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Abstract – This study focuses on the use of satellite remote sensing to map coastal erosion 
vulnerability in two Italian sites: Pianosa Island (Tuscany) and Piscinas (Sardinia). For both 
areas we focused on the land/water transitional ecosystem, with the aim of identifying 
potential coastal erosion phenomena and to demonstrate the role of benthic habitats in 
preserving the value of coastal environments. The method made use of ancillary and multi-
spectral satellite data from 2016 to 2018. For this study, the rst 7 bands of the VIS–NIR 
region of Sentinel-2 were used, all reprocessed at the spatial resolution of 10 m. The TOA 
(Top of Atmosphere) radiance products were atmospherically corrected and processed using 
the Sen2Coral add-on-tool and the BOMBER code (Bio-Optical Model-Based tool for 
Estimating water quality and bottom properties from Remote sensing images). Maps of 
marine substrates and bathymetry were obtained and revealed their influence on the coastal 
dynamics. Then, in case of Piscinas, SAR images (COSMO SkyMed and Sentinel-1B) were 
added to the analyses. COSMO-SkyMed allowed us to identify the coastline and to obtain 
qualitative indicators about the absence/presence of changes in coastal dune system, the most 
relevant terrestrial element of the site. Sentinel-1B supported, by adopting an inversion 
process scheme, the analysis of the wave state impacting the coast. By merging the satellite 
products, the coastal erosion vulnerability maps have been generated based on substrate type 
in shallow waters and sand volume variation on land: rocky bottoms and stable meadows of 
phanerogams seemed preserving the coast, while the substrate characterized by a loss of 
phanerogams and a decrease in sand volumes might be considered more vulnerable. The 
results confirm that the coast of Pianosa is not suffering from coastal erosion, while the 
vulnerability maps of Piscinas seem to be closely linked to episodic events so that the Piscinas 
dune system might be considered safe from coastal erosion processes. 
 
 

Introduction 
 

Coastal processes are the result of forces acting on coastal areas and leading to the 
modification of these environments. Both natural and anthropogenic activities can lead to the 
degradation of these environments and consequently to other hazards such as: shoreline 
changes, sea-level rise, sea water intrusion, coastal erosion and floods [8]. Italy comprises 
∼8000 km of coastline of which approximately 25 % consists of low-lying plains, some of 
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which are subsiding with a potential for flooding. Coastline mapping and change detection 
are essential for safe navigation, resource management, environmental protection, and 
sustainable coastal development and planning [2]. In this context, satellite remote sensing 
has been used for about 50 years to obtain environmental information to support effective 
management for such landscape. The use of remote sensing techniques has many advantages 
including the ability to perform repeated captures on the same site and to instantly display 
large areas, overcoming many limitations imposed by in-situ sampling techniques. Recently, 
the Italian Space Agency funded the CosteLAB project (Contract Number 2017-I-8.0). The 
primary goal of the project is the creation of a virtual laboratory to analyse, develop and test 
applications and products for monitoring and managing coastal risk. The most common 
methods to estimate vulnerability and coastal erosion risk can be based on different indicators 
and model dynamics [10]. The added value related to the proposed research activity is 
represented by the mapping of different substrates (e.g. sand, rock, phanerogams) in 
correlation with bathymetry that influenced the dynamics of coastal erosion. As well as the 
use of radar images characterized by high frequency and spatial resolution, which can 
represent a turning point in mapping and monitoring of coastal areas [9]. Two case studies 
are developed to demonstrate the role of benthic habitats in preserving the value of coastal 
environments and in particular to mitigate the coastal erosion. The first is focused on Pianosa 
island starting from optical satellite data, while the second case study is focused on Piscinas 
and involves the use of both optical and radar imagery.  

