which the teachers, students and the
research assistants, acting as observers, keep diaries of
progress and activities during lessons. Two teachers will
be involved, each with an experimental and control group
with two students in each.

The system will also allow both the audio signal
(microphone) and video signal (side-view camera) to be
recorded to enable vocal responses to be reviewed and/or
archived for progress tracking.
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Abstract: An accurate control of fundamental 
frequency is one of the essential demands in 
professional singing. This control relies on auditory 
and kinesthetic feedback. However, a loud 
accompaniment may mask the auditory feedback, 
leaving the singers to rely on kinesthetic feedback. 
The object of the present study was to estimate the 
significance of auditory and kinesthetic feedback to 
pitch control in 28 students beginning a professional 
solo singer education. Since it seems reasonable to 
assume that pitch control can be improved by 
training, the same students were reinvestigated after 3 
years of professional singing education. In both parts 
of the study the singers sang an ascending and 
descending triad pattern with and without masking 
noise in legato and staccato and in a slow and a fast 
tempo. Fundamental frequency and interval sizes 
between adjacent tones were determined and 
compared to their equivalents in the equally tempered 
tuning. The average deviations from these values were 
used as estimates of intonation accuracy. For both 
parts of the study, intonation accuracy was reduced 
by masking noise, by staccato as opposed to legato 
singing and by fast as opposed to slow performance. 
After education, the contribution of the auditory 
feedback to pitch control was not significantly 
improved while the kinesthetic feedback circuit was 
improved in slow legato and slow staccato tasks. The 
results support the assumption that the kinesthetic 
feedback contributes substantially to intonation 
accuracy and might be improved by training.  

Keywords :  singing, pitch control, training, auditory 
feedback, kinesthetic feedback 

I. INTRODUCTION

The high demands on intonation in professional singing 
require precisely acting pitch control systems. Auditory 
and kinesthetic feedback of the phonatory system have 
been described to contribute to singers’ pitch control [1, 
2].

Auditory cues are commonly regarded as the obvious 
tool for pitch control in singing under normal 
circumstances. However, auditory feedback cannot 
explain the fact that singers are able to continue 
phonating accurately even when they cannot hear their 
own voices. This situation is typically experienced in solo 
singing when the orchestral accompaniment is loud; SPL 
values as high as 110 dB have been observed on 
orchestral podia [3]. Under such conditions, singers have 
to rely on the performance of a second intraphonatory 
feedback circuit, based on kinesthetic discharges. 

The aim of the present study was to estimate the 
importance of auditory and kinesthetic feedback to pitch 
control in students beginning their professional solo 
singer education. The effect on pitch control was 
investigated in tasks differing in complexity, such as 
legato or staccato, or slow and fast singing.  

The effects of a professional training of the singing 
voice should include a sufficient accuracy of intonation. 
A longitudinal approach, in which the singer is used as 
his/her own control would represent a promising 
opportunity to test the effects of training. Therefore, the 
singing students were reinvestigated after 3 years of 
education to assess the effect of training on pitch control 
in singing.  

II. METHODOLOGY

In the initial investigation 28 singing students were 
examined at the beginning of their professional solo 
singer education at the University of Music Carl Maria 
von Weber, Dresden [4]. After 3 years of professional 
solo singer education, 22 students, 13 female and 9 male 
students, mean age 24,0 ± 1, 6 years, still continued their 
studies and could be re-investigated [5].  

Subjects were asked to sing an ascending and 
descending triad pattern up to the twelfth and back on 
the vowel [a:] at a moderate degree of vocal loudness. 
The starting pitch, chosen so as to fit comfortably the 
pitch range of the individual subject, was given by 
means of a synthesizer. Each subject sang the sequence 
twice, first without masking noise, and immediately 
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afterwards with a masking noise presented via 
headphones. The masker was a white noise band-pass 
filtered (24 dB/octave) at 50 Hz and 2000 Hz. The SPL 
of the noise was 105 dBAs. The masking efficiently 
eliminated the auditory feedback. 

The sequences without and with masking noise were 
recorded in different conditions: a) legato slow, b) legato 
fast, c) staccato slow, d) staccato fast. The slow and fast 
tempi corresponded to metronome settings of 40 and 160 
beats per minute, respectively. The output from a 
portable electroglottograph (EGG) (Laryngograph, 
London, UK), and the audio signal as picked up by a 
microphone (distance to mouth 0.3 m) (ECM-959DT 
SONY, Japan) were recorded on a digital audio tape 
(TCD-D10, SONY, Japan). The identical test program 
was recorded again after training. 

Figure 1. F0 contour of a recorded sequence.  

Fundamental frequency (F0) was mostly estimated 
from the EGG signal using the Soundswell workstation 
program package which also displayed the resulting F0 
contour on the computer screen (Fig.1) (Soundswell, 
Solna, Sweden) [6]. In some of the female subjects the 
EGG signal produced errors in the F0 measurement at 
high pitches. In such cases F0 was measured from the 
audio signal. For determining the mean F0 for each 
pitch, a set of complete vibrato cycles was selected from 
the quasi-steady state section, thus excluding onset and 
offset transients. The frequency distribution of this 
selection was analyzed, using the histogram module in 
the Soundswell package, which also displays the mean 
F0. The mean F0 of each tone was measured. 

The sizes of the 10 intervals included in each triad 
sequence were determined by calculation of the F0 
interval between adjacent tones, expressed in the 
logarithmic cent unit. The absolute values of the 

deviations of these intervals from their equivalents in the 
equally tempered tuning, henceforth the interval 
deviations, were determined and regarded as a measure 
of the accuracy of intonation. The averaged interval 
deviation of the 10 intervals contained in a complete 
triad sequence was defined as the mean interval 
deviation.  

Interval deviation data were referred to a statistical 
analysis carried out by means of a repeated measures 
design (ANOVA), with time (before/after), masking 
(without/with masking), technique (legato/staccato) and 
tempo (slow/fast) as within subject factors.

III. RESULTS

The measurements before the professional singing 
education showed a significant difference between the 
unmasked and masked conditions (p<0.001), mean 
interval deviations across all subjects amounting to 33.3 
and 47.3 cent, respectively. The effect of masking 
appeared to be independent of technique and tempo. 
Figure 2 illustrates these results for the different 
conditions in terms of the distribution of individual mean 
interval deviations. Further, a significant difference was 
found between legato and staccato performances (p<
0.001) as well as between slow and fast performances (p<
0.001) [4].  
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Figure 2. Box plot diagram showing the distributions of 
mean interval deviations (cent) for the different test 
conditions (subjects n=28). All data refer to the 
measurements before the singing education. 

Comparison of the before and after education 
measurements did not show a general difference between 
these conditions. For the after education measurements, 
the masking increased the mean interval deviation across 
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all subjects from 35.3 cent to 45.1 cent [5]. Statistically, 
this effect of masking on pitch accuracy did not differ 
significantly between the before and after education 
measurements (p= 0.15). However, according to the 
ANOVA, there was a significant interaction effect of 
“time” and “tempo” (p= 0.001), reflecting different 
effects of education for the slow and fast performances. 
Intonation accuracy improved for the slow performances, 
the mean interval deviation across all subjects dropping 
from 37.7 cent before education to 32.7 cent after 
education. Fig. 3 shows the distribution of individual 
mean interval deviations for all slow performances, 
before and after education. The strongest effects appear 
for the masked test conditions, both for legato and 
staccato performances. No improvement of intonation 
accuracy was found for the fast performances after 
education.  
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Figure 3. Comparison between before and after 
education data in terms of a box plot diagram showing 
the distribution of mean interval deviations (cent) for all 
slow tempo data (subjects n=22). 

IV. DISCUSSION

The present study was carried out to assess the 
significance of auditory and kinesthetic feedback on pitch 
control in singing and to investigate effects of training on 
both feedback circuits. The slow and fast as well as the 
legato and staccato conditions were included in our 
experimental design since they raise different demands on 
pitch control. 

Intonation accuracy was found to be reduced by 
masking noise, by staccato as opposed to legato singing 
and by fast as opposed to slow performance. The masked 
and unmasked conditions allow an insight regarding the 
roles of the auditory and kinesthetic feedback systems in 
pitch control. Auditory feedback is commonly regarded 
as the main tool for pitch control in singing [7, 8]. 

However, under certain circumstances singers cannot 
hear their own voices, because the auditory feedback 
temporarily might be masked by the choral sound of the 
fellow singers or a loud orchestral accompaniment [3, 9] 
A significant effect of masking was observed, amounting 
to a mean deterioration of pitch accuracy by 14 cent at the 
beginning of the students’ professional solo singer 
education [4]. This effect was only slightly smaller (10 
cent) after education, a statistically non-significant 
difference. This suggests that the auditory feedback 
contributed to pitch control to a similar degree before and 
after education. The effect of masking was similar for the 
various tempo and technique conditions, see Figure 2. 
Therefore, the differences in intonation accuracy 
associated with these conditions should reflect the 
importance of the kinesthetic feedback. 

The kinesthetic feedback circuit, a complex 
neuromuscular reflex system, depends on discharges of 
mechanoreceptors, mainly located in the intrinsic 
laryngeal muscles, the subglottic mucosa and the 
laryngeal joints [10, 11]. The afferent discharges from 
these receptors are fed back to the motoneurone pools in 
the brain stem operating as individual controllers for 
laryngeal action and to the overriding subcortical system 
[1]. Within the masked condition, intonation accuracy 
differed between the various tempo and technique 
conditions; a greater mean interval deviation was 
observed for the staccato than for the legato condition and 
also for the fast as compared to the slow conditions (see 
Fig.2). In a staccato performance singers would need to 
rely on an absolute neuromuscular memory of pitch while 
in a legato performance they could recruit also a relative 
neuromuscular memory [12]. The difference observed 
between staccato and legato performances suggests that 
the former memory is less precise than the latter.

Comparing data recorded before and after education, a 
significant improvement of pitch accuracy was found 
after education for the slow performances. For instance, 
for the masked slow staccato condition a mean pitch 
accuracy improvement of 9 cent was found after 
education. For the same condition, a study carried out by 
Ward and Burns showed a 17 cent better pitch accuracy 
in singers than in untrained subjects [2]. The difference 
between their results and our findings appear expected, 
given the fact that they compared singers and nonsingers.
The improvement of intonation accuracy observed for the 
masked slow staccato task indicates that the accuracy of 
the absolute neuromuscular memory of pitch increased 
after education. Incidentally, this ‘absolute kinesthesis’ is 
important not only to staccato performances, where 
adjacent tones are separated by a pause. It is also essential 
for intonation at the beginning of a phrase, if no rehearsal 
of target pitch is allowed. In fast singing our study 
showed no improvement or even a modest impairment 
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was observed. Probably, a period of 3 years of 
professional training might not be long enough to 
improve pitch control in demanding vocal tasks such as 
fast singing. Also, the accuracy of measurement is 
smaller for short than for long tones; the shorter the tone 
sequence, the more difficult the pitch extraction.

It is interesting that our study showed no training effect 
for the basic, most easy condition – the unmasked slow 
legato. This task – singing slowly a triad or scale with 
normal auditory feedback – may reflect the limit of 
intonation accuracy, which would be reached early in any 
singing education. Finally, it is worthwhile to emphasize 
that, on average, the intonation errors were only slightly 
(10 cent) greater when the auditory feedback was 
eliminated. This implies that the kinesthetic feedback, 
contributes substantially to intonation accuracy. 

V. CONCLUSION

The present investigation has shown that singers’ 
intonation accuracy is reduced in the absence of auditory 
feedback. Under such conditions, the singers have to rely 
on kinesthetic feedback circuits. The performance of this 
feedback is significantly affected by the task that the 
singer performs. Thus, the mean intonation error was 
greater in fast than in slow singing. It was also greater in 
staccato than in legato singing. Professional solo singer 
education did not significantly affect the contribution of 
the auditory feedback to pitch control in singing. Such 
education seems mainly to affect intonation accuracy in 
terms of an improved accuracy of the kinesthetic 
feedback circuit. 
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Abstract: The articulatory configuration of
an overtone singer is analysed with frequency
analysis of the voice signal, sonographic visual-
isation of the tongue position, and analysis of
the vocal tract impedance at the mouth. The
biphonic character of the signal is observed in
the spectrum plot. The sonographic analysis
reveals a highly variable tongue position dur-
ing production of a rising overtone. The high
pitch of the produced biphonic sound is fur-
ther analysed using the impedance technique.
The extraordinary amplification of the melody
pitch seems to be caused by the coincidence
in frequency of two resonances. This findings
support the theory that the overtone sound in
sygyt style is a result of the filter effect of the
vocal tract.
Keywords: Overtone singing, articulation,
sonography, acoustic impedance

I  INTRODUCTION

The production of overtone singing has been a fas-
cinating field of research since many decades. Trân
Quang Hai gives an overview of the broad variety of
different overtone styles [1, 2, 3]. The study of S.
Adachi and M. Yamada [4] presents measurements
and simulation of Xöömij singing in the sygyt style
where a low pitch sound (drone) is accompaigned by
a high melody pitch. Adachi supports the“resonance”
theory, which considers the source for the melody tone
to be a separated harmonic of the lower tone. F.
Klingholz describes aspects of the voice source in [5].
Recent work of K. Sakakibara focuses on synthesis and
analysis of the kargyraa style that is characterised by
a very low fundamental frequency, probably due to vi-
brations of the ventricular folds, and a melody pitch
[6].

Measured data of overtone singers are relatively
rare. This might be caused by the fact that insight
into the function of biphonic singing is of minor inter-
est to most artists. Furthermore, the determination

of voice physiology is rather invasive or very costly
(laryngoscopy, MRI). However, completely noninva-
sive sonographic and acoustic measurements are pos-
sible [7].1.

This contribution shall contribute to the under-
standing of the physical principle of the biphonic
sound generation in the sygyt style. In a recent
work [8, 9] a new method for analysis of the vo-
cal tract configuration during overtone singing in the
sygyt style has been developed. The method deter-
mines the acoustic impedance of the vocal tract at
the mouth. These measurements are complemented
by sonographic measurements of the tongue position
and spectrum analyses of the voice signal.

II  METHODOLOGY

2.1 Voice signal analysis

The voice of an overtone singer has been recorded dur-
ing sustained phonation of a distinct overtone sound
in sygyt style. In Fig. 1 the spectra of the voice sig-
nal at the mouth is shown for two cases. In the first
(black line) the overtone singer did not yet amplify
the melody pitch, in the second (gray/green line) the
melody pitch was “switched” on. For a comparison to
western phonation, in Fig. 2 the spectrum of the voice
signal at the mouth is shown for the vowel /a/.

From a comparison between Fig. 1 and Fig. 2 it is
obvious that the production of the overtone is differ-
ent from the production of regular vowels. The ampli-
fication of the melody pitch over the amplitude of the
fundamental is surprising since the vowel acoustics de-
scribes the vocal tract function mostly as a damping
transmission line. Since the partials between the low-
est few partials and the amplified partial are strongly
damped, the latter is perceived as a separate sound.

1Sound examples from overtone recordings recorded at
various occasions can be found at the Internet address
URL: www.akustik.rwth-aachen.de/~malte/overtone
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Figure 1: Voice spectra before the overtone is amplified
(black) and after (gray/green)
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Figure 2: Voice spectrum of the vowel /a/

2.2  Sonographic analysis

The tongue movement of an overtone singer singing a
rising sequence in sygyt style has been analysed with a
sonograph using a 90◦–3.5/5 MHz ultrasound probe.
Within the same plane, the central submental posi-
tion of the probe was not varied during the recorded
performance of the overtone sequence.

In Fig. 3 and Fig. 4 the tongue position is shown
as a sonographic image in the coronal respective
mediosagittal plane. The image has been delineated
by a marking procedure (white lines) that represents
the interface between the dorsal tongue tissue and the
oral air within the selected plane.

With rising pitch both, the images in the
mediosagittal and in the coronal plane, exhibit a
continuous change of the tongue position. In the
mediosagittal plane the increasing backwards location
of the dorsal tongue tissue can be observed, which

1 2 3 4
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Figure 3: Sonographic mediosagittal view of the tongue
during performance of a rising overtone sequence

1 2 3 4

5 6 7 8

9 Neutral position

Figure 4: Sonographic view of the tongue in the coronal
plane – during performance of a rising overtone sequence

forms a constriction in the vocal tract. In the coronal
plane the forming of a channel with increasing depth
can be observed.

2.3  Impedance analysis

The impedance analysis uses a method that deter-
mines the impedance spectrum of the vocal tract res-
onances. A sweep signal is generated, amplified, and
emitted at the end of a horn. The horn is placed
in such a way that the sound is emitted into the vo-
cal tract. At the horn exit two sensors record the
sound pressure p and the sound velocity v simultane-
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ously. After a reference procedure and windowing the
spectrum of the acoustic impedance Z is calculated
from the Fourier spectra of both signals (Equation 1).

Figure 5: Prototype of the
impedance measurement set-up

Z =
FFT(p)
FFT(v)

(1)

The prototype
of the measure-
ment set-up is
shown in Fig. 5.
The signal flow is
described in detail
in [9].

Due to the
sensor and loud-
speaker specifica-
tions used in this
set-up a frequency
range from 500 Hz
to 5 kHz could be
evaluated.

In Fig. 6 the impedance spectrum of the voice sig-
nal at the mouth divided by the free-field impedance
Z0 is shown for an overtone sequence similar to that
described in section 2.2. The curves are shifted (from
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Figure 6: Impedance spectrum of an overtone sequence

bottom to top) to visualise the course of time dur-
ing the phonation of the rising overtone. With rising
sequence the resonance structure of the vocal tract ex-
hibits a strong resonance between 500 Hz and 2 kHz.
In some cases, at higher frequencies of the melody
pitch, a double resonance can be observed. Reso-

nances apart from the one that corresponds to the
melody pitch are not present.

In Figure 7 another impedance analysis is shown:
the singer was asked to articulate the sound /a/
and then successively change the articulation towards
an overtone sound. The sequence of shifted curves
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Figure 7: Impedance, morphing of [a:] to an overtone
sound (bottom → top)

demonstrates the “morphing” from vowel /a:/ (bot-
tom) to the configuration of an overtone (top).

III  DISCUSSION

The sonographic analysis of the vocal tract config-
uration change with rising melody pitch indicates a
change of the resonator structure.

The impedance plot in Figure 6 illustrates that,
apart from the overtone resonances, only relatively
weak resonances are excited between 3 kHz and 4 kHz.
At higher resonances in the upper part of the plot a
double resonance can be observed. This indicates that
the overtone singer does not form a single resonance
at the frequency of the melody tone but rather two
closely neighboured resonances. This finding seems to
be supported by the result from the morphing exper-
iment shown in Fig. 7.

It is interesting to note that the second formant
around 1300 Hz does not move significantly during
the course of the sequence whereas the 3rd formant
moves from 2500 Hz downwards until it merges with
the second one. The first formant of /a:/ cannot be re-
solved either because the lower frequency limit of the
measurement set-up does not allow the visualisation
or because first and second formant have the same fre-
quency. All other frequencies are increasingly damped
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towards the overtone configuration. However, a weak
resonance can be observed at 4 kHz.

Even if two formants can be observed in the
impedance spectrum, it is not clear how they are gen-
erated. Due to damping mechanisms in the vocal tract
the longitudinal vocal tract resonances are not capa-
ble of producing very high quality formants.

One approach is to look for a different mechanism
for the focalisation effect. The Helmholtz resonator is
a well known resonator type that works as a main res-
onator in numerous musical instruments and — in the
human voice organ — during whistling [10]. It could
be possible that a combined longitudinal resonator
and Helmholtz resonator could achieve a high qual-
ity formant when the resonance frequencies of both
resonators coincide.

A numerical approach to verify this hypothesis is
described in [8]. The calculation was based upon the
equivalent area data published in [4]. A longitudinal
resonator was assumed between glottis and constric-
tion, and a Helmholtz resonator was supposed for the
mouth cavity between constriction and mouth open-
ing. The calculations confirm that the resonance fre-
quencies of both resonators are of the same order of
magnitude and that they are quite close for some over-
tones.

IV  CONCLUSION

Within this contribution we could demonstrate that
the simultaneous application of ultrasonography of
the tongue, spectrum analysis of the overtone sound
and impedance analysis of the vocal tract resonances
during overtone singing support the filter theory. It
could further be shown that in the case of sygyt
style two resonances coincide at the frequency of the
melody pitch.

In future investigations, the same procedure could
be applied to the investigation of other singing styles,
of both western and eastern cultures. Another current
application of the impedance technique is the analysis
of articulation disorders. With the help of this tech-
nique a mapping of acoustic resonances and dysfunc-
tion of the articulatory organs should be established.
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Abstract: The Latin poet Titus Lucretius Caro (I 
century B.C.), speaking of the origins of music in his 
work  De rerum natura, expresses an interesting 
opinion on the scientific and technological progress 
that man has attained over the course of time. 

Keywords: Interdisciplinary paper, History of music, 
Song. 

The channels of man’s expressions are numerous and 
varied. Song and music are without a doubt, possibly some 
of the richest ones, because they allow us to express our 
emotions in ways that are sociably and culturally 
accessible and acceptable by all.  
The origins of song in Western culture can be identified 
with the first literary expressions of the Greek world. The 
famous Greek poet Homer is said to have composed the 
Iliad and the Odyssey, after having skilfully combined 
stories and episodes on ancient heroes that the oral bards, 
the so-called singers of tales, recited during banquets, 
travelling from one Greek city to another. The same 
structure of the Greek tragedy foresaw several parts sung 
entirely by a chorus. All the Greek lyrical texts were 
composed to be sung in public with instrumental 
accompaniment. In reality, music was practically present 
in all moments of communal life in Greek society, in 
religious ceremonies, in the sporting arena, in 
symposiums, in solemn festivities, even during political 
disputes. The importance of song remains in Latin culture 
to such an extent that the Fathers of the Church turned to 
song, in order to render efficacious their attempts at 
evangelisation among the numerous peoples of the Roman 
Empire, so diversified with regard to culture and language. 
We know nothing of the ancient Greek and Roman music, 
which was composed before the III century B.C. The few 
musical texts that have been handed down to us from the 
Hellenistic and Roman period do not furnish precise and 
exhaustive reasons for their scarcity. There are only 
several inscriptions and a few fragments of papyrus, of 
which the interpretation and transcription are problematic. 
We do know that the musical system was based on the so-
called tetrachords, that is, on elementary musical schemes, 
formed by the succession of four notes that, in Greek 
music, had the same function as the octave scales in our 
music. In addition, depending on the length of the intervals 
that separated these four sounds, various tetrachords 
existed: energetic, sweet or plaintive, according to the 
ambiance into which the song was introduced. 

The long journey from the first sounds that man produced 
and individuated in nature up to the more modern 
compositions is also the result of a process of 
rationalisation that has at its core the relationship  man-
environment-music. And it is exactly on the origin of such 
a dialectic relationship between man and nature that I 
would like to focus, speaking of one of the most famous 
Latin poets who lived in the I century B.C. in Rome, Titus 
Lucretius Caro, and of his interesting ideas on song and 
music [1] [2] [3]. 
In the Fifth book of his work, the De rerum natura, the 
poet speaks of the origin and formation of our world and 
of the origin and development of humanity, describing 
several important steps that marked the progress of 
civilisation; the working of metals, weaving, the creation 
of language, the cultivation of the land, and song and 
music as well. From Greek philosophic thought comes the 
idea that men have learned the arts and crafts from 
animals, like the weaving of the spider’s web, the 
construction of the swallow’s nest, and music from the 
imitation of singing birds like the swan and the 
nightingale. However, in reality, in the discovery of the 
arts and techniques, man was guided by nature and 
pushed, according to the circumstances, by “need”, by 
“necessity” and by what was “useful”. In fact, the 
observation of nature caused mankind to desire its 
imitation; need, instead, forced him to look for instruments 
to better the conditions of his own life; while the benefit, 
or profit that emerged from the discoveries, continued to 
stimulate him to search with a desire to perfect his 
techniques [4]. 
Not by chance, Lucretius speaks of the origin of music 
(vv. 1379-1435) after the origin and the progress of 
techniques in the field of agriculture, almost wanting to 
indicate a separation between the arts that aided in the 
acquisition of goods, that were the first to occupy mankind 
to satisfy their impellent needs, and the other arts that 
followed, like poetry, music and song, when material 
necessities were no longer pressing, and one sought the 
pleasure of the spirit.  Art, and therefore music, did not 
represent a necessity for man, but only a complement of 
his life: the liberal arts originated from the useful or 
advantageous. That is, from the pleasure that dance, song 
and poetry brought to people in moments of tranquillity or 
festivities. Here, the reference to the Greek philosopher 
Epicurus (IV-III century B.C.) is clear (his doctrine was 
diffuse in the work of Lucretius, his fervent disciple) and 
to the distinction he made between natural and necessary 
desires, those that are natural but not necessary, and those 
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that are neither natural nor necessary (Epicurus, ad Men.,
127, 130-131; K. ., 15, 18, 29) [5]. Human needs 
corresponded to these desires and therefore some were 
real needs, others not; some were necessarily to be 
satisfied, others not necessarily. Epicurus appreciated the 
pleasure that music generated not only in the common 
person but also in the learned. He considered, however, 
the joy of music an unnecessary pleasure, that required a 
continuous learning process and constant practice, and for 
this reason could be criticised because it distracted the 
scholarly from a more important study, that which led to 
real knowledge, the study of philosophy. 
As for everything including music, nature has been the 
inspirational model for man: song originated with the 
imitation of singing birds, the sound of the wind that blew 
within the reeds, created musical instruments like the flute 
and bagpipes. The flute, in fact, was constituted by only 
one reed with openings that were covered by the fingers in 
order to make music while the bagpipes were formed by 
larger reeds tied together, of various widths and sizes. The 
sound was produced by passing the lips from one reed to 
another. Lucretius only mentions wind instruments when 
he speaks of music while the lira, the most famous musical 
instrument in the Greek world, is not mentioned. Such an 
absence can be explained if one thinks of the context in 
which this passage was introduced. Lucretius is speaking 
of the theory of humanity and of the discoveries that man 
made to better his own life. The discovery of the lira is 
attributed to Hermes (Mercury), a God, and for this reason 
is not cited. Thus, the choice of the poet is conditioned by 
the idea that in the development of man from a savage 
state to modern day society, there was no divine 
intervention. It was need and reason to stimulate man and 
to make him advance over time. The gods, that lived 
isolated and indifferent in the intermundia, did not instruct 
man in the fields of agriculture, metallurgy or in the arts; it 
was rather nature and ingenuity that compelled man to 
improve when driven by necessity [6].  
Moreover, the description of an idyllic scene of primitive 
life in the midst of music and dance offers Lucretius the 
occasion to reflect on the important differences that 
existed between the rustic music of the past and the refined 
music of his times and on the sense and value of these 
changes that the course of modern civilisation had 
imposed. Modern music, so perfected and refined, did not 
produce a greater pleasure than that which one’s ancestors 
had experienced, who instead, with simplicity, used music 
and song to express sentiments of joy, pain, exaltation or 
depression. The same Greek philosophers gave great 
importance, in their meditations on culture and on the 
formation of man, to music and its relation to morality. 
They considered modern music to be in decline and felt 
that the refinements, which had been brought to it, were 
the means of its perversion. At the basis of such a moral 
consideration was the idea that true pleasure (voluptas),
the goal of Epicurean thought, notwithstanding progress, 
must have a limit, or man, who is intent on its attainment, 

is destined to unhappiness. If in our lives we have not 
experienced something sweeter, we like what is at our 
disposal and this idea seems to prevail in whatever 
situation. If we then find something better, we immediately 
forget the previous pleasure and change our opinion of 
what we liked first. Progress, in fact, does nothing but 
manifest our restlessness, which then forces us to change. 
Moreover, it is a change, which can be compared to the 
individual who goes continuously from the house in the 
city to the house in the country and visa versa in the vain 
attempt to escape one’s inner emptiness and to find 
happiness in a more pleasant place. For this reason, we 
must not ask progress to fill our emptiness but we should 
reserve our strengths for our inner perfection, following 
the precepts and teachings of the philosopher Epicurus [7]. 
These advise us to liberate ourselves from every ambition, 
every desire, every superstition, and every fear, to reach a 
state of perfect serenity similar to the beatitude of the 
gods. Man’s happiness therefore could be identified with 
the healthy body and serene soul, and the pleasure 
(voluptas) which is merely the absence of pain for the 
body and anguish for the soul.  
How can one not hear the modernity and relevance to the 
present in the words of Lucretius, when he reaffirms the 
moral damage that is caused to man by his search for 
continuously new objects and renewed pleasures, the same 
technology, if poorly used in war or in the production of 
superfluous consumer goods, conspires towards man’s 
destruction and unhappiness, whose end is to then lead a 
chaotic and turbulent life like a violent and stormy sea: 
“And therefore the human race constantly suffers for 
nothing and consumes life in useless strife, because it 
doesn’t know what  limits possession has, and from where 
true pleasure is derived. That pushed life into the high seas 
little by little, and from the deep, unleashed the great 
waves of war.” (vv. 1430-1435) [1] [2] [3]. 
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Figure 1 – Page of one of the oldest codex of De rerum 
natura, named Oblongus from its shape, and dated back to 
the 9th century A.D. It is preserved in the Library of 
Leiden, The Netherlands. The manuscript is also named 
Vossianus, from the name of its owner, J.Voss, a Dutch 
philologist. J.Voss owned another famous codex of De
rerum natura, the Quadratus, which is now preserved in 
the Leiden Library as well.
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Abstract: 
Telephone use is one of the most stressful 
communication situations for stutterers. We 
investigated a device to modify stuttered speech 
spoken into a telephone with the goal of ameliorating 
the stress and providing greater fluency. The device 
uses signal processing techniques to detect and correct 
certain types of dysfluencies. To assess dysfluent 
telephone input, stuttered speech exhibiting 
repetitions, prolongations, and blocks were recorded 
and then processed using phonetic classification 
technology to detect certain types of dysfluencies, and 
time-scale modification to correct them. In a series of 
experiments, listeners assessed the quality and 
intelligibility of the dysfluent (unprocessed) speech vs. 
the fluency-enhanced (processed) speech. Listeners 
assessed the processed speech as both more acceptable 
and more intelligible than the unprocessed speech. 

Keywords :  acoustic analysis,  landmarks,  dysfluency, 
time-scale modification 

I. INTRODUCTION 
The clinical literature on stuttering therapy frequently 
mentions that use of a telephone is one of the most 
commonly encountered stressful situations in daily living 
for persons who stutter (Zimmerman et al.,[7]; Adult 
Stuttering Therapy Tapes [1]; Bloodstein [4]).  

It has been reported that stuttering affects approximately 
1% of the population of the United States (Bloodstein 
[4]). As such, stuttering is a disabling speech impairment 
that is frequently a cause of significant stress to both the 
person who stutters and to communication partners. In a 
study that tested 19 stutterers and 19 matched normal 
controls, the frequency and severity of dysfluency were 
found to covary with physiological correlates of stress 
(Weber and Smith [6]). 

The current work pursues the goal of offering stutterers 
an automated method for producing more fluent speech 
over the telephone. The study focused on three types of 
stuttering dysfluencies: repetitions of a syllable or sound, 
prolongations of a syllable, and blocks, or extended 
periods of silence. A multi-step approach was developed 
to identify and classify the three types of dysfluent  

events in acoustic terms, to recognize them 
algorithmically, and to correct them with a suite of signal 
processing techniques. 

Our goals were threefold:  
1) to determine how well certain acoustic events, 
identified as clusters of  “landmarks”, correspond to 
stuttered events;   
2) to incorporate two established technologies with novel 
processing into a method that modifies stuttered speech 
by removing select dysfluencies; and  
3) to determine which modifications are effective for 
improving listener judgments of speech acceptability.  

II. METHODOLOGY

A. Overview and Techniques 
The method for modifying stuttered speech incorporates 
two established techniques: landmark classification using 
a speech-event classifier, and time-scale modification of 
speech.  

Landmarks are points in an utterance which mark 
perceptual foci and articulatory targets, and around which 
one may extract information about the underlying 
distinctive features (Stevens et al. [5]). Bitar and Espy-
Wilson [3] have extended Stevens’ theory to develop a 
knowledge-based signal representation based on phonetic 
features and associated acoustic events (the Event-Based 
Classifier, or EBS). EBS uses landmarks to classify 
acoustic events as one of several kinds of speech sounds. 
Some of the acoustic events, such as the ones associated 
with the phonetic feature sonorant, segment the 
speech signal into regions. Others, such as those 
associated with nonsyllabic, mark particular 
instants in time. The robustness of the acoustic events has 
been illustrated in a series of recognition experiments 
(Bitar and Espy-Wilson [2]). 

Time-scale modification (TSM) of speech is a process of 
compressing or expanding the time-scale of an audio 
segment. A signal which is time-scale compressed has a 
shorter duration, while a time-scale expanded signal is 
longer in duration. Time-scale modification processing 

AN ASSESSMENT OF FLUENCY ENHANCEMENT TECHNIQUES 
FOR A TELEPHONE DEVICE FOR STUTTERERS

C. Bickley1, M. Birnbaum2, J. MacAuslan 3

1Gallaudet University, Washington, DC, and Speech Technology and Applied Research, Lexington, MA, USA 
2Martha Birnbaum Consulting, Cambridge, MA and Speech Technology and Applied Research, Lexington, MA  

3Speech Technology and Applied Research, Lexington, MA 



198 MAVEBA 2003

has the important property of preserving the pitch, 
speaker identity, and intelligibility of the speech over a 
range of playback rates. In this way, the processed signal 
sounds like the same person speaking more slowly or 
quickly. This feature of TSM is particularly useful in the 
proposed elimination of stuttering dysfluencies because it 
is essential that acoustic characteristics relating to the 
perceived identity of the speaker be unaffected by fluency 
enhancement processing.  

B. Data Collection and Transcription 
Recordings were obtained from 3 subjects (two male, one 
female) who were representative of producing moderate 
to severe stuttered speech. The recordings contain 
examples of repetitions, prolongations, and tense blocks 
(as judged by a fluency therapist); some of the recordings 
contained fluent productions. The recordings were made 
during entry interviews with a fluency therapist. From an 
original set of 58 recordings, 43 were selected as the 
development set. The remaining recordings were used as 
reference data.  

Two trained phoneticians manually edited each of the 
recordings in order to remove sounds not produced by the 
speaker. Disagreements between these two researchers 
were negotiated to establish a final agreed-upon set of 
utterances identified numerically on spectrographic 
output.  

