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of Lido); c) S. Nicolò (basin of Lido) . . . . . . . . . . . . . . 76

3.1 Sketch and notations . . . . . . . . . . . . . . . . . . . . . . 84
3.2 Maximum and minimum values of tidal velocity along the

channel. Parameter values are: T = 130s; C0 = 20; D�
0 =

0:098m; � = 0:132 . . . . . . . . . . . . . . . . . . . . . . . 87
3.3 Maximum and minimum values of flow depth along the chan-

nel. Parameter values are: T = 130s; C0 = 20; D�
0 =

0:098m; � = 0:132 . . . . . . . . . . . . . . . . . . . . . . . 87
3.4 Maximum and minimum value of the flow velocity (according

to the linear theory) along the channel. Parameter values are:
T = 130s;D�

0 = 0:098m; � = 0:132 . . . . . . . . . . . . . . 90
3.5 Maximum and minimum value of the flow depth (according to

the linear theory) along the channel. Parameter values are:
T = 130s;D�

0 = 0:098m; � = 0:132 . . . . . . . . . . . . . . 91
3.6 Temporal evolution of the bottom profile (above) and of the

net sediment flux (below) from an initially plane configura-
tion. Parameter values are:D�

0 = 0:098m; � = 0:132; C0 =

16; d�
s50 = 0:31mm; �s = 1480kg=m3 . . . . . . . . . . . . . 92

3.7 A wave train superimposed to tidal wave . . . . . . . . . . . . 96
3.8 Marginal stability curve for alternate bars (from Seminara &

Tubino (2000)). Parameter values are: ds = 2 �10�5; Rp = 4,
peak value of Shields parameter = 1 . . . . . . . . . . . . . . 100

3.9 Sketch of the experimental apparatus . . . . . . . . . . . . . . 101
3.10 View of the experimental apparatus . . . . . . . . . . . . . . . 101

VI



3.11 Sediment size distribution . . . . . . . . . . . . . . . . . . . . 102
3.12 Sketch and notations of control volume . . . . . . . . . . . . . 103
3.13 The law of oscillation assigned to the cylinder is compared

with the theoretical law calculated by solving eq. (3.60) nu-
merically for given temporal dependence of free surface os-
cillations in the basin. . . . . . . . . . . . . . . . . . . . . . . 105

3.14 Measurements of the free surface elevation in 5 cross sections 105
3.15 The amplitude of tidal wave along the channel . . . . . . . . . 106
3.16 The water surface elevation at cross section 1 as predicted by

linear and nonlinear theory is compared with experimental
findings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

3.17 The water surface elevation at cross section 2 as predicted by
linear and nonlinear theory is compared with experimental
findings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

3.18 The water surface elevation at cross section 3 as predicted by
linear and nonlinear theory is compared with experimental
findings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

3.19 The water surface elevation at cross section 4 as predicted by
linear and nonlinear theory is compared with experimental
findings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

3.20 The water surface elevation at cross section 5 as predicted by
linear and nonlinear theory is compared with experimental
findings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

3.21 The distribution of the vertically averaged flow velocity dur-
ing a tidal cycle along the channel . . . . . . . . . . . . . . . 110

3.22 The maximum and minimum velocity along the channel . . . . 111
3.23 The temporal distribution of the vertically averaged flow ve-

locity at different locations throughout the cross section 2 . . . 111
3.24 The cross sectionally averaged flow speed at the channel inlet

as predicted by linear and non linear theory is compared with
the experimental findings. . . . . . . . . . . . . . . . . . . . . 112

3.25 The cross sectionally averaged flow speed at cross section 2
as predicted by linear and non linear theory is compared with
the experimental findings. . . . . . . . . . . . . . . . . . . . . 113

3.26 The cross sectionally averaged flow speed at cross section 3
as predicted by linear and non linear theory is compared with
the experimental findings. . . . . . . . . . . . . . . . . . . . . 114

VII



3.27 The cross sectionally averaged flow speed at cross section 4
as predicted by linear and non linear theory is compared with
the experimental findings. . . . . . . . . . . . . . . . . . . . . 115

3.28 The observed vertical distribution of flow velocity is com-
pared with the theoretical distribution predicted from eq. (3.62)115

3.29 Tidal dunes . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

3.30 The 2-D flow field pattern in the rectangular basin . . . . . . . 116

3.31 Picture of the pattern of flow field during the ebb phase . . . . 117

3.32 Picture of the pattern of flow field during the flood phase. No-
tice the presence of vortexes in the left side of the channel inlet 118

3.33 Picture of the pattern of flow field during the flood phase. No-
tice the presence of vortexes in the right side of the channel
inlet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

3.34 Detail of the flow field pattern during the ebb phase. . . . . . . 120

4.1 Sketch and notations . . . . . . . . . . . . . . . . . . . . . . 129

4.2 The value of the lift coefficient cL, estimated from Chepil’s
(1958) data, is plotted as a function of Reynolds number. . . . 132

4.3 The critical Shields stress ��c scaled by the critical Shields
stress for an horizontal bed ��c0 is plotted versus the lateral
bed inclination ' for different values of the longitudinal bot-
tom inclination� (� = 40Æ; cL=cD = 1:25, cD = 0:4, �p=Ks =

0:5, ��c0 = 0:032). . . . . . . . . . . . . . . . . . . . . . . . . 135

4.4 The angle  , which measures the deviation of particle velocity
relative to bottom stress, is plotted as a function of the local
Shields stress �� for given values of the angles � and ' (� =

40Æ; cL=cD = 1:25, cD = 0:4, ��c0 = 0:032, fp = 11:5,
�d = 0:6). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

4.5 The maximum lateral inclination of the bed surface 'max for
the validity of Bagnold hypothesis is plotted versus Shields
stress for given values of longitudinal slope of the bed sur-
face � (� = 40Æ; cD = 0:4; cL=cD = 1:25; �d = 0:6; fp =

11:5; ��c0 = 0:032). . . . . . . . . . . . . . . . . . . . . . . . 141

VIII



4.6 The average areal concentration of bedload particles C scaled
by particle diameter D for the limit conditions of validity of
Bagnold hypothesis is plotted versus Shields stress for given
value of the longitudinal inclination of the bed surface (� =

40Æ; cD = 0:4; cL=cD = 1:25; �d = 0:6; fp = 11:5; ��c0 =

0:032). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
4.7 The residual stress ��b acting on the bed interface is plotted

versus the external Shields stress �� for given values of the
angles � and ' (� = 40Æ; cL=cD = 1:25, cD = 0:4, ��c0 =

0:032, fp = 11:5, �d = 0:6). . . . . . . . . . . . . . . . . . . 144
4.8 The average areal concentration of bedload particles C scaled

by particle diameter D is plotted versus the residual Shields
stress ��b (� = 40Æ; cL=cD = 1:25, cD = 0:4, ��c0 = 0:032,
fp = 11:5, �d = 0:6). . . . . . . . . . . . . . . . . . . . . . . 145

4.9 The modulus of the bedload transport vector is plotted versus
the external Shields stress for given values of the longitudinal
and lateral inclination angles and compared with the results
of the linearized formulation (� = 40Æ; cL=cD = 1:25, cD =

0:4, ��c0 = 0:032, fp = 11:5, �d = 0:6). . . . . . . . . . . . . 148
4.10 Average particle velocity as from the experiments and the in-

terpretation of Fernandez Luque & van Beque (1976). (� =

40Æ; cD = 0:4; cL=cD = 1:25; ��c0 = 0:032; �d = 0:6; D =

1mm). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

IX





List of Tables

2.1 The mean and the maximum values of � for tidal meanders lo-
cated in three distinct environments (Barnstable (MA, USA),
Petaluma (CA, USA) and Pagliaga (Venezia, Italy)) . . . . . . 37

X
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Foreword

In the present book is collected the research activity I have carried out
during my PhD at the Department of Environmental Engineering of the Uni-
versity of Genova under the supervision of prof. G. Seminara.
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Abstract

The present work consists of two parts. Part one (chapters 1,2,3) concerns
tidal morphodynamics, while part two (chapter 4) deals with a topic of fluvial
morphodynamics.
In chapter 1 we outline the main morphological features and physical pro-
cesses displayed by tide dominated estuaries and tidal channels.
In chapter 2 we develop a theoretical model devoted to investigate flow field
pattern and bed topography in weakly meandering tidal channels. Such model
will then be set at the basis of a planimetric instability analysis of the type de-
veloped for river meanders (Blondeaux & Seminara, 1985). Results will be
discussed in the light of new observational evidence of meanders within dif-
ferent tidal environments.
In chapter 3 we present an experimental investigation on the hydrodynamic
processes occurring during the propagation of a tidal wave in a tidal channel.
Some preliminary observations regarding the interaction between the cohe-
sionless bottom and the tidal current will also be presented. Results will be
discussed and compared with the analysis recently developed by Lanzoni &
Seminara (2000). We will also discuss scaling rules to insure similarity in
mobile bed models of tidal flow over a cohesionless bottom. Such analysis
leads to a set of similarity rules which will be applied to the present model.
In chapter 4 we present a theoretical model of bedload transport on arbitrarily
sloping beds at low values of Shields parameter. Such problem is of great
practical interest as most phenomena in river morphodynamics involve the
motion of grains on non planar beds. The analysis will investigate the conse-
quences of the constraint imposed by Bagnold’s hypothesis when the bed is
characterized by high gradient and will show that the Bagnold hypothesis can-
not be valid. A new model of bedload transport will then be proposed based on
experimental observations proposed by Fernandez Luque & van Beek (1976).
The latter suggest that equilibrium of the bed interface occurs when the sedi-
ment entrained flux equals the deposited flux. Equilibrium of the bed is then
achieved only through a dynamic sediment balance.
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Part one

Topics in lagoon morphodynamics





Chapter 1

Introduction

The morphological characteristics of estuaries arise from a combination
of hydrodynamic factors (tides, river inflow, estuarine circulation, waves)
and sedimentological features. Estuaries can be classified according to many
viewpoints; Pritchard (1960) proposed four groups: drowned rivers, fjords,
bar-built estuaries and tectonic estuaries. Hayes (1975) defined three classes
of estuaries based on tidal range: microtidal (tidal range < 2 m), mesotidal
(tidal range 2-4 m), macrotidal (tidal range > 4 m). Dalrymple et al. (1992)
indicated two fundamental groups of estuaries: wave-dominated estuaries and
tide-dominated estuaries. The classification of Dalrymple et al. (1992) in-
volves the relative role played by river outflow, waves and tides. Tides and
waves may be significant at and near the mouth, but when tidal currents are
much stronger than both wave currents and river discharge in the middle and
upper estuary, then the estuary is said to be tide-dominated. Note that tidal
dominance can also occur in micro-tidal coasts when the wave activity is neg-
ligible. Tide-dominated estuaries typically have a tidal prism at least an order
of magnitude greater than river discharge; moreover the tidal wave provides
the major mechanism controlling sediment dynamics. Hence a major aspect
of tide-dominated estuaries is the way in which tide propagates upstream.
Tide hydrodynamics is governed by the shallow water equations, hence estu-
arine tides deform during upstream propagation. As it has been pointed out by
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Lanzoni & Seminara (1998), frictionally dominated estuaries display a flood
dominated character. The main implications are twofold. Firstly, flood veloc-
ities will exceed ebb velocities, but the ebb phase will be of shorter duration.
Secondly, the period of high-water slack will become longer than that for
low-water slack. In many estuaries the degree of tidal asymmetry increases
upstream, thereby magnifying the differences between ebb and flood veloci-
ties and slack-water durations. In response to the asymmetry of the temporal
distribution of flow velocity, a net upstream sediment transport is observed in
most tide-dominated systems (Wells, 1995). Net upstream transport continues
to the point where tide is damped out by frictional attenuation and transport
is controlled only by fluvial processes. Periods of slack water affect sedimen-
tation by providing an opportunity for deposition of muds. Longer periods
of slack water following flooding tides, as a result of tidal deformation, will
favor deposition of sediment in the upstream reaches of an estuary. The abil-
ity of ebb tides to erode these deposits could be diminished by two factors
referred to as settling lag and scour lag. The former lag indicates the temporal
delay between the time at which the flooding current, slowing down, can no
longer hold particles of a given size in suspension and the time at which they
reach the bottom. The latter lag refers to the fact that once sand particles are
set in motion they can be kept in motion at speeds below the threshold of ini-
tial motion. Consequently, between the threshold of erosion and the threshold
of deposition, sediment is kept in motion, but no new erosion takes place.
Understanding the sediment dynamics is crucial to evaluate the net sediment
flux which enters or leaves the system at any tidal cycle. The knowledge of
the variation in time of such flux allows one to investigate the long term mor-
phodynamic evolution of a tidal channel and search for a possible equilibrium
configuration. Such question has been recently tackled by Lanzoni & Semi-
nara (2000). They have shown, by numerically solving the one-dimensional
de Saint Venant and Exner equations, that the bottom profile of flood domi-
nated estuaries evolves asymptotically towards an equilibrium configuration
on a time scale of the order of hundreds of years. Such configuration is char-
acterized by a vanishing sediment flux over a tidal cycle at any cross section
along the channel (see also chapter 3).

Tide-dominated estuaries are composed of sediments derived from both
fluvial and offshore sources, in the latter case they are transported by the
littoral current and are introduced into the estuary by tidal action or littoral
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drift. The distribution of sediment inside the estuary is extremely variable,
ranging from gravel to mud. Whereas finer sands and muds have fluvial ori-
gin, coarser sands are typically derived from the shelf or from erosion of the
shoreline. Sediment can be transported by the tidal current in three different
modes: wash load, suspension and bedload. Wash load comprises the finest
fraction, and is normally composed of fine dispersed clay particles. The ver-
tical profile of wash load concentration is homogeneous. Suspension occurs
because of entrainment of sediment particles from the bed and the exchange
of momentum with the grains driven by turbulence. The concentration profile
of suspended sediment is maximum near the bottom and minimum at the free
surface.

It may be of interest at this stage to mention some typical data from a mor-
phological investigation performed in the Venice Lagoon (Danish Hydraulic
Institute, 1990). They suggest that the peak of the depth averaged veloc-
ity ranges about (0.5-1) m/s, the mean sediment diameter falls in the range
(50-100)�m and the mean flow depth is about 5 m in the main channels. The
peak of Shields parameter then ranges between (0.6-2.4) having calculated the
friction coefficient by means of van Rijn’s (1984) formula which accounts for
the presence of dunes (see chapter 1, section 6 for details). Furthermore, mea-
surements of sediment concentration in suspension reveal that depth-averaged
concentration ranges about (5-45) mg/l when the average speed is (0.1-0.7)
m/s respectively and in the case of a non cohesive quartz grain characterized
by a mean sediment diameter of about 100 �m. Note that suspension may
represent the main component of sediment transport. In fact, for values of
the peak depth average speed ranging (0.5-1) m/s, calculating the reference
concentration by van Rijn’s (1984) formula and bed load transport by Meyer-
Peter Muller’s formula, the ratio suspended/bed load attains values ranging
between 2 and 13, if the mean sediment diameter is 100�m and the mean
flow depth is 5m.

The morphology of tide-dominated estuaries is characterized in plan view
by a funnel-shaped geometry. The width/depth ratio of the channel attains
relatively high value ranging from 10-100 in ria valleys to 1000 (e.g. Cheas-
apeake bay). The width of estuaries often decreases often at an exponential
rate upstream. The tidally influenced distributary channels within the fun-
nel shape usually have low sinuosity. Moving landward, the funnel shape
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evolves towards a sinuous pattern upstream. The region of intense meander-
ing usually occurs as the upper limit of tide influence is approached. Tidal
flats occur along some stretches of coastline and within estuaries. They are
often backed by salt-marsh areas and dissected by a network of tidal channels.
Tidal flats are usually characterized by a weak landward slope and are com-
posed predominantly of silt and clay. At the seaward boundary tidal flats are
submerged for most of the tidal cycle, consequently the finest sediment part is
kept in suspension under the action of wave motion. At the landward bound-
ary tidal flats are submerged only at high tide when the current speed vanishes.
Mud, which typically consists of clay with a variable silt content, is deposited
during the slack water period to form mud-flats. Muds are cohesive, therefore
they are relatively difficult to erode after deposition has occurred. Laboratory
experiments using muds from Wadden Sea, indicated that a current of 0.4-0.5
m/s was required to bring into suspension muds that had been allowed to set-
tle for 16 hours, whereas deposition occurred only when the speed was about
0.1-0.2 m/s (Brown et al., 1989). The deposition of the finest sediment is en-
hanced by the settling lag effect; during the period of high water slack such
grains begin to settle from suspension until they are deposited at some dis-
tance inland from the point at which they begin to settle. As a consequence,
during the ebb phase such sediments will not be resuspended until much later
in the flow. Another factor increasing the depositional character of high tidal
flats is represented by the colonization of land plants such as Salicornia and
Spartinia. The growth of such plants leads to the formation of salt marshes
normally flooded during high spring tides. The salt marsh gradually extends
seawards while the older landward regions are flooded less frequently.

Channel bottom morphology consists of a wide variety of bedforms at
scales ranging from centimeters to kilometers.
Tidal sand ridges with superimposed dunes are typical of tide-dominated es-
tuaries and represent the most pronounced morphological features. They are
oriented approximately parallel to the axis of main tidal flow. These bedforms
form at the channel mouth and can reach lengths of kilometers and heights of
the order of tens of meters (e.g. Ord Estuary).
Moving inward along the channel, smaller scale bedforms are present, some-
times called repetitive barforms (i.e. alternate, point and braid bars) (Dalrym-
ble and Rhodes, 1995). The formation of bars in straight tidal channels has
been recently studied by Seminara & Tubino (2000) who have shown that an
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instability mechanism somewhat similar to that operating in the steady flu-
vial case acts also in the tidal environment. In the absence of a mean current
tidal free bars migrate alternatively backward and forward in a symmetric
fashion, hence they do not exhibit a net migration over a tidal cycle. For
the set of parameter values typically observed in the main channels of the
Venice Lagoon (mean sediment diameter of 100�m, mean flow depth of 5m,
peak of depth-averaged speed ranging between 0.5-1m/s) (Danish Hydraulic
Institute, 1990), Seminara & Tubino (2000) predict that tidal alternate bars
display a wavelength which is (8-40) times channel width when the ratio half
width/flow depth ranges between (5-30).
Point bars are large scale bedforms also observed in meandering tidal chan-
nels. Unlike fluvial point bars, tidal point bars migrate back and forth around
the bend apex with no net migration in a tidal cycle. Meandering channels
(see chapter 2) are characterized by channel widths which may vary by two
orders of magnitude moving upstream. Despite such variation, the morpho-
logical analysis developed by Lanzoni, Marani and Rinaldo (Solari et al.,
2000) on three distinct tidal environments, shows that meander wavelength
keeps remarkably constant ranging about 8-15 channel widths. The ratio half
width/flow depth of the channel does not seem to exceed the value of 10, a
value which is smaller than that observed in the fluvial case. The product of
local curvature and half width may attain a large value (greater than 1), but in
the average and for the cases reported in Solari et al. (2000) it takes a value
ranging between 0.06 and 0.22. It is worth noting again that, despite channel
width variation, the product of local curvature and channel width maintains a
remarkably constant mean.
Smaller bedforms such as dunes are widespread in tide-dominated estuaries.
Their presence affects flow dynamics, leading to higher values of the friction
coefficient. As suggested by field measurements taken at a site in the Mi-
nas Basin in the Bay of Fundy (Rhodes, 1992) dunes scale with flow depth,
displaying heights ranging between about 2% and 5% of the flow depth and
wavelengths falling in the range (0.3-0.6) times the flow depth, respectively.
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Chapter 2

Tidal meandering channels

2.1 Introduction

The subject of flow and bed topography in meandering channels has been
widely investigated in the fluvial case (e.g. Ikeda and Parker, 1989), but little
attention has been devoted so far to meandering channels in tidal environ-
ments.
Meandering rivers are typically characterized by an alternate sequence of
point bars and pools, with pools at the bend apexes, and low migration rates,
of the order of meters per year. It has long been recognized that the mech-
anism responsible for this pattern is the interaction between secondary flow
and particle dynamics. In a constant curvature channel, streamline curvature
leads to an unbalance between transverse pressure gradient, practically uni-
form along the vertical, and centrifugal forces, which decrease form the free
surface to the bottom. Such unbalance leads to a ‘centrifugally driven’ sec-
ondary circulation with zero mean, directed outwards at the free surface and
inwards close to the bottom. If the channel bottom is erodible, a transverse
slope is built up until a balance is achieved between two forces acting on each
grain: on one hand the lateral bottom stress driven by the secondary flow tends
to deviate the particle trajectory towards the inner bank, on the other hand the
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downstream pull of gravity which acts in the opposite direction (Engelund,
1974; Kikkawa et al., 1976). In the case of longitudinal variations of channel
curvature, continuity forces a further, ‘topographically driven’, component of
secondary flow, characterized by non zero depth average, which transfers lon-
gitudinal momentum from each pool to the next one. Furthermore, sediment
continuity leads to a transverse component of sediment transport which gives
rise to an additional contribution to lateral slope. Note that the latter is out
of phase relative to curvature, thus leading to some delay of bed topography
with respect to curvature (Gottlieb, 1976; Seminara & Tubino, 1986). The
presence of a significant fraction of sediments transported in suspension adds
further contributions to the above balance as both the centrifugal and the to-
pographical components of the secondary flow advect suspended sediments
giving rise to additional lateral sediment fluxes. However the resulting bar -
pool pattern does not change qualitatively.
In the present work we wish to extend the above framework to the tidal en-
vironment. More precisely we intend to determine flow pattern and bed to-
pography in tidal meandering channels. The distinct novel feature of such
problem is the unsteady periodic character of the basic flow which reverses
its direction at each half cycle. As a result of unsteadiness, it will appear that
the bar - pool pattern also oscillates in time. The analysis will be carried out
for regularly meandering channels where the meander wavelength is much
smaller than the tidal wavelength, a condition typical of both estuarine and
lagoon environments. Under these conditions, the basic state is slowly vary-
ing in space at the bar scale and a local analysis is appropriate at the leading
order of approximation. Moreover, provided local inertia is small enough, a
self similar solution exists which is only parametrically dependent on time (as
illustrated in section 2.4).

The knowledge of flow and bed topography in meandering channels can
then be employed to investigate the problem of meander formation in tidal
channels. In the river case, two main theories have been elaborated in the
recent literature: they are known as bar theory and bend theory of river me-
andering. The former approach, whose origin may be traced back to Leopold
& Wolman (1957), essentially assumes that alternate bars, i.e. free migrating
waves arising from bottom instability, are precursors of meanders: in other
words the presence of alternate bars in the originally straight channel would be
the triggering mechanism forcing bank erosion, hence meanders and alternate
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bars would display the same wavelength. On the contrary the bend approach,
proposed by Ikeda et al. (1981), assumes that bank erosion originates from
steady curvature induced flow perturbations, i.e. from forced modes rather
than from migrating free alternate modes, hence the wavelength selected by
the process of meandering initiation should be such to maximize curvature in-
duced flow and topography perturbations. The relationship between bar and
bend theories have been clarified by Blondeaux & Seminara (1985); the bend
theory selects a particular free mode which does neither grow nor migrate,
i.e. the bend approach may be then considered as a particular case of the
bar approach. Moreover, it turns out that, for given sediment characteristics,
a couple of values for width to depth ratio and meander wavenumber exists
such that curvature forces a natural solution of the flow-cohesionless bed sys-
tem leading to the occurrence of resonance. When resonant condition are met
the system displays a peak, which is infinite in the present linearized theory,
in the response of flow and bed topography. In practice exact resonance never
occurs, but the wavenumber selected by bend theory is clearly related to the
occurrence of quasi-resonant conditions.
In tidal environments free modes do not exhibit a net migration in a tidal
cycle (see Seminara & Tubino, 2000). Hence free modes might be the trig-
gering perturbations forcing the planimetric evolution of the channel. On
the other hand, an extension of the theory of Blondeaux & Seminara (1985)
to the present tidal configuration suggests that a bend instability mechanism
may also operate selecting wavenumbers which are significantly smaller than
the wavenumbers of free bars. Furthermore the bend theory shows that the
wavenumbers of free bars fall in the stable range of bend perturbations, hence
the free bar mechanism does not seem to explain the meander formation pro-
cess. A comparison between the wavenumbers predicted by the present theory
and the field evidence collected from topographic maps through automatic
methods (Fagherazzi et al, 1999; Rinaldo et al., 1999a,b) suggests that the
theory captures the correct order of magnitude of meander wavenumber, but
it overpredicts systematically meander wavelengths.
The procedure employed in the rest of the paper is as follows. After a section
on new field evidence we formulate the problem mathematically. In section
2.4 we show the governing equations and the solution for the basic flow and
concentration field. In section 2.5 we linearize the governing equations and
we derive a linear solution for flow and bed topography in meandering chan-
nels whose results are presented in section 2.6. In section 2.7 we employ
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the previous findings to test the performance of a bend theory to the prob-
lem of tidal meandering initiation. Conclusions and future developments are
reported in section 2.8

2.2 Field evidence

In this section we report the results of a morphological analysis of meander-
ing patterns observed in different tidal environments, recently elaborated by
Lanzoni, Marani & Rinaldo and reported in Solari et al. (2000). Data re-
garding widths, wavelengths and sinuousities are extracted through automatic
methods (Fagherazzi et al., 1999; Rinaldo et al., 1999 a,b) from detailed maps
of the Barnstable lagoon (MA, USA), the Palude Pagliaga (northern lagoon
of Venice) and the Petaluma estuary of the bay of San Francisco (CA, USA).
An example of an automatic channel identification from topographic data of
the Palude Pagliaga in the Venice lagoon is reported in fig. 2.1 (below). The
figure also shows a picture of the same area from a remotely sensed image
(above). It appears that the automatic method successfully predicts the tidal
network.
The variation along the longitudinal coordinate s� 1 (taken to coincide with

the channel axis) of width (2B�), local curvature (1=r�), wavelength (L�
s
) and

channel sinuosity are shown in fig. 2.2 for a meander sequence within the
Pagliaga region.

Channel sinuosity is defined as the ratio between the intrinsic (L�
s
) and

the Cartesian wavelengths (L�
x
) of meanders. It is interesting to observe that

widths grow dramatically along the channel, taking values which range from
few meters to one hundred meters.
The dimensionless meander wavelength (2�B�

=L
�
s
) is plotted in fig. 2.3 as

a function of the intrinsic distance s = s
�
=s

�
max

from the meander origin
(s�

max
being the maximum distance from source to outlet for each meander)

for channels within three different tidal environments. Despite almost two
orders of magnitude of width growth and within rather different tidal environ-
ments, the dimensionless wavelength falls in a quite narrow range of 0.2-0.4.
The same figure also shows the value taken by the parameter �, defined as the
ratio between the half width of the channel and the flow depth, for few cases
indicated by the legend. Notice that � does not seem to exceed the value of

1Hereafter a star will denote a dimensional quantity subsequently made dimensionless.
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Figure 2.1: Tidal meanders in the Palude Pagliaga in the northern lagoon of
Venice as from a remotely sensed image (above) and from automatic channel
identification methods of digital terrain maps (below) proposed by Fagherazzi
et al. (1999).
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Figure 2.2: The variation of channel width (a), of local curvature (b) and of
intrinsic wavelength (c) along the channel centerline for a meander within
the Palude Pagliaga.

ten.
Figure 2.4 shows the variation along the intrinsic distance s of the dimen-

sionless curvature (B�
=r

�) for three tidal meanders of different size and geo-
graphic location: (a) Barnstable; (b) Petaluma, full set; (c) Petaluma, detailed
subset. The dotted line shows the overall average: < r

��1
B
�
> =0.22 (a);

=0.14 (b); =0.06 (c). It is worth noting that the product local curvature X half
width maintains a remarkably constant mean despite the large width variations
illustrated in fig. 2.2.
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Figure 2.3: The dimensionless wavelength as a function of the intrinsic dis-
tance from meander origin is plotted for meanders within three different tidal
environments. In the inset, the ratio width to depth is plotted against the rele-
vant dimensionless wavelengths in the few cases indicated by the legend.

2.3 Formulation of the problem

Let us consider a long meandering channel connected at some initial cross
section with a tidal sea (fig. 2.5). The channel is assumed to have a rectangu-
lar cross section of constant width 2B�; as it is illustrated in fig. 2.3 meander
wavelength scales with the local channel width, therefore, at the scale of me-
ander wavelength, width variations may be neglected. The bed is cohesion-
less, the sediment being uniform and the grain diameter d�

s
small enough for

particles to be suspended by the turbulence generated by the propagation of
the tidal wave throughout most of the tidal cycle. For the moment we assume
the banks to be non erodible, an assumption that will be relaxed in section
2.7. Moreover, for the sake of simplicity, we assume that the curvature of
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Figure 2.4: The dimensionless curvature as a function of the intrinsic distance
from meander origin is plotted for three tidal meanders: (a) Barnstable; (b)
Petaluma, full set; (c) Petaluma, detailed subset.

channel axis follows periodic oscillations described by the classical Langbein
and Leopold’s (1964) so called sine generated curve. Such assumption is
by no means crucial, the theory developed herein being amenable to a relative
straightforward generalization to an arbitrary, albeit slowly varying, curvature
distribution. Hence we assume:

r
��1 = R

��1
0 (exp i��s� + c:c:) ; (2.1)

where r�(s�) is the local radius of curvature of the channel axis, R�
0 is twice

the radius of curvature at the bend apex, �� is meander wavenumber and s� is
the longitudinal coordinate taken to coincide with the coordinate of the chan-
nel axis. As it has been illustrated in section 2.2 (fig. 2.4) and it will showed
in table 2.1 of section 2.5 the ratio of channel width to the local curvature
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radius of channel axis is typically fairly small in lagoon environments, such
that it is convenient to introduce the small parameter:

� =
B
�

R�
0

; (2.2)

which will be set at the basis of a perturbation expansion of the solution de-
rived in the section 2.5. It is appropriate to refer flow and bed topography to
the orthogonal curvilinear coordinate system (s�; n�; z�) where s� is the lon-
gitudinal coordinate defined previously, n� is the coordinate of the transverse
horizontal axis orthogonal to s� and z� is the usual vertical coordinate. Fur-
thermore, let a�0 be a scale for the amplitude of free surface oscillations about
the mean water level defined by the difference between the water surface ele-
vation H�

0 and a reference flow depth D�
0. We assume that, as it is typical of

many tidal environments, we can write

� =
a
�
0

D�
0

� 1 ; � =
B
�

D�
0

� 1 : (2:3a; b)

Typical values of � in tidal channels of Venice lagoon vary widely ranging
from values around 0.05 typical of the deeper channels up to values of order
one characteristic of very shallow channels. Tidal channels are somewhat
narrower than fluvial channels exhibiting values of � which typically do not
exceed 10 (see fig. 2.3 ).

We then make the relevant physical quantities dimensionless as follows:

(s�; n�) = B
�(s; n) ; (z�; H�

; D
�) = D

�
0(z;H;D) ;

(U�
; V

�
;W

�) = V
�
0

�
U; V;

W

�

�
; P

� = %V
2�
0 P ;

t = !t
�
; (��

T
;  

�) = V
�
0 D

�
0

p
Cf0(�T ;  ) ; (2:4a � f )

having employed the following notations (see also figure 2.5):

H
� : local free surface elevation;

D
� : local flow depth;

(U�
; V

�
;W

�) : longitudinal, transverse and vertical components of the mean local
velocity;

P
� : mean pressure;
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t
� : time;
�
�
T

: eddy viscosity;
 
� : eddy diffusivity of suspended particles;

% : density of water;
V
�
0 : characteristic flow speed;
! : angular frequency of the tide;
Cf0 : reference friction coefficient.

Typical values of the reference speed V �
0 range about (0.5 - 1) m/s. The refer-

ence friction coefficient Cf0 attains typical values about (2� 5) � 10�3. Note
that the vertical velocity is O(�) smaller than the lateral velocity. Using the

Figure 2.5: Sketch and notations.

above dimensionless variables and a Boussinesq closure, Reynolds equations
read

LU = � N
@P

@s
+ �

p
Cf0

@

@z

�
�T
@U

@z

�
� �c(s)NUV ; (2.5)

LV = �
@P

@y
+ �

p
Cf0

@

@z

�
�T
@V

@z

�
+ �c(s)NU2

; (2.6)

0 = �
@P

@z
�

1

F2
; (2.7)

N
@U

@s
+

�
@

@n
+ �Nc(s)

�
V +

@W

@z
= 0 ; (2.8)

with L the following differential operator

L � �0
@

@t
+NU

@

@s
+ V

@

@y
+W

@

@z
; (2.9)
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N
�1 being the dimensionless form of the longitudinal metric coefficient which

reads:
N

�1 = [1 + �nc(s)] ; (2.10)

having denoted by c(s) the function defining the longitudinal variation of the
dimensionless curvature B�

=r
�. The dimensionless parameters �0 and F2

read

�0 =
!B

�

V �
0

; F2
=
V

2�
0

gD�
0

; (2:11a; b)

where g is gravity. Note that in (2.5-2.6) we have retained only the domi-
nant components of the Reynolds stress tensor as we concentrate our study
in the central region of the flow field, therefore the side wall boundary lay-
ers, associated with the presence of the channel banks, are excluded from the
present analysis. This is known from the fluvial literature to be a convenient
approximation for wide cross sections with gently sloping banks. Equation
(2.7) simply states, in dimensionless form, that the mean pressure is hydro-
statically distributed.

Notice that �0 represents the ratio between the time required for the flow
to travel along a reach of length B� and the tidal period. With typical values
of B� of the order of tens or hundreds of meters and V �

0 ranging about 1 m/s,
the value of �0 for a semidiurnal tide (! = 1:4 � 10�4s�1) falls roughly in the
range (10�3 - 10�2). This suggests that inertial effects play a negligible role
on flow processes occurring at the spatial scale of channel widths. Also note
that in (2.5-2.7) we have neglected the effect of Coriolis forces which turn
out to scale with the inverse of the Rossby number V �

0 =(
B
�), where 
 is the

angular frequency associated with earth rotation. Since 
 is comparable with
!, it turns out that the effect of Coriolis acceleration is as small as inertial
effects in tidal channels.

The boundary conditions to be associated with equations (2.5- 2.8) impose
no slip at the bed, the requirement that the free surface must be a material
surface and vanishing stresses at the free surface. They read

U = V =W = 0 (z = H �D + zoD) ; (2:12a; b)

�
�0
@

@t
+NU

@

@s
+ V

@

@n

�
H �W = 0 (z = H) ; (2.13)

P = 0 (z = H) ; (2.14)
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@V

@z
= 0 (z = H) ; (2.15)

@U

@z
= 0 (z = H) ; (2.16)

with z0 dimensionless value of the conventional reference level for no-slip
under uniform flow conditions. Notice that, in writing (2.14-2.16), we have
taken into account the nearly horizontal character of the free surface.

At the channel banks, following the classical approach employed in the
fluvial literature, (which ignores the side wall boundary layers, Engelund
(1974), Seminara & Tubino (1986)) we impose the condition of vanishing
transverse component of the water flux. This condition will be further clari-
fied in the next section where the transverse component of the mean velocity
will be decomposed into a centrifugally induced contribution characterized
by vanishing depth average and a topographically induced contribution with
non vanishing depth average. As a consequence of the boundary condition at
the channel banks, the latter component of the secondary flow must vanish.
Hence

V = 0 n = �1 : (2.17)

A closure assumption for the eddy viscosity �T may be obtained assuming
that the slow time variation of the flow field leads to a quasi-steady sequence
of equilibrium states. Hence we write

�T = N (Z)u�D ; (2.18)

where N (Z) is the distribution of eddy viscosity at equilibrium, with Z nor-
malized vertical coordinate which reads

Z =
z � (H �D)

D
: (2.19)

Moreover u� is a characteristic instantaneous value of a dimensionless friction
velocity defined as

p
j� �j=(%V �2

0 Cf0), with � � local and instantaneous com-
ponent of the stress vector acting on a plane locally tangent to the bottom.

Mass balance of sediment transported as suspended load leads to a convection-
diffusion equation for the volumetric sediment concentration C which reads

LC � �Ws

@C
@z

= �
p
Cf0

@

@z

�
 
@C
@z

�
; (2.20)
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with Ws dimensionless value of the particle fall velocity defined in the form:

Ws =
W

�
s

V �
0

: (2.21)

In equation (2.20) we have neglected lateral and longitudinal diffusion which
are O(�2) smaller than the vertical diffusion term at least in the central region
of the flow, as narrow channels and the side wall boundary layers are excluded
from the present analysis. The typical size of sediments in tidal environments
ranges about 0.1 mm, corresponding to a dimensional value of the settling
speed about 1 cm/s. Hence its dimensionless value (2.21) ranges about 10�2.

We point out that (2.20) is based on the assumption that the size and con-
centration of sediment particles are small enough for sediment to play an es-
sentially passive role, being transported by the fluid except for the tendency
of particles to settle (Lumley, 1976).

The boundary conditions associated with (2.20) impose vanishing sedi-
ment flux at the side walls and at the free surface. Furthermore at the bed we
impose the so called ‘gradient boundary condition’, such condition assumes
the net sediment flux proportional to the difference between the actual local
instantaneous concentration and the value that concentration would attain at
equilibrium with the local and instantaneous flow conditions. The proportion-
ality constant is taken as usual to be equal to the particle velocity normal to
the bed. The resulting form of the boundary conditions reads:

rC � nb = 0 (n = �1) ; (2.22)

[WskC +
p
Cfo rC] � n = 0 (z = H) ; (2.23)

[WskCe +
p
Cfo rC] � n = 0 (z = H �D + arD) ; (2.24)

wherer is the dimensionless form of the gradient vector, namely
(1=�@=@s; 1=�@=@n; @=@z), k is the unit vector in the z direction, n is the
unit vector in the direction normal to the surface, nb is the unit vector in
the direction normal to the channel banks, Ce is the equilibrium value of bed
concentration and ar = a

�
r
=D

�
0 is the conventional dimensionless value of the

reference elevation at which the boundary condition is imposed under uniform
conditions.

Several empirical expressions for Ce and ar are available in the literature.
They correlate Ce with a dimensionless measure of bottom stress, in the form
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of the so called Shields parameter �, and with particle Reynolds number Rp,
which read

� =
j� �j

(%s � %)gd�
s

; Rp =

p
(s� 1)gd�3

s

�
; (2:25a; b)

where %s is the density of sediment particles, s = %s=% and � is kinematic
viscosity. In tidal environments � might typically reach peaks up to (1-2).

A closure assumption for the eddy diffusivity  is also required. A line of
reasoning similar to that which leads to (2.18) allows us to write

 = 	(Z)u�D ; (2.26)

where 	(Z) is the vertical distribution of eddy diffusivity at equilibrium.
The mathematical problem is finally closed imposing the continuity equa-

tion for the sediment which governs the development of bottom elevation. It
may be written in the following dimensionless form

�0

�

@

@t

�
CM (H �D) +

Z
D

ar

Cdz
�
+N

@Qs

@s
+

�
@

@n
+ �c(s)N

�
Qn = 0 ;

(2.27)
where CM is the packing concentration of the granular bed ranging about 0.6,
while Qs and Qn are the longitudinal and transverse components of the total
sediment flux, defined in the form:

(Qs; Qn) = Q0(Qbs; Qbn) +

Z
H

ar

(U; V )Cdz : (2.28)

Note that the bed load vector Qb � (Qbs; Qbn) has been made dimension-
less by means of the classical Einstein’s scale and Q0 is the dimensionless
parameter [(

p
(s� 1)gd�3

s
)=V �

0 B
�]. The latter equation requires a closure

relationship for Qb able to account for the influence of the sloping bed on
particle trajectories. In fact, it is well known from the fluvial literature that
on a sloping bottom bedload deviates from the direction of bottom stress due
to effect of the lateral component of gravity. In a linear context, like the one
developed in section 2.5, it is fairly established (see Kovacs & Parker (1994)
and Talmon et al. (1995)) that one may write:

Qb = �b

�
�

j� j
�

r

��m

@(H �D)

@y

�
; (2.29)
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where �b(�) is the intensity of bed load transport under equilibrium condi-
tions; r and m are parameters estimated on the basis of experimental obser-
vations. We follow Talmon et al. (1995) and take r = 0:56, m = 1=2.

The effect of longitudinal slope on bed load intensity is accounted for by
introducing a corrected value �̂c of the critical Shields stress in the form

�̂c = �c �
r1

�

@(H �D)

@x
; (2.30)

with r1 empirical constant which ranges about 0.1.
The system (2.5-2.30) forms a closed set of equations which may be

solved once expressions for N (Z), 	(Z); Cf0 and �b are known.
It will prove convenient in the following to employ the vertical coordinate

Z scaled by the local flow depth, defined by (2.19). We then write:�
@

@t
;
@

@s
;
@

@n
;
@

@z

�
=

�
qt; qs; qn;

1

D

@

@Z

�
; (2.31)

having defined the operator qj(j = t; s; n) in the form:

qj =
@

@j
�
�
Z

D

@D

@j
+

1

D

@(H �D)

@j

�
@

@Z
: (2.32)

The momentum equation (2.7) with the boundary condition (2.14) is then
readily solved to give the hydrostatic distribution for P :

P =
D

F2
(1� Z) : (2.33)

Hence:

qsP =
@P

@s
+

1� Z

D

@D

@s

@P

@Z
�

1

D

@H

@s

@P

@Z
=

1

F2

@H

@s
; (2.34)

and

qnP =
1

F2

@H

@n
: (2.35)

The momentum and continuity equations (2.5, 2.6, 2.8) are then readily given
the following form:

LU = �
N

F2

@H

@s
+
�
p
Cf0

D2

@

@Z

�
�T
@U

@Z

�
� �c(s)NUV ; (2.36)
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LV = �
1

F2

@H

@n
+
�
p
Cf0

D2

@

@Z

�
�T
@V

@Z

�
+ �c(s)NU2

; (2.37)

NqsU + [qn + �Nc(s)] V +
1

D

@W

@Z
= 0 ; (2.38)

where L is the following partial differential operator:

L � �0qt +NUqs + V qn +
W

D

@

@Z
: (2.39)

The boundary conditions (2.12-2.16) become:

U = V = W = 0 (Z = Z0) ; (2.40)

[�0qt +NUqs + V qn]H �W = 0 (Z = 1) ; (2.41)
@V

@Z
=
@U

@Z
= 0 (Z = 1) ; (2.42)

The convection-diffusion equation (2.20) takes the form:

LC � �
Ws

D

@C
@Z

=
�
p
Cf0

D2

@

@Z

�
 
@C
@Z

�
; (2.43)

The latter equation must be solved with the boundary conditions (2.23-2.24)
where the gradient operatorr now reads:

r =

�
N

�
qs;

1

�
qn;

1

D

@

@Z

�
: (2.44)

Finally the bottom evolution equation in the present coordinate system reads:

�0

�

@

@t

�
CM(H �D) +D

Z 1

ar

CdZ
�
+N

@Qs

@s
+

�
@

@n
+ �c(s)N

�
Qn = 0 ;

(2.45)
where the total sediment flux now takes the form:

(Qs; Qn) = Q0(Qbs; Qbn) +D

Z 1

ar

(U; V )CdZ : (2.46)

In the following we will consider the periodic distribution (2.1) which is
equivalent to the following form of the function c(s):

c(s) = exp(i�s) + c:c: ; (2.47)

where � is the meander wavenumber scaled by B��1. As a result of such a
choice, the end conditions will be simply replaced by periodicity conditions in
space while initial conditions are replaced by periodicity conditions in time.
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2.4 The basic flow and concentration fields

The basic flow essentially consists of a tidal wave propagating in a long rect-
angular channel with slowly varying width. This is a subject which has re-
cently received a considerable attention (see in particular the recent contri-
bution of Lanzoni & Seminara, 1998). In the present work, the scale of a
single meander wavelength (ranging about 8 � 15 channel widths) is orders
of magnitude smaller than the wavelength of the tidal wave therefore the lo-
cal basic state can be regarded as an unsteady uniform flow. In other words,
bars feel the tide propagation as an oscillatory, longitudinally uniform, flow
associated with a horizontal configuration of the free surface, which simply
oscillates in time. The temporal dependence of the basic velocity field and
of the free surface oscillations is the solution of the one dimensional problem
of tide propagation in the whole channel, a problem which is completely in-
dependent (decoupled) from the problem investigated in the present chapter.
Hence, we do not need to solve the former problem and simply assume any
temporal dependence for the basic velocity field. In order to derive the lo-
cal structure of the basic flow we define a suitable dimensionless longitudinal
coordinate �

� = 
s ; (2.48)

where


 �
B
�

L�
� 1 ; (2.49)

and L� is the spatial scale of the tidal wave. Note that we ignore any further
slow spatial dependence associated with channel convergence and restrict our-
selves to a leading order representation of the basic flow ignoring the lateral
component of the basic velocity field. Since

@

@s
= 


@

@�
; (2.50)

the balance expressed by the continuity equation (2.38) implies that:

W � O(
) : (2.51)

The appropriate choice for the velocity scale V �
0 then arises from the dominant

balance imposed by the kinematic condition at the free surface (2.41). Since

�0

U

@H=@t

@H=@s
� O

�
�0




�
=
!L

�

V
�
0

(2.52)
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and the flow speed V
�
0 is typically much smaller than the tidal wavespeed

(!L�), it follows that the terms balancing in (2.41) are W and �0@H=@t.
Hence we require that

�0
a
�
0

D�
0

= 
 : (2.53)

Recalling the definition of the parameter �0 (2.11a), the condition (2.53) leads
to the following expression for V �

0

V
�
0 = !L

�
� : (2.54)

Based on (2.51) we then rescale U and W in the form

U = U0 ; W = 
W0 ; (2:55a; b)

where U0 and W0 are functions of �; t and Z, and we rewrite the governing
equations (2.36-2.38) in a form appropriate for the analysis of the basic flow:

L0U0 = �



F2

@H

@�
+
�
p
Cf0

D2

@

@Z

�
�T
@U0

@Z

�
; (2.56)

1

D

@W0

@Z
= �q�U0 ; (2.57)

where D is an O(1) quantity, N takes the value 1 and L0 is the following
linear partial differential operator:

L0 �



�
qt + 
U0q� + 


W0

D

@

@Z
: (2.58)

Similarly the boundary conditions (2.40-2.42) take the following form:

U0 = W0 = 0 (Z = Z0) ; (2:59a; b)

@U0

@Z
= 0 (Z = 1) ; (2.60)

1

�

@H

@t
+ U0

@H

@�
�W0 = 0 (Z = 1) : (2.61)

We now assume that the dominant balance in the longitudinal momentum
equation (2.56) involves friction and gravity. Since perturbations of free sur-
face elevation relative to the still water level are O(�), we set:


�

F2
= �Cf0 : (2.62)
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The conditions (2.53, 2.62) determine the velocity scale V �
0 in the form:

V
�
0 =

�
ga�20 !

Cf0

�1=3

: (2.63)

The length scale L� is then readily obtained from (2.54). We also assume that
local inertia is negligible at leading order. Comparison between the orders of
magnitude of gravity and local inertia in the momentum equation (2.56) shows
that this assumption is valid provided the following condition is satisfied:

F2 � �
2
: (2.64)

As discussed by Lanzoni & Seminara (1998) the latter condition is approxi-
mately satisfied by strongly dissipative estuaries. Under the above hypotheses
the system (2.56-2.57) admits of the simplest lowest order solution:

U0 = �U0(t; �)F0(Z) ; (2.65)

W0 = �U0(t; �)G0(Z) ; (2.66)

(H;D) = [H0; D0] + � [H1(�; t); D1(�; t)] ; (2.67)

�T = N (Z)j�U0(�; t)jD0 : (2.68)

Substituting from (2.65-2.68) into (2.56), where inertial terms are neglected,
at the lowest order of approximation we obtain:

�U0j�U0j
d

dZ

�
N (Z)

dF0

dZ

�
=

 

�

F2�
p
Cf0

!
D0

@H1

@�
=
p
Cf0D0

@H1

@�
:

(2.69)
Recalling the boundary condition (2.60), equation (2.69) can be integrated
once to give:

��U0j�U0j
�
N (Z)

dF0

dZ

�����
Z0

= D0

@H1

@�

p
Cf0 : (2.70)

Recalling that, by definition, (N (Z)dF0=dZ)jZ0
is equal to

p
Cf0, from (2.70)

we find:

D0

@H1

@�
+ �U0j�U0j = 0 : (2.71)

The latter equation is the lowest order approximation of the one dimensional
formulation of the momentum equation arising in the present framework.

33



L. Solari - TOPICS IN FLUVIAL AND LAGOON MORPHODYNAMICS

The continuity equation (2.57) at lowest order reads

@U0

@�
+

(1� Z)

D0

@D0

@�

@U0

@Z
+

1

D0

@W0

@Z
= 0 ; (2.72)

which may be integrated at once, with the boundary condition (2.59b), to give:

W0jZ=1 +
@

@�
(�U0D0) = 0 : (2.73)

The quantity W0jZ=1 is obtained from the lowest order approximation of the
boundary condition (2.61) and is equal to @H1=@t; hence (2.73) reduces to
the classical one-dimensional form of the continuity equation

@H1

@t
+

@

@�
(�U0D0) = 0 : (2.74)

The vertical structure of W0, i.e. the function G0(Z), is then obtained by
integrating (2.72).

The system of equations (2.71, 2.74) can be readily solved (Lanzoni &
Seminara, 1998) in the fully nonlinear case. However note that at the low-
est order of approximation the basic flow ‘felt’ by a meander wavelength is
spatially uniform, i.e. purely time dependent. More precisely the quantity H1

does not enter the analysis. We may choose the local average flow depth as
reference depth, hence, employing the average bottom elevation as reference
elevation in the reach under consideration, we may write

D0 = 1 ; (2.75)

H0 = 1 ; (2.76)

and expand:
�U0 = �U0(t)[1 +O(
)] : (2.77)

Finally, using (2.45), one can show that, at leading order, bottom elevation
follows periodic oscillations around a flat equilibrium state with dimension-
less amplitudes of order (W �

s
C=!D�

0) which may attain values ranging about
10�4, small enough to be safely ignored.

The differential problem for F0 is readily found employing (2.70, 2.71,
2.59a, 2.60). We find:

d

dZ

�
N (Z)

dF0

dZ

�
= �

p
Cf0 ; (2.78)
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F0 = 0 (Z = Z0) ; (2.79)
dF0

dZ
= 0 (Z = 1) : (2.80)

Using Dean’s (1974) structure for N (Z)

N (Z) =
kZ(1� Z)

1 + 2AZ2 + 3BZ3
; A = 1:84 ; B = �1:56 ;

(2:81a � c)

with k von Karman constant, we can integrate (2.78), with the boundary con-
ditions (2.79-2.80), to obtain

F0(Z) =

p
Cf0

k

�
ln
Z

Z0

+ AZ
2 +BZ

3

�
(2.82)

where Z0 is found by imposing
R 1
Z0

F0(Z)dZ = 1. It follows:

Z0 = exp

 
�

kp
Cf0

� 0:777

!
: (2.83)

Note that the reference friction coefficient Cf0 refers to the time when �U0

equals 1.
We point out that the self similar structure of the solution for U0 is only

valid provided local inertia in the momentum equation is negligible at the
leading order of approximation. Otherwise, the vertical distribution F0 is
itself time-dependent. The role played by the non self-similar structure of
the basic velocity field observed in real estuaries seems to be fairly weak.
Therefore the present analysis is not likely to be significantly affected by such
additional effect. A complete analysis will be required in order to conclusively
substantiate the latter statement.

Also note that, in principle, any time dependence of the basic flow can
be incorporated in the analysis through the function �U0(t). In particular one
could readily account for the effect of overtides. For the sake of simplicity the
analysis presented in the next section will be developed for the simple case

�U0 = cos(t) (2.84)

At the lowest order of approximation considered herein the structure of the
basic concentration field C0 is readily obtained from (2.43) and (2.23-2.24).
Recalling (2.26) we find:

 =  0 = 	(Z)j�U0(t)j : (2.85)
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Hence, the following differential problem for C0 is obtained�
@

@Z

�
	(Z)

@

@Z

�
+G(t)

@

@Z

�
C0 = 0 ; (2.86)

	(Z)
@C0
@Z

+G(t)Ce0 = 0 (Z = ar) ; (2.87)

	(Z)
@C0
@Z

+G(t)C0 = 0 (Z = 1) ; (2.88)

where Ce0 = Cej�=�0 , with

�0 = �U2
0

Cf0V
�2
0

(s� 1)gd�
s

; (2.89)

and

G(t) =
Ws

j�U0j
p
Cf0

: (2.90)

The solution of the latter system is obtained in the form

C0 = Ce0 exp
�
�
Z

Z

ar

G(t)

	(Z)
dZ

�
(2.91)

and describes a Rouse type distribution parametrically dependent on time.

2.5 Linear solution

The solutions for the flow field and the bottom topography is sought in the
case of weakly meandering channel, therefore we set:

� � 1 : (2.92)

Note that such condition is appropriate to describe the typical meandering
configurations observed in nature.

In fact table 1 shows the values of � calculated for each bend of the se-
quences corresponding to the tidal channels depicted in Fig. 2 (Barnstable 1,
Petaluma 1, Pagliaga 1) and of some tributary channels (Barnstable 2 and 3,
Petaluma 2, Pagliaga 2, 3) corresponding to different tidal environments. It
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Bar. 1 Bar. 2 Bar. 3 Pet. 1 Pet. 2 Pag. 1 Pag. 2 Pag. 3

Mean of � 0:01 0:06 0:03 0:16 0:17 0:12 0:19 0:18

Max of � 0:05 0:30 0:23 0:64 1:14 1:05 1:27 1:26

Table 2.1: The mean and the maximum values of � for tidal meanders located
in three distinct environments (Barnstable (MA, USA), Petaluma (CA, USA)
and Pagliaga (Venezia, Italy))

appears that the average value of � ranges between 0.01 and 0.19. A linear
theory of the type developed herein is then generally appropriate to investi-
gate fully developed natural meanders. Besides, it may be set as the basis for
an investigation of the mechanism of formation of tidal meanders, based on a
linear analysis of the planimetric instability of tidal channels, as discussed in
section 2.7.

Taking advantage of such assumption, we expand the solution in powers
of the small parameter � in a neighborhood of the basic state as follows:

(U; V;W;H;D) = (�U0(t)F0(Z); 0; 0; H0(s); H0(s))

+ �(u; v; w;F2
h; d) +O(�2) ; (2.93)

where H0(s) is the free surface elevation associated with the basic tidal wave
described in sect. 2.4. Moreover the perturbations u; v; w; h; d are functions
of the independent variables s; n; Z; t and are also parametrically dependent
on the slow spatial variable � describing the spatial distribution of the basic
tidal motion (sect. 2.4), though the latter dependence will not be considered
herein. Note that we have assumed the reference level for the vertical coordi-
nate to coincide with the average bottom elevation within the meander reach
under investigation.
Similarly we expand the operators qs; qn; L and the eddy viscosity �T in pow-
ers of � in the form:

(qs; qn; L; �T ) = (qs0; qn0;L0; �T0) + �(qs1; qn1;L1; �T1) +O(�2) ; (2.94)

where

qs0 =
@

@s
; qn0 =

@

@n
;L0 = U0

@

@s
; �T0 = j�U0(t)jN (Z) ; (2:95a � d)
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qs1 =

�
(1� Z)

@d

@s
�F2@h

@s

�
@

@Z
; (2.96)

qn1 =

�
(1� Z)

@d

@n
� F2@h

@n

�
@

@Z
; (2.97)

L1 = U0qs1 + (u� nc(s)U0)qs0 + w
@

@Z
+ v

@

@n
; (2.98)

�T1 = �T0

 
d+

@u

@Z

@U0

@Z

�����
Z0

!
: (2.99)

Note that in equation (2.95c) local inertial effects have been neglected. Such
assumption is justified by the smallness of the parameter �0 (see discussion re-
ported in section 2.4). The derivation of the expansion (2.99) is given in 2.5.1.
By substituting from (2.94-2.99) into the governing hydrodynamic equations
(2.36-2.38) and the associated boundary conditions (2.40-2.42) and equating
terms proportional to �o we recover the governing equation for the basic lon-
gitudinal velocity already discussed in section 2.4.

Proceeding to O(�) we derive the linearized form of the differential prob-
lem governing the dynamics of flow perturbations. It reads:

�
p
Cf0

@
�
�T0

@u

@Z

�
@Z

� U0

@u

@s
� �

p
Cf0N (Z0)j�U0(t)j

@u

@Z
jZ0

=

=
@h

@s
�
n

F2

@H0

@s
+
@U0

@Z
w��Cf0

�U0(t)j�U0(t)jd+U0

@U0

@Z
(1�Z)

@d

@s
; (2.100)

�
p
Cf0

@(�T0
@v

@Z
)

@Z
� U0

@v

@s
=
@h

@n
� c(s)U2

0 ; (2.101)

@u

@s
+
@v

@n
+
@w

@Z
= �(1� Z)

@U0

@Z

@d

@s
; (2.102)

u = v = w = 0 (Z = Z0) ; (2:103a � c)

@u

@Z
=
@v

@Z
= w = 0 (Z = 1) ; (2:104a � c)

having neglected terms of order F 2 with respect toO(1) terms. Also note that
the bed of tidal channels is typically dune covered, hence variations of the
friction coefficient are dominantly associated with variations of the Shields
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parameter (recall the discussion at the beginning of section 2.6). Variations
of the friction coefficient due to the effect of the small perturbation of flow
depth, though formally of order �, are fairly small and have been neglected in
eq. (2.100, 2.101).
The latter differential system can be solved by setting the following expan-
sions:

(u; w; h; d) =
��
0; 0; hn; dn

�
+

+

1X
m=1

[um(Z; t); wm(Z; t); hm(t); dm(t)] sin(Mn)

)
exp(i�s) + c:c: ;(2.105)

v =

(
v0(Z; t) +

"
1X

m=1

vm(Z; t) cos(Mn)

#)
exp(i�s) + c:c: ; (2.106)

where h and d are parameters to be determined and M is the following pa-
rameter:

M �
�

2
(2m� 1) (m = 1; 2; 3::::) : (2.107)

The structure of the above expansions arise as follows. If the channel had con-
stant curvature and the flow were fully developed, only the zero depth-average
contribution (centrifugal contribution) would arise in (2.105, 2.106): in this
case no derivative in s appears in equations (2.100- 2.102) and the secondary
flow arises from the need to balance the difference between centrifugal forces
(increasing in the vertical direction) and lateral pressure gradient (constant in
the vertical direction). In a linear context this leads to lateral distributions
of both flow depth and free surface elevation which are linear in the lateral
coordinate n and to a lateral component of velocity which is independent of
n (except for the side wall boundary layers ignored in this analysis) and has
vanishing depth average. This is the case treated in the fluvial environment
by Engelund, 1974 and later by several authors, including Kalkwijk and de
Vriend, 1980.

In the presence of longitudinal variations of channel curvature, a cen-
trifugal contribution to secondary flow still exists, of course, but it cannot
be self balanced, unless the meander wavenumber is so small that the flow
can be considered as fully developed at any cross section. This is the first
term appearing in (2.105, 2.106). However, a topographic component of the
secondary flow with non vanishing depth average now arises (the series in

39



L. Solari - TOPICS IN FLUVIAL AND LAGOON MORPHODYNAMICS

(2.105, 2.106)) to balance the equations. In fact the centrifugal term satis-
fies the n- component of the momentum equation exactly but it leaves the
flow continuity equation and the s- momentum equation unbalanced (a topo-
graphic effect), hence the term (dnexp(i�s)) becomes a forcing term for both
equations. The decomposition is useful, both mathematically because sub-
tracting the centrifugal component leaves us with homogeneous conditions at
the side walls (hence allowing the Fourier expansion of the remaining topo-
graphic component), and physically because it allows to distinguish the two
mechanisms (centrifugal versus topographic) controlling the establishment of
a secondary flow and of the perturbed bottom topography.

Note that such a decomposition is similar to that proposed originally by
Kalkwijk and de Vriend (1980) in the fluvial case, though the latter authors
assumed a vertical structure of the topographic component of the secondary
flow, which is not assumed but formally derived here.
The problem for v0 is readily solved in the form:

v0 = j�U0(t)j G(Z; I) ; (2.108)

h = �U2
0(t) H ; (2.109)

where I reads:

I =
�U0

j�U0j
; (2.110)

and the function G is the solution of the ordinary differential problem:

L1G = �
1

�
p
Cf0

[�H + F
2
0 (Z)] ; (2.111)

G = 0 (Z = Z0) ; (2.112)

@G
@Z

= 0 (Z = 1) : (2.113)

Moreover the differential operator L1 reads

L1 �
@

@Z

�
N

@

@Z

�
� �IF0 ; (2.114)

and

� =
i�

�0

p
Cf0

; (2.115)
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while the constant H is obtained by requiring that the solution for G satisfies
the following integral condition:Z 1

Z0

G(Z)dZ = 0 : (2.116)

Such condition reinforces the constraint of vanishing flux through the side
walls. Note that (2.108) suggests that the centrifugally induced component
of the secondary flow is identical in the flood and ebb phases. This is not
surprising as the symmetry of the geometric configuration and of the basic
longitudinal flow implies that the driving forces are perfectly symmetrical
both in space and in time. The non linearity of the temporal dependence of
the driving force is responsible for the generation of a non linear response of
the secondary flow which emerges both in (2.108) and in (2.109). Residual
terms are associated with such non linear character and may be interpreted
as though the response to the oscillatory basic state includes a steady compo-
nent of ‘fluvial’ type. The system (2.111-2.113) is readily solved by shooting
techniques. In particular the function G can be written in the form:

�
p
Cf0G = H

�
g
0
2j1
g01j1

g1(Z)� g2(Z)

�
+ g3(Z)�

g
0
3j1
g01j1

g1(Z) (2.117)

where gj(Z)(j = 1; 2; 3) are the solutions of the following initial value prob-
lems:

L1gj = bj (j = 1; 2; 3) ; (2.118)

gj = 0 (Z = Z0) (j = 1; 2; 3) ; (2.119)

g
0
j
= 1 (Z = Z0) (j = 1; 2; 3) ; (2.120)

with

b1 = 0; b2 = 1; b3 = �F 2
0 (Z) : (2.121)

and L1 is the differential operator obtained from (2.114) replacing @=@Z by
d=dZ (hereinafter the latter derivative is denoted with an apex). The latter
problems are readily solved numerically.
The constantH is obtained from the integral constraint (2.116) and reads:

H =
g
0
3j1=g1

� g
0
1j1=g3

g02j1=g1
� g01j1=g2

(2.122)
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with = the integral operator defined as follows:

= =

Z 1

Z0

f(�)d� : (2.123)

Similarly the problem for (vm; hm;m = 1; 2; 3; :::) is solved in the form:

hm = j�U0(t)jHm ; (2.124)

vm = �HmGm(Z; I) ; (2.125)

with Hm functions of time to be determined and the functions Gm(m =

1; 2; 3; :::) are solutions of the following ordinary differential problem (para-
metrically dependent on time):

L1Gm = 1 ; (2.126)

Gm = 0 (Z = Z0) ; (2.127)
@Gm
@Z

= 0 (Z = 1) ; (2.128)

with

� =
M

�0

p
Cf0

: (2.129)

Such solutions are straightforward and read:

vm = ��Hm

�
g
0
2j1
g
0
1j1
g1(Z)� g2(Z)

�
(2.130)

Having determined v0 and vm we can proceed to express wm in terms of um
and vm using the continuity equation (2.102). We find:

wm =M

Z
Z

Z0

vm(�)d� � i�

Z
Z

Z0

um(�)d�+

�(Amd+ dm)i��U0(t)

�
F0(1� Z) +

Z
Z

Z0

F0(�)d�

�
; (2.131)

where Am(m = 1; 2; 3; :::) are constants which read:

Am = �(�1)m
2

M2
: (2.132)
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We may then derive the differential equation for um by substituting from
(2.105, 2.106) into (2.100) and using the structure of the solution obtained
for the secondary flow. With the help of some algebraic manipulations and of
the following definition:

f =

Z
Z

Z0

umd� ; (2.133)

we eventually derive the following structure of the solution for the function
f :

f =

3X
j=1

'j�j ; (2.134)

with

�j =

 
fj �

@
2
fj

@Z2

@2f0

@Z2

�����
Z=1

f0

!
(j = 1; 2; 3) ; (2.135)

and the functions 'j(j = 1; 2; 3) read:

'1 = �
�
AmHj�U0(t)j+Hm

�
�
p
Cf0

�U0(t)(Amd+ dm) +

+
p
Cf0

�U0(t)Am ; (2.136)

'2 = ��j�U0(t)j(Amd+ dm) ; (2.137)

'3 =
M

2

�0

p
Cf0

IHm : (2.138)

Moreover the functions fj(j = 0; 1; 2; 3) are solutions of the ordinary differ-
ential problems

L2fj = aj (j = 0; 1; 2) ; (2.139)

fj = f
0
j
= 0 (Z = Z0; j = 0; 1; 2) ; (2.140)

f
00
j
= 1 (Z = Z0; j = 0; 1; 2) ; (2.141)

with

L2 �
@

@Z

�
N

@
2

@Z2

�
� �F0I

@

@Z
+ �F 0

0I �
�
N

@
2

@Z2

�
Z0

: (2.142)

and aj(j = 0; 1; 2; 3) defined as follows

a0 = 0 ; a1 = 1 ; a2 = F
0
0

Z
Z

Z0

F0(�)d�; a3 = F
0
0� (2:143a � d)

43



L. Solari - TOPICS IN FLUVIAL AND LAGOON MORPHODYNAMICS

and

� =

Z
Z

Z0

Gm(�)d� : (2.144)

We finally impose the kinematic condition at the free surface (2.104c) which,
with the help of (2.125, 2.131, 2.133) and some algebraic manipulations,
eventually leads to the following relationship between the quantities Hm and
dm for each m:

Hm = h1j�U0(t)jH + h2
�U0(t)(Amd+ dm) + h3

�U0(t)Am ; (2.145)

where h1, h2 and h3 read:

h1 = � 2
�1j1Am

�
��M � � 2

�1j1 � ��MI�3j1
��1

; (2.146)

h2 = h1

h
1�

p
Cf0�1j1 � �I�2j1

i
=(��1j1Am) ; (2.147)

h3 = h1

p
Cf0=(�Am) ; (2.148)

having used the definitions (2.115, 2.110, 2.144) for �, I and �.
The reader will note that, through the relationship (2.145), the whole so-

lution for the flow perturbations is linearly related to the quantity (Amd +

dm)(m = 1; 2; 3; :::). It is then convenient to express the solution for the
velocity perturbations in the form:

(um; vm; wm) = (û1; v̂1; ŵ1) + (û2; v̂2; ŵ2)(Amd+ dm) (m = 1; 2; 3; :::) ;

(2.149)
where ûi; v̂i; ŵi (i = 1; 2) are functions of the independent variables Z and
t. The structure (2.149) of the solution for (um; vm; wm) has a simple phys-
ical explanation. In fact, part of such solution (û1; v̂1; ŵ1) is independent of
the development of bottom perturbations being driven by the forcing effect of
centrifugally driven longitudinal slope of the free surface (term proportional
to H in (2.136)) and by the metric variation of the longitudinal slope (second
term in the right hand side of (2.100) which gives rise to the third term in the
right hand side of (2.136)). Part of the solution of (2.149) is induced by pertur-
bations of bottom topography, either centrifugally driven (terms proportional
to d in (2.136) and (2.137)) or due to shoaling effects (terms proportional to
dm in (2.136, 2.137, 2.138)). The as yet unknown quantities d and dm will be
determined below by imposing the constraints required by sediment continu-
ity. Also note that the relationship (2.145) does not exhibit any discontinuity
at the instant of flow reversal.

44



L. Solari - TOPICS IN FLUVIAL AND LAGOON MORPHODYNAMICS

Let us finally proceed to calculate the perturbation of the concentration
field. Hence, we set the following expansion for the concentration C and the
eddy diffusivity  in powers of the small parameter �:

(C;  ) = (C0;  0)+

+�

("
1X

m=1

(Cm(Z; t);  m(Z; t)) sin(Mn)

#
exp(i�s) + c:c:

)
; (2.150)

where C0 and  0 are the basic concentration and diffusivity fields obtained in
section 2.4. Note that the perturbation  1 of eddy diffusivity is related to the
perturbation of the flow field through the following relationship

 1 =  0

 
d+

@u

@Z

@U0

@Z

�����
Z0

!
: (2.151)

Expanding u and d according to (2.105) one readily derives from (2.151) ex-
pressions for the amplitude  m(Z; t) appearing in (2.150). By substituting
from the expansion (2.150) into the convection-diffusion equation (2.43) and
the boundary condition (2.23- 2.24), employing the expression (2.149) and
equating terms O(�) we find the following differential system:

L3Cm = !01(Z; t) + !02(Z; t)(Amd+ dm) ; (2.152)

[	Cm;Z
+GCm]Z=1 = !11(t) + !12(t)(Amd+ dm) ; (2.153)

[	Cm;Z
]
Z=ar

= !21(t) + !22(t)(Amd+ dm) : (2.154)

where L3 is the following differential operator

L3 �
@Z

@

�
	
@

@Z

�
� �IF0 +G(t)

@

@Z
(2.155)

Note that 	 is the function describing the vertical distribution of eddy diffu-
sivity at equilibrium defined in (2.26) and (5.4 I). The functions !0i(Z; t) in
(2.152) reads

!0i =

(
ŵiI

�U0(t)�0
p
Cf0

+ �IF0(1� Z) +G(�; t)�

)
@C0
@Z

; (2.156)
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where

� =

�
û
0
i

�U0(t)F
0
0

�
Z=Z0

: (2.157)

The functions !1i(t) in (2.153) are

!1i = G�C0jZ=1 : (2.158)

Moreover !2i(t) in (2.154) (i = 1; 2) reads

!2i = G

"
�2�0

dCe
d�

����
�0;1

+ Ce0

#
� + IF0jZ=ar�Ce0+

+I
ŵijZ=ar

�U0(t)�
p
Cf0

Ce0 �G
dCe
dD

����
�0;1

: (2.159)

Note that the effect of the centrifugally induced secondary flow is only
indirectly present through the forcing effect of d in the system (2.152- 2.154);
no direct effect can be present as the term v

@C
@n

in the convection-diffusion
equation only enters at O(�2). Also note that the boundary conditions (2.153,
2.154) account for the effect of perturbation of the reference concentration Ce
due to perturbations of the Shields parameter � and of the local flow depth
D. Finally note that the decomposition (2.149) for the velocity field drives,
through convective terms, an analogous decomposition of the forcing terms
in (2.152-2.154) and, hence, of the solution, for Cm. In fact the solution of the
differential system (2.152-2.154) is readily obtained in the form:

Cm = Ĉ1(Z; t) + Ĉ2(Z; t)(Amd+ dm) ; (2.160)

where
Ĉj = cjkj1 + kj2 (j = 1; 2) ; (2.161)

The functions kij(i = 1; 2; j = 1; 2) satisfy the following differential prob-
lem:

L3kij = rij (2.162)

	
@kij

@Z
jZ=ar = eij ; (2.163)

kijjZ=ar = `ij ; (2.164)
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where
ri1 = 0 ; ei1 = 0 ; `i1 = 1 (i = 1; 2) ; (2.165)

ri2 = !0i ; ei2 = !2i ; `i2 = 0 (i = 1; 2) ; (2.166)

Furthermore the constants ci(i = 1; 2) are found to read:

ci =
!1i � [	@ki2

@Z
+Gki2]Z=1

[	@ki1

@Z
+GKi1]Z=1

: (2.167)

Let us then linearize and solve the sediment continuity equation along with
the boundary condition of vanishing sediment flux through the side walls. To
this aim we substitute from the expansions (2.105, 2.106, 2.150) and the ex-
pressions (2.149), (2.160) into the relationships (2.27, 2.28). Some tedious
algebraic work eventually leads to the solution for the as yet unknown func-
tion d which reads:

d = �
�
p
�0

rQ0�b0

"
j�U0(t)j

Z 1

ar

C0GdZ +Q0�b0

@G
@Z

F 0
0

�����
Z0

#
: (2.168)

Finally the functions dm(m = 1; 2; 3; :::) satisfy the following equations:

(s1 �
rM

2

�
p
�0

)dm = �(s2 + s1Amd) ; (2.169)

where

s1 = i�

�
1

Q0�b0

�
�U0(t)

Z 1

ar

Ĉ2F0dZ + �U0(t)

Z 1

ar

C0F0dZ +

Z 1

ar

C0û2dZ
��

+

+
2��

@û2

@Z

�U0(t)F
0
0

�����
Z0

+
rM

2

�
p
�0

j�U0(t)j�U0(t)h2 +

�
M

Q0�b0

Z 1

ar

C0v̂2dZ �
M

@v̂2

@Z

j�U0(t)jF 0
0

�����
Z0

; (2.170)

s2 = i�

�
1

Q0�b0

�
�U0(t)

Z 1

ar

Ĉ1F0dZ +

Z 1

ar

C0û1dZ
��

+
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+
2��

@û1

@Z

�U0(t)F
0
0

�����
Z0

+
rM

2

�
p
�0

�U0(t)
�
�U0(t)h1H + j�U0(t)jAmh3

�
+

�
M

Q0�b0

Z 1

ar

C0v̂1dZ �
M

@v̂1

@Z

j�U0(t)jF 0
0

�����
Z0

; (2.171)

having set

�b0 = �b(�0) ; (2.172)

�� =
�0

�b0

d�b

d�

����
�0

: (2.173)

The equation (2.169) is easily solved numerically. Once the quantities d and
dm(m = 1; 2; 3; :::) are known, the whole solution for the flow and topog-
raphy fields is completely determined. The reader will note that the complex
nature of the function G in (2.168) and of coefficients s1 and s2 in (2.169) sug-
gests that both the ‘centrifugally induced’ lateral deformation of the bed and
the ‘topographically induced’ component are out of phase relative to chan-
nel curvature. The temporal dependence of both components is non linearly
related to the basic velocity field.
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2.5.1 Linearization of eddy viscosity

In the present subsection we report the procedure we have employed to lin-
earize the eddy viscosity. From (2.18) we have:

�T = u�DN (Z) ; (2.174)

hence, expanding u� and D in powers of � according to (2.93):

�T = �T0

�
1 + �

�
d+

u�1

u�0

�
+O(�2)

�
: (2.175)

An expression for u�1

u�0

is readily obtained from the definition:

u
2
� =

T
�
zs
jz�

0

�V �2
0 Cf0

; (2.176)

where the contribution of T �
zn
jz�

0
is ignored, being of order �2. From (2.176)

we find:

u
2
� =

�
�
T

@U�

@z�
jz�

0

V 2
0 Cf0

= �T
@U

@z
jz0 =

�T

D

@U

@Z
jZ0

: (2.177)

Hence, expanding both sides of equation (2.177) in powers of �

u
2
�0

�
1 + 2�

u�1

u�0
+ O(�2)

�
=

= �T0

�
1 + �

�T1

�T0
+O(�2)

��
1� �d+O(�2)

�
�
@U0

@Z
jZ0

+ �
@u

@Z
jZ0

+O(�2)

�
: (2.178)

Using (2.175) to express �T1

�T0
in (2.178) and equating terms of various orders

in � we finally find:

O(�0) u
2
�0 = �T0

@U0

@Z
jZ0

; (2.179)

O(�1)
u�1

u�0
=

@u

@Z
jZ0

@U0

@Z
jZ0

: (2.180)

Substituting from (2.180) into (2.175) we finally recover equation (2.99)
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2.6 Results for the flow and topography fields

The basic flow and concentration field and the solution of the linearized prob-
lem is obtained once appropriate closure relationships for Ce; ar;	(Z); �b and
Cf0 are introduced. To evaluate the friction coefficient Cf0 we employ the
Einstein’s (1950) formula in the plane bed regime and Engelund & Hansen’s
(1967) formula, as modified by Engelund & Fredsøe (1982), in the case of
dune-covered bed. Note that we are tacitly assuming that dunes adapt instan-
taneously to the variation in time of the basic flow field. Such assumption
is only approximately true as dunes are known to exhibit a small delay with
respect to the variation of the basic flow field.
To evaluate the reference concentration Ce at the distance a�

r
from the bed we

employ van Rijn’s (1984) relationships. They read:

Ce = 0:015
d
�
s

a�
r

�
�
0

�c
� 1

�1:5

R
�0:2
p

; (2.181a)

a
�
r

= �e (�e � 0:01D�) ; (2.181b)

a
�
r

= 0:01D� (�e < 0:01D�) ; (2.181c)

where �0 is the effective Shields stress acting on bedload particles, which is ex-
pressed in terms of the total Shields parameter � using Engelund & Fredsøe’s
(1982) relationship:

�
0 = 0:06 + 0:3�3=2 : (2.182)

Furthermore, �e is an effective roughness accounting for the effect of dunes,
for which van Rijn (1984) gives expression which ultimately relate �e to bed
shear stress, and �c is the critical Shields stress for sediment motion evaluated
using Brownlie’s (1981) relationship:

�c = :22R�0:6
p

+ 0:06 exp(�17:77)R�0:6
p

: (2.183)

The eddy diffusivity has been given Mc Tigue’s (1981) form

	 = 0:35Z (Z < 0:314) ;

	 = 0:11 (0:314 � Z � 1) : (2.184)

The intensity of bed load transport was evaluated using Meyer-Peter & Muller
classical relationship:

�b = 8(�0 � �c)
3=2 (2.185)
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with �c defined in (2.183). The fall velocity W �
s

was obtained employing the
following relationship fitting the experimental curve of Parker (1978):

lg10

 
W

�
sp

(s� 1)gd�
s

!
= � 1:181 + 0:966�p � 0:1804�2

p
+

+ 0:003746�3
p
+ 0:0008782�4

p
; (2.186)

with �p = lg10Rp.

Before discussing the main results obtained in the present work let us pro-
vide some information about typical values of physical parameters control-
ling the morphodynamics of tidal channels. Data concerning typical widths,
curvature radii of the channel axis and flow depths have already been given
in figures 2.2 and 2.3 referring to three distinct tidal environments. Typical
amplitude of flow velocity and of friction coefficient Cf0 then range about
(0:5� 1)m/s and (4� 2:5) � 10�3 respectively; a typical grain size may range
about 0.1 mm corresponding to a settling velocity of 1 cm/s and a particle
Reynolds number about 4 (Danish Hydraulic Institute, 1990). Friction veloc-
ity then ranges about (3� 6)cm/s while the peak Shields stress (see eq. 2.89)
attains values around 0.6-1.5. Typical values of the peak reference concentra-
tion are then immediately calculated and are found to increase from 4:4 � 10�5
to 9:6 � 10�5 as the Shields stress increases from 0.6 to 1.5. Such values are
experienced at a reference distance from the bed ranging about (3 � 16)cm,
the bed being covered with dunes characterized by peak amplitudes of the or-
der of (20� 80)cm.

Let us then proceed to describe the procedure employed to obtain our
results. The analysis has been carried out considering the simplest temporal
distribution of tidal velocity, namely:

�U0(t) = cos(t) : (2.187)

Once flow resistance was calculated we obtained the basic flow field from
equations (2.65, 2.82). The basic concentration field was then found by means
of eq. (2.91) having calculated the dimensional fall velocityW �

s
using (2.186).

Once the basic state was completely determined, we could then proceed to cal-
culate the perturbation of the flow field and finally the bottom topography. All
the differential systems were solved numerically using a Runge-Kutta scheme
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Figure 2.6: The real part (above) and the imaginary part (below) of the ver-
tical distribution of the lateral component of velocity perturbation with van-
ishing depth average v0 is plotted at various instants. (Values of the relevant
parameters are as follows � = 6; � = 0:05; Rp = 4; �0 = 0:6; ds = 2 � 10�5).

of fourth order while quadratures were performed using Simpon’s rule. Fig-
ure 2.6 shows examples of the real part and imaginary part of the vertical
distributions of the centrifugally induced lateral component of the perturba-
tion velocity v0 for given values of the relevant parameters �; Cf0; Rp; ds at
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Figure 2.7: The real part (above) and the imaginary part (below) of the ver-
tical distribution of the topographically driven lateral component of velocity
perturbation vm(m = 1) is plotted at various instants. (The values of the
relevant parameters are the same as in fig. 2.6).

various instants during the tidal cycle, namely at the flood (t = 0) and ebb
(t = �) peaks, as well as at t = �=8; t = �=4. The vertical distribution of
the topographic component of the perturbation of the lateral velocity vm for
(m = 1) is plotted in figure 2.7. As one may expect from the symmetry of the
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Figure 2.8: The real part (above) and the imaginary part (below) of the ver-
tical distribution of the longitudinal flow perturbation um(m = 1) is plotted
at various instants. (The values of the relevant parameters are the same as in
fig. 2.6).

problem it appears that the reversal of the basic tidal flow does not affect the
secondary flow. Therefore the solutions for v0 and vm(m = 1; 2; 3; ::) satisfy
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Figure 2.9: The real part (above) and the imaginary part (below) of the ver-
tical distribution of the vertical flow perturbation wm(m = 1) is plotted at
various instants. (The values of the relevant parameters are the same as in
fig. 2.6).

the condition

vm(Z; t) = ~vm(Z; t+ �) (m = 0; 1; 2; 3; ::::) ; (2.188)

where a tilde denotes the complex conjugate of a complex number. Note that

55



L. Solari - TOPICS IN FLUVIAL AND LAGOON MORPHODYNAMICS

0

5e-06

1e-05

1.5e-05

2e-05

2.5e-05

3e-05

0 0.2 0.4 0.6 0.8 1
Z

C0 t=0
t=π

t=π/4
t=π/8

Figure 2.10: The vertical distribution of the basic concentration field C0 is
plotted at various instants. (The values of the relevant parameters are the
same as in fig. 2.6).

for the values of relevant parameters of figures 2.6, 2.7, 2.8 and 2.9 the lateral
component of secondary flow attains peak values equal to (2:7�V �

0 ). Fig-
ure 2.8 shows the vertical distribution of the perturbation of the longitudinal
velocity um for (m = 1). Note that, due to the symmetry of channel geom-
etry, the reversal of the basic flow leads to an antisymmetric pattern of the
perturbation of the longitudinal velocity, hence:

um(Z; t) = �~um(Z; t+ �) (m = 1; 2; 3; ::::) : (2.189)

Results for the vertical component of flow perturbation wm(m = 1) (fig. 2.9)
and for the perturbation of the sediment concentration C1 (fig. 2.11) display
characteristics similar to those found for the lateral component of velocity per-
turbation. Note that, for the values of the relevant parameters of figure 2.11,
C1 takes values of the same order as C0 which is plotted in figure 2.10.

Having determined the perturbation of the flow field, we then proceeded
to evaluate the functions d(t) and dm(t) in order to obtain the pattern of bot-
tom topography. Figure 2.12 shows the patterns of deposition and scour for
given values of the relevant parameters at the positive (t = 0) and negative
(t = �) peaks of the tidal cycle (the arrow indicates the direction of the ba-
sic flow). Again note the symmetrical position of the point bar-pool with
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Figure 2.11: The real part (above) and the imaginary part (below) of the ver-
tical distribution of perturbation of concentration field Cm(m = 1) is plotted
at various instants. (The values of the relevant parameters are the same as in
fig. 2.6).

respect to the bend apex, a result which provides a check of consistency for
the present analysis. The patterns of the dimensionless velocity at the free
surface (a) and of the dimensionless bed shear stress vector (b) are plotted in
Figures 2.13, 2.14, 2.15 at t = 0; �=8; �=4 respectively. As one may expect
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the thread of high-velocity shifts from the inner to the outer bend due to the
effect of secondary flow, while the channel deepens towards the outer part of
the bend. At the same time the channel experiences higher bed shear stress at
the outer bank close and downstream to the bend apex, thus indicating the ten-
dency of the meander to amplify and migrate downstream. Note that, at each
cross section the transverse slope of the bottom is maintained through a bal-
ance, acting on bedload particles, between the inward transverse component
of the bed shear stress and the the outward downhill component of gravity.
Such effects tend to weaken as the basic flow reversal is approached. Due to
the periodicity of the basic flow, the point bar-pool pattern migrates alterna-
tively forward and backward in a symmetric fashion: in other words no net
bar migration in a tidal cycle is present. During the cycle the instantaneous
Shields parameter varies from zero to some maximum value at the tidal peak.
As the Shields parameter � increases, sediments are transported at first as bed
load; for larger values of � suspension becomes an appreciable fraction of the
total transport. At the same time the bottom surface experiences the forma-
tion of dunes ascertained by using Van Rijn’s (1984) criterion, according to
which dunes are present whenever the stage parameter �0��c

�c
is lower than 25.

The oscillatory character of both position and amplitude of point bar emerges
from Fig. 2.16 (left) which describes position and intensity of the maximum
dimensionless flow depth during a quarter of tidal cycle: in fact 	Dmax

de-
notes the phase of the location where the maximum dimensionless flow depth
Dmax is experienced at the outer bank, measured relative to the bend apex.
Note that the location of the maximum scour oscillates in time with maxi-
mum displacement (in half a cycle) of the order of a fraction of a radiant,
hence a small value relative to meander wavelength. It appears that, as the in-
tensity of the basic flow decreases, the point bar migrates upstream decreasing
its amplitude. Approaching basic flow reversal, the Shields parameter reaches
some threshold value below which part of the channel cross section becomes
inactive: in other words close to the inner bend the flow velocity can be so
small that the Shields number falls below the threshold value for sediment
motion. The analysis of Seminara & Solari (1998) suggests that the present
approach fails when the mean Shields parameter ranges about 2 � 3 times
�c, which corresponds to the minimum Shields parameter for the occurrence
of transport throughout the whole of the cross section. Note that overtides
would not produce any net migration of point bars. This is clearly shown in
fig. 2.16 (right) where we have plotted the location of the maximum dimen-
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sionless flow depth referring to a basic state characterized by the presence of
a second harmonic, namely �U0(t) = cos(t) + 1

5
cos(2t). The figure clearly

shows that such location oscillates back and forth in a perfectly symmetric
fashion. The role of suspension can be inferred from Fig. 2.17, which shows
the amplitude of the maximum flow depth at t = 0 as a function of particle
Reynolds number Rp, which controls the ratio of suspended to bed load (see
the line labelled as ’ qs0

Q0�b0
’). As it has been shown by Seminara & Tubino

(1986) in the fluvial case, suspension leads both to downstream shifting and
to increasing amplitude of the point bar with respect to the case of vanishing
suspended load, whereas flattening of the point bar occurs for higher values
of the above ratio.
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Figure 2.12: The pattern of the dimensionless flow depth is plotted at the
positive (t = 0) peak of the tidal cycle (figure (a)) and the the negative (t = �)

peak of the tidal cycle (figure (b)). (The values of the relevant parameters are
the same as in fig. 2.6 moreover � = 0:03).
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Figure 2.13: The pattern of the dimensionless velocity at the free surface
(figure (a)) and of the dimensionless bed shear stress vector (figure (b)) is
plotted at the positive peak of the tidal cycle. (The values of the relevant
parameters are the same as in fig. 2.6, moreover � = 0:03).
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Figure 2.14: The pattern of the dimensionless velocity at the free surface
(figure (a)) and of the dimensionless bed shear stress vector (figure (b)) is
plotted at t = �=8. (The values of the relevant parameters are the same as in
fig. 2.6, moreover � = 0:03).
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Figure 2.15: The pattern of the dimensionless velocity at the free surface
(figure (a)) and of the dimensionless bed shear stress vector (figure (b)) is
plotted at t = �=4. (The values of the relevant parameters are the same as in
fig. 2.6, moreover � = 0:03).
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Figure 2.16: Temporal variations of the position and intensity of the maximum
dimensionless flow depth during half a tidal cycle in the case of a tidal veloc-
ity characterized by the temporal distributions �U0(t) = cos(t) (above) and
�U0(t) = cos(t) + 1

5
cos(2t) (below). (The values of the relevant parameters

are the same as in fig. 2.6, moreover � = 0:03). The continuous line describes
the temporal distribution of the basic flow field jU0j, the dashed lines indicate
the phase lag between the cross section where the maximum flow depth is lo-
cated and the cross section at the bend apex (	Dmax

), the bold continuous
lines denote the intensity of the maximum dimensionless flow depth (Dmax).
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Figure 2.17: The amplitude of the maximum dimensionless flow depth is plot-
ted as a function of Rp. (Values of the relevant parameters are as follows
� = 5; � = 0:25; �0 = 1:5; ds = 10�4; � = 0:03).
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2.7 The formation of tidal meanders: a ‘bend’
process?

The above solution for the flow and bed topography fields can be set at the
basis of a linear ‘bend’ instability theory of the type originally proposed by
Ikeda et al. (1981) and later developed by Blondeaux & Seminara (1985). The

Figure 2.18: Planimetric evolution: sketch and notations

bend instability theory is best formulated in terms of a planimetric evolution
equation of the meandering channel. A linear intrinsic form of the latter is
readily obtained. Let �̂ denote the lateral migration rate of the channel, scaled
by the quantity V �

0 , i.e. by the flow velocity scale (see eq. 2.4c). Further-
more let s be the curvilinear coordinate which identifies the location at time
t of the cross section which was located at s0 initially, the quantities s and t
being dimensionless. The migration rate is a function of s and t through its
dependence on the spatial and temporal distributions of the bank erosion rate.
Below we will need to formulate some physically based closure assumption
in order to couple the evaluation of �̂ to the knowledge of the flow field, of
bed topography and of the geological texture of the bank. Fig. 2.18 shows
that the relative displacement of two neighboring points of channel axis, say
s and s + ds, in the infinitesimal time interval dt can be expressed in terms
of the infinitesimal temporal variation of the angle # which the tangent to the
channel axis forms with some Cartesian direction x (say the valley axis). It is
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found that:
@�̂

@s
dsdt = (

@#

@t

����
s0

dt)ds : (2.190)

Strictly speaking, the time derivative is a Lagrangian derivative. How-
ever, in the context of a linear stability theory, where deviations of the pattern
of channel axis from the straight configuration are assumed to keep small,
we may safely approximate the Lagrangian derivative with its Eulerian coun-
terpart. Hence, the linear form of the planimetric evolution equation of the
channel reads:

@#

@t
=
@�̂

@s
: (2.191)

The non linear version of the equation (2.191) for the fluvial case is de-
rived by Seminara, Zolezzi et al., 2000 and has an integro - differential form.
Meanders develop typically as a result of erosion at concave banks and depo-
sition at the convex banks. This is a highly complex process which proceeds
in an intermittent fashion: bank collapse may arise from excess scour at the
bank toe, the development of tension cracks, the effects of ground water seep-
age and of vegetation, etc. However it has proved quite satisfactory (Ikeda et
al., 1981, Mosselman, 1991, Hasegawa, 1989) to model the long term mean-
der development as a continuous process such that the lateral migration rate
of the channel is simply proportional, through some erodibility coefficient e
(of the order of 10�7), to some measure of the perturbation of the flow field
relative to the straight configuration. We rule out any possible effect of lat-
erally symmetric components of the flow perturbations on the erosion rate,
on the ground that such symmetric components would lead to channel widen-
ing producing no shift of the channel axis: hence, any appropriate measure
of flow perturbation must be expressed in terms of the difference between the
value attained at the outer bank and the corresponding value at the inner bank.

We now assume that tidal meandering develops in a similar fashion as for
its fluvial counterpart. This assumption is tentatively based on the analogy
between the planimetric shapes of fluvial and tidal meanders but it does not
rely on detailed field observations and will require substantiation in the near
future. However, it is instructive to analyze its implications. Let us then
propose a simple generalization of the erosion law suggested by Ikeda et al.
(1981), accounting for the three dimensional and unsteady character of our
flow field. In fact, in the context of the flow model employed by Ikeda et al.
(1981), which was depth averaged and steady, the erosion law was assumed
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to be
�̂ = e�

�
~U jn=+1 � ~U jn=�1

�
; (2.192)

with ~U perturbation of the longitudinal component of the depth averaged ve-
locity. In our case, we generalize (2.192) such to account for the integrated
effect of erosion throughout a tidal cycle. Hence we write:

�̂ = e�

�Z 2�

0

(Iujn=+1 � Iujn=�1) dt
�
; (2.193)

where �̂ represents the average lateral migration rate in a tidal cycle, being
Iu =

R 1
Z0

ud�. Note that, in the context of a linear theory, different choices of
the perturbation quantity in (2.193) (say the perturbation of the bottom stress
at the bank toe), would not lead to any significant differences in the predic-
tions of the bend stability theory. We can then employ the solution derived
in section 2.5 to transform the planimetric evolution equation (2.191) with
the closure assumption (2.193) into a linear amplitude equation for meander
evolution. Recalling (2.1, 2.2) and noting that higher harmonics are not gen-
erated as a result of a linear planimetric development, we may represent the
instantaneous channel configuration as follows:

# = #0(t) exp i�s+ c:c: ; (2.194)

where the function #0(t) plays the role of a meander amplitude. Compari-
son between the latter formulation and the definition (2.1) suggests that #0 is
an imaginary number, hence it is convenient to set #0 = i#̂0 with #̂0 a real
function such that

#̂0 = �=� : (2.195)

Recalling the expansion (2.105) and substituting from (2.193, 2.194) into the
planimetric evolution equation (2.191) and using (2.195) we end up with the
following amplitude equation:

@#̂0

@t
= G#̂0 ; (2.196)

where

G =

Z 2�

0

Gidt ; Gi = �2e�2
 

1X
m=1

(�1)mIum

!
; (2.197)
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Figure 2.19: The real part of the complex growth rate of tidal meanders is
plotted as a function of meander wavenumber � and for given values of the
width ratio �. (Values of the relevant parameters are as follows: �0 = 1; ds =

2 � 10�5; Rp = 4).

being Gi the instantaneous growth rate. Not surprisingly, the amplitude equa-
tion (2.196) allows for a simple exponential solution with complex growth rate
G, a result typical of any linear stability theory. Hence, for given values of
the width to depth ratio �, of the peak Shields parameter � and of the particle
Reynolds number Rp, meanders grow for values of the meander wavenumber
� such that the real part of the complex growth rateG is positive. Furthermore,
the net migration rate of the meander pattern is proportional to the imaginary
part of G. The latter quantity is invariably found to vanish, confirming the
absence of any net migration of the meander pattern, which could be antici-
pated on physical ground due to the absence of a preferential direction of the
basic state. Fig. 2.19 shows the typical trend exhibited by the growth rate as
a function of meander wavenumber for given values of the relevant physical
parameters. Such trend is quite similar to that found in the river case (see, for
instance, Blondeaux & Seminara (1985)). It shows that initial perturbations
with wavelengths smaller than some threshold value decay. Moreover, a peak
of growth rate occurs for the most unstable wavenumber �m depending on
the flow and sediment parameters. Such peak is reminiscent of the analogous
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peak discovered by Blondeaux & Seminara (1985) for river meanders. This
is not surprising as, in the context of the present formulation, the response
of tidal meanders simply arises from an integrated effect of the instantaneous
patterns associated with the oscillatory basic state. Hence, the peak in the
response is associated with the occurrence, during the tidal cycle, of resonant
or quasi resonant conditions in a similar fashion as found in the steady river
case. Figure 2.20 shows the behavior of the instantaneous growth rate Gi dur-
ing a quarter of tidal cycle. Each curve displays a maximum which may attain
a large value, indicating that, for given values of the pair �m; �, the instan-
taneous Shields number � is such that quasi-resonant conditions are typically
approached. Resonance arises when curvature forces the flow-bottom topog-
raphy under conditions such that the system allows for a natural response in
the form of non amplifying and non migrating bars with wavelength equal or
close to meander wavelength. The occurrence of resonance is displayed in
Fig. 2.21 which shows that the topographically induced component of flow
depth has an infinite peak at some value of the width ratio. Fig. 2.22 shows
the dependence of the most unstable wavenumber �m on the width to depth
ratio � for various values of the peak value of the Shields parameter �0 and
for given values of Rp and ds. It appears that the wavenumber selected by the
present planimetric instability analysis ranges between 0.02 and 0.15, at least
for peak values of the Shields parameter larger than 0:6.

We cannot pursue a thoroughly satisfactory comparison between theory
and experimental observations, as detailed measurements of the hydrody-
namic and sedimentologic characteristics of tidal meanders are not available.
However, observations reported in section 2.2 suggest that the selected dimen-
sionless wavenumbers range about 0.2 - 0.4, a range somewhat larger than that
suggested by fig. 2.22, for typical values of the relevant physical parameters.
Note that tidal meandering differs from river meandering for several reasons.
One major feature is the oscillatory character of the basic state, which pre-
vents meander migration. Moreover, as pointed out by Seminara & Tubino
(2000), free bars oscillates in time without displaying any net migration in a
tidal cycle. Such behavior may suggest that planimetric instability of an ini-
tially straight tidal channel may be forced by finite amplitude perturbations
consisting of free stationary bars. Furthermore the altimetric growth rate of
free bars is definitely larger than the planimetric growth rate of meanders, the
time scale of the former process being of the order of days, the latter (scal-
ing by the erosion coefficient e) of the order of years. Nevertheless fig. 2.22
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Figure 2.20: The real part (above) and the imaginary part (below) of the
instantaneous complex growth rate of tidal meanders is plotted as a function
of meander wavenumber � for different values of the width ratio �. (Values of
the relevant parameters are as follows: �0 = 1; ds = 2 � 10�5; Rp = 4; � = 5)

shows that the wavenumber �b selected by the free bar mechanism (obtained
by Seminara & Tubino, 2000) is much larger than �c which represents the
threshold value of meander wavenumber above which small amplitude me-
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Figure 2.21: The values of topographically induced component of flow depth
dm(m = 1) is plotted versus the width ratio � (Values of the relevant param-
eters are as follows: �0 = 0:6; � = 0:09; ds = 2 � 10�5; Rp = 4). Note the
occurrence of a resonant peak.

andering perturbations are stable. Hence, though free bar perturbations grow
in an initially straight channel much faster than planimetric perturbations, the
former are not able to generate growing planimetric perturbations.
On the other hand fields observations have pointed out that tidal meanders are
typically more stable than river meanders. In other words their planimetric
evolution is much slower than that of their fluvial counterparts. This may be
partly due to the more cohesive character of channel banks, typically steeper
than their fluvial counterparts (see fig. 2.23). Furthermore, the actual rate of
lateral migration of river meanders is known to be controlled by the transport
capacity of the stream, i.e. by its ability to remove the sediment accumulated
at the bank toe. Such capacity is rather stronger in the fluvial case, where
the flow does not reverse, than in the tidal case. Furthermore, in tidal chan-
nels, vegetation growing in the adjacent salt marshes plays a stabilizing role
which may alter the dynamics of tidal meanders. The observation of tidal
networks which have been stable for several decades (like Barnstable (MA,
USA), Petaluma (CA, USA) and Pagliaga (Venice, Italy)) suggests that the
cohesion may play a crucial role. The formulation of a mechanism of me-
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ander formation different from the type discussed in the present contribution
should then be attempted in future works.

2.8 Conclusions and future developments

The field evidence reported in section 2.2 suggests that the process of for-
mation of tidal meanders displays a characteristic spatial scale ranging about
10-15 channel widths. It is important to appreciate that such scale is found
to be fairly uniform in channels whose width may change by two orders of
magnitude. In other words the mechanism of meandering initiation is defi-
nitely controlled by morphodynamic effects acting at a scale of a few channel
widths. This observation has motivated the present attempt at interpreting the
above process on the basis of a planimetric instability theory of the type estab-
lished for fluvial meandering. The theoretical results discussed in the previous
sections show that such a planimetric instability mechanism may indeed op-
erate and selects meander wavenumbers of the correct order of magnitude,
though somewhat smaller than those observed in nature.

A few simplifying assumptions adopted in the present work will require
some more attention in the near future. Firstly, channel convergence may
appreciably affect the structure of point bars induced by channel curvature.
Moreover, sediments are often cohesive in the inner portion of tidal channels,
a feature which has been ignored in the present analysis. Tidal flats adjacent
to the main channel, besides producing a storage effect which controls the ad-
justment of channel width may also affect the structure of point bars through
their influence on the hydrodynamics of channel flow. The present theory
is linear, in that perturbations induced by channel curvature are taken to be
small enough. As meanders develop, both geometric and flow non linearities
may become important, as well as non linear interactions between the free
bars (Seminara & Tubino, 2000) and point bars analyzed in the present work.
Detailed field observations of flow and bed topography in natural channels
and of the role of vegetation in controlling the process of bank erosion are
strongly needed to further substantiate the present work. Progress in under-
standing the morphodynamics of curved tidal channels will also benefit from
detailed experimental observations to be performed in the laboratory. Finally,
the approach employed in the present work relies on a ‘cohesionless mech-
anism’ of channel shift similar to that known to be characteristic of fluvial
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environments. Field evidence suggest that tidal meanders form in cohesive
environment, thus indicating that an alternative mechanism may be acting
during the process of meander formation. Further investigation is needed to
clarify this issue.
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Figure 2.22: The values of meander wavenumber �m selected by bend in-
stability, of meander wavenumber �c above which small amplitude mean-
dering perturbations are stable and of the wavenumber �b selected by the
free bar mechanism (see figure 10 Seminara & Tubino, 2000), are plotted
versus the width ratio � for given values of the values of the peak value of
the Shields parameter �0. (Values of the relevant parameters are as follows:
ds = 2 � 10�5; Rp = 4; the continuous lines are for �0 = 0:6, the dashed lines
are for �0 = 1, the dashed-dotted lines are for �0 = 2).
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Figure 2.23: Typical channel cross sections of Venice Lagoon: a) Perognola
channel (basin of Chioggia); b) Treporti channel (basin of Lido); c) S. Nicolò
(basin of Lido)
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Chapter 3

Experimental investigation on
tidal channels

3.1 Introduction

In the present chapter we illustrate and interpret a set of experimental obser-
vations collected in a physical model of tide-dominated well-mixed estuary.
Such experiments were aimed at studying the hydrodynamic processes in-
volved in the propagation of the tidal wave and investigating the interactions
between a tidal current and a cohesionless bottom. The morphodynamic study
will be developed focusing on three major features; namely: i) we wish to ob-
serve the formation of bed forms such as dunes and bars, ii) furthermore we
wish to ascertain the possible existence of a long term longitudinal equilib-
rium profile and iii) finally we intend to analyze the interaction between the
channel and the adjacent tidal sea. Note that such processes are characterized
by distinct time scales, as the time scale typical of bed forms is much shorter
than the time scale required for the bottom profile to reach an ‘equilibrium’
configuration which is of the order of tens of hundreds of years (Lanzoni &
Seminara, 2000).
The investigation has been carried out in the laboratory of the Department
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Environmental Engineering of Genova University. The study has been devel-
oped in the simplest geometry, i.e. a rectilinear flume closed at one end, with
fixed side-walls and constant width, as shown in fig. 3.9. The role played
by additional features such as channel convergence and the presence of tidal
flats will be investigated in future experiments. The procedure followed in the
rest of the paper is as follows. After presenting the equations governing the
hydrodynamic and morphodynamic problem (section 3.2), we will discuss
the scaling rules employed in our physical model of tidal channels (section
3.3). The experimental technique is described in section 3.4, while results
concerning the hydrodynamic mechanisms and some preliminary morphody-
namic observations are illustrated in section 3.6. Finally, in section 3.7, we
report some conclusions and suggestions for future developments.

3.2 Theoretical framework

The experimental investigation has been carried out in an apparatus whose
geometry is quite simple: a long, straight flume with a rectangular cross sec-
tion of constant width, closed at the ‘landward’ boundary by a vertical wall
and connected, at the ‘seaward’ boundary, to a rectangular basin. It is then
appropriate to approach the study of tidal wave propagation employing a one
dimensional model in which the hydraulic quantities are cross sectionally av-
eraged.

We perform experiments generating a monochromatic tidal wave. We then
impose the following condition at the channel inlet:

D
�jx�=0 = D

�
0 [1 + � cos(!�t�)] ; (3.1)

1 whereD�
0 is the average flow depth, � is the ratio tidal wave amplitude/average

flow depth, !� is the angular frequency and x� is the channel axis pointing
landward starting from the channel inlet. Such temporal distribution models
the semidiurnal component (M2), characterized by a wave period of 12.42
hours, of any tidal wave that would occur in nature. Note that at the channel
inlet we were able to impose any free surface oscillation since the generating
system was able to produce any low frequency oscillation of the water surface.

The equation (3.1) also represents mathematically the boundary condition
at the channel inlet to be applied to the governing equations. At the ‘landward’

1Hereafter a star will denote a dimensional quantity subsequently made dimensionless.
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boundary the impermeable vertical wall requires that both water and sediment
fluxes must vanish.

Note that the one-dimensional approach is valid to investigate the propa-
gation of the tidal wave only inside the channel, the flow in the rectangular
basin having a two dimensional character due to the presence of a tidal in-
duced jet (see section 3.6.4).

3.2.1 The hydrodynamic problem

We analyze the flow field induced by the propagation of a tidal wave in a
straight channel with a rectangular cross section; such problem has been re-
cently revisited by Lanzoni & Seminara (1998). We employ the following
notations:

H
� : local free surface elevation;

D
� : local flow depth;

B
� : local width of the cross section;

B
�
0 : channel width at the mouth of the channel;

U
� : cross sectionally averaged local flow velocity;

P
� : mean pressure;

t
� : time;
T : tidal wave period;
!
� : angular frequency of the tide;

x
� : landward oriented longitudinal coordinate;
g : gravity;
U
�
0 : characteristic flow speed;

D
�
0 : averaged flow depth;

C0 : characteristic flow conductance;
C : local and instantaneous flow conductance;
a
�
0 : the amplitude of the tidal wave at the estuary mouth;
L
�
0 : characteristic length scale;

L
�
e

: channel length;
L
�
b

: channel convergence length.
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As it is typical of many estuaries we assume local channel width B� to
vary along x� according to a classical exponential law, namely:

B
� = B

�
0exp

�
�
x
�

L
�
b

�
; (3.2)

where L�
b

will be called convergence length (see fig. 3.1).

Figure 3.1: Sketch and notations

The governing equations describing the unsteady water flow in a wide
rectangular channel are the continuity equation and the momentum equations,
which read:

B
�
D
�
;t�

+ (B�
D
�
U
�);x� = 0 (3.3)

U
�
;t�

+ U
�
U
�
;x�

+ gH
�
;x�

+
U
�jU�j
C2D

= 0 (3.4)

where the flow conductanceC is a function of bottom roughness. Note that we
have neglected the possible presence of tidal flats flanking the main channel.
The relevant variables of the problem are made dimensionless as follows:

t
� = !

��1
t (D�

; H
�) = D

�
0(D;H); U

� = U
�
0U ; x

� = L
�
0x; C = C0c

(3.5)

84



L. Solari - TOPICS IN FLUVIAL AND LAGOON MORPHODYNAMICS

Note that the value of L�0 arises from the dominant balance prevailing in the
momentum equation as will be illustrated below.

The resulting dimensionless form of equations (3.3) and (3.4) then read
(Lanzoni & Seminara, 1998):

1

�
D;t + F (UD)

;x
�KUD = 0; (3.6)

SU;t + �SFUU;x +
1

�
H;x +R

U jU j
c2D

= 0; (3.7)

where the following dimensionless parameters arise:

� =
a
�
0

D
�
0

; F =
1

�

U
�
0

!�L�0
; K =

1

�

U
�
0

!�L�
b

; (3.8)

S =
F

2
0

�

!
�
L
�
0

U�
0

; R =
F

2
0

�

L
�
0

C2
0D

�
0

: (3.9)

Here F0 = U
�
0 =(gD

�
0)

1=2 denotes the flow Froude number, C0 is a typical
value of the average flow conductance and a

�
0 is the amplitude of the tidal

wave at the estuary mouth. Note that the factor c in the last term of (3.7) al-
lows one to account for spatial and temporal variations of flow conductance
caused by changes in bedform characteristics during the tidal cycle. The pa-
rameters S andR in the momentum equation denote, respectively, a measure
of the effect of local inertia and friction relative to that of gravity. The parame-
ter K in the continuity equation measures the degree of channel convergence.
As discussed by Lanzoni & Seminara (1998) estuaries can be classified as
weakly or strongly dissipative ifR=S � 1 orR=S � 1 respectively; weakly
or strongly convergent if K � 1 or K � 1 respectively. Such classifica-
tion allows one to clarify one of the most important mechanism related to
hydrodynamic process; in particular whether the channel is flood or ebb dom-
inated. Tide propagating along the channel become asymmetric giving rise to
a residual current superimposed on an otherwise symmetrical current profile.
Such residual currents are directed seaward/landward in the case of ebb/flood
dominated channel. The analysis developed by Lanzoni & Seminara (1998)
suggests that weakly dissipative ‘infinitely’ long channels, either weakly or
strongly convergent, are ebb dominated as the peak ebb velocity exceeds the
corresponding flood value. On the contrary, strongly dissipative estuaries are
invariably flood dominated. Note that due to the formation of a residual cur-
rent, the channel displays a net sediment flux which is crucial to determine
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the altimetric evolution of the bed, as will be discussed in section 3.2.3. Such
net flux is directed landward (seaward) in the case of flood (ebb) dominated
estuaries.

At the channel inlet we impose a monochromatic tidal wave (see eq. 3.1),
we hence write:

Djx=0 = 1 + � cos(t) (3.10)

At the landward boundary we impose:

U jx�=L�

e
= 0 (3.11)

In the set of experiments we will present below the relevant physical quan-
tities take the following values: U �

0 = 0:10m=s; T = 130s; C0 = 20; D�
0 =

0:10m. The ratio R=S (see eq. 3.9) is therefore 0:21. The present tidal chan-
nel can be then classified as weakly convergent (being K = 0) and weakly
dissipative (being R=S � 1).

The numerical solution of the full de St. Venant equations has been per-
formed by Lanzoni & Seminara (1998) employing the classical box scheme
developed by Preissman (1961). Such implicit scheme is based on a four-
point rectangular box where time and spatial derivatives are discretized as
weighted averages of differences calculated at adjacent points with temporal
and spatial weights which have been chosen to attain the values 0.6 and 0.5
respectively.
For values of the parameters typical of our experimental conditions we have
employed the algorithm elaborated by Lanzoni & Seminara (1998) to study
the propagation of the tidal wave inside the channel. Results, reported in
figures 3.2 and 3.3, illustrate the maximum and minimum value of the tidal
velocity and of the flow depth along the channel, respectively. It appears that
the channel displays a higher flood velocity throughout most of its length;
moreover the amplitude of tidal wave increases inward.

3.2.2 Hydrodynamics of a weakly dissipative and weakly
convergent channel: linear theory

The equations governing the hydrodynamics of weakly convergent (K � 1)
and weakly dissipative (RS � 1) channels on flat bottom assume the following
form:

D;t+�F(UD);x= 0 ; (3.12)
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Figure 3.2: Maximum and minimum values of tidal velocity along the channel.
Parameter values are: T = 130s; C0 = 20; D�

0 = 0:098m; � = 0:132
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Figure 3.3: Maximum and minimum values of flow depth along the channel.
Parameter values are: T = 130s; C0 = 20; D�

0 = 0:098m; � = 0:132
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U;t+
1

S�
D;x+�FUU;x= 0 : (3.13)

Expanding the flow depth D in the form

D = 1 + �d(x; t) ; (3.14)

the governing equations (3.12, 3.13) become

d;t+F(�Ud;x+DU;x ) = 0 ; (3.15)

SU;t+�FUU;x+d;x= 0 : (3.16)

The balances imposed by flow continuity and momentum equations (which
requires that local inertia must dominantly balance gravity) lead to the fol-
lowing constraints:

S = 1 ; F = 1 ; (3.17)

which are equivalent to the following choices for the scales L�0 and U�
0 :

L
�
0 =

p
gD

�
0

!�
; U

�
0 = �

p
gD�

0 ; (3.18)

note that the quantity
p
(gD�

0) represents the speed of the tidal wave. Also
note that from (3.17) it follows that F 2

0 � O(�2), hence convective inertia
is also negligible in the momentum equation. The system (3.12, 3.13) at the
leading order of approximation becomes:

d;t+U;x= 0 ; (3.19)

d;x+U;t= 0 ; (3.20)

which can be rewritten in the following form

d;tt�d;xx= 0 : (3.21)

Equation (3.21) is the well-known wave equation. The solution, in the case of
a channel closed at the inner boundary, reads:

d =
1

cos(Le)
cos(t) cos(�x) ; (3.22)

U =
1

cos(Le)
sin(t) sin(�x) : (3.23)
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where �x = Le � x.
Such solution represents a stationary wave which displays the maximum am-
plitude at the wall (�x = 0) and a vanishing amplitude at a distance �x = n � l=4
(with n an odd number) from the wall, l being the dimensionless tidal wave-
length. Note that the phase lag between flow velocity and free water surface is
�=2. The ratio between maximum tidal amplitude at the landward boundary
and at the tidal inlet is

dmaxj�x=0

dmaxj�x=Le
=

1

cos(Le)
(3.24)

such ratio is infinite when Le = n � �=2 in other words when Le=l = n � 1=4.
When this condition is met the system becomes resonant, in reality tidal wave
peaking is smoothed by a number of factors: diffusive terms, non linearities,
non uniform geometry.

In the present experiments, the wave celerity is about 1 m/s (as D�
0 =

0:10m), the tidal wave length is about 130 m (being T=130 s), l�=4 is therefore
33 m; the channel is then not too far from being resonant (as L�

e
= 24m).

For the same value of the parameters employed in the experiments we will
present below, we have plotted the maximum and minimum value of the flow
velocity and of the flow depth, such results are reported in figures 3.4 and 3.5
respectively.

3.2.3 The one dimensional morphodynamic problem

Based on the one dimensional formulation of the hydrodynamic problem, one
can then study the long-term equilibrium configuration of the bed profile em-
ploying a cross sectionally averaged model. The latter problem has been re-
cently tackled by Lanzoni & Seminara (2000). In this section we will outline
their work, which will prove useful to understand the physical mechanisms
occurring during our experiments.

The dimensionless form of the Exner equation reads

�;� +

�
qs;x �

K
F
qs

�
= 0 (3.25)

where

t
� = �

�
0 � ; �

� = D
�
0�; q

�
s
=
p
�gd�3

s
qs;
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Figure 3.4: Maximum and minimum value of the flow velocity (according to
the linear theory) along the channel. Parameter values are: T = 130s;D�

0 =

0:098m; � = 0:132

�
�
0 =

(1� p)D�
0L

�
0p

�gd�3
s

; � =
�s � �

�
(3.26)

where p is sediment porosity, q�
s

is the sediment flux per unit width, d�
s

is the
average sediment grain size, �s and � are water and sediment densities respec-
tively, �� represents the bottom elevation which is related to the flow depth by
means of the relationship �� = H

� �D
�.

The sediment continuity equation states that the spatial variations of the sed-
iment flux are balanced by a rate of aggradation or degradation of the bed
surface. The total amount of sediment transport at a certain time in a given
cross section is the sum of two contributions: bedload and suspended load
which can be evaluated using some semi-empirical formula, such as Meyer-
Peter & Muller (1948) relationship for bed load and Van Rijn (1984) approach
for the suspended load. In this respect we note that the model of Lanzoni &
Seminara (2000) is based on the assumption that sediment transport is in equi-
librium with the local and instantaneous conditions. The Exner equation also
requires boundary conditions. In the present case the sediment flux at the end
of the channel must vanish: such condition is automatically satisfied by the
hydrodynamic solution where it was imposed that the instantaneous cross sec-
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Figure 3.5: Maximum and minimum value of the flow depth (according to the
linear theory) along the channel. Parameter values are: T = 130s;D�

0 =

0:098m; � = 0:132

tionally averaged speed must also vanish at the ‘landward’ boundary (recall
equation (3.11)).
As pointed out by Lanzoni & Seminara (2000) in the absence of a net sed-
iment discharge either from the sea or from the river, the channel can only
reach an average altimetric equilibrium of the bottom (the average being re-
ferred to the tidal cycle), provided the average sediment flux vanishes at any
cross section along the channel. The distortion of the tidal wave along the
channel produces over each tidal cycle a net sediment flux which modifies the
bed profile. The hydrodynamics associated with the new bottom configura-
tion leads to a new pattern of bottom stresses and therefore to a new pattern
of sediment transport. The equilibrium profile is found to be characterized
by a concavity which increases as the estuary convergence increases. The fi-
nal length of the estuary is determined by the formation of a ‘beach’ towards
the inner portion of the estuary. Notice that, strictly speaking, an instanta-
neous equilibrium is never reached as the instantaneous sediment flux is in
general a non vanishing quantity. Morphodynamics and hydrodynamics are
then strictly coupled in a long term evolution process. The result of such a
process for parameter values typical of our experimental conditions, is dis-
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played in figure 3.6, which illustrate the temporal evolution of the bottom
(above) and of the net sediment flux (below) from an initially plane bed con-
figuration along the channel at various instants, respectively. Note that q�

s0 in
fig. 3.6(below) denotes the quantity

p
�gd�3

s
.
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Figure 3.6: Temporal evolution of the bottom profile (above) and of the net
sediment flux (below) from an initially plane configuration. Parameter values
are:D�

0 = 0:098m; � = 0:132; C0 = 16; d�
s50 = 0:31mm; �s = 1480kg=m3
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3.3 Scaling rules of physical models of tidal mor-
phodynamics

Hydraulic models are essentially based on the establishment of geometric,
kinematic and dynamic similarities. Geometric similarity requires the ‘shape’
of the model to be the same as that of the prototype. It is achieved by making
sure that each characteristic length of the prototype is reduced by a constant
factor called the scale. Kinematic similarity requires that the ‘shape’ of the
streamlines at any particular time be the same in the model as in the proto-
type. Dynamic similarity requires that the ratio between forces in the model
must be equal to the corresponding ratio in the prototype. In order to achieve
dynamic similarity of a phenomenon it is necessary and sufficient to make
sure that all relevant dimensionless parameters governing the phenomenon be
equal in the model and prototype. In the present section we will discuss the
requirements for dynamic and kinematic similarity, the analysis will move
from the dimensionless form of the governing equations (see sections 3.2.1
and 3.2.3).

3.3.1 The case of weakly dissipative estuaries

Examples of such estuaries are found frequently in nature: they display large
flow depths and fairly low friction coefficient. This limiting behavior is math-
ematically described by the condition

R � S : (3.27)

The momentum equation therefore requires that local inertia is balanced by
gravitational term (which is an O(�0) term, as the spatial fluctuations of the
flow depth D are of order �). It follows that we may write:

S = 1 ; )
!
�
L
�
0

U�
0

F
2
0

�
= 1 : (3.28)

This condition allows us to find the spatial scale L�
0. By substituting from

(3.28) into the definition of the parameter F (see equation 3.8), it is found
that

F =
F

2
0

�2
: (3.29)
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From the conservation of the parameter F it then follows that the ratio be-
tween Froude numbers must be related to the ratio between the amplitude
parameters as follows:

F0

F 0
0

=
�

�0
= e ; (3.30)

having denoted by an apex the quantities in the model. If we indicate by ' the
velocity scale and by � the length scale, the previous relationship reads

' = e

p
� : (3.31)

In order to simulate the sediment transport process we require that the values
of the Shields parameter � and of the particle Reynolds number Rp be kept
constant both in the model and in the prototype. The former constraint reads

�
U�

0

U�
0

0

�2
�d�s

�0d�
0

s

=
'
2

�Æ
= 1 ; (3.32)

in other words
' = �

1=2
Æ
1=2

; (3.33)

having introduced ‘distortion’ scales for sediment size (Æ) and sediment den-
sity (�) as follows:

Æ =
d
�
s

d�
0

s

; � =
�

�0 : (3.34)

We then require that the parameter Rp be kept constant and obtain:

�
�

�0

�1=2�
d
�
s

d�
0

s

�3=2

= �
1=2
Æ
3=2 = 1 ; (3.35)

whence:
Æ = �

�1=3
: (3.36)

Notice that, so far, we have assumed the resistance coefficient to be con-
stant, an assumption which will be discussed later.
Equations (3.31, 3.33, 3.36) may be written as follows:

Æ = �
�1=3

; (3.37)

' = �
1=3

; (3.38)

94



L. Solari - TOPICS IN FLUVIAL AND LAGOON MORPHODYNAMICS

e

p
� = �

1=3
: (3.39)

Once we fix the value of �, which depends on the availability of sediments
used in the model, we can calculate the scale for sediment size Æ and the
velocity scale '. The parameter e, i.e. the distortion of the dimensionless
amplitude of the tide wave, is then obtained once we assume a convenient
value for the length scale �. In the present model we have employed crushed
hazelnut shells which have an average diameter of 0:31mm and a density of
1480kg=m3 (see section 3.4) therefore we find:

� = 3:4 ; Æ = 0:66 () d
�
s
= 0:2mm) ; ' = 1:51 ; e

p
� = 1:51 (3.40)

In the experiments we have carried out D�
0 ranges about 0.1m. If we set

� = 50 it follows that the dimensionless amplitude of the tidal wave in the
model is about 4.6 times that of the prototype. In the first set of experiments � 0

ranged about (0:13� 0:15) and the corresponding value of � in the prototype
is about (0:028� 0:032), a fairly low value. It is then appropriate to perform
the future experiments with higher values of �0.
We now discuss the role played by the dissipative terms. Evidently both the
model and the prototype require R=S � 1. Let us see what are the implica-
tions of the following condition

R=S
R0=S 0

= 1 : (3.41)

If � is the ratio between tidal wave periods, we obtain

��
2

'�
= 1 (3.42)

having denoted by � the ratio between the flow conductance of the prototype
and that of the model. In order to reproduce the dissipative effects we should
impose the following scaling:

� =
��

2

'
=
�
1=3
�
2

e2
(3.43)

In the experiments we have carried out the conductance takes a value ranging
about 20 (see section 3.4). Since similar values can be typically observed in
many tidal channels (see Lanzoni & Seminara, 1998), we can assume � = 1.
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Figure 3.7: A wave train superimposed to tidal wave

The scale � therefore ranges about 34 corresponding to a tidal wave period in
the model of about 1300 s. The tidal wave period in the laboratory is limited
by the size of the experimental apparatus: the longer the tidal wave period,
the bigger is the tidal prism which needs to be displaced in order to generate a
current in the flume strong enough to bring sediments in suspension. The size
of the present generating system (see section 3.4) does not allow to realize
tidal wave periods larger than about 180s-200s, hence in our model the time
scale � is much larger than needed to keep the ratio R=S constant. In other
words the ratioR=S in the model is much smaller than in the prototype. Such
distortion does not affect significantly the analysis elaborated here as long as
the prototype keeps weakly dissipative. Note that another source of distor-
tion is due to the relative role played by the convective-inertial term which is
enhanced in the model, thus leading to a tidal wave which may display sharp
fronts, as it has sometimes been observed in the present experiments (fig. 3.7).

Finally, in order to reproduce channel convergence, the parameter K must
remain constant, therefore�

�
0

�

� �
U
�
0 =U

�0
0

�
!�=!�

0

�
L�
b
=L�

0

b

� = 1 (3.44)

, in other words
�b

�
=

e

�1=3
� (3.45)

, where �b = L
�
b
=L

�0
b

. The convergence of the channel may then be easily
reproduced: note that the degree of convergence in the model is much larger
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than in the prototype, the right hand side of equation (3.45) being larger than
one.

3.3.2 The case of strongly dissipative estuaries

Examples of this kind of estuaries are alos frequent in nature and are char-
acterized by small flow depths. This limiting behavior is mathematically de-
scribed by the condition

R � S : (3.46)

In this case the momentum equation imposes a balance between gravity and
friction as local inertia is relatively small. Spatial variations of the gravita-
tional term are of order 1. It is then appropriate to write

R = 1 ; )
L
�
0

C2
0D

�
0

F
2
0

�
= 1 : (3.47)

This condition allows us to find the spatial scale L�
0. By substituting from

(3.47) in the definition of the parameter F (see equation 3.8) it is found that:

F =
U
�
0

D�
0!

�

F
2
0

�2

1

C2
0

: (3.48)

The conservation of the parameter F then gives:

� =
e
2

'3
�
2
: (3.49)

Such relationship allow us to determine the time scale once the length scale
� and the velocity scale ' are given. The velocity scale is determined by
the requirement that sediment transport be reproduced. To reproduce sedi-
ment transport we obtain constraints identical to those expressed by equations
(3.33, 3.36), therefore:

' = �
1=2
Æ
1=2

; (3.50)

Æ = �
�1=3

: (3.51)

Again notice that we have assumed a constant value of flow conductance. The
scaling rules thus obtained may be rewritten as follows

Æ = �
�1=3

; (3.52)
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' = �
1=3

; (3.53)

� =
e
2

�
�
2
: (3.54)

For a given value of � one can find the scale Æ for sediment size and the
velocity scale '. The time scale � is calculated once the length scale and the
scale for the dimensionless tidal amplitude are imposed. If we consider the
present model as strongly dissipative we find

� = 3:4 ; Æ = 0:66 () d
�
s
= 0:2mm) ; ' = 1:51 ; � =

e
2

3:4
�
2
: (3.55)

In the experiments we have carried out D�
0 ranges about 0:1m which may be

taken to correspond to a length scale of about 50. If e ranges about 0:5 � 1

the time scale falls in the range 180 � 735, hence the period of tidal wave in
the model ranges about (248� 60)s respectively.
It is instructive at this point to investigate the role played by local inertial
effects. Evidently both the model and the prototype require R=S � 1. We
then examine the consequences of assuming that:

R=S
R0=S 0

= 1 : (3.56)

Taking into account equations (3.53, 3.54) we find

R0

S 0
=

�
R
S

�
e
2
�

�2=3
: (3.57)

From such relationship it appears that the strongly dissipative character of the
prototype is definitely maintained in the model which is more strongly dissi-
pative than the prototype.
Channel convergence is maintained keeping constant the parameter K, there-
fore

�b =
e
3
�
2

�2=3
; (3.58)

in other words
�b

�
=

e
3
�

�2=3
: (3.59)

The convergence of the channel may be then easily reproduced.
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3.4 Experimental setup and procedure

The experiments are carried out on a large indoor platform 29.6 m long and
2.3 m wide. The concrete platform has a weak longitudinal upslope of about
7 � 10�4 and is covered by 2 cm thick wood panels. Along both sides of the
platform is an approximately 0.40 m high rail supporting a carriage used for
levelling the bed and measuring the bed topography and water surface level.
The rail has been carefully set horizontal, using a cathetometer. The side
walls of the channel were constructed by attaching 0.30 m high and 5 mm
thick strips of forex to the wooden platform base to form vertical flume walls.

The flume is straight, 24.14 m long and 0.30 m wide with a rectangular
cross section closed at one end and connected at the other end to a rectangular
basin (2.23 m wide and 4.6 m long) which models the sea. The rectangu-
lar basin is connected to a feeding tank (1.51 m, 3.08 m, 1.76 m) in which
the tidal wave generation system is installed. Such system consists of an
oleodynamic mechanism which moves an empty cylinder (diameter=1.1 m,
length=2.8 m) according to a given temporal law. The oleodynamic system
is computer controlled by means of a DAQ. The oscillation of the cylinder
causes the displacement of the water from/to the feeding tank to/from the
channel resulting in a tidal wave.
The length of the flume has obviously been determined by the size of the plat-
form, the width of the channel has been chosen such to avoid the formation
of free bars, a feature which we will focus on later. From the fluvial literature
(Tubino, Repetto & Zolezzi, 1999), it is well known that the crucial param-
eter controlling the formation of bars in straight channels is the aspect ratio
� defined as the ratio between the half width of the channel and the average
flow depth. The formation of alternate bars in straight channels subject to a
tidal current have been recently investigated by Seminara & Tubino (2000)
by means of a stability analysis. The stability analysis provides a dispersion
relationship for the growth rate and migration speed of the bars as functions
of bar wavenumber, width ratio �, Shields parameter �, particle Reynolds
number Rp and relative roughness d�

s
=D

�
0. Such dispersion relationship allow

to build neutral curves corresponding to perturbations with vanishing growth
rate. An example of a neutral curve is reported in fig. 3.8. Note that such curve
displays a minimum which is found to correspond to critical or threshold con-
ditions for the formation of alternate bars. For values of � larger than the
critical one, any perturbation characterized by a wavenumber falling within
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the neutral curve is unstable, therefore bars will form. In the case of parame-
ter values typical of our experimental conditions (ds = 3�10�3; Rp = 12, peak
value of Shields parameter = 0.43) the critical value of � is ranging about 5.
At the initial stage our experiments displayed a � ranging about 1.5 which is
below the critical value, therefore alternate bars should not form.

The length of the rectangular basin should have allowed the unsteady jet

��

��

��

��

�
���� ��� ���� ���

�

�

Figure 3.8: Marginal stability curve for alternate bars (from Seminara &
Tubino (2000)). Parameter values are: ds = 2 � 10�5; Rp = 4, peak value of
Shields parameter = 1

forming in the basin during the ebb phase, to decay completely. However,
space did allow to achieve such goal, hence we made sure that sediment dis-
charged into the feeding tank were kept in suspension by the stirring action of
recirculating water jets acting on the bottom of the tank. As a result no loss of
sediment from the channel-basin system occurred throughout the experiment.
A sketch and a picture of the channel are reported in fig. 3.9 and in fig. 3.10,
respectively.

The first step of the present experimental investigation was to study the hy-
drodynamics of tide propagation along the channel. We therefore performed
a first set of fixed bed experiments. We measured water velocity and water
surface elevation in 5 cross sections placed every 6 m along the channel start-
ing from the channel inlet, as indicated in fig. 3.9.
Water velocities were measured using a micropropeller, which has an accu-
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Figure 3.9: Sketch of the experimental apparatus

Figure 3.10: View of the experimental apparatus

racy of �1% when the velocity falls in the range (0.15-1.5)m/s and it is char-
acterized by a propeller diameter of 11.6 mm which needs to be located at
least 15 mm below the free surface. The micropropeller was calibrated using
a high resolution (0.1 mm/s) acoustic doppler velocimeter.
In order to determine the distribution of flow velocity we measured the flow
speed at various points along the axis of symmetry of the cross sections. Un-
fortunately the diameter of the microproller does not allow to measure flow
velocity in the nearest proximity of the bottom. Moreover, due to the fact that
the propeller must be submerged for at least 15 mm and the tidal wave ampli-
tude increased inward, the locations and number of the measuring points was
not the same in any cross section. In section 2, the spatial distribution of flow
velocity was determined by virtually dividing the cross section into 5 vertical
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subsections; the velocity of the flow was then measured at 5 points along the
vertical axis of each of the subsections for a total of 25 points.
In order to obtain a sufficient accuracy, at each point the velocity was mon-
itored for a period of at least 12 tidal cycles, discarding the first two since
the system required about two periods to reach ‘stationary’ conditions. The
pattern of flow velocity over cross sections 1, 3 and 4 was determined by as-
suming a transverse distribution similar to that measured in section 2.
Water surface elevation was measured in the same cross sections in which
we performed velocity measurements. We took measurements of free sur-
face elevation at the channel axis employing ultrasonic sensors which have an
accuracy of �0:172mm.

A second set of experiments was performed with a mobile cohesionless
bottom. Such experiments were devoted to made some preliminary observa-
tions of the formation and behavior of bedforms (such as dunes and possibly
bars) and investigate the long term altimetric bed profile. The flume was then
filled with crushed hazelnut shells characterized by a density of 1480 kg=m3

and D�
50 = 0:31 mm. The sediment size distribution is reported in fig. 3.11.

Such sediments were light and fine enough to produce a sufficiently large
sediment flux throughout most of the tidal cycle with the values of friction
velocities typically generated during the present experiments.
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Figure 3.11: Sediment size distribution
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The channel bed was prepared using a 0.30 m wide scraper attached to
a carriage running along the rails. The bed was smoothed flat and set at a
vanishing slope before each experiment.

3.5 Control of the wave generating system

The knowledge of the relationship between the motion of the cylinder inside
the feeding tank and the oscillations of the surface level in the basin is crucial
for planning the experimental tests. To solve this problem we apply the mass
continuity equation to a control volume consisting of the feeding tank and the
rectangular basin as shown in fig. 3.12. The problem is readily solved once

Figure 3.12: Sketch and notations of control volume

we give the kinematic characteristics of the tidal wave (period, amplitude and
average depth), the size of the cylinder, the geometry of the control volume
(feeding tank+basin) and the discharge q�

c
(t) exchanged at any time between

the control volume and the channel through its inlet section. Mass conserva-
tion applied to the control volume depicted in fig. 3.12, requires that the time
derivative of the water volume contained in the feeding tank due to the oscil-
lation of the cylinder, must equal the sum of the time derivative of the volume
of water contained inside the basin due to the oscillation of the free surface
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and of the water flux exchanged with the channel through the inlet section.
The differential equation expressing such balance can be written in the form:

dV
�
i
(t)

dt�
= [A

�
tot
� A

�
c
(t)]

dD
�
0(t)

dt�
+ q

�
c
(t) ; (3.60)

where

V
�
i
(t) : submerged volume of the cylinder;

A
�
tot

: total free water surface area (feeding tank + rectangular basin);
A
�
c
(t) : intersection between free water surface and oscillating cylinder;

q
�
c
(t) : flow discharge exchanged through the channel inlet;

Notice that the discharge q�
c
(t) can only be determined by solving the problem

of propagation of the tidal wave inside the channel. Once q�
c
(t) is known and

the free surface elevation the basin D
�
0(t) is assigned we can calculate the

position of the cylinder in terms of its submerged volume. Notice that the
equation (3.60) is in implicit form as the submerged volume V �

i
(t) and the

transverse area A�
c
(t) both depend on the position of the cylinder, which is

unknown.
The oscillations imposed to the cylinder during our experiments are shown

in fig. 3.13 where they are compared with the theoretical law calculated by
means of eq. (3.60). It can be seen that differences are relatively small (�
15%).

3.6 Experimental observations

In this section we present some preliminary observations on the hydrodynam-
ics and morphodynamics of our model of tidal channels.

3.6.1 Tidal wave hydrodynamics: the water surface eleva-
tion

As mentioned before (see section 3.4) we measured the free surface elevation
at the channel axis in 5 cross sections. The oscillation of the free surface at the
five locations along the flume is reported in fig. 3.14. Notice that the signal
has been averaged over an extremely high number of tidal cycles (about 360).
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Figure 3.13: The law of oscillation assigned to the cylinder is compared with
the theoretical law calculated by solving eq. (3.60) numerically for given
temporal dependence of free surface oscillations in the basin.
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Figure 3.14: Measurements of the free surface elevation in 5 cross sections
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As one may expect, the tidal wave amplitude grows in the landward direc-
tion, as shown in fig. 3.15, in which Dmax (Dmin) denotes the dimensionless
highest (lowest) water elevation in each cross section while � is the dimen-
sionless bottom profile.
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Figure 3.15: The amplitude of tidal wave along the channel

Note that the relative high value of the ratio convective inertial term/local
inertial term is the cause of the sharp fronts observed in our experiments:
such fronts can be detected in fig. 3.14. The free surface profiles predicted
by the complete one dimensional model (see section 3.2.1) and by the linear
model (see section 3.2.2) are compared with the experimental findings in fig-
ures 3.16, 3.17, 3.18, 3.19 and 3.20. It appears that the tidal wave amplitude is
well predicted by the inviscid model, a result somewhat expected; the present
model is indeed weakly dissipative, therefore the frictional term can hardly
play a fundamental role.

Through a comparison between the water surface profiles measured and
those calculated by means of the complete one dimensional model we have es-
timated the value of the flow conductance C. We have calibrated C employing
the water surface elevation data rather than the velocity measurements since
the former ones are more accurate. It appears that C takes a value of about 20,
if we consider an average flow depth of about 10 cm the corresponding value
of the Gauckler-Strickler parameter is about 100m1=3

s
�1, which appears to be
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Figure 3.16: The water surface elevation at cross section 1 as predicted by
linear and nonlinear theory is compared with experimental findings
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Figure 3.17: The water surface elevation at cross section 2 as predicted by
linear and nonlinear theory is compared with experimental findings
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Figure 3.18: The water surface elevation at cross section 3 as predicted by
linear and nonlinear theory is compared with experimental findings
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Figure 3.19: The water surface elevation at cross section 4 as predicted by
linear and nonlinear theory is compared with experimental findings
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Figure 3.20: The water surface elevation at cross section 5 as predicted by
linear and nonlinear theory is compared with experimental findings

reasonable for channels with very smooth walls. The corresponding value of
the homogeneous wall roughness �� is about 0.2 mm, while the peak value of
the wall Reynolds number ranges about 3. Such value suggests that the wall
is hydraulically smooth as the threshold value for hydraulically rough wall
ranges about 20. To take into account the smooth character of the wall we
then calculated the value of C employing Marchi’s formula (1981) which can
be used both in a rough and smooth regime; such formula reads:

C = �5:75log(
C

Re�
+

��

13:3R�
i
�
) ; (3.61)

where � denotes a shape factor (which for the present rectangular sections
takes a value of 0.95), R�

i
is the hydraulic radius and Re =

4U�
R

�

i

�
is the

Reynolds number. It is important to note that C is not constant, but varies in
time according to the temporal variations of the flow velocity, ranging from
20 when the flow velocity is at the peak to about 10 when the velocity is about
1 cm/s. In fact, during the tidal cycle the Reynolds number ranges from some
maximum value (of about 105) to zero. Hence, approaching flow reversal, the
flow tends to relaminarize.
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3.6.2 Tidal wave hydrodynamics: the water speed

The distribution of the flow velocity averaged over the axis in cross sections
1,2,3 and 4 are reported in fig. 3.21. Note the distortion of the tidal veloc-
ity profile moving landward: while the ebb phase displays a longer duration,
the peak of the flood velocity is higher. Such asymmetry becomes more pro-
nounced approaching the landward boundary, as it is demonstrated in fig. 3.22
which shows the dimensionless maximum velocityUmax and minimum veloc-
ity Umin along the channel. It also appears that, moving upstream, the ratio
Umax=jUminj increases (apart from the initial part of the channel where en-
trance effects are present), thus indicating that the flood dominated character
increases upstream. Also note from fig. 3.21 that the duration of water slack
following the flood phase increases upstream.
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Figure 3.21: The distribution of the vertically averaged flow velocity during a
tidal cycle along the channel

As mentioned in section 3.4 we evaluated the distribution of the water
speed along the axis of 5 subsections at cross section 2. The results of such
procedure are shown in fig. 3.23. Although small differences are displayed
during the ebb phase, it appears that the velocity has an almost uniform dis-
tribution along the transverse axis

The cross sectionally averaged speed in sections 1,3 and 4 was calculated
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Figure 3.22: The maximum and minimum velocity along the channel
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Figure 3.23: The temporal distribution of the vertically averaged flow velocity
at different locations throughout the cross section 2

assuming a pattern of flow velocity similar to that observed in section 2. The
mean velocity in section 1,2,3 and 4 as predicted by the shallow water equa-

111



L. Solari - TOPICS IN FLUVIAL AND LAGOON MORPHODYNAMICS

tions (see section 3.2.1) and by the linear model (see section 3.2.2) is com-
pared with the experimental findings in figures 3.24, 3.25, 3.26 and 3.27;
respectively.
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Figure 3.24: The cross sectionally averaged flow speed at the channel inlet as
predicted by linear and non linear theory is compared with the experimental
findings.

As previously discussed, during a large part of the tidal cycle the flow is
turbulent and the wall exhibits a hydraulically smooth character. The vertical
distribution of the flow speed is therefore expressed by the following relation-
ship:

U
�

u�
=

1

k
ln

�
z
�

��

�
+ 5:5 ; (3.62)

with k = 0:41 von Karman’s constant, u� friction velocity, �� wall roughness
and z� vertical coordinate. Results obtained through the application of such
formula have been compared with the experimental findings in figure 3.28: it
appears that the logarithmic law agrees with the experimental results satisfac-
torily choosing a value for the flow conductance ranging about 20.

Finally notice that the experimental findings present a few irregularities
well evident in the descending part of the flood phase (figures 3.26, 3.27).
Such anomalies are due to wave trains displaying sharp fronts which travel
throughout the channel (see picture 3.7).
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Figure 3.25: The cross sectionally averaged flow speed at cross section 2 as
predicted by linear and non linear theory is compared with the experimental
findings.

3.6.3 Tidal channel morphodynamics: preliminary obser-
vations

A first set of preliminary experiments has been performed to test the mecha-
nism of sediment transport and the morphodynamic interactions between the
current and the erodible bed. We did not take any quantitative measurements,
so far, hence the discussion below is purely qualitative and simply aimed
at designing adequately the future set of quantitative experiments. We have
checked that the system is able to generate a current strong enough to bring
the sediments in suspension throughout the most of the tidal cycle. At the
channel inlet a large scour forms due to the sharp shape of the channel mouth
and to the presence of a tidal induced jet (see section 3.6.4); such jet forms at
the channel inlet during the ebb phase and excavates a channel inside the rect-
angular basin. The strength of such jet does not seem to decrease significantly
during its propagation in the basin, as the jet is able to entrain sediments from
the bottom of the basin. Consequently much sediment falls into the feeding
tank where is located the oscillating cylinder. To avoid such process which
would lead to a negative sediment budget at any tidal cycle, we have installed
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Figure 3.26: The cross sectionally averaged flow speed at cross section 3 as
predicted by linear and non linear theory is compared with the experimental
findings.

at the bottom of the feeding tank 4 water pumps able to create a circulation
strong enough to prevent sediment from depositing at the bottom of the tank.
The latter procedure insures that, at equilibrium, the sediment balance in the
system channel+rectangular basin vanishes.
During the flood phase sediments inside the channel are flushed towards the
land boundary, while in the rectangular basin the current is not strong enough
to transport sediment in suspension, with the exception of the nearest proxim-
ity of the channel inlet where the convergence of streamlines induces higher
speeds. After about some hours of experiments we can already distinguish
a new bottom profile which exhibits a bed elevation increasing towards the
landward boundary as predicted by Lanzoni & Seminara (2000)

The bed experiences also the formation of some bed forms, such as dunes
fig. 3.29 and bars.

3.6.4 Experimental observations near the channel inlet

As mentioned before, the flow pattern inside the rectangular basin is essen-
tially 2-D. We have visualized it using a white passive tracer consisting of a
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Figure 3.27: The cross sectionally averaged flow speed at cross section 4 as
predicted by linear and non linear theory is compared with the experimental
findings.
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Figure 3.28: The observed vertical distribution of flow velocity is compared
with the theoretical distribution predicted from eq. (3.62)
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Figure 3.29: Tidal dunes

Figure 3.30: The 2-D flow field pattern in the rectangular basin

plastic powder, as illustrated in fig. 3.30. During the ebb phase an irregular
pattern of whirling structures is displayed. The tidal jet exiting from the chan-
nel inlet is not straight, as shown in fig. 3.31, but curls to complete elliptical
trajectories inside the rectangular basin, which are alternate in direction and
verse, with respect to the tidal cycle. As a consequence of such circulation,
during the flood phase water reenters the channel asymmetrically, with vor-
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Figure 3.31: Picture of the pattern of flow field during the ebb phase

tex shedding mostly on one side of the inlet: in figure 3.33 the separation of
vortices is more evident to the right, while, to show the alternate character of
this phenomenon, the opposite case is illustrated in figure 3.32. Notice that
the flow pattern inside the rectangular basin is drastically different during the
flood and ebb phases; during the ebb phase flow is separated, flow separation
is due primarily to the forcing effect of the momentum of the exiting jet, i.e.
an unsteady jet forms with the jet expanding away from the inlet. On the con-
trary, during the flood phase, the flow is essentially irrotational and occurs in
a sink-like manner. A theoretical description of such mechanisms was given
by P. Blondeaux, B. De Bernardinis e G. Seminara (1986).

From a topographic map of the bottom in the rectangular basin (built
plain) it seems that the curling of the tidal jet circulation is not induced by
any altimetric factor. However we have observed that, after about 10 tidal
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Figure 3.32: Picture of the pattern of flow field during the flood phase. Notice
the presence of vortexes in the left side of the channel inlet

cycles, the tidal jet seems to maintain a straight configuration, as reported in
fig. 3.34.

The asymmetric behavior of the tidal jet may be simply due to an instabil-
ity phenomenon or it might be induced by the slightly asymmetric position, of
the cylinder inside the feeding tank. Besides the cylinder axis is not perfectly
horizontal. Further investigations are needed to clarify this point.

3.7 Conclusions and future developments

The present experimental apparatus successfully reproduces the hydrodynamic
mechanisms commonly observed in tide dominated estuaries and tidal chan-
nels. A first set of experiments have been performed with fixed bed to investi-
gate the propagation of the tidal wave throughout the channel. Measurements
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Figure 3.33: Picture of the pattern of flow field during the flood phase. Notice
the presence of vortexes in the right side of the channel inlet

of the flow field suggest that the present channel is flood dominated, as the
velocity peak displayed by the tidal wave in the flood phase exceed the cor-
responding ebb value. Moreover, according to the classification proposed by
Lanzoni & Seminara (1998), the present model can be classified as weakly
dissipative as friction plays a negligible role relative to local inertia. As a con-
sequence tide propagation can be treated as a weakly non linear phenomenon.
Some qualitative observations of the interaction between the channel and the
tidal sea indicate that the flow pattern in the rectangular basin during the ebb
phase is drastically different from the pattern observed during the flood phase:
during the ebb phase the flow separates due to the formation a tidal induced
jet, whereas in the flood phase the flow is nearly irrotational.
A preliminary experiment aimed at studying the interaction between the tidal
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Figure 3.34: Detail of the flow field pattern during the ebb phase.

current and the cohesionless bottom also suggests that the model is adequate
to investigate the main features of morphodynamics of tidal channels.

The scaling rules reported in section 3.3 allows one to design physical
models of tidal morphodynamics. The present physical model is affected by
some distortions. In particular, in order to obtain a current strong enough to
generate an appreciable transport in suspension with the size of the exper-
imental apparatus, the period of the tidal wave cannot exceed about 200 s.
Such constraint leads to an enhancement of the relative role played by the lo-
cal inertia. As a consequence the model is more weakly dissipative than the
prototype. Furthermore the convective inertia is higher in the model leading
to the tendency of the tidal wave to display sharp fronts.
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The present apparatus can be modified in the future to include some of the
effects now neglected, e.g. the convergence of the channel and the presence
of tidal flats.
Furthermore the present channel, straight and narrow, can be made wider and
meandering since the platform on which the flume is built is 2.2 m wide. This
will allow the formation of free and forced bars and investigate their effects
on tidal morphodynamics.
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Chapter 4

Bedload on arbitrarily sloping
beds at low Shields stress

4.1 Introduction

Deterministic attempts to provide a theoretical description of bedload trans-
port under uniform equilibrium conditions (Ashida & Michiue, 1972; En-
gelund & Fredsøe, 1976; Wiberg & Smith, 1985; Sekine & Kikkawa, 1992;
Niño & Garcı́a, 1994) invariably consist of two main steps.

In the former step an estimate of the average speed of saltating particles Vp
is obtained either on the basis of an appropriate saltation model or, more sim-
ply, by ideally replacing the actual saltating motion by an equivalent uniform
translatory motion such that the effects of particle rebound are accounted for
in terms of a bulk dynamic coefficient of Coulomb friction. Though the use
of saltation models provides a more complete picture of the bedload transport
process, however the ‘bulk’ approach is sufficient to pick up the fundamental
features of particle dynamics and leads to estimates for the average particle
speed which are in reasonable agreement with experimental observations.

The second step is devoted to the evaluation of the average areal concen-
tration C of saltating particles, i.e. the average volume of saltating particles
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per unit area. This is a much more ambitious goal. In fact the number of
particles in motion essentially depends on the spatial and temporal frequen-
cies and on the intensity of near wall turbulent events (the so called sweeps
and inward interactions) which are known (Heathershaw and Thorne, 1985,
Thorne et al., 1989, Drake et al, 1988, Nelson et al., 1995) to be responsible
for the entrainment of bedload particles. Estimating such frequencies and in-
tensities under rough wall and mobile bed conditions is still outside the reach
of present experimental techniques. Furthermore no model of the complex
interaction between the near wall particles and such highly unsteady, spa-
tially random, turbulent events has yet been proposed. The complexity of the
detailed process has led Bagnold (1956) to attempt formulating a physically
based assumption to estimate the average areal concentration C. Essentially
Bagnold suggests that the external stress the fluid imposes at the upper edge
of the saltation layer is reduced by the effect of the average reaction forces
due to the presence of saltating particles to the extent that the average fluid
residual stress acting at the bed interface equals the critical value for incipient
particle motion. Such constraint determines the average number of saltating
particles per unit area.

The rationale behind such assumption is based on a static notion of equi-
librium of the bed interface: in other words, in order for the latter to keep
in equilibrium, the residual average stress acting on the interface should re-
duce to the threshold value for the incipient motion of sediment particles.
The validity of such assumption, which has been employed in virtually all the
deterministic models of bedload transport appeared in the literature, has been
questioned by Fernandez Luque and van Beek (1976) who performed detailed
observations of the dynamics of saltating particles at fairly low Shields stress.
For values of the latter stress smaller than about 0.1 the assumption appeared
to fail. Similar doubts were shed by the more recent work of Niño et al.
(1994). The question of the validity of Bagnold’s hypothesis is then still the
subject of debate and no conclusive evidence of either its validity or its failure
can be claimed.

We wish to reexamine the latter issue in a more general context, namely
that of bedload transport on arbitrarily sloping beds. Such problem is of great
practical interest as most phenomena in river morphodynamics involve the
motion of bedload particles on non planar beds. Recently Kovacs and Parker
(1994) proposed a vectorial formulation of bedload transport able to cope
with large local gradients of bed elevation. The analysis followed the line of
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the classical approach of Ashida and Michiue (1972), which was extended to
a general non planar bed configuration characterized by local slopes which
may reach values up to the angle of repose of the sediment. The analysis
of Kovacs and Parker (1994) employed a generalized form of Bagnold’s as-
sumption stipulating that the projection of the residual stress acting on the bed
onto the direction of the external stress should be equal to the critical value
for incipient motion. Such generalization is an approximate form of the exact
generalization of Bagnold’s condition which requires that the modulus of the
residual stress vector must equal the critical stress.

In the present note we first investigate the consequences of the exact Bag-
nold’s constraint. Such investigation gives rise to somewhat unexpected re-
sults. In fact it turns out that, for given particle Reynolds number and local
longitudinal slope, Bagnold’s condition can only be satisfied provided the lo-
cal lateral slope does not exceed a fairly low threshold value depending on
the applied Shields stress. Such finding has a simple physical explanation
which will be given in sect. 4. As the applied Shields stress increases, the
maximum allowed lateral slope decreases reaching values which range about
few degrees. The implications of these results are somewhat striking: since
equilibrium bedload transport can obviously occur on lateral slopes exceeding
the threshold value discussed above, as experimental observations on bedload
transport on transversely sloping beds clearly suggest (see in particular Ikeda,
1982), it then follows that Bagnold hypothesis cannot be valid.

In order to overcome the latter problem we then propose a simple ap-
proach based on a reinterpretation of the experimental observations of Fer-
nandez Luque and van Beek (1976). The latter suggest that the equilibrium of
the bed interface is dynamic rather than static, in that equilibrium is achieved
through a balance between an entrained sediment flux and a deposited flux.
A simple calculation based on Fernandez Luque and van Beek’s results al-
lows one to determine an approximate relationship between the excess resid-
ual stress acting at the bed interface (i.e. the difference between the residual
stress and its critical value) and the excess applied stress. Such relationship
turns out to be fairly close to linear, at least within the relatively narrow range
of values investigated by Fernandez Luque and van Beek (1976). Having
established such relationship, the average areal concentration of saltating par-
ticles, which is readily calculated in terms of the excess applied stress on the
basis of the experimental results, can also be expressed in terms of the excess
residual stress. It is then reasonable to assume that the relationship between
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the areal concentration and the excess residual stress established from uni-
form flow experiments on planar beds can be extended to flow on arbitrarily
sloping beds provided the modulus of the residual stress is correctly evalu-
ated by performing a vectorial difference between the external stress and the
stress associated with the average drag acting on saltating particles, the latter
being no longer aligned with the former. Such assumption, which essentially
consists of assuming that it is the modulus of the excess residual stress which
measures in some sense the ability of the stream to entrain sediments, re-
places Bagnold’s assumption and allows one to derive a general relationship
for bedload transport on arbitrarily sloping beds.

The procedure followed in the rest of the paper is as follows. In the next
section we rederive the threshold condition for particle motion on an arbitrar-
ily sloping bed. In Section 3 we determine a relationship for the intensity
and direction of the average speed of saltating particles on arbitrarily sloping
beds. In Section 4 we reinforce Bagnold’s condition in order to evaluate the
average areal concentration of saltating particles and show that the latter con-
dition leads to contradictory conclusions predicting that a threshold value of
the lateral slope exists above which Bagnold’s constraint cannot be satisfied.
Section 5 is devoted to the approach proposed in the present paper to replace
Bagnold’s assumption. Results based on the latter approach are discussed in
the last section.

4.2 The threshold condition for the motion of bed-
load particles on arbitrarily sloping beds

A derivation of the threshold conditions for the motion of bedload particles
on arbitrarily sloping beds was proposed by Kovacs and Parker (1994). Here
we essentially follow their approach with some minor modifications. We con-
sider a free surface flow on a non planar cohesionless bed and refer to fig. 4.1
for notations. Let P be a point lying on the bed and let z be the coordinate
of a vertical axis with origin in P and unit vector k̂. Let the flow exert a tan-
gential stress on the bed. The direction of such stress, along with the vertical
direction, provide the only two externally imposed directions on the problem:
in particular note that the direction of channel axis does not play any role in
the present analysis. It is then convenient to introduce a right handed cartesian
reference frame, centered at P , with coordinates x� , xp and z. The x� axis
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Figure 4.1: Sketch and notations

(with unit vector x̂� ) is the horizontal axis lying in the vertical plane (� ; k̂),
while the xp axis (with unit vector x̂p) is the horizontal axis orthogonal to the
plane (x̂� ; k̂). Let us now define a streamwise and a lateral slope of the bed
as follows. The equation of the bed surface may be written in the form:

Fb = z � �(x� ; xp) = 0 ; (4.1)

with � bed elevation. The unit vector in the direction normal to the bed reads:

n̂ =
rFb
jrFbj

: (4.2)

The vertical unit downward vector -k̂ is decomposed into normal (kn) and
tangential (kt) components as follows:

kn = (�k̂ � n̂)n̂ ; kt = �k̂ � kn : (4.3)

The streamwise slope of the bed at P (tan�) is then defined as the slope of
the line obtained by intersecting the bed surface with the plane (k̂; x̂� ):

tan� = �
@�

@x�
: (4.4)
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Similarly the lateral slope of the bed at P (tan') is the slope of the line ob-
tained by intersecting the bed surface with the plane (k̂; x̂p) and reads:

tan' = �
@�

@xp
: (4.5)

Note that the above two lines are not orthogonal to each other in general.
Having set the above notations we may now formulate the threshold condition
for particle motion as follows:����FD �

j� j
+ (G� A)kt

���� = �j(G� A)kn + Ln̂j ; (4.6)

having denoted by G the particle weight, by A the Archimedean force, by FD

the intensity of the drag force and by L the intensity of the lift force acting on
the particle. In words we require that the resultant active force must balance
the resistive force expressed in terms of a friction coefficient � interpreting
the effect of contact forces between the particle located at P and adjacent
particles.

The latter expression can be reduced to a simple algebraic equation for the
critical Shields stress by performing some simple algebraic manipulations.
Let us first express the intensities of drag and lift forces in terms of drag and
lift coefficients as follows:

FD =
1

2
%cD

�D
2

4
u
2
0 ; (4.7)

L = %VcLu0
du0

d�

����
�p

; (4.8)

where u0 is the mean fluid speed at the distance �p from the wall where the
particle centroid is located, D is particle diameter, V is particle volume, �
is water density while cL and cD are drag and lift coefficients which require
some estimates.

The reader will note that the expression (4.8) for the lift force differs
from that employed in previous analyses of incipient particle motion. Indeed,
though the hydrodynamic process which determines the average force acting
on spheres lying on granular beds and subject to the action of turbulent shear
flows is far too complex to be amenable to rigorous theoretical investigations,
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however a considerable progress has been made in the last decade on the sub-
ject of the hydrodynamic forces acting on spheres immersed in an unbounded
inviscid spatially and temporally varying flow in the presence of vorticity. In
particular Auton (1987) has shown that, provided the strength of vorticity is
weak, i.e. the change in incident velocity across the sphere is much smaller
than the relative speed of the ambient flow at the centre of the sphere, the lift
force FL for a sphere at rest in a weakly rotational inviscid flow reads:

F L = �%cLv0 � ! ; (4.9)

with ! uniform ambient vorticity and cL lift coefficient which takes the value
0.5. The above result was generalized by Auton, Hunt and Proudhomme
(1988) who showed that the form (4.9) for the lift force is still valid when
the ambient flow, besides being weakly sheared, is also slowly varying in
space and time. Though a sphere lying on a cohesionless granular bed is sub-
ject to a strongly rather than weakly sheared ambient flow and viscous effects
as well as the presence of the wall play a non negligible role, it appears that
the expression (4.9) is the most reasonable form which may be envisaged for
the lift force. We have estimated the value of cL by reinterpreting Chepil’s
(1958) set of data, which is based on the possibly most reliable experimental
work on the lift force acting on spheres lying on granular beds. Note that
Chepil (1958) employed hemispheres set in a hexagonal pattern, three diam-
eters apart center to center, with fine gravel covering the floor between them.
Fig. 4.2 shows the results of such reinterpretation. It is interesting to note
that values of cL increase as the Reynolds number increases and, at the higher
Reynolds numbers, reach values ranging about the theoretical value 0.5 ap-
propriate to inviscid and weakly sheared unbounded ambient flows. In the
following we will then assume such value for the lift coefficient. It is appro-
priate at this stage to point out that the formulation for the lift force proposed
by Wiberg and Smith (1985) reduces to the present formulation if the velocity
distribution of the incident flow is assumed to vary linearly across the sphere.

An explicit form for the threshold condition of particle motion (4.6) can
finally be derived using the following relationships:

n̂ =
(tan�; tan'; 1)p
1 + tan2 � + tan2 '

; k̂ = (0; 0; 1) ; (4.10)

kn = �
(tan�; tan'; 1)

1 + tan2 �+ tan2 '
; kt =

(tan�; tan';� tan2 �� tan2 ')

(1 + tan2 �+ tan2 ')
;

(4.11)
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Figure 4.2: The value of the lift coefficient cL, estimated from Chepil’s (1958)
data, is plotted as a function of Reynolds number.

�

j� j
= (cos�; 0;� sin�) : (4.12)

Substituting from (4.7-4.12) into (4.6) and dividing by (�s � �)gD, �s being
the sediment density, we find:����12cDf 2�D

2

4
��c(cos�; 0;� sin�) +

V
D

(tan�; tan';� tan2 �� tan2 ')

(1 + tan2 �+ tan2 ')

���� =
= �

�����VD (� tan�;� tan';�1)
(1 + tan2 � + tan2 ')

+ cLVf
df

d�

����
�p

��c
(tan�; tan'; 1)p
1 + tan2 � + tan2 '

����� ;
(4.13)

where f is the dimensionless form of the incident velocity distribution scaled
by the friction velocity u� and � is a coordinate normal to the wall. In practice
f can be written in the general form

f =
1

k
ln(B

�

Ks

) ; (4.14)

where k = 0:4 is the von Karman constant, Ks is a roughness height typically
specified as

Ks = nkD ; (4.15)
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and nk is an order-one constant. MoreoverB is a function of friction Reynolds
number u�Ks=� where � denotes the kinematic viscosity of water. In the
case for which u�Ks=� is sufficiently large B obtains the limiting value of 30
corresponding to a rough turbulent wall flow.
Let us denote by � and ��c0 the following quantities:

��c0 =
4

3

�

cD

�
f
2j�=�p(1 + �)

��1
; � =

4

3
�
cL

cD

D

f

df

d�

����
�=�p

; (4.16)

where ��c0 is the critical value of the Shields stress for vanishing � and '.
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Dividing equation (4.13) by ��c0 and using equation (4.16) after some ma-
nipulations we obtain:�

��c

��c0

�2

+ 2
(1 + �)

�
sin�

��c

��c0
+

+

�
1 + �

�

�2
tan

2
� + tan2 '+ (tan2 � + tan2 ')2

(1 + tan2 � + tan2 ')2
=

=
(1 + �)2

1 + tan2 � + tan2 '
� 2

�(1 + �)p
(1 + tan2 � + tan2')

��c

��c0
+�2

�
��c

��c0

�2

:

(4.17)

Finally we end up with the following relationship:

(1��)

�
��c

��c0

�2

+ 2

(
�p

1 + tan2 �+ tan2 '
+

sin�

tan�

)
��c

��c0
+

(1 + �)

1 + tan2 � + tan2 '

�
�1 +

tan2 � + tan2 '

tan2 �

�
= 0 : (4.18)

The equation (4.18) is immediately solved for (��c=��c0). Fig. 4.3 shows the
dependence of the latter quantity on the lateral slope for given values of the
longitudinal slope. Note that the calculations were performed assuming the
value of 40Æ for the angle of repose � of the particle.

4.3 The direction and intensity of the velocity of
saltating particles in motion on arbitrarily slop-
ing beds

Due to the sloping character of the bed, the average direction of particle mo-
tion deviates from the direction of the average bottom stress, while its average
intensity changes with respect to the corresponding value for rectilinear mean
flow.

We wish to derive estimates for both the intensity and direction of particle
velocity. To this aim, following a fairly well established approach developed
for the rectilinear case, we assume that the averaged particle dynamics is gov-
erned by an averaged balance between an average active force, obtained from
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Figure 4.3: The critical Shields stress ��c scaled by the critical Shields stress
for an horizontal bed ��c0 is plotted versus the lateral bed inclination ' for
different values of the longitudinal bottom inclination � (� = 40Æ; cL=cD =

1:25, cD = 0:4, �p=Ks = 0:5, ��c0 = 0:032).

the vectorial composition of the drag force and the tangential component of
the submerged particle weight, and an averaged resistive force, which inter-
prets the effect of continuous or intermittent hydrodynamic interactions of
particles with the bed and is aligned with particle velocity.

With the notations of fig. 1, we may write such balance in the form:

FD + (G� A)kt = +�d(G� A)jknj
V p

jV pj
: (4.19)

Here the drag force FD is a vector aligned with the relative fluid-particle
velocity which reads:

FD =
1

2
%cD

�
�D

2

4

�
(U � � V P )jU � � V P j ; (4.20)

where U � is the component of particle velocity tangential to the bed surface
and V P is particle velocity, a vector tangent to the bed which may be ex-
pressed in terms of the angle  that V P forms with the bottom stress vector
as follows:

V P = VP cos 
�

j� j
+ VP sin 

�
n̂�

�

j� j

�
: (4.21)
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Recalling equation (4.12) and noting that :

n̂�
�

j� j
=

(� sin� tan'; 1
cos�

;� cos� tan')p
1 + tan2 � + tan2 '

; (4.22)

we may finally project equation (4.19) into the directions of �̂ and n̂ � �
j� j .

This allows us to derive two scalar relationships for VP and  in implicit form.
They read:

V̂p =
Vpp

(s� 1)gD
= fp

p
�� A( ;�; ') ; (4.23)

fp
p
�� =

r
4

3cD

(cos� tan'� �d sin )
1=2

[(1 + A02)(1 + tan2 � + tan2 ')]1=4

�
A
0 +

1

tan 

�
:

(4.24)
Here fp is the function f introduced above, evaluated at some average salta-
tion height. Moreover the quantities A and A0 read:

A = (cos + sin A0)�1 ; (4.25)

A
0 =

�d cos � sin�
p
1 + tan2 �+ tan2 '

cos� tan'� �d sin 
: (4.26)

The two relationships (4.23) and (4.24) have been solved for  and Vp by
using an iterative procedure. Results for the angle  as a function of the
applied Shields stress are reported in fig. 4.4. Note that, not surprisingly, the
deviation of particle motion from the direction of the applied stress decreases
as the Shields stress increases, an important feature which is known to be
quite relevant to the process of lateral sorting in meander bends (Parker and
Andrews, 1985).

4.4 Estimating the average areal concentration of
saltating particles by Bagnold’s hypothesis:
an approach which leads to unrealistic results

Let us now investigate the consequences of imposing Bagnold’s constraint on
the dynamics of saltating particles.

To this aim we impose the dynamic equilibrium of a volume of fluid-
sediment mixture adjacent the unit area of the bed surface, with height equal
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Figure 4.4: The angle  , which measures the deviation of particle velocity
relative to bottom stress, is plotted as a function of the local Shields stress � �
for given values of the angles � and ' (� = 40Æ; cL=cD = 1:25, cD = 0:4,
��c0 = 0:032, fp = 11:5, �d = 0:6).

to the characteristic thickness of the saltation layer. Let us denote by � B

the shear stress acting on the upper surface of the control volume and by
(�� b) the residual shear stress that the fluid exerts on the bed surface. If the
average volumetric concentration of saltating particles per unit area is denoted
by C, then the average dynamic equilibrium of the control volume imposes
the following condition:

�B + (hs � C)%gkt +

�
C

V

�
%sgVkt �

C

V
R = � b : (4.27)

Noting that the quantity � B + %ghskt equals the clear water bottom stress �
and recalling the condition (4.19), simple manipulations allow to transform
equation (4.27) into the following form:

� �
C

V
FD = � b : (4.28)

The exact generalization of Bagnold’s hypothesis then poses the following
constraint:

j� bj
%(s� 1)gD

= ��c(�
0
; '

0) ; (4.29)
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where ��c is the critical Shields stress associated with longitudinal slope tan(� 0)
and lateral slope tan('0), having denoted by �0 and '0 the values of � and '
associated with the residual stress vector � b defined by equation (4.28). Eval-
uating such angles requires some tedious, though straightforward, algebraic
manipulations.

Let us denote by x̂�b
the unit vector of the horizontal axis obtained by

projecting the residual shear stress vector � b into the horizontal plane through
P . Moreover let x̂0

p
denote the unit vector of the horizontal axis orthogonal to

x̂�b
. We may then write:

tan�0 = �r� � x̂�b
; tan'0 = �r� � x̂0

p
: (4.30)

Furthermore, we may write:

x̂�b
=

(k̂ � � b)� k̂
j(k̂� � b)� k̂j

; x̂
0
p
=

k̂ � � b

jk̂ � � bj
; (4.31)

or, with the use of equation (4.28):

x̂�b
=

(k̂ � � )� k̂ � C

V (k̂ � FD)� k̂

j(k̂ � � )� k̂ � C

V (k̂ � FD)� k̂j
; (4.32a)

x̂
0
p
=

(k̂ � � )� C

V (k̂ � FD)

j(k̂ � � )� C

V (k̂ � FD)j
: (4.32b)

With the help of equation (4.31), if t̂�b is the unit vector � b=j� bj, equations
(4.32a,b) may be written as follows:

x̂�b
=

(k̂ � � )� k̂ � C

V (k̂ � FD)� k̂

j(k̂ � t̂�b)� k̂jj� �
C

VFDj
; (4.33a)

x̂
0
p
=

(k̂ � � )� C

V (k̂ � FD)

j(k̂ � t̂�b)jj� �
C

VFDj
(4.33b)

Let us introduce the following unit vectors t̂� and x̂� which read

x̂� =
(k̂ � � )� k̂

j(k̂ � � )� k̂j
; t̂� =

�

j� j
: (4.34)
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Substituting from (4.34) into equations (4.33a,b) we find:

x̂�b
=

j(k̂ � t̂� )� k̂jj� j
j(k̂� t̂�b)� k̂jj� � C

VFDj

"
x̂� �

C

V (k̂ � FD)� k̂

j(k̂� t̂� )� k̂jj� j

#
; (4.35a)

x̂
0
p
=

h
(k̂ � � )� C

V (k̂ � FD)

i
j� j

j(k̂ � t̂�b)jj� �
C

VFDjj� j
: (4.35b)

Substituting from the definitions (4.4, 4.5, 4.10, 4.11, 4.12, 4.22) into equa-
tions (4.35a,b) we find the following relationships:

x̂�b
= x̂�

1� PM
Q

+
PR
Q

(� sin� tan';
1

cos�
; 0) ; (4.36)

x̂
0
p
=

1

N 0

��
�
PR
cos�

�
;

[cos�(1� PM)� PR sin� tan'] ;

0g ;

(4.37)

where:

M = fp
p
�� � V̂p cos ; P =

3

4
cD
C

D

q
M2 + V̂ 2

p
sin2  

��
; (4.38)

R =
V̂p sin p

1 + tan2 � + tan2 '
; (4.39)

Q =

(
[1� P(M+R sin� tan')]

2
+

�
PR
cos�

�2
)1=2

; (4.40)

N =
�
[cos�� P(M cos� +R sin� tan')]

2
+

+ [� sin�� P(�M sin� +R cos� tan')]
2
+

�
PR
cos�

�2)1=2

N 0
=

(�
PR
cos�

�2
+ [cos�� P(M cos� +R sin� tan')]

2

)1=2

: (4.41)

139



L. Solari - TOPICS IN FLUVIAL AND LAGOON MORPHODYNAMICS

Finally, with the use of the relationships (4.36) and (4.37) the definitions
(4.30, 4.31, 4.32a) give:

tan�0 =
1

Q
[(1� PM) sin� + PR tan' cos�] ; (4.42)

tan'0 =
1

Q

�
(1� PM) tan' cos�� PR sin�

�
1

cos2 �
+ tan2 '

��
:

(4.43)

The latter relationships allow to evaluate the angles �0 and '0 as functions of
C; �; '; �� and  We may then finally reinforce the exact generalization of
Bagnold’s condition. Noting that

j� bj =
����� � C

V
FD

���� = Nj� j ; (4.44)

such generalization simply reads:

�� =
��c[�

0(C); '0(C)]
N (C)

: (4.45)

Hence, we end up with an implicit equation for the unknown concentration C
which can be solved by means of an iterative procedure. However an interest-
ing, perhaps unexpected, difficulty arises: indeed, for given longitudinal slope
and external Shields stress ��, it turns out that a threshold value of the lateral
slope tan' exists above which no solution is found. In other words such
condition sets an upper limit for the lateral slope compatible with Bagnold’s
constraint. A simple physical explanation can be given to the latter finding,
namely the existence of the above threshold condition. Such explanation is
related to the vectorial nature of Bagnold’s hypothesis. In fact, in the classical
case of equilibrium bedload transport, the average motion is unidirectional
and particle drag is aligned with the incident average fluid motion, hence the
residual stress vector is obtained by subtracting two parallel vectors: under
these conditions the modulus of the vector difference is equal to the differ-
ence between the moduli of the two vectors. In other words, the external
stress can always be reduced to the critical value by appropriately increasing
the resultant drag force, i.e. the concentration of saltating particles.

This is not the case when the bed surface is arbitrarily sloping as particle
drag is no longer aligned with the external stress: as a result, we have to
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Figure 4.5: The maximum lateral inclination of the bed surface 'max for the
validity of Bagnold hypothesis is plotted versus Shields stress for given values
of longitudinal slope of the bed surface � (� = 40Æ; cD = 0:4; cL=cD =

1:25; �d = 0:6; fp = 11:5; ��c0 = 0:032).

evaluate the modulus of the difference between two vectors which form an
angle � with each other. Hence, using Carnot theorem we may write:����� � C

V
FD

���� =p� 2 + (CFD=V)2 � (2CFD�=V) cos � ; (4.46)

It is easy to show that the left hand side of equation (4.46) attains a mini-
mum value when the areal concentration C takes the value (�V cos �=FD). It
follows that, whenever such minimum exceeds the critical value of the shear
stress appropriate for the longitudinal and lateral slopes of the bed associ-
ated with the residual stress, then Bagnold’s constraint cannot be satisfied. In
other words, no matter how large is the areal concentration C, the residual
stress cannot be reduced to the critical value. Figures 4.5 and 4.6 show the
dependence of 'max and (C=D)lim on �� for given values of the longitudinal
slope tan(�). The results of Kovacs and Parker (1994) are also shown. Note
that Kovacs and Parker’s (1994) approximation appears to be fairly close to
the ‘exact’ result, its only limit being its inability to predict the failure of
Bagnold’s hypothesis for sufficiently large lateral slopes. The existence of
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such threshold condition poses a fairly severe and unrealistic constraint on
the maximum admitted lateral slope. In fact fig. 4.5 shows that, for values
of the Shields stress as low as 0.15, the maximum lateral inclination of the
bed would range about 6Æ-7Æ. The ability of a stream to transport sediments
as bedload under equilibrium conditions in the presence of such weakly slop-
ing beds cannot be questioned. Hence, one is led to conclude that Bagnold’s
condition is not valid and must be replaced by a different condition able to
account for the dynamic rather than static character of the equilibrium of the
bed interface. In the next section we propose such an approach, relying on the
help of the detailed experimental observations of Fernandez Luque and van
Beek (1976).

4.5 An alternative approach: the excess residual
stress as a measure of the entrainment capac-
ity of the stream

If the equilibrium of the bed interface is indeed dynamic, then the excess
residual stress acting on the bed interface cannot vanish. On the contrary,
such stress is the most reasonable candidate to measure the residual turbulent
activity present close to the interface, hence the ability of the stream to pro-
duce those turbulent events (sweeps and inward interactions) which appear to
be the major hydrodynamic agents of bedload transport.

It is then instructive to reinterpret Fernandez Luque and van Beek’s (1976)
results, referring to uniform streams flowing on nearly horizontal planar beds,
in the light of the above viewpoint. For a uniform stream flowing on a planar
bed the modulus of the residual stress acting at the bed interface is readily
calculated in the form:

�b = � � �d(%s � %)gC : (4.47)

Simple manipulations allow one to reduce the latter expression to the follow-
ing dimensionless relationship for the excess residual Shields stress in terms
of the excess external Shields stress and of the average areal concentration of
saltating particles:

(��b � ��c) = (�� � ��c)� �d
C

D
: (4.48)
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Figure 4.7: The residual stress ��b acting on the bed interface is plotted versus
the external Shields stress �� for given values of the angles � and ' (� =

40Æ; cL=cD = 1:25, cD = 0:4, ��c0 = 0:032, fp = 11:5, �d = 0:6).

The areal concentration C was estimated by Fernandez Luque and van Beek
(1976). Employing their estimate allows us to test our conclusion about the
failure of Bagnold’s hypothesis. Following the latter authors, let us then write:

C

D
=

5:7

11:5

(�� � ��c)
3=2

p
�� � 0:7

p
��c

= (�� � ��c)g

�
��

��c

�
; (4.49)

such relationship turns out to be very close to a linear relationship. Substitut-
ing from (4.49) into (4.48) we find:

(��b � ��c) = (�� � ��c)

�
1� �dg

�
��

��c

��
: (4.50)

The latter relationship is plotted in fig. 4.7 and turns out to be very close to a
linear relationship. It shows that, at least within the range of values of Shields
stress investigated by Fernandez Luque and van Beek (1976), Bagnold’s as-
sumption is never satisfied, a conclusion already reached by the latter authors.
If equation (4.50) is replaced into (4.49) we achieve a useful goal, namely
that of expressing the mean areal concentration of saltating particles in terms
of the excess residual Shields stress. Such relationship, which is plotted in
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fig. 4.8, shows that the average areal concentration of saltating particles in-
creases quasi linearly with the excess residual Shields stress, a result which is
strongly suggestive of the fact that the latter quantity may indeed be taken as
a measure of the entrainment capacity of the stream.

The latter argument can be set at the basis of an approach to the evaluation
of bedload transport on arbitrarily sloping beds which does no longer need
rely on Bagnold’s assumption. The basic idea is simply to assume that the
average areal concentration of saltating particles is an increasing function of
the excess residual Shields stress, the latter quantity being taken as the appro-
priate measure of the residual turbulent activity at the bed interface. Needless
to say, on a sloping bed the excess residual Shields stress will have to be eval-
uated by employing the vectorial formulation and the critical Shields stress
will have to be evaluated in terms of the local values of the longitudinal and
lateral slopes, as discussed in the previous sections. The structure of the above
function is not known a priori. However it seems reasonable to assume that,
if the entrainment capacity of the stream and the average areal concentration
depend on the excess residual Shields stress, the structure of the relationship
between the latter quantities is somehow universal, i.e. it does not depend on
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the macroscopic features of the bottom configuration but only on the appro-
priately calculated values of the local quantities. As a first guess it seems also
reasonable that, in the range of low Shields stress, we employ the quasi lin-
ear relationship between C and (��b � ��c) determined from the experimental
results of Fernandez Luque and van Beek (1976).

The general procedure to determine the intensity and direction of bedload
transport on an arbitrarily sloping bed can then be summarized as follows.

Let the local values of the longitudinal and lateral slopes be assigned along
with the intensity and direction of the external stress acting at the top of the
saltating layer. From equation (4.18) we can immediately calculate the local
value of the critical Shields stress. The relationship (4.21), with the help of
(4.22-4.26), then allows to calculate intensity and direction of particle veloc-
ity. Next we proceed to evaluate the residual stress and the average areal con-
centration of saltating particles. This requires an iterative procedure: indeed
equation (4.28) allows us to calculate the residual stress vector once we know
the concentration. As a first guess we may employ the relationship (4.50) to
have a first estimate of (��b� ��c) in terms of the assigned value of (��� ��c).
We can then employ fig. 4.8 to obtain a first estimate for C. We then go
back to equation (4.28) to obtain a second approximation for (��b� ��c) using
the preliminary estimate for C. With the latter updated value of (��b � ��c)

we may return to fig. 4.8 to derive a second approximation for C, and so on
till convergence is achieved. The latter procedure is indeed found to be con-
vergent. Having determined both V̂ p and C we finally evaluate the bedload
transport vector per unit width q in the classical dimensionless form obtained
using Einstein’s scale, as follows:

q̂ =
qp

(s� 1)gD3
=
C

D
V̂p

�
cos 

�

j� j
+ sin 

�
n̂�

�

j� j

��
: (4.51)

Finally it is instructive to analyze the dependence of the modulus of q̂ on
the external Shields stress for different values of the longitudinal and lateral
inclination angles and compare such dependence with the linear relationships
to which our analysis reduces when the latter angles are sufficiently small.

Let us then derive the linear relationships as a particular case of our gen-
eral approach. To this aim we assume that �; ' and  are small such that we
may write:

(sin�; sin'; sin ) ' (tan�; tan'; tan ) ; cos� ' cos' ' cos ' 1 :

(4.52)
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Using the latter approximations, the equations (4.24, 4.25, 4.26) readily lead
to the following linear dependence between tan( ) and tan('):

tan =
rtp
��

tan' ; (4.53)

where the constant rt reads:

rt =
1

fp

r
4

3cD�d
: (4.54)

From (4.23) and (4.53) one readily derives a relationship for the dimensionless
intensity of particle velocity of a form identical to that suggested by Fernandez
Luque and van Beek on the basis of their experimental observations, namely:

V̂p = fp(
p
�� �

p
��c1) ; (4.55)

where ��c1 is a dynamical form of the critical Shields stress which reads:

��c1 =
4

3

�d

cDf
2
p

: (4.56)

The reader will note that, in the limit of gently sloping beds, the intensity of
particle velocity is not affected by the sloping character of the bed.

Using the approximations (4.52), one readily shows that, at the leading
order of approximation, the residual stress vector is aligned with the external
stress vector, hence the relationship for the average areal concentration of
saltating particles reduces to the quasi-linear relationship (4.49) of Fernandez
Luque and van Beek (1976).

Hence, the linearized form of the bedload transport formula is found to
read:

qp
(s� 1)gD3

=
C

D
V̂p

�
�

j� j
+

rtp
��

tan'

�
n̂�

�

j� j

��
; (4.57)

with C; V̂p and  given by equations (4.49), (4.55) and (4.53) respectively.
We may now compare the results of the fully non linear approach proposed
herein with the linearized treatment just described. Such comparison is re-
ported in fig. 4.9 which shows that, as expected, on sloping beds the intensity
of bedload transport increases with the external stress faster than on horizon-
tal beds, the more so as the longitudinal and lateral slope increase. Also note

147



L. Solari - TOPICS IN FLUVIAL AND LAGOON MORPHODYNAMICS

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

1 2 3 4 5 6

|
q
|
/
(
(
s
-
1
)
g
D
3
)
1
/
2

τ*/τ*c0

α=0o, ϕ=25o
α=25o, ϕ=0o
α=25o, ϕ=25o
α=0o, ϕ=0o
α=0o, ϕ=25o lin.
α=25o, ϕ=0o lin.
α=25o, ϕ=25o lin.

Figure 4.9: The modulus of the bedload transport vector is plotted versus
the external Shields stress for given values of the longitudinal and lateral
inclination angles and compared with the results of the linearized formulation
(� = 40Æ; cL=cD = 1:25, cD = 0:4, ��c0 = 0:032, fp = 11:5, �d = 0:6).
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that the vectorial nature of the relationship which gives the residual stress vec-
tor (equation 4.28) implies that, for given external stress, the modulus of the
residual stress increases as the lateral bedslope increases, leading to increas-
ing values of the bedload transport rate, as expected on physical ground.

4.6 Discussion and conclusions

The main conclusion of the present paper is an attempt to provide a conclu-
sive answer to the longdated debate on the validity of Bagnolds hypothesis
concerning the residual stress acting on the bed interface when bedload parti-
cles are set in a saltating motion under equilibrium conditions at low Shields
stress. Essentially, we have shown that, if the bed interface is sloping rather
than horizontal, for relatively small lateral slopes the applied external stress
cannot be reduced to the critical value no matter how large is the concentra-
tion of saltating particles. In physical terms, one can state that on a sufficiently
sloping bed it is the downslope component of gravity which supports particle
motion which, then, needs to drain less momentum from the fluid phase.

Hence, one is led to the conclusion that Bagnold’s hypothesis is an unnec-
essarily severe constraint. On the other hand, our reinterpretation of Fernan-
dez Luque and van Beek’s (1976) results (see equation (4.50) and fig. 4.7),
confirms that the residual stress in the experiments of the above authors was
invariably smaller than the available applied external stress. A similar, though
not identical, conclusion was reached by Fernandez Luque and van Beek
(1976, sect. 3.5). The latter authors calculated the reduction in fluid shear
stress due to the bed load by evaluating the average transfer of momentum by
the particle to the bed surface, a calculation which relied on an estimate of
the average time required for a particle to cover the average saltation length.
Such length was taken by the above authors as a constant multiple of particle
diameter. On the contrary, measurements of Niño et al. (1994) suggest that
the saltation length increases linearly with the excess applied stress. We now
show that the estimate of the reduction of fluid shear stress given by Fernan-
dez Luque and van Beek (1976) contradicts the results obtained by the same
authors for the dependence of the average particle speed on the excess external
stress. In fact, if the reduction of fluid stress is calculated using equation (11)
of Fernandez Luque and van Beek (1976) and substituted into the right hand
side of our equation (4.19), one readily derives the following relationship for
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Figure 4.10: Average particle velocity as from the experiments and the in-
terpretation of Fernandez Luque & van Beque (1976). (� = 40Æ; cD =
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the average particle speed:

V̂p = 
fp
p
�� ; (4.58)

where 
 is the following parameter:


 =
1

1 + 0:238
(s+cM)1=2p

cD

; (4.59)

having denoted by cM the added mass coefficient for a sphere (cM = 0:5). The
relationship (4.58) is compared in figure 10 with that proposed by Fernandez
Luque and van Beek (1976) as appropriate to interpret their experimental ob-
servations for the average particle speed. The discrepance between the two
relationships can be easily removed provided the average saltation length is
allowed to depend linearly on the excess applied stress.

Various limitations of the present model need be mentioned.
Firstly, the evaluation of the average particle speed relies on an average

dynamic balance which neglects the integrated effect of turbulent fluctuations,
added mass effects and shear induced horizontal buoyancy. Moreover, the
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evaluation of the average drag force acting on particles employs a distribution
of fluid speed which is assumed to be unaffected by the presence of particles.
Improvements in this respect can be made by resorting to saltation models of
the kind employed by Wiberg and Smith (1985), Sekine and Parker (1992) or
Niño and Garcı́a (1994). However, note that all these models need employ
some empirical assumption concerning the interaction of saltating particles
with the immobile bed (a hydrodynamical rebound rather than a collision).

Moreover, as the Shields stress increases, the concentration of saltating
particles also increases, which leads to enhancing the effect of particle inter-
actions, both hydrodynamical and possibly collisional, a shortcoming present
in virtually all the theoretical models of bedload transport formulated so far.

While such limitations are likely to become crucial at fairly large Shields
stresses, one may reasonably expect that they do not invalidate the basic argu-
ment of the present contribution at the relatively small values of the Shields
stress considered herein.

Finally, the assumption that a linear relationship exists between the con-
centration of saltating particles and the excess residual stress will definitely
require further substantiation. Hence, the refined experimental observations
which have been made possible by the latest technological developments are
definitely called for. At the present stage, however, it appears that the theo-
retical framework built on the basis of the above assumption, besides being
based on the accurate observations of Fernandez Luque and van Beek (1976),
has allowed us to remove in a consistent fashion the contradictions arising
from the use of Bagnold’s hypothesis.
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