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OPTIMAL TRANSPORT METHODS FOR FAIRNESS IN
MACHINE LEARNING

Jean-Michel Loubes1

1 Université Toulouse Paul Sabatier, FRANCE
(e-mail: loubes@math.univ-toulouse.fr)

ABSTRACT: The principle of Supervised Machine Learning is to build a decision
rule from a set of labeled examples called the learning sample, that fits the
data. This rule becomes a model or a decision algorithm that will be used
for all the population. Mathematical guarantees can be provided in certain
cases to control the generalization error of the algorithm which corresponds
to the approximation done by building the model based on the observations
and not knowing the true model that actually generated the data set. More
precisely, the data are assumed to follow an unknown distribution while only
its empirical distribution is at hand. Yet potential existing bias, present in the
learning sample, will be implicitly learnt and incorporated in the prediction.
This leads to a potential amplification or generalization of bias that may create
unfair decision rules. In this presentation we will present how optimal transport
methods can be used to control the bias from machine learning algorithms. From
a global point of view, group discrimination can be quantified by looking at the
behaviour of the algorithm for different groups of individuals. This enables to
measure the trade-off between the accuracy of the algorithm and the level of
fairness using the notion of Wasserstein’s barycenter. From an individual point,
optimal transport methods provide an alternative way to define counterfactual
worlds that explain how changes in some attributes of the individual may affect
the decisions of an algorithm. This enables to recast the problem of training
individually fair algorithms to ensuring regularity assumptions in both normal
and counterfactual world.
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CLASS OF MAPS FOR VISUALIZING
CLASSIFICATION RESULTS

Peter J. Rousseeuw1, Jacob Raymaekers1 and Mia Hubert1

1 Section of Statistics and Data Science, Dept of Mathematics, KU Leuven, Belgium,
(e-mail: peter@rouseeuw.net, jakob.raymaekers@kuleuven.be,
mia.hubert@kuleuven.be)

ABSTRACT: Classification is a major tool of statistics and machine learning. A
classification method first processes a training set of objects with given classes
(labels), with the goal of afterward assigning new objects to one of these classes.
When running the resulting prediction method on the training data or on test
data, it can happen that an object is predicted to lie in a class that differs from its
given label. This is sometimes called label bias, and raises the question whether
the object was mislabeled.

The proposed class map reflects how well an object lies within its class, by
comparing to an alternative class as done in Rousseeuw (1987) for unsupervised
classification. The class map also shows how far the object is from the other
objects in its class, and whether some objects lie far from all classes. The goal
is to visualize aspects of the classification results to obtain insight in the data.

The display is constructed for discriminant analysis, the k-nearest neighbor
classifier, support vector machines, logistic regression, and coupling pairwise
classifications. It is illustrated on several benchmark datasets, including some
consisting of images and texts.

KEYWORDS: discriminant analysis, k-nearest neighbors, mislabeling, pairwise
coupling, support vector machines.
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UNDERSTANDING CROSS-VALIDATION AND
PREDICTION ERROR

Robert Tibshirani1, Stephen Bates2 and Trevor Hastie1

1 Departments of Statistics, and Biomedical Data Science, Stanford University,
(e-mail: tibs@stanford.edu, hastie@stanford.edu)
2 Departments of Statistics, and Electrical Engineering and Computer Sciences, UC
Berkeley, (e-mail: stephenbates@cs.berkeley.edu)

ABSTRACT: Cross-validation is a widely-used technique to estimate prediction
accuracy. However its properties are not that well understood. First, it is
not clear exactly what form of prediction error is being estimated by cross-
validation: one would like to think that cross-validation estimates the prediction
error for the model and the data at hand. Surprisingly, we show here that this
is not the case, (at least for the special case of linear models) and derive the
actual estimand(s). This phenomenon occurs for most popular estimates of
prediction error including data splitting, bootstrapping,Cp and AIC. Second, the
standard (naı̈ve) confidence intervals for prediction accuracy that are derived
from cross-validation may fail to cover at the nominal rate, because each data
point is used for both training and testing, inducing correlations among the
measured accuracy for each fold. As a result, the variance of the CV estimate
of error is larger than suggested by naı̈ve estimators, which leads to confidence
intervals for prediction accuracy that can have coverage far below the desired
level. We introduce a nested cross-validation scheme to estimate the standard
error of the cross-validation estimate of prediction error, showing empirically
that this modification leads to intervals with approximately correct coverage in
many examples where traditional cross-validation intervals fail.
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given label. This is sometimes called label bias, and raises the question whether
the object was mislabeled.

The proposed class map reflects how well an object lies within its class, by
comparing to an alternative class as done in Rousseeuw (1987) for unsupervised
classification. The class map also shows how far the object is from the other
objects in its class, and whether some objects lie far from all classes. The goal
is to visualize aspects of the classification results to obtain insight in the data.

The display is constructed for discriminant analysis, the k-nearest neighbor
classifier, support vector machines, logistic regression, and coupling pairwise
classifications. It is illustrated on several benchmark datasets, including some
consisting of images and texts.

KEYWORDS: discriminant analysis, k-nearest neighbors, mislabeling, pairwise
coupling, support vector machines.
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ABSTRACT: Cross-validation is a widely-used technique to estimate prediction
accuracy. However its properties are not that well understood. First, it is
not clear exactly what form of prediction error is being estimated by cross-
validation: one would like to think that cross-validation estimates the prediction
error for the model and the data at hand. Surprisingly, we show here that this
is not the case, (at least for the special case of linear models) and derive the
actual estimand(s). This phenomenon occurs for most popular estimates of
prediction error including data splitting, bootstrapping,Cp and AIC. Second, the
standard (naı̈ve) confidence intervals for prediction accuracy that are derived
from cross-validation may fail to cover at the nominal rate, because each data
point is used for both training and testing, inducing correlations among the
measured accuracy for each fold. As a result, the variance of the CV estimate
of error is larger than suggested by naı̈ve estimators, which leads to confidence
intervals for prediction accuracy that can have coverage far below the desired
level. We introduce a nested cross-validation scheme to estimate the standard
error of the cross-validation estimate of prediction error, showing empirically
that this modification leads to intervals with approximately correct coverage in
many examples where traditional cross-validation intervals fail.
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QUANTILE-BASED CLASSIFICATION

Cinzia Viroli1

1 Department of Statistical Sciences, University of Bologna,
(e-mail: cinzia.viroli@unibo.it)

ABSTRACT: The idea of using quantiles in classification is relatively recent.
The median classifier for high-dimensional problems (Hall et al., 2009), the
quantile classifier (Hennig & Viroli, 2016); the ensemble and the directional
quantile classifiers (Lai & McLeod, 2020; Farcomeni et al., 2021) represent
main relevant proposals for supervised classification. These ideas proved
to perform well for high dimensional and skewed data compared to other
classical classification strategies. For clustering purposes quantiles lead to
analogues appealing advantages. In this context, K-quantiles have been recently
introduced (Hennig et al., 2019). In this talk the main quantile-based strategies
for supervised and unsupervised classification will be presented and discussed,
both from the theoretical and empirical points of view.

KEYWORDS: L1 distance, supervised and unsupervised classification, k-means,
skewness, high-dimensional data
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VERIDICAL DATA SCIENCE FOR RESPONSIBLE
AI: CHARACTERIZING V4 NEURONS THROUGH

DEEPTUNE

Bin Yu1

1 Departments of Statistics, and Electrical Engineering and Computer Sciences, UC
Berkeley (e-mail: binyu@berkeley.edu)

“A.I. is like nuclear energy – both
promising and dangerous”

Bill Gates, 2019

ABSTRACT: Data Science is a pillar of A.I. and has driven most of recent cutting-
edge discoveries in biomedical research. In practice, Data Science has a life
cycle (DSLC) that includes problem formulation, data collection, data cleaning,
modeling, result interpretation and the drawing of conclusions. Human judge-
ment calls :wq:ware ubiquitous at every step of this process, e.g., in choosing
data cleaning methods, predictive algorithms and data perturbations. Such
judgment calls are often responsible for the “dangers” of A.I. To maximally
mitigate these dangers, we developed a framework based on three core princi-
ples: Predictability, Computability and Stability (PCS). Through a workflow
and documentation (in R Markdown or Jupyter Notebook) that allows one to
manage the whole DSLC, the PCS framework unifies, streamlines and expands
on the best practices of machine learning and statistics – bringing us a step
forward towards veridical Data Science.

The PCS framework will be illustrated through the development of the
DeepTune framework for characterizing V4 neurons. DeepTune builds predic-
tive models using DNNs and linear regression and applies the stability principle
to obtain stable interpretations of 18 predictive models.

Finally, a general DNN interpretation method based on contextual decom-
position (CD) will be discussed with applications to sentiment analysis and
cosmological parameter estimation.

References

ABBASI-ASL, R., CHEN, Y., BLONIARZ, A., OLIVER, M., WILLMORE, B.



9 

QUANTILE-BASED CLASSIFICATION

Cinzia Viroli1

1 Department of Statistical Sciences, University of Bologna,
(e-mail: cinzia.viroli@unibo.it)

ABSTRACT: The idea of using quantiles in classification is relatively recent.
The median classifier for high-dimensional problems (Hall et al., 2009), the
quantile classifier (Hennig & Viroli, 2016); the ensemble and the directional
quantile classifiers (Lai & McLeod, 2020; Farcomeni et al., 2021) represent
main relevant proposals for supervised classification. These ideas proved
to perform well for high dimensional and skewed data compared to other
classical classification strategies. For clustering purposes quantiles lead to
analogues appealing advantages. In this context, K-quantiles have been recently
introduced (Hennig et al., 2019). In this talk the main quantile-based strategies
for supervised and unsupervised classification will be presented and discussed,
both from the theoretical and empirical points of view.

KEYWORDS: L1 distance, supervised and unsupervised classification, k-means,
skewness, high-dimensional data

References

FARCOMENI, A., GERACI, M., & VIROLI, C. 2021. Directional quantile
classifiers.

HALL, P., TITTERINGTON, D. M., & XUE, J.-H. 2009. Median-Based
Classifiers for High-Dimensional Data. Journal of the American Statistical
Association, 104(488), 1597–1608.

HENNIG, C., & VIROLI, C. 2016. Quantile-based classifiers. Biometrika,
103(2), 435–446.

HENNIG, C., VIROLI, C., & ANDERLUCCI, L. 2019. Quantile-based cluster-
ing. Electronic Journal of Statistics, 13(2), 4849–4883.

LAI, Y., & MCLEOD, I. 2020. Ensemble quantile classifier. Computational
Statistics & Data Analysis, 144, 106849.

VERIDICAL DATA SCIENCE FOR RESPONSIBLE
AI: CHARACTERIZING V4 NEURONS THROUGH

DEEPTUNE

Bin Yu1

1 Departments of Statistics, and Electrical Engineering and Computer Sciences, UC
Berkeley (e-mail: binyu@berkeley.edu)

“A.I. is like nuclear energy – both
promising and dangerous”

Bill Gates, 2019

ABSTRACT: Data Science is a pillar of A.I. and has driven most of recent cutting-
edge discoveries in biomedical research. In practice, Data Science has a life
cycle (DSLC) that includes problem formulation, data collection, data cleaning,
modeling, result interpretation and the drawing of conclusions. Human judge-
ment calls :wq:ware ubiquitous at every step of this process, e.g., in choosing
data cleaning methods, predictive algorithms and data perturbations. Such
judgment calls are often responsible for the “dangers” of A.I. To maximally
mitigate these dangers, we developed a framework based on three core princi-
ples: Predictability, Computability and Stability (PCS). Through a workflow
and documentation (in R Markdown or Jupyter Notebook) that allows one to
manage the whole DSLC, the PCS framework unifies, streamlines and expands
on the best practices of machine learning and statistics – bringing us a step
forward towards veridical Data Science.

The PCS framework will be illustrated through the development of the
DeepTune framework for characterizing V4 neurons. DeepTune builds predic-
tive models using DNNs and linear regression and applies the stability principle
to obtain stable interpretations of 18 predictive models.

Finally, a general DNN interpretation method based on contextual decom-
position (CD) will be discussed with applications to sentiment analysis and
cosmological parameter estimation.

References

ABBASI-ASL, R., CHEN, Y., BLONIARZ, A., OLIVER, M., WILLMORE, B.



10 

D. B., GALLANT, J. L., & YU, B. 2018. The DeepTune framework for
modeling and characterizing neurons in visual cortex area V4. bioRxiv.

YU, B., & KUMBIER, K. 2020. Veridical data science. Proceedings of the
National Academy of Sciences, 117(8), 3920–3929.



D. B., GALLANT, J. L., & YU, B. 2018. The DeepTune framework for
modeling and characterizing neurons in visual cortex area V4. bioRxiv.

YU, B., & KUMBIER, K. 2020. Veridical data science. Proceedings of the
National Academy of Sciences, 117(8), 3920–3929.

Plenary Session

Giovanni C. Porzio, University of Cassino and Southern Lazio, Italy, porzio@unicas.it, 0000-0003-1208-6991
Carla Rampichini, University of Florence, Italy, carla.rampichini@unifi.it, 0000-0002-8519-083X
Chiara Bocci, University of Florence, Italy, chiara.bocci@unifi.it, 0000-0001-8189-4445
FUP Best Practice in Scholarly Publishing (DOI 10.36253/fup_best_practice)
Giovanni C. Porzio, Carla Rampichini, Chiara Bocci (edited by), CLADAG 2021 Book of abstracts and 
short papers. 13th Scientific Meeting of the Classification and Data Analysis Group Firenze, September 
9-11, 2021, © 2021 Author(s), content CC BY 4.0 International, metadata CC0 1.0 Universal, published by 
Firenze University Press (www.fupress.com), ISSN 2704-5846 (online), ISBN 978-88-5518-340-6 (PDF), 
DOI 10.36253/978-88-5518-340-6

mailto:porzio@unicas.it
https://orcid.org/0000-0003-1208-6991
mailto:carla.rampichini@unifi.it
https://orcid.org/0000-0002-8519-083X
mailto:chiara.bocci@unifi.it
https://orcid.org/0000-0001-8189-4445
https://doi.org/10.36253/fup_best_practice
http://creativecommons.org/licenses/by/4.0/legalcode
https://creativecommons.org/publicdomain/zero/1.0/legalcode
http://www.fupress.com
https://doi.org/10.36253/978-88-5518-340-6


12 

 



13 

 
 

 
Statistical Issues in the COVID-19 Pandemic 
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proportion, calling on scientific enquiry from a broad 
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and data science, among others. As a result, potential 
solutions to this problem have become highly 
interdisciplinary. Notwithstanding, statistics and data 
science have become paramount in the quest for 
providing evidentiary based answers to a host of 
scientific problems associated with this novel virus. 
Among these problems are the issues of vaccine 
development, development of therapeutics, testing, 
contract tracing, forecasting, and inferential analysis.   
The effects of the virus have varied greatly from country 
to country reflecting differences in data reporting, public 
health infrastructure, politics, economics, social contexts 
and the role of civil society.  This session will discuss 
specific statistical issues related to the COVID-19 
pandemic and will bring together prominent researchers 
who will share their experiences from Israel to India to 
the US. 
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A SIMPLE CORRECTION FOR COVID-19
SAMPLING BIAS

Daniel Diaz1

1 Division of Biostatistics, University of Miami, USA, (e-mail: ddiaz3@miami.edu)

ABSTRACT: COVID-19 testing has become a standard approach for estimating
prevalence which then assist in public health decision making to contain and
mitigate the spread of the disease. The sampling designs used are often biased in
that they do not reflect the true underlying populations. For instance, individuals
with strong symptoms are more likely to be tested than those with no symptoms.
This results in biased estimates of prevalence (too high). Typical post-sampling
corrections are not always possible. Here we present a simple bias correction
methodology derived and adapted from a correction for publication bias in meta
analysis studies. The methodology is general enough to allow a wide variety of
customization making it more useful in practice. Implementation is easily done
using already collected information. Via a simulation and two real datasets, we
show that the bias corrections can provide dramatic reductions in estimation
error.

