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Abstract — This study represents a preliminary assessment of the efficiency of consumer-
level drones to survey shallow-water benthic cover (0-5m depth). We hypothesised that the
use of a drone to map benthic assemblages would reduce the duration, cost, and manpower
requirements, while increasing accuracy, relative to manual survey techniques.

A DIJI Mavic 2 Pro drone was used to survey four bays in Malta by obtaining a high-
altitude photo for each bay. This was then processed via k-means clustering to generate a
pseudocolour image (PCI). The value of k corresponded to the number of benthic cover classes
(BCCs), which was determined upon inspection of the original aerial image. Since & was
dependent on the respective benthic complexity of each bay, the & value varied from site to site.

Each site was also mapped using manual survey techniques to enable comparison
of the relative representation of BCCs between manual and drone-based methods. Data
from manual surveys were obtained from transects spaced ca.10 m apart, where the number
of transects taken was dependent on the size of the respective site.

The correspondence between the two survey methods was determined using
Principal Component Analysis (PCA) on the BCC relative cover of each site. Results
obtained indicated a statistically significant positive correlation between the relative cover
of BCCs in maps produced through drone and manual surveys (r=0.845, p<0.0001).

The relative efficiency of the two survey methods was assessed by comparing the
area surveyed per man hour (m?h’'), where the automated drone survey method was
significantly more efficient in all four sites. The drone survey was also more accurate than
the manual survey, in that it mapped the entire area without the need for any interpolation
between transects. This suggests that while manual surveys are a good approximation of the
field situation, PCIs are capable of analysing benthic cover to give results of superior
accuracy and coverage, but in a much shorter time, and without bias.

The only real limitation with regards to using drones for mapping purposes is the
weather, since the drone cannot be flown in rainy conditions, and waves caused by strong
winds obscure the benthos. The time of day at which the drone is flown is also a factor due
to the sun’s glare on the water’s surface, which also obscures the benthos beneath. In
addition, aerial imagery can only be used for mapping of benthic assemblages in very
shallow waters and requires high water transparency.

Introduction

Rapid and accurate surveys to map benthic assemblages in shallow water are a
fundamental requirement of several coastal monitoring programmes [4]. The combination
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of speed and accuracy would permit more frequent surveys, increasing the probability of
early detection of any environmental change [2]. In most cases, such monitoring programmes
have utilised ground-based field survey techniques, where observers map benthic
assemblages by sampling along transect lines and interpolating data to characterise the
intervening areas. This method is rather slow, labour-intensive, and relatively imprecise, as
it makes assumptions about the intervening areas.

A possible solution to these constraints is the use of a small unmanned aerial
vehicle (drone) to survey and image areas from an altitude of tens or hundreds of metres.
This could make the process more rapid than a manual survey, with comparable or
increased accuracy. The increased availability of low-cost consumer drones with imaging
capability of sufficiently high quality has propelled the use of drones into the mainstream
and brought with it a need for new survey protocols to take advantage of this technology.
This study aims to assess consumer-level drone efficiency to survey shallow-water benthic
cover (05 m depth) in the coastal zone. We hypothesise that the use of a drone to map
benthic assemblages would reduce the duration, cost, and manpower requirements, while
increasing accuracy, relative to manual survey techniques.

The principal questions addressed were the following:

(1) Are drone-based surveys faster and more accurate than manual field surveys over
equivalent areas?

(2) Does benthic heterogeneity affect the relative efficiency of drone-based and manual
surveys?

Figure 1 - Map of Malta, indicating locations of each Site
of Study (SoS): Dahlet ix-Xmajjar (DX), Mistra Bay (MB),
Dahlet il-Fekruna (DF) and Ghajn Tuffieha (GT). Scale
bar bottom left, and North to the top of the image.
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Materials and Methods

The study was based on photographic drone surveys of four sites of study (SoS) in
Malta: Dahlet ix-Xmajjar (DX), Mistra Bay (MB), Dahlet il-Fekruna (DF) and Ghajn
Tuffieha (GT) (Figure 1). Aerial photographs of each SoS acquired from the drone were
processed into pseudocolour images (PCIs) showing benthic assemblages. These were
subsequently verified through ground-truthing in the field.

All aerial imagery was captured using a DJI Mavic 2 Pro drone (Da-Jiang
Innovations Science and Technology Co. Ltd., Shenzhen, China) equipped with a
Hasselblad L1D-20c camera. The camera had a Field of View of approximately 77°, and a
20MP 1” sensor yielding images with a resolution of 5472 pixels x 3648 pixels. The drone
was generally flown at around 08:00 h, as the low angle of incidence of sunlight at this time
reduced the glare on the sea surface. Flying the drone at other times of day was also
possible on windless and overcast days, due to the absence of glare or rippling of the sea
surface. The drone was flown to an altitude which encompassed the whole SoS for imaging
in DNG and JPEG formats. The altitude varied according to the size of the SoS.