 
 
Materials and Methods 
 
In this work two Italian study areas were analysed: Pianosa Island (Tuscany) and the 

coastal dune system of Piscinas (Sardinia) (Fig 1). Pianosa Island is the fifth, by extension, 
of the seven islands of the Tuscan Archipelago National Park with a total area of 10.2 km2 and 
a coastal perimeter of approximately 20 km. The island is almost completely flat, with some 
small undulations. The highest elevation is 29 m above sea level (a.s.l.), while the average is 
about 18 m a.s.l. while, the coastal dune system of Piscinas is an area of about 1.5 km2 located 
in the South of the Oristano Gulf in the Sardinia Island, near Arbus. It has one of the highest 
dune systems in Europe (for this reason it is part of the UNESCO World Heritage) and therefore 
has been selected for conducting the experiments about the use of satellite remote sensing for 
beach and dunes variation. The coastline extends for about 7 km and the maximum height is 
about 100 m. The surface is continuously remodelled by strong winds blowing from the West 
regularly over the whole year. A peculiarity of this area, clearly visible in each optical satellite 
image analysed in this study, is the presence of semi-circular depressed areas along the entire 
sandy coast at a variable distance (200÷500 m) from the coastline. 

The remote sensing data used to develop this research theme were basically acquired 
by the Multispectral Imager (MSI) on-board of Sentinel-2A (S2). For the case of Pianosa, the 
selected images were acquired on 18/07/2016, 04/05/2017, 11/05/2017, 03/06/2017, 
13/02/2018, 19/04/2018, 18/07/2018. While for Piscinas on 29/10/2016, 15/11/2016, 
28/12/2016, 18/03/2017, 04/05/2017, 28/12/2018. For this second site, SAR images 
(COSMO SkyMed and Sentinel-1B) were added to the analyses. All these images were chosen 
because cloud-free, without sun-glint and other radiometric noise. Before processing the 
optical images, a comparison between Level 1 (L1) and Level 2 (L2) products was performed 
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Figure 1 - Case study areas from Sentinel-2 images of 03/06/2017 (Pianosa) and 18/03/2017 
(Piscinas). On the left the island of Pianosa: the two sandy areas and the coast segments 
analysed are squared in orange; bathymetric transects are represented as white lines (T1-T4) 
and the other coloured areas represent the regions selected as ground truths for validation of 
bathymetry and substrates. On the right the Piscinas coastal dune system: in red the regions 
of interest (S1-S8) used for the analysis of the bottom coverage classes; in green the regions 
of interest (B1-B5 + D) used for the bathymetric analysis; in light blue the Rio Piscinas torrent. 

(Copernicus Open Access: https://scihub.copernicus.eu/dhus). L2 images containing bottom-
of-atmosphere (BOA) reflectance as computed by Sen2Cor. Since this tool is not optimised 
for retrieving water reflectance above water, a comparison with the L1 images corrected 
atmospherically using the 6SV code (Second Simulation of the Satellite Signal in the Solar 
Spectrum code-vector version) [12] was performed. The spectra obtained with the procedures 
were in agreement and showed an aware deviation of 0.01 %. The 6SV output was chosen as 
reference due to its good performances in retrieving water leaving reflectance in inland and 
coastal waters [5,1]. To run 6SV, all bands of L1 images were reprocessed at the spatial 
resolution of 10 m through SNAP S2-toolbox, with nearest neighbour method. TOA radiance 
products, obtained using the SNAP tool ReectanceToRadianceOp, were then 
atmospherically corrected with 6SV code. Finally, the 6SV output were converted into 
Remote Sensing Reflectances (Rrs) above water dividing the bands by π. The Rrs products 
were then processed using the Sen2Coral add-on-tool (Pianosa) and the non-linear 
optimization algorithm called BOMBER (Piscinas) in order to obtain maps of three different 
substrates (sand, rocks and phanerogams) and bathymetry. The described tools were applied 
to S2 images acquired between 2016 and 2018, a temporal range in which we do expect to 
observe recent possible erosion processes. The Sen2Coral tool is developed according to the 
state-of-the-art of spectra inversion of semi-analytical (SA) bio-optical modelling. This 
method relies on some form of spectrum matching of modelled reflectance spectrum using a 
set of bathymetry, bottom classification, and water column IOPs values, optimized to match 
the image Rrs (λ) spectra. Materials used for this site also include ancillary data such as: a 
bathymetric map and a georeferenced coastline of 2014 (ISPRA’s website); a nautical chart 
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published by Istituto Idrografico della Marina; a RapidEye image of summer 2017 and 
Google Earth imagery. BOMBER [4] is instead a non-linear optimization algorithm used, 
like Sen2Coral, for the classification of the bathymetry and of the substrate coverage. The 
Rrs images were used as input and the bio-optical modelling system was applied in shallow 
water mode and, for each image, was applied to a mask that includes water up to 1000 m 
from the coastline (maximum depth between 10 m and 12 m). The bathymetric outputs 
obtained with the BOMBER were compared with a bathymetric map available at 
“https://webapp.navionics.com” website. 