For each utterance, a trained speech therapist judged each 
stuttered episode as “repetition”, “prolongation”, “tense 
block”, or “other”. Utterances judged as containing at 
least one episode of type “repetition”, “prolongation”, or 
“tense block” formed the database of speech samples for 
this study. The distribution of these three types in the 
development set is shown in Table 1. 

  Table 1. Distribution of dysfluencies 

TYPE Number 

Repetitions 24 

Prolongations 7 

Blocks 5 

Other 7 

C. Data Analysis 
The development set of utterances was digitized and 
analyzed manually to determine patterns of acoustic 
landmarks that differentiate stuttered sequences from 
fluent productions. Spectrograms, formant tracks, and 

pitch tracks were computed using Sensimetrics 
SpeechStation™ and ESPS/Waves software. 
Spectrograms were hand-marked by the phoneticians for 
landmarks and associated features, based on acoustic 
parameters established in the literature. After a training 
period of hand-marking utterances together, inter-judge 
reliability was evaluated between the two judges on 10% 
of all utterances. Reliability for this task was defined as:  

number of landmarks agreed upon by both judges / 
(number of disagreements + agreements)

Inter-judge reliability was 92%. 

The development set was processed using the EBS 
software. The output of EBS was compared to the 
manually identified landmarks, as seen in spectrographic 
and waveform displays, to identify patterns of acoustic 
events in the stuttered speech. The goal of the analyses in 
this step was to identify the kinds of stuttered episodes 
that can be identified from the combined information of 
sound classes and patterns in landmark sequences.   

D. Time-scale Modification of Data 
The development set of stuttered utterances was manually 
altered to delete repetitions and audible block events of 
the type that would be detected automatically and to 
reduce the duration of prolongations within certain 
constraints of TSM processing.  

An algorithm for editing episodes of stuttered speech was 
developed to meet conversational constraints. For 
example, ½ sec latency was maintained to preserve the 
real-time experience of a telephone conversation. In 
addition, maximum TSM speedups and slowdowns were 
established empirically to meet the ½ sec latency 
constraint. 

These rules were applied to the development set of data 
to produce a set of 20 examples for evaluation. An 
original and the corresponding processed utterance 
appear in Figure 1. 

Figure 1. Top: original “um..I hea- I hea- I hea- I hea- I 
hea- I hea- I heard about it, like um.”. Bottom: processed 
“um.. I hea- n.. I hea- I heard about it, like um..”. 
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E. Testing 
Sets of recordings of paired original stuttered speech and 
modified speech were prepared for listener evaluation. 
The stimuli for this perceptual test comprised twenty 
phrases taken from entry interviews between a fluency 
therapist and her clients.  The stimulus pairs were 
randomized with respect to speaker and phrase to form a 
set of 20 pairs. The order of presentation of the 
processed/original and original/processed pairs was also 
randomized, so that the listeners did not know which of a 
pair of stimuli was the processed file and which was the 
original speech. 

Fourteen listeners evaluated the samples by listening over 
loudspeakers in an office-environment room. Each 
listener rated each phrase pair on a 5-point preference 
scale of 1 to 5, based on which phrase in the pair was 
more pleasant or more fluent. A “3” indicated “no 
preference” or that the difference between the sentences 
of the pair was not perceptible.

III. RESULTS
Scores assigned by listeners were analyzed in order to 
determine intelligibility of fluency-enhanced utterances 
compared to the original stuttered ones in light of the 
requirement that any alteration to the speech signal not 
degrade the intelligibility of the message.  

The scores from the listening test were recoded such that 
a 1 or 2 indicated strong or weak preference for the 
processed utterance and a 5 or 4 indicated strong or weak 
preference for the unprocessed utterance. Thus, scores 
below 3 denote preferences for the processed version 
over the unprocessed.   

The average judgment score of the 14 listeners evaluating 
20 stimulus pairs was 1.76, indicating a substantial 
preference for the processed speech. This result indicates 
that listeners found the processed speech in which 
dysfluencies had been removed or modified to be more 
pleasant and more fluent than the unprocessed speech. 
Overall, the preference for the processed utterances was 
209 listener opinions vs. 31 for the unprocessed 
utterances: all listeners, all utterances. (p: infinitesimal). 
For even the least positive listener, the preference across 
all utterances was 8 (processed) to 4 (unprocessed)  
(p=.002, Fisher Exact Test). For even the least strong 
preferred utterance, the preference was 11 (processed)  to 
6 (unprocessed) (p<.0001, Fisher Exact Test). 

Casual conversation normally contains occasional 
dysfluencies.  If specific acoustic characteristics correlate 
with listener perceptions of stuttering, and if these 
characteristics can be detected and processed, the 

question remains, “Which acoustic characteristics cause 
listeners to perceive a speech event as ‘stuttered’, rather 
than ‘occasionally dysfluent?’”.  A companion study was 
conducted to ascertain which automatically detectable 
stuttering events cause listeners to judge an event as 
“stuttered” and hence should be the focus of an automatic 
fluency enhancement device. 

Listeners judged as “stuttered” those speech utterances 
with the following characteristics: irregular fundamental 
frequency, word-initial stop and fricative repetition, 
syllable repetition, lack of spectral and temporal 
variation, pauses, and whole-word repetition. 

Those dysfluency types which are candidates for 
automatic algorithmic detection and correction are 
irregular fundamental frequency and stop and fricative 
repetition. Whole word repetition should not be a 
candidate for alternation because fluent speakers often 
repeat words in conversational speech. Similarly, pauses 
can be used intentionally and should not be removed 
without detailed analysis. 

IV. CONCLUSION

Our initial goal was to show that we could improve at 
least half of the stuttered productions, and to not degrade 
the fluent productions of the speakers in the opinion of 
listeners. In fact, we were able to improve 90% of the 
stuttered productions and not degrade any of the fluent 
productions of the speakers, in the opinion of listeners. 

Listener judgments indicate that several types of speech 
deemed dysfluent are good candidates for the automatic 
processing methods developed for making speech 
“socially acceptable” over the telephone. 
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Abstract: The in vivo operation of a speaking valve
consists of two stages: 1) air passes through the razor-
thin slit, the dome opens and the patient can speak; 2)
the dome is closed and the patient cannot speak. The
valve is thus subject to fatigue, as its service life is
made up of a certain number of opening/closing
cycles.
Two types of valve were investigated: the Staffieri
valve and a new valve prototype featuring a different
angular extension of the razor-thin slit.
The investigation assessed fatigue degradation in
valve flow characteristics; for this purpose a special
test rig has been constructed.
Fatigue tests have been performed in four steps and
the airflow resistance has been determined
experimentally at the end of each step.
The experimental data have been used to make a
statistical analysis to evaluate the effects of razor thin
slit, type of valve, number of cycles and their
interactions.
Keywords : speaking valve, voice button, fatigue, flow
characteristics.

I. INTRODUCTION

Speaking valve is used for the rehabilitation of patients
who have lost vocal function due to total laryngectomy. It
is one-way valve, which thus permit expiratory air to pass
from the trachea to the hypopharynx-oesophagus (direct
flow) with as little resistance as possible, and prevent the
passage of liquids in the opposite direction (reverse flow).

Previous papers discussed the experimental results
obtained with two types of valves: the Staffieri and the
new prototype [1, 2].

The Staffieri valve (a) and the new valve (b) are shown
in Fig. 1. As can be seen from the figures, the most
important differences between the two types of valve are
the shape of the tracheal flange and the shape of the
dome.

The authors established that the aerodynamic
characteristics of the two types of valves are influenced
by two important parameters: the type of dome and the
razor-thin slit.

A properly test rig has been made, which reproduces
valve opening/closing, to make the fatigue tests.

All valves were subjected to 50000 cycles in four
steps. After each step the airflow resistance has been
determined experimentally to establish the effect of
fatigue on valve characteristics.

Fig. 1a – Staffieri valve

Fig. 1b – New valve

II. METHODOLOGY

The experimental plan involved 24 Staffieri valves and
24 new valves.

The hypopharynx-oesophagus exit (or razor-thin slit) is
located at the base of the dome, and six different angular
extensions α were considered (180°, 210°, 240°, 270°,
290°, 310°).

To determine the repeatability, four nominally identical
valves were tested for each type and for each angular
extension α.

The purpose of this investigation is to assess fatigue
degradation in valve performance, in particular the
airflow resistance.

Analysing the in vivo operation of the voice button has
been observed that it consists of two stages:

1) The dome of the valve is lifted and opened by air.
During this period the airflow passes through the razor-
thin slit of the valve and the voice production is possible.
The patient does not breathe but he can speak.

2) The valve is closed. In this second stage, the dome
can be observed to move quickly until it is almost fully
closed. This is followed by a slow final closing
movement resulting from the material’s elasticity, which
positions the dome in contact with the oesophageal
flange.

The reverse flow of food or saliva into the trachea must
be prevented.

SPEAKING VALVES: INFLUENCE OF THE FATIGUE
ON THE FLOW CHARACTERISTICS

G. Belforte, M. Carello, A. Dileno, M. Morero
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The authors have assumed  a time of 6 seconds for each
stage that has been considered a trade-off between actual
in vivo conditions and the need to speed up fatigue tests,
as total cycle time is thus equal to 12 s.

As valves carry out a certain number of cycles
corresponding to the opened/closed stages, they are
subject to a fatigue phenomenon.

The patient does not speak 24 hours a day then it is
possible to assume around 200 cycles/day during in vivo
operation.

The valves have been submitted to opening/closing
cycles with direct flow, using airflow equal to the
physiological rate (0.15 dm3/s ANR).

The fatigue test rig is shown in Fig. 2. Valve PV
supplies two timers T1 and T2, which regulate voice
button V opening and closing time respectively. The
additional counter C shows the number of cycles
(open/close) logged. Resistance R is used to regulate
airflow. Support S makes it possible to test 16 valves V
simultaneously. Three identical test rigs were constructed
so that all 48 valves could be tested simultaneously.

Fig. 2 – Test rig for fatigue tests

The proposed fatigue test method was optimised,
carrying out four steps (10800, 16000, 26000 and 50000
cycles). At the end of each step the airflow characteristics
have been experimentally obtained, in term of pressure
and flow-rate, and the resistance of each valve has been
calculated.
In general, it was observed that resistance drops as the
number of cycles is increased, especially for small razor-
thin slit angles α. This phenomenon was probably due to
fatigue effects, which cause deterioration with a slight
increase in α near the valve’s oesophageal flange. For
valves with larger α values, the influence of the number
of cycles on resistance is comparable to experimental
error. This applies to both Staffieri valves and the new
prototype.

III. RESULTS

Figs. 3, 4, 5 and 6 show resistance versus flow rate for
the Staffieri valve and the new valve prototype, with

razor thin slit α=240°, after 10800 and 50000 cycles
respectively.

The four dashed curves were obtained with four
nominally identical valves, while the continuous line
represents the average value. Standard deviation ±σ is
also shown.
Average curves were taken into account in order to
compare valves with different razor-slit extension α and
domes.
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Fig. 3 – Resistance vs. flow-rate for Staffieri valves,
α=240°, 10800 cycles
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Fig. 4 – Resistance vs. flow-rate for Staffieri valves,
α=240°, 50000 cycles
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Fig. 5 – Resistance vs. flow-rate for New valves, α=240°,
10800 cycles



Devices 203

0

20

40

60

80

100

0 0.05 0.1 0.15 0.2 0.25

Flowrate [dm
3
/s ANR]

R
es

is
ta

nc
e 

[k
P

a/
(d

m3
/s

)]

Fig. 6 – Resistance vs. flow-rate for New valves, α=240°,
50000 cycles

The influence of fatigue can be observed by
considering the four steps. Figs. 7 and 8 show the average
curves pressure P versus flow rate (continuous lines) and
resistance R versus flow rate (dashed lines) for Staffieri
and new valves respectively, both with α=240°.

Similar behaviours have been obtained for all the other
value of α considered.
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Fig. 7 – Pressure and resistance vs. flow-rate for Staffieri
valves, α=240°
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Fig. 8 – Pressure and resistance vs. flow-rate for New
valves, α=240°

IV. DISCUSSION

An overall comparison can be made, for example, by
considering all the Staffieri valves or all the new valves,

and varying the angular extension of the razor-thin slit α
while maintaining the same flow rate.

For the physiological flow rate (0.15 dm3/s ANR) in
particular, resistance versus the number of cycles for the
two type of valves are shown in Figs. 9 and 10.

Same behaviour has been obtained for different values
of flowrate.

As can be seen, there is a general decrease in resistance
as the number of cycle’s increases.
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Fig. 9 – Resistance vs. number of cycles for Staffieri
valves
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Fig. 10 – Resistance vs. number of cycles for New valves

The Staffieri valves have lower resistance than the new
prototype for any given value of α.

The experimental results have been used to make the
statistical analysis ANOVA.  The ANalysis Of VAriance
is a procedure that can be used to evaluate the effects of a
group of experimental factors. It is then possible to assert
with a certain significance level whether the data are
influenced by these factors.

In this investigation, a sample of 48 valves was used,
while the factors taken into account were:

- razor-thin slit extension α (factor A) with six
levels (a=6) corresponding to the six angles (180°,
210°, 240°, 270°, 310°);

- number of cycles (factor B) with four levels (b=4)
corresponding to the four steps (10800, 16000,
26000 and 50000 cycles);

- type of dome (factor C) with two levels (c=2)
corresponding to the Staffieri valve and the new
valve.
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It was noted that there is a certain scatter in valve
characteristics relative to the average value, thus
repetitions were necessary to account for the
experimental error. Specifically, four valves (n=4) were
taken into account for every combination of razor-thin
slit, number of cycles and valve type.

The analysis was performed using the airflow
resistance obtained from the experimental data at constant
flow-rate. Flow rates of 0.06 dm3/s (low), 0.15 dm3/s
(physiological) and 0.2 dm3/s (high) were taken into
account. The result allows us to establish that for
physiological flow the airflow resistance is influenced by
the factors razor-thin slit, type of dome (and thus type of
valve) and the interactions between razor-thin slit and
dome; for these factors, in fact, the significance level β  is
very small and, therefore, the significance is very high.
For the other factors/interactions, the value of β is large
meaning that the effects of these factors cannot be
regarded as significant.

Regarding the number of cycles, it should be noted that
the risk of error in rejecting the null hypothesis ranges
from 25% to 41% approximately. This is quite larger than
the value usually adopted to consider an effect as
significant (5% or less), however such factor could be not
completely negligible.

Fig. 11 shows the significance level β of different
factors-interactions, for the three flow-rates considered,
and the β limit value (or critical β equal to 0.05). It can be
noted that for the factors razor-thin slit, type of dome and
the razor thin-slit/dome interaction the limit value of β is
not exceeded and the significance behaviour moves away.

For the other double interactions, as well as for the
triple interaction, the significance β is almost equal to
unity, and then the factors have a smaller influence.

For the number of cycles it is possible to observe that β
is larger than the critical β, but at the same time it is not
negligible the effect on the valves performance.

V. CONCLUSION

The paper presented the results of fatigue testing on
two types of tracheo-oesophageal valve: a Staffieri and a
new prototype.

The valves was subjected to a certain number of cycles
corresponding to the opened/closed stages, using a total
cycle time equal to 12 s.

The airflow resistance has been checked at four cycling
steps.

Generally has been observed a little reduction for the
resistance increasing the number of cycles, for every
razor thin slit and every type of valve.

Analysis of variance conducted with experimental
airflow resistance values has allowed evaluating the
influence of: angular extension of the razor thin slit, type
of dome (or valve), number of cycles and their
interactions.

The first two factors and the razor thin slit/type of
dome interaction have a larger influence on flow
characteristics (low significance). The number of cycles
has a not negligible influence.

The other factors/interactions have a negligible effect
(significance almost equal to 1).
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Abstract: The time scale modification (TSM) of 
speech is concerned with the compressing or 
expanding of audio signals in the time domain without 
affecting the signals pitch or naturalness.  Conversely, 
the frequency scale modification (FSM) of speech is 
concerned with altering the pitch and formants of a 
signal without changing the signal duration. 

This paper describes a hardware implemented and 
optimized TSM/FSM system. Biomedical speech 
related applications for such a system include 
accelerated aural reading for the blind and improved 
speech recognition – In a voice controlled robotic 
system for the disabled, the speech can be effectively 
“slowed down” to improve the recognition rate.  
Other applications of the system include speech 
synthesis, foreign language learning, audio typing, 
and voice transformation. 

Keywords:  TSM, FSM, VLSI 

I. INTRODUCTION

Time-Scale Modification (TSM) of speech consists of 
modifying the speed of the speech segment without 
affecting its naturalness or pitch.  Conversely, Frequency-
Scale Modification (FSM) of speech consists of 
modifying the pitch of the speech without changing the 
duration of the speech segment.  Much research has been 
done in this type of speech processing since the early 
twentieth century and so a variety of algorithms exist.  It 
is recognized however that some types of speech are 
more easily modified than others.  Voiced speech 
segments are quasi-periodic in the time domain and in the 
frequency domain possess clearly defined pitch and 
harmonics.  This is due to the vibration of the vocal cords 
while air is forced through the glottis.  Typical voiced 
sounds are vowel sounds and broad consonant sounds 
such as ‘y’.  In contrast, unvoiced speech is spectrally 
noisy since there is no vocal cord vibration and the sound 
is instead produced in the oral cavity with the aid of the 
teeth and lips.  Examples of unvoiced sounds are ‘s’ 
sounds and ‘t’ sounds.  TSM/FSM algorithms exist to 
preserve the periodicity (continuity) and hence quality of 
voiced speech types and indeed music.  The noisy nature 
of unvoiced speech means it is therefore unnecessary to 
employ algorithms for time-scale or frequency-scale 
modification.  Distinctions between voiced speech and 
unvoiced speech may be based upon signal energy 

content and upon the signal’s zero-crossings rate (the 
number of sign changes in a given period). 

Algorithms for TSM and FSM fall broadly into three 
categories: time-domain techniques; frequency-domain 
techniques; parametric techniques.  The level of output 
quality across the three categories is similar, however the 
time domain category is the most efficient in terms of 
computational burden [1].  By far the most widely used 
algorithm within this category is synchronized overlap-
add (SOLA)[2] and its close relation, pitch synchronized 
overlap-add (PSOLA) [3].  However, the adaptive 
overlap-add (AOLA) algorithm due to Lawlor achieves 
similar quality with a saving in computational burden of 
an order of magnitude less [1].  Hence, this algorithm was 
selected over the others for implementation, since power 
consumption in a CMOS device is a strong function of 
switching activity and as such, the number of operations 
should be kept to minimum. 

TSM and FSM are intrinsically related. If, for example, 
a speech segment is time-scale modified by a factor of 
two, the resultant speech segment is twice as long as the 
original segment.  Playing this segment at double speed 
results in a speech segment that is the same duration as 
the original segment but its frequency content has 
doubled.   

The possible applications for TSM/FSM algorithms are 
broad ranging.  Possible speech related applications 
include speech synthesis, foreign language learning, 
audio-typing, accelerated aural reading for the blind, 
voice conversion, improved speech recognition, 
film/speech synchronisation, audio compression and 
noise reduction. 

II. METHODOLOGY 

For the modification of voiced speech the AOLA 
algorithm is used.  The algorithm uses a fixed length 
rectangular stepping window and a simple peak 
alignment criterion to perform the overlap-add. 
Adjusting the overlap distance has the effect of increasing 
or decreasing the amount of expansion or compression. 
Overlap-adding in this way results in a local natural 
expansion factor or natural scaling factor.  This factor is 
given by the ratio of the lengths of the original waveform 
and the newly formed synthetic segment and shall be 
denoted αne.

VLSI IMPLEMENTATION OF A TSM/FSM ALGORITHM

D. Breen 1, R. O’Neill 1, T. D. Smith1, A. Th. Schwarzbacher1.

1Dublin Institute of Technology, School of Electronics and Communications Engineering, Dublin 8, Ireland 
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Figure 1: Steps in the AOLA algorithm. 

Figure 1 [1] shows the alignment and output waveform 
synthesis procedures of AOLA for time-scale expansion.   
In the figure, the frame boundaries are marked by the 
dashed lines, x(n) is the input waveform and y(n) is the 
output waveform.  Figure 1 (a) is the original segment to 
be expanded and is windowed with a rectangular window 
length w. In Figure 1 (b) the original segment is 
duplicated and the peak alignment procedure described 
earlier is performed about the dashed line.  The result is 
shown in Figure 1 (c).  It should be noted that this 
segment has been expanded by the natural expansion 
factor αne, and the length of the segment is now w.αne.  In 
Figure 1 (d) the input window is now advanced by a time 
step.   Where this step ends coincides with the end of the 
next window to be expanded as indicated in Figure 1 (e).  
The segment preceding this new window is considered as 
expanded already and can be output.  In (f), the expanded 
window w.αne  is shown to be the accumulation of A
expanded steps.  From this the following equation is 
derived: 
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There may be a discrepancy between the natural 
scaling factor αne and the desired scaling factor αde.
Therefore, step has to be updated for every advance step 
of the analysis window. The whole process repeats 
iteratively until the desired scaling factor is met.  The 
AOLA algorithm accurately adapts to the local signal 
characteristics and ensures the signal is expanded by the 
desired scaling factor, αde.

For time-scale compression the approach is similar. In 
this case the peaks or troughs are aligned as before but 
the signal to the left and right of the central overlapping 
region are discarded leaving a compressed segment. If the 
input segment has a natural compression factor of αnc and 
the desired compression factor of αdc, (5) becomes: 
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The algorithm can be recapitulated in the following 
three steps: 1. Isolate appropriate peaks; 2. Perform the 
overlap and determine the natural scaling factor; 3. Adapt 
as necessary and repeat. 

The modification of unvoiced speech is a far simpler 
task.  To achieve compression, the speech segment can 
simply be truncated as desired.  As the frame boundaries 
are noisy, there will be no loss of continuity.  In the case 
of expansion, a window of suitable length may be copied 
and appended to the end of the frame.  As before, the 
integrity of the frame boundaries is preserved. 

To ensure accuracy and efficiency, the system must 
discern between unvoiced speech and voiced speech. 
This distinction is based upon the short-term energy 
content and the zero-crossings rate mentioned earlier.  In 
the case of short-term energy, a calculation is made of the 
energy content within a signal.  Generally this energy 
content will be greater for a voiced speech segment than 
for an unvoiced segment of similar length.  The total 
energy in a frame is given by the equation: 

∑
=
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Where N is the number of samples in the frame.  Once 
the energy in a frame is known, it is compared with a 
reference value to decide if the energy present is 
indicative of voiced or unvoiced speech.   

Since there will also be more energy in a voiced phrase 
that is louder than in the same phrase uttered softly, the 
zero-crossings decision mechanism is necessary. 
Unvoiced speech is spectrally noisy and will cross the 
time-domain origin a far greater number of times than 
voiced speech for a given segment.  For a 20ms clean 
speech segment the crossing rate was found to be 
approximately 26 for voiced speech and more than 100 
for unvoiced.  These figures are used to determine 
whether the segment is voiced or not.  Using both the 
methods outlined above, a more accurate decision is 
made. 

III. IMPLEMENTATION 

The system was coded and tested using VHDL.  All 
VHDL code was synthesized and tested in the Synopsys 
Design environment.  The system can be broken down 
into three major blocks of circuitry: 1. AOLA circuit; 2. 
unvoiced modification circuit; 3.decision circuit. 
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Figure 2: System block diagram. 

In addition there is an input RAM structure, a RAM 
structure to hold the window of operation (W RAM) and 
a Controller module which synchronizes the system and 
controls system resets.  The RAM structures are 
implemented as latch-multiplexer structures.  These 
structures are more easily customizable, and are preferred 
to the RAM structures available from the existing 
libraries. 

The AOLA algorithm is implemented in three modules 
corresponding to the three steps outlined earlier.  The 
modules move samples as appropriate within the W RAM 
structure to perform the overlap-add, aswell as 
performing the step calculations of the algorithm.  These 
latter operations include a number of multiplications and 
divisions.  The divider employed operates on a subtract-
shift-divide basis.  The multiplier used is small, and 
operates within a single clock cycle. 

The unvoiced modification circuit consists of a 
multiplier to establish αde (desired scaling factor) in terms 
of the amount of samples (framesize x αde), and a circular 
counter device which iteratively counts out the stored 
frame, αde number of times.  

The decision circuit consists of three modules, one for 
each of the decision mechanisms outlined earlier, and one 
to examine the results and make the decision.  The 
modules operate on a running calculation basis.  This 
allows a decision to be made at the input section as the 
input buffer is being filled with a reservoir of samples for 
working on.  The input itself is a serial 8kHz sampled 
speech signal. 

IV. RESULTS

The system was tested with 8kHz quantised 8-bit 
speech samples. It was synthesized using the European 
Silicon Structures 0.7µm technology. The silicon area is 
shown in Figure 3.  The total silicon area was 
7518380µm2 or 7.5mm2, small enough for handheld 
devices. 

Area (mm2)

Controller

Input Section

V-UV Decision Circuit

Unvoiced Circuit

Peak Picker

OLA

AOLA

OLA RAM

Figure 3: Silicon area of individual modules. 

The following selected results show input and output 
waveforms for compression and expansion of both 
unvoiced and voiced speech.  All inputs shown have a 
signal-to-noise ratio of 10.  In the figure captions αd is the 
desired scaling factor. 

Figure 4: Unvoiced compression input (47.5ms) and 
output (35.625 ms), αd = 0.75.  

Figure 5:  Unvoiced expansion input (47.5ms) and 
output (76 ms), αd  = 1.6. 
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Figure 6: Voiced compression input (47.5ms) and 
output (29.25 ms), αd  = 0.6. 

Figure 7: Voiced Expansion input (47.5 ms) and output 
(564 samples / 70.5 ms), αd  = 1.5. 

The Circuit timing of the individual modules is shown 
in terms of propagation delays from input to output in the 
following table.   

Module Delay (ns) 
Controller 2.08 

Input RAM 2.10 
Address counter 2.07 
Decision circuit 2.08 
Truncatenator 2.08 

Peakpicker 1.98 
OLA 2.09 

AOLA 2.12 
OLA RAM 2.14 

Table 1: Propagation delays of individual modules. 

The minimum operating clock frequency of the system 
is derived from the worst-case scenario time.  This is 
when the maximum or minimum desired scaling factor is 
required and the minimum natural scaling factor occurs 
and the speech type is voiced.  The time taken for the 
system to perform under these circumstances is 
approximately 10,000 clock cycles.  Based on an 8kHz 
input signal the minimum operating frequency is 
therefore 80MHz.   From the table above and based on 
the shortest route from input to output, the maximum 
allowable operating frequency was found to be 
approximately 159.75MHz. 

V. CONCLUSION

The AOLA TSM/FSM algorithm was successfully 
implemented into hardware using high-level VLSI 
techniques and VHDL.  In addition, a voiced/unvoiced 
decision circuit and an unvoiced speech modification 
circuit were also successfully implemented.  Upon testing 
the system with various synthetic speech signals of 
varying signal-to-noise ratios (SNR), the circuit 
performed as expected.  However for poorer SNR signals, 
the decision circuit occasionally made incorrect 
decisions.  This problem may be overcome easily with a 
suitable adjustment of the reference threshold values for 
noisy environments.   

The total silicon area was found to be 7.5mm2 (based 
on the 0.7 µm library).  This area is suitably small enough 
for handheld equipment such as mobile telephones, 
dictaphones or other portable speech processing 
equipment.  However, it should be possible through 
additional optimization techniques to reduce this area 
further. 
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SOME EXPERIMENTS
IN THE CZECH SPONTANEOUS SPEECH RECOGNITION DOMAIN

J.Kleckova, J.Krutisova
Department of Computer Science and Engineering, University of West Bohemia in Pilsen, Czech Republic

Abstract— A spoken/dialog interpretation system is proposed,
using prosodic information systematically at all processing stages.
A prosody modul is used for parsing, dialog understanding,
translation, generation and speech synthesis. 1

Keywords: Dialog system, spontaneous speech, prosody

I. INTRODUCTION

Instead of trying to match each unique sensory input directly
onto a huge number of lexical entries, listener first recode
the variable input into a smaller number of abstract units
like phonemes or syllables that in turn serve to contact the
lexicon. The intermediate representation based upon units can
potentially guide the segmentation process. For instance, the
onset of prosodic units or strong syllables could be used as
starting points for the lexical matching process. To the extent
that these segmentation points are likely to correspond to
word boundaries, such heuristics would be helpful in reducing
wasteful attempts to match the input with misaligned lexical
candidates. In the framework that attributes a central role to
intermediate levels of representation, we are led to search for
the nature of the units making up this representation. The
experiments reported in this paper were performed on a subset
of Czech sentences. The computer assisted acoustic analyses
allows for studying even subtle phonetic differences of pitch
or stress, so that possibility to investigate the functional roles
of these differences becomes possible. The important segmen-
tal characteristics are position and movement of formants,
spectral tilt. The most important suprasegmental (prosodic)
characteristics are pitch contour, rhythm, amplitude, prosodic
boundaries, length of pauses, accents. For segmental character-
istics description we concentrated on vocalic and its possible
modification. Perception tests showed that the measure of a
vocalic quality keeping and a vocalic quantity keeping together
with a correct consonantal groups realization represents the
primary segmental attribute of the utterance style.

II. NEW ASPECTS OF SEGMENTAL CHARACTERISTICS

The estimated values represent results of the detailed ex-
perimental analysis of one speaker’s spontaneous non-official
speech (to avoid individual variations). The speech was real-
ized a professional speaker. The corpus includes:

� Total 3040 syllables were measured.

1The work presented in this paper was supported by the Grant Agency
Research Project No. 201/02/1553.

� Total 326 vowels were analysed.

These vowels were realized in a comparable phoneme
environment.

Their frequency representation shows the following table:

TABLE I

THE FREQUENCY VOWELS REPRESENTATION IN CZECH SPONTANEOUS

SPEECH.

Vocal Number %
e 78 24%
o 75 23%
a 56 17%
i 53 16%
u 22 7%
í 21 6%
á 14 4%
ú 5 2%
é 2 1%
ó 0 0%

In experiments with a duration primarily we concentrated
on phonologically short vowels. The previous task hypothesis
was substantiated, the method ”analysis by synthesis” [1] was
verified: the average duration phonologically short vowels
ahead of a pause achieves twice the phonologically short
vowels average duration. The average duration of particular
vowels don’t differ, only the vowel /i/ is rather longer, because
it occurs at the final position, vocal is inherency longer.

TABLE II

THE AVERAGE SHORT VOWEL LENGTH IN THE SPONTANEOUS SPEECH

[MS].

Short vocal /a/ /e/ /i/ /o/ /u/
Total average

length 71 60 77 63 71
Average length

at the stress group end 142 114 130 159 81

It was showed, that the phoneme environment doesn’t
feature the vowels length significantly. A phonologically short
vowel prolongs before a pause so that its length exceeds the
average phonologically long vowel length by 100 ms.

The table VI summarizes the measured values :

In following experiments we determinated the average of the
F1 and F2. A comparison with conclusions of previous paper



212 MAVEBA 2003

TABLE III

THE VALUES OF FORMANTS F1 AND F2 (CZECH VOWELS IN THE

SPONTANEOUS SPEECH).

Vowels/Formants F1 F2
a 650 1460
á 740 1470
e 490 1630
é 600 1660
i 320 2100
í 400 1480
o 460 1150
u 340 990
ó 310 930

suggests that articulation of Czech vowels may be changing.
The articulation shift seems to reveal variation in measured
formants frequency values. The comparison of the current
situation with the previous papers was summarized in the table
V:

TABLE IV

FORMANT F1 VALUES COMPARISON WITH THE PREVIOUS PAPERS.

Vowel F1 F1 F1 F1
[5] [2] [3] Experiment

a 750 850 660 670
á 795 870 740 745
e 572 520 490 500
é 510 500 600 580
i 355 250 390 380
í 326 200 320 325
o 580 510 460 480
ó 530 490 - 500
u 385 260 310 315
ú 350 230 340 345

TABLE V

FORMANT F2 VALUES COMPARISON WITH THE PREVIOUS PAPERS.

Vowel F2 F2 F2 F2
[5] [2] [3] Experiment

a 1280 1390 1450 1440
á 1175 1350 1470 1470
e 1660 2020 1630 1620
é 1750 2090 1660 1690
i 2120 2460 1890 1900
í 2230 2620 2100 2150
o 982 990 1160 1070
ó 900 920 - 890
u 758 730 930 900
ú 680 670 990 820

The present tendency demonstrates more open vowels in
general and some reduction of differences in vowel quality
among different phonemes. Changes of formants values by
the particular vowels aren’t equivalent. The first formant (F1)
values put near the average value, that decreases by 22%

in comparison with the previous measuring. The shifts are
relative symetric; the forward vowels set (range) and the back
vowels set (range) even put near the average values. The
standard pronunciation divergence of a consonant articulation
restricts to their duration changes. The analysis by ear and by
experiments demonstrated the consonant duration is markedly
increased due to emphatic accent.

III. INTONATION

The analysis of spontaneous speech showed interesting
results in connection intonation. The professional speaker’s
utterance was analysed but his utterance has been attached
attributes of unready spontaneous speech (for example free
syntax). The intonation analysis was achieved on the short
sentences with the definite syntax structure and the intonation
at the end of sentences.The average F0 in this type of sentences
is 120 - 163Hz, the standard deviation 159 - 211Hz. Maximum
value F0 was founded repeatly (regularly, at all cases) on the
posttonic syllable also in cases of short neutral (indifferent)
sentences. There is another interesting conclusion - a terminal
intonation very often is missing. The course of F0 is standard,
e.g. in the lower third of the used range, maximum is usually
in the first third of sentence and then it decreases to intonation
minimum at the last syllable. The exception from this rule was
held: The melodic top is fixed at posttonic syllable.

A. Intonation Scheme

From the point of the analysis goal, an important obser-
vation is that steadily repeating intonation schemes can be
identified at the functionally equivalent syntactic positions.
For example: The sentences are intonationally terminated one
syllable before the end of the sentence. Then the last syllable
is the first intonation syllable of the next intonation unit.

B. Differences of reading text

The intonation implementation of reading text is based on
the contrast principle(fundamental). A rising or falling into-
nation may be correlated with incompleteness, and a falling
intonation indicating completeness may also permit other
intonation patters. The continuous gradient on the smaller
groups is kept in the range of the one intonation unit. There is
the most emphatic melodic contrast of consecutive syllables in
the whole sentence. From whence it follows that the contrast
principle and the theory of the maximum F0 at the posttonic
syllable are claimed. In some cases the perception margin
isn’t given due to intonation contour (vide the fundamental
frequency F0) but it is shown due to the emphatic vocal
retardation and prolongation at the last syllable.