The processing workflow carried out during this study was adapted from one
described for terrestrial vegetation mapping [1]. The aerial images were visually inspected
to estimate the number of different Benthic Cover Classes (BCCs) in each SoS. This value
was assigned to the variable k& that was then used during the image processing phase.
Images were subsequently segmented via k-means clustering in ImagelJ [5] to produce the
respective PCIs for each SoS. In this type of cluster analysis, the user supplies a
predetermined number of clusters (k) to be produced. The algorithm converges towards
clusters in which the within-group variance is much smaller than the between-group
variance.

In the context of the images being processed, the algorithm identifies areas with
similar chromatic properties, and groups them into ‘clusters’, each approximating a BCC.
This reductive procedure was iterative and continued until the requisite number of clusters
had been reached [3]. This gave a PCI with & colours, in which each colour corresponded to
a different BCC. PCIs were then inspected and compared with the original aerial photo. The
k value which best reflected the benthic complexity was then used for the rest of the
analysis. It was assumed that each colour on the map corresponded to a different BCC.
Following image analysis, validation of the PCIs was carried out. This was done by
reconciling BCCs in the PCIs of each SoS with direct field survey results, at depths of 5 m
or less.

Each SoS comprised one or more BCCs. The BCCs were initially loosely based on
those described for the Tyrrhenian Sea around the Tuscan Archipelago [7] and modified
accordingly. Each BCC was identified on the basis of its dominant cover but was not
exclusive of other cover classes. The BCCs identified were: Bare exposed rock (BER), Bare
sand (BS), Bare submerged rock (BSR), Dead matte (DM), Juvenile Posidonia (JP),
Posidonia meadow (PM) and Rock with photophilic algae (RPA). The percentage cover of
each BCC in the PCI was calculated directly from the image analysis program. The
percentage cover of the benthic assemblages in the aerial images was estimated by
superimposing a virtual grid on the photograph in ImageJ and calculating the percentage
coverage of each BCC.
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Figure 2 - Aerial images of the four sites of study (SoS),
indicating the position of transects taken for the manual surveys.
100 m scale bars are at the bottom right corner of each image
with North to the top of each image. A: Dahlet ix-Xmajjar (DX),
B: Mistra Bay (MB), C: Dahlet il-Fekruna (DF) and D: Ghajn
Tuffieha (GT).

Each SoS was also mapped using manual survey techniques (Figure 2) to enable
comparison of the relative representation of BCCs between manual and drone-based
methods. Data from manual surveys were obtained from transects spaced ca.10 m apart,
where the number of transects taken was dependent on the size of the respective SoS. Data
obtained were subsequently used to show approximate benthic assemblage distributions for
each SoS. The correspondence between relative representation of BCCs in PCls and in
maps from manual surveys was compared using Principal Component Analysis (PCA).

The effect of benthic heterogeneity on the relative efficiency of both methods was
tested using the Shannon-Wiener diversity index (H) as a measure of benthic complexity. This
first-order diversity index has found very wide application in ecological studies where it is
generally used to express the alpha diversity of a community. It was considered suitable for
the purpose of expressing benthic heterogeneity since the fundamental principles that govern
the use of this index have not been violated by taking BCCs in place of species [6]. The
‘reference heterogeneity’ for each SoS was calculated from the PCIs and expressed as Hsos.
This was subsequently compared against the ‘discrepancy’ between the relative representation
of BCCs in the ‘drone-based survey’ and ‘manual field survey’ for each SoS.

The discrepancies for each SoS were estimated by measuring the Euclidean
distance between the two data points for each SoS (one drone-based and one manual) on the
PCA plot. The discrepancies were then correlated with the heterogeneity of each SoS by
calculating the Pearson product-moment correlation coefficient.

The duration and manpower required to carry out each survey was recorded for both
the drone and manual surveys and quantified in man-hours. This was subsequently used to
compare the relative efficiencies, in area surveyed per man-hour, of the two methods.
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Results

The original aerial images and the PCIs obtained after image segmentation are
shown in Figure 2 to Figure 5.

Figure 2 - Aerial image (left) and Pseudocolour image (PCI) (right)
of benthic assemblages at Dahlet ix-Xmajjar (DX). PCI generated
through k-means clustering (k=7). Two clusters corresponded to the
same benthic cover class (BCC) and were merged into the Cyan
BCC. BCCs: Blue=Rock with photophilic algae (RPA), Cyan=Bare
sand (BS), Green=Posidonia meadow (PM), Magenta=Bare
submerged rock (BSR) and Red=Bare exposed rock (BER).