In addition, for the site of Piscinas, three SAR images from COSMO SkyMed 
mission (synchronous or as much as possible close to the optical images acquisition; 
27/12/2016, 17/03/2017 and 04/05/2017) were also analysed to better identify the coastline 
(Fig 2). The coastline was identified using two approaches: one based only on optical images 
(Rrs images) and one merging bands of Rrs images (band2-490 nm and band6-740 nm) with 
SAR COSMO SkyMed. To obtain the Rrs+SAR outputs, the available SAR images were first 
georeferenced. Then a “write function memory” was performed to obtain a product 
characterized by both Rrs and SAR bands. This method consists of inserting individual bands 
of remotely sensed data into specific bands of image processing (red, green and blue) to 
highlight change [11]. This process is mainly used to highlight temporal changes between 
images of the same sensor [7], while in this work it has been used to highlight changes between 
different sensors (Sentinel-2 and COSMO SkyMed). As a result, an RGB output was displayed 
to identify the coastline: Red=band2 (Sentinel-2 Rrs), Green=band6 (Sentinel-2 Rrs) and 
Blue=SAR (COSMO SkyMed). No synchronous SAR images were available for the Pianosa 
site, so the coastline was identified through the Sentinel-2 NIR bands and by comparison with 
the ISPRA map. In particular, the temporal evolution of the Pianosa coastline in 2016-2018 
was analysed in two segments: the sandy beach of Cala della Giovanna and a rocky segment 
in the south of the island (Fig 2).  

The research theme concerning the beach and dunes volume changes has been 
integrated by COSMO-SkyMed SAR data acquired over repeated orbits. To this aim, the 
research activity has been performed in the site of Piscinas. The analysis is concentrated on the 
use of the multitemporal amplitude and phase response, which allows characterizing the 
coherence properties as well as the presence or absence of deformation. A stack of 62 COSMO-
SkyMed images acquired in 3 years from 16/06/2015 to 24/06/2018 has been analysed. Data 
have been processed with a two-step interferometric processing method implemented at small 
(low) and large (high) scale (resolution) [3]. The deformation analysis provides information 
about the areas that shows constant characteristics over the time and that are therefore less 
affected by the erosion factors, particularly the action of the wind. 

For the Piscinas site, the wave state impacting on the coast was also analysed. 
Sentinel-1B SAR image gathered on 06/05/2019 at 05:28 UTC and showing a sharp wave-
modulated backscatter was analysed. The backscatter analysis performed with CMOD 
algorithm returned a wind speed of 16 m/s impinging with direction toward the coast (330° N), 
a result comparable with ERA5 reanalysis data provided by ECMWF. The retrieved wind 
field was then used to estimate the sea surface wave spectrum from a SAR image’s subregion 
of 512x512 pixels centred at 39.5° N, 8.25° E. The Hasselmann’s procedure to extract the 
sea surface wave spectrum from the measured SAR spectrum [6] was finally applied. A 
complex wave spectrum composed by a wind sea component with dominant wave with 140 m 
wavelength coming from 311° N and a swell of 135 m wavelength coming from 341° N with 
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total wave height of 4.82 m was obtained. This SAR retrieved wave state was comparable 
with the respective prediction by the wave model WAM provided by ECMWF. 

