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1. Introduction

According to World Travel & Tourism Council (WTTC), tourism’s direct and indirect
impact accounted for 10.3% of global GDP, and one over ten jobs around the World are
tourism-related (WTTC, 2020). In the last years, a sheer number of people started to use
Internet as a primary source to search for travel information and choose their travel
destination (Garin-Mufioz et al., 2011). In this sense, digital media now exert a relevant
influence on tourism management. Several hotels, travel agencies, or other entities (e.g.,
municipalities, cultural sites, or leisure destinations) use websites, social media accounts, or
pages on travel fare aggregators/search engines to attract clients. All these resources make use
of a high number of images to transmit the attractiveness of their destinations (Ruhanen et al.,
2013). The image can influence travel choice and behavioral intention (Wang & Sparks,
2016). The effectiveness of these tools might be enhanced by exploiting information on user
viewing behavior, which can be provided by eye-tracking technology (Scott et al., 2019). Eye-
tracking allows measuring the exact position of the eyes during the visualization of images,
texts, or other visual stimuli. Consequently, eye-tracking data can be used to compute
quantitative measures of viewing behavior that can provide information useful for many
applications, such as improving the effectiveness of a website or consumer segmentation.

The first aim of this study is to analyze viewing behavior on images depicting natural and
city landscapes. The visual processing of tourism image is investigated in order to evaluate
the tourists' perceived destination image and the capacity to impact on the tourist decision
making process (Li et al., 2016). The second goal is to compare performances of different
widely used supervised and unsupervised models in the classification of these two classes of
images.

2. Materials

The dataset used in this study comprises 1003 images (779 in landscape mode and 228 in
portrait mode), mostly depicting natural indoor or outdoor scenes, obtained from the MIT
saliency benchmark repository (freely available online) (Judd, 2009). Data were collected
from a group of 15 participants (ages: 18-35). Each participant looked at each image for 3
seconds in free viewing (no specific instruction given to the subjects prior to the experiment)
with a 1 second pause (gray screen) between images. Viewers were seated in a dark room two
feet apart from the screen (19” and 1280x1024 resolution), and a chin rest was used to
stabilize the head (to limit the range of motion). The eye-tracker used for the study was an
ETL 400 ISCAN 240Hz model. Data do not contain the first fixation (point observed) of each
participant on each image to correct for the central fixation bias (Busswell, 1935; Mannan et
al., 1996; Parkhurst & Niebur, 2003; Itti, 2004). The images were collected from two online
repositories: Flickr and LabelMe are very different in nature (e.g., people, animals, objects,
buildings, mountains, and so on). In this study, we assigned each image to one of three
possible classes: (i) natural landscapes, (ii) city landscapes, (iii) other. To assign each image
to one of these three classes, we have taken into account the main element of the image. Since
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our focus was the behavior of people looking at natural or city landscapes, we selected only
images where the main element depicted on the scene was a natural landscape or a city
landscape. For example, if the image depicts a valley or a desert, it would be classified as
“natural landscape”. Conversely, if the whole image was focused on a single flower, even if
flowers are typical elements of natural environments, that image would be classified as
“other”. At the end of the manual labelling, we removed every image classified as “other”
(591 images), and the remaining 412 images (187 classified as “city landscape” and 225
classified as “natural landscape™) were used for subsequent analyses. Figure 1 represents an
example of each of the two classes: (a) city landscapes and (b) natural landscapes.

Figure 1. Examples of (a) city landscapes and (b) natural landscapes

The landscape is considered as a “factor of attraction and development for tourism”
(Jiménez-Garcia et al., 2020). Our hypothesis was that an average user (e.g., a visitor of a
touristic website) tends to look at a city landscape shifting from one object to another (e.g.,
from a car to a building to a road sign), while a natural environment might represent a more
homogenous picture with fewer different stimuli to focus on. In accordance, if we measure the
path followed by the observer’s eye on a picture, we should expect a longer path in city
landscapes than in natural environment pictures.