IV. EXPERIMENTAL RESULTS

The main reason, why the use of prosody in recognition
system is not easy, are:

1) segmental (i.e. word chain) and suprasegmental (i.e.
prosodic) information influence each other,
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2) the prosodic functions which are realized to a great
extent with the same prosodic parameters interfere with
each other,

3) the use of prosodic means is optional - a specific
function can be expressed with prosody but it does not
have to, e.g. when other grammatical means are already
sufficient.

The ability of the listeners to identify correctly and almost
instantly a word from among the tens of thousands of other
words stored in their mental lexicon constitutes one of the
most extraordinary human cognitive feats. The speech signal
indeed presents a formidable challenge. Both the speech is
variable (every word takes on a different phonetic shape each
time it is produced - the existence of large numbers of a highly
similar words in the lexicon makes this variability even more
troublesome) and speech is continuous (unlike written text, it
contains no systematic spaces or reliable markers to indicate
where word or utterance ends and the next one begins). The
intonation often serves an information of a broad meaning
nature. The fact that rising or level intonations are correlated
with incompleteness and falling intonation with completeness
admits other utilizations of the intonation. One of them helps
to make clear the interpretation of potentially ambiguous
utterances. The prosody is a very complex subject. Besides the
intonation the hierachy of pauses is very important. Pauses of
standard length in the places of punctuation marks between
syntactic units are felt as bizzare in the spontaneous speech.
After several experiments have been treid out, a three-tier
pause hierarchy seems acceptable in Czech.

TABLE VI

THREE-TIER PAUSE HIERARCHY.

Pause Duration of pause [ms] Classification
for speech rate of punctuaction marks

P1 8 - 10 ,
P2 80 - 100 - :
P3 200 - 240 ; . ? !

To make finer distinction of pauses would require to respect
semantic relations of units in the dialog.

To summarize the results of spontaneous speech analysis we
can state that we are able to detect the types of the sentences.

The intonation analysis was achieved on the short sentences
with the definite syntax structure and the intonation at the end
of sentences. The results of spontaneous speech analysis is
carried into effect in the several experiments.

V. CONCLUSION

The analysis of spontaneous speech showed interesting re-
sults. It is currently that prosodic features have a very high sig-
nificance for the dialog system. In the first phase, the prosody
modul was developed that does not use phoneme-based but
only word-based information. In the second phase, recognition
system uses segmental and suprasegmenal characteristics in

Fig. 1. Type of sentences.

the several different modules. To describe the functions of the
relevant features of sentence prosody would mean a significant
step on the way towards a unified description of the system of
language as a whole, from the phonetic form of the sentences
to their underlying structure.
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A time synchronization system is a helpful tool for different ap-
plications, such as language education and speech therapy. We

present a system that performs temporal alignment of two utter-

ances of the same phrase. The system consists of two parts. In the

first part the time warping function is determined with Dynamic

Time Warping (DTW). In the second part the time scale of one

utterance is modified according to the time warping function. To

obtain good performance, the dynamic time warping algorithm re-

quired significant modifications. Our listening test confirms that

our time synchronization system has high precision and the result-

ing speech utterances are of natural quality.

Keywords: Time Synchronization, Time Scale Modification,

DTW, WSOLA

I. INTRODUCTION

A system that time-aligns two utterances of speech can be used

as a tool in language education and in the therapy of speech dis-

orders. The acquisition of a good pronunciation is an important

issue in language education. Time synchronization is valuable for

this purpose. In speech therapy, synchronization can be applied in

the therapy of voice problems, articulation problems, or in accent

modification therapy.

In both, language education and speech therapy it is of

great importance to observe certain differences in specific speech

sounds. These differences get emphasized, if the temporal differ-

ence is removed The time synchronous utterances can be listened

to either simultaneously or separately.

It is especially useful to change the speaking rate of the client

or student if his or her utterance is nonuniform in speed. The parts

of the sentence containing ‘difficult’ sounds, which need special

attention and concentration to be pronounced properly, will often

be spoken much slower than the remainder. Hearing the sentence

in a natural speed, spoken with the own voice, encourages a natural

way of speaking.

Another application of the time synchronization system can

be found in the audio-for-video industries. Synchronization can

be applied for dubbing material with another voice or post syn-

chronization of outdoor recordings with studio recordings.

In the following, the signal that is to be modified in time is

called the source signal, the resulting modified signal the target
signal, and the signal that serves as the reference for the time scale

the reference signal. Fig. 1 shows a block diagram of the described

system. There are two parts: in the first part a relationship between

the two utterances is established; in the second part the time scale

of one utterance is modified to match the time scale of the other

one.

DTW
Signal

Time Alignment

WSOLA

Reference
Signal

Source
Signal

Signal Modification

Target

Fig. 1. Diagram of the time synchronization system.

The first part is realized with Dynamic Time Warping (DTW)

[1]. DTW is mainly known from speech recognition, where it was

featured in most systems in the 80’s. Later on it was largely re-

placed by Hidden Markov Models (HMM’s), as they proved to

be advantageous for several reasons [2]. Although displaced from

speech recognition, DTW has been in use in the 90’s and later

on for different applications such as speaker identification systems

[3], signature verification systems [4], and in recent work for ges-

ture recognition [5].

For the second part of the system Waveform Similarity Over-

lap and Add (WSOLA) synthesis [6] was selected. It falls in the

class of time domain based Overlap and Add (OLA) methods. The

idea behind the OLA synthesis methods is to create synthesized

speech by concatenating small segments of speech. In doing so,

the periodic structure of the speech signal has to be preserved.

The different OLA methods such as the Synchronous Overlap and

Add method (SOLA) [7] or Pitch Synchroneous Overlap and Add

method (PSOLA) [8] offer various related solutions to this prob-

lem.

In [9] Verhelst presents an earlier system for time synchroniza-

tion based on DTW and WSOLA. In his system DTW is applied

without constraints or modifications. This leads to problems with

the sound quality of the modified utterance if the reference and

source signal are not sufficiently similar [9]. With our approach

we account for acoustic and phonetic differences by introducing

an accumulative local penalty constraint and a smoothing stage to

the Dynamic Time Warping (sections 3.1 and 3.2).

II. METHODOLOGY

This section provides a short description of Dynamic Time Warp-

ing (DTW) and Waveform Similarity Overlap and Add (WSOLA)

synthesis.

2.1. DTW algorithm

Dynamic Time Warping is a pattern matching algorithm with a

non-linear time normalization effect. It is based on Bellman’s prin-
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ciple of optimality [10], which implies that, given an optimal path

φ from A to B and a point C lying somewhere on this path, the

path segments AC and CB are optimal paths from A to C and

from C to B respectively.

The dynamic time warping algorithm [1] creates an align-

ment between two sequences of feature vectors, (t1, t2, ...tN ) and

(s1, s2, ...sM ). A distance d(i, j) can be evaluated between any

two feature vectors ti and sj . This distance is referred to as the

local distance. In DTW the global distance D(i, j) of any two fea-

ture vectors ti and sj is computed recursively by adding its local

distance d(i, j) to the evaluated global distance for the best pre-

decessor. The best predecessor is the one that gives the minimum

global distance D(i, j) at row i and column j:

D(i, j) = min
m≤i,k≤j

[D(m, k)] + d(i, j). (1)

The computational complexity can be reduced by imposing

constraints that prevent the selection of sequences that can not be

optimal [1]. Global constraints affect the maximal overall stretch-

ing or compression. Local constraints affect the set of predecessors

from which the best predecessor is chosen.

2.2. WSOLA algorithm

Waveform similarity overlap and add (WSOLA) is a time domain

based algorithm for time scale modifications of speech [6] [11].

It gives high quality speech and allows scaling factors that may

be specified in a time-varying fashion. One major advantage of

the WSOLA method is that, in contrast to PSOLA [8], no pitch

estimation is needed .

In OLA [12] (overlap and add) synthesis the modified signal

is obtained by excising segments from the input signal, reposition-

ing them along the time axis and performing a weighted overlap

addition to construct the synthesized signal.

The basic idea of the WSOLA algorithm can be best explained

graphically (see Fig. 2). The time warping function τ−1(Lk) as-

signs one segment of the source signal to each synthesis instant Lk

in the target signal. A timing offset ∆k within a range of 2∆max

around the time warping function τ−1(Lk) is needed to avoid

pitch period discontinuities and phase jumps. In this way a proper

segment synchronization in the synthesized signal is achieved. The

timing offset ∆k is determined such that the synthesized segment

maintains maximal local similarity to the natural continuity ex-

isting in the original signal. Assume segment (1) in Fig. 2 was

the last segment excised from the source signal and added to the

target signal at Lk−1. Next, WSOLA tries to find a segment (2)

lying in the region [τ−1(Lk)−∆max, τ−1(Lk)+∆max] (shaded

region), that is maximally similar to the natural continuation (seg-

ment (N1)).

III. TIME ALIGNMENT

Dynamic Time Warping (DTW) is used to establish a time scale

alignment between source and reference signal. It results in a time

warping vector Θ, describing the time alignment of segments of

the two signals. Θ assigns a certain segment of the source signal

to each of a set of regularly spaced synthesis instants in the target

signal.

A preprocessing step is taken to remove silence in the begin-

ning and the end of each utterance. This is done by applying a

threshold on the energy of the signal evaluated in blocks of length

125 ms and overlap of 15 ms. The feature extraction is performed

on the remaining signal. Attributes of speech relevant for differ-

entiating phonemes are measured over short time intervals, within

τ−1(Lk−1) τ−1(Lk)

∆k

(1)
(N1)

(2)

so
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Fig. 2. Illustration of the WSOLA-algorithm. In each step,

the synthesis segment (2) is selected within the tolerance region

(shaded region centered around τ−1(Lk)) as the segment that is

most similar to the natural continuation segment (N1) of the pre-

vious segment used for synthesis(1)).

which speech is considered to be quasi-stationary. The feature vec-

tors are extracted from windowed segments of the signal of length

20 ms with 50 % overlap. The chosen features are 12 MelCep-

strum coefficients [2] and the log energy.

the Euclidean distance (L2) is applied to determine the dis-

tance between the feature vectors of the two sequences. As a

global constraint, the search space of the DTW is limited to fall

in a band of width G. This is illustrated in Fig. 3 a). G is deter-

mined by

G = 20 · | log2

M

N
| + 40, (2)

where N is the number of feature vectors for the source signal and

M for the reference signal. Thus, the bandwidth is dependent on

M/N , the ratio of reference signal and source signal length. By

using the base-2 logarithm an equal sized bandwidth is achieved

for a time stretching by factor 2, as for time compression by factor

1/2. Fig. 3 b) shows the global constraint width G dependent on

M/N . For the local distance, a modified version of the Sakoe-

Chiba [13] local constraint has been used, as described in more

detail in the next section.
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Fig. 3. a) Global constraint G in Dynamic Time Warping. b)

Global constraint G as a function of the ratio. M/N .

3.1. Accumulated local penalty constraint

By choosing an appropriate local constraint, the first derivative of

the time warping vector Θ may be limited in range. In [1] various

local constraints are presented. One of the main criteria in the

choice of the local constraint for our system is to preserve a certain

flexibility in the alignment, needed to cope with local differences

in the speaking rate within a wide range. For this reason we apply

a symmetric Sakoe Chiba local constraint without slope constraint.
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Fig. 5. Time warping vector
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stage.

Fig. 4 illustrates the symmetric Sakoe Chiba constraint. Only

three possible predecessors are considered as candidates for the

calculation of the global minimum distance:

D(i, j) = min[D(i−1, j−1), D(i−1, j), D(i, j−1)]+d(i, j).

Despite of the desired flexibility, we need to control the warp-

ing curvature. Applying a local constraint without a slope con-

straint tends to result in a path with long horizontal and vertical

subpaths. Horizontal subpaths result in a problem in the signal

modification part, as they lead to the repetition of one segment

several times. This yields a synthetic sound. Vertical subpaths

denote the skipping of several segments of the original signal, re-

sulting in an unnatural sound because of syllables or even whole

words being omitted. In addition, vertical subpaths can result in

pitch discontinuities in the target signal. Changes in pitch mostly

occur during vowels in natural speech. In the case of modification

from a long to a short vowel, the alignment may contain a verti-

cal subpath, such that the modified vowel is composed by the on-

and offset of the long vowel, omitting the middle part. If the long

vowel contains a modulation in pitch this leads to a clearly audible

pitch discontinuity in the target signal.

Vertical and horizontal subpaths are necessary in the align-

ment of two utterances containing pauses of different length. By

a vertical subpath a pause can be cut off, by a horizontal subpath

silent segments extended to a longer pause. Hence it seems reason-

able to distinguish between segments containing speech and seg-

ments containing silence. A classification for each segment can

be done by comparing its signal energy to a threshold obtained by

statistics drawn from all segments. Sorting all occurring segment

log energy values into 10 equally spaced groups, the threshold is

heuristically appointed as the center of the third lowest group. The

threshold is chosen so as to rather misclassify silence as speech

sounds than vice versa.

We defined an accumulated local penalty constraint, such that

the global distance is calculated as

D(i, j) = min[D(i−1, j−1), αD(i, j−1), βD(i−1, j)]+d(i, j),

where α and β are penalty factors. α and β are proportional to the

number of contiguous preceding horizontal, resp. vertical moves

of segments, that are classified as nonsilent. In doing so, sequences

of horizontal and vertical moves in the time warping path become

less likely.

3.2. Smoothing of the time warping vector

The output from DTW is a time warping vector Θ containing sub-

paths with slopes 0, 1 and infinity, corresponding to horizontal,

v(n)
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Fig. 6. The speech signal is faded out by multiplying with v(n).

diagonal and vertical moves. Longer horizontal subpaths are not

suitable for time scaling with WSOLA. To ensure that the time

warping vector Θ does not have a local slope smaller than a cer-

tain value σ for segments classified as speech, we use a smoothing

stage. σ is chosen to be 0.5, corresponding to time stretching to

the double length. The time warping vector can easily be modi-

fied in a left-to-right fashion. Horizontal subpaths are replaced by

a subpath with slope σ and extended forwards and backwards in

time with a minimum slope of σ until the new subpath meets the

original subpath. This is illustrated in Fig. 5.

For segments classified as silence, horizontal subpaths re-

main to allow an extension of speaking pauses in the target sig-

nal. Repetition of the same segment inevitably results in synthetic

sound, even if the segment contains no speech but background or

breathing noise. To alleviate this we attenuate the repeated parts

smoothed with a Hann window as illustrated in Fig. 6.

IV. TIME SCALE MODIFICATION

The time scale of the target signal is changed using the WSOLA

algorithm. The time warping vector Θ determines a position of the

segment to be excised from the source signal for each synthesis

instant Lk as described in section 2.2.

The segment length is 20 ms, as used in the feature extraction

and signal alignment procedure. Hann windowing with a 50 %

overlap is applied. In WSOLA the segment for synthesis is picked

from the tolerance region [τ−1(Lk) − ∆max, τ−1(Lk) + ∆max]
around the ’true’ time instant τ−1(Lk) as described in section 2.2.

If ∆max is chosen sufficiently large that the position of the natural

continuation segment falls in the tolerance region, it leads to a rep-

etition of the same segment even if the time warping function has

been modified as described in section 3.2. With a slope limit σ of

0.5 ∆max needs to be smaller than a quarter of the segment length.

Hence the tolerance ∆max is chosen to be 4.9 ms. For good per-

formance, ∆max must be selected to be larger then half a pitch

period. Thus, our system functions well for a pitch down to 100

Hz. The cross-AMDF coefficient is used as measure of similarity

[6].

Time stretching for unvoiced segments often leads to an audi-

ble periodicity using the basic WSOLA method. To reduce these

artefacts, segments are classified as voiced or unvoiced, and ev-

ery third consecutive unvoiced segment gets reversed in time. A

similar procedure is known from PSOLA, where every other un-

voiced segment is reversed [8]. Our classification is done by means

of counting the zero crossings, where a high number of zero cross-

ings indicates unvoiced sounds. With the described method a more

natural sound is achieved.

V. LISTENING TESTS

We carried out a listening test on 17 listeners to evaluate the time

synchronization system. We selected 10 different utterances from

the TIMIT database, five spoken by male, five by female speakers.
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Fig. 7. Results from our listening test for different test sentences

(horizontal axis). a) A-B preference test. Method A: Time syn-

chronization system. Method B: Natural synchronization b) Qual-

ity rating from +5 (time synchronized version sounds much better)

to -5 (time synchronized version sounds much worse)

To get a measure for synchronicity we recorded test utterances spo-

ken by two male and two female speakers. The speakers were first

asked to read a sentence independently, then in synchronization

with a TIMIT sentence. They could practise as often as required

to achieve satisfactory synchronization. The independently spo-

ken utterances were processed by our time synchronization sys-

tem. For the listening test, we selected 10 recorded utterances,

that account for a wide range of time scaling factors. Four of these

sentences were read by male speakers, six by female speakers.

The first part of the listening test was an A-B preference test,

presenting the sentences synchronized by the speaker and by our

system to the listeners. The 17 listeners were asked to judge the

accuracy in synchronization. Fig. 7 a) shows the result of the

preference test for the different test utterances. The height of the

bars indicate the preference of the listeners. It can be seen that

in most of the cases our time synchronization system is clearly

preferred over to natural synchronization.

In the comparison one has to consider that the prosody of the

independently spoken sentence might differ from the TIMIT ref-

erence sentence, whereas the speaker automatically will adjust the

prosody speaking simultaneously with the reference. Therefore,

the natural synchronization will sometimes be felt as more syn-

chronous, even if it is not. This is the case for the second sentence

from the test, which contains a large difference between the inde-

pendent and reference prosody.

The aim of the second part of the listening test was to eval-

uate the quality of the processed files. To get a more balanced

ratio of increased and decreased speaking rate, we added four ad-

ditional test sentences where the TIMIT utterances were processed

to make them synchronous with our recorded utterances. Thus,

we obtained additional examples where the speaking rate is de-

creased, since the recorded test sentences are on average slower

than the TIMIT utterances. The target signal and source signal

were presented, and the same 17 listeners asked for a comparative

qualitative rating between -5 (much worse) to +5 (much better). In

Fig. 7 b) the mean rating and standard deviation for the test sen-

tences over all listeners are depicted. The test results of the sec-

ond part were inconsistent, showing that the judgement of speech

quality for one sentence differs significantly for different persons.

A reason for that might be that the judgment are influenced by

the prosody, which is automatically changed by changing the time

scale. Nevertheless, it can be concluded that the time modified

sentences are experienced as being of good quality on average, in

many cases rated better than the original.

VI. CONCLUSION

We presented a system that performs time synchronization be-

tween two different utterances of the same sentence based on DTW

and WSOLA. In contrast to an earlier system (presented in [9]),

our system can align utterances that differ severely (caused by a

different speaker and speaking style), and makes the resulting time

scaled utterances sound natural.

To obtain good time synchronization, major modifications are

necessary to make the algorithms suitable for our application. We

introduced an accumulated local penalty constraint in DTW to

control the curvature of the time warping function. The constraint

is made dependent on a classification of segments into speech or

silence. A smoothing stage was added to handle the limitations of

the WSOLA method in dealing with low slopes in the time warping

function for speech segments. By that we achieved flexibility in

the time warping function to cope with large local differences, as,

for example, longer silence parts between words, while maintain-

ing properties that guarantee good quality. Moreover, the speech

quality was improved compared to the basic WSOLA algorithm

by time reversing unvoiced segments.
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Abstract: This paper describes a methodology based 
on DTW technique (Dynamic Time Warping) applied 
to vocal audiometry to classify the different 
pathologies of hearing impaired. This methodology is 
validated on a population of ten subjects composed of 
seven individuals suffering perception, transmission 
or mixed deafness and three nondisabled subjects. 
The obtained results show that this method can be 
used as a first step for classification of hearing 
impaired pathologies. 
Key words: DTW, MFCC, Vocal Audiometry, 
Classification pathology. 

I. INTRODUCTION

Audiometry testing is used to identify and diagnose 
both hearing loss and hearing problems in children and 
adults [1]. With correct diagnosis of a person's specific 
pattern of hearing impairment, the right type of therapy, 
which might include hearing aids, corrective surgery, or 
speech therapy, can be prescribed [5]. 
There are two kinds of audiometry testing : the tonal and 
the vocal audiometry tests. 
In the tonal audiometry test a trained audiologist uses an 
audiometer to conduct audiometry testing. This 
equipment emits sounds or tones, like musical notes, at 
various frequencies, or pitches, and at different volumes 
or levels in dBs of loudness. Testing is usually done in a 
soundproof testing room [3]. This diagnosis method is 
efficient since it localizes frequency areas non perceived 
by hearing impaired (H.I) persons [5].  
Vocal or speech audiometry is another type of testing that 
uses a series of simple recorded words spoken at various 
volumes into headphones worn by the patient being                                     
tested. The patient repeats each word back to the 
audiologist as it is heard. An adult with normal hearing 
will be able to recognize and repeat 90-100% of the 
words.  

However, diagnosis mechanism of hearing deficiencies 
by vocal audiometry is essentially manual and requires 
the introduction of new techniques of speech recognition. 
Also, because of the large variety of pathological cases,   
other possibilities and clinical tools for evaluation and 
supervision shall be useful [2][3]. 

For this purpose, the present work propose to the 
medical staff a classification methodology of deafness 
types using a technique based on DTW revealing score 
parameters [5]. This shall allow the measurement of 
hearing deficiency in order to determine the deafness type 
of tested subjects, thus they can benefit from a digital and 
automatic tool of rehabilitation necessary for speech 
recovery and practice [4]. 

In the following sections, we present the proposed 
diagnosis approach and its different stages. Then, we 
applied its validation on a population of some hearing 
impaired (H.I) subjects. Finally, we give some 
discussions and a conclusion. 

II.  DIAGNOSIS APPROACH

The proposed diagnosis approach is based on the 
scheme of the figure 1. A preprocessing stage is firstly 
applied, followed by an amplitude normalization 
operation on the input signals. Then a third stage is 
applied to extract the relevant parameters of the signal 
using a Mel-Cepstral analysis which will constitute the 
input values of the DTW stage.  This last stage will 
generate a score which will be used for hearing 
pathologies classification.  

Fig. 1: The scheme of the proposed diagnosis approach. 
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A.Preprocessing Stage 

Recorded words usually include different noise signals 
at their beginning and the end. This noise varies in each 
recording, increases processing requirements and slows 
down the comparison algorithm. This problem was 
resolved by removing noise sequences using sound 
processing software. Figure 2 represents the fixing 
procedure of the word. 

Fig. 2: Word start and ending points 

B. Amplitude Normalization 

Variation of the vocal signal level in elocution makes 
the comparison of the words more difficult in terms of 
decision on the resemblance of two words [1]. If  two 
words are identical but have different levels, the 
comparison will lead to the conclusion that the two words 
are not similar which is a bad response. For this reason, 
an amplitude level normalization of the signal must be 
carried out, following the noise removal stage and prior 
to applying the comparison algorithm. This is achieved 
by dividing each word sample by the energy of the signal. 

C. Parametrization Stage 

In this stage each word will be processed and 
parameterized leading to a representation in the form of a 
matrix where the columns are the frames of the signal and 
the arrows are the parameters.  

Parameterization is achieved by  Mel-Cepstral analysis 
which produces a set of 12 coefficients called MFCC 
(Mel Frequency Cepstrum Coefficients) (Fig. 3). These 
parameters are the dominant features used for speech 
recognition [1]. In fact, several research studies showed 
the effectiveness of this method which allows a sound 
analysis equivalent to human perception mechanism. 
Figure 3 illustrates the corresponding parametrization  
scheme. 

                                                                                                                                            

Fig. 3: MFCC Coefficients determination. 

D. DTW Stage 

In speech signals, the different acoustic tokens of a 
same speech utterance, are rarely realized at the same 
speaking rate across the entire utterance. This fact makes 
that when comparing different tokens of the same 
utterance, the speaking rate and the duration of the 
utterance should not contribute to the dissimilarity 
measurement. This leads to the need of normalizing the 
speaking rate fluctuations in order to compare the 
utterances in a coherent way. A solution to this problem 
can be achieved using dynamic programming techniques 
for time alignment as the well known DTW technique. 

The obtained score from the DTW is the measurement 
of dissimilarity between two words. When the DTW is 
applied on the same word, a straight and linear path with 
a null distance or score are produced. In the case of  two 
different words, the DTW produces a path which is 
deviated from the diagonal axe by an amount 
proportional to the difference  between the two words. 
Also, the obtained score increases proportionally to the 
difference between the two words [5]. 

Fig. 4: Path representation of two identical words. 

III. VALIDATION  AND DISCUSSIONS

To validate the proposed approach a corpus of a series 
of simple recorded words spoken at various volumes into 
headphones worn by different subjects is built. Series of 
100 phonetically balanced words are used. The subjects 
are composed of ten persons : three are non disabled 
(ND) subjects and seven are hearing impaired (HI) 
subjects. The pathology of the hearing impaired persons 
was previously provided by the medical staff as 
illustrated on table 1. 

The obtained corpus contains a set of 620 words 
pronounced by the tested subjects representing the 
response of the HI subjects as well as the non-disabled 
persons (some lists were not used).   
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 The application of DTW on the test word and the 
reference word at various decibel levels produces the 
score parameter which will be classified in tables 
corresponding to each type of deafness. The score 
obtained by the subject for each word of the list, for a 
given decibel level and the percentage of words repeated 
correctly by all tested subjects, are filled in columns. 
Average score (AvrScore) for each decibel level is 
calculated as follow : 

Score (i):  represents the score of i th word in the same list. 

Tables 2 to 5 (listed at the end of this paper) show the 
recognition rate of words classified in ten different lists at 
various decibel levels on one hand, and the average of the 
scores obtained from the recognition of ten different 
words on the same decibel level on the other hand.  For 
example, the HI subject 3 obtained an average score of 
6.1. This result reveals a recognition difficulty for this 
subject, since the score is relatively higher compared to a 
ND subject.  Table 3 includes scores of the three ND 
subjects. The rate of recognition is 100% for all these 
subjects on any decibel level. The resulting score does 
not exceed the value 3. 

Thus, this value can be referenced to classify the 
hearing impaired (HI) subjects according to their 
deafness. These scores are given in Figures 5 and 6 which 
trace the average score versus the decibel level for each 
subject.  

According to figure 5, we notice that scores of ND 
subjects are not null because of variable factors such as 
voice timbre and speech velocity, but are quite lower than 
those obtained by HI subjects. This is due to better 
concentration on the way the reference word was 
pronounced, considering that these subjects do not need 
to recognize the word, but rather to repeat it with almost 
the same speed of elocution as the audiologist.  The 
curves representing all subjects form two separate groups. 
A first group which includes ND subjects in the interval 
of 1.5 to 3 considered as a relatively low score. A second 
group includes HI subjects, limited to values between 4 
and 7 revealing a possible hearing disorder of these 
subjects.  

The scores obtained by HI subjects shall be isolated on 
a separate graph in order to better interpret their 
dispersion (Fig. 6). 

This representation is significant as far as the 
arrangement of the average scores is concerned. The three 
subjects  "3", "7" and "10" suffering from severe mixed 
deafness have scores varying from 5.5 to 6.5, these scores 
are relatively higher which is logical since this type of 
deafness is considered to be the most severe. 

Fig. 5 : Average scores of all subjects versus dB’s. 
(S, P): severe perception, (A, P): average perception 

(S, M): severe mixed 

Fig. 6: Average scores of hearing impaired subjects versus dB’s. 

Subjects "4" and "9" diagnosed with severe perception 
deafness have scores ranging between 5 and 5.8, their 
deafness is classified severe since they perceive the word 
but distinguish the syllables with difficulty. Subjects "5" 
and "8" diagnosed with average perception deafness have 
scores ranging between 4 and 5.3; they represent subjects 
with the lowest scores. 

IV. CONCLUSION

This work described a diagnosis approach based on 
DTW technique applied to the vocal audiometry. The 
purpose is to obtain a diagnosis and classification 
pathology method of hearing impairment. 
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This approach generates a unique score used to identify 
the kind of pathology of hearing impairment subjects. 

 The reference score value, obtained from non-disabled 
subjects, was around the score of 2. The scores obtained 
by subjects suffering severe mixed deafness averaged the 
value of 6; this value is relatively high since this type of 
deafness is considered extreme. Scores of subjects 
suffering severe perception deafness ranged from 5 to 
5.8. The interval 4 to 5.3 includes scores of subjects with 
average perception deafness, representing the least 
impaired subjects. This proposed method establishes the 
use of scores to confirm the diagnosis of the type of 
deafness and classify hearing impaired individuals 
according to their pathology.

For future work, we suggest integrating a technique of 
speaker's normalization to surmount the problem due to 
the presence of several patients' types (a child, a woman 
or a male) 
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Table 5: recapitulation of the various scores of subjects 
with severe  perception deafness. 

Severe perception Subject H.I. 
9

 Subject: 
H.I.  4

100 dB 5,36 
80% 

5,33 
70% 

90 dB 5,47 
80% 

5,39 
80% 

80 dB 5,64 
90% 

5,54 
70% 

70 dB 5,17 
60% 

5,4 
30% 

60 dB 5,29 
40% 

-
-

Table 1: Deafness type and level of HI subjects 

Patient Sex Deafness Type Deafness 
Level 

Person 3  Mixed Severe 

Person 4  Perception Severe 

Person 5  Perception average 

Person 7  Mixed Severe 

Person 8  Perception Average 

Person 9   Perception Severe 

Person 10  Mixed Severe 

Table 2: recapitulation of the various scores of subjects 
with severe mixed deafness 

Subject:  
H.I. 10

Subject:  
H.I. 7

Subject: 
H.I.3

Mixed 
severe

5,88 
100% 

5,98 
90% 

6,1 
90% 100 dB 

5,79 
90% 

5,71 
70% 

5,82 
70% 90 dB 

6,18 
90% 

5,72 
20% 

5,9 
10% 80 dB 

5,96 
80% 

5,9 
10% 

-
- 70 dB 

5,91 
60% 

-
-

-
- 60 dB 

Table 3: recapitulation of the various scores of 
nondisabled (ND) persons. 

Subject: ND 
6

Subject: ND 
2

Subject: ND 
1

Normal 
hearing

1,96 
100% 

2,1 
100% 

1,98 
100% 100 dB 

2,05 
100% 

1,95 
100% 

2,13 
100% 90 dB 

2,64 
100% 

1,79 
100% 

2,14 
100% 80 dB 

2,57 
100% 

1,98 
100% 

2,4 
100% 70 dB 

2,25 
100% 

2,29 
100% 

2,24 
100% 60 dB 

2,34 
100% 

2,31 
100% 

2,13 
100% 50 dB 

2,68 
100% 

2,04 
100% 

1,95 
100% 40 dB 

2,15 
100% 

1,58 
100% 

2,03 
100% 30 dB 

Table 4: recapitulation of the various scores of subjects 
with average perception deafness. 

Subject: 
H.I. 8

Subject: 
H.I. 5

Average 
perception 

-
-

5,27 
90% 100 dB 

4,76 
100% 

5,14 
100% 90 dB 

5,08 
100% 

5,24 
90% 80 dB 

4,83 
100% 

4,96 
90% 70 dB 

4,98 
100% 

4,86 
80% 60 dB 

4,73 
70% 

4,77 
70% 50 dB 

-
-

4,66 
30% 40 dB 
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Abstract: A considerable percentage of listeners with 
severe hearing loss have audiograms where the losses 
are high for high frequencies and low for low 
frequencies. For these patients, lowering the speech 
spectrum to the frequencies where there is some 
residual hearing could be a good solution to be 
implemented for digital hearing aids. In this paper we 
have presented two different frequency–lowering 
algorithms: frequency compression and frequency 
shifting.  Preliminary results have shown a slight 
better performance of the frequency shifting method 
relatively to the frequency compression method. 
Keywords: digital hearing aids, frequency lowering, 
spectral shaping

I. INTRODUCTION 

There are several kinds of hearing impairment. The 
origin of the sensorineural hearing losses can be due to 
defects in the cochlea, auditory nerve or both. These 
problems reduce the dynamic range of hearing. The 
threshold of hearing is elevated, but the threshold of 
discomfort (at which the loudness become 
uncomfortable) is almost the same as for normal–hearing 
listeners, or even may be lower. For some range of 
frequencies, the threshold of hearing is so high than it is 
equal to the threshold of discomfort, i.e., it is impossible 
for the listener hearing any sound at those frequencies. 

Hearing loss is more common for high–frequency and 
mid–frequency sounds (1 to 3 kHz) than for low–
frequency.  Frequently, there are only small losses at low 
frequencies (below 1 kHz) but almost absolute deafness 
above 1.5 or 2 kHz. 

These facts lead researchers to lower the spectrum of 
speech in order to match the residual low–frequency 
hearing of listeners with high–frequency impairments. 
Slow playback, vocoding, and zero–crossing rate division 
are some of the methods that have been employed in the 
last decades. All of these methods involve signal 
distortion, more or less noticeable, generally depending 
on the amount of the frequency shifting. Many of the 
lowering schemes have altered perceptually important 
characteristics of speech, such as temporal and rhythmic 
patterns, pitch and durations of segmental elements. 

Hicks et al. [1] have done one of the most remarkable 
investigations about frequency lowering. Their technique 
involve pitch–synchronous, monotonic compression of 
the short–term spectral envelope, while at the same time 

avoiding some of the above-described problems observed 
in the other methods. Reed et al. [2] have conducted 
consonant discrimination experiments on normal hearing 
listeners. They have observed that Hick’s frequency 
lowering scheme presented better performance for 
fricative and affricate sounds if compared with low pass 
filtering to an equivalent bandwidth. On the other hand, 
the performance of the low pass filtering was better for 
vowels, semivowels and nasal sounds. For plosive 
sounds, both methods have shown similar results.  In 
general, the performance on the best frequency–lowering 
conditions was almost the same to that obtained on low 
pass filtering to an equivalent bandwidth. Further, Reed 
et al. [3] have extended the results of Hick’s et al. system 
to listeners with high–frequency impairment. In general, 
the performance of the impaired subjects was inferior to 
that obtained by normal subjects. 

Few years ago, Nelson and Revoile [4] have 
discovered that relative to the normal–hearing listeners, 
those with moderate to severe hearing loss required 
approximately double the peak–to–valley depth for 
detection of spectral peaks in bands of noise when signals 
have a high numbers of peaks per octave. Findings 
revealed that detection of spectral peaks in noise is 
significantly related to consonant identification abilities 
in listeners with moderate to severe hearing loss. 