The bottom depths of Pianosa obtained as output by Sen2Coral were tide corrected 
and compared for validation with bathymetric data obtained from the nautical chart. Data 
were extracted from the output maps through linear transects (T1-T4) (Fig 1). Depth values 
were extracted and analysed from the output also in small areas around points of know-
bathymetry (Fig 1). Maps of reflectance at 550 nm produced by Sen2Coral were classified 
on the basis of substrate type expected in each reflectance range. The substrate maps obtained 
were analysed with confusion matrices built on the ground truth areas (based on visual 
interpretation), to evaluate the accuracy of the substrate classification. Based on Sen2Coral 
output maps of bathymetry and substrates, two sandy areas (Fig 1) were selected to evaluate 
the variation of water volumes contained in the bays. This methodology could be used to 
define the erosion process, as the increase of water volumes indicates the progression of the 
coastline toward the land. For the classification of the Piscinas bottom coverage and 
bathymetry, a series of ROI’s were analysed (Fig 1). In detail, 8 ROI’s (S1-S8) were 
evaluated for the bottom coverage maps and 5 ROI’s (B1-B5, in addition to the semi-circular 
depressed zones “D.”) for the bathymetric maps (Fig 1). For the first 8 ROI’s, the percentage 
of coverage of each class (sand, rocks and phanerogams) was assessed. The 5 ROI’s of the 
bathymetric maps were divided into 4 subclasses based on the distance from the coast 
(10÷200 m, 201÷400 m, 401÷600 m and 601÷800 m). Moreover, the variation of the average 
depth and the water volume were assessed, also considering the tidal phenomena. Besides, 
the first two images of 2016 (29/10 and 15/11) were used to evaluate the effects of a strong 
wind event that occurred in the time interval of acquisition of the satellite. 
 
 

Results 
 

With respect to the downloaded images, three of them were considered optimal for 
the analysis of the benthic habitats of Pianosa Island (18/07/2016, 03/06/2017 and 
19/04/2018). The analysis of the temporal evolution of the coastline obtained from NIR 
bands, shows that the position of rocky segments doesn’t change in time; also, shows that no 
significant modifications to the shoreline occurred for the two sandy area analysed in the period 
2016-2018 (Fig 2). For the Piscinas site it was possible to make a comparison between the 
coastline produced by optical images and that produced by SAR+Rrs (Fig 2). This comparison 
shows differences in the range from a few meters up to 20 m between the two coastlines. In 
fact, the interpretation of optical images was complex, especially in the so-called "mixed" 
pixels, located at the water/sand interface, while SAR+Rrs images allow to better distinguish 
between these two surfaces. As a result, the coastline derived from SAR+Rrs images was more 
accurate. For this reason, the coastline obtained in three different date (27/12/2016, 17/03/2017, 
04/05/2017) from SAR+Rrs images was compared (Fig 2) showing that along the sandy coast 
the coastline had a greater variability (up to 20 m) than near the rocky shores (up to 5 m).  

The reflectance maps of Pianosa at 550 nm produced by Sen2Coral were classified 
based on reflectance range expected for each substrate type, so that values lower than 0.08 
were assigned to phanerogams, values higher than 0.2 to sand and those in between to rocky 
substrates. Most of rocks are detected in shallow water along the coastline, sandy substrates 
can reach bottom depths at around 5 m and macrophytes are detected in deeper regions. The 
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output of Sen2Coral was analysed with confusion matrix. The results show good overall 
accuracy when considering regions corresponding to the three ‘pure’ end-members, sand, 
macrophytes and rocks. The accuracy decreased when regions of mixed substrates were 
included in the analysis. This could be due to the procedure used to select ground truth areas, 
which is not based on field data but on visual interpretation. Comparison of bottom depths 
obtained with Sen2Coral with data derived from the georeferenced nautical chart shows good 
agreement between the data and the available ground truths (based on a punctual information 
from field data acquired by Reparto Ambientale Marino, Livorno). Analysis of the transects 
showed that no significant modifications of bathymetry occurred in the period 2016-2018. 
Moreover, comparing the water volumes of the two sandy areas, it emerged that only small 
volumetric variations occurred during the period considered (about 6÷7 % from 2016 to 2018). 

 
Figure 2 - On the left, the temporal evolution of the coastline (18/07/2016, 03/06/2017, 
19/04/2018) obtained from NIR bands in the two segments analysed for Pianosa. In the 
middle, the comparison between the coastline obtained by Rrs image (black line) and the 
coastline obtained by SAR+Rrs images (red line), along a fraction of the Piscinas coast on 
04/05/2017. On the right, the temporal evolution of the coastline derived from SAR+Rrs 
images acquired on 27/12/2016 (blue line), 17/03/2017 (green line) and 04/05/2017 (red line). 

 
 
In each bottom cover maps of Piscinas, the main class is the sand one, followed by 

the remaining two classes (phanerogams and rocks) which were concentrated near the coast 
(up to 150÷200 m from the coastline). The phanerogams class was concentrated along the 
rocky portions of the study area, while along the sandy shores it is easier to find mixed pixels 
(sand/rock). The analysis of the 8 ROI’s related to the bottom cover classes allowed to 
suggest that Piscinas was a changing system over time. The two images interspersed with the 
windy event (29/10/2016 and 15/11/2016) showed in all ROI’s, with the exception of sandy 
areas S3 and S4, a decrease in phanerogams class (from 2.1 % to 15.7 %). Moreover, the image 
of 28/12/2018 was characterized by the lowest percentage of phanerogams’ coverage for all 
ROI's considered. This peculiar picture needs in situ data, to better understand the vegetation 
dynamics. From the bio-optical model, bathymetric maps were also obtained. Within the 
analysed area (0÷1000 m from the coastline), the maximum water depth never exceeds 12 m 
and the slopes are never steep, especially along the dune system. The semi-circular depressed 
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areas (D) are clearly visible in each image, in particular in the south-western part of the dune 
system. The bathymetry varies considerably along the whole area after the windy event analysed, 
especially in the sandy area in front of the Rio Piscinas estuary. In particular, the deepest 
bathymetric class (>8 m) decreased along the coast (from 1170.26 ha to 505.97 ha; -57 %), 
while the two intermediate classes (from 4 to 8 m deep) widen considerably (from 522.44 ha to 
1252.12 ha, +59 %). The bathymetric level variation observed in the areas close to the coast 
(the first two classes, up to 4 m deep) was not significant. The bathymetric map of 28/12/2018 
showed a clear increase in the depth of the semi-circular depressed areas. The results of the 
analysis of the 6 bathymetry ROI's (B1-B5 + D) showed that the total volume of water 
(considering the tidal events), vary over time. Focusing on depressed areas, during the 
observation period, their total area varies from a minimum of 62.5 ha (29/10/2016) to a 
maximum of 137.7 ha (28/12/2018). Instead, after the windy event, a small variation in the 
depressed area extension was recorded (62.5 ha on 29/10/2016, and 65.8 ha on 15/11/2016).  

The results obtained from the analysis of the wave state impacting on the coast of 
Piscinas, show that SAR peak has been well captured from the SAR inversion both in terms 
of wavenumber location and amplitude. The SAR inverted sea surface parameters reported a 
wave height of 4.82 m, that is compatible with the 4.77 m predicted by WAM. Even the SAR 
retrieved wave direction (341° N) agrees to WAM predicted one (321° N). Discrepancies with 
WAM prediction are within the expected sampling variability of the SAR estimate. 

Based on bottom type and sand volume variation we have created maps of 
vulnerability for the two sites under review (Fig 3). For Piscinas it was possible to create a 
short-term (windy event) and a long-term (comparison between 2016 and 2018) vulnerability 
map. We have assumed that the rocky bottoms and stable meadows preserve the coast, while 
substrates characterized by a loss of phanerogams and a decrease in sand volumes might be 
considered vulnerable. The results confirm that the Pianosa coastal zone doesn’t have a problem  
 

 
Figure 3 - Vulnerability maps of coastal zones obtained from the classification of substrates 
and bathymetric analysis. On the left, the vulnerability map of Pianosa (2016-2018); in the 
middle, the short-term vulnerability map of Piscinas (windy event: 29/10/2016 - 15/11/2016); 
on the right, the long-term vulnerability map of Piscinas (2016-2018). 
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with the coastal erosion. For Piscinas the least vulnerable map is the short-term, while the 
most vulnerable map is the long-term, which is characterized by a marked decrease in sand 
volume (especially in front of the estuary) and a decrease in phanerogams.  

Finally, the coherence map obtained through the analysis of COSMO-SkyMed 
images shows the presence of an area, developing along the torrent bed of Rio Piscinas, 
characterized by low level of coherence. More generally, the measurements seem to indicate 
about an overall stability of the coastal area, with higher coherence in the southern part 
respect to the northern part, and higher coherence in coastal areas than in the inner regions. 
 
 

Discussion 
 
The analysis of the coastline obtained from NIR bands, shows how the position of 

rocky segments doesn’t change in time, thus confirming the hypothesis that this bands can 
be used to define the land contour. The satellite images of Pianosa showed that no significant 
modifications to the shoreline occurred in the period 2016-2018. This confirms the 
hypothesis that phanerogams meadows along the coast help containing the erosion process. 
However, the interpretation of optical images remains complex, especially in the so-called 
"mixed" pixels, located at the water/sand interface. The use of SAR+Rrs images for Piscinas, 
instead, allow to better distinguish between these two surfaces. The results obtained from this 
analysis on a short temporal window (from winter 2016 to spring 2017), highlight a certain 
degree of variation in the sandy portions of the coastline. These changes may be due to the 
tide level variation, the wave motion and the sensors spatial resolution. Consequently, the 
use of SAR+Rrs images may be useful to study the temporal evolution of the coastline. The 
analysis of sand volumes variations in the two sandy areas examined for the island of Pianosa, 
shows overall only minor variations in the period considered, resulting in slight increments 
of sandy volumes, which confirms a stable situation that is not conditioned by erosion 
processes. Bathymetry, on the other hand, varies considerably along the entire Piscinas dune 
system. Consequently, Piscinas can be identified as a not stable at bathymetric level, probably 
due to the synergistic effect of wind and sea currents on an area characterized principally by 
sand substrate. In particular, between 29/10/2016 and 15/11/2016 (windy event), the deepest 
bathymetric class (>8 m) decreased along the coast (reduction of 57 %), while the two 
intermediate classes (from 4 m to 8 m deep) widen considerably (increase of 59 %). This 
variation was probably due to the sand mobilization wind induced that once deposited 
decreased the overall volume of water. This absence of large bathymetric variations close to 
the coast, during wind events support the speculation that these changes seem to be relevant 
only far from the coastline. Considering also the distance from the coast, near the shoreline 
the average depth and total water volume were similar in the two images spaced out by the 
windy event, while moving away from the coast (from 400 m onwards), these two values 
were always lower in the post-wind image compared to the pre-wind one. Again, these results 
reinforce the evidence that the wind event affects mainly areas far from the coast. Finally, 
based on the bottom type and sand volume variation it was possible to create maps of 
vulnerability of coastal zone of the two study areas. For Piscinas, a short-term (wind event) 
and a long-term map has been created. The results show that the least vulnerable map is the 
short-term, i.e. the one relating to the windy event. The wind has led to the deposition of a 
large amount of sand, especially away from the coastline, and has not led to a marked 
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decrease in the phanerogams. On the other hand, the most vulnerable map is the long-term, 
which is characterized by a marked decrease in sand volume and a decrease in phanerogams, 
especially in the rocky areas to the northeast. However, these results are influenced by the 
significant extension of the semicircular depressed zones in 2018. 

 
 
Conclusion 
 
In conclusion, the use of multi-source remote sensing satellite data allowed us to 

contribute to the assessment of the phenomenon of coastal erosion phenomenon, offering a 
new perspective and allowing us to overcome some limitations associated with field surveys. 
In particular, the spatial resolutions of both optical and SAR images, resulted appropriate for 
the target areas, while the dedicated processing and the use of physically based algorithms 
provided reliable results, although further activity seems necessary to validate the satellite-
inferred maps. The results confirm that the coast of Pianosa has no problems of coastal 
erosion, while the vulnerability maps of Piscinas seem to be closely linked to episodic events 
(e.g. strong wind or extension of depressed areas), with minor-to-none impacts on the 
Piscinas dune system. 
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