For each image, we calculated two metrics reflecting the viewing behavior of participants:
number of fixations and path length covered by the eye gaze of each participant during
observation of each image (computed for each image, using X and Y coordinates of each
fixation, as the sum of the Euclidean distances between fixations). The normality of
distribution for both variables was assessed using Shapiro-Wilk test. Homogeneity of variance
was assessed using Levene’s test. Based on results from these tests, Mann Whitney’s U test
and Welch's t-test were used to compare the number of fixations and the path length between
the two classes of images, respectively.

Next, we used a classification approach using the path length and the number of fixations
as predictors and the image class as the outcome. We applied supervised and unsupervised
methods and compared the results for logistic regression (LR) with a decision rule, linear
discriminant analysis (LDA), quadratic discriminant analysis (QDA), and K-nearest
neighbours (KNN). The four models are trained using 80% (n = 330) of the images and tested
over the remaining 20% (n = 82) using k-fold cross-validation (k = 5). We also compared the
hard clustering performed using K-Means Clustering algorithm (K-means) with the soft
clustering performed using Gaussian Mixture Model clustering method (GMM) to show
which one provides better visualization. K-means and GMM are both popular clustering
methods which work following an iterative procedure, but the former is non-probabilistic and
performs hard assignments, that is, each point can only belong to one class while the latter is a
probabilistic algorithm based on multivariate Gaussian distributions as in eq. (1)
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so that, when the EM (expectation-maximization) algorithm converges, each point is assigned
to a class with a certain probability. GMM is more flexible than K-means because it allows
decision boundaries to assume an elliptical shape while K-means only a circular shape. All
analyses were carried out with R (v. 3.6.3, R Core Team, 2020) using the packages mclust
(Scrucca et al., 2016), MASS (Venables & Ripley, 2002), class (Venables & Ripley, 2002),
factoextra, and ggplot2 (Wickham, 2009).

3. Results

We observed a significant difference in both path length and number of fixations between
natural and city images. Namely, we observed shorter path length (p < 0.001) and number of
fixations (p < 0.001) in natural compared to city landscapes (Table 1).

Table 1. Summary statistics for path length and number of fixations

Path length (pixel) Number of fixations

Natural (n=187) City (n=225) Natural (n=187) City (n=225)
Min 4668 8011 70 79
Q1 14267 18522 103 116
Median 17504 21317 112 123
Mean (+ SD) 17766 (+ 4942) 21431 (£ 4322) 111.2 (£12.84) 123 (= 12.67)
Q3 21287 24298 120 131
Max 31938 32020 148 160

Next, we applied several widely used classification methods to assess if path length and
number of fixations could be used to automatically separate pictures of natural and city
landscapes. The results of LR, LDA, QDA, and KNN are showed in Table 2.

Table 2. Performance of four models (LR, LDA, QDA, and KNN) in the classification of landscapes

LR LDA QDA KNN
Sensitivity 0.743 0.724 0.719 0.662
Specificity 0.608 0.616 0.642 0.662
Accuracy 0.680 0.672 0.680 0.621
F1-score 0.714 0.704 0.707 0.653

Best performances are reported in bold.

As shown in Table 2, the four classification methods showed very similar results. In
particular, sensitivity ranged from slightly above 66% to 74%, and specificity had the lowest
values (with best performance achieved by KNN with 66%). This means that most
misclassification errors are made when we try to predict the “city landscapes™ class. The
accuracy ranged from 62% to 68% and that means that, overall, we make many errors when
we try to assign images to one of the classes. The results show that the highest accuracy was
obtained by logistic regression, which also reached the highest sensitivity and F1-score, so
overall can be considered as the best classification method for this task. Finally, we compared
the results of two unsupervised classification methods. Since we have two classes of images,
we set the number of clusters equal to two. This number was confirmed to be the optimal
number of clusters by the plot shown in Figure 2, obtained using the silhouette method.
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Figure 2. Optimum number of clusters based on the silhouette method
Cptimal rumbs of chafam

K-means and GMM provided very similar results, as we can see from Figure 3. Both in K-
means clustering and GMM plots, the “city landscapes” class is colored in blue and the
“natural landscapes” class in red. We used different symbols for correctly classified points (an
empty circle for city and an empty square for nature) and misclassified points (a filled circle
for city and a filled square for nature). If we compare the two plots from panel (a) and panel
(b) we can see that the two methods produce very similar results as regards to
misclassification errors.