All previous mentioned frequency-lowering schemes 
compress the speech spectrum into a narrower band of 
frequencies, increasing the number of peaks per octave 
while maintaining the peak–to–valley depth. According 
to Nelson’s and Revoile’s investigation, applying 
sharpening processing to a frequency lowered speech 
may allow better detection of spectral peaks and better 
consonant identification.  

Recently, Muñoz et al. [5] have combined sharpening 
(i.e., increasing the peak–to–valley depth) and frequency 
compression. They have demonstrated that the processed 
speech improved the understanding of fricative and 
affricate sounds, while providing no significant change in 
identification of vowels and other sounds by listeners 
with severe high–frequency hearing loss. 

Based on Nelson’s and Revoile’s investigation, we 
hypothesize that the relatively poor performance of 
Hick’s and Muñoz’s frequency lowering schemes is due 
to the increasing of the numbers of peaks per octave, 
which is inherent to the frequency compression method 
used in these systems.  

COMPARISON OF TWO FREQUENCY LOWERING ALGORITHMS 
FOR DIGITAL HEARING AIDS  

Alan M. Marotta1, Francisco J. Fraga2
1 National Institute of Telecommunications, Santa Rita do Sapucaí - MG, Brazil 
2 National Institute of Telecommunications, Santa Rita do Sapucaí - MG, Brazil
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In this paper, we propose a new frequency-lowering 
algorithm that does not increase the number of peaks per 
octave because it uses frequency shifting instead of 
frequency compression. Furthermore, the frequency 
shifting is applied only for fricative and affricate sounds, 
leaving all others types of sounds untouched, because it is 
only for fricative sounds that the frequency lowering 
technique brings real benefits as have been demonstrated 
by all the previous mentioned works. We have also 
implemented a frequency compression algorithm based 
on Hick’s [1] and Muñoz’s [5] ideas. Preliminary results 
of subjective preference have confirmed our hypothesis 
about the better performance of the frequency shifting
method compared to the frequency compression method. 

II. METHODOLOGY 

A. Audiometric data acquisition and processing 
 The first step of both frequency-lowering algorithms 

consists in audiometric data acquisition of the impaired 
subject. The audiometric exam is employed for 
measuring the degree of the hearing impairment of a 
given patient. In this exam, the listener is submitted to a 
perception test by continuously varying the sound 
pressure level (SPL) of a pure sinusoidal tone in a 
discrete frequency scale. The frequency values most 
frequently used are 250 Hz, 500 Hz, 1 kHz, 2 kHz, 4 kHz, 
6 kHz and 8 kHz. For each of these frequencies, the 
minimum SPL in dB for which the patient is capable of 
perceiving the sound is registered in a graph. The 
audiogram is the result of the audiometric exam, which is 
presented by a graph with the values in dB SPL for each 
of the discrete frequencies. This graph is done separately 
for each ear of the subject. Since the level of 0 dB SPL is 
considered the minimum sound pressure level for normal 
hearing, the positive values in dB registered on the 
vertical axis of the audiogram can be considered as the 
hearing losses of the patient’s ear. 

If the losses are equal or inferior to 20 dB, the subject 
is considered as having normal hearing. From 21 to 40 
dB, the losses are classified as mild. Moderate losses are 
those which are greater than 40 dB but until inferior to 70 
dB. From 71 to 90 dB, we consider that the patient have 
severe hearing losses and more than 95 dB of loss is 
classified as profound [6]. 

The threshold of discomfort, for normal or impaired 
listeners, is no more than 120 dB SPL. Although less 
common, some audiograms bring both the threshold of 
discomfort and the threshold of hearing [7], as we can 
observe in Fig. 1. In this figure, the points of the 
audiogram corresponding to the right ear are signaled 
with a round mark and those corresponding to the left ear 
are signaled with an X mark. These marks are worldwide 
used in this way by audiologists [6]. The dynamic range 
of listening for each frequency is the threshold of 
discomfort minus the threshold of hearing.  

Based on the acquired audiometric data, the algorithm 
analyses the range of frequencies where there is still some 
residual hearing. The criterion used is the following: first, 
it is verified if the patient have a ski–slope kind of losses, 
i.e., if the losses are increasing with frequency. Only 
patients with this type of impairment can be aided by any 
frequency lowering method. After that, the first frequency 
where there is a profound loss is determined. If this 
frequency is between 1.2 kHz and 3.4 kHz, a destination 
frequency to which the high–frequency spectrum will be 
shifted is calculated. Otherwise, no frequency shifting is 
needed (residual hearing above 3.4 kHZ) or profitable 
(residual hearing below 1.2 kHZ). This destination 
frequency is considered as the geometrical mean between 
900 Hz and the highest frequency where there is still 
some residual hearing. The geometrical mean was 
empirically chosen because it provides a good tradeoff 
between minimum spectrum distortion and maximum 
residual hearing profit. In order to obtain more accuracy 
in the losses thresholds, the points of the audiogram are 
linearly interpolated.  

Fig. 1:  ‘Ski-slope’ losses case  
B. Speech data acquisition and processing 
 The speech signal is sampled at a 16 kHz rate and 
Hamming windowed with 25 msec windows. These 
windows are 50% overlapped, what means that the signal 
is analyzed at a frame rate that is the inverse of 12.5 
msec. A 1024-point FFT is used for representing the 
high–resolution short–time speech spectrum in the 
frequency domain.  
 If in the previous audiometric data analysis a ski–
slope kind of loss was detected and the frequency-shifting 
criterion was matched, a destination frequency have 
already been determined. Then, we have to find out (in a 
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frame–by–frame basis) if the short–time speech spectrum 
presents significant information at high frequencies that 
justify the frequency shifting operation. The criterion 
used for shifting or not the short–time spectrum of each 
speech frame is based in a threshold. When the signal has 
high energy in high frequencies the algorithm shifts this 
high frequency information to lower frequencies. The 
threshold is set for suppressing the processing of all 
vowels, nasals and the semivowels, while activating the 
frequency transposition for fricatives and affricates. 

To decide which part of the spectrum will be shifted, 
the energy of 500 Hz bandwidth windows are calculated 
with 100 Hz spacing, from 1 kHz to 8 kHz. This is done 
with the aim of find out an origin frequency. The origin 
frequency is the frequency 100 Hz below the beginning 
of the 500 Hz bandwidth window that have maximum 
energy. The part of the spectrum that will be transposed 
corresponds to the range of all frequencies above the 
origin frequency. This empirical criterion guarantees that 
the unavoidable distortion due to the frequency lowering 
operation will be profitable. Because the most important 
part of the high–energy information will be shifted to the 
limited range of frequencies that are above 1 kHz 
(therefore maintaining untouched the low–frequency 
information) but still below the highest frequency where 
the patient presents residual hearing. 

For comparison, the Hick’s frequency compression 
scheme was already implemented, but now only when the 
same frequency lowering criterion (high/low frequency 
energy ratio) used for transposition was matched, i. e., 
only for fricatives and affricates. The frequency 
compression was done by means of an equation defined 
in [2]. But in practice, it is more useful to implement the 
inverse equation, which is 
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where fIN is the original frequency, fOUT is the 
corresponding compressed frequency, K is the frequency 
compression factor, a is the warping parameter and fS is 
the sampling rate. For minimum distortion at low 
frequencies, the warping parameter must be chosen as 
being  a = (K–1)/(K+1).

The compression factor K was determined according to 
the degree of loss presented by the listener. Fig. 2 shows 
the curves of equation (1) for K = 2, 3 and 4. In this 
figure we can see that the low frequency information 
(below 1000 Hz) is barely compressed. 

After frequency shifting or compressing (if it occurs), 
the FFT–spectrum of each speech frame is multiplied by 
the gain factor, which is calculated for each frequency in 
order to full compensate the hearing loss, unless the 
amplified sound pressure level exceed the threshold of 
discomfort. In this case, the gain factor is limited to the 
amount required for maintaining the loudness below the 

threshold of discomfort. The way we implemented this 
spectral shaping process is similar to that described in [8]. 
This last step was still under development in our digital 
hearing aids system. 

Fig. 2:  Input vs. output frequency curves 

Part (a) of Fig. 3 illustrates the original FFT–spectrum 
of a speech frame, in part (b) the same frame is shown 
compressed by a factor K = 4 and part (c) presents the 
frame after frequency shifting.  It is important to observe 
that in the last case (frequency shifting) the shape of the 
spectrum is preserved, what does not occur in the case of 
frequency compression, where we can clearly note a great 
amount of shape distortion, but still preserving the low 
frequency information. 

Fig. 3:  Comparison of frequency lowering schemes 

III. PRELIMINARY RESULTS

The two frequency lowering algorithms were not 
already tested with hearing impaired subjects because 
they final spectral shaping part are not completely 
developed, as mentioned in the last paragraph of section 
II. But we got some preliminary results with normal 
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listeners. In this case, a simple low pass filtering process 
simulates the losses above the frequency where there is 
no more residual hearing. This frequency was determined 
based on audiograms of real impaired subjects. 

The experiment we have carried out consists of 
submitting the speech signal to the two frequency 
lowering algorithms. After that, the resulted signals were 
listened by two normal hearing subjects, one man and one 
woman. The listeners do not know anything about the 
origin of the signals and are asked for ranking the signals 
according to their intelligibility. In this preliminary test, 
only two speech signals were submitted to the algorithms. 
The original and processed spectrograms of one of these 
speech signals (pronunciation of the words ‘loose 
management’) are shown in Fig. 4, where we can 
appreciate again the visual difference between the two 
frequency lowering algorithms. According to the 
prevision, only the fricative speech sounds were 
frequency lowered in both algorithms. The unique 
exception is the phone [ l ], which is not fricative but 
lateral approximant. But in this case, its pronunciation 
had high frequency energy, as we can observe in the 
spectrogram of the original speech signal. 

Fig. 4:  Spectrograms of  “loose management”  
The preferences of the listeners were listed in Table 1. 

In this table, ‘Signal 1’ is the Portuguese word 
“pensando” (which means ‘thinking’) and ‘Signal 2’ is 
the English words ‘loose management’.   

Table 1:  Listener’s preferences 
Speech signal Man Woman 
Signal 1 low pass 1st 3rd

Signal 1 compr. 3rd 2nd

Signal 1 shifted 2nd 1st

Signal 2 low pass 2nd 2nd

Signal 2 compr. 3rd 3rd

Signal 2 shifted 1st 1st

IV. DISCUSSION

These preliminary results indicate that the frequency 
shifting method was preferred by the listeners when 
compared with the frequency compression method. But it 
is important to remark that the subjective difference 
between the low pass filtered signal, the frequency–
compressed signal and the frequency-shifted signal is 
very slight, as perceived by normal listeners. 

V. CONCLUSION
It is necessary to finish the spectral shaping part of the 

system in order to submit the processed signals to hearing 
impaired listeners. The slight difference observed by the 
normal listeners may be due to the fact that the difference 
between the original signal (with frequencies up to 8 
kHz) and the low pass filtered (2 kHz) signals is large. 
But for the impaired subject, that never had any 
perception of sounds with frequencies above 2 kHz, may 
be the difference between the processed signals was not 
so slight. Finally, it is important to remark that, with all 
the processing being done in the frequency domain, both 
algorithms have demonstrated to be fast enough for 
enabling the usage in real time applications. 
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Abstract: Finite element (FE) models of acoustic
spaces corresponding to the human nasal and vocal
tract for vowel /a/ are used for numerical
simulations. Simplified FE model of the vocal tract
for English vowel was created from geometrical data
published in literature and for the Czech vowel by
transferring data directly from MRI images. The
nasal cavities were added to the models manually
according to anatomical literature. The acoustic
signal for the vowel / a / is simulated using transient
analysis of the FE models in time domain. The vocal
tract is excited by time dependent displacement of a
small circular plate moving at the position of the
vocal folds. The time response and frequency
response functions are calculated near the lips,
nostrils and at the vocal folds. Effects of
velofaryngeal insufficiency are simulated and
compared to results from acoustic measurements.
Keywords: Biomechanics of voice, acoustic transient
and modal analysis, supraglottal spaces, cleft palate

I. FINITE ELEMENT MODELS OF SUPRAGLOTTAL SPACES

In the previous papers of the authors [1,2] the
acoustic frequency-modal characteristics of the human
vocal tract were studied by FE modelling including the
effects of cleft palate [3]. Here the study is extended to
the time domain analysis using a real type of excitation
of the acoustic spaces by pulses generated at the vocal
folds. The simplified FE model of a male vocal tract for
the English vowel /a/ was developed according to the
MRI data published by Story et al. [4]. The FE model
approximating the human supraglottal tract including
the added nasal cavity spaces is presented in Fig. 1. The
total length of the vocal tract from the vocal folds (on
the right) to the lips (on the left) is 174.58 mm. The FE
model used for simulation of phonation of the Czech
vowel /a/ is shown in Fig. 2a [1].

A small connection (size of 20 finite elements) of the
nasal and oral cavities was considered in the back area
of the soft palate modelling the velofaryngeal
insufficiency. The acoustic transient analysis was
realised by the system ANSYS 5.7 using the acoustic

finite elements FLUID30 considering the speed of
sound c0 = 353 ms-1 and the air density 0 = 1.2 kgm-3.
Zero acoustic pressure ( p = 0 ) was assumed at the lips
and nostrils. Other boundary walls of the acoustic
spaces were considered to be acoustically absorptive.

Fig. 1  FE model of male vocal tract for English vowel
/a/ including the nasal cavity.

The acoustic damping, which is associated with the
fluid-structure interface on the boundary between the air
and the walls (tissues) of the vocal tract, was modelled
by the boundary admittance coefficient 6 for
supraglottal acoustic spaces and  = 0.008 for the nasal
cavity. This coefficient defined as = x/ 0c0 is a
dimensionless quantity between 0 and 1 that is equal to
the ratio of the real component of the specific acoustic
impedance (resistance term x) associated with the sound
absorbing material to the fluid characteristic impedance.
Another frequently used characteristic of the sound
absorption of the material is the dimensionless
absorption coefficient , which is related to the
boundary admittance coefficient  as

       1/125,05,0 .
The pulse excitation of the supraglottal spaces was

realised by a small rigid circular plate (a piston)
translating in the axial direction along the axes z. The
plate was situated in the position of the vocal folds, and
its diameter was equal to 1/3 of the diameter of the
cross-section area of the FE model of the acoustic space
at this point (see the detail in Fig. 2b). The translation
motion of the plate in time was given by integration of
the shape of volume velocity that approximately
corresponds to the airflow through the vocal folds (see
Fig. 3). Five subsequent excitation pulses with the
period corresponding to the fundamental (pitch)
frequency F =100 Hz were considered in the transient
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analysis. The interaction between the plate and the
acoustic space was realised by the interactive acoustic
finite elements.

In the model of the English vowel /a/ the effect of
hard palate compliancy was included in the study. The
material properties of the bone were assumed as
follows: Young modulus E1 = 6.50 .109Pa, Poisson ratio

1=0.21, density 1=1.41 103 kg/m3 and wall thickness
h=0.6mm. The bone of hard palate was modeled using
two separated parts. The first (lower) part of the finite
elements SHELL63 was directly joined with the
acoustic finite elements of the vocal tract using the
material properties E1, 1 and 1. The second (upper)
part of the finite elements SHELL63 was joined with
the acoustic finite elements of the nasal tract on its
lower boundary area. The material properties
corresponding to the second part of the FE model of the
bone were identical with the first part of the bone model
except the Young modulus E2=0.01E1 respecting a
much more compliant material. Each node of the lower
part of the bone was connected with the corresponding
node at the upper part of the hard palate FE model. This
connection of corresponding nodes guarantees identical
motion of the nodes in both parts of the FE model.

II. MATHEMATICAL FORMULATION

Wave equation for the acoustic pressure can be
written as:

2
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2 1
t
p

c
p , (1)

where co is the speed of sound, with the possible
boundary conditions as follows

 on acoustically hard area and at the open end

0
n
p , p = 0 , (2)

  between the flexible structure and the fluid
elements:
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where n is normal to the boundary area and wn  is the
displacement of the structure in the normal direction to
the vibrating surface.

Equations of motion for the elasto-acoustic system
after discretization can be written as
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where M, B, K are the global mass, damping and
stiffness matrices, P is the vector  of  nodal acoustic
pressures, subscripts s  or f denote the structure or fluid,
u is the structural displacement, R is the coupling
matrix and 0 is the air density.

For the special case of kinematic excitation by the
moving structure the following equations for the
pressure describe the air vibration
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where the structural motion u(t) is prescribed. The
Newmark method of solution in time was used.

III. NUMERICAL RESULTS

The results of the transient dynamic analysis of the
FE models are the time responses of the acoustic
pressure in selected points of supraglottal spaces near
the vocal folds, the lips and the nostrils. The spectra of
the exciting acoustic pressure pulses and the pressure
time responses were calculated by MATLAB using
FFT.

a)

b)

Fig. 3  Pulse excitation by airflow velocity in the glottis.

Fig. 2  a) FE model of male vocal tract for the Czech
vowel /a/ obtained from MRI data file with the added
nasal cavity, b) detail of the excitation location at the
vocal folds.
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Fig. 3 presents excitation pulses of the airflow velocity
through the glottis from where the corresponding
displacement of the rigid plate was calculated and
afterwards used for excitation of the vocal tract in the
time domain.

The results of transient analysis of the FE models for
English vowel /a / are presented in frequency domain in
Fig. 4 showing the calculated acoustic pressure near the
nostrils. The formant frequencies F1  Hz, F2
1164 Hz and F3 2826 Hz calculated by modal analysis
of the FE model can be detected in the spectrum. A
nasopharynx (oro-nasal) resonant frequency
fnaso 2143 Hz is embodied in the frequency response
function between the formants F2 and F3.

Results of the transient analysis of the FE model for
the Czech vowel /a/ are presented in Figs. 5 and 6
showing the spectra of the acoustic pressure calculated
near the vocal folds and lips. The pressure levels near
the vocal folds are much higher than the acoustic
pressure near the lips. The formant frequencies
F1 623 Hz, F2 890 Hz and F3 2935 Hz can be found
in the frequency response functions in Fig. 6. These
formant frequencies are in good agreement with the data
known from the Czech literature [6] as well as with
calculations by modal analysis for the same FE models
– see, e.g. [1,3]. Another resonant frequency fnaso 1707
Hz appears in the Fig. 6 due to the velofaryngeal
insufficiency.

The differences between the Czech and English
formants originate mainly in the fact that two very
different types of the FE models were used, however,
the results obtained are in a range of variability of the
vocal /a/ production.

IV. EXPERIMENTAL VERIFICATION OF THE MODEL

The first experiment took into account the well-
known phenomenon of connection vowel - nasal
consonant - vowel. The passageway between the oral
and nasal cavities of the first vowel is closed or almost
closed in the Czech language for a clear sound to be
pronounced. The velopharyngeal passageway must be
opened when producing nasal consonants.

The vowels following the nasal consonants are
nasalized because the passageway is still not closed.
The differences in the velopharyngeal opening between
the first and the second vowel should result in changes
of the formant frequencies.  Five normal subjects were
asked to pronounce the interconnection /ama/ and the
changes of the formants between the two vowels were
studied.

The nasal and oral signals were picked up by
microphones of the headset part of Nasometer 6200-3
(Kay Elemetrics Corp.) and analysed by Multi-Speech
(Kay Elemetrics Corp.) programme.

Fig. 5  Frequency response function for the acoustic
pressure near the vocal folds for the FE model of Czech
 vowel /a/.

Fig.6  Frequency response function for the acoustic
pressure near the lips for the FE model of Czech
 vowel /a/. Fig. 4  Frequency response function for the acoustic

 pressure near the nostrils for the FE model of English
 vowel /a/.
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V. EXPERIMENTAL RESULTS

Examples of results from the practical experiments
are shown in Fig. 7. The spectrogram of the
interconnection /ama/, where the second vowel is more
nasal than the first one, is shown in Fig. 7a. The signal
was picked up in front of the nose. The position of the
formants F1=800 Hz and F2=1100 Hz and F3= 3700 Hz
is stable. The position of the oro-nasal formant changes
from fnaso 2600 Hz to 2950 Hz as approximately
predicted by the FE models. Effects of increasing the
cleft area of the hard palate were theoretically studied in
detail in previous publications [2,3].

The continual changes of the soft palate closing for
vowel /a/ are demonstrated in Fig. 7b. The signal was
picked up in front of the mouth and the measurement
started from the soft palate opening. The formants
F1=680 Hz, F2=1100 Hz, F3=3950 Hz remain
practically unchanged. The oro-nasal formant changes
its position from fnaso 2700 Hz to 2350 Hz.

The second nasalized vowel /a/ in the interconnection
/ama/ corresponded to an opening of the soft palate and
simulated a velofaryngeal insufficiency.

VI. CONCLUSION

The transfer functions were obtained as the results of
the transient analysis of the FE models of the vocal

tract. The models were excited by a transient translation
of a small rigid plate situated in the area of vocal folds
and driven by a time signal which shape in the time
domain approximately corresponds to a volume velocity
of the air flowing through the vocal folds during
phonation. The formant frequencies F1 – F3 evaluated
from the resonances of the calculated frequency
response functions for the pressure are in good
agreement with the experimental data known for the
formants from the literature [4-6] as well as with the
results of the modal analysis performed [1-3]. The
existence of calculated oro-nasal formants was verified
by the measurements when the velofaryngeal
insufficiency was simulated by the normal subjects.
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Abstract: Dysarthria is a diverse group of motor 
speech disorders that typically are associated with 
impaired intelligibility. As part of a project to develop 
augmentative communication technologies for 
intelligibility enhancement of dysarthric speech, a 
quantitative method is proposed for measuring the 
relative contributions to impaired intelligibility of 
vowels of three factors: First,  target shift: Dysarthric 
speakers may have spectral targets that  differ from 
those of normal speakers. Second, coarticulation: The 
degree of contextual influence on articulation may be 
greater in dysarthric speech than in normal speech. 
Third, random variability: Dysarthric speakers may 
articulate the same phoneme in the same context with 
more variability. The method is based on a linear 
model of formant trajectories of vowels in consonant 
contexts. The results from analysis of a dysarthric and 
a normal speech sample  showed surprisingly similar 
target values, but increased coarticulation and 
random variability for the dysarthric sample. 
Keywords :  Dysarthria, coarticulation, formant 

I. INTRODUCTION 

Dysarthria is a diverse group of motor speech disorders 
that typically are associated with impaired intelligibility 
and are caused by damage to the motor system [1, 2]. 
Since in most cases dysarthria is not reversible, major 
efforts have been made to create assistive devices, 
including devices based on  speech enhancement [3], 
speech recognition [4], or speech transformation [5].  

A recent perceptual study by Hosom et al. [5] focused 
on the relative contributions of segmental and prosodic 
factors to intelligibility of dysarthric speech.  Using a 
human-supervised copy prosody technique that allowed 
for the independent modification of prosodic and spectral 
information in dysarthric speech, it was shown that 
significant improvements of intelligibility can be 
achieved through replacing either the prosodic features or 
the spectral features of a dysarthric speaker's speech with 
those of a normal speaker's speech. However, an 
automated baseline transformation system, based on 
speech transformation techniques to map the spectral 
features between the two speakers on a frame-by-frame 
basis [6], failed to improve intelligibility. A further 
analysis of the vowel formants indicated that their 
average values differ sharply between the dysarthric and 
the normal speech samples, with a much-reduced area of 
the vowel quadrilateral in the former case [Figs. 1 and 2].  

These findings show that successful intelligibility 
enhancement requires an underlying model of the spectral 
differences between dysarthric and normal speech. 
Towards such a model, we consider here three factors 
that may account for these differences. First,  target shift:
Dysarthric speakers may develop special spectral targets 
that differ from those of normal speakers. Second, 
coarticulation: The degree of contextual influence on 
articulation may be greater in dysarthric speech than in 
normal speech. Third, random variability: Dysarthric 
speakers may articulate the same phoneme in the same 
context with more variability. 

This paper provides an analysis approach that 
decomposes the contributions of these factors, so that 
they can be treated separately in the future intelligibility 
enhancement systems. This analysis will be applied to 
speech samples from one dysarthric and one normal 
speaker for demonstration purposes only; no claims are 
made about dysarthric speech in general. 

Since formants constitute a concise acoustic 
representation closely related to the vocal-tract 
configuration, we focus our investigation on formant 
trajectories. We use a linear superposition model similar 
to a model by Broad and Clermont [7] to describe the 
trajectories of the first three formants through inter-
consonantal vowel portions. In our model, target formants 
and coarticulatory effects are unknown parameters and 
are estimated from speech data.  Beyond the structure of 
the model, nothing is assumed about these parameters, so 
that their estimated values provide unbiased information 
about the differences between dysarthric and normal 
speech. The experiments on dysarthric and normal speech 
data show surprisingly similar target values, but increased 
coarticulation and random variability for the dysarthric 
sample. We expect that these results can be used to 
construct an augmentative communication system. 

II. METHODOLOGY 

A. Speech data 

For the purpose of comparison, the same speech data 
as in the previous study [5] were used. The data are 
utterances of one dysarthric speaker (LL) and one normal 
speaker (JP) from the Nemours database (For diagnostic 
information, see [8]). Each speaker read 74 syntactically 
correct nonsense sentences. The speech was recorded and 
stored in 16k Hz, 16-bit PCM format. 
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COARTICULATORY EFFECTS IN DYSARTHRIC AND NORMAL SPEECH
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Each sentence in the database has been transcribed into 
a sequence of phoneme labels. The start and end times of 
each phoneme in the speech signals were indicated via 
manual segmentation. The segments considered in this 
study were syllables with a vowel between two 
consonants ( CVC ) in American English. The vowels 
consisted of /i:/, /u/, /A/, and /@/, as pronounced in the 
words beat, boot, father, and bad. They are supposed to 
represent four extreme vocal-tract configurations among 
the vowels in American English. The consonants 
consisted of the six stops, the four unvoiced fricatives, 
and the four approximants in American English. 

ESPS software [9] was used to extract formant 
trajectories from the speech signals. The signals were 
down-sampled from 16k Hz to 10k Hz,  and analyzed 
with a 49-ms Hanning window that was shifted in a 10-
ms step. For each frame of windowed signals, a 12-order 
LPC analysis was performed and then continuous formant 
trajectories were obtained. Formant values at vowel 
midpoints were inspected and, when necessary, corrected 
manually with optional LPC-poles. 

B. Coarticulatory model 

We adopted the following model, similar to which was 
used in [7], to describe coarticulatory effects on the 
formant frequencies of vowels within different consonant 
contexts:  

( ) ( ) ,)()()( VCVVC TTtTTTttF
������

−⋅++−⋅= ′βα         (1) 

where )(tF
�

 is the observed formant vector as a function 

of time t ,
VT
�

 is the target formant-vector of the vowel, 

CT
�

and 
CT ′

�

 are the target formant-vectors of the initial and 

final consonants, respectively. All formant vectors in Eq. 
(1) are 13×  in dimension with the first three formant 
frequencies as elements. The first term in the right side of 
Eq. (1) represents formant transitions from the consonant 
C  to the vowel V . This coarticulatory effect is 
proportional to the target difference and scaled by a 
function of the coarticulatory factor )(tα . The last term 

represents a similar effect of the consonant C ′  on the 
vowel V , and )(tβ  is the corresponding function of the 

coarticulatory factor. 
If we let ( ))()(1)( ttt βαγ −−= , then Eq. (1) becomes: 
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����

βγα               (2) 

which shows that the observed formant vector of the 
vowel at any time point is a linear combination of the 
target formant-vectors of the phonemes C , V  and C ′ .
Note that, although the model describes full trajectories 
of formants, we only applied it to the vowel midpoints.  

The model represents the three factors (target shift, 
coarticulation, and random variability) as follows: Target 
shift is represented by the differences in target values 
between the dysarthric and normal speaker; coarticulation 
by the values of the coarticulatory factors; and random 
variability by the relative goodness of fit of the model.  

C. Estimation method  

N denotes the number of samples of observed formant 
vectors, ),,1()( NiF i

l

�

= . If target formant vectors are 
known, a least-square-error solution exists for each of the 
following equations derived from Eq. (1): 
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When )(iα  and )(iβ  are fixed, Eq. (2) can also be 
rewritten in the following matrix form: 
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where I  is a 33×  identical matrix. Since the phonemes 
with the same identity in the samples share a common 
target formant-vector, all equations in (4) can be jointly 
solved in a least-square-error sense as long as the number 
of data samples is large enough. Thus, the estimation 
algorithm can be generally described as follows: 

1. Initialize target formant-vectors; 
2. Set a small number ε  as the convergence threshold; 
3. Solve equations in (3), update )(iα  and )(iβ , and 

calculate the square error 1E ;
4. Solve equations in (4), update target formant-

vectors, and calculate the square error 2E ;
5. If ε>− 21 EE , then go to 3; else, output target 

formant-vectors, )(iα  and )(iβ .

D. Practical issues  

When using this method to analyze the real speech 
data, additional efforts are needed to avoid physically 
meaningless solutions. This is discussed next. 

Formant target initialization. One scheme adopted the 
formant values from the Klatt synthesizer [10]. For the 
vowels, we also used the medians of observed formants at 
vowel midpoints. The vowel targets estimated with the 
two initializing schemes were quite close. 
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Figure 1. Observed and target vowel formants 
(dysarthric speech.) The medians of observed 
formants are linked with dashed lines; the estimated 
target formants are linked with solid lines. 

Rank. When in Eq. (3) )()( i
C

i
C TT ′=

��

, the matrix on the 

right is not full-ranked, so that )(iα  and  )(iβ  cannot be 

estimated. Thus, C  and C ′  are required to be different.   
Constraints. Constraints of the linear weights included: 

025.0)( ≥iα , 025.0)( ≥iβ , and 95.0)()( ≤+ ii βα . For a 

target formant vector, [ ]′= 321 fffT
�

, constraints were 

130090 1 ≤≤ f , 2800500 2 ≤≤ f , 37001300 3 ≤≤ f , and 

321 fff << , because the formants should be in 

reasonable ranges.  
Normalization. Note that )(iα  and )(iβ  are scalar 

values, while formants are vectors. Hence, )(iα  and )(iβ
reflect only the average coarticulatory effects of the three 
formant frequencies. To balance the contributions of each 
formant to the fitting errors, each dimension of a formant 
vector was normalized by dividing it by the formant 
medians.  

III. RESULTS

A. Goodness of fit 

The normalized sums of least squares deviations were 
0.238 and 0.032 for the dysarthric and normal samples, 
respectively, indicating greater variability for the 
dysarthric speech.  

B. Vowel space  

Figs. 1 and 2 show the observed vowel space and the 
estimated target vowel space of the dysarthric and normal 
speaker, respectively. In both figures, the first and second 
formants (F1, F2) of four extreme vowels (/i:, u, A, @/) 

are plotted as points in the F1-F2 plane. The medians of 
observed  formants are linked with dashed lines to 
represent an observed vowel space, and the estimated 
values of target formants are linked with solid lines to 
represent a target vowel space. As can be seen, the 
formant quadrilateral for each speaker shifts from the 
observed position to the target position, expanding the 
area of the vowel space. This expansion trend implies a 
potential way to increase the spectral separability of these 
vowels, which may be critical for intelligibility 
enhancement, by considering the target formants rather 
than the observed formants. Of critical importance is that, 
except for /@/, the dysarthric target values are 
surprisingly close to the normal target values. 

Figure 2. Observed and target vowel formants 
(normal speech.) The medians of observed formants 
are linked by the dashed lines; the estimated target 
formants are linked with solid lines. 

C. Coarticulatory effects 

Fig. 3 and 4 show the histograms of the value 
( )βα −−1  for the dysarthric and normal speaker, 
respectively. Since the estimated values of the parameters 
α  and β  reflect the coarticulatory effects of the 

consonants C  and C ′  on the vowel V , the value 
( )βα −−1  can be interpreted as the weight of the vowel’s 

contribution to the formant trajectory and hence can be 
used as an indicator of the degree of coarticulatory 
effects. The figures show that the distribution of 
( )βα −−1  concentrates around 1 for the normal speaker, 

and has a wide spread for the dysarthric speaker. This 
shows that the speech of the dysarthric speaker is more 
coarticulated than the normal speech. 

IV. DISCUSSION AND CONCLUSION

In summary, an approach to formant analysis was 
presented that decomposes the contributions of target 
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Figure 3. Distribution of coarticulatory factor values 
(dysarthric speech.) 

formants and coarticulatory effects on the formant 
trajectories of CVC  syllables. The approach adopts a 
linear superposition model to describe formant 
trajectories. Using the method, target formants and 
coarticulatory factors can be estimated from speech data.  

Using the method, we analyzed the speech data of a 
dysarthric speaker and a normal speaker to gain insight in 
the relative contributions of three factors that may be 
responsible for reduced intelligibility of dysarthric 
speech: target shift, coarticulation, and random 
variability. The results from this preliminary experiment 
revealed systematic differences between the two 
speakers. The target vowel space of the dysarthric 
speaker exhibits a specific distortion pattern of vowel 
production, but was surprisingly similar to the target 
space of the normal speaker. The analysis results also 
show a larger degree of coarticulatory effects in the 
speech of this dysarthric speaker, and more random 
variability. 

The analysis results show that intelligibility 
enhancement may critically need algorithms for the “de-
coarticulation” of dysarthric speech. In principle, if the 
system can recognize aspects of vowel environments, 
such as the place of articulation of surrounding 
consonants, this could be accomplished by applying Eq. 
(2) in reverse to recovered the true vowel formants from 
the observed formants and the inferred consonant targets. 

We note that the model is extremely simple. For 
example, it assumes the same coarticulatory factor for the 
three formants at a certain time. This assumption does not 
necessarily hold. 
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Abstract: A first attempt at implementing a flexible 
model for the glottal source waveform of pathologic 
voices is described.  The LF (Liljencrants & Fant) 
model is the source model used.  We also add various 
noise types, shimmer and jitter to the excitation 
source in order to replicate more closely the 
pathologic glottal waveform.  Various vocal 
characteristics are then modeled in order to evaluate 
the performance of the glottal source model.  
Keywords: Glottal source modeling, LF model, 
pathologic voice. 

I. INTRODUCTION 

It has long been accepted that in-order to achieve 
natural sounding synthetic speech an accurate and 
versatile model of the voice source is needed.  To this end 
a considerable amount of research has gone into trying to 
achieve a suitable glottal flow model for normal quality 
voice.  However besides a few exceptions [1,2,3], there 
have been relatively few attempts reported to synthesise 
pathologic voice and to create an adequate glottal flow 
model for this purpose.  As pointed out in [4], synthetic 
pathological voices could be useful for the introduction of 
a standard protocol for pathological voice quality 
assessment.  The voice source that will be used for this 
study will be based on the LF model.  This widely used 
model is chosen as it has relatively few controlling 
parameters yet is flexible enough to model a lot of 
different phonations.  It was found in [3] that the LF 
model was quite capable of modeling variations that 
occur in speech pathology and that a more complex 
model was not needed.    