A SEAT AT THE TABLE: THE KEY ROLE OF
BIOSTATISTICS AND DATA SCIENCE IN THE

COVID-19 PANDEMIC

Jeffrey Morris1

1 Division of Biostatistics, University of Pennsylvania, USA,
(e-mail: jeffrey.morris@pennmedicine.upenn.edu)

ABSTRACT: The novel virus SARS-CoV-2 has produced a global pandemic,
forcing doctors and policymakers to “fly blind”, trying to deal with a virus
and disease they knew virtually nothing about. Sorting through the informa-
tion in real time has been a daunting process—processing data, media reports,
commentaries, and research articles. In the USA this is exacerbated by an
ideologically divided society that has difficulty with mutual trust, or even agree-
ment on common facts. The skills underlying our statistical profession are
central to this knowledge discovery process, filtering out biases, aggregating
disparate data sources together, dealing with measurement error and missing
data, identifying key insights while quantifying the uncertainty in these in-
sights, and then communicating the results in an accessible balanced way. As
a result, we have had a central role to play in society to bring our perspective
and expertise to bear on the pandemic to help ensure knowledge is efficiently
discovered and put into practice. Unfortunately, our profession is often shy
about asserting its perspective in broader societal ventures, perhaps not realizing
the central importance of our perspective and mindset. I have authored a web-
site and blog covid-datascience.com that represents my own person
efforts to disseminate information I have found reliable and insightful regarding
the pandemic, accounting for subtle scientific and data analytical issues and
uncertainties about our current knowledge, and seeking to filter out political
and other subjective biases.

Using experiences with the covid-datascience blog as a backdrop, I will
highlight how statistical and data scientific issues have been central in under-
standing the emerging knowledge in the pandemic. I will discuss various broad
issues I have seen impede the knowledge discovery process, including subjec-
tive bias causing individuals to ignore some information and magnify others,
viral misinformation spread on social media platforms, danger of rushed and
inadequately reviewed scientific studies, conflating of political concerns and
scientific messaging, and incomplete and messaging from scientific leaders to
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the broader community. I will discuss these concepts in various specific con-
texts, including identification of key modes of spread and effective mitigation
strategies, vaccine safety and efficacy, durability of immune protection and risk
of reinfections or breakthrough infections, and the emergence of variants of
concern and how this affects the pandemic moving forward. I will finish with
a call to urge statisticians to seek greater visibility and engagement with the
media and policymakers to ensure our understanding of quantitative nuances is
reflected in important societal-level decisions and dissemination of emerging
scientific knowledge.

PREDICTIONS, ROLE OF INTERVENTIONS AND THE
CRISIS OF VIRUS IN INDIA: A DATA SCIENCE CALL

TO ARMS

Bhramar Mukherjee1

1 Department of Biostatistics, University of Michigan, USA,
(e-mail: bhramar@umich.edu)

ABSTRACT: India, the world’s largest democracy with 1.38 billion people, un-
derwent five phases of national lockdown from March 25-June 30, 2020 and
several phases of unlocking in Wave 1 of the COVID-19 pandemic. The virus
curve turned the corner in mid-September of 2020 and it appeared that India
could avoid a second resurgence in the Winter. Normalcy returned to the life of
Indian people and vaccination had a sluggish start nationwide. Several hypothe-
ses were being postulated for this miraculous recovery of India including that of
herd immunity as implied by some serosurveys. Then came an astronomic wave
2 for India, where the daily case counts reached more than 400000 and daily
death counts peaked around 4500. In this presentation, we provide a brief chron-
icle of the modeling experience of our study team over the last one year trying
to understand the pandemic in India and explain what caused this devastating
second wave, including the role of the Delta variant. We discuss methodological
innovations by incorporating imperfect viral testing when using case-counts
in an extended SEIR model for COVID-19. We use this model to estimate
the unobserved infections and deaths leading to an estimate of the infection
fatality rates in India for Waves 1 and 2 . This is joint work with many, with all
supporting research materials and products available at covind19.org.
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CONTRIBUTIONS OF ISRAEL’S CBS TO ROUT
COVID-19

Danny Pfeffermann1

1 Central Bureau of Statistics and Hebrew University of Jerusalem, Israel; University of
Southampton, UK, (e-mail: D.Pfeffermann@soton.ac.uk)

ABSTRACT: In this presentation, I shall describe the major problems that the
Central Bureau of Statistics in Israel (ICBS) had faced during the pandemic,
discuss the methodological issues involved and how we dealt with them. Issues
considered are lack of health data; performing special household, business and
serological surveys; accounting for NMAR nonresponse; publication of flash
estimates; estimation of excess mortality; seasonal adjustment, trend estimation
and weighting of CPI items in a year of pandemic.
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ROBUST ISSUES IN ESTIMATING MODELS FOR
MULTIVARIATE TORUS DATA

Claudio Agostinelli 1, Giovanni Saraceno 1 and Luca Greco 2

1 Department of Mathematics, University of Trento, (e-mail:
claudio.agostinelli@unitn.it, giovanni.saraceno@unitn.it)
2 University Giustino Fortunato, Benevento (e-mail:
l.greco@unifortunato.eu)

ABSTRACT: We consider the problem of robust fitting for statistical models applied
to multivariate torus data, e.g., data which are multivariate angles. We discuss two
different definitions of outliers, “geometric” and “probabilistic” outliers, and the pro-
posed robust methods to cope with them. We mainly focus on multivariate wrapped
models together with some computational aspects.

KEYWORDS: circular data, multivariate torus data, outlier detection, robust estima-
tion, wrapped models

1 Introduction

Multivariate circular data arise commonly in many different fields. Depend-
ing on the situation, observations can be thought as points on the surface of
a hyper-sphere (Sp−1) or as points on the surface of a torus (Tp = [0,2π)p).
While the first problem is well studied in literature, the latter received much
less attention, even though it is more common. Here, we review some aspects
of robust fitting of torus data according to wrapped models. The peculiarity
of multivariate torus data is periodicity, that reflects in the boundedness of the
sample space and often of the parametric space. Indeed, it is challenging to
introduce the geometric concept of outliers, as points that are far from the bulk
of the data. However, it is always possible to define circular outliers from a
probabilistic point of view, as points that are unlikely to occur under the as-
sumed model. Notice that outliers are model dependent, since they are defined
with respect to the specified model. A first general attempt to develop a ro-
bust parametric technique for multivariate torus data can be found in Saraceno
et al., 2021 where a weighted likelihood estimator is introduced and outliers
are defined using the probabilistic point of view. In contrast, Greco et al., 2021
develop robust estimators based on S/M/MM-estimators as well as weighted
likelihood estimators considering the geometric approach.
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of the data. However, it is always possible to define circular outliers from a
probabilistic point of view, as points that are unlikely to occur under the as-
sumed model. Notice that outliers are model dependent, since they are defined
with respect to the specified model. A first general attempt to develop a ro-
bust parametric technique for multivariate torus data can be found in Saraceno
et al., 2021 where a weighted likelihood estimator is introduced and outliers
are defined using the probabilistic point of view. In contrast, Greco et al., 2021
develop robust estimators based on S/M/MM-estimators as well as weighted
likelihood estimators considering the geometric approach.
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2 Wrapped models

Let X be a multivariate random variable with model density m(x;θ) on Rp

parameterized by θ ∈ Θ. We can construct a wrapped model by Y = X mod 2π
where the mod operator is performed component-wise. The density function
of Y takes the form of an infinite sum over Zp given by

m◦(y;θ) = ∑
j∈Zp

m(y+2πj;θ) .

A good approximation, denoted as m◦
J , can be obtained, in most cases, with

only few terms of the summation, so that Zp is replaced by CJ =⊗p
s=1J where

J = (−J,−J + 1, . . . ,0, . . . ,J − 1,J) for some fixed J. The support of Y is
bounded and given by [0,2π)p, for convenience, and the parametric space Θ
might be restricted as well to ensure identifiability. The p−dimensional vector
j represents the wrapping coefficients vector, that is, it indicates how many
times each component of the p−toroidal data point has been wrapped. Given
a sample (y1,y2, . . . ,yn), the approximated log-likelihood function is given by

�(θ) =
n

∑
i=1

logm◦
J(yi;θ) =

n

∑
i=1

log ∑
j∈CJ

m(yi +2πj;θ) .

Assuming that we could observe the vectors ji (i = 1, . . . ,n), then we would
have access to the unwrapped and unobserved sample x̂i = yi + 2πji. This
leads to the following log-likelihood

�C(θ) =
n

∑
i=1

logm(x̂i;θ) =
n

∑
i=1

logm(yi+2πji;θ) =
n

∑
i=1

∑
j∈CJ

vij logm(yi+2πj;θ) ,

where vij = 1 or vij = 0 according to whether yi has j ∈ CJ as the wrapping
coefficient vector and now the jis are additional unknown parameters needed
to be estimated. Optimization of the above log-likelihood can be performed
naturally through a Classification-Expectation-Maximization algorithm, see
Nodehi et al., 2021 for more details. Hereafter, we concentrate on unimodal
and elliptically symmetric densities m, i.e., given a strictly decreasing and non-
negative function h and set θ = (µ,Σ) for a location vector parameter µ and
dispersion matrix Σ, then m(x;θ) ∝ |Σ|−1/2h

(
(x−µ)�Σ−1(x−µ)

)
.

3 Outliers in multivariate torus data

Consider 0 ≤ ε < 0.5 and an arbitrary distribution g(x) in Rp. According
to the usual gross error model, the true density f (x) of the data is given by

f (x) = (1−ε)m(x;µ,Σ)+εg(x) and hence the corresponding wrapped density
would have the form

f ◦(y) = (1− ε) ∑
j∈Zp

m(y+2πj;µ,Σ)+ ε ∑
j∈Zp

g(y+2πj) (1)

= (1− ε)m◦(y;µ,Σ)+ εg◦(y). (2)

If we instead consider the approach leading to �C(µ,Σ) and equation (1), for a
given observation yi we have

f ◦(yi)≈ (1− ε)m(yi +2πji;µ,Σ)+ εg(yi +2πji)

which suggests the classical geometric definition of outliers. In such cases,
the degree of outlyingness of an observation is based on some “geometric”
distance, e.g., the squared Mahalanobis distance. In contrast, we can de-
fine outliers directly on the torus, that is, according to equation (2), based
on a “probabilistic” distance [Markatou et al., 1998 and Agostinelli, 2007]
where we compare the true density f ◦(yi) with the model density m◦(yi;µ,Σ).
A measure of the agreement is provided by the finite sample Pearson resid-
ual function [Lindsay, 1994 and Markatou et al., 1998], defined as δn(y) =

f̂n(y)
m̂(y;θ) − 1 where f̂n(y) = 1

n ∑n
i=1 k(y;yi,h) is a non-parametric kernel density

estimate (with kernel function k and bandwidth h) of the true density f (y) and
m̂(y;µ,Σ) =

∫
k(y; t,h)m(t;µ,Σ) dt is a smoothed version of the model density.

4 Example

Here, we illustrate the behavior of the robust estimators introduced in Saraceno
et al., 2021 and Greco et al., 2021 using a simulated example. We point the
reader to the cited papers for full details. The bulk of data has been drawn from
a bivariate wrapped normal distribution with µ = 0, Σ = D1/2RD1/2 where R is
a random correlation matrix and D= diag(σ12) with σ= π/4. The sample size
is n = 500 with 10% of contamination. Two types of outlying observations are
considered: scattered and point-mass. It is suggested to represent circular data
points after they have been unwrapped on a “flat” torus in the form x = y+2πj
for j ∈ CJ . The figure shows the unwrapped bivariate points (grey points), the
scattered (red crosses) and the point-mass (green plus) outliers. The bivariate
fitted models are given in the form of ellipses based on the 0.99-level quantile
of a χ2

2 distribution. We show the results obtained using maximum likelihood
estimator (grey line) and the proposed robust estimators. In particular, we
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coefficient vector and now the jis are additional unknown parameters needed
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naturally through a Classification-Expectation-Maximization algorithm, see
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would have the form
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which suggests the classical geometric definition of outliers. In such cases,
the degree of outlyingness of an observation is based on some “geometric”
distance, e.g., the squared Mahalanobis distance. In contrast, we can de-
fine outliers directly on the torus, that is, according to equation (2), based
on a “probabilistic” distance [Markatou et al., 1998 and Agostinelli, 2007]
where we compare the true density f ◦(yi) with the model density m◦(yi;µ,Σ).
A measure of the agreement is provided by the finite sample Pearson resid-
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m̂(y;θ) − 1 where f̂n(y) = 1
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i=1 k(y;yi,h) is a non-parametric kernel density

estimate (with kernel function k and bandwidth h) of the true density f (y) and
m̂(y;µ,Σ) =

∫
k(y; t,h)m(t;µ,Σ) dt is a smoothed version of the model density.

4 Example

Here, we illustrate the behavior of the robust estimators introduced in Saraceno
et al., 2021 and Greco et al., 2021 using a simulated example. We point the
reader to the cited papers for full details. The bulk of data has been drawn from
a bivariate wrapped normal distribution with µ = 0, Σ = D1/2RD1/2 where R is
a random correlation matrix and D= diag(σ12) with σ= π/4. The sample size
is n = 500 with 10% of contamination. Two types of outlying observations are
considered: scattered and point-mass. It is suggested to represent circular data
points after they have been unwrapped on a “flat” torus in the form x = y+2πj
for j ∈ CJ . The figure shows the unwrapped bivariate points (grey points), the
scattered (red crosses) and the point-mass (green plus) outliers. The bivariate
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2 distribution. We show the results obtained using maximum likelihood
estimator (grey line) and the proposed robust estimators. In particular, we
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AS(µ̂) ∆(Σ̂)
MLE 0.001478 2.096517

probabilistic 0.000491 0.002610
geometric 0.000571 0.005987

consider the robust estimators based on the weighted likelihood technique, im-
plemented according to geometric (dotted line) and probabilistic (dashed line)
outliers. Finally, the table gives some measures of fitting accuracy.
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BAYESIAN NONPARAMETRIC DYNAMIC MODELING
OF PSYCHOLOGICAL TRAITS

Emanuele Aliverti 1

1 Department of Economics, University Ca’ Foscari Venezia, (e-mail:
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ABSTRACT: This work focuses on investigating the evolution of different traits of
psychosis during the COVID-19 pandemic. We develop a Bayesian nonparametric
mixture model for multivariate categorical data, which characterizes the population’
psychosis via a set of latent psychological profiles. Leveraging a time- and covariate-
dependent stick-breaking construction for the mixture weights, the proposed specifi-
cation characterizes the dynamic evolution of such latent traits across the pandemic,
measuring the effect of subject-specific demographic information such as sex and age
of the individuals.

KEYWORDS: Bayesian nonparametrics, categorical data, dynamic modeling, stick-
breaking.

1 Introduction

Multivariate categorical data are routinely collected in a variety of applications
(e.g., Agresti, 2003). Some common examples include surveys on opinions
and feelings, where individuals are asked to fill in questionnaires reporting
their level of agreement with different categorical items. This abundance of
data has motivated a large literature on statistical models for high-dimensional
categorical data, with penalized log-linear models (Nardi et al., 2012) and
latent-structures (Lazarsfeld, 1950) being particularly popular in the literature
(Aliverti and Dunson, 2020).

When the number of categorical variables increases, the number of free
cells in the resulting contingency tables becomes extremely sparse, motivating
novel approaches to provide compact representation of the observed structures.
Bayesian nonparametric models are particularly appealing for this goal, lever-
aging on flexible specifications which adapt to the complexity of the observed
data, characterizing uncertainty in a rigorous way (e.g., Dunson and Xing,
2009; Müller et al., 2015).

In this talk, we illustrate a Bayesian nonparametric dynamic model for
the evolution of the population’ psychosis during the COVID-19 pandemic.
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AS(µ̂) ∆(Σ̂)
MLE 0.001478 2.096517

probabilistic 0.000491 0.002610
geometric 0.000571 0.005987

consider the robust estimators based on the weighted likelihood technique, im-
plemented according to geometric (dotted line) and probabilistic (dashed line)
outliers. Finally, the table gives some measures of fitting accuracy.
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1 Introduction

Multivariate categorical data are routinely collected in a variety of applications
(e.g., Agresti, 2003). Some common examples include surveys on opinions
and feelings, where individuals are asked to fill in questionnaires reporting
their level of agreement with different categorical items. This abundance of
data has motivated a large literature on statistical models for high-dimensional
categorical data, with penalized log-linear models (Nardi et al., 2012) and
latent-structures (Lazarsfeld, 1950) being particularly popular in the literature
(Aliverti and Dunson, 2020).

When the number of categorical variables increases, the number of free
cells in the resulting contingency tables becomes extremely sparse, motivating
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In this talk, we illustrate a Bayesian nonparametric dynamic model for
the evolution of the population’ psychosis during the COVID-19 pandemic.
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According to the proposed model, a set of latent profiles characterizes the
population-specific response patterns, while the individual propensity toward
a specific profile is allowed to change in time and with subject-specific covari-
ates, leveraging on a dependent stick-breaking construction for the mixture
weights.

We illustrate the details of the proposed methodology and its application
on the Italian population. Our empirical findings focus on the evolution of the
psychosis across the pandemic and on the estimated sub-regional differences
in terms of the impact of COVID-19 pandemic on the individual’s psychology.
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1 Introduction

A variety of methods have been proposed in the literature to cluster time series
(see Caiado et al., 2015 and the references cited there). In those methods
the clustering problem is solved using two different strategies: the first one
works directly on the original time series by defining an appropriate metric;
in the second one, time series are projected in a smaller space of features or
parameters. These methods are useful when the time series are independent,
however, in many applications the assumption of independence does not hold.
Few articles have proposed method for clustering by dependency. Zhang &
An, 2018 proposed a distance measure based on copulas to measure general
dependence of the time series. Alonso & Peña, 2019 introduced the generalized
cross correlation metric based on all the cross correlations between two time
series until a certain lag, k.

These two methods assumed that the dependency among the time series is
on the levels, and do not consider the case in which the dependency is on the
conditional variances. This fact is important in many fields. For example, in
financial time series where asset returns do not present a strong structure in the
levels but do present it in the volatility. Some studies have taken into account
the similarity of the evolution of the conditional variances (see Otranto, 2008
and D’Urso et al., 2013 for GARCH models).
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In this work we study a procedure to cluster time series for dependency
on the conditional variability, integrating the concepts of dependency and
heteroscedasticity of a set of time series. We extend the results presented with
Alonso & Peña, 2019 in the search for dependencies between the squares of
two time series or between their estimated volatilities. In Section 2, we present
the new methodology and Section 3 we illustrate its use in a real data example.
Some Monte Carlo experiments are available upon request to the authors.

2 Clustering time series by volatility dependency

Let wt and zt be two stationary time series and let xt = w2
t , yt = z2

t be their corre-
sponding squares, that will also be stationary. Using the results given in Alonso
& Peña, 2019, we are going to define a linear dependence measure between
(xt , yt). We calculate the autocorrelations of xt and yt , ρx(h) and ρy(h), and the
cross correlations between xt and yt , ρxy(h), for lags h = 0,±1, · · · ,±k. The
linear dependency between the two time series of squares can be summarized
in the matrix

Rk =




R(0) R(1) . . . R(k)
R(−1) R(0) . . . R(k−1)

...
... . . .

...
R(−k) R(−k+1) . . . R(0)


 , (1)

where R(h) =
(

ρx(h) ρxy(h)
ρyx(h) ρx(h)

)
. Matrix Rk corresponds to the correlation

matrix of the stationary process (xt ,yt , xt−1,yt−1, . . . ,xt−k,yt−k)
T

The generalized correlation coefficient is defined using matrix Rk by

GCC(xt ,yt) = 1−
(

det(Ryx,k)

det(Rxx,k)det(Ryy,k)

)1/(k+1)

, (2)

where Rxx,k and Ryy,k are the correlation matrices for the Xt,k and Yt,k, respec-
tively, and Cxy,k the matrix of cross-correlations between these two vectors.

This similarity measure GCC(xt ,yt) satisfies the following properties: (1)
GCC(xt ,yt) = GCC(yt ,xt); (2) 0≤GCC(yt ,xt)≤ 1, it takes the zero value in the
case that the dependence between both variables is perfectly linear, and take the
value one in the case that all cross correlations are zero. Based on this measure
we define the dissimilarity between xy and yt as d(xt ,yt) = 1−GCC(xt ,yt),
in that way, high dissimilarity values are associated to weak dependence and

values close to zero will be related to strong dependence. Once the pairwise
dissimilarities between time series are obtained, we can apply any clustering
method that uses dissimilarity matrices as input.

3 Real data example

In this section we are going use the set of the portfolios designed by Kenneth R.
French, which contains daily and equal-weighted returns of firms listed on the
NYSE, AMEX, or NASDAQ. The portfolios are constructed based on different
criteria such as companies size, book/market ratio, company capitalization
and/or industry classification. See at http://mba.tuck.dartmouth.
edu/pages/faculty/ken.french/data library.html. We will
analyze 100 time series that contains 25 portfolios based market equity (ME)
and the ratio of book equity to market equity (BE/ME) for European (UE),
Japanese (JAP), Pacific Asian (PA) -except Japan- and North American (AM)
markets.

First, we obtain the dendrogram using single linkage and dissimilarity,
d(wt ,zt), for the levels of daily returns. Silhouette statistic suggests four clusters
which corresponds to the four regions analyzed. In addition, the series that
belong to each clusters present a strong dependence between them except the
Asian time series. When we use the squares of daily returns for clustering,
Silhouette statistic finds five clusters: the same four groups as in the levels and a
fifth group with a single time series belongs to Pacific Asia. Also it is observed
that the group of American time series presents weaker dependencies than those
observed in levels. In Figure 1, we show that the dependency structures based
on levels differs from the ones based on squared returns. In particular, it is
remarkable that portfolios AM12, AM13, AM14, AM15 make up a group of
dependent series on the levels, however, this group is divided when squares are
taken into account, the same is true for the group of portfolios AM52, AM53,
AM54.
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(a) Returns levels.

(b) Squared returns levels.

Figure 1: Dendrograms for American and European portfolios.
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ABSTRACT: This paper deals with the co-clustering of distributional data applied to
multiple time sequences. The aims are: to get a double-partition of data into clusters
of units and variables; to summarize the main concepts in the data through histogram
prototypes; to overview the evolution over time of the monitored phenomenon. We
extend the double k-means algorithm to handle distributional data by using the L2

Wasserstein distance for comparing distributions. Moreover, we adapt double k-means
algorithm to compute optimal relevance weights associated with the variables.
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1 Introduction

In recent years, several authors (Arroyo & Maté, 2009; Balzanella & Irpino,
2020) have proposed summarizing temporal sequences by a set of distribu-
tions. In particular, they assume that the time domain of the sequences is split
into non-overlapping time windows, and the distribution of the records, framed
by each window, is estimated through histograms or kernel density estimators.
This summarization allows us to retain most of the information regarding the
monitored phenomenon, and to perform dimensionality reduction.

In this framework, we consider co-clustering of distribution data with the
following objectives: 1) To summarize the main concepts in the data through
histogram prototypes; 2) To reorganize the initial matrix into a block matrix;
3) to overview the evolution over time of the monitored phenomenon through
the partition of the variables; 4) To evaluate the contribution of various periods
(intervals of time) to the optimal partitioning by considering the weights of
the variables; 5) to obtain a partition of the series so that groups of series that
record similar data over time can be discovered.

We use a co-clustering approach (de A.T. De Carvalho et al. , 2021) that
extends the classic alternated double k-means. It performs double partition
of objects and variables to simultaneously discover blocks of subsets of the
rows and columns of a data table according to a homogeneity criterion. We
use two variants of this algorithm: the distributional double k-means (DDK)
and the adaptive distributional double k-means (ADDK). The main difference
between the two algorithm is that only ADDK computes the relevance weight
for each variable. In both the variants, the internal variability of clusters or co-
clusters is measured by the Wasserstein-based sum of squared errors (Irpino &
Verde, 2015).

2 Distributional Double k-means (DDK) and the Adaptive Distri-
butional Double k-means (ADDK)

Let us consider a set of N objects observed on P Distributional variables (DV).
A DV takes as values one-dimensional theoretical or empirical (i.e., histograms)
probability density functions.

The objects are indexed by i (with i= 1, . . . ,N), the P variables are denoted
by Yj (with j = 1, . . . ,P), and the i− th one-dimensional distribution data (DD)
of the Yj variable is denoted by yi j. The vector yi = [yi1, . . . ,yiP] contains the
description of the i− th object on the P DVs. Considering yi j an empirical
probability density function, we refer to Qi j as the quantile function (qf), that
is, the inverse of the cdf.

We use the the squared L2 Wasserstein metric d2
W between the DD yi j and

yi′ j, with support in ℜ, defined as: dW (yi j,yi′ j) =

√
1∫
0

[
Qi j(t)−Qi′ j(t)

]2 dt

In order to consider the relevance of each variable we use the following no-
tion of adaptive distances based on the squared L2 Wasserstein distance. Let us
consider a vector of positive weights Λ = [λ1, . . . ,λP]. According to (De Car-
valho & Lechevallier, 2009), a general expression for the adaptive (squared)
L2 Wasserstein distance is:

d2
W (yi,yi′ |Λ) =

P

∑
j=1

λ jd2
W
(
yi j,yi′ j

)
(1)

with λ j > 0 ∀ j and ∏P
j=1 λ j = 1.

The objective is to obtain a co-clustering of the input data, that is a double
partition of the data table into C×H blocks such that P = {P1, . . . ,PC} is a
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partition of the set of N objects into C clusters, and Q = {Q1, . . . ,QH} is a
partition of the set of P distributional-valued variables into H clusters.

Given the number of desired object clusters C and variable clusters H,
the co-clustering returns the matrix G of prototypes, the partition P of the
objects, and the partition Q of the variables. These are iteratively obtained by
minimizing the following error function, denoted here as JDDK :

JDDK(G,P ,Q ) =
C

∑
k=1

H

∑
h=1

∑
ei∈Pk

∑
Yj∈Qh

d2
W (yi j,gkh), (2)

where gkh is the prototype of the co-cluster Ykh.
In most applications, variables may have a different relevance. We propose

to obtain relevance weights by minimizing an objective function denoted by
JADDK :

JADDK(G,Λ,P ,Q ) =
C

∑
k=1

H

∑
h=1

∑
ei∈Pk

∑
Yj∈Qh

d2
W (yi j,gkh|Λ), (3)

where d2
W (.|Λ) is the adaptive (squared) L2 Wasserstein distance computed

between the generic yi j and the prototype gkh of the belonging co-cluster Ykh,
weighted by the elements of Λ.

The basic scheme of the DDK and ADDK co-clustering algorithms is the
following: from an initial random partitioning of the objects, into clusters of
objects, and variables, the algorithms perform a sequence of alternating steps
(three for DDK and four for ADDK) until the algorithms converge to a station-
ary value of the objective function:

i) representation step, in which the optimal representative (prototype) of
each cluster is computed;

ii) weighting step (ADDK), in which the relevance weights for each variable
and/or each component are computed;

iii) object assignment step, in which the optimal assignment of the objects to
clusters is obtained;

iv) variable assignment step, in which the optimal assignment of the vari-
ables to clusters is obtained.

3 Conclusions

In this paper we propose to use two co-clustering algorithms for the analysis
of time sequences. We tested the method on a real world dataset available at

http://db.csail.mit.edu/labdata/labdata.html which collects some environmen-
tal variables inside a laboratory. We show in Fig. 1 the double partition for
DDK. The left side shows the obtained co-clusters while the right side pro-
vides a reorganized version to highlight the main blocks.

Figure 1. DDK algorithm: co-clustering structure.
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ABSTRACT: We consider hidden Markov and regime-switching copula models as
approaches for state allocation in multiple time-series, where state allocation means
prediction of the latent state characterizing each time occasion based on the observed
data. This dynamic clustering, performed under the two model specifications, takes the
correlation structure of the time-series into account. Maximum likelihood estimation
of the model parameters is carried out by the expectation-maximization algorithm. For
illustration we use data on the market of cryptocurrencies characterized by periods of
high turbulence in which interdependence among assets is marked.
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1 Introduction

In the analysis of multiple time-series, state allocation, namely prediction of
the state or regime underlying the observed data at a certain time occasion,
is an important task, especially in finance and related fields. This type of
clustering is dynamic because a different state may be predicted at every time
occasion and may be based on models representing each time-specific state
by a discrete latent variable assuming, typically, a few possible values. In
this contribution, we compare two different model specifications of this type:
multivariate hidden Markov (HM) models (Zucchini et al., 2017) and regime-
switching (RS) copulas (Rodriguez, 2007).

Among HM models we consider, in particular, those based on the assump-
tion that the time-specific vector of observable variables follows a conditional
Gaussian distribution with parameters depending on the latent state.

RS copulas are instead based on a copula function, which may be chosen
among the Clayton, the Gumbel, the Gaussian, or the Student-t, with parameters
governed by a hidden Markov process of first-order so as to flexibly account for
the correlation patterns between each pair of series.

The expectation-maximization (EM) algorithm (Dempster et al., 1977) is
used for maximum likelihood estimation of the parameters of both models.
Model selection is performed to choose the most appropriate number of hidden
states and evaluate the level of chain homogeneity over time (Bartolucci et al.,
2013). For the HM model, this selection is based on the Bayesian Information
Criterion (BIC), and for RS copulas, it is also based on a goodness-of-fit
procedure relying on the Cramér-von Mises statistic.

As an illustration we consider the problem of state allocation in analyzing
time-series of the main cryptocurrencies daily log-returns over a three-year
period.

2 Hidden Markov and Regime-Switching Copula Models

Let yyyt , t = 1,2, . . ., be the vector where each element yt j, j = 1, . . . ,r, cor-
responds to the value of time-series j at time occasion t, with r denoting
the number of time-series under consideration. The main assumption of the
multivariate HM model is that the random vectors yyy111,yyy222, . . . are condition-
ally independent given a hidden process u1,u2, . . . that follows a first-order
Markov chain with k states, labeled from 1 to k. This process is governed
by the initial probabilities πu = p(u1 = u), u = 1, . . . ,k, and the transition
probabilities πu|ū = p(ut = u|ut−1 = ū), t = 2, . . ., ū,u = 1, . . . ,k. We assume
a Gaussian distribution for the observations at every time occasion, that is,
yyyt | ut = u ∼ Nr(µµµu,ΣΣΣu), where µµµu and ΣΣΣu are the mean vector and variance-
covariance matrix for latent state u. The above assumptions imply that the
conditional distribution of the time-series yyy111,yyy222, . . . , given the sequence of
hidden states, may be expressed as f (yyy1,yyy2, . . . | u1,u2, . . .) = ∏t φ(yyyt ;µµµut

,ΣΣΣut ),
where φ(·; ·) denotes the density of the multivariate Gaussian distribution. The
manifest distribution of the multiple time-series has the following density func-
tion:

f (yyy1,yyy2, . . .) = ∑
u1

πu1φ(yyy1;µµµu1
,ΣΣΣu1)∑

u2

πu2|u1φ(yyy2;µµµu2
,ΣΣΣu2) · · · .

Concerning the copula model, we first consider only the bivariate case, so
we define yyyt = (yt1,yt2) as a vector with elements yt j, j = 1,2, corresponding
to the observation for time-series j at time t = 1,2, . . . and F1 and F2 as the
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marginal cdfs of each time-series. Sklar’s theorem (Sklar, 1959) allows us to
separate the fitting of the marginal cdfs from the fitting of the joint distribution,
represented by a copula function. This approach consists in estimating the two
marginal distributions, obtaining F̂1 and F̂2, and then computing the normalized
ranks of the pseudo-observations ẽ̃ẽet = (ẽt1, ẽt2) as ẽt j = rank(ẑt j)/(T +1), with
ẑt j = F̂j(yt j), and T being the number of observed time occasions. Finally, for
the pseudo-observations ẽ̃ẽet , an RS copula model is assumed based on a hidden
homogeneous Markov process denoted as v1,v2, . . ., with k states. The copula
density indicated with c(·; ·) may be chosen among the Clayton, the Gumbel,
the Gaussian, or the Student-t copulas, with state-specific parameter βv. The
density of the pseudo-observations is given by

f (ẽee1, ẽee2, . . .) = ∑
v1

πv1c(ẽee1;βv1)∑
v2

πv2|v1c(ẽee2;βv2) · · · ,

and it is based on the initial and transition probabilities defined as above.
Given that the state sequence is not observable, a full maximum likelihood

approach for estimating the parameters of both models is carried out through
the EM algorithm. Following the current literature, model selection for the HM
model is based on the BIC, and for the RS copula it is also performed through
a goodness-of-fit procedure consisting in calculating a p-value referred to the
Cramér-von Mises statistic for the hypothesis of correct model specification.

We compare the performance of HM models and RS copulas focusing on
the crucial aspect of state allocation. The optimal state allocation is performed
by finding the optimal joint sequence ũ1, ũ2, . . . (or ṽ1, ṽ2, . . .) of unknown states
given the corresponding observations. This clustering procedure, also known
as global decoding, is achieved through the Viterbi algorithm (Viterbi, 1967),
which is a dynamic programming algorithm.

We also aim at extending the RS copula approach to an arbitrary number
of time-series r rather than to only 2. In this regard, we propose the composite
likelihood approach (Varin et al., 2011) for estimation, which is based on
considering all possible ordered pairs of time-series among the available ones.

3 Application

As an illustration, for the HM model we consider the joint daily log-returns*

of the five cryptocurrencies Bitcoin, Ethereum, Ripple, Litecoin, and Bitcoin

*provided by the Crypto Asset Lab: https://cryptoassetlab.diseade.unimib.
it/.

Cash, for the period 2017-2020. For the RS copulas, allowing only for bivariate
associations, we define four copulas where the bivariate vector of observations
consists of the Bitcoin and each of the other four cryptocurrencies. Results for
the HM model show that the minimum value of the BIC is reached considering
a five-state heteroschedastic structure. According to these estimates, there
are three negative regimes (in terms of estimated expected log-returns), with
relatively high and positive correlations of Bitcoin with all the other cryptocur-
rencies, and two states with positive returns and lower correlations. Regarding
the global decoding, these two states are the most likely in the first year of
observation, and the other three states characterize the last two years.

Concerning the RS copulas, and considering as an example the couple of
cryptocurrencies Bitcoin-Ethereum, we observe that a three-regime Clayton
copula provides the best fit. Given that the Clayton copula allows for explicit
computation of the lower tail correlation index, we estimate that two regimes
provide zero or low values for the lower tail index, and the third regime provides
high values for it. According to the optimal state sequence, we estimate that
there is substantial interchangeability between the first two states in the whole
period, whereas the third state is the most likely for the last year of observation.

References

BARTOLUCCI, F., FARCOMENI, A., & PENNONI, F. 2013. Latent Markov
Models for Longitudinal Data. Boca Raton, FL: Chapman & Hall/CRC.

DEMPSTER, A. P., LAIRD, N. M., & RUBIN, D. B. 1977. Maximum like-
lihood from incomplete data via the EM algorithm (with discussion).
Journal of the Royal Statistical Society, Series B, 39, 1–38.

RODRIGUEZ, J. C. 2007. Measuring financial contagion: A copula approach.
Journal of Empirical Finance, 14, 401–423.

SKLAR, M. 1959. Fonctions de repartition à n dimensions et leurs marges.
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ABSTRACT: Multidimensional IRT models can be used to analyze the latent vari-
ables that underlay the responses given to a test or questionnaire. However, these
models are not only difficult to estimate, but they also suffer of the rotational inde-
terminacy typical of factor analysis models. In this paper, we propose a boosting
algorithm that, starting from a model that includes only the intercepts, sequentially
updates a pair of coefficients in a component-wise approach. The solution provided
by the algorithm tends to be sparse and to facilitate the interpretation without requiring
a posterior rotation.

KEYWORDS: negative curvature direction, regularization, sparse solution.

1 Introduction

IRT models are commonly applied in educational assessment and they are also
considered, with increasing frequency, in the field of health and psychological
measurement studies. In these models, the probability of observing a categor-
ical response is a function of a single latent trait (simple IRT models) or of
multiple latent traits (multiple IRT models) and of some item parameters (see
for example Reckase, 2009). Various methods have been proposed for model
estimation. However, in the multidimensional setting, serious computational
problems may occur if the number of items is large and many latent variables
have to be considered. Moreover, in this context, the interpretability of the
solution is very important.

In this paper, the new statistical boosting procedure introduced in Battauz
& Vidoni (2021) is applied for estimating multiple IRT models. More pre-
cisely, we consider a suitable likelihood-based boosting algorithm which may
escape from a region of local non-convexity of the objective function, improve
the optimization procedure, provide a more interpretable sparse solution and
regularize the estimates. We apply this new procedure to the multidimensional
two-parameter logistic IRT model for dichotomously scored outcomes. An ex-
ample concerning a sample from the 2017 Eurobarometer survey is presented.

2 Multidimensional IRT models: definition and inference

The response variable for the subject i on item j is a Bernoulli random vari-
able Yi j, i = 1, . . . ,n, j = 1, . . . ,J, with one denoting a positive response. The
responses of subject i are collected in the vector Yi = (Yi1, . . . ,YiJ)

�. Let
θi = (θi1, . . . ,θiD)

�, i = 1, . . . ,n, be a latent random vector, composed of in-
dependent standard normal variables. Furthermore, it is assumed that (Yi,θi)
are independent across subjects and that observations Yi j are conditionally in-
dependent given θi. With particular attention to the multidimensional two-
parameter logistic (2PL) IRT model, the conditional probability of giving a
positive response to a specific item is defined as

Pi j = P(Yi j = 1|θi;β j,α1 j, . . . ,αD j) =
exp(β j +α1 jθi1+, · · ·+αD jθiD)

1+ exp(β j +α1 jθi1+, · · ·+αD jθiD)
,

where β j is the intercept and αd j, d = 1, . . . ,D, are the slope parameters. The
vector of unknown model parameters is γ = (α�

1 , . . . ,α�
D ,β

�)�, with αd =
(αd1, . . . ,αdJ)

�, d = 1, . . . ,D, and β = (β1, . . . ,βJ)
�; the vector γ has dimen-

sion J+ JD, which, in some applications, can be very large.
Given the responses y, realization of Y = (Y�

1 , . . . ,Y�
n )

�, the marginal
likelihood for γ can be obtained by integrating out the unobserved θ values
from the complete likelihood L(γ;y) = ∏n

i=1 f (yi|θi;γ)φ(θi), where f (yi|θi;γ)
is a Bernoulli-type probability function based on Pi j and φ(·) denotes the den-
sity of a multivariate standard normal distribution with independent compo-
nents. Thus, the marginal log-likelihood does not have a closed-form expres-
sion, since the D-dimensional integral does not have an analytic solution and
requires numerical approximations. The most common methods for estimating
the item parameters are based on the EM algorithm, approximating the inte-
grals using Gaussian or adaptive quadrature procedures, or on suitable MCMC
algorithms for handling with the high dimension of the integrals.

3 The boosting algorithm

We consider the boosting algorithm introduced in Battauz & Vidoni (2021),
with the negative log-likelihood as objective function. Starting from a model
that includes only the intercept terms, only two parameters are updated at each
iteration of the algorithm, hence following a component-wise approach. The
starting point of the algorithm poses a very challenging issue, since the gra-
dient is null making any gradient descent method unable to move from it. A
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peculiar feature of the method is that it exploits any local non-convexity of the
objective function, since the gradient vector and the Hessian matrix are used
to define two alternative directions. These are the classical Newton-type di-
rection and a negative curvature direction given by the eigenvector associated
with the most negative eigenvalue (if any) of a 2×2 submatrix of the Hessian
matrix. More specifically, at step k of the boosting algorithm, the Newton-type
direction for each pair of parameters indexed b,c = 1, . . . ,J(D+ 1), b < c, is
given by:

s(k)bc =−Ĥ(k−1)
bc

−1
ĝ(k−1)

bc , (1)

while the negative curvature direction is:

d(k)
bc =−sign

{(
ĝ(k−1)

bc

)�
û(k−1)

bc

}
û(k−1)

bc , (2)

where ĝ(k−1)
bc and Ĥ(k−1)

bc are the gradient and the Hessian computed at step
k − 1, and û(k−1)

bc is the eigenvector corresponding to the minimum negative
eigenvalue of Ĥ(k−1)

bc . The algorithm computes the variation of a quadratic ap-
proximation of the objective function for all the pairs of parameters in both
the directions, and selects the one leading to the largest decrease. The algo-
rithm represents a particular application of the optimization method proposed
by Gould et al. (2000), who proved the convergence to second-order critical
points. Since the algorithm converges to the maximum likelihood estimates, a
suitable stopping criterion is necessary to obtain regularized estimates.

4 A real-data example

The proposal was applied to the responses of 1027 Italian citizens to some
items of the 2017 Eurobarometer survey regarding the area that people thinks
that the decisions should be made at the European level. Table 1 reports the
items and the estimated parameters. The number of iterations of the algo-
rithm as well as the number of latent variables were selected by 5-fold cross-
validation. The table also reports the maximum likelihood estimates (MLEs)
obtained with the R package mirt and using the quartimax rotation, which was
chosen for the higher similarity of the solution. It is possible to observe that
the MLEs tend to assume more extreme values, while the boosting procedure
provides regularized estimates. Both the methods identify a first dimension
strongly related to all the items. The interpretation of the second dimension
seems a bit more clear using the boosting algorithm, since it reveals a positive

correlation between the areas of terrorism, immigration, democracy and peace
(that present the highest estimated discrimination parameters). However, the
areas of energy supply, environment, investment and job creation are also re-
lated to this dimension.

Table 1. Items of the Eurobarometer survey included in the analysis and parameter
estimates.

boosting MLE
QC7 Areas where more

decision-making should
take place at a European
level

β j α1 j α2 j β j α1 j α2 j

1 Fighting terrorism 3.07 4.02 1.61 6.10 -8.80 2.83
2 Dealing with health and

social security issues
1.02 3.37 0.00 1.10 -3.55 -0.68

3 Promoting equal treat-
ment of men and women

1.41 3.34 0.00 1.45 -3.37 -0.54

4 Promoting democracy
and peace

1.95 2.99 0.92 2.08 -3.37 0.21

5 Securing energy supply 1.78 3.27 0.44 1.87 -3.49 -0.06
6 Dealing with migration

issues from outside the
EU

2.36 3.32 1.06 2.49 -3.73 0.33

7 Protecting the environ-
ment

2.41 4.74 0.58 2.46 -4.87 -0.38

8 Stimulating investment
and job creation

1.80 4.41 0.74 2.02 -5.06 -0.24
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ABSTRACT: A trustworthy application of Artificial Intelligence (AI) requires to mea-
sure in advance its possible risks. When applied to regulated industries, such as bank-
ing, finance and insurance, Artificial Intelligence methods lack explainability and,
therefore, authorities aimed at monitoring risks may not validate them. To solve this
issue, eXplainable Artificial Intelligence (XAI) methods have to be developed.
In this paper, we introduce an alternative XAI method, based on Lorenz Zonoids, that
is statistically normalised and therefore more suitable to the risk management con-
text. The application, focused on data involving more than 15,000 small and medium
companies asking for credit, allows to further stress the benefits deriving from our
proposal.
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1 Introduction

The key requirement for trustworthy Artificial Intelligence (AI) methods is
their attitude to measure the risks deriving from their use. When applied to
regulated fields, such finance and health, AI methods need to be validated by
national regulators. It is worth noting that AI methods typically rely on the
implementation of complex machine learning models which provide high pre-
dictive accuracy at the expense of explainability. This represents a problem for
the regulated industries, where comprehensible results have to be made avail-
able in order to detect risks, especially in terms of the factors which can cause
them. To avoid that wrong actions can be taken as a consequence of “auto-
matic” choices, AI methods need to explain the reasons of their classifications
and predictions.
In this paper, we propose a new explainable Artificial Intelligence method,
based on the combination between the Shapley value approach (see, e.g. Sh-
paley, 1953) and the Lorenz Zonoid tool described in Giudici and Raffinetti
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(2020). Shapley values belong to the class of local explanation methods, as
they aim to interpret individual predictions in terms of which variables mostly
affect them. Lorenz Zonoids instead are a global explanation method, as they
aim to interpret all model predictions as a whole, in terms of which variables
most determine them, for all observations.
We apply our methodology to a challenging problem: the prediction of a bi-
nary variable, representing the credit default, through a large set of balance
sheet variables.
Next section describes the methodology, while Section 3 illustrates the empir-
ical findings obtained applying our proposal to financial data.

2 Methodology

Following GIudici and Raffinetti (2021), we consider, for financial risk man-
agement purposes, a global explainable AI method, named Shapley-Lorenz de-
composition, which combines the interpretability power of the local Shapley
value game theoretic approach (see, e.g. Shapley, 1953) with a more robust
global approach based on the Lorenz Zonoid model accuracy tool (see, e.g.
Giudici and Raffinetti, 2020).
The Lorenz Zonoids, originally introduced by Koshevoy and Mosler (1996),
were further developed by Giudici and Raffinetti (2020) as a generalisation
of the ROC curve in a multidimensional setting and, therefore, the Shapley-
Lorenz decomposition has the advantage of combining predictive accuracy
and explainability performance into one single diagnostics. Furthermore, the
Lorenz Zonoid is based on a measure of mutual variability that is more robust
to the presence of outlying (anomalous) observations, with respect to the stan-
dard variability around the mean.
The Shapley-Lorenz decomposition expression is the result of a combination
between the Shapley value-based formula and the Lorenz Zonoid tool. For-
mally, given K explanatory variables, the contribution of the additional variable
Xk, expressed in terms of the differential contribution to the global predictive
accuracy, equals to

LZXk(π̂) = ∑
X ′⊆C (X)\XK

|X ′ |!(K −|X ′ |−1)!
K!

[LZ(π̂X ′∪Xk
)−LZ(π̂X ′ )], (1)

where: π̂ is the estimated probability of default; the term [LZ(π̂X ′∪Xk
)−LZ(π̂X ′ )]

measures the marginal contribution provided by the inclusion of variable Xk;
K is the number of available predictors; C (X)\Xk is the set of all the possible

model configurations which can be obtained with K − 1 variables, excluding
variable Xk; |X ′ | denotes the number of variables included in each possible
model.
Note that he Lorenz Zonoids LZ(π̂X ′∪Xk

) and LZ(π̂X ′ ) in equation (1) can be
computed by resorting to the covariance operators, i.e.,

LZ(π̂X ′∪Xk
) =

2
∑n

i=1 π̂iX ′∪Xk

Cov(π̂X ′∪Xk
,r(π̂X ′∪Xk

)) and

LZ(π̂X ′ ) =
2

∑n
i=1 π̂iX ′

Cov(π̂X ′ ,r(π̂X ′ )),

where r(·) denotes the rank score.
The Shapley-Lorenz decomposition presents as an agnostic eXplainable Ar-
tificial Intelligence method which can be applied to the predictive output, re-
gardless of which model and data generated it.

3 Application

We apply our proposed method to data supplied by a European External Credit
Assessment Institution (ECAI) specialised in credit scoring for P2P platforms
focused on SME commercial lending. In summary, the analysis relies on a
dataset composed of official financial information, extracted from the balance-
sheets of 15,045 SMEs, mostly based in Southern Europe, for the year 2015.
The information about the status (0 = active, 1 = defaulted) of each company
one year later (2016) is also provided. The observed proportion of defaulted
companies is equal to 10.9%. In order to lead our analysis, we apply a lo-
gistic regression model after the data is split in a training set (80%) and a
test set (20%). We then calculate, on the same split, the contribution of each
of the nineteen explanatory variables to the estimate of the probability of de-
fault, using two explainable AI methods: the Shapley value approach and the
Lorenz-Shapley approach that we propose. Table 1 displays the result of the
comparison. From Table 1 note that the variable which most contributes to the
prediction of default, according to the sum of the Shapley values, is Variable 8:
(Profit or Loss before tax + Interest paid)/Total asset, followed at a consider-
able distance by Variables 13 and 14 (both related to EBITDA) and by Variable
3 (Total Assets/Total Liabilities). In terms of G2 (deviance), instead, the dif-
ferences between Variable 8 (the highest contributor) and Variables 14, 15 and
3 are lower. The role that Variable 13 has in terms of Shapley value is replaced
by Variable 15. The first column of Table 1, giving the Shapley Lorenz values,
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dataset composed of official financial information, extracted from the balance-
sheets of 15,045 SMEs, mostly based in Southern Europe, for the year 2015.
The information about the status (0 = active, 1 = defaulted) of each company
one year later (2016) is also provided. The observed proportion of defaulted
companies is equal to 10.9%. In order to lead our analysis, we apply a lo-
gistic regression model after the data is split in a training set (80%) and a
test set (20%). We then calculate, on the same split, the contribution of each
of the nineteen explanatory variables to the estimate of the probability of de-
fault, using two explainable AI methods: the Shapley value approach and the
Lorenz-Shapley approach that we propose. Table 1 displays the result of the
comparison. From Table 1 note that the variable which most contributes to the
prediction of default, according to the sum of the Shapley values, is Variable 8:
(Profit or Loss before tax + Interest paid)/Total asset, followed at a consider-
able distance by Variables 13 and 14 (both related to EBITDA) and by Variable
3 (Total Assets/Total Liabilities). In terms of G2 (deviance), instead, the dif-
ferences between Variable 8 (the highest contributor) and Variables 14, 15 and
3 are lower. The role that Variable 13 has in terms of Shapley value is replaced
by Variable 15. The first column of Table 1, giving the Shapley Lorenz values,
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indicate, instead, that Variable 8, with a value of 0.16, and Variable 3, with a
value of 0.11, are one magnitude order higher than the others. This indicates
a more clear cut choice, with only two variables being selected: a measure
of leverage, and a measure of profitability. In the latter case, only the most
contributing one, among the several that measure profitability, is chosen.

Table 1: Marginal contribution of each explanatory variable in terms of: Shapley-Lorenz
Zonoids, G2 and total Shapley values

Variable Shapley-Lorenz G2 Shapley
Total assets/Equity 0.00 0.16 2.53
(Long term debt + Loans)/Shareholders
Funds

0.00 0.54 -202.80

Total assets/Total Liabilties 0.11 1088.12 -1273.97
Current assets/Current Liabilties 0.05 553.68 -641.69
(Current assets - Current assets:
stocks)/Current Liabilties

0.00 479.06 -93.51

(Shareholders Funds + Non current liabili-
ties)/Fixed assets

0.00 13.16 4180.56

EBIT/interest paid -0.01 411.10 1504.44
(Profit or Loss before tax + Interest
paid)/Total assets

0.16 1633.51 -13115.53

Return on Equity 0.05 826.96 -1993.98
Operating revenues/Total assets 0.06 17.36 -289.46
Sales/Total assets -0.02 10.96 252.59
Interest paid/(Profit before taxes + Interest
paid)

0.01 103.26 379.73

EBITDA/interest paid 0.02 418.00 -1697.31
EBITDA/Operating revenues 0.03 1254.63 -1419.43
EBITDA/Sales 0.02 1122.05 -785.95
Trade Payables/Operating revenues 0.00 14.73 -193.60
Trade Receivables/Operating revenues 0.05 475.40 -585.58
Inventories/Operating revenues 0.01 126.78 1190.47
Turnover 0.02 85.26 1072.37
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1 Introduction

Nowadays, many challenging classification problems, arising from scientific
domains such as chemometrics, computer vision, engineering, and genetics,
among others, have to deal with hundreds or thousands of variables on each
sample. Many contributions in the literature show that inferential methods ben-
efit greatly from the identification of a subset of relevant variables. Dimension
reduction techniques, like Principal Component Analysis (PCA), projection to
latent structures (PLS-DA), single class modeling (SIMCA) and kernel meth-
ods (SVM) are generally adopted to this aim. In some fields of application, like
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in food-authentication, mislabeled and adulterated spectra may appear both in
the calibration and/or validation sets. This contamination produces dramatic
effects on the model estimation, and consequently on its prediction accuracy.
To overcome this issue, a recent proposal in the literature introduces a vari-
able selection step within the Robust Eigenvalue Decomposition Discriminant
Analysis framework (Cappozzo et al., 2019). Under the realistic assumption
that only a portion of the spectral region is relevant for class discrimination, the
procedure i) robustly identifies a subset of wavenumbers onto which building
the decision rule, ii) protects it from potential label noise and outliers, and iii)
simultaneously identifies anomalous samples.

We will recall here the main idea onto which the stepwise algorithm works,
redirecting the interested reader to Cappozzo et al. (2021) for a more detailed
presentation. The detection of p relevant features (out of the whole collection
of P � p available variables) on which to train the classifier has many advan-
tages. Firstly, parameter estimation and interpretation is enhanced; secondly,
loss on predictive power due to the inclusion of irrelevant and redundant in-
formation is avoided. Finally, cost reduction on future data collection and
processing is obtained.

In model-based discriminant analysis, the features that directly depend on
the class membership itself are called relevant variables. Conversely, irrele-
vant or noisy variables do not contain any discriminating power. Their distribu-
tion is completely independent on the group structure. Lastly, redundant vari-
ables essentially contain discriminant information that is already provided by
the relevant ones: their distribution is conditionally independent of the group-
ing variable, given the relevant ones.

The algorithm starts from the empty set and, at each iteration, the inclusion
of a relevant variable into the model is evaluated, based on its robustly assessed
discriminating power. In a similar fashion, the removal of an existing variable
from the model is also considered. The procedure iterates between variable
addition and removal until two consecutive steps have been rejected.

2 Stability study

In this section, the results of a bootstrap-based analysis will be presented using
data produced using non-parametric re-sampling of the actual data. The aim is
to investigate the stability of the variable selection procedure.

The data we analyze come from the chemometric challenge organized
during the “Chimiométrie 2005” conference (Fernández Pierna & Dardenne,
2007). The learning scenario encompasses N = 215 training and M = 43 test

Training Set
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Figure 1. Starches dataset: mid-infrared spectra of four starches classes.

MIR spectra of starches of G = 4 different classes. For each sample, a total of
P = 2901 absorbance measurements are recorded. A subset of training obser-
vations is displayed in Fig. 1. The aim of the competition was to discriminate
the four different groups, defining a classification rule from the training set.
In addition, outlier detection was advisable: four intentionally corrupted spec-
tra were manually placed in the test set, as described in Fernández Pierna &
Dardenne (2007).

For the first experiment 100 bootstrap datasets, of the same size as the
actual dataset, were generated by sampling with replacement from the train-
ing set. A pattern in the selected variables arises from our results. For each
bootstrapped sample, all models were fitted and the best-fit model was chosen
using the BIC criterion, and the selected wavelengths were recorded. The cho-
sen wavelengths show us which parts of the spectrum are of importance when
classifying samples into different starches types. Results are shown in Fig. 2
through a raster plot. As we expect, there is some variability, due to the fact
that the role of “relevant” and “irrelevant” variable is judged in terms of the set
of already selected features. The wavelengths 997cm−1 and 995cm−1 corre-
spond to spectral distributions of amylose and amylopectin, which are known
to be present in different ratios across the starch classes. They have been se-
lected with higher frequency, respectively 17 and 21 times in 67 runs.

3 Conclusions and further research

We developed a first stability analysis for a recent method for robust variable
selection and classification, applied to spectrometric data. By a bootstrap sim-
ulation study on the learning set, although there has been variability in the
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Figure 2. Results of the stability analysis: for each of the 67 bootstrap samples, the
selected wavenumbers are indicated in a raster plot.

structure of the selected models, some stable pattern arises in results. Further
research is still needed to cast more light on this topic. For instance, to in-
vestigate the sensitivity of the derived decision model, its accuracy on the test
set is worth being analyzed, to establish the level of reliability in the resulting
classification. This would mitigate the use of only a few real data examples
and hence allows a more general discussion of the results.

References

CAPPOZZO, A., GRESELIN, F., & MURPHY, T. B. 2019. A robust approach
to model-based classification based on trimming and constraints. Advances
in Data Analysis and Classification, 1–28.

CAPPOZZO, A., DUPONCHEL, L., GRESELIN, F., & MURPHY, T. B. 2021.
Robust variable selection in the framework of classification with label noise
and outliers: Applications to spectroscopic data in agri-food. Analytica
Chimica Acta, 1153, 338245.
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ABSTRACT: The unexpected and constant increase of demand of commodi-
ties needed to manage the COVID-19 pandemic impacted the supply chain
worldwide. Many countries, fearing shortages of those commodities, applied
restrictions to the export of the national production.

The European Union, since the early stages of the pandemic, has monitored
the procurement of these commodities by the EU Member States, to identify
supply gaps, strong dependencies from extra-EU countries, as well as potential
cases of frauds. Products like personal protective equipment, medicines, diag-
nostic kits, medical devices and (more recently) vaccines were scrutinized by a
inter-service task force.

We illustrate some of the statistical issues encountered in analyzing these
data from various perspectives, in particular the evolution in time of the traded
prices and quantities of the most critical commodities. Robust statistical meth-
ods are still used to identify and rank spikes, level shifts and trends in hundreds
of time series of Customs declarations.
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ABSTRACT: Principal Component Analysys is one of the wides known and used tool
of linear explorative analysis with n observations on k numerical variables, in the most
simple form. Besides the so called reduction of dimensionality achiveded by taking
the first components as new reduced coordinates, the first principal axis can interpreted
as the principal regression line, that is, the straight line which minimizes the sum of
the orthogonal distances of the n points from the line, in a k dimensional space. Of
course this interpretation of a principal lines relies on the assumption of linearity of
relationships between variables, even if not conjointly normal. In this paper we pro-
pose an approach which searchs for a parametric curve f(t) in a k dimensional space,
with some constrains for curvature or length. An extension is given to k components )
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1 Introduction

In a classical explorative phase of the analysis of a set X of data with n ob-
servations on k numerical variables, Principal Component Analysis (PCA) is
often used to obtain reduction of dimensionality achieved by taking the first
components as new reduced coordinates, but in general to have an insight in
the multiple correlation structure among variables.

In so far, the first principal axis can interpreted as the principal regres-
sion line, that is, the straight line which minimizes the sum of the orthogonal
distances of the n points from the line, in a k dimensional space. Of course
this interpretation of a principal lines relies on the assumption of linearity of
relationships between variables, even if not conjointly normal.

However, if the real interdependence structure between variables is not
linear, the components could be not meaningful. Furthermore the distribution
of the optimal distances from the first component could be not very regular.

Similar considerations could be made for components successive to the
first, and this can be highlighted by appropriate residual analyses.

Indeed when looking for a dependence of a variable from another variable,
we are not usually restricted to linear relationships, as estimated through lin-
ear regression, but we culd also use non parametric techniques, at least in an
exploratory step of the analysis and with poor knowledge about the theoretical
model which generated observed data. In this context usually some smooth
functionis used which minimizes a compromise between fitting to data and
smoothness.

If we are given a set of k variables, without a clear assignment of the roles
of dependent and explicative variable, in some situation we would like to study
multiple mutual interdipendence between variables, without the constraint of
linearity.

Something similar is made in functional principal component analysis,
when seeking for reduction of dimensionality with functional data.

In this paper we propose an exploratory tool, called smoothed PCA, which
seek for function f(t) in a k dimensional space, close to observed points but
sufficiently rough. An extension is given to k components.

2 Aim of the method

In our approach we searchs for a parametric curve f(t) in a k dimensional
space, close to n observed points with some penalization or constrain P(·) for
curvature or length.

A first component is found solving a least squares penalized problem:

min
f(t)

||X− f(t)|| + λ P(f(t)) (1)

As usual λ is a smoothing parametr which controls the amount of smooth-
ing.

After a first component f1(t) is found, a second component is similarly
found, imposing a costrain of lack of correlation with the first component.
Further components could be found in a similar way, even if this aspect is not
uniquely solved till now.

The choice of λ could be made by means of cross validation techniques.

3 Explicit form of the approximant function.

The first problem we dealt with was the choice of the function f(t), which of
course cannot be totally free. A natural choice was to seek for some family of
parametric cubic splines. A possible choice, that we explored first, is to use
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1 Introduction

In a classical explorative phase of the analysis of a set X of data with n ob-
servations on k numerical variables, Principal Component Analysis (PCA) is
often used to obtain reduction of dimensionality achieved by taking the first
components as new reduced coordinates, but in general to have an insight in
the multiple correlation structure among variables.

In so far, the first principal axis can interpreted as the principal regres-
sion line, that is, the straight line which minimizes the sum of the orthogonal
distances of the n points from the line, in a k dimensional space. Of course
this interpretation of a principal lines relies on the assumption of linearity of
relationships between variables, even if not conjointly normal.

However, if the real interdependence structure between variables is not
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model which generated observed data. In this context usually some smooth
functionis used which minimizes a compromise between fitting to data and
smoothness.

If we are given a set of k variables, without a clear assignment of the roles
of dependent and explicative variable, in some situation we would like to study
multiple mutual interdipendence between variables, without the constraint of
linearity.

Something similar is made in functional principal component analysis,
when seeking for reduction of dimensionality with functional data.

In this paper we propose an exploratory tool, called smoothed PCA, which
seek for function f(t) in a k dimensional space, close to observed points but
sufficiently rough. An extension is given to k components.

2 Aim of the method

In our approach we searchs for a parametric curve f(t) in a k dimensional
space, close to n observed points with some penalization or constrain P(·) for
curvature or length.

A first component is found solving a least squares penalized problem:

min
f(t)

||X− f(t)|| + λ P(f(t)) (1)

As usual λ is a smoothing parametr which controls the amount of smooth-
ing.

After a first component f1(t) is found, a second component is similarly
found, imposing a costrain of lack of correlation with the first component.
Further components could be found in a similar way, even if this aspect is not
uniquely solved till now.

The choice of λ could be made by means of cross validation techniques.

3 Explicit form of the approximant function.

The first problem we dealt with was the choice of the function f(t), which of
course cannot be totally free. A natural choice was to seek for some family of
parametric cubic splines. A possible choice, that we explored first, is to use
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f(t) =
m

∑
l=1

clBl(t)

where the cl , l = 1,2, . . . ,m, are a set of k−dimensional vectors, and the
Bl(t) are a set of m Basis of splines (cubic) defined on some set of m+4 knots.

An alternative setting, which is the one we use in our presentation, is to
define a function f(t) composed by k−components f j(t).

Each component f j(t) is a natural spline, with m knots zl , with l = 1,2, . . . ,m,
each interpolating m points for each of the j dimension. With this setting,
the unknown quantities of the problems are the m× k coordinates of the m
k−dimensional points Ql , with l = 1,2, . . . ,m.

This points could be maybe called principal points, but for now we simply
use them as multivariate knots.

4 The roughness, or penalty, function.

The penalty function P(·) is defined as a measure of the curvature in Rk. Since
here we have a curve in Rk, the measure of curvature could be not so easy, but
with the definition of f(t) as a set k natural splines, the curvature can be easily
defined as the sum of the k curvatures of the single splines, based as usual on
second derivatives, so that the simpler formulation is:

P(f(t)) =
k

∑
j=1

∫
[ f ′′j (t)]

2dt

This formulation will allow to express the penalty P(·) as a simple func-
tion of the higher coefficients of the piecewise polynomials which define the
splines, and some tricks is used in order to manage with penalty term as it were
a vector of residuals.

5 Numerical algorythms

The minimzation problem in (1), for a fixed value of λ is not an easy problem,
since in the minimization problem the n optimal orthogonal projections ti, i =
1,2, ...,n of the n observed points on the parametric curve f(t) must be found
solving n optimization sub-problems, so that the problem cannot be splitted in
k simpler penalized problems. For each possible curve f̂(t), a set of optimal
points should be recomputed.

At the present moment promising results are obtained with a double Levenberg-
Marqadt type optimization, modified for the peculiarity of the problem. In our
setting we tried to insert the penalization term in a least squares form.

A R package smoothPCA is under construction, which tries to use as
much as possible existing optimized routines for the majority of steps.

The problem of the choice of the number of knots, m, is still open, even if it
seems to be not so crucial as the choice of λ, for which some bounding values
are proposed. Satisfactory solutions are obtained using as starting points a
linear set of points Ql computed along the line of the first principal component.

6 Exploratory analysis

The utility of the results of this techniques in exploratory analysis, relies in
the possibility of giving a sort of multidimensional measure of conjoint non-
linearity, together with the possibility of describing observed points in a re-
duced space obtained by non linear parametric transformations.

Some example will be presented on standard dataset
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Hidden Markov models with two regimes

Consider one ordinal response observed on n units at T time occasions. So
Yit denotes the response of unit i, i ∈ I = {1, . . . ,n}, at occasion t, t ∈ T =
{1, . . . ,T}, with Yit ∈ C = {1, . . . ,c}. The response is assumed to reflect the
levels of unobservable latent constructs Lit , i ∈ I , t ∈ T and can be observed
under two different latent regimes: awareness (AWR) and middle or extreme
categories response style (EMRS) that are captured by binary latent variables
Uit , i ∈ I , t ∈ T . The presence of two regimes is based on the idea that when
required to express their opinion on one item, respondents either identify their
true preference into one category on the rating scale or, when in doubt or reluc-
tant to disclose their opinion, take shelter by opting for the extreme or middle
categories. These are the cases, for example, of patients asked to give a subjec-
tive assessment of their health or disability in daily living, or people required
to evaluate their financial capability; all of them can feel confident or reluctant
to answer. The proposal is a hidden Markov model (HMM) defined by two
components that describe the distribution of the latent variables and the condi-
tional distribution of the response given the latent variables. It generalizes the
models by Bartolucci et al., 2012 to a bivariate latent Markov process. Here,
we describe the main features of the model proposed by Colombi et al., 2021.

The latent Markov model. For every i ∈ I , t ∈ T , the latent construct
Lit (as: health status, financial capability) has a finite discrete state space
SL = {1, . . . ,k}, while the latent binary response style indicator Uit has a
state space SU = {1,2}, where 1 and 2 denote the EMRS and AWR states,
respectively. The latent variables are independent across units and for every
unit, {Lit ,Uit}t∈T is a first order bivariate Markov process with states (u, l),
u ∈ SU , l ∈ SL. The initial probabilities (t = 1) of {Lit ,Uit}t∈T are πi1(u, l),
and πit(u, l|ū, l̄) are the transition probabilities. They are are simplified to
πit(u, l|ū, l̄) = πU |L

it (u|l, ū)πL
it(l|l̄), t = 2, . . . ,T, by assuming that Lit , given its

past, does not depend on the past of Uit and the current Uit depends on its past
and on the contemporaneous latent construct but not on the past of the latent
construct. The row vectors x(m)

i and z(m)
it , m ∈ {L,U}, stand for the covariates,

not necessarily different, influencing the initial and transition probabilities, re-
spectively, of the latent variables. Assuming independence between the latent
variables at the first time, the latent model is specified by the following logit
models: A) a baseline logit model for the initial probabilities of the latent
construct log πL

i1(l)
πL

i1(1)
= α0l +α′

1lx
(L)
i , l = 2, . . . ,k; B) a logit model for the ini-

tial probabilities of the response style indicator log πU
i1(1)

πU
i1(2)

= ᾱ0 + ᾱ′
1x(U)

i ; C)
baseline logit models for the marginal transition probabilities of the latent con-
struct, with reference category the state l̄ of the previous time point, i.e. for
l̄ ∈ SL, log πL

it(l|l̄)
πL

it(l̄|l̄)
= β0ll̄ +β′

1ll̄z
(L)
it , l ∈ SL, l �= l̄, t = 2, . . . ,T ; D) a logit model for

the conditional transition probabilities of the response style indicator for each
response style state ū of the previous occasion and for each current state l of

the latent construct log πU |L
it (1|l,ū)

πU |L
it (2|l,ū)

= β̄0lū + β̄′
1lūz(U)

it , l ∈ SL, ū ∈ SU , t = 2, . . . ,T.

The observation model. Independence is assumed among units. The con-
ditional probability functions of Yit , given the EMRS (1, l) and AWR (2, l) la-
tent states are both time and subject invariant, denoted by f (y|l,u), u ∈ SU , l ∈
SL, y ∈ C , for t ∈ T , i ∈ I . Given the EMRS regime, f (y|l,1), l ∈ SL, is pa-
rameterized by the logits log f (y|l,1)

f (y−1|l,1) = φ0l + φ1ls(y),y = 2, . . . ,c, where the

scores are known constants s(y) = ( c
2 − y)/

√
∑c−1

y=1(y− c/2)2, y ∈ C , φ0 gov-
erns the skewness, φ1 the U and bell shape. Given the AWR regime, f (y|l,2),
l ∈ SL, is parameterized by the logits log f (y|l,2)

f (y−1|l,2) = ϕyl ,y = 2, . . . ,c.

Application to Bank of Italy data. We applied the model to the panel data
from the Survey on Household Income and Wealth (Bank of Italy), collected
every 2 years from 2006 to 2016 on 1109 Italian households. The ordinal re-
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tional distribution of the response given the latent variables. It generalizes the
models by Bartolucci et al., 2012 to a bivariate latent Markov process. Here,
we describe the main features of the model proposed by Colombi et al., 2021.

The latent Markov model. For every i ∈ I , t ∈ T , the latent construct
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= ᾱ0 + ᾱ′
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Figure 1. Observation probability functions of AWR and EMRS respondents in the two
latent states of the perceived financial condition.

sponse of interest is the perception of the household’s financial ability to make
ends meet (ve = very easily, e = easily, fe = fairly easily, sd = with some dif-
ficulty, d = with difficulty, gd = with great difficulty), the covariates are: G
(female, male), J (Jse: self-employee, Jhrs: housekeeper/retired/student, em-
ployee), CH (with children, no children), D (with debts, no debts), S (with
savings, no savings), E (up to secondary school, over high school), R (no risk
averse in managing financial investments, risk averse), with the reference cate-
gories being in italics. The minimum BIC corresponds to the model with k = 2
states, meaning that households can be grouped according to whether they feel
financially confident (l = 1) or deal with financial stress (l = 2). Fig. 1 allows
us to characterize the choices of the respondents in 4 latent states. Individuals,
in the financially confident latent state, when in doubt about their perception,
tend to choose with more chance the optimistic extreme points, AWR peo-
ple instead are more incline to the intermediate rates. Reluctant households
(EMRS) in the latent group that deals with financial stress have the highest
probabilities of reporting great difficulties, AWR people in the same group are
more likely to point out just some difficulties. The behavior in the 4 stata is
well distinguished, and optimistic/pessimistic choices are mainly due to the
EMRS tendency. By the sign of the estimates in Table 1 row 1, we deduce
that at the first occasion women, employees, people without savings, with high
education and risk averse are with higher probability in a worse financial sta-

Table 1. Estimates (EM algorithm) of the parameters of logit models A, B, C, D.

parameters cst G Jse Jhrs CH D S E R
(α02,α2)

′ 2.8 0.44∗ -1.38∗ -0.75∗ -0.15 0.02 -1.44∗ -1.86∗ -0.35∗

(ᾱ0, ᾱ1)
′ -0.06 -0.03 0.16 0.08 -0.04 0.32 0.63∗ 0.04 0.14

(β021,β121)
′ -0.86 1.32∗ 0.27 -0.49 -0.89∗ 0.48 -1.69∗ -1.16∗ -0.17

(β012,β112)
′ -11.93 0.18 -0.91 -0.21 -0.36 -0.23 8.44∗ 1.38∗ -8.83∗

(β̄011, β̄111)
′ 1.10 0.45 -0.29 0.00 -0.20 0.13 -0.79∗ -0.47∗ -0.06

(β̄021, β̄121)
′ -3.36 -0.05 1.09∗ -0.33 0.45 -0.37 1.97∗ 0.81∗ -0.37

(β̄012, β̄112)
′ 1.91 -0.07 -0.35 -0.23 0.00 -0.05 -0.19 -0.29 -0.39∗

(β̄022, β̄122)
′ 1.69 -0.50 -0.34 -0.08 0.10 -0.07 1.80∗ -0.09 -0.37

cst: constant – ∗ 95% confidence interval does not contain zero

tus. Further, responders with savings show a major propensity to a response
style at the beginning of the survey (row 2). From row 3, it seems that, in
two consecutive moments, women move from a financially confident (l = 1)
condition to a worse status (l = 2) with higher probability, while low-educated
households with children and savings more likely tend to rest in the previous
more comfortable financial status (l = 1). Individuals who have savings and a
low education pass with greater probability from the financial stressed status
(l = 2) to the better condition (l = 1), while financially stressed households
tend to remain in the same worst status with greater probability when they are
no risk averse (row 4). From rows 5-6, it is more likely to change from the
EMRS status (ū = 1) to an AWR behavior (u = 2) for low educated persons
with savings, who currently belong to the group of financially confident house-
holds, while self-employee and low educated respondents with savings show
greater probability of remaining in the EMRS status if in the previous occasion
were reluctant (ū = 1) and in the current time are financially stressed (l = 2).
Who is no risk averse and in the current moment feels to be financially confi-
dent has higher probability of keeping the previous awareness in revealing the
own financial capability. On the other hand, individuals with savings, being in
the latent financially worrying status, tend with more propensity to give up on
the previous AWR behavior and opt for a response style, rows 7-8.
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tus. Further, responders with savings show a major propensity to a response
style at the beginning of the survey (row 2). From row 3, it seems that, in
two consecutive moments, women move from a financially confident (l = 1)
condition to a worse status (l = 2) with higher probability, while low-educated
households with children and savings more likely tend to rest in the previous
more comfortable financial status (l = 1). Individuals who have savings and a
low education pass with greater probability from the financial stressed status
(l = 2) to the better condition (l = 1), while financially stressed households
tend to remain in the same worst status with greater probability when they are
no risk averse (row 4). From rows 5-6, it is more likely to change from the
EMRS status (ū = 1) to an AWR behavior (u = 2) for low educated persons
with savings, who currently belong to the group of financially confident house-
holds, while self-employee and low educated respondents with savings show
greater probability of remaining in the EMRS status if in the previous occasion
were reluctant (ū = 1) and in the current time are financially stressed (l = 2).
Who is no risk averse and in the current moment feels to be financially confi-
dent has higher probability of keeping the previous awareness in revealing the
own financial capability. On the other hand, individuals with savings, being in
the latent financially worrying status, tend with more propensity to give up on
the previous AWR behavior and opt for a response style, rows 7-8.
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ABSTRACT: Semisupervised clustering extends standard clustering methods to
the semisupervised setting, in some cases considering situations when clusters
are associated with a given outcome variable that acts as a “noisy surrogate”,
that is a good proxy of the unknown clustering structure. A novel approach to
semisupervised clustering associated with an outcome variable named network-
based semisupervised clustering (NeSSC) has been recently introduced (Frigau
et al., 2021). It combines an initialization, a training and an agglomeration phase.
In the initialization and training a matrix of pairwise affinity of the instances
is estimated by a classifier. In the agglomeration phase the matrix of pairwise
affinity is transformed into a complex network, in which a community detection
algorithm searches the underlying community structure. Thus, a partition of the
instances into clusters highly homogeneous in terms of the outcome is obtained.
A particular specification of NeSSC, called Community Detection Trees (Co-De
Tree), uses classification or regression trees as classifiers and the Louvain, Label
propagation and Walktrap as possible community detection algorithm. NeSSC
is based on an ad-hoc defined stopping criterion and a criterion for the choice
of the optimal partition of the original data. In this presentation, we provide a
new specification of the NeSSC algorithm that allows us to perform clustering
of time series data. This specification is based on the integration between
Co-De Tree and the Atheoretical Regression Tree (ART) approach introduced
by (Cappelli et al., 2013; Cappelli et al., 2015). ART exploits the concept
of contiguous partitions within the framework of Least Squares Regression
Trees using as a single covariate an arbitrary sequence of completely ordered
numbers K = 1,2, . . . , i, . . . ,N. Tree-regressing the response variable Y on this
artificial covariate resorts to create and check at any node h all possible binary
contiguous partitions of the Yi ∈ h. These splits are the only ones that need to
be checked to detect the binary partition that minimizes the sum of squares
and, indeed, they are generated by using K as covariate. In other words, for the

contiguity property the best split lays in K (or in its subintervals after the split
of the root note has taken place) and the tree algorithm, based on the classical
“reduction in impurity” splitting criterion is forced to identify it. In general,
the use of K as covariate enables ART to generate G different groups having
different means. The effectiveness of the proposed NeSSC-ART combined
approach for time series clustering is demonstrated on simulated and real data

KEYWORDS: network-based semisupervised clustering, community detection
trees, atheoretical regression tree.
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ABSTRACT: In COVID-19 clinical research, identifying homogeneous subgroups of
patients is essential for tailoring treatments. To address this issue from a statisti-
cal point of view, models accounting for unobservable heterogeneity in patients are
needed. We propose latent class mixed models (LCMMs) to model trajectories of clin-
ically relevant biomarkers for COVID-19 and we compared patients in the uncovered
different classes with respect to their baseline clinical characteristics and COVID-19
outcomes.

KEYWORDS: Latent class mixed model, C-Reactive Protein, serum creatinine

1 Introduction

One of the main goals in COVID-19 clinical research is to identify patients’
characteristics associated with different degree of disease severity. Most of
the published paper focus on patients’ characteristics at hospital admission
linking them to the final outcome either intensive care unit (ICU) admission or
death. In this work we applied an alternative approach to evaluate the dynamics
of commonly monitored biomarkers while uncovering subgroups of patients
with specific longitudinal response pattern. In particular, here we focus on

the trajectories of serum creatinine and C-Reactive Protein (CRP) from the
hospital admission.

2 Sample description

A sample of 512 hospitalized patients, admitted by Ente Ospedaliero Can-
tonale COVID-19 dedicated hospital between March 1-May 1 2020, diag-
nosed with COVID-19 and with at least two determinations of Serum crea-
tinine (3546 observations) or CRP (3592 observations) has been considered
for the analysis. Diagnosis of COVID-19 was based on a positive nasopha-
ryngeal swab specimen tested with real-time RT-PCR assay or high clinical
suspicion. The study was approved by the Ethical Committee of the Canton of
Ticino, Switzerland. Demographic and clinical characteristics along with the
comorbidities and symptoms of COVID-19 were recorded at admission time.
Clinical and laboratory parameters have been regularly monitored every 48h
during hospitalization. The median patients’ age was 72 years (IQR [60.75,
80.00]) ranging from 22 to 97 years; 317 (61.9%) were male. 379 patients
(74%) were discharged, 95 patients (18.6%) died and 7.4% were still hospital-
ized. 116 patients (22.7%) in total were admitted to the ICU.

3 Statistical methods

To identify groups of patients with distinct biomarkers’ trajectories over time,
latent class linear mixed model (LCMM Proust-Lima et al., 2017) were ap-
plied. LCMMs generalize traditional Linear Mixed Effects (LME) models, as-
suming that the population is heterogeneous and G unobserved sub-populations
(latent classes), with their own mean profiles of trajectories, may be identified.
Consistently with the literature on latent variable modelling the approach re-
quires the specification of a structural latent model, i.e., a standard linear mixed
model without measurement errors, along with a measurement model, linking
the latent process to the outcome of interest. When heterogeneous population
is assumed, for a subject i belonging to the class ci equal to g (g = 1, . . . ,G), a
latent class-specific process can be defined as

Λi(ti j)|ci=g = X1i(ti j)
′β+X2i(ti j)

′γg +Zi(ti j)
′uig +wi(ti j)

where ti j denotes the time of measurement for subject i (i = 1, . . . ,N) at oc-
casion j ( j = 1, . . . ,ni), X1i(ti j) and X2i(ti j) are vectors of time-dependent
covariates respectively with common fixed effects β over classes and class-
specific fixed effects γg, Zi(ti j) is a vector of time-dependent covariates as-
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sociated with individual class-specific random effects uig and wi(ti j) repre-
sents an autocorrelated process. Then a measurement model is defined as
Yi j|ci=g =H(Λi(ti j)|ci=g+εi j;η) where H is a parametrized monotonic increas-
ing link function (linear, splines, thresholds, etc. depending on the type of the
longitudinal markers), εi j are independent normally distributed errors and rep-
resents a noisy latent process at time. Every subject is assigned to one latent
class only. For each subject, the latent class membership is described by a la-
tent variable ci that equals g if i belongs to class g and probability of latent class
membership is modeled using a multinomial logistic regression according to
covariates X3i:

πig = P(ci = g|X3i) =
eξ0g+X ′

3iξ1g

∑G
l=1 eξ0l+X ′

3iξ1l

where ξ0g is the intercept for class g and ξ1g is the vector of class-specific
parameters related to the time-independent covariates X3i.

Since we are specifically interest in identifying different dynamics over
time for biomarkers only the measurement time from the hospital admission
has been considered as covariate. Splines link functions (with 5 equidistant
knots; Ramsay, 1988) were considered to account for nonlinearities in the lon-
gitudinal response. Several LCMMs were estimated assuming different num-
ber of latent classes and BIC criterion was used to select the optimal number
of latent classes. In presence of more than two classes, Fisher exact test and
Kruskal-Wallis test were used to compare patients clinical features in different
latent classes.

4 Results

The best model for serum creatinine included two latent classes, with 453 sub-
jects assigned to class 1 and 42 to class 2 (BIC = 974.92). At baseline, class
2 differs from class 1 (p-value<0.001) and for patients in class 1 creatine sig-
nificantly declined over time (p-values<0.0001), while class 2 remains stable.
The class-specific mean predicted trajectories are reported in Figure 1(a). Av-
erage posterior probabilities of falling into the class in which the subjects were
classified are equal to 0.957 and 0.804. Examining differences among the two
classes, it emerged that they are associated to diabetes (p-value<0.001), car-
diovascular disease (p-value<0.001) and cough (p-value=0.044). Moreover
considering the patients assigned to the class 1, 20.5% were admitted to the
intensive care unit and 15% died whereas considering the patients assigned to
the class 1, 52.4% were admitted to the intensive care unit and 61.9% died
(both p-values<0.001).

Figure 1. Class-specific mean predicted trajectories for serum creatinine (a) and C-
Reactive Protein (b)

With reference to the model for CRP we found that the three latent classes
model was the best in terms of BIC, with 30 subjects assigned to class 1, 411 to
class 2 and 64 to class 3 (BIC=9716.96). At baseline, class 2 and class 3 differ
from class 1 (both p-values<0.001). Moreover, for patients in class 1 CRP sig-
nificantly increased over time (p-values<0.001) whereas for patients in class 2
and class 3 CRP significantly declined over time (both p-values<0.001) with
larger decrease for class 3. The class-specific mean predicted trajectories are
reported in Figure 1(b). Average posterior probabilities of falling into the class
in which the subjects were classified are equal to 0.807, 0.873 and 0.773. These
classes significantly differ on age (median age in class 1 is 76.50, in class 2 is
72.00 and in class 3 is 67.00, p-value=0.001) and they are associated to dia-
betes, cardiovascular disease and respiratory symptoms. Moreover the classes
are associated to the outcome of the disease (p-value<0.001), the percentage
of death is 66.7% in the class 1, 17.8% in the class 2 and 0% in the class 3.
In order to better understand the relationship between biomarkers evolution
and COVID-19 outcome as a matter of future research the same latent class
framework will be considered and in particular multi-process joint latent class
mixed models will be applied.
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ABSTRACT: Network and multidimensional network (multiplex) data often entail
transitivity and heterogeneity of the nodes. This last aspect is particularly of inter-
est in multiplex data, as nodes’ tendencies to send or receive links is often network-
dependent. Here, a class of latent space models is discussed. This class allows both
to account for different levels of complexity in nodes’ heterogeneity and for recurring
symmetric relations between the nodes, via the inclusion of a shared latent space. The
frameworks is quite general, as both weighted and binary networks are considered.
Inference is carried out within a hierarchical Bayesian framework, while a Markov
Chain Monte Carlo algorithm is used for estimation of model parameters.
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1 Introduction

Network data are relational data representing interactions among a set of ac-
tors, the nodes. Interactions among pairs of nodes are represented as links
binding them, the edges. Depending on the type of relation represented in a
network, such links can either be binary, indicating the presence or absence of
a relation, or weighted, expressing the “strength” of the interaction between
pairs of nodes. Moreover, when multiple relationships are observed among
the same set of nodes, a particular type of network can be defined, that is a
multidimensional network (or multiplex). Observed network data can display
different characteristics, and these may have a direct impact on their structure.
Two common features are transitivity (“a friend of my friend is my friend”)
and heterogeneity of the nodes. Building on a previous work (D’Angelo et al.,
2020), we propose to address the presence of the first feature by defining a
shared, low dimensional, latent space (see Hoff et al., 2002 and Gollini &
Murphy, 2016) underlying the network or multidimensional network. Nodes
are embedded in such latent space, with the main assumption that there prox-
imity denotes similarity and hence a larger probability to interact in the ob-
served network. Node-specific sender and receiver effects are then introduced

to flexibly model heterogeneity in the data (see Hoff, 2005). Last, the possi-
bility of different link functions can be considered (see Sewell & Chen, 2016),
to adapt the framework to either binary or weighted networks.

2 The models

Given a set of n nodes, i, j = 1, . . . ,n, we can define a multidimensional net-
work as a collection of K adjacency matrices: Y =

{
Y(1), . . . ,Y(k), . . . ,Y(K)

}
.

A single network can be viewed as a specific case of Y, when K = 1. In the
case of binary networks, the general entry y(k)i j will be either 1, if nodes i and

j are connected, or 0, if they are not. Instead, in weighted networks y(k)i j will
correspond to the weight associated to the interaction between nodes i and j
in network k, that is the “strength of their interaction”. Generally, we assume
that:

f
(

E
[
y(k)i j

])
= α(k)φ(k)

i j −β(k)di j,

where f (·) is some link function, depending on the type of edges consid-
ered. Similar specifications to those employed in generalized linear mixed
models can be used for f (·) (Sewell & Chen, 2016). α =
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on the presence or absence of the effects, g(·, ·) can be defined as:

g(·, ·)=





1 if both effects are NULL

θ(k)
i if receiver effects are NULL

γ(k)j if sender effects are NULL
θ(k)i +γ(k)j

2 if neither the receiver and the sender effects are NULL

Different combinations between g(·, ·) specifications and the three scenarios
give rise to a set of 9 latent space models, incorporating varying degrees of
heterogeneity.

Last, inference is carried out within a hierarchical Bayesian framework,
and a Markov Chain Monte Carlo algorithm is employed for estimation of
model parameters.

3 Conclusion

A class of latent space models for network and multidimensional networks
is discussed. The models allow to flexibly account for transitivity and het-
erogeneity in network data, for both binary and weighted edges. Currently,
only the class of models for binary networks is implemented in the spaceNet
R package (https://CRAN.R-project.org/package=spaceNet),
with the plan of including those for weighted networks in the near future.
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1. Introduction
Our motivation is report of the European Insurance and Occupational Pensions 
Authority (EIOPA, 2017), encouraging to study the dynamics of interconnectedness 
between institutions. In the present article we use the Dynamic Time Warping 
(DTW - algorithm to determine the similarity between time series, which may be of 
different length and are distorted (stretched or shifted) in relation to the time axis) in 
two ways in the different market states: 1) to evaluate the suitability of Minimum 
Spanning Trees’ topological indicators in the context of SR; 2) to construct the
MST, to establish the similarity between the time series of the DeltaCoVaR. In the 
paper we analyze the dynamics of indirect connections between insurance 
companies that result from market price channels. We propose as in (Denkowska 
and Wanat, 2020) a hybrid approach to the analysis of interlinkages dynamics based 
on combining the copula-DCC-GARCH model and Minimum Spanning Trees (MST
- connected and acyclic graph with the smallest sum of weights assigned to each 
edge; vertices are insurance institutions  and the edges connect those lying at 
relatively small distances). The MST topology shows the links between institutions 
in the context of the possibility of propagating SR. We establish the similarity of 
time series’ topological indicators of MST in periods of financial crises and outside 
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of crises. Moreover, we examine the contribution of a single insurer to the systemic 
risk of the European insurance sector using the measure DeltaCoVaR (cf. 
Denkowska and Wanat, 2021).  
SR in the financial sector was analyzed by: Bierth et al. (2015), Kanno (2016), 
Giglio et al. (2016), Kaserer (2018) and risk infection is studied by Hautsch et al. 
(2015). The paper (Petitjean et al. 2011) shows that the non-parametric DTW 
measure of similarity is better than other measures, such as the Pearson correlation 
coefficient. 

2. Data and Methodology 
We study the stock quotes of 38 European insurance institutions, most of them from
the list of the top 50 insurance companies in Europe based on total assets. We 
analyze weekly logarithmic returns for the period from January 7th, 2005 to 
December 20th, 2019. 
As in (Denkowska and Wanat, 2020) we carry out the analysis of the dynamics of
interconnections between insurance companies using a new hybrid approach based 
on the combination of the copula-DCC-GARCH model and MST. For each period t, 
we determine the "distance" matrix between insurance companies using the metric:

and the Kruskal algorithm (Mantegna and Stanley, 
1999), we construct with 38 vertices and 37 edges.
Based on the trees thus obtained we determine the time series of 
the following topological network indicators (Denkowska and Wanat, 2020): 
Average Path Length (APL - the average number of steps taken along all the shortest 
paths connecting all possible pairs of network nodes), Maximum Degree (Max.deg-
highest number of edges arising from a vertex). Parameters „alpha” of the power law 
of the degree distribution, Network Diameter (length of the longest geodesic path 
between any two nodes), Rich Club Effect (RCE-well-connected vertices connect 
also one with another), Assortativity (graphical measure of the way vertices connect 
due to their degree). 
Next we determine the DTW distance between the series in the following periods: 
- the period of two subprime crises and excessive public debt; (February 8th, 2008-
March 1st, 2013 - Subprime Mortgage Crisis (SMC)
- the period of crisis associated with the beginning of the migration crisis in Europe; 
(7th, 2015 to September 23rd, 2016) - Immigrant (I)
- the period of the crisis in France associated with strikes, and in Italy due to the 
ever-growing public debt; (April 21st, 2017 - May 11th, 2018 - France and Italy 
Crisis( FIC), 
- the period- normal state – Normal (N), i.e. our periods: ( January 7th, 2005 - 
February 1th, 2008), (March 8th, 2013 - July 31th, 2015), (September 30th, 
2016 – April 14th, 2017), (May 18th, 2018 – December 20th, 2019). 
DTW is one of the algorithms for measuring the similarity between two time series 
of different length that may differ in time (Raihan, 2017).  

By examining the contribution to SR of all the analyzed insurance institutions, we 
establish a standard DeltaCoVaR measure for each of them described in the paper
(Denkowska and Wanat, 2021).

2. Empirical results and discussion
MST’s topological indicators constructed based on tail dependencies present 
different behaviors in the distinguished market states (Fig. 1). The analysis shows 
that during crises, MSTs shrink, as evidenced by the decreasing APL and Diameter 
and the growing Max.Deg. which is favorable to the potential spread of undesirable 
effects of the shocks on the insurance market. MSTs are scale-free in the studied 
period. The mean RCE for k = 4, where k is the degree of the vertex, is on a similar 
level. MSTs are non-assortative according to the previous definition, as the numbers 
are negative throughout the period considered. 
The DTW results indicate a greater similarity of the APL time series fragments, 
separately in the periods of SMC, I, FIC, and in normal periods. The Diameter time 
series is noticeably divided into the group of SMC and FIC crises and a separate 
group of Normal states. The Max.Degree indicator remained at a similar level during 
the crises. During the entire period 2005-2019 MSTs are scale-free, as alpha has 
values in the range (2, 3). MSTs are not assortative in the entire analyzed period. 
We present the average DeltaCoVaR for all analyzed institutions. We study the 
similarity of a fragment of this time series from the SMC period to other periods of 
crises or normal periods. SMC stands out in a separate group. Thus, not only the size 
of the SR contribution is observable on the basis of the time series itself, but also the 
dynamics of this contribution as assessed by the DTW is different. Also, the FIC or I 
crises are outside the group of similarities with most normal periods.
Now, using Kruskal’s algorithm we construct MSTs based on the DTW( ) distance 
matrix which show the similarity of DeltaCoVaR time series between pairs ( ) of 
insurers in states SMC, I, FIC and N. As a result of this analysis, we found that 
during the SMC crisis, the MST graph has the most compressed structure, as 
evidenced by the smallest APL, the largest MaxDegree and the smallest 
Assortativity (Tab. 1).  

3. Conclusions
The presented analysis is the first work in the literature in which the possibilities of 
identifying SR in the insurance sector with the use of a hybrid model are determined 
by the copula-DCC-GARCH based MST with the DTW algorithm. Then, we use the 
DTW algorithm to analyze the similarity in different market regimes time series of 
the MST topological indicators. The results obtained confirm the possibility of 
identifying SR in the insurance sector using the presented model.
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Table 1. DTW (DeltaCoVaR )- based
MST topological indicators. 

 
     Figure 1. Topological indicators.                                                                                 
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ABSTRACT: In this article we present a two-step estimation approach applied to
multilevel latent class analysis (LCA) with covariates. In the first step, the measure-
ment model for the low-level and the high-level latent class variables is estimated.
In the second step, covariates are added as predictors of latent class memberships,
keeping the measurement model parameters fixed at their first step values. Separating
the estimation of the structural from the measurement model generates a significant
computational gain with respect to simultaneous estimation, greatly simplifying model
building. Finite sample properties of the resulting estimator are investigated in a broad
simulation study.
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1 Introduction
Latent class (LC) analysis is an approach used to create a clustering of a set
of observed variables, based on an underlying unknown classification. In the
multilevel extension of the baseline LC model, the respondents are assumed to
belong to higher level groups - e.g. students nested in schools, or households in
countries. Multilevel LCA is becoming increasingly popular in various fields.
In most applications the focus is on lower level clustering, and on the differ-
ence in the distribution of the lower level classes in higher level units.

In LCA creating a clustering is usually only the first step for applied re-
searchers. The research interest often lies in including external variables as
clustering predictors at a later stage of the analysis. While in single level
LCA different approaches are available for relating LC membership to ex-
ternal variables, in multilevel settings only two classical approaches are used,
both known to be suboptimal, namely the one-step and classical three-step
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MST topological indicators. 

 
     Figure 1. Topological indicators.                                                                                 
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N SMC I FIC
APL 7.18 6.50 8.67 8.42
max.deg 4.00 7.00 4.00 4.00
alpha 2.03 3.6 3.81 3.85
RCE 
(k=2) 0.43 0.44 0.30 0.14
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ABSTRACT: In this article we present a two-step estimation approach applied to
multilevel latent class analysis (LCA) with covariates. In the first step, the measure-
ment model for the low-level and the high-level latent class variables is estimated.
In the second step, covariates are added as predictors of latent class memberships,
keeping the measurement model parameters fixed at their first step values. Separating
the estimation of the structural from the measurement model generates a significant
computational gain with respect to simultaneous estimation, greatly simplifying model
building. Finite sample properties of the resulting estimator are investigated in a broad
simulation study.

KEYWORDS: multilevel latent class analysis; covariates; two-step estimation; pseudo
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1 Introduction
Latent class (LC) analysis is an approach used to create a clustering of a set
of observed variables, based on an underlying unknown classification. In the
multilevel extension of the baseline LC model, the respondents are assumed to
belong to higher level groups - e.g. students nested in schools, or households in
countries. Multilevel LCA is becoming increasingly popular in various fields.
In most applications the focus is on lower level clustering, and on the differ-
ence in the distribution of the lower level classes in higher level units.

In LCA creating a clustering is usually only the first step for applied re-
searchers. The research interest often lies in including external variables as
clustering predictors at a later stage of the analysis. While in single level
LCA different approaches are available for relating LC membership to ex-
ternal variables, in multilevel settings only two classical approaches are used,
both known to be suboptimal, namely the one-step and classical three-step
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approaches. Using the one-step approach the full LC model including covari-
ates is estimated simultaneously (for example, Mutz & Daniel, 2013). Using
the alternative three-step approach, after estimating the measurement model
in step 1, respondents are assigned to latent classes in step 2, and this poste-
rior assigned class membership is related to the predictors of interest through
a multinomial logistic regression in the third step (for example Tomczyk et al.,
2015). However in the second step a classification error is introduced, that if
not corrected for induces systematic bias in the step 3 model.

In the current paper we introduce a two-step approach, extending Bakk &
Kuha (2018)’s work to the multilevel LC model as an alternative to the one-step
and classical three-step approaches, since both are known to be sub-optimal in
single level LC models.

2 The multilevel latent class model
Consider the vector of responses Yi j = (Yi j1, . . . ,Yi jK), where Yi jk denotes the
response of individual i in group j on the k-th categorical indicator variable,
with 1 ≤ k ≤ K and 1 ≤ j ≤ J, where K denotes the number of categorical
indicators and J the number of level 2 units. In addition, we let n j denote
the number of level 1 units within the j-th level 2 unit, with 1 ≤ j ≤ J. For
simplicity of exposition, we focus on dichotomous indicators.

Adopting the nonparametric approach (Laird, 1978), multilevel LC analy-
sis is an extension of the LC models (Goodman, 1974), assuming that level 1
units belong to one of the T categories belong to T categories (“latent classes”)
of an underlying categorical latent variable X , whereas level 2 units belong to
one of the M categories of the group level latent class W . The model for Yi j
can then be specified as

P(Yi j) =
M

∑
m=1

P(Wj = m)
T

∑
t=1

P(Xi j = t|Wj = m)P(Yi j|X = t) (1)

where P(Wj = m) = πm is the probability of group j to belong to class m.
P(Xi j = t|Wj = m) is the probability that individual i in group j belongs to
class t given group membership m. The term P(Yi j|X = t) is the class-specific
probability of observing a pattern of responses given that a person belongs to
class t under the common assumption that item-conditional probabilities not to
depend on the level 2 unit (Vermunt, 2003; Lukociene et al., 2010). Further-
more we make the “local independence” assumption that the K indicator are
independent within latent classes, leading to

P(Yi j) =
T

∑
t=1

P(Xi j = t)
K

∏
k=1

P(Yi jk|Xi j = t). (2)

The multilevel LC model of Equation (1) can be parametrized by means of
multinomial logistic regressions as follows

P(Yi jk|Xi j = t) =
exp(βk

t )

1+ exp(βk
t )
, (3)

for the item-class probabilities,
P(Wj = m) =

exp(δ0m)

1+∑M
l=2 δ0l

, (4)

for the group-level membership probabilities, and

P(Xi j = t|Wj = m) =
exp(γtm)

1+∑T
s=2 exp(γsm)

(5)

for the individual latent class probabilities.
Under the parametrizations (3), (5) and (4), given a sample of J groups,

the model parameters can be found by maximizing

logL(θ1) =
J

∑
j=1

logP(Yi j), (6)

with respect to θ1 = (δ02, . . . ,δ0M,β1
21
, . . . ,βK

TJ
)′.

Level 1 and level 2 covariates can be included to predict class member-
ship. Denoting one level 2 covariate by Z1 j and a level 1 covariate by Z2i j the
multinomial logistic regression for Xi j with a random intercept can be written
as:

P(Xi j = t|Wj,Z1 j,Z2i j) =
exp(γ0tm + γ1tZ1 j + γ2tZ2i j)

∑T
s=1 exp(γ0sm + γ1sZ1 j + γ2sZ2i j)

. (7)

A random slope for the level 1 covariate can be obtained by replacing γ2t
by γ2 jt . Level 2 covariates can be used also to predict group class membership,
but for simplicity we present only a model with covariates on the level 1 LC
variable.

Under the parametrization (7) that now includes covariates, the model for
Yi j|Z j, where Z j = (Z1 j,Z2i j)

′, can be specified as

P(Yi j|Z j) =
M

∑
m=1

P(Wj = m)
T

∑
t=1

P(Xi j = t|Wj = m,Z1 j,Z2i j)
K

∏
k=1

P(Yi jk|Xi j = t),

(8)
which depends on the vector of unknown parameters θ = (θ1,θ2)

′, where
θ2 = (γ12, . . . ,γ1T ,γ22, . . . ,γ2T )

′. The one step approach finds θ̂ by maximizing

logL(θ) =
J

∑
j=1

logP(Y j|Z j), (9)

with respect to θ.
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approaches. Using the one-step approach the full LC model including covari-
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3 A stepwise estimator for multilevel LC model with covariates
Step 1: the ML estimate θ̂1 of θ1 is found as the maximizer of the log-likelihood

of the simple multilevel LC model without covariates.
Step 2: covariates are added to the model. The log-likelihood (9) is maxi-

mized only with respect to θ2, and θ2 is kept fixed at its first step esti-
mates.

Our 2-step estimator is an instance of pseudo maximum likelihood estimation
(Gong & Samaniego, 1981). Such estimators are consistent under very general
regularity conditions (see, for instance, Gourieroux & Monfort, 1995). We
propose to compute the step-two standard errors to account for the uncertainty
about the fixed parameters in the calculation applying the approach proposed
by Bakk & Kuha (2018) for single level LC models to the multilevel setting.

We will setup a simulation study to assess the finite sample properties of
the proposed estimator. To do so, we will generate data with varying sample
sizes at both the lower and higher level, with different levels of class separation
and association between the covariates and class membership. We expect that
the proposed two-step estimator will be unbiased (similarly to the one-step ap-
proach) as opposed to the three step approach, and will be slightly less efficient
than the one-step estimator.
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ABSTRACT: We are concerned in clustering continuous data sets subject to non-
ignorable missingness. Clustering is achieved by a semi-parametric mixture that,
for each subject, considers the joint distribution of the observed variables and the
response-data indicator vector. Estimation is performed by maximizing the smoothed
likelihood via a Majoration-Minimization algorithm.
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1 Introduction

Mixture models permit to achieve the clustering purpose in a rigorous context
but the case where data have missingness is generally neglected. Moreover,
the missing not at random scenario (MNAR; Little & Rubin, 2019), where the
missingness mechanism depends on the missing values even conditionally on
the observed variables, generally requires the missingness mechanism to be
considered to obtain consistent estimators. However, few statistical methods
permit this scenario for clustering.

Two clustering approaches allow data subject to the MNAR scenario to be
analyzed. Chi et al. , 2016 introduce the K-POD algorithm that extends the
K-means algorithm to the case of missing data even if the missing mechanism
if unknown. However, this approach suffers from the standard drawbacks of
the K-means algorithm (i.e., assumptions of spherical clusters and equals pro-
portions of the clusters). Alternatively, using a selection model approach Miao
et al. , 2016 proposed a specific Gaussian mixtures and t-mixtures to analyze
data under MNAR scenario. For such approach, the missingness mechanism
must be specified (probit and logit distributions are generally used). However,
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Mixture models permit to achieve the clustering purpose in a rigorous context
but the case where data have missingness is generally neglected. Moreover,
the missing not at random scenario (MNAR; Little & Rubin, 2019), where the
missingness mechanism depends on the missing values even conditionally on
the observed variables, generally requires the missingness mechanism to be
considered to obtain consistent estimators. However, few statistical methods
permit this scenario for clustering.

Two clustering approaches allow data subject to the MNAR scenario to be
analyzed. Chi et al. , 2016 introduce the K-POD algorithm that extends the
K-means algorithm to the case of missing data even if the missing mechanism
if unknown. However, this approach suffers from the standard drawbacks of
the K-means algorithm (i.e., assumptions of spherical clusters and equals pro-
portions of the clusters). Alternatively, using a selection model approach Miao
et al. , 2016 proposed a specific Gaussian mixtures and t-mixtures to analyze
data under MNAR scenario. For such approach, the missingness mechanism
must be specified (probit and logit distributions are generally used). However,
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this approach produces strong bias if the parametric assumptions (made on the
distribution of the variables or on the missingness mechanism) are violated.

In this paper, clustering is performed via a mixture model that uses a
pattern-mixture model approach with non-parametric distributions. Thus, no
assumptions are made on the data distribution or on the missingness mecha-
nism except that the variables are independent within components. Note that
this assumption is quite standard for semi-parametric mixtures (Levine et al.
, 2011; Kasahara & Shimotsu, 2014). For each mixture component, we es-
timate, for each variable, its probability to be observed and its conditional
distribution given the variables is observed. We emphasize that our concern
is clustering and not imputation or density estimation. Indeed, without adding
assumptions, the distribution of the variables within component cannot be es-
timated by our procedure.

2 Mixture for nonignorable missingness

2.1 The data

The observed sample is composed of n independent and identically distributed
subjects arisen form K homogeneous subpopulations. Each subject is de-
scribed by d continuous variables and some realizations of these variables may
be unobserved. The probability, for a variable, to be not observed is allowed to
depend on the values of the variable itself and the subpopulation membership.

Each subject i is described by a vector of three variables (X�
i ,R

�
i ,Z

�
i )

�

where Xi ∈ Rd is set of continuous variables, Ri = (Ri1, . . . ,Rid)
� ∈ {0,1}d

indicates whether Xi j is observed (Ri j = 1) and Zi = (Zi1, . . . ,ZiK)
� indicates

the subpopulation of subject i (Zik = 1 if subject i belongs to subpopulation
k and otherwise Zik = 0). Each subject belongs to one subpopulation such
that ∑K

k=1 Zik = 1. The realizations of Zi are unobserved and a part of the
realizations of Xi can be unobserved too. Therefore, the observed variables for
subject i are (Xobs�

i ,R�
i )

� where Xobs
i is composed of the elements of Xi such

that Ri j = 1 and the unobserved variables for subject i are (Xmiss�
i ,Z�

i )
� where

Xmiss
i is composed of the elements of Xi such that Ri j = 0.

2.2 General mixture model

We use mixture models in a purpose of clustering and not for density estima-
tion