Figure 3. Comparison of clustering using (a) K-means and (b) GMM
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Legend: C: city landscapes, N: natural landscapes, eC: fixations erroneously classified as city landscapes, eN:
fixations erroneously classified as natural landscapes

4. Discussion

In our study we showed that, given a set of images depicting a city or natural
environment, it is possible to perform an automatic classification in the two classes using only
path distance and number of fixations. To do this we used a subset (412 images) of the MIT
dataset (1003 images depicting a large variety of subjects) available online on a public
repository, selecting only those images manually labelled as “natural landscapes” or “city
landscapes”. We used the path length and the number of fixations in our preliminary statistical
analysis showing that both metrics were significantly lower in natural compared to city
landscapes. This result is in accordance with our hypothesis that natural landscapes are easier
to visually explore, possibly due to a generally lower number of objects of interest and a more
homogeneous background compared to city images. This result is in line with Wang & Sparks
(2016), who have underlined how nature images are easier to comprehend, and with Dupont
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et al (2013) who have discovered that a panoramic photograph may be easier to recognize and
memorize.

We also compared four widely used classification methods (LR, LDA, QDA and KNN) in
the classification of images in natural and city landscapes. Performances were very similar,
but logistic regression proved to be the best method based on the highest sensitivity, accuracy
and F1-score and a slightly lower specificity compared to KNN. Our results can be useful for
example, for stakeholders involved in tourism management who have to decide whether to
insert images depicting “city landscapes” or “natural landscapes” in their web portals. The
choice could fall on images of “natural landscapes™ as these can be observed with a lower
number of fixations (therefore leaving more time for the user to explore a higher number of
pictures or other parts of the website), or on images of the city with a reduced number of
elements, in order to simplify their perception. In general, the results suggest the necessity to
simplify the communication through images which should be clear, simple and with few
elements that can attract the viewers’ attention.

5. Conclusions

In the last two decades, tourism promotion is deeply changed and the use of images
through websites and travel aggregators for the travel and tourism industry has become crucial
to promote travel destinations. Particular attention has been posed on the literature to identify
the best images to insert in websites. In this paper, we have investigated the different viewing
behavior on images depicting natural and city landscapes. The aim was to evaluate how
different classes of images are observed and which images can be easily processed by our
brain, thus being potentially more effective in the engagement of viewers. In order to reach
this aim, we analyzed eye-tracking data focusing on two metrics: number of fixations and path
length. The results showed significant differences in viewing behavior between images
picturing natural and city landscapes. The natural images were perceived as easier to visually
explore. Moreover, the results have highlighted a relevant utility of the analysis of eye-
tracking data to gain insights into the use of images in tourism promotion. The comparison of
the performances of different supervised models showed similar performances in the
classification of the two classes of images with logistic regression achieving slightly better
results. Finally, two commonly used unsupervised methods produced very similar results as
regards to misclassification errors when dividing the observations in two clusters. The main
limitations of our study include the small number of participants for which viewing behavior
data were available as well as the limited number of metrics that we were able to analyze. For
instance, as time of observation was fixed to 3 seconds for each image, it was not possible to
use this variable as a predictor. Additionally, removal of images not depicting city or natural
landscapes resulted in a relatively small dataset (especially when we divided it into training
and test set). However, this limitation was partially addressed using a k-fold cross-validation
approach, that allows to exploit the entire dataset. Nonetheless, our results should be
confirmed in larger and independent datasets. Future developments of this study will involve
the analysis of images from different datasets to assess whether other variables (e.g., time of
observation) might be helpful to reduce the misclassification errors.
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