Our purpose in this study is to implement a flexible 
glottal source model that may then be built upon to 
achieve an accurate speech synthesiser for pathologic 
voice. 

II. GLOTTAL SOURCE MODEL

Traditionally there have been basically three types of 
excitation sources used in order to synthesise speech [5].  
Impulse excitation with a glottal shaping filter is 
relatively simple however the vocal quality is poor and 
often fails to adequately reproduce characteristics of 
natural voicing.  The second type is glottal waveforms 
calculated by inverse filtering.  Although this type of 
excitation is of better quality than the first type, it is 

unsuitable to some situations as existing speech must be 
available and also the recorded data must be of a very 
high quality.  The third type of excitation source is 
excitation waveform models, which most of the recent 
research in this area have used.  This type is flexible, easy 
to use and can produce high quality natural sounding 
speech. 

In [5] it was found that four factors were important 
for the characterisation of different voice production 
types.  These were: the glottal pulse width, the glottal 
pulse skewness (the ratio of the glottal opening phase to 
the glottal closing phase), the abruptness of glottal 
closure and the turbulent noise component.   

The LF model was therefore chosen as it has the 
ability to easily control the first three of these factors, and 
the fourth factor could be modeled by an added noise 
source.  The LF Model is a four-parameter model that 
models the differentiated glottal flow [6].  The glottal 
flow derivative is chosen, as it is easier to identify points 
of interest of the glottal flow on its derivative.  For 
instance it is easier to identify the moments of glottal 
onset and closure on the differentiated glottal flow than 
on the glottal flow waveform.  The LF model is a 
combination of a growing sinusoid and an exponential. 

Fig 1: LF Model 
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The glottal waveform is given by:   
teEtE g

t ωα sin)( 0=         ( )ett ≤≤0   (1) 
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The four timing parameters are tc, tp, te and ta.  The 
parameter tc is the instance of the complete glottal 
closure, tp is the instance of maximum glottal flow 
(corresponds to the zero-crossing in the differentiated 
glottal flow).  The parameter te is the maximum negative 
of the differentiated glottal flow waveform, while ta
which doesn’t have an exact physical correspondence as 
such is found by projecting a tangent of the return phase 
back to the time axis. This parameter determines how 
quickly the exponential phase returns to zero. The 
following conditions hold for the LF model: 
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where α is the parameter used to ensure that the glottal 
pulse returns to zero at closure and ε is the decay constant 
of the exponential phase. 

 The open quotient of a glottal pulse is defined as the 
open glottal period divided by the total pitch period.  The 
open quotient is primarily determined by the glottal pulse 
width.  For the LF model the open quotient can be 
defined as: 

0
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T
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where k is a function of ta, and will have a range of 2 to 3 
when ta is between 0 and 10% of the pitch period.   

The speed quotient is defined as a measure of the 
glottal pulse skewness, and is found for the LF model by: 
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Often te + kta is almost equal to tc and may be used in the 
above equations.  Finally the abruptness of the glottal 
closure is controlled by the parameter ta. With a small ta
value causing a abrupt glottal closure and visa-versa.   

Aspiration noise is the term given to noise that is 
generated at the glottis during voiced speech; it occurs 
especially when glottal closure is incomplete and when 

there is high airflow velocity.  It is an important 
component in the perception of breathy vocal quality.  

 In order to synthesise the voice source of a 
pathologic voice an adequate noise source will be needed. 
Because of the different patterns of noise that is 
associated with pathologic voice, there will be some 
choice in the type of noise that can be added to the 
source.    

• Additive random noise:  This noise source will 
be superimposed on to the voice source.  This is 
the type of noise that is used in most 
synthesizers for normal voice.  This noise is 
white Gaussian noise.  It is possible to add this 
to the whole background of the glottal flow as 
well as just in noise bursts in specific parts.  In 
[5] it is stated that the energy of the turbulent 
noise is distributed over a wide range of 
frequencies (2-8 kHz).  Therefore the noise is 
filtered through a high-pass first order FIR filter 
with a cutoff frequency of 2 kHz.   There are 
also two gain parameters (one to control the 
noise over the whole speech segment and one to 
control the noise for noise bursts) that control 
the amplitude of the noise added.  These gain 
parameters are calculated as a percentage of the 
energy of the glottal pulse. 

• Multiplicative noise:  This noise is calculated as 
a percentage of the amplitude of the glottal flow, 
therefore most noise will occur at the moment of 
maximum glottal flow. 

Additive random noise is normally introduced in three 
different ways in order to model three distinct conditions 
of turbulent noise production.  The noise may be added so 
that the peak noise occurs at the peak of the glottal flow 
in order to synthesis breathiness.  Also the peak noise 
may be introduced at the glottal flow closure in order to 
synthesise roughness.  Finally the noise may be 
introduced in a non-signal dependent way over the whole 
of the glottal cycle, this could be used in-order to model 
paralysis in one of the vocal folds.  In this study each of 
these types of noise will be able to be modeled.  

If the fundamental frequency is just held constant for 
the duration of the synthesised speech segment, a 
mechanical sound quality would be the result.  Therefore 
perturbations of the fundamental frequency are 
introduced in the form of jitter and shimmer. 

Jitter is defined as the cycle-to-cycle perturbation in 
the fundamental frequency of a signal.  For modal voice a 
typical jitter value would be less than 1%.  Obviously for 
breathy and pathologic voice the jitter can be 
considerably higher.  In this study the jitter that will be 
added to the source, will be calculated using a random 
number generator.   
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Shimmer can be defined as the cycle-to-cycle 
variability in amplitude of the glottal flow waveform.  
For modal voice the shimmer level would be less than 
0.7dB.  In a number of the studies done on glottal pulse 
modeling for normal voice, shimmer is excluded, 
however in modeling the glottal pulses of pathologic 
voice the shimmer level could be quite significant and 
therefore needs to be modeled. 

III. VOCAL TRACT REPRESENTATION

In the source-filter model the source and filter are 
assumed to be non-interactive and linear. For this 
experiment we simply construct the formant synthesizer 
using 6 formant frequencies and bandwidths in order to 
model the vocal tract transfer function, the impulse 
response of which is then convolved with the LF source 
function.  

IV. IMPLEMENTATION

For the LF model, ε is solved iteratively using equation 
(2) using ε = 1/ta as an initial estimate.  Then the area 
under the return phase of the differential glottal flow may 
be calculated.  Since according to equation (3) the area 
under the positive half of the curve must be equal to the 
area in the negative part of the curve, after making an 
initial estimate of α, E0 and α may be also solved 
iteratively.   

In order to implement Shimmer the calculated random 
shimmer levels are added to the glottal source model that 
is calculated without shimmer. 

Jitter is a little more complicated to add in the LF 
model.  Since all the timing parameters of the LF model 
are relative to the pitch period, if a change is made to the 
pitch period it would alter all the timing parameters.  This 
would have a side effect of altering the amplitude of the 
glottal pulse (i.e. introducing shimmer).  Since it is 
important that the exact amount of shimmer that is 
introduced is known, this is unsatisfactory.   In order to 
solve this, the maximum amplitude of the glottal flow 
before the jitter (or shimmer) is introduced, is found.  The 
jitter (calculated using a uniformly distributed random 
number generator) is then added to the pitch period and 
the glottal pulse is calculated for this new pitch period. 
Since now this glottal pulse contains shimmer as well, the 
maximum amplitude of this new glottal flow is calculated 
and the amount of shimmer that the change in the pitch 
period has introduced can be found and compensated for. 

Noise is added to the glottal flow waveform, thus the 
LF model output is integrated, the noise then added and 
finally the resulting waveform derived again, which can 
then be convolved with the vocal-tract function.  First of 
all in-order to implement the additive random noise; gain 
factors will control the level of the noise.  These gain 
factors can be used to control the signal to noise ratio 

(SNR), which is described below.  As mentioned already 
the additive noise may be added to the whole background 
of the glottal waveform, or in certain segments in order to 
simulate a glottal noise burst. The multiplicative noise is 
also calculated with regard to the glottal flow waveform. 
All of these noises can be used together. 
In order to calculate the SNR, the noise that is added to 
the signal is calculated (by subtracting the clean derived 
glottal flow waveform from the noisy one).  The SNR is 
then calculated as 10×log10[S/N], where N and S are the 
noise energy and the clean derived glottal flow energy 
respectively.   

IV. EXPERIMENTS

Experiments were then carried out in-order to evaluate 
the performance of the glottal pulse model. At first this 
evaluation was done using the LF model values used in 
[1].  In that paper, LF model values (plus some 
perturbation measurements) are given that model 
different glottal source pulses for various vocal 
characteristics, such as modal, creaky, breathy, rough and 
hoarse voices.  In-order to model these vocal 
characteristics the sustained vowel /a/ was synthesised. 
The values of the glottal source pulses were held constant 
for the duration of the token.   
Next the differentiated glottal flow waveform was 
calculated for some sustained vowel speech samples of 
various types of pathologic voice taken from the website 
[7].  Inverse-filtering software was used to find the glottal 
flow waveform of these speech samples [8]. It should be 
noted that this software wasn’t designed specifically for 
pathologic voice so that when severe pathologic voice is 
analysed (as in Fig 3), the calculated glottal waveform 
could be quite different from the true glottal waveform. 
As in [3], for some of the voices analysed, high frequency 
formants were prone to being miscalculated, causing 
incorrect ripples on the flow derivative. 

The inverse-filtered differentiated glottal waveform 
was then matched with the LF model waveform using 
both the best visual fit and also using an automatic LF 
fitting method similar to the one described in [9].  In 
order to achieve this automatic LF fitting, initial estimates 
of the LF parameters were found.  Initial estimates for tc,
tp, te, and Ee were relatively easy to obtain, (it was 
assumed that the pitch period was already accurately 
calculated), however an accurate estimate for ta was more 
difficult to achieve.  It was found, similarly to the study 
in [9] that the normalised maximum magnitude of the 
spectrum of the return phase gave a reasonable estimate 
of ta.  Then using the Least-Squares (LS) fit the LF 
parameters were optimised first using the Nelder-Mead 
simplex search method and then with a steepest descent 
algorithm. 
It was found that in most cases the automatic fitting 
technique gave a lower LS error than the best visual fit 
method. 
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Fig 3 shows the comparison of the differentiated 
glottal waveform of a rough breathy male voice and the 
corresponding best-fit LF model waveform.  As can be 
seen the LF model gives a reasonable model of the 
derived differentiated glottal waveform. 

Fig. 3 - Differentiated Glottal Flow: Inverse Filtered vs. 
Automatic LF Model Fit 

The LF was applied to various speech pathology 
samples.  In most cases when an appropriate glottal 
waveform was calculated, the LF model provided a 
reasonable approximation.   However in some cases the 
LF model is unable to provide an accurate model of the 
derived differentiated glottal waveform 

With each of the speech files that was analysed, an 
attempt was also made to synthesise the speech, however 
even though for most cases the LF model gave a 
reasonably accurate model of the source, there was a 
considerable difference between the actual speech and the 
synthesised speech.  

IV. DISCUSSION
In the study [3], 3 different ways (least-squares fit, best 
visual fit and best perceptual fit) of matching LF model 
waveforms to filtered sources were examined.  For the 
perceptual fit, an attempt was made to produce the best 
perceptual match of the target voice without regard to the 
calculated glottal flow derivative.  It was shown that the 
best perceptual fit even though in some cases a good deal 
different from the calculated glottal flow derivative gave 
the best match to the original voice.  The conclusion that 
was made was that there isn’t always enough information 
about the source in the output of the inverse filter to 
reconstruct vocal quality adequately.  This would seem to 
reflect the fact that in this study when attempts were 
made to re-synthesise the speech with the LF model Fit 
the results were disappointing.   

This is only a preliminary study and a lot more 
research is needed to achieve an adequate glottal source 
model for various voice disorders.  More research will be 
needed on disorder specific modeling.  It is intended to 
perform EGG and video-stroboscopy recordings on 
various subjects with voice disorders, which will then be 

used to create closer models of these specific voice 
disorders.  

V. CONCLUSION
The glottal source model that is implemented here 
performed reasonably well in synthesising sustained 
vowels for a variety of voice types.  Along with the LF 
model parameters, the perturbations effects that may be 
added to the glottal source allow for a large variety of 
vocal characteristics to be modeled.  However when 
attempts were made to re-synthesise existing sustained 
vowel segments of pathological voices, although the 
glottal waveform matched reasonably well, the results 
were rather disappointing when the two speech files were 
compared.  Therefore more research is needed in order to 
examine the accuracy of using the output of the inverse 
filter as a sole model of the vocal source.  Also in order to 
achieve a better glottal source model more research is 
needed into the modeling of in-complete closures of the 
glottis. 
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Abstract The key elements in generating speech are 
the vocal folds and the vocal tract. This paper deals 
with the modelling of the creation of Czech vowels 
by means of  vocal folds model and the models of the 
vocal tracts. The folds model was devised by using 
the finite elements method and vocal tract models 
were designed by means of magnetic resonance. 
Source sound created by means of the “air bubbles” 
method was modified by the transfer function of 
vocal tracts. Models were applied both in time and 
frequency domains. Spectral analysis of the signal 
was carried out and completed in the area of  the  
mouth and it was crowned by the spectra of vowels 
/a/,/i/,/o/ with marked formants. 
Keywords :  vowels, transfer function, spectrum, 
formants 

I. INTRODUCTION 

Aural perception enables us to distinguish the vowels 
whose creation can be explained by the theory of the 
source of the sound and the filter. Under the source we 
understand sound spectrum produced as a result of 
periodic movement of the folds in interaction with the 
air. Under the filter we understand vocal tract the shape 
of which is changing depending on the requirements of 
the person producing sounds. People perceive vowels 
based on the two lowest natural frequencies of the vocal 
tract. These natural frequencies are called formants. 
Therefore, the key elements in generating speech are 
vocal folds and the vocal tract that, through the change 
of its shape, modifies its own natural frequencies. The 
author of the paper [1] has described the new method of 
producing the source sound by means of air „bubbles“. 
Our aim is to prove that the model is functional and that 
using it enables modelling of Czech vowels when 
speaking aloud. 

II. METHODOLOGY 

The vowels possess the highest energy of a signal 
(sound, speech) and have their specific properties. 
When we utilise modelling for the analysis of the signal, 
i.e. via analysis of the signal in the mouth area of the 
modelled vocal tract, we are able to distinguish the 
formants of spoken vowels.  

The vocal tract is modelled on the basis of shapes of the 
vocal tracts generated by the method of magnetic 
resonance. By utilising such procedure, finite-element 
models of the vocal tracts for pronouncing vowels 
/a/,/i/,/o/ were created. For adults, the range of formants 
of specific vowels is always similar. 

The movement of the vocal folds has been identified 
by means of a defined subglottal pressure loop as 
presented in Fig. 1, in relation to a minimum gap 
between the vocal folds (glottis). Based on this relation, 
with the known integration time step of the transition 
analysis, the time dependence of the subglottal pressure 
(see Fig. 2) and a minimum gap between the vocal folds 
(see Fig. 3) were determined. The latter curve 
corresponds to a flow Ug. If the flow is derived the 
volume acceleration is obtained (Fig. 4).  The models of 
the vocal tracts were driven by this volume acceleration 
dUg. 

Fig. 1  Subglottal pressure in relation to the glottis 

As mentioned before, our aim is to demonstrate that 
the vocal folds drive considered here is able to create 
the spectrum of the voice source and further, that the 
vocal tract (filter) can reshape a spectrum on the outlet 
in the mouth area. The spectrum must correspond to the 
vowel pronounced. 

III. RESULTS
The experiment is carried out both in time and in the 
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Fig. 2 Subglottal pressure in relation to time 

Fig. 3 Calculated minimum gap Ug between the folds 

Fig. 4 Derivation of minimum gap  dUg 

frequency domains. The spectrum of the source should 
by reshaped by the filter. This means that if any of the 
natural frequencies of the vocal tract is identical with 
any of the harmonic of the source, this will affect its 
amplification. The vowel sound, if it appears in the 

speech is distinguished by the relative sizes of its 
harmonic. The individual vowels have harmonics, 
which have higher amplitudes close to the formants 
(resonance frequencies), or some of them are amplified 
directly by the filter. 

Along with the change of tone height, the basic 
frequency of the folds and the distance of the harmonic 
elements [3] are changed, but the formants remain in the 
same places. Fig. 5 shows the spectrum of the source, 
determined by means of Fourier´s analysis of the course 
of volume acceleration on the figure Fig.4. The first 
harmonic is 546 Hz. Fig. 6 shows the transfer function 
(filter) of vowel /a/. 

Fig. 5 Spectrum of the source, basic frequency F0=546 
Hz

Fig. 6 Transfer function of vowel /a/ 

 During the modelling of the vocal tracts, radiation 
impedance was included in the mouth area according to 
„Levin & Schwinger“ formula 
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Where  is mass density, c sound speed, k wave 
number, a opening of mouth. That allowed calculation 
of the acoustic pressures in the mouth area during 
phonation.  
The results of the simulation are shown in Fig. 7 –  the 
case of pronouncing of vowel /a/. 

Fig. 7 Acoustic pressure in the course of pronouncing 
vowel /a/ 

Fig. 8 Reshaping the source spectrum by the filter of the  
vocal tract  /a/ 

It is obvious from Fig. 8 that, in accordance with the 
theory, those harmonic components of the source that 
are near the resonance frequencies of the filter of the 
vocal tract are amplified. E.g. according to transfer 
function, the first formant of the vowel /a/ is F1=612 Hz 
and the basic harmonic component of the source that is 
equal to 546 Hz is amplified, and the second formant is 
F2=1040 Hz and the second harmonic component of the 
source 1093 Hz is amplified. It is clear that the filter 
parameters cannot be constant, but they change as a 
result of movements of the articulators (tongue, 
jawbones etc.). Reshaping by means of the filter takes 
place in the frequency domain. Filter characteristics 
differ in the peaks of the transfer functions. These 
correspond to the natural  frequencies of the vocal tracts 

for different vowels. The first two formants have a high 
level of correspondence, while the higher frequencies 
are comparatively more distinctly shifted.  

Fig. 9 Acoustic pressure in the course of pronouncing 
vowel /i/ 
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The first formant of the vowel /i/ is F1=246 Hz, the 
second one is F2=2275 Hz. These two formants are 
wide apart as shown in Fig. 10. Formants F3=3431 Hz 
and F4=3844 Hz are close to each other and they can be 
mutually affected. The first harmonic of the source 
cannot be amplified by the filter /i/ since it is very far 
from the first formant F1. The difference is only 
reached at the level of   221 Hz according to Fig. 10. 

Based on the harmonic analysis the following 
formants were identified for vowel /o/: F1=516 Hz, 
F2=798 Hz, F3=2721 Hz and F4=3437 Hz. The first 
harmonic of the source is 546 Hz. The first formant of  
vowel  /o/ is 516 Hz. The two frequencies are very close 
to each other and therefore this harmonic component is 
significantly amplified as shown in Fig. 12. Also the 
fifth and seventh harmonic elements of the source are 
amplified.  
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Fig. 11 Acoustic pressure when pronouncing vowel /o/ 

Fig. 12 Reforming of the source spectrum by the filter 
of the vocal tract  /o/ 

IV. DISCUSSION

Although all the vowels are excited by the same basic 
frequency of F0=546 Hz, their spectra differ on the 
outlet as a result of the different shapes of the vocal 
tract. The spectrum on the outlet is primarily 
determined by the resonance frequencies of the cavities 
and therefore by their shapes during articulation. 

The harmonic components of the source are 
amplified near the mouth by the resonance frequencies 
and those components that are farther from the 
resonance frequencies lose energy. As an example, the 
first harmonic component of the source is 546 Hz 
(Fig.12) and the first natural frequency (first formant) of 
the vocal tract for vowel /o/ is 516 Hz. As they are very 
close to each other, the amplification is significant.  

V. CONCLUSION

The primary source for generating vowels spoken aloud 
are the periodic movements of the vocal folds. 

The model which was created by means of finite 
element method, was examined by loading it with 
subglottal pressure in relation to a minimum gap 
between the moving folds as shown in Fig. 1, where 
pressures are : PG1 just opened, PG2 just closed, PG0 
beginning subglottal pressure. By means of  this 
procedure we were able to achieve a substantial 
similarity of the phases of the vocal folds movements.  

Fig. 13 Calculation model of the vocal folds 

The time course of the gap between the folds 
corresponds to the course of the volume velocity and its 
derivative. Pressure wave with the spectrum 
corresponding to single vowel arises around mouth area. 
We can conclude that the modelling of the creation of 
the Czech vowels by means  of the model defined about 
produces spectra that correspond to those identified by 
the measurements. 
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Abstract: In this paper we tried to examine the effect 
of normalization on discriminating the pathological 
voice into normal and abnormal classes using 
artificial neural network. Average values per each 
parameter were used to normalize each set of 
parameter values. Artificial neural network was used 
as a classifier. And the effect of normalization was 
evaluated by comparing the discrimination results 
between original and normalized parameter sets.
Keywords: Normalization, pathological, discrimination, 
neural network 

I. INTRODUCTION

These days there are many attempts to analyze and 
discriminate the pathological and normal voice by the 
original parameters (Jitter, Shimmer, NHR, SPI, etc.). 
The major purpose of such researches is to obtain some 
good standards and methods to classify and diagnose the 
patients who have diseases on their vocal folds. 
[1][2][3][4][5][6] 

Even though there are some previous researches about 
discrimination of pathological voice, those only utilize 
original parameters’ values as the data. Also artificial 
neural network has been widely used as a classifier 
because of random and complex characteristics of the 
pathological voice parameters. But the differences of the 
ranges of values among these parameters’ magnitudes are 
very large. When bigger values and relatively much 
smaller values are input into the network for training at 
the same time, the effect of the parameters with the 
different magnitudes is not checked yet.  

In this paper we suggest a normalization method to 
scale each parameter group’s values and measure the 
effect of normalization by the classification rate from the 
artificial neural network.  

II. DATA COLLECTION 

To collect original voice data, collection system was 
installed in a room of the ENT department of hospital. 
The recording process was performed semi-automatically 
with the intervention of operator to control the quality 
and procedure. Also the voice materials from the same 
speaker were collected using DAT and CSL. [7][8] The 
sampling rate was 50 KHz and the resolution 16 bits. The 
collection was conducted in a hospital soundproof room. 
All the subjects were asked to pronounce /a/. Patient ages 

ranged between 23 and 75. Total voice data included 41 
normal cases (33 males and 8 females), 59 pathological 
cases (43 males and 16 females) after removing invalid 
data from the raw data sets. The vocal diseases 
considered consisted of Vocal Polyposis, Hyperadduction,
Vocal Cord Palsy, Vocal Nodule and Glottic Cancer etc. 
The parameters used are Jitter, Shimmer, NHR (Noise-to-
Harmonic Ratio), SPI (Soft Phonation Index), APQ 
(Amplitude Perturbation Quotient) and RAP (Relative 
Average Perturbation). They were the 6 different kinds of 
parameters. [3] 

III. NORMALIZATION

It is known that the units and magnitude ranges of the 
parameters Jitter, Shimmer, NHR, SPI, APQ, RAP, STD 
etc. are different. For example, Jitter is a percentage value 
but STD’s unit is in Hz. And Shimmer’s magnitude is 
much bigger than that of NHR. In the above, the 
measured parameter is 30.659 in one case of Shimmer, 
but 0.1296 in another case of NHR. As seen, there is 
great difference between these two parameters’ 
magnitudes. When using an artificial neural network as a 
classifier with different parameters input, parameters with 
bigger value range may affect the classification rate more 
than those with smaller one.  

Now in order to let these different parameters have the 
similar magnitude range, we normalized the 100 original 
measured values (41 are the normal data and 59 the 
pathological ones) for each parameter respectively (there 
are 6 kinds of parameters). Then we tried to observe the 
improvement of the classification rate with the 
normalized values comparing to that with the original 
values. By doing so, the effect of normalization can be 
measured and also we can measure how much each 
parameter affects the classification result under 
normalization.  

Equation (1) and (2) shows how it is performed. 
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== 11                                  (1) 

where iP , Ki ≤≤1 , jP , Lj ≤≤1  are the original 
measured values of the normal and the pathological cases 
for parameter q  respectively, K  and Lare the number 
of normal and pathological parameters respectively 
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( K =41 and L=59 in this paper), and qM  is the mean 
value of the parameter q .

q

o
nq M

P
P =                                          (2) 

where oP  and nqP  are the original measured value and 
the corresponding normalized value for the specific 
parameter respectively. Then the normalized value for 
each parameter can be obtained by the equations (1) and 
(2).

After analyzing the collected voice materials using the 
analyzer and the above normalization method, we 
obtained the 6 different kinds of parameters (Jitter, 
Shimmer, NHR, SPI, APQ and RAP) which had the 
original measured values and especially the 
corresponding normalized values in this paper. And there 
were 100 original measured values and 100 
corresponding normalized values for any kind of 
parameter. Also the 6 different kinds of parameters were 
divided into 3 categories according to their characteristics. 
They were pitch related (Jitter, RAP), amplitude related 
(Shimmer, APQ) and noise related (NHR, SPI). [6][7] 

Fig.1 shows the comparisons of the original and 
normalized parameters from the normal and pathological 
voices. The graphs show the relative change of each 
parameter when DAT parameters are considered 1. [7] 
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 (b)   Original pathological parameter data 

�

���

���

���

���

�

���

���

������� ���	��� 
�� ��� ������ ������

����

(c)   Normalized normal parameter data 
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(d)   Normalized pathological parameter data 
Fig .1 The comparisons of the original and normalized 

parameters 

IV. EXPERIMENTS AND RESULTS

As a classifier of this experiment, three layered 
artificial neural network was used. The number of input 
layers was varied from 3 to 6 to find the optimal set of 
parameters. The number of output layers was fixed to 2. 
The number of hidden layers was set 3, 6, and 9 for the 3 
inputs case, and 6, 9, and 12 for the 6 inputs case. [6] 
Because the total number of data was small, we tried to 
train and test the neural network by splitting total data 
sets into two parts. Two thirds of the data were used for 
training. The remaining one third was used for test. In 
each training session, the neural network was trained and 
tested separately using different combination of data sets. 
This was to compensate the small size of the data sets. 

The original and normalized parameters were used to 
train and test the same structure neural network 
respectively. In order to accurately compare the 
difference between the classification results from the 
neural network using the original parameter input and 
that using the normalized parameter input, we must keep 
the same order when the two sets of different parameters 
were inputted into the different neural networks. That was,
the inputting order of normalized parameters was 
corresponding to the original ones. So we could get the 
corresponding classification results. 
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Table.1 shows the classification rate from neural 
network training and testing with 6 parameters. 
Experiments were performed using 3 and 6 parameters 
respectively to see the different effects of the original and 
normalized parameters on discriminating the pathological 
voice into normal and abnormal classes. In case of 3 
parameters, Jitter, Shimmer and NHR were used. And 
additional 3 parameters (SPI, APQ and RAP) were used 
for 6 parameters. There were 24 sets of result data in total.   

V. DISCUSSION

From the experimental result we couldn’t observe the 
significant difference among the corresponding 
classification rates when the original and normalized 
parameters were inputted into the different neural 
networks respectively as shown from table1. The results 
looked very similar. In order to obtained the observation 
results directly, we chose the best classification rate from 
every 24 sets of parameters to plot the changing trend 
curve of the classification rate as shown in Fig.2. In the 
Fig.2, any two sets of corresponding curves were very 
close and there was not big distance between them. But 
slightly better results were obtained for some the neural 
net configurations.  

In the original parameter set, the value range of NHR 
was about 100 times bigger than other parameters. After 
normalization, the range became similar to those of others.  
But the classification result didn’t change much, so NHR 
didn’t play a significant role at the classification. In other 
parameters, the difference of relative change of values 
between before and after normalization was not so big. 
And normalization process didn’t affect the performance 
of the network. 

VI. CONCLUSION 

In this paper we collected pathological voice materials 
using DAT. And the normalization method of the original 
parameters was introduced. Artificial neural network was 
used to classify the voice into normal and abnormal states 
by original and normalized parameters. 

From the experiments we couldn’t observe a 
significant improvement or decrease of performance by 
normalizing parameters with suggested way. And we can 
conclude that normalization process is not necessary for 
the classification of pathological voice when using 
artificial neural network. 

But the total amount of voice data is still not enough to 
generalize the performance and more data collection is 
required.  
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Table.1 The classification rate (%) 
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Fig.2 The changing trend curve of the classification rate 

Original Data Normalized Data Neural Network 
Structure 

Times 
Test Data Training Data Test Data Training Data 

1st Run 87.5000 91.1765 84.3750 97.0588 
2nd Run 84.3750 86.7647 84.3750 97.0588 
3rd Run 84.3750 86.7647 84.3750 86.7647 
4th Run 81.2500 98.5294 78.1250 97.0588 

3 Inputs 
3 Hidden layers 

2 Outputs 
3I3H 

5th Run 81.2500 94.1176 78.1250 95.5882 
1st Run 81.2500 92.6471 84.3750 100.0000 
2nd Run 81.2500 91.1765 81.2500 98.5294 
3rd Run 78.1250 95.5882 78.1250 100.0000 
4th Run 75.0000 100.0000 78.1250 100.0000 

3 Inputs 
6 Hidden layers 

2 Outputs 
3I6H 

5th Run 75.0000 97.0588 78.1250 100.0000 
1st Run 87.5000 98.5294 84.3750 100.0000 
2nd Run 84.3750 100.0000 81.2500 100.0000 
3rd Run 84.3750 94.1176 81.2500 100.0000 
4th Run 78.1250 95.5882 81.2500 97.0588 

3 Inputs 
9 Hidden layers 

2 Outputs 
3I9H 

5th Run 75.0000 100.0000 78.1250 100.0000 
1st Run 81.2500 100.0000 84.3750 100.0000 
2nd Run 78.1250 100.0000 84.3750 100.0000 
3rd Run 75.0000 98.5294 81.2500 100.0000 
4th Run 71.8750 100.0000 81.2500 100.0000 

6 Inputs 
6 Hidden layers 

2 Outputs 
6I6H 

5th Run 71.8750 100.0000 78.1250 100.0000 
1st Run 81.2500 100.0000 87.5000 100.0000 
2nd Run 81.2500 100.0000 84.3750 100.0000 
3rd Run 78.1250 100.0000 81.2500 100.0000 
4th Run 78.1250 100.0000 78.1250 100.0000 

6 Inputs 
9 Hidden layers 

2 Outputs 
6I9H 

5th Run 75.0000 100.0000 75.0000 100.0000 
1st Run 84.3750 97.0588 87.5000 100.0000 
2nd Run 78.1250 100.0000 81.2500 100.0000 
3rd Run 78.1250 100.0000 81.2500 100.0000 
4th Run 78.1250 100.0000 81.2500 100.0000 

6 Inputs 
12 Hidden 

layers 
2 Outputs 

6I12H 5th Run 75.0000 100.0000 78.1250 100.0000 
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Abstract: Cough is an important and present 
symptom in many respiratory diseases affecting the 
airways and lungs. Therefore it is interesting to 
monitor cough in a continuous, on-line way. The 
objective of this study was to test a cough recognition 
algorithm in real pig houses. Cough sounds were 
registered on 150 days old, 60 kg heavy Landrace x 
Large White x Duroc crosses with a microphone 
placed at 20-50cm from the animal. The analysis was 
done on a feature vector, containing energy, time-
derivate energy and mean power spectral density. The 
feature vector was compared to the reference set using 
dynamic time warping. This resulted in a correct 
classification of 90%. 

Keywords: Sound analysis, Cough, Diagnostic 
system, Health management. 

I. INTRODUCTION

Health care management is a critical and demanding 
issue in current livestock production. Discarding the 
economic cost related to large scale diseases early 
detection of diseases is important considering public 
health care issues like reducing antibiotics residuals. Also 
for reasons of animal welfare and monitoring and tracing 
of the food production chain, online disease monitoring is 
important. Therefore currently great effort is spent to the 
development and application of sensors and sensing 
techniques for diagnosis in the agricultural sector [1].  
With respect to objective and automated detection of 
respiratory diseases in livestock, it has been shown that 
artificial intelligence is successfully applicable to obtain 
automated cough recognition from free field cough 
recognition. In [2,3,4] an accurate algorithm is presented 
to detect citric acid induced coughing originating from 
healthy individual piglets. In an intelligent free field 
recognizer is proposed to distinguish between coughing is 
evoked in absence or presence of a respiratory infection 
[5]. Although the mentioned references firmly emphasize 

the applicability of sound analysis in order to obtain an 
early, objective, contact less and continuous alarm system 
for coughing, the results are obtained on a database which 
is registered on individual subjects housed in a laboratory 
test-installation consisting of a laboratory inhalation-
chamber. The test-installation, detailed in [5,6], allows to 
control environmental housing conditions, medical 
follow-up and to reduce environmental noises. So cough 
sounds are registered in optimal environmental sound 
conditions. Therefore the performance of the developed 
algorithms to recognize cough in field conditions needs to 
be assessed in order to validate the usage of sound 
analysis in livestock health management. The objective of 
this study was to test a cough recognition algorithm in 
real pig houses field conditions. 

II. METHODOLOGY

Data capturing in field conditions: Experimental data 
were obtained in swine housing for finishing pigs 
assigned to the Parma ham production in Northern Italy. 

Animals: The pigs (Landrace x Large White x Duroc 
crosses for Parma ham production) were in the first 
period of the finishing phase, their mean weight was 
around 60 kg and their mean age was 150 days. The farm 
was composed of three barns for piglets, sows, and 
finishing pigs. The barn for finishing pigs was an open-
space 8,3 m x 83 m wide, it was subdivided in 16 boxes 6 
x 5 m wide, and each boxes had a dunging area 1,3 m x 5 
wide containing 50 pigs each. The boxes were delimited 
by a little wall in concrete, 1m high and 20 cm thick. 

Sick pigs affected by cough, were confined in the six 
final boxes, in order to separate them from the healthy 
ones. A serological assay on blood sample to verify the 
presence of Pleuropneumonitis antibodies has been 
conducted on sick pigs to verify the source of coughing. 
After the slaughtering, Pleuropolmonitis was confirmed 
by the autopsy examine performed by the farm 
veterinarian. The average daily gain (ADG) in healthy 
pigs was 653 g/die, while the sick pigs showed a lower 
ADG calculated in 437 g/die. 

AUTOMATIC DETECTION OF CHRONIC PIG COUGHING FROM 
CONTINUOUS REGISTRATION IN FIELD SITUATIONS 
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Measurements: Pigs cough was recorded using a 
microphone linked to a portable computer. The operator, 
standing in the box, among pigs, recorded the coughs 
putting the microphone at 20-50 cm from the animal. In 
total, 44 cough attacks have been recorded from different 
animals in almost 4 hours. 

Signal analysis: The applied signal analysis part 
consists of two main issues. Firstly individual sounds are 
objectively searched in the continuous sound 
registrations. Secondly suitable sound features are 
extracted to present to the classification algorithm given 
in the following subsection.

Individual sounds are retrieved by applying a threshold 
to the signal energy. The signal energy is calculated on 
signal-frames of 0.01s. The energy threshold is initiated 
with the energy level at the beginning at the signal, which 
is assumed to be silent.  The threshold level is allowed to 
change smoothly in accordance with the variation in 
energy-level of the signal. 

Continuous signal

Y(t)

Sampling: 22.5 kHz = 1/T

Y[i] = y(i.T)

Frame energy

(For every 10ms frame)

E = y[i].y[i]

Energy threshold
for begin and end 

detection

Framing: 30ms 
windows with 10ms 

overlap

Hamming window:

h[i]=0.54-0.46cos(2i /N)

Energy

E[k] = w[i].w[i]

Time-derivate of 
energy:

E[k] = 0.05(-2E[k-2]-
E[k-1]+E[k+1]+2E[k])

Mean power spectral 
density: W[k]

Feature vector:

F = { E[k], E[k], W[k] }

Fig. 1: Overview of the performed signal analysis. 

In general, more objective, automated interpretation of 
respiratory related sounds is obtained considering the 
spectral power of the sound samples [7]. Spectral features 
are estimated by applying the discrete Fourier transform 
(DFT) or by averaging spectral estimates on the 
windowed N-element sound samples. In the last case N-
element sample-parts are obtained by overlapping 
consecutive windows of width N. The relevance of 
frequency features towards the automated cough 
identification is shown in [2,5,8,9]. In [5,9] the averaged 

spectra are successfully used to distinguish between 
cough sounds originating from pathological and non-
pathological subjects. In [2] averaged spectral features 
are employed to classify between citric acid induced 
cough sounds and other sounds. 

Therefore in the current work spectral features are 
determined for the frequency range from 3 kHz up to 6 
kHz on 30msec frames computed every 10msec. To 
consider the transient time behaviour in the cough, for 
each frame sound energy derivatives are added to the 
spectral features. 

For clarity the consecutive steps in signal analysis are 
listed in the schematically in Fig. 1. 

Classification: Cough sound recognition is assessed 
with dynamic programming i.e. ‘dynamic time warping 
(DTW)’ [10,11]. As indicated before, each sound is 
divided into frames of equal length and the features of 
each frame are stored in a feature vector. Thus, each 
sound is represented by a sequence of data feature vectors 
that form a sound template. The different duration of the 
cough sound results from non-uniform stretching and 
compression of the various portions in the cough sound. 
Consequently simple linear time alignment is not 
appropriate to compare two sounds of unequal duration. 
In order to compare two sound templates, the DTW 
algorithm uses one of them as a test pattern and the other 
one as a reference pattern. Taking frame by frame of the 
test sound template, DTW looks for the frame-path in the 
training template that results in the minimum distortion.  
For each test frame a set of specified frames in the 
training template is allowed for comparison. The set of 
allowed frames is determined by local continuity and 
monotonicity constraints. The constraints are imposed 
such that the temporal order in which frames occur is 
significant. Represent the sequence of data feature 
vectors from the test template by X=(x1,x2,...,xTx)

and from the training template by Y=(y1,y2,...,yTy).
Define two warping functions φx and φy which relates 

the indices of the test and training frames, respectively 
ix== 1, 2, …, Tx and iy= 1, 2, …, Ty, to a common time 
axis k=1, 2, ….,T so that ix=φx(k), iy=φy(k) and φ=(φx,φy)
the function pair specifying the path. A global pattern 
dissimilarity measure between the test and training 
sequence dφ(X,Y) is than defined as the accumulated 
distortion over the entire sound utterance or sequence as 

∑
= Φ

ΦΦ=
T

1k
)()( M

m(k))y,d(xY)(X,d kk yx
   (1) 

with d the Euclidean distance, m(k)>0 a path weight 
coefficient and Mφ, a normalizing factor.  In this paper 
local and global Itakura path constraints are applied 
allowing φx(k+1), φy(k+1) to take respectively the values 
{φx(k)+1} and {φy(k) ,φy(k)+1,φy(k)+2} while 
φx(k+2)=φx(k) is excluded. Depending on the value of 
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φy(k+1)∈{φy(k) ,φy(k)+1,φy(k)+2} the weight coefficient 
m(k) takes respectively the value 1.5, 1 and 1.5. The 
global path constraints specifies the range of the points 
(ix,iy) which can be reached from the beginning point 
(1,1) via an allowable path according to the local 
constraints and the range of points that have a legal path 
to the ending point (Tx,Ty).  This is expressed as follows: 

.
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+
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Where Qmax and Qmin denote the values of maximum 
and minimum path expansion to Qmax=2 and Qmin =0.5.

During the recognition phase the template of the test 
sound X is compared to each template in the set of 
training templates using the DTW algorithm. The training 
template Y producing the minimum distortion, i.e.  

Y))(X,(dminY)d(X, =       (3), 

determines the classification output. 

III. RESULTS

From Continuous Sound Registration To Individual 
Sounds: 

Table 1: The continuous sound registration, described 
in the methodology subsection: 

Number of on-line 
registered sound files 

44 files 

Duration Min: 3.2 s / Max: 23.2 s / 
Average: 9.7 s 

Number of individual 
sounds 

592 sounds 

Number of coughs 159 sounds (27 %) 
Number of other 
sounds 

433 sounds (73 %) 

An exemplar of a continuous sound registration with 
duration 19.2s is given in Fig. 2. Since the sound 
registration implies no signal pre-processing at first, 
individual sounds are retrieved from the continuous 
registration. 

Since the number of involved continuous registrations 
(44) is limited, all sound files are manually listened and 
visually inspected to validate the individual sound 
detection. In particular it is required that all cough events 
are detected as individual sound. If not, an error is 
introduced preceding the effectual classification approach 
outlined in the methodology subsection. In the continuous 
registration depicted in Fig. 1, 32 individual sounds are 
detected automatically of which 19 cough sounds. This 
number coincides with the auditively detected number of 
coughs. The detection of individual sound events is 

illustrated in Fig. 2. Individual sounds retrieved from the 
first 9.6s from the continuous sound registration shown 
on top of Fig. are indicated.  

Fig. 2: Exemplar of 19.2s continuous sound registration 

Fig. 3: Individual sounds retrieved from the first 9.6s 
from the continuous sound registration shown on top of 
Fig. 2. The beginning of an individual sound is indicated 
with a vertical line and a triangle (A), the end of an 
individual sound is indicated with a vertical line and a 
circle (o). 

Fig. 4: Spectrogram for the first 9.6s from the continuous 
sound registration shown on top of Fig. 2. 
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The beginning of an individual sound event is pointed 
out with a vertical line and a triangle ( ), the end of an 
individual sound is indicated with a vertical line and a 
circle (o). 

In total a database of 592 individual sound events is 
objectively and automated obtained from the on-line 
continuous sound registrations under field conditions. 
From the total database 159 individual sounds or 27% 
involve cough events. The other 433 individual sounds or 
73% comprise no cough events but contain mostly 
vocalisation sounds and background noises. 

Scoring: The spectrogram for the first 9.6s from the 
continuous sound registration is shown on top of Fig. 2. 
Recognition performance is assessed applying the 'leave-
10-out' method. The classifier is trained using all 
individual cough events except 10%. The remaining 10% 
is used for testing. The method is repeated until the entire 
database is tested. This method is known to provide a 
good estimation of the error in case of small databases.   

To illustrate the features, the spectrogram for the first 
9.6s from the continuous sound registration (shown on 
top of Fig. 2) is shown in Fig. 4. Limiting the spectral 
frequency to the range from 3kHz to 6kHz allows to 
eliminate low-frequency noises from mechanical origin 
while, as depicted in the spectrogram, the cough sound 
exhibits an important energy-peak in this range. 

IV. DISCUSSION

The accuracy of the cough recognition with the 
features and classification approach described in the 
methodology yields 90%. The recognition performance 
didn't depend on the test set and so reaches the same 
value for all repetitions. This is 4% lower than the 
recognition rate obtained in case of citric acid induced 
coughing [2, 3, 4]. Several factors contribute to the lower 
recognition rate. Firstly the data are registered in field 
conditions and not in a laboratory set-up as was the case 
in previous work. Secondly in contrast to the results 
presented in previous work, individual sounds are 

objectively and automated detected from the continuous 
and on-line sound registrations. 

V. CONCLUSION

In this research it was demonstrated that the 
combination of on-line measured sound information by 
means of a cheap microphone with a cough sound 
recognition algorithm, can be used to monitor the health 
status of pigs in field conditions. The cough recognition 
algorithm was tested on 44 sound files recorded in field 
conditions. Cough could be classified successfully with 
an accuracy of 90%. 

ACKNOWLEDGMENTS

We thank the “Riva” farm (LO) for the availability. 
Research funded by MIUR COFIN 40 %, 2001-2003 

REFERENCES

[1] I. Tothill, "Biosensors developments and potential 
applications in the agricultural diagnosis sector," 
Computers and Electronics in Agriculture, vol. 30, pp. 
205-218, 2001. 

[2] A. V. Hirtum and D. Berckmans, "Fuzzy approach 
for improved recognition of citric acid induced piglet 
coughing from continuous registration," J. Sound and 
Vibration, in press. 

[3] A. V. Hirtum and D. Berckmans, "Objective 
recognition of cough-sound as biomarker for aerial 
pollutants," International Journal of Indoor Air Quality 
and Health, in press. 

[4] D. Moshou, A. Chedad, A. V. Hirtum, J. D. 
Baerdemaeker, D. Berckmans, and H. Ramon, "Neural 
recognition system for swine cough," Mathematics and 
Computers in Simulation, vol. 56, pp. 475^87, 2001. 

[5] A. V. Hirtum and D. Berckmans, "Intelligent free 
field cough sound recognition," Proc. ICONS'03, Faro, 
Portugal, pp. 453-58, 2003. 

[6] B. Urbain, J. Provoust, D. Beerens, O. Michel, B. 
Nicks, M. Ansay, and P. Gustin, "Chronic exposure of 

pigs to airborne dust and endotoxins in an environmental 
chamber," Veterinary Research Communications, vol. 27, 
pp. 569-578, 1996. 

[7] M. Oud, E. Dooijes, S. Taring, and S. van der Zee, 
"Asthmatic airways obstruction assessment based on 
detailed analysis of respiratory sound spectra", IEEE 
transactions on biomedical engineering, vol. 47(11), pp. 
1450-1455, 2000. 

[8] Y. Hiew, J. Smith, J. Earis, B. Cheetham, and A. 
Woodcock, "Dsp algorithm for cough identification and 
counting," Proc. ICASSP'02, Orlando, Florida, pp. 3888-
3891, 2002. 

[9] A. V. Hirtum and D. Berckmans, "Automated 
recognition of spontaneous versus voluntary cough," 

Medical engineering & physics, vol. 24, pp. 541-545, 
2002.

[10] J. Deller, J. Proakis, and J. Hansen, Discrete-time 
processing of speech signals, Prentice Hall, New Jersey, 
1993.

[11] L. Rabiner and B. Juang, Fundamentals of speech 
recognition, Prentice Hall, New Jersey, 1993. 



3rd International Workshop MAVEBA 2003, 255-258
© Firenze University Press 2003, ISBN 88-8453-154-3 

Abstract: Approximate entropy (ApEn) adapted to 
quantify the pattern complexity across the electro-
glottogram (EGG) spectral domain characterizes 
normal male vowel phonation in two groups, a 
majority group (G1) with high ApEn and a minority 
group (G2) with low ApEn.  Using the ApEn measure 
of normality a sample of post-treatment male 
oncology patients with adult onset growth hormone 
deficiency (GHD) shows distinctive spectral entropy 
signatures. These are consistent with either disrupted 
larynx development in relative youth, with high 
normal-group G1 complexity and elevated pitch, or 
loss of conscious control in middle age, with low 
normal group G2 or worse complexity.  This is at least 
initial evidence that speech perturbation may be of 
value in detecting the adult GHD in oncology. 

Keywords :  Speech, Complexity, Endocrine, 
Disruption, Oncology 

I. INTRODUCTION 

It is well known that severe growth hormone deficiency 
(GHD) has a substantial impact on the growth of children 
and is subsequently reflected in a pronounced deficit of 
skeletal mass in adult life. It is perhaps less well known 
that GHD, acquired as an adult, strongly affects body 
composition as well as the continued health of the 
skeleton, cardiovascular risk and quality of life. In the 
context of quality of life in adult acquired GHD there is 
anecdotal evidence that subtle speech perturbation 
becomes noticeable but the quality of the perturbation 
depends on the timing of the onset of GHD. Thus we 
have conducted objective speech studies in four adult 
male oncology patients who acquired GHD in adult life. 
The group was measured against normal voicing adult 
male and female cohorts using a single-parameter 
measure of normality, which has recently been developed 
[1]. It was felt that such a study would provide useful 
information regarding the impact of GHD status on the 
development of the larynx and maintenance of speech 
pattern. In particular it is hoped that this will be the first  

stage in identifying the speech-perturbation signature of 
GHD.

By concentrating on vocal fold functionality a single 
parameter measure of normality has been developed by 
scientists at North Western Medical Physics in 
Manchester. It has been used to identify very tight bounds 
for ‘normal’ vowel production, or phonation, in both the 
healthy male and female populations. It is uniquely based 
on the quantification of the complexity of the entire 
spectral pattern from trans-larynx impedance 
measurements acquired during vowel phonation. The 
spectral pattern complexity for larynx cancer patients has 
been shown to be quite different and to change with the 
time elapsed following treatment [1]. Therefore, it is 
likely that complexity also has the potential to 
characterise subtle deviations from normal phonation 
resulting from GHD at different times of onset in adult 
life. 

II. THEORY 

The anterior pituitary hormone somatotrophin, commonly 
referred to as growth hormone, is involved in the 
stimulation of protein synthesis, amino-acid transport, fat 
and calcium uptake. Consequently, GHD in adults, 
regardless of gender, can result in decreased muscle 
mass, increased body fat and reduced bone density. In 
males the hormone testosterone is central to development 
of the adult male characteristics of musculature, bone 
mass, fat distribution, hair patterns, laryngeal 
enlargement, and vocal chord thickening. Once again 
pituitary disruption affects testosterone secretion. 
Consequently male oncology patients with GHD can be 
prescribed endocrine replacement therapies that include 
testosterone and the endocrine stimulant thyroxine.   

The mass and composition of the folds, the integrity and 
mobility of the epithelium etc. are all reflected in the 
intricate pattern of fold vibration. Hence, it is possible 
that the vibration of the vocal folds is sensitive to minute 
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physiological changes [2] of the kind that might be 
expected in the development of GHD.  

Fold vibration can be measured indirectly and non-
invasively by exploiting trans-larynx electrical impedance 
variations [3]. A time series of impedance measurements 
is termed the electro-glottogram or EGG. A carefully 
gathered EGG is free from the complex resonant effects 
of the vocal tract, which can be variably configured by an 
individual.  The relatively simple EGG time series is 
ideal for power spectral density (PSD) analysis, which is 
the natural choice for investigating vibration phenomena 
[4,5] including the EGG [6]. However, the usefulness of 
conventional PSD analysis is limited by the difficulty of 
interpreting the spectrum taken as a whole, especially 
where any perturbations are subtle.  

In order to quantify subtle changes to fold functionality a 
measure of continuous spectral pattern complexity is 
required, which takes into account the entire spectral 
domain, rather than the selective analysis of a few 
discrete spectral peaks that are assumed to be of 
paramount importance. To progress towards 
characterization of spectral pattern, pre-normalisation can 
ameliorate the effects of pitch, fo, variation that would 
otherwise obscure any underlying spectral pattern in 
vowel phonation. Tracking fo and expressing spectral 
components relative to fo, combined with the 
normalisation of all component spectral powers, relative 
to the power of fo , ensures that multiple spectral 
estimates can be averaged to reinforce common patterns. 
The authors term this ‘Fundamental Harmonic 
Normalisation’ [6]. For FHN-normalised spectra the 
influence of f0 power is not lost, instead it is directly 
reflected across the scaled pattern of the normalised 
spectrum itself. 

‘Approximate entropy’ is a measure of time series 
complexity that has been used in ECG studies of 
anaesthetised patients [7]. The measure is sensitive to 
noise in the time domain. However, in the spectral
domain noise is relatively slowly varying, potentially flat, 
and does not directly distract from the complexity 
analysis of features of real interest. For this reason the 
authors have extended complexity analysis into the EGG, 
FHN-spectral domain for GHD patients. Since it is 
normalized, the pattern complexity of the FHN spectrum 
is concentrated from the first maximum of the harmonic 
peaks onwards. Therefore, for this study the FHN 
spectrum was truncated and the 7 harmonics following 
the first FHN spectral minimum selected for analysis. 
After taking the logarithm of the spectrum the standard 
deviation, σ,of the resultant spectral series is computed 
for use in approximate entropy calculations.  

This study uses a specific formulation of approximate 
entropy ApEn described by Pincus [8]. Given N data 
points {u(i)}=u(1),u(2),….,u(N) and commencing with 
the ith point, vector sequences x(1) to x(N–m+1) are 
formed consisting of m consecutive u
x(i)=[u(i),…,u(i+m-1)]. Then the vector sequence, 
x(1),x(2),…,x(N-m+1) is used to construct Cm,i(r) values 
for each i  (N-m+1) where;  

                    Cm,i(r) = number of  j  (N-m+1)           

                  such that    d[x(i),x(j)] / (N-m+1)   r          (1) 

Where d[x(i),x(j)] in (1) is the distance between vectors, 
defined as the maximum difference in their scalar 
components. The Cm,i(r) values measure, within a 
tolerance r, the regularity or frequency of  sequences 
occurring in the data set {u(i)}, which are similar to the 
given sequence, x(i) of  length m. The Pincus 
approximate entropy statistic is then defined by;  

         N-m 

   ApEn = -(N-m)-1 ln [Cm+1,i(r)/Cm,i(r)]           (2) 
                                           i=1 

Equation (2) is interpreted heuristically as a measure of 
the average logarithmic likelihood, over all sequences 
x(1) to x(N-m+1), that any sequence in the data series 
{u(i)}, which is within a tolerance r of the given sequence 
x(i) of length m, remains within the same tolerance when 
the length of both sequences is increased by one data 
point. Tolerance r is proportional to the measured series 
standard deviation σ, i.e. r=kσ, where k is a constant. It is 
necessary to empirically determine k so that the widest 
range of complexity values is achieved. 

III. METHODOLOGY 

4 adult males (age range 23-47) who had acquired their 
GH deficiency in adult life, either as a consequence of 
tumour mass effect or radiation induced damage, were 
studied using a Laryngograph. Details are shown in 
Table-1. All had adult onset GHD for at least 2 years 
prior to the study and were assessed several years after 
diagnosis of the tumour mass or treatment. 89 healthy 
male volunteers were recruited to provide a ‘normal’ 
reference Laryngographic standard. Four volunteers were 
excluded because of errors during capture. For 
pathological and normal volunteers cases Laryngograph 
throat sensors were used to measure trans-larynx EGG 
signals for the sustained vowel /i/. Sampling was at 20 
kHz for up to 4 seconds The resultant 4 pathological and 
85 normal binary LX data-files were transmitted by FTP 
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to a COMPAQ Unix Alpha-server-2000 dual 4/275 
processor system for storage. Visualisation, spectral and 
complexity analysis were then performed off-line on an 
AMD-Athlon, 1GHz processor, NT-PC equipped with 
1Gbyte memory. All software utilities were written in 
Research Systems International IDL 5.5.  

For sustained EGG signals multiple power spectral 
estimates were generated for individuals by segmenting 
the EGG data-stream into short frames of 1000 sample 
points. For each frame fo was determined using the 
autocovariance function before power spectral density 
(PSD) computation by variance reduction and Fourier 
transformation. The frame PSD was then FHN 
normalised relative to the frequency and power of fo for 
the frame itself. All frame FHN-spectra were then 
averaged to reinforce any shared pattern in each case.  

Patient Age  Pathology Treatment 

R 23 Pituitary stalk lesion Nil 
H 44 NF Pituitary 

adenoma 
Pituitary 
Surgery & 
irradiation 

W 47 Macroprolactinoma Pituitary 
Surgery & 
irradiation 

S 40 Craniopharyngioma Pituitary 
Surgery 

Table-1 
Adult GHD cases, age at study, pathology and      
treatment (additional to endocrine replacement that 

includes testosterone for all patients  
and thyroxine for H, W & S).

The entire FHN, EGG spectral pattern for each individual 
was then characterised above fo using complexity 
analysis based on ApEn. Specifically the averaged FHN 
spectrum was truncated to produce a single new series 
extending from the first minimum to the 7th harmonic 
inclusive, taking logs and then computing the standard 
deviation σ  of the result. In order to obtain the widest 
spread of ApEn, a k value of 0.6 was empirically 
determined for the computation of r in both normal and 
pathological cases. 

IV. RESULTS 

Normal Population: Spectral Complexity

Normal spectral patterns clearly separate into two ApEn 
complexity groups (Students two tail t-test p<<0.001). 

                                           Figure-1
Two normal male population FHN spectral patterns; 
normalized power (ordinate) vs. harmonics (1 to 8). 

Left:       Normal G1 male, strong spectrum 
Right:     Normal G2 male, weak spectrum 

The largest group, G1, had strong spectral features 
extending across the harmonic range within a slowly 
decaying spectral envelope. The smallest, G2, had weak 
spectral features that decayed rapidly towards the higher 
harmonics. Figure-1 shows the population averaged FHN 
for G1 and G2 populations. ApEn complexity analysis 
elegantly quantifies G1 and G2 differences. G1 has 55 
individuals with high, mean complexity 0.34 (+/- 0.04). G2 has 
30 individuals with low mean complexity 0.18 (+/- 0.05). Pitch 
analysis of EGG data showed no differences between G1 and 
G2, both having a mean fo of 122-124 Hz (+/- 29 Hz) 

Case fo (Hz)      Complexity 
Normal Males G1 124 (29)     0.34 (0.04) 
Normal Males G2 122 (29)     0.18 (0.05) 
             R 172           0.35 
             H 154           0.18 
             W 118           0.18 
              S 117           0.09 

Table-2 
Fundamental frequency fo (standard deviation) and 

complexity for normal and pathological cases. 

Adult Acquired GHD Cases: Spectral Complexity
Table-2 shows the spectral complexities and fo values for 
the 4 adult acquired GHD cases. The first row shows case 
R in which fo is 172 Hz, intermediate between normal 
male and female pitch. It is the only case in which the 
spectral pattern is strong and well maintained to high 
harmonic levels. The spectral envelope is clearly ‘bright’ 
but erratic with spectral envelope decay reversed twice. 
The complexity at 0.35 is typical of the G1 population.  
The remaining 3 adult acquired GHD cases have 
characteristically low, male fo. Their spectra clearly 
exhibit the G2 decaying envelope and the pulsatile 
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reduction with increasing harmonic level. Progressing 
from case H to S there is the characteristic obliteration of 
spectral features by noise.  Complexity levels are low and 
comparable to the G2 normals, particularly for case S, 
where there are few spectral features and a pathologically 
low ApEn of 0.09.   

Figure-2 
Adult acquired GHD cases FHN spectra; normalized 
power (ordinate) vs. harmonics (1 to 8). Only Case-R 

shows a non-exponential fall in spectral envelope due to 
multiple, high harmonic peaks. 

Top Left:     R   ApEn 0.35  Top Right:   H  ApEn 0.18
Lower Left: W  ApEn 0.18  Lower Right: S  ApEn   0.09 

V. DISCUSSION

Three of four adult acquired GHD cases were middle 
aged. Hence larynx development was completed before 
onset of GHD. Their low complexity levels are 
comparable to the minority G2 male normal population. 
The membership ratio G1:G2 is 2:1 but this is more than 
reversed at 1:2, with one other case well below G2,  in 
the adult acquired GHD cases and so is likely to be 
significant despite the small sample of cases. Life style, 
such as smoking etc., may be a possible cause. However, 
given the similarity of treatment regime in all three cases, 
these effects could conceivably have been produced by a 
reduction in conscious control over fold functionality. 
Conscious change of control has been demonstrated by 
Moore et al [9].  

The fourth GHD case, R, has high, G1-level complexity 
and a fo bordering on female levels. Apart from endocrine 

replacement, R received no treatment. The onset of 
acquired GHD occurred after reaching final height but 
before full adult development in respect of body 
composition and bone mass. Environment and life-style 
are unlikely causes for this effect. Hence, perturbation of 
larynx development due to GHD is a potential 
explanation for these characteristics.  

VI. CONCLUSION

There is at least initial evidence that adult acquired GHD, 
occurring between late puberty and adulthood could 
disrupt larynx development and be detected by EGG 
complexity analysis. Furthermore, this can be 
differentiated from post pubertal adult cases of acquired 
GHD, in which the result of treatment may be reduced 
conscious control of fold functionality and produce a 
measured EGG complexity that is comparable to the 
lowest G2 level of normality or  pathologically low.  
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Abstract: The classification performance of an
automatic classifier of voice pathology for the
detection of normal and pathologic voice types is
presented. The proposed classification system is non-
intrusive and fully automated. Speech files of
sustained phonation of the vowel sound /a/ in the 
‘Disordered Voice Database Model 4337’ provided 
631 subjects of both genders (58 normal, 573
pathologic). This database includes features extracted 
by the Multi Dimensional Voice Program (MDVP). 
Mel frequency cepstral coefficients (MFCC) were
extracted for all of the speech files. Discrete Fourier 
transform (DFT) features, Log DFT and Cepstral 
features were also extracted. Cross-fold validation 
was used to measure the classifier performance.
Linear discriminant analysis was employed as the 
classifier model. The MDVP feature set of shimmer 
and signal-to-noise ratios are shown to have similar 
classification performance to the Log DFT and the 
MFCC features.
Keywords: Voice Pathology, speech analysis, Linear 
Discriminant Analysis.

I. INTRODUCTION

A wide variety of vocal fold pathologies are found in 
patients with vocal disorders. These pathologies can be 
found in varying degrees of severity and development. 
They can be classed as physical, neuromuscular,
traumatic and psy chogenic and all directly affect the 
quality of the voice. At present a number of diagnostic 
tools are available to the otolaryngologists and speech 
pathologists such as videostroboscopy [1] and
videokymography. However these current methods are 
time and personnel intensive and lack objectivity.

Research has been reported on the development of
reliable and simple methods to aid in early detection, 
diagnosis, assessment and treatment of laryngeal
disorders. This research has lead to the development of 
feature extraction from acoustic signals to aid diagnosis. 
Much focus has been centred on perturbation analysis 
measures such as jitter and shimmer and on signal -to-
noise ratios of voiced speech, which reflect the internal 
functioning of the voice. Through this research it has 
been shown that these features can discriminate between 
normal and pathologic speakers [2], [3], [4], [5].

The aim of this research was to investigate the
performance of a voice pathology classifier categorising 

sustained phonation of the vowel sound /a/ from a large 
labelled database into either a normal or pathologic class. 
The goal of this project was to produce a stand -alone
classifier that would be non -intrusive and objective.

II. METHODOLOGY

Each stage of the flow chart of a voice pathology 
classifier in Figure 1 is discussed below.

Classifier
Feature

extraction DecisionAcquisition

Audio Data

Figure 1. Flow Chart of the Processes involved in a Voice 
Pathology Classifier

Acquisition:  The labelled voice pathology database
“Disordered Voice Database Model 4337” [6] acquired at 
the Massachusetts Eye and Ear Infirmary Voice and 
Speech Laboratory and distributed by Kay Elemetrics 
was used in this study. A detailed description of the 
database can be found at [6], [7].

Digitised voice recordings of the sustained phonation of 
the vowel sound /a/ were used for training and testing the 
classifier. The database contains 631 recordings of which 
gender information is available for 389 recordings. In this 
study we divided the available data in to three datasets in 
order to investigate the influence of gender on
classification performance: 

1. A mixed gender dataset containing 631 subjects 
(58 normal, 573 pathological)

2. A male dataset containing 164 subjects (22
normal, 142 pathological)

3. A female dataset comprising 225 subjects (36 
normal, 189 pathological)

Feature Extraction: The Multi Dimensional Voice
Program (MDVP) [8] was used as a feature extractor. For 
each sustained phonation of the vowel sound /a/ in the 
database there are 33 associated MDVP features. These 
33 features can be divided into six subsets. Each subset is 
a grouping of features that describe specific properties of 
the phonation. Namely: 1) the fundamental frequency, F0

2) jitter (short -term, cycle-to-cycle, perturbation in the
fundamental frequency of the voice), 3) shimmer (short-
term, cycle-to-cycle, perturbation in the amplitude of the 
voice), 4) Signal-t o-noise ratios, S/N 5) count and 6) 
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duration features. Some recordings contained missing
MDVP feature values. In these cases missing features 
were replaced by the average value of that MDVP
feature. This ensured that the replaced features would not 
aid in the classification. The histogram was examined for 
each feature and where appropriate a log transformation 
was applied. This forced all the features to have an 
approximately Gaussian distribution.

The Mel Frequency Cepstral Coefficients (MFCC)
features are commonly used in Automatic Speech
Recognition (ASR) and also Automatic Speaker
Recognition systems [9]. These coefficients are formed
by taking the Discrete Fourier Transform (DFT) of the 
speech signal. Then a linearly spaced filterbank in the 
Mel frequency domain that translates to a log spaced 
filterbank in the Frequency domain is applied to the 
spectrum of the signal. The Mel scale is based on the 
non-linear human perception of sounds. Finally the signal 
is log transformed and the inverse discrete Fourier
transform or the discrete cosine transform is applied. 

The MFCC were extracted from the speech signal using 
the Hidden Markov Model toolkit (HTK) that is
commonly used in speech research [ 10]. A first order pre-
emphasis filter using a coefficient of 0.97 was utilised 
here so that the measured spectrum has a similar dynamic 
range across the entire frequency band. The signal was 
then separated into 20ms frames using a Hamming
window with an overlap of 10ms between each frame. 
HTK employs the DCT to transform the outputs of the 
filterbanks to the cepstral domain. MFCC were calculated 
for each frame and then averaged across all frames in a 
recording. Thus each speech recording is represented by 
the averaged MFCC for that particular speech recording. 
These averaged MFCC were used as features for the 
classifier.

The Disordered Voice Database speech files are sampled 
at two different sampling frequencies 25 or 50 kHz. The 
location of the filterbank channels used in calculating the 
MFCC would differ for speech recordings that have 
different sampling frequencies. In order to standardise the 
recordings for all subsequent processing all the speech 
recordings sampled at 50 kHz were downsampled to 25 
kHz.

The DFT, Log DFT and Cepstral coefficients were
calculated in Matlab by applying similar methods to the 
speech signal as HTK, i.e. a pre-emphasis filter using a 
coefficient of 0.97 and segmenting the speech signal into 
20ms frames using a Hamming window with an overlap 
of 10ms between each frame. The Cepstral coefficients 
were calculated in the same way as the MFCC except that 
the filter bank is not applied to the signal. For the DFT, 
Log DFT, Cepstral coefficients and MDVP each set of 
features were divided into subsets in order to investigate 

the system performance using subsets of features.
Different MFCC feature sets were extracted from the 
speech recordings with a varying number of filter
channels and also a varying number of MFCC.

Classifier: Linear discriminants (LD) [11] partition the 
feature space into the different classes using a set of 
hyper -planes. The parameters of this classifier model 
were fitted to the available training data by using the 
method of maximum likelihood. Using this method the 
calculation required for training is achieved by direct 
calculation and is extremely fast relative to other
classifier building techniques such as neural networks. 
This model assumes that the feature data has a Gaussian 
distribution for each class. In response to input features, 
linear discriminants provide a probability estimate of 
each class. The final classification is obtained by
choosing the class with the highest probability estimate.

Estimating the classifier performance: The cross -
validation scheme [12] was used for estimating the 
classifier performance. The variance of the performance 
estimates was decreased by averaging results from
multiple runs of cross validation where a different
random split of the training data into folds is used for 
each run. In this study ten repetitions of ten-fold cross -
validation were used to estimate classifier performance 
figures. For each run of cross fold validation the total 
normal population and a randomly selected group of 
abnormals equal in size to the normal population was 
utilised. This results in a more realistic reflection of the 
predictive ability of the system. 

In this study the performance of the classifier is quoted 
using the class sensitivities, predictivities and the overall 
accuracy. The sensitivity of the classifier to a particular 
voice class is the fraction of speech files in the class that 
are correctly classified. The specificity is the sensitivity 
calculation applied to the normal class. The
positive/negative predictivity is the fraction of speech 
files detected as abnormal/normal that are correctly
classified. The overall accuracy is the fraction of the total 
number of subjects’ voices that are classified correctly.

III. RESULTS

All MDVP features were log-transformed so that the 
resulting histograms more closely approximated Gaussian 
distributions. Classification results were obtained for the 
MDVP, MFCC, DFT, Log DFT and Cepstral features as 
well as the combination of these features for mixed 
genders together and for each gender individually. The 
number of filterbank channels and coefficients used in the 
MFCC was examined. Through testing it was seen that 
utilisation of 15 filterbank channels and 15 coefficients 
resulted in satisfactory system performance.
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Table 1: Classification results for feature sets that were examined. The test set accuracy, mean specificity, mean 
sensitivity, mean negative predictivity and mean positive predictivity cases are shown for the mixed gender classifier
while only test set accuracy is shown for the male and female classifiers

Test set (%) Test set (%) Test set (%)Feature set Gender
Acc Sens Spec P.Pred N.Pred

Gender
Acc

Gender
Acc

MDVP (F0, Jitter, Shimmer, S/N) Mixed 84.74 84.83 84.64 84.83 84.64 Male 75.97 Female 78.14

MDVP (Shimmer, S/N) Mixed 87.16 83.28 80.8 81.45 82.68 Male 90.61 Female 82.51

MFCC (1:15) Mixed 82.65 83.62 81.68 82.2 83.13 Male 88.4 Female 73.95

MFCC (1:5) Mixed 83.35 83.45 83.25 83.45 83.25 Male 88.4 Female 76.32

DFT Magn (1:8) Mixed 81.18 87.59 74.69 77.79 85.6 Male 83.15 Female 79.42

Log DFT (1:8) Mixed 81.53 83.1 79.93 80.74 82.37 Male 84.81 Female 81.79

Cepstrum (1:8) Mixed 77.19 74.66 79.76 78.87 75.66 Male 80.11 Female 71.95

MDVP (F0, Jitter, Shimmer, S/N)

& MFCC (1:15)
Mixed 85.69 86.03 85.34 85.59 85.79 Male 75.41 Female 67.76

Log DFT  (1:8) &

MDVP (Shimmer, S/N)
Mixed 88.55 88.28 88.83 88.89 88.21 Male 83.98 Female 81.42

Log DFT (1:8) &

MFCC (1:5)
Mixed 85.86 86.55 85.17 85.52 86.22 Male 86.74 Female 78.14

DFT Magn (1:8) &

MFCC (1:5)
Mixed 84.82 87.41 82.2 83.25 86.58 Male 84.81 Female 76.87

Cepstrum (1:8) &
MFCC (1:5)

Mixed 82.57 82.59 82.55 82.73 82.4 Male 81.49 Female 75.77

The duration features of the MDVP were not included as 
intuitively there was no link between the duration of the 
recording and any pathology. The predictive ability of the 
count features was found to be poor and so this group 
was disregarded for the rest of the study. The
classification performance of different feature sets is 
shown in Table 1. The feature set of shimmer and signal-
to-noise ratio combined gives the highest classification 
performance among the MDVP feature subsets. The DFT 
magnitude, Log DFT and Cepstral coefficients achieve 
optimal classification performance via the first eight 
coefficients. In the frequency domain this corresponds to 
frequencies between 0 and 385 Hz.

IV. DISCUSSION

The MDVP feature set performs well for the mixed 
gender classifier achieving a classification accuracy of 
84.74%. However, its performance falls off when utilised 
in the individual gender classifiers, 75.97% and 78.14% 
respectively. The reduced set of MDVP features using 
shimmer and signal-to-noise ratios performs at a much 
more consistent level though all of the different gender 
classifiers with an accuracy of 87.10%, 90.61% and 
82.51% respectively. 

The reason why only the first eight coefficients are 
significant for the DFT, Log DFT and cepstral
coefficients is due to the fact that it is a vowel sound /a/ 
that is being analysed and hence most of the fundamental 
frequency content will be contained in the lower

frequencies. Utilisation of the DFT magnitude and Log 
DFT features with all three gender classification systems 
achieve consistently high results of 81.18, 83.15, 79.42% 
and 81.53, 84.81, 81.79% respectively. 

The Cepstral feature set did not perform as well as the 
MFCC feature set resulting in an accuracy of 77.19%, 
80.11% and 71.95% for the mixed, male and female 
gender classifiers. This illustrates that by incorporating 
the human auditory system’s non -linear perception of the 
audio spectrum through application of the Mel scale 
improves the performance of the system.

Through the use of the first five MFCC it is possible to 
achieve the same classification rates as achieved using all 
15 MFCC. This trend is consistent with research reported 
by [13] where the authors observed that only the first few 
MFCC were required for automatic speaker recognition 
systems. The test set accuracies for the system employing 
the MFCC perform well in the mixed gender and male 
gender classifiers, 82.65 and 88.40%, but the accuracy 
was lower for the female speech recordings, 73.95%. The 
MFCC are based on homomorphic analysis whose
function is to deconvolute the speech signal, i.e. to 
separate the excitation and impulse response of a linear 
time-invariant system. The coefficients at the beginning 
of the MFCC and Cepstrum represent the impulse
response of a linear system that combines the effects of 
the glottal wave shape, the vocal tract impulse response 
and the radiation impulse response [14]. For this reason 
these features should yield information about the health 
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of a person’s vocal system. The DFT magnitude and Log 
DFT features contain information about the source and 
vocal tract simultaneously.

Various combinations of the feature sets were examined 
however we observed that the systems performance was 
not improved significantly.
A number of research groups [15], [16], [17] have
reported results for detection rates for voice pathologies 
of 94.87%, 76% and 96.30% respectively. In [15] the 
Disordered voice database was employed and their results 
may be compared with the results obtained in this study. 
However results from [15] should be considered biased as 
the authors used the MDVP speech recording duration 
features “SEG” and “PER”. In the database the normal 
recordings are three times longer in duration than the 
pathologic recordings and therefore the “SEG” and
“PER” features are three times as large for normal
recordings than for pathologic recordings. Hence the 
features based on the recording duration could be used to 
distinguish the normals from pathological cases with high 
success due to the different durations of normal and 
pathologic recordings.

In study [16] different databases were used and a direct 
comparison of results cannot be made. The databas e used 
in the present study provides a large amount of
pathologic subjects that might not fairly represent the 
pathologies present in other studies conducted in this area 
or those encountered by the medical profession on a day 
to day basis. The predictive ability of this model could be 
confirmed through external validity. The latter study [17]
utilises similar features to the ones used in this study 
however their classification performances were based on 
correct classificat ion of individual frames from the
speech files which implies that the training data used 
would consist of data very similar to the testing data. 

V. CONCLUSION

The MDVP feature set containing the shimmer and
signal-t o-noise features offers the best classification
results over each of the gender classifiers. The utilisation 
of the Log DFT and MFCC feature set in the
classification system performs almost as well as the 
MDVP features. However the Log DFT and MFCC 
features are implemented with very little computational
cost in comparison to the MDVP features. 

In this study, the performance of the mixed-gender
classifiers was similar to the classification performance 
of the single-gender classifiers. These results suggest that 
for this particular automatic classification system there is 
no advantage to be gained by utilising single-gender
classifiers to detect pathologic voice. 
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Abstract: The objective and subjective classification of 
unvoiced stop consonants in varying vowel contexts 
were studied. The objective classification was based 
on auditory feature vectors obtained by warped linear 
prediction (WLP) and vector autoregressive (VAR) 
models for parameter trajectories. In the case of 
known vowel the unvoiced consonants were classified 
98-100% correctly based on the auditory spectral 
features of the bursts whereas the VAR models for the 
parameter (formant) trajectories gave at best only 52-
68% correct classification. The importance of the 
burst part also in the human perception was 
confirmed by a listening test.  
Keywords:  Speech, syllables, classification 

I. INTRODUCTION 

The unvoiced stop consonants /k, p, t/ are clearly the 
most difficult sounds for a phonemic speech recognizer. 
The developed continuous speech triphone based speaker 
dependent HMM recognizer for Finnish produced the 
largest errors (about 25-30%) in recognition of unvoiced 
stops whereas the error rate for most phonemes was only 
1-3% [1].   

The human listener utilizes three different features in 
unvoiced stop-vowel syllable recognition: 1. The spectral 
structure of the burst. 2. The voice onset time (VOT). 3. 
The formant transitions. According to earlier studies, the 
priority of these three factors in the human perception 
corresponds the list above, the spectral structure of the 
burst being the most important cue [2]. 

The aim of this study is to objectively evaluate the 
importance of the burst spectral structure in comparison 
with the formant transitions of the voiced part of the 
syllable in /k, p, t/ classification. An additional goal was 
to compare objective results to subjective ones via a 
simple listening test. Samples of the same speech material 
were used in both classification tasks. The formant 
transitions were not explicitly modeled, but rather 
indirectly represented through an autoregressive 
prediction matrix. The study was limited to combinations 
of stops /k, p, t/ and four Finnish vowels /a, e, i, u/. 

The study shows that with a proper design of the 
classifier, close to 100\% performance can be reached. 
This is comparable to the human perceptual ability. 
However, this result may occur only when the context, 

i.e., the vowel part of the syllable, is first correctly 
recognized. 

II. MEATERIALS AND METHODS 

A. Speech Material 

The speech material used in this research consisted 
from 80 sentences in Finnish that were spoken by one 
male person. The sentences were in wav-format with a 
22050 Hz sampling frequency. The material had been 
manually segmented to phonemic units. This segment 
information was used as a basis for these tests.  

A total of 12 different stop-vowel syllable types shown 
in Table 1 were used for the objective classification. The 
material consisted of different amounts of different 
syllables since it was decided that all possible instances 
of each syllable from the original sentences should be 
included. Table 1 shows the 12 syllable classes and their 
corresponding number of occurrences. 

Table 1: The 12 stop-vowel syllables used for the 
objective classification and their corresponding 
quantities.  

syllable quantity syllable quantity 
/ka/ 
/pa/ 
/ta/ 
/ki/ 
/pi/ 
/ti/ 

30
5
22
17
7
19

/ku/ 
/pu/ 
/tu/ 
/ke/ 
/pe/ 
/te/ 

9
11
18
12
8
7

B. VQ Auditory Feature Vectors 

The feature vectors used for the objective 
classification were obtained with warped linear prediction 
(WLP) [3]. WarpTB Matlab toolbox [4], along with some 
custom functions was used for samples processing.  

The feature vectors were constructed by obtaining 12th

order warped linear prediction coefficients calculated 
from the time-domain signal. The warping factor was 
0.676. The WLP vectors were calculated using 16-ms 
frames per one vector. The frame window hop was 1 ms. 
The WLP coefficients were further transformed into line 
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spectral frequencies (LSF). Thus each segment was 
described by a (12*60)-matrix. 

Fig. 1 shows an example of a segment used in these 
tests. The upper picture illustrates the time-domain signal. 
A spectrogram of the signal is shown in the middle 
picture. Finally, the 60 LSF vectors transformed from the 
WLP coefficients are drawn in the undermost picture. It 
can be seen that the LFS vectors follow the structure of 
the spectrogram.  
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Figure 1: Three representations of one /ka/ - segment 
used in the classification: the time-domain signal, the 
spectrogram and the LSF vectors transformed from the 
WLP coefficients (from up to down).   

C. Vector Auto Regression (VAR) 

Vector auto regression is a method much similar to 
conventional linear prediction, with the difference that 
the prediction is done for vectors instead of scalars. A 
mathematical description of the method can be found in 
[5].

Fig. 2 shows a 1st order VAR procedure applied to a 
similar speech segment as seen in Fig. 1. A VAR model 
was calculated from the whole segment and then used to 
produce the prediction vectors. The model requires an 
initial state which has been chosen from the middle of the 
original segment (x = 0 ms). The prediction has been 
continued ``past'' the original segment limit (x > 30 ms). 
It can be seen that the prediction vectors model the 
original curves fairly well. In this study, the VAR models 
of the feature vectors are used to parameterize the 
trajectories in the feature space. The trajectories reflect 
the formant transitions caused by articulatory movements. 

III. CLASSIFICATION BY TRAJECTORIES 

A 1ST order VAR prediction matrix was calculated for 
the LSF feature vectors of each speech segment. 

 Classification was based on comparing the 
eigenvectors of the VAR matrices. A descriptive vector 
u was calculated for each prediction matrix according to 
(1).

u =  (c;v1;v2)     (1) 

, where v1 and v2 are the eigenvectors associated with 
the two largest eigenvalues of the corresponding 
prediction matrix. Here the variable c is the scaling vector 
associated with the VAR prediction matrix [5]. A few 
other descriptive vectors were also tested but the above 
method produced the best results. 
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Figure 2: Prediction of feature vectors with a VAR model: 
original vectors (thick line) and the predicted vectors 
(thin line). 

The actual classification was done for each of the four 
vowels separately so that there were three possible 
alternatives to which a syllable could be classified, 
according to the consonant. A median vector for each of 
the three consonant classes was calculated for each 
vowel. The Euclidean distance between the descriptive 
vector u of each segment and the median vectors of each 
of the three classes was calculated. The segment was 
assigned to the class to which this distance was the 
smallest.  

Results for the classification based on trajectories 
represented by the prediction matrices are shown in Fig. 
3. The x-axis indicates value the amount of feature 
vectors excluded from the beginning of the segment when 
calculating the VAR models. It can be seen that the 
classification percentage does not rise above 70%. 

Other schemes for the construction of the VAR model 
were also tried. In addition to the previous method, 
feature vectors were also removed from the end of the 
segments before the modeling procedure. Also, both of 
these schemes were combined in various ways. The 
overall classification percentage did not increase as a 
result of these experiments. 



Voice analysis 267

IV. CLASSIFICATION BY BRURST STRUCTURE 

The classification in the previous section was based 
on the comparison of the VAR prediction matrices. The 
method modeled mainly the formant transition structure 
of the speech segments. In this section, the temporal 
spectral structure classification based on the optimal time 
window is investigated as well. 
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Figure 3: Classification percentage based on VAR 
modeling as a function of feature vectors included to the 
model.   

The method used for the classification was to 
compare the auditory feature vectors (see Section 2.2) 
directly in terms of Euclidean distances. For each 
($12*60$)-feature vector matrix representing a given 
speech segment, a mean of three adjacent vectors, starting 
from the beginning of the segment, was taken as a basis 
for the classification. The mean three vectors was 
obtained for all cases in the same syllable class and a 
median vector of these cases was calculated. This vector 
represented the average feature vector of a syllable class 
at given point of the segment. 

As in the previous section, the actual classification 
was done for each of the four vowels separately, based on 
the Euclidean distance between the mean of three feature 
vectors of each segment and the median vectors of each 
of the three classes. 

Each speech segment used in the classification was 
the same length, i.e. 60 ms starting from the beginning of 
the consonant burst. The previous procedure was repeated 
within the area of 1 - 50 ms from the beginning of the 
segments with a 1 ms hop. In this way, the optimal 
segment point where the classification yielded the best 
results could be found.  

Fig. 4 illustrates the results of the feature vector-based 
classification. Location at x = 0 ms represents the 
beginning of the segment and the classification 
percentage is calculated at 1 ms intervals onward to the 
end of the segment. The best classification percentage is 
achieved in all four cases by comparing the feature 

vectors within the first 10 ms of the segments. By 
investigating for example the /ka/-segment in Fig. 1 it can 
be seen that the burst part of the syllable exceeds over 
this limit. The situation was similar to other segments as 
well. 
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Figure 4: Classification percentage based on feature 
vectors as a function of the location of the vectors in the 
speech segments. 

The overall classification percentage when 
investigating the feature vectors of the burst part was 
higher than in the previous section where the 
classification was based on VAR models. For this reason, 
the structure of the burst is determined to be more 
important classification cue than the formant transitions 
between the consonant and the vowel. 

V. LISTENING TEST

The results from the previous experiments were 
compared with those of a subjective listening test. The 
purpose was to establish which cue is more important in 
the subjective classification of unvoiced stop-vowel 
syllables; the burst spectral structure with right VOT or 
the formant transitions of the voiced part. 

A. Method 

The samples for the listening test were constructed by 
taking one speech sample from each of the 12 classes 
given in Table 1 and portioning the 12 segments to burst 
and voiced parts. For each vowel, there were three burst 
parts and three voiced parts. These were then combined 
to form a total of nine synthetic speech syllables per 
vowel. The test thus included 36 samples, i.e. three of 
each syllables shown in Table 1.  

The voiced part of the samples was segmented so that 
it included 25 ms from the beginning of the first clear 
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pitch period, as well as 10 ms before this point. The 
average length of this part was 34 ms. The burst part 
started from the beginning of the burst and ended to the 
point overlapping 5 ms with the voiced part. The samples 
for the listening test were constructed by linearly cross-
fading the burst and the vowel over this 5 ms part. 

This method produced samples where the burst parts 
were combined with the voiced parts that included the 
formant transition information. If the synthetic samples 
could be correctly recognized by the subjects, the 
importance of the burst part compared to formant 
transitions as a classification cue would be established.  

B. Test Procedure 

The test was done in a quiet listening room, whose 
specifications can be found in [6]. The sound 
reproduction device was a pair of Sennheiser HD600 
headphones. The subjects classified the samples with a 
graphical test interface. The task presented was to choose 
the stop consonant for all samples from the three options 
(/k, /p// or /t/). The subjects could listen the samples as 
many times as they wanted. A total of 11 subjects 
participated to the test. 

B. Results 

The overall classification percentage was 98.48 for 
the 11 subjects. In six cases, the syllable /ti/ was 
classified as /ki/. Each of the three different /ti/-samples 
were classified as being /ki/ two times. The subjects 
classified the samples perfectly in all other cases. 

The results from the listening test indicate that the 
burst part of a stop-consonant syllable could be replaced 
with another burst part so that the subjects could 
distinguish the synthetic syllables correctly. Thus the 
importance of the burst part is emphasized. 

VI. DISCUSSION

This study confirms that the primary strategy of the 
human perception in classification of unvoiced stop-
vowel syllables relates to the spectral information of the 
burst part.  The burst section was found to carry the most 
important cues necessary for the classification task by 
objective studies as well. However, the pronunciation of 
the syllables may vary and in some contexts the burst part 
may almost be missing. In these cases the time-frequency 
structure of the voiced part is the only a short-term cue. 
Thus the human perceptual system may utilize this time-
frequency structure especially in noisy conditions and in 
such way increase the robustness. In the human 
perception the language model also has an important role 
when meaningful words are produced. 

The outcomes of the two objective classification 
schemes, one based on the instantaneous spectral features 

and the second on the trajectory modeling, gave results 
which may need some further studies. The method based 
on the spectral features gives 68-93\% right 
classifications over the voiced parts whereas the 
prediction model results to only 50\% on the average, 
even though it is capable of combining and predicting the 
same features. This may be related to the problem on how 
to find the optimal time window position and size for the 
VAR model. Another problem is to find the most optimal 
metrics for the VAR model comparison. 

Theoretically, the classifier based on spectral feature 
vectors is able to give very close to 100\% correct 
classification when the individual classifications are 
combined in time. This can be done by statistical models 
for the chains of the feature vectors. However, it has to be 
remembered that this is true only when the vowel is first 
correctly classified. In other words, the classification of 
/k, p, t/ depends strongly on the right classification of the 
following vowel. Thus the burst parts of these stop 
consonants are strongly context dependent. 

VII. CONCLUSION

Our study on the objective and subjective 
classification of stop-vowel syllables showed that the 
human perception utilizes effectively the most important 
objective spectral information of the syllable located in 
the burst part. Thus an optimal objective classifier can be 
constructed based on the spectral features of the bursts. 
When the vowel context is known it is possible to reach 
close to 100\% right classification in the cases where the 
burst energy is high enough to allow for the bursts to be 
detected. 
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Abstract: Endotracheal intubation is a method 
commonly applied nowadays in medicine, particularly 
in surgical procedures carried out under general 
anaesthetic. It is however an invasive method which 
may result in many complications, including 
mechanical injuries of the larynx [1]. The problem is 
not of purely medical nature. However from the 
research point of view the detailed analysis of vocal 
folds damages is necessary. In the present work the 
attention is mainly focused on the prospects of 
application of a dedicated acoustical analysis of the 
speech signal, based on professional methods of signal 
processing. In the field considered in the present work 
the objectives of the signal processing and 
classification are different from the usual ones 
(revealing the origins of the deformation and 
evaluation of the signal deformation level in relation 
to the standard. The acoustic and phonetic properties 
of the signal itself are essentially different from the 
widely known parameters of correct speech.  
Keywords: speech analysis, pathological speech, 
surgical treatment, speech processing

I. INTRODUCTION 

In many problems of medical diagnosis, as well as in 
planning and monitoring of the therapy and rehabilitation 
of vocal organs, the evaluation of quality of the deformed 
speech signal is very important. The intubation-related 
damages of vocal folds are not a medical problem of 
great importance. However if the problem is occasionally 
observed it should be thoroughly investigated. 
Fortunately the number of observed cases is not very 
high, and the scale of the injuries is not very extensive. 
What's more rather fast and easy recovery process  can be 
achieved, as a result of natural regeneration processes or 
intentional rehabilitation procedure. Still the research 
analysis of the intubation-related vocal folds injuries 
seems necessary, especially, when taking into account the 
fact, that the progress and achievements of anesthesia and 
surgery have lead to a situation, when more and more 
often the surgical procedure under general anesthetic 
becomes a therapy of choice, thus affecting greater and 
greater number of patients. Therefore the situation 
requires solution of a nontrivial task of elaboration of 
examination methodology able to reveal the intubations-

l d i j i f l l (i i l h l

chords). The examination should allow the evaluation of 
the extent of the revealed injury, monitoring of the 
rehabilitation process in the cases of intubation-related 
injuries and possible supervision of the whole process in 
situations when phoniatric intervention is required.  The 
examination can be also used as a basis for objective 
evaluation of risk factors, related to occurrences of 
intubation-related larynx injuries.  
Therefore the in the present work attention has been 
focused on the possibilities created by a properly 
dedicated acoustic analysis of speech signal in the field 
related to the discussed problem. 

II. RESEARCH MATERIAL AND METHOD 

The studies of speech clarity have been carried out 
for patient surgically treated in the Otolaryngology Clinic 
of CM UJ, Cracow, after various types of operations not 
related to the vocal tract.  
In the preliminary stage a group of 24 patients have been 
examined. The registration of acoustic signal has been 
carried out in an anechoic chamber, where a digital 
magnetic recorder has been used for registration of time 
dependencies of the acoustic pressure during the test 
utterance. The study was of prospective nature. The 
patient's voice was registered twice: before the 
operational treatment connected with the intubation and 
approx. 24 hours after the treatment. For some patients 
who were ready to co-operate an additional voice 
registration has been carried out during a check-up 
examination several months later and thus a reference 
material has been obtained, showing the effects of long-
term rehabilitation.  
From the point of view assumed in the present work it is 
particularly important that the available computer 
programs dedicated to analysis and processing of sound 
signals are able to extract and objectively evaluate even 
very subtle changes in the structure of the sounds 
examined. It is of critical importance, because the 
changes in the speech signal, observed as an aftermath of 
possible larynx injury during the intubation procedure, 
are minute and they are usually hardly detectable even for 
a experienced ear. This is, by the way, one of the reasons 
that up-to-date those changes have not become a subject 
of any extensive studies. 
Table 1 presents detailed information about the examined 
patients
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Table 1. Detailed information about the examined group 

Patient Gender Age Diagnosis 
1 Male 50 Tonsillitis chronica 
2 Male 21 Cystis colli lateralis 
3 Male 47 Polypi nasi 
4 Female 56 Tumor nasi 
5 Female 52 Polypi nasi 
6 Male 19 Otitis media chronica 
7 Female 56 Sinusitis maxillaris chronica 
8 Female 21 Tonisillitis chronica 
9 Male 54 Polypi nasi 

10 Male 68 Polypi nasi 
11 Female 46 Pansinusitis chronica 
12 Female 47 Pansinusitis chronica 
13 Male 36 Sinusitis chronica 
14 Female 49 Sinusitis frontalis 
15 Male 64 Polypi nasi 
16 Female 10 Otitis media chronica 
17 Female 9 Tumor orbitae 
18 Male 49 Ca. baso. regionis retroauricularis 
19 Female 59 Polypi nasi 
20 Female 48 Polypi nasi 
21 Male 44 Otitis media chronica 
22 Male 33 Cystis sinus maxillaris 
23 Male 17 Otitis media chronica 
24 Male 45 Tumor glandulae parotis 

The study has been based on the analysis of changes in 
signal characteristics observed in quasi-stationary states, 
because the main subject of the study was the functioning 
of the laryngeal pitch generator, not possible disfunctions 
of articulation organs. Therefore from the continuous 
speech signal, registered in the anechoic chamber 
conditions for all the patients before and after the 
operation (connected with the intubation) and for some 
patients also during a check-up examination after a long-
term rehabilitation process, fragments containing quasi-
stationary vowel sound have been extracted using 
computer procedures. That element of the applied 
research methodology has probably removed from the 
acoustic research material some potentially valuable 
information (related to the articulation of all transients, 
which can be also affected by the intubation procedure), 
however such a restriction of the analysis has 
considerably simplified the applied research techniques 
and resulted in better, clearer interpretation of the 
obtained results. The general scheme of data processing 
and analysis used in the research described below is 
shown on Fig. 1. The acoustic files obtained in this way 
were analysed with the Voice Analysis and Screening 
System (VASS) 3.0 [4]. The parameters measured in 
VASS which were taken into consideration in the 
research were: 

• Pitch Perturbation Quotient (jitter) and Amplitude 
Perturbation Quotient (shimmer)

• TNI - Turbulence Noise Index  
• HNR - ratio of harmonic energy to noise energy,  
• NNE - Normalized Noise Energy  
• HFHE - Normalized First Harmonic Energy - ratio of 

the amplitude of the first harmonic from the power 
spectrum to the total energy [8]. 

Fig.1. General scheme of data processing 

The described method of acoustic evaluation of 
intubation-related changes, occurring in the larynx as a 
result of the intubation procedure, based on the acoustic 
analysis of the speech signal exhibits a number of 
advantages. Its main advantage is the fact that it is 
completely non-invasive and can be easily applied. 
Further advantage of the method is the simplicity of the 
required calculations, resulting from the fact that the 
presented parameters of the acoustic speech signal are 
among the signal parameters that are the easiest for 
evaluation. 

III. RESULTS OF THE STUDY  

It has been shown that after the intubation 
considerable disturbance of vocal chords' functioning 
occurs, manifested mainly by the changes in the relative 
energy of the first harmonic frequency of the laryngeal 
pitch. For some of the patients examined the considered 
parameter noticeably increases, what can be a direct 
indication, that as a result of mechanical stretching of 
vocal chords during the intubation procedure, temporary 
injury of the chords occurs, manifested mainly by 
decrease in their elasticity. However it seems reasonable 
to presume, that the examined parameters of the voice 
signal (relative energy of the first harmonic frequency, 
jitter and shimmer) exhibit natural variability specific for 
a given person, resulting from that fact that no man is 
able to speak exactly in the same way during two 
consecutive recording sessions carried out with time 
separation of several days. The range of voice 
changeability in the control group for jitter and NFHE in 
each vowel is presented in table 2. 



Voice analysis 271

Table 2. Voice changeability range for jitter and 
normalized first harmonic energy (NFHE) in the control 
group.  

 mean standard 
deviation 

Physiological range 
of voice changeability 

jitter /a/ 0,0068 0,5591 -1,1114;  1,125 
NFHE /a/ 0,5572 1,7632 -2,9692;  4,0836 
jitter /e/ 0,5539 0,7018 -0,8497;  1,9575 
NFHE /e/ 1,3279 2,4888 -3,6496;  6,3055 
jitter /i/ 0,0401 0,5881 -1,1361;  1,22 
NFHE /i/ 1,0806 1,7212 -2,3618;  4,5231 
jitter /u/ 0,4113 0,8699 -1,3285;  2,151 
NFHE /u/ 0,9771 2,65158 -4,3260;  6,2803 

After analysis of all results we found 8 patients in the 
examined group that presented values of the normalized 
difference in jitter or NFHE that lay beyond the 
calculated physiological range (the values are shown in 
table 3). The deviations were present only in some 
parameters (jitter /a/, /e/, /i/, NFHE /a/, /i/, /u/) and only 
in one or two vowels for each patient.  

Table3. Normalized difference between the 
postintubation and preintubation recordings that go 
beyond the physiological range.  

Patient 
number 

parameter vowel normalized 
difference 

jitter /a/ 3,8346 1
jitter /i/ 1,2490 

2 NFHE /a/ 6, 6439 
NFHE /a/ 2,8158 3
jitter /i/ 2,2870 

NFHE /a/ 1,9356 4
NFHE /i/ 16,8855 

5 jitter /e/ 4,5930 
6 jitter /i/ 1,6160 
7 NFHE /i/ 5,7044 

NFHE /i/ 12,2911 8
NFHE /u/ 55,6839 

The figures 2. and 3, present histograms of the 
normalized difference for example parameters in which 
deviations have been observed.  
As can be seen in the pictures 2 - 3, most of the patients 
present minor postintubation voice changes similar to 
those observed in the control group. In several patients 
however larger changes occur. In all the cases that lay 
beyond the physiological range the value of the 
normalized difference is positive, while for the other 
patients (and the control group) both positive and 
negative outcomes are observed. In addition, for one 
parameter (jitter /i/) a statistically significant difference 
between the normalized difference distribution between 

the examined group and the control group was observed 
(unpaired one-side t - Student test,   p < 0,05). 

Fig. 2. Histograms of the normalized difference for jitter 
/a/ in the examined group and in the control group. 

Fig.3. Histograms of the normalized difference for 
NFHE /a/ in the examined group and in the control group. 

IV. DISCUSSION

The presented results are preliminary ones and their 
full interpretation is not known yet. It can be assumed 
that no statistically significant difference between the 
preintubation and postintubation recording in the whole 
examined group was observed because the majority of the 
patients did not suffer intubation-related vocal fold 
damage. In those patients only minor positive and 
negative voice changes that lay in the physiological range 
were present. The changes may be attributed to 
atmospheric conditions, differences in voice effort before 
the recording, imperfectly identical pronunciation of the 
sustained vowels, etc. as it was observed in the control 
group. 
Eight intubated patients presented much greater positive 
changes in jitter or normalized first harmonic energy that 
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the control group and the other patients. Currently it 
cannot be stated unambiguously whether the observed 
deviations are connected with intubation. It must be noted 
that no patient presented deviations in all vowels. 
Moreover, the deviations do not always occur in the same 
parameters and the same vowels. Therefore it is not 
possible to decide which of the patients actually suffered 
vocal fold damage during intubation or which of the 
parameters really reflects the intubation-related trauma. 

V. CONCLUSIONS 

In approximately 30% of patients changes in 
parameters: jitter /a/, jitter /e/, jitter /i/, NFHE /a/, NFHE 
/i/ and NFHE /u/ laying beyond the natural voice 
changeability range were observed. The distribution of 
the normalized difference of jitter for the vowel /i/ was 
significantly different in the examined group than in the 
control group. 
The parameters presented above may be useful in 
identification and assessment of the of the intubation-
related laryngeal trauma, but their usefullness in practice 
requires further verification. 
Further research plans
Because the percentage of the patients who suffer vocal 
fold trauma during intubation seems to be low, the 
number of patients with postintubation complications in 
the examined group may be to small to draw correct 
conclusions. 
The verification of the preliminary results requires: 
• continuation of the research on a larger examined 

group and control group, 
• taking into consideration patients after longer 

intubations (in the currently examined cases the 
intubation lasted approximately 30 minutes to 3 
hours) which might cause more significant voice 
changes in a higher percentage of patients, 

• a more accurate way of choosing the most stationary 
portion of the sustained vowel, e.g. according to the 
method proposed by Prosek [9], 

• research on the influence of intubation on other 
acoustical measures (e.g. sound pressure level 
perturbation quotient [10]), 

• a reference examination (preliminary identification 
of patients with more probable vocal fold trauma by 
a professional listener). 

The further research goals are: 
• choice of the most reliable parameter which reflects 

the intubation-related laryngeal trauma, 
• choice of a phoneme in which the acoustic effect of 

the intubation trauma is most distinct, 
• creating a standard method of preliminary signal 

processing, 

• decision what values of the parameter change 
suggest laryngeal trauma, 

• research on possible risk factors, especially in 
patients group with persistence pathology of the 
larynx.  
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Abstract: Nasalized veolar consonant [g] in 
continuous Japanese is often observed in some 
dialect and is said to decrease in frequency 
year by year. This paper deals with acoustic 
and perceptual analysis of this phenomenon. 
Test materials used in this experiment are read 
version of Japanese short sentences by NHK’s 
(Japan Broadcasting Corporation) professional 
announcers. Each sentence includes at least 
one [g] consonant that would likely be 
pronounced as nasalized. An evaluation test 
reveals that less than 60% of nasalization has 
been found to occur for [g] consonants for 
which 100% nasalization bad been observed 
decades ago. Acoustic analysis for nasalized 
and non-nasalized [g] sounds has been 
performed mainly through waveform 
parameters. It has been found that power ratio 
between consonant and vowel is the most 
effective parameter for distinguishing nasals 
from non-nasals. But it is highly speaker 
dependent. 
Keywords: Nasals, veolar, perception, 
waveforms 

I. INTRODUCTION

It is well known that the [g] consonant, a velar 
voiced plosive, in Japanese continuous speech is 
often nasalized unless it appears at the 
word-initial position. Nasalized [g] consonant, 
which is expressed as [ ], takes place in dialects 
mainly spoken in northern districts including 
Tokyo area where the standard Japanese is spoken. 
There have been arguments among Japanese 
linguist whether [ ] consonant exists 
independently from [g] consonant or it is viewed 
as a phonetic variant of the consonant in standard 
Japanese [1]. Shiro Hattori, for example, took the 
former view on [g] and [ ] distinction in Tokyo 
dialect [2]. As a speech technology engineer, I 
myself would like to view the phenomenon an 
allophone of the phoneme. 

In the so-called common Japanese, which is 
based on the Tokyo dialect, [ ] consonant 
sometimes takes place. This way of speaking used 
to be, and still to some extent is, regarded as a 
beautiful pronunciation of Japanese. TV/radio 
casters and announcers used to pronounce [ ]
consonant as much as possible and this has been 
the norm of pronunciation for NHK (Japan 

Broadcasting Corporation) announcers for years.  
They used to be trained to pronounce [ ] sounds 
for proper portions while they are training to 
become a professional announcer.  However, this 
trend declines gradually and less young people 
speak [ ] sound than ever before. The present 
study deals with perceptual evaluation and 
acoustic analysis of [g] and [ ] consonants in
common Japanese. 

II. PERCEPTUAL EVALUATION

Speech material to be examined has been offered 
by NHK Broadcasting Culture Research Institute. 
Several announcers, including those fresh 
announcers under training, participated in the 
recordings. The first evaluation has been 
performed at the NHK Institute using 32 short 
sentences, each includes at least one [g] 
consonant somewhere in-between, uttered by 24 
speakers. The result is shown in Fig. 1 in which a 
percentage of [g] vs [ ] pronunciation among 32 
utterances for each speaker. Speaker 23, for 
instance, shows a 100% [ ] pronunciation while
speakers 8 and 11 exhibit very small percent of 
[ ]. As we can see at the right-most bar, less than 
60% of [ ] pronunciation can be observed on the 
average. The above result was obtained based on 
the auditory perception by experienced persons 
including former professional announcers at the 
NHK Culture Research Laboratories and the
speech materials they used are supposed to be  
100% [ ] utterance for all speakers when they 
would have been used decades ago. 

III. WAVEFORM ANALYSIS

Preliminary waveform analysis has been 
conducted for different speech materials from 
those used in the perceptual evaluation shown in 
Fig. 1.  

3.1. Speech material 
Materials used here is a set of 7 short sentences, 
each contains at least one [g] consonant, uttered 
by 10 announcers. In this speech material, two 
kinds of pronunciations, one is intentionally 
[ ]and the other intentionally [g] pronunciation 
for the same sentences by two speakers, are 
included. A sentence (No. 3) includes two [g] 
consonants while the rest has only one [g] 
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/g/ / / ratio
prcv 0.03 0.18 5.48
prtc 1.96 13.7 7.00

prncv 0.09 0.25 2.85
prntc 10.54 32.8 3.11
lrcv 0.24 0.48 2.00
lrtc 28.68 58.0 2.02

mlrcv 0.24 0.4 1.67
cl 33.81 68.6 2.03
vl 102.1 103.5 1.01

rclv 0.36 0.7 1.95

consonant each. There are 8 [g] consonants as a 
whole. Of the 8 [g] consonants examined, only
one is a sample from word-initial position and the
rest 7 samples are in a intervocalic position. Then,
there will be little or no contextual effects for
analyzing the data.

3.2. Waveform parameter
In order to find out waveform parameters that 
characterize the [ ], we have selected 10 acoustic
parameters that are considered to reflect the
waveform shape [3]. For power-related features,
four kinds of parameters, and three kinds of
parameters each for amplitude-related and 
duration-related features, as shown in Table 1.
Among the ten parameters, the most important
factor was found be the ratio between consonant
and vowel parts followed by the energy level of

consonant. At first, this experiment was intended
to find an acoustic parameter that can 
automatically distinguish [ ] consonants from [g]
without conducting human audition. Before trying
to find acoustic parameters that can automatically
distinguish [ ] consonant from [g] consonant, the
above ten parameters have been examined.
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Fig. 1 Ratio of nasalized and non-nasalized perception of /g/ consonant in 32 sentences for individual 24
professional announcers

3.3 Application of waveform parameters to [ng]
and [g] consonant

The ten waveform parameters defined above have
been applied to the 8 [g] consonants in the 7 short
sentences. There is no clear-cut distinction in 
determining the phoneme boundaries especially
between consonant and vowel when the
consonant in question becomes nasalized. In such
cases, facilities available such as waveforms,
spectrum, hearing by ear, are incorporated to find 
an appropriate boundary. Hearing by ear has been
found to be the most promising tool to decide the
boundary. Table 2 shows the result for [g], [ ] and
their ratio when applied to the test sentences.

Table 1 Ten waveform parameters used in analyzing
nasalized/non-nasalized [g] consonants.

In Table 2, the “ratio” stands for the value
[ ] divided by [g]. This value is considered to

Parameters Definition Name

(1) Power Parameter
1) consonant and vowel
 ratio

power ratio of consonant part to vowel
part prcv

2) consonant and syllable
ratio

power ratio of consonant part to the 
whole syllable prtc

3) normalized consonant 
and vowel ratio

consonant power normalized by its length
divided by normalized by vowel power prncv

4) normalized consonant 
and syllable ratio

consonant power normalized by its length
divided by normalized syllable power prntc

(2) Amplitude Parameter
5) consonant and vowel

ratio
ratio of mean amplitude of consonant to 
mean amplitude of vowel lrcv

6) consonant and syllable
ratio

ratio of mean amplitude of consonant to 
mean amplitude of the whole syllable lrtc

7) maximum consonant 
and syllable ratio

maximum consonant amplitude divided 
by maximum vowel amplitude mlrcv

(3) Duration Parameter
8) consonant duration duration of consonant part cl
9) vowel duration duration of vowel part vl
10) consonant and vowel

 ratio duration ratio of consonant to vowel rlcv

Table 2 Ten parameter values for /g/,
/ / consonants and their ratio.
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reflect the difference between [g] and [ ] sounds.
The largest difference can be seen in the second
parameter “prtc”, the power ratio between
consonant and syllable, followed by the first
parameter “prcv.” The third largest parameter is 
for “prntc,” and the least one is naturally for “vl.”

IV. CORRELATION BETWEEN WAVEFORM
PARAMETERS AND PERCEPTION OF

NASALITY

Another perceptual experiment, which is different
from the one described in Section 2, has been
performed about the nasality of [g] consonant
using different speech materials uttered also by
NHK announcers. Twenty five short Japanese
sentences including the same ones used in the
waveform analysis were used. Twelve NHK
announcers read the sentences without any
instructions about the nasalization of [g]
consonants. They were allowed to read the
sentences as exactly the same way as they used to 
pronounce when broadcasting news materials.
Each sentence contains at least one [g] consonant
and the number of [g] consonants to be examined
is 31. 

4.1. Perceptual experiment on nasalization
A perceptual experiment has been performed for
[g] consonant whether it is nalasized or not. A
whole CV-syllable that contained [g] consonant
was excised from the running speech and the
listeners were asked to judge if the portion in 
question was nasalized or not. Judgment of 
nasalization is hard to decide somehow. In fact,
individual listeners responses show a great
inconsistency from trial to trial. However, there
are some speech samples, though very few, that 
can be served as objective data for which all 
listeners give consistent judgment towards [g]- [ ]
distinction. Using these consistent judgment data
for [ ], a correlation analysis between these
perceptual data and the waveform parameters has
been examined.

Before going into correlation analysis, let’s

take a brief look at the perceptual result. Fig. 2
shows the percentage of nasalization for 12

speakers. Ten listeners participated in this
experiment. For each syllable excised from the
running speech, they were asked to judge whether
the consonant in question was nasalized or not.

4.2. Correlation between perception and three
acoustic parameters

In order to find out which waveform parameters
relate closely to the perceptual results of [g]- [ ]
distinction, we have performed correlation
analysis between perceptual data and the
waveform parameters. But this time, we have
chosen three waveform parameters. They are 1)
normalized consonant and vowel power ratio
–prncv, 2) consonant and vowel amplitude ratio
–lrcv, and 3) another parameter –psmax. The
third parameter, psmax which is not included in
the ten parameters listed in Table 2, is defined
here. The parameter psmax is defined as a 
differential coefficient regarding the  smoothed
waveform-envelope as a function of time, which
represents a kind of abruptness of the envelope
change from [g] consonant to the following
vowel.

There are 31 [g] consonants to be examined.
The correlation has been taken between two
vectors in the 31 dimensional space. For each 
speaker, let be a vector in the 31 dimensional
space,

X

(1)),,,( 3121 xxxX

where a component i stands for the percentage
of [ ] response, averaged over ten listeners, for
the i-th [g] consonant. Also, letY be an another
vector in the same 31 dimensional space,

x

(2)),,,( 3121 yyyY

where the 31components represent acoustic
values measured either one of the three waveform
parameters described above and arranged in the 
same order as those of vector . Then the
correlation between vectors andY is defined
as,
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where stands for the vector’s inner
product and

),( YX
represents a vector’s norm.

The result of correlation analysis is shown in
Table 3 for speakers individually. From the result,
it reveals that there are no specific waveform
parameters that highly correlate with the
perceptual data. In other words, there are no 
specific waveform parameters that characterize
the nasalization regardless of speakers. If we look
at the results more closely with speakers
individually, we can find a few parameters for
one speaker that show high correlate with the
nasalization. Speakers 1 and 6, for example, show
relatively high correlation with all the three

Fig. 2 Perceptual result on nasality for 12 speakers.
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Table 3 Correlation coefficients between / /
perception and three waveform parameters for
each speaker.

waveform parameters, while speaker 5 does not.
The result shows rather high speaker dependency.
On average, it is around 0.6 for each acoustic
parameter.

V. SPECTRUM ANALYSIS

It is likely that nasalization/non-nasalization
distinction will appear most obviously in spectral 
envelope of the consonant in question. A spectral
analysis has been made on the consonant. From
the perceptual result described in Section 4.1, we
have chosen speech data that clearly show [ ]
pronunciation and [g] pronunciation. Spectral
analysis has been made for these speech samples
separately and the results are compared. Analysis
has been made at the center of consonant part for
each syllable. There are many ways to conduct
spectral analysis but only the frequency analysis
of the lowest three formants has been made here.
Fig. 3 shows the result of frequency analysis. It is
observed that there are small differences among
the three formants between [ ] and [g] consonants.

For [ ] consonant, all formants, especially 2nd

formant, are slightly lower than those for [g]
consonant but these differences are not 
statistically significant. Fig. 4 stands for the
standard deviation of three formants for [ ] and 
[g] consonants. Again there are small differences
between the two consonants. But in F1, relatively
large difference can be observed; standard
deviation for [ ] is significantly smaller than for
[g] consonant.

speaker psmax prncv lrcv
1 0.76 0.72 0.79
2 0.74 0.42 0.61
3 0.64 0.74 0.76
4 0.68 0.69 0.78
5 0.39 0.41 0.51
6 0.79 0.71 0.80
7 0.72 0.72 0.77
8 0.72 0.63 0.76
9 0.53 0.55 0.57

10 0.62 0.48 0.57
11 0.62 0.65 0.75
12 0.45 0.54 0.55

average 0.64 0.61 0.62

Fig. 4 Standard deviation of formants for / / and
/g/ consonants 

VI. DISCUSSION

As far as waveform parameters are concerned, we
could not find a single parameter that can clearly 
separate nasalized [g]. Besides, waveform
parameters largely differ from speaker to speaker
and no specific speaker-independent parameter
can be found so far. It is obvious that the
distinction between nasalized and non-nasalized
consonant appears dominant in spectral region.
There are some zeros (anti-formants) in a nasal
sound. Formant frequencies themselves appear
not significant acoustic parameters that
distinguish [g] and [ ] consonants. As far as
spectral analysis is concerned, most dominant 
factor that seems to differ between the two 
consonants is the shape of spectral envelope. For 
[g] consonant, the spectral envelope is rather
“flat” over the entire frequency region while that
for [ ] is not. Quantitative analysis will be needed
to express this “flatness” between the two
consonants.

0

500

1000

1500

2000

2500

3000

F1 F2 F3

FR
EQ

UE
NC

Y 
(H

z)

/ng/
/g/

VII. ACKNOWLEDGEMENT

Speech materials of NHK announcers were
offered by NHK Broadcasting Culture Research
Laboratories. The author would like to express his
gratitude to Mr. Ohnishi and Mr. Shibata.

REFERENCES

[1] H. Jo: Nihongo, Iwanami Shoten, pp.109-145, 1977
[2] S. Hattori: Onseigaku, Iwanami Zensho, p.102, 
1968
[3] M. Nakamura and H. Kuwabara: “Waveform
analysis of / / consonant,” Proceedings for Spring
Meeting of ASJ, pp.363-364, 2001Fig. 3 Formant frequencies for / / and /g/

consonants



3rd International Workshop MAVEBA 2003, 277-280
© Firenze University Press 2003, ISBN 88-8453-154-3 

Abstract: Voiced speech is characterized by qualita-
tively rich mode locking phenomena linking harmoni-
cally excited acoustic modes of the vocal tract. Due to 
the strong instationarity of speech, a differentiated
analysis of these modes cannot be achieved with the
help of a linear, time invariant source and filter model 
(based on stationary sources). As alternative, the cha-
racteristic mode locking is described as generalized
synchronization in drive - response systems with an 
instationary, common (fundamental) drive. By intro-
ducing a combined harmonic and logarithmic (audio-
logical) scale subband decomposition adapted to the 
frequency of the master oscillator of phonation, a self-
consistently confirmed, topologically equivalent recon-
struction of a number of acoustic modes of an acoustic
object is generated. Whereas the invariant resonator
properties (Lyapunov exponents) of the reconstructed 
response dynamics are characteristic for vowels, the
generalized synchronization manifolds (lines or sur-
faces) in the combined state space of drive and respec-
tive response band can be used for the distinction of 
consonants. The topologically equivalent reconstruc-
tion of the phonation process is potentially useful for 
phoniatric diagnoses.
Keywords : Subband decomposition, drive – response 
reconstruction, transfer function model, voiced 
speech,  generalized synchronization

I. INTRODUCTION

The characteristic mode locking of voiced speech 
results from harmonic excitations, which are synchro-
nized by glottal closure events [1]. In the context of
generalized synchronization in drive – response systems
it has been shown recently [2,3], that mode locking or 
synchronization is not an elementary phenomenon, but a
header for a larger number of qualitatively different
coordination possibilities, which are characterized by
more or less smooth and/or continuous invariant mani-
folds in the combined state space of coupled drive - 
response oscillator pairs, the manifolds being defined by 
maps, which relate a state of the response uniquely to the
simultaneous state of the drive [2-4]. In the context of 
speech recognition the topological equivalence between 
drive and response represents an important special case 
[5], which is characterized by a conjugation (a continuous
and uniquely invertible map). Together with the more

general concept of conditional asymptotic stability [6]
these notions are useful for a differentiated analysis of the
synchronization or coordination phenomena of voiced
speech.

Topologically equivalent reconstruction of instationary, voiced speech

F.R. Drepper
Zentrallabor für Elektronik, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany

The ubiquitous instationarity of the amplitude and
pitch of phonation is a second essential feature of voiced
speech, the variation of the amplitude being relevant on 
time scales down to less than 50 ms. In this context it is 
important to note that the long time known phenomenon
of synchronization is not limited to periodic or quasi peri-
odic driving but may as well occur for stochastic [7] or
deterministic chaotic driving [2]. So far the application of
the source and filter model to the recognition of voiced 
speech is based on the assumption of a stationnary phona-
tion process [8]. This assumption limits the source and
filter model to the description of relatively short sections
of speech (typically 20 ms). Such short sections, how-
ever, are insufficiently suited to detect the characteristic 
invariant manifolds of voiced phonemes. The ubiquitous
instationarity of human speech motivates, to replace the 
assumption of stationnary phonation (implicitly implied
when estimating spectra) by the assumption of genera-
lized synchronization between the instationary and/or
nonlinear drive and the acoustic response. Thus the atoms
or objects (in particular the phonemes) of speech are no 
longer interpreted as stationary processes but as station-
nary or invariant manifolds (lines or surfaces) in the 
combined state space of instationary drive and response 
oscillator pairs. However, neither the acoustic response
modes within the vocal tract nor the excitation within the
glottis can directly be observed in the situation of speech 
communication.

II. SUBBAND RECONSTRUCTION 

As a characteristic feature the present approach uses 
suitably chosen bandpass filters to determine a fundamen-
tal driver mode as well as higher frequency subbands, 
which represent topologically equivalent reconstructions
of corresponding acoustic modes of the vocal tract. The 
choice of the appropriate bandpass filters is based on the
fact that voiced speech is characterized by a concentra-
tion of power in comparatively narrow frequency ranges 
and that due to the approximate periodicity of the voice
source these frequency ranges show a comb like pattern,
aligned to the fundamental frequency defined as (short
time) average of the frequency of glottal closure events.
The bandwidths of the bandpass filters should be chosen 
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sufficiently narrow, to resolve as many harmonics as
possible, however also sufficiently broad, such that the 
relative bandwidth exceeds the one of the instationary 
frequency fluctuations of the fundamental drive process.
Obviously the ERB bandwidths (according to the equiva-
lent rectangular bandwidth model) [9,10], known from
masking experiments in psychoacoustics, represent an 
evolutionarily successful compromise. This choice
introduces an a priory limit on the harmonic number h of 
resolvable subbands, (h < 10). When generating a vowel,
the vocal tract shows no branching and no additional
constriction (apart from the glottis). In this situation the
feasibility of a harmonic scale aligned subband decom-
position is guaranteed, since the response processes of the
different harmonic excitations superpose without pertur-
bation and can thus be separated by appropriate bandpass 
filters due to their differing frequencies.

Even in the case of nasals or voiced approximants like
/l/ or /v/ in veal and voiced sibilants like /th/ in thumb, the
concentration of power of the primary voice source (in
space and frequency) implies or supports a phonation 
dynamics, which features a causal pinhole expressed by a 
low dimensional, potentially instationary master oscilla-
tor, which “enslaves” [4] the faster state variables of 
sound production or at least their long distance effect on
the acoustic field. According to the so far rather limited
study there is no contradiction, that at least in the case of 
healthy phonation the voiced part of the excitation of the
acoustic modes can be expressed as synchronization
manifolds, which are driven by a pair of fundamental
amplitude and phase. The complex wavelet transfor-
mation [11,12],
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turns out to be particularly suited for the extraction of the
amplitude  and phase  of the master oscillator from
the speech signal. The centre frequency  is chosen as 
an appropriate multiple of the fundamental frequency 

, which is obtained by a conventional method.
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Following the well accepted linear source and filter
model of speech production [1,8] it is plausible to repre-
sent the voiced part of each subband specific excitation as 
product of drive amplitude  and an oscillatory driver
phase dependent excitation function G , which thus
takes the central role in the phenomenological description
of complex voiced phones. The enslavement of the fast
degrees of freedom of the excitation implies a periodicity
of the excitation function. In the context of instationary
phonation it is important to note that this periodicity does 
not refer to time but to the phase of the glottal drive. The
period length  of the excitation function is
potentially speaker dependent and coincides usually with
the fundamental period . Due to the band limitation

each excitation function can nicely be approximated by a 
finite Fourier series, the terms of which may be
interpreted as purely harmonic, elementary excitations.
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Following the linear source and filter model, subband j
is approximated as a finite dimen-

sional, linear response to a drive synchronous excitation.
Due to the described band limitation of the subbands as 
well as due to the band adapted time step length
(chosen as a quarter of the period length defined by the
band specific central filter frequency) a two dimensional
response dynamics turns out to be sufficient,
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band index dependent harmonic. The goal of the phona-
tion process adapted bandpass decomposition is charac-
terized by subbands, which can be approximated as two-
dimensional response to a single, pure harmonic,
elementary excitation. In the case of the higher harmonic
subbands, in particular of consonants, the goal reduces to
maximal diagonal dominance of the subband specific
elementary harmonic excitation.  The average distance of 
index k to the band specific harmonic h  turns out to be a 
useful objective function,
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The central filter frequency of the fundamental subband
filter represents the essential adaptation parameter to
achieve the diagonal dominance of the elementary
excitations.

III. TOPOLOGICAL EQUIVALENCE

The introduction of time dependent and time related
(continuously extended, unwrapped) phases as state
variables of the response dynamics opens the possibility 
to identify  (1:n) or (n:m) mode- or phase locking as a 
(near linear, diffeomorphic) conjugation. Due to transi-
tivity and invertibility of conjugations in a chain of con-
jugated oscillators, the evidence of a near linear conjuga-
tion between the subband oscillators of a voiced signal
can be taken as a confirmation of the topological equiva-
lence of all oscillators involved, including the equiva-
lence between the respective harmonically excited
acoustic mode within the vocal tract and the correspon-
ding subband (figure 1). The confirmation of topological
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equivalence of the subband dynamics can be used as a
basis for the quantitative determination of the topological 
invariants [13] of the resonator dynamics.

IV. EVOLUTIONARY ASPECTS OF VOICED SPEECH

As a striking feature of human speech, the confirma-
tion of the topological equivalence can often be achieved
for subbands with harmonic numbers higher than 10.
(Due to resonant excitation, the detectability of higher
harmonic, phase locked modes becomes extreme in the
case of singing.)  The surprisingly extended success of 
the described approach towards the determination of pho-
nation and vocal tract equivalent excitation and response
processes, can only be explained within the framework of
evolutionary and ontogenetic adaptation, characterized by
a near optimal fit between properties of human speech 
and the abilities of auditive perception. Thus voiced
speech and singing have to be interpreted as results of 
adaptation processes, which favor easy detectability
within a confusion of voices.

According to the so far rather limited empirical basis
(50 ms subsections of 5 vowels and 6 sustainable voiced
consonants uttered by 4 male and 2 female subjects), the
described subband decomposition of voiced phonemes
generally offers the possibility to detect near linear
conjugation between the lower harmonic subbands (fi-
gure 1). This way the phase and amplitude of the funda-
mental drive can generally be confirmed as topologically
equivalent image of state variables of the fundamental
glottal mode. The presented approach is thus well suited
for a robust and precise determination of the momentary
pitch of voiced speech and potentially also for phoniatric 
diagnoses.

For subbands within the harmonically resolvable range 
(harmonic number h < 9), a missing conjugation to the
driver band can be attributed to a break up of the conju-
gation chain within the vocal tract and not to a break up 
on the way from the vocal tract to the ear or microphone
(figure 1). In the case of voiced approximants and sibi-
lants, in particular, the loss of conjugation between
subbands does not indicate a loss of conditional asymp-
totic stability [6] of the higher harmonic subbands. A 
general definition of complex voiced phones of human
speech can thus be given as existence of a bandpass filter
based subband decomposition, which contains one funda-
mental drive oscillator and further conditionally stable 
response bands, where the conditioning is limited to the 
amplitude and phase of the drive and where the drive can
be confirmed to be (1:1) equivalent to the fundamental
glottal oscillator.

In view of the pronounced differentiation of the
synchronisation phenomena of voiced speech, auditive 
perception of humans can be assumed to be able to
perform and select the skilled bandpass decomposition,
which uncovers the more or less smooth, stationary
manifolds in the combined state space of the subbands - 
even in the case of instationary phonation. There are 
several empirical facts, which support a perception
equivalent model of hearing, which is build on the des-
cribed synchronization analysis of voiced speech. Firstly
there is the central role of the pitch known to be relevant
on different semantic layers of speech communication
and to be perceived even in the case of imperfect
harmonicity [14]. Further support can be seen in the
astonishing monaural voice separation and speaker 
identification ability of the auditive perception of
humans, which (in particular in the case of rough phona-
tion) could so far neither be explained by perceptional
models nor imitated by speech - or speaker recognition
algorithms.

Strikingly many distinctive properties of voiced
phonemes coincide with topological invariants of the
response dynamics or with topologically invariant
geometric properties of the related invariant manifolds.
The most important topological invariants of the subband 
dynamics are the (conditional) Lyapunov exponents [6],
since they express resonator properties of the vocal tract,
like resonator quality and eigen-frequency, which are
known to be strongly dependent on the geometry of the
vocal tract and thus particularly suited for the distinction
of vowels. The distinctive properties of consonants are 
predominantly related to geometric properties of invariant
manifolds in the four-dimensional state space of drive - 
response oscillator pairs (like kinks or jumps in the case 
of nasals). Stop consonants are characterized by a 
pronounced visibility (audibility) of the amplitude –
amplitude coupling between the drive and the respective
response bands, whereas for sustainable voiced
consonants the coupling of the response phases to the
driver phase plays the more important distinctive role.

Based on highly developed abilities of higher verte-
brates [15,16], the astonishing speaker identification 
ability indicates that the auditive perception of humans is
in command of analysing abilities of the nonlinear dyna-
mics of phonation, including recognition of subharmonics
or of co-existing meta-stable periodic trajectories (un-
stable periodic orbits, UPO’s) [3,17]. In order to avoid
dangerously large bandwidths of the fundamental driver
mode it is advantageous to represent the influence of the
mentioned nonlinear phonation dynamics with the help of 
periodicity of the driver phase dependent excitation
function. The potential richness of the combination
possibilities of periodicity  of an excitation manifold
with the periodicity  of the resulting response mani-
fold and the winding number  of the corresponding
response phase offers a plausible explanation for the asto-
nishing speaker recognition ability of auditive perception.
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V. CONCLUSION

Contrary to the conventional approach towards speech 
analysis, which is based on the assumption of a station-
nary, high dimensional source and the use of a broad 
band version of the linear source and filter model, the
newly proposed approach describes the source as a syn-
chronized response to a low-dimensional instationary
drive, which is determined self-consistently as a topolo-
gically equivalent image of the underlying fundamental
glottal mode. The self-consistency is based on a skilled
subband decomposition, the subbands of which can opti-
mally be interpreted as linear response to harmonically
distinct, voiced excitations. Apart from providing evi-
dence of the topological equivalence of the common
drive, the skilled subband decomposition discloses topo-
logically equivalent images of the invariant manifolds,
which characterize the synchronization of the higher
harmonic acoustic modes of the vocal tract. The distinc-
tion of consonants is hypothesizes to rely largely on 
topologically invariant geometric properties of these
manifolds. Since the parameters of the excitation mani-
folds can be estimated efficiently with the help of multip-
le linear regression, the outlined synchronization based
analysis of voiced speech is expected to be feasible in
real time.
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Figure 1: Voiced phones of
human speech are characteri-
zed by stationary manifolds
(lines or surfaces) in the com-
bined state space of drive and
response oscillator pairs,
which differ with respect to
the distance to sound genera-
tion inside the glottis as well
as with respect to the respec-
tive oscillation or winding
number h of the subband spe-
cific excitation. The dynamics
of the excitations as well as of
their resulting response pro-
cesses are reduced to the cor-
responding phase dynamics,
the respective driver phases

 or  being indicated
horizontally and the corres-
ponding response phases
vertically.
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POINCARÉ SECTIONS FOR PITCH MARK
DETERMINATION IN DYSPHONIC SPEECH

Martin Hagmüller, Gernot Kubin
Institute of Communications and Wave Propagation, Graz University of Technology, Graz, Austria

Abstract: In this paper a Poincaré approach to pitch
mark determination is presented. While speech has
been interpreted in terms of nonlinear systems theory
for quite some time, not much effort has been made
to exploit this knowledge in the problem of pitch
mark detection. This algorithm uses nonlinear state
space embedding and calculates the Poincaré section
at a chosen point in state space, pitch-marks are
then found at the crossing of the trajectories with the
Poincaré plane. The procedure is performed frame-
wise to account for the changing dynamics of the
speech production system. First results show promis-
ing performance, comparable to the pitch marking
algorithm used in ‘Praat’, and outperforming it in
case of irregular voices.
Keywords: Dysphonic speech, state-space-embedding,
Poincaré section, pitch-marks.

I. INTRODUCTION

For pitch–synchronous processing of speech, accu-
rate pitch-marks are essential. A particular challenge is
the correct determination of pitch-marks for dysphonic
voices. On the other hand, having a reliable method
for pitch marking available, this could be used for en-
hancement of rough pitch, by reducing the fluctuations
of the fundamental period. Accurate and robust methods
for pitch detection are of interest for the analysis of
dysphonic voices [1] and, e.g., for the measurement of
jitter, methods to reliably determine the instantaneous
fundamental period are necessary.

The nonlinear nature of the speech signal has been of
increasing interest for several years now, starting in the
early nineties [2].

Conventional algorithms, such as correlation based
methods, assume linear models of speech production,
though even for normal voices those models cannot fully
explain the properties of the signal. For dysphonic speech,
those models more or less fail due to the higher dimen-
sional non-linearity inherent in the system. Especially,
for strongly irregular voices, conventional algorithms for
pitch mark determination fail and, therefore, the need for
new methods is at hand. Non-linear methods seem to be
a promising way of overcoming the weaknesses of the
currently used approaches.

State-space approaches for dysphonic voice analysis
have been proposed recently [3], [4]. Voice irregularities

have been treated with nonlinear methods before, e.g. by
performing noise reduction in state space [5].

The paper is organized as follows. Section II will give
some background and review existing algorithms for pitch
determination in state space. In section III the proposed
state-space approach for pitch marking will be introduced
and the algorithm will be explained. Section IV will show
some results and finally section V will conclude the paper
with a summary and an outlook.

II. BACKGROUND AND RELATED WORK

A non-linear dynamical system can be embedded in
a reconstructed state-space by the methods of delays.
According to Takens [6], the state space of a dynamical
system can be topologically equivalently reconstructed
from a single observed one-dimensional system variable.
For a D-dimensional attactor it is sufficient to form a
M ≥ 2D + 1 state space vector. The M -dimensional
trajectory is formed from a speech signal vector x(n) by
delayed versions of the signal x(n),

x(n) = [x(n), x(n − τd), ..., x(n − (N + 1)τd)], (1)

where τd is the delay time, which has to be chosen to
optimally unfold the attractor. If one chooses an arbitrary
point on the attractor in an M -dimensional space then one
can create a hyper-plane which is orthogonal to the flow
of the trajectory at the chosen point. This is called the
Poincaré plane. All trajectories, that return to a certain
neighborhood of the initial point, cross the hyperplane
and can be represented in dimension M − 1 compared to
the original trajectory.

In 1997 Kubin [7] first suggested to use those Poincaré
sections for the determination of pitch-marks and men-
tioned special applications for signals with irregular pitch
period. Experiments showed very promising results for an
example with vocal fry, where the pitch period doubles
for some time. The pitch period was followed correctly.

Later Mann and McLaughlin [8] further worked with
Poincaré maps and applied them to epoch marking for
speech signals. They again saw promising results, but
reported inability to resynchronize after, e.g., stochastic
portions of speech.

More recently Terez [9] introduced another state space
approach to pitch detection, using space-time separation
histograms. Each point on the trajectory in state space
is separated by a spatial distance r and a time distance
∆t. One can draw a scatter plot of ∆t versus r or,
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Fig. 1. Histogram of space-time separation. The nor-
malized number of state space-distances within a certain
neighborhood r for every time distance ∆t is plotted.

for every time distance, count the pairs within a certain
neighborhood r. This can then be normalized to yield a
histogram (fig. 1). In case of periodicity in the signal,
the histogram concentrates at certain ∆t values, whereas
others have rather low values. The first maximum of
the histogram indicates the fundamental pitch period.
Compared to the autocorrelation function the peak is
much more significant and, therefore, offers improved
performance. In case of noise-like signals the histogram
is more evenly spread over all time distances. Since his-
tograms are based on averaging statistics, localized pitch-
marks cannot be determined reliably with this approach.

III. DESCRIPTION THE ALGORITHM

Our algorithm builds on the before mentioned ap-
proaches. The algorithm works on a frame-by-frame basis
to handle the changing system parameters.

For pitch mark detection the low-dimensional char-
acteristics of the signal need to be observed. So the
noise has to be removed, otherwise the attractor is hardly
visible with 3-dimensional embedding (fig. 2). If the
embedding dimension is high enough, intersections with
the Poincaré plane would still be corrosponding to the
pitch period, less reliable, though. For a noise reduced
attractor a singular-value-decomposition (SVD) embed-
ding approach has been proposed [8], but similar results
can be achieved by a simple low-pass filter. The latter
is computationally less demanding of course, so this is
chosen for noise reduction.

Then the signal is upsampled to fs = 96kHz to increase
the resolution of the pitch marks, since at low sampling
rates the pitchmarks would exhibit too much discretisation
noise. The embedding in the state space is done by the
method of delays, the embedding dimension was chosen
be M = 9. The delay for the chosen sampling frequency
is around τ = 50.
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Fig. 2. State-space embedding before low-pass filtering.

Poincaré section

At the heart of the algorithm is the calculation of
the Poincaré hyperplane (fig. 3). Around a chosen point
x(n0), the neighborhood within a certain radius r is
searched for points. Then a mean flow direction f(n0) of
the trajectories in this neighborhood N (n0) is calculated
(considering only those trajectories, with a flow in the
same direction as the initial point).

f(n0) = mean[x(n + 1) − x(n)] ∀n ∈ N (n0) (2)

So for every frame the Poincaré hyperplane is defined as
the hyperplane through x(n0), which is perpendicular to
f(n0) (fig. 3).

Mann et al. [8] reported the loss of synchronicity in
case of unvoiced portions of the signal. Since in running
speech this is usually the case, we decided to use the
minimum of the low-pass filtered time-domain signal as
an additional criterion for synchronization. So, in every
frame we initialize the algorithm with n0 = min(x).

Points in the neighborhood N (n0), within a certain
distance r from the plane are considered as pitch mark
candidates. Of these candidates, we select those which
correspond to an absolute minimum in the time domain.

To remove the influence of a changing amplitude au-
tomatic gain control was applied for every frame. This
moves the trajectories of quasi-periodic signals closer
together, which means, that the attractor is contracted, if
it was spread due to amplitude changes.

The length one frame has to be chosen so that at least
two periods of the expected minimum frequency fit into
the frame. If the signal is periodic, the trajectory returns at
least once into the chosen neighborhood and intersects the
Poincaré hyperplane and a pitchmark can be detected. The
hopsize depends on the the last pitchmark in the current
frame. The beginning of the following frame is set to the
last pitchmark.

A proper voiced/unvoiced decision is not yet solved.
Right now a frame is considered as unvoiced, if no
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Fig. 3. State-space embedding of low-pass filtered speech
signal with mean flow vector and Poincaré plane.
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Fig. 4. Top plot: Waveform plot of the sentence ‘Judith
found the manuscripts waiting for her on the piano’ and
the pitch marks obtained by Poincaré section. Bottom
plot: Fundamental period

neighbors can be found, because the trajecories do not
come back to a chosen neighborhood anymore.

IV. RESULTS

Formal evaluation of the pitch marking problem still
has to be performed. Informal results using the pitch
detection evaluation database by Paul Bagshaw [10]
(http://www.cstr.ed.ac.uk/projects/fda/) and recordings of
dysphonic voices from Graz University Hospital [11] are
very promising.

In figure 4 the results of the algorithm on running
speech can be seen. The sentence ‘Judith found the
manuscripts waiting for her on the piano’ is spoken by a
male speaker with modal voice. Most of the pitch marks
are correctly set.
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Fig. 5. Top plot: Time-domain waveform plot with pitch-
marks with Poincare section (positive peaks) and praat
(negative peaks). Bottom plot: Fundamental period.

In figure 5 a segment is taken out of the same speech
file. There, a short period of diplophonic fundamental
frequency is present (sentence ’rl040’ from the bagshaw
database). Other algorithms like Praat [12] fail at this
instance or detect a period doubling if the chosen mini-
mum pitch value allows for such long pitch periods. The
Poincaré method recognizes the rapidly alternating pitch
period correctly. Though in this case it is a matter of
definition whether the alternating period or the period
doubling is the correct interpretation.

The state space plot of the same segment (fig. 6) shows
an interesting property. There are two loops with different
sizes in the plot. The interpretation is that depending on
the period cycle length the state space vector follows
either the larger or the smaller loop.

Fig. 7 shows a speech waveform, of a male speaker
uttering the German phrase ‘nie und nimmer’. This ut-
terance is described by speech therapists as hoarse, with
strong diplophonia and some breathiness; his mean pitch
is unusually high for a male person. Besides a few errors
the pitch seems to be marked correctly.

Fig. 8 shows a segment of this phrase showing the
irregular fundamental period. This case, of course calls
for a comparison with a laryngograph signal, which is
not available in the database [11].

V. CONCLUSION

An algorithm using Poincaré sections for pitch mark
determination for dysphonic voices was presented. The
algorithm works on running speech, overcoming the syn-
chronization problem by sticking to the minimum of the
time domain signal. A diplophonic case was presented
where the alternating pitch period is correctly identified.
The results are very promising, and will receive further
evaluation.
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Fig. 6. Top plot: State-space embedding of the diplo-
phonic speech sample. One can interpret the two loops
as the two different attractors for the two fundamental
periods. Bottom plot: waveform plot
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Fig. 7. Top plot: Waveform plot of the German phrase
‘nie und nimmer’. Bottom plot: fundamental period ob-
tained with Poincare section.
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