b -

Figure 3 - Aerial image (left) and Pseudocolour image (PCI) (right)
of benthic assemblages at Mistra Bay (MB). PCI generated through
k-means clustering (k=8), where each colour corresponds to one
benthic cover class (BCC). BCCs: Blue=Posidonia meadow (PM),
Green=Juvenile Posidonia (JP), Magenta=Bare submerged rocks
and pebbles (BSR), Red=Dead matte ‘reef” (DM), Cyan=Bare sand
(BS) (deep), Yellow=BS (shallow) and White=BS (exposed).
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Figure 4 - Aerial image (left) and Pseudocolour image (PCI) (right)
of benthic assemblages at Dahlet il-Fekruna (DF). PCI generated
through k-means clustering (k=6), where each colour corresponds
to one benthic cover class (BCC). BCCs: Blue=Juvenile Posidonia
(JP), Cyan=Bare sand (BS), Green=Posidonia meadow (PM),
Magenta=Rock with photophilic algae (RPA) and Yellow=Bare
submerged rocks and pebbles (BSR).

at Ghajn Tuffieha (GT). PCI generated through k-means clustering (k=6), where each
colour corresponds to one benthic cover class (BCC). BCCs: Blue=Bare sand (BS) (with
degraded Posidonia dust), Cyan=BS (deep), Yellow=BS (shallow), Red=BS (exposed) and
Green=Rock with photophilic algae and Posidonia debris (RPA).

The correspondence between percentage cover of BCCs for each SoS derived from
both survey methods is shown in the PCA ordination plot in Figure 6. Considerable overlap of
the convex hulls in the PCA plot indicates high correspondence between the relative coverage
of the BCCs for both survey methods. The relative contribution of BCCs from PCIs and
Manual surveys was significantly correlated across all SoSs (r=0.845, p<0.0001).

The hypothesis that benthic heterogeneity contributed significantly to the
discrepancy between the two survey methods was tested by correlating the discrepancy
between the two methods for each SoS with the value of H for that SoS. There was no
significant correlation between discrepancy and Hses (r=-0.0379, p=0.962), showing that
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the differences between automated and manual methods were not attributable to differences
in benthic heterogeneity.
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Figure 6 - Principal Component Analysis (PCA) ordination plot
data of benthic cover class (BCC) percentage cover in maps
produced via drone surveys (pseudocolour images; PCI) and
through Manual surveys for the four sites of study (SoS): Dahlet
ix-Xmajjar (DX), Mistra Bay (MB), Dahlet il-Fekruna (DF) and
Ghajn Tuffieha (GT). BCC vectors: Bare exposed rock (BER),
Bare Sand (BS), Bare submerged rock (BSR), Dead matte (DM),
Juvenile Posidonia (JP), Posidonia meadow (PM), and Rock
with photophilic algae (RPA). The first two ordination axes
explain 71.7 % of the variation within the data.

The relative efficiency of the two survey methods was assessed by comparing the
area surveyed per man hour (m?h!). Figure 7 indicates that the automated drone survey
method was significantly more efficient than the direct manual survey method in all four
sites. The drone survey was also more accurate than the manual survey, in that it mapped
the entire area without the need for any interpolation between transects.
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Figure 7 - Relative efficiency, expressed as Area surveyed per man-
hour (m*h!), for both survey methods at each site of study (SoS).

Discussion

The results obtained during this preliminary study clearly indicated that automated
drone surveys were faster and more accurate than manual survey methods. This result has
important implications for the scientific and economic aspects of the process and would have
a cumulative multiplicative effect in monitoring programmes that require regular surveys.

PCIs were found to be a better approximation of the distribution of benthic
assemblages when compared to maps produced via manual surveys, whereby both
approaches are based on simplification of the real field situation. PCIs reduce aerial images
into a small number of chromatic dimensions, while manual surveys subsample at intervals.
The differences in the results returned by the two methods is attributable to the simplification
process employed in manual surveys and is independent of habitat heterogeneity.

Although the duration of the automated drone survey varied depending on the size
of each study site, it amounted to less than 48 hours per bay. This value is inclusive of the
drone survey, image analysis to construct the PCI, BCC identification and verification via
ground truthing. This greatly reduces the time taken and manpower required when
compared to manual survey methods, which may take days to cover similarly-sized areas,
and require significantly higher manpower. The PCIs produced through a drone-assisted
survey are therefore particularly useful in the context of a regular monitoring programme,
where quantification of change in benthic assemblages is required. The speed and accuracy
of the drone survey would permit more frequent monitoring, increasing the probability of
early detection of any environmental change.

The only real limitation with regards to using drones for mapping purposes is the
weather, since the drone cannot be flown in rainy conditions, and waves caused by strong
winds obscure the benthos. The time of day at which the drone is flown is also a factor due
to the sun’s glare on the water’s surface, which also obscures the benthos beneath. In
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addition, aerial imagery can only be used for mapping of benthic assemblages in very
shallow waters and requires high water transparency.

Conclusion

We may therefore conclude that while manual and automated surveys give results
of comparable accuracy in terms of the BCCs present, drones are able to survey larger areas
and produce maps with greater precision. This is because unlike in manual surveys,
automated surveys using a drone allow for the acquisition and processing of larger areas in
a shorter timeframe. This saves time and allows individuals to map larger areas per unit
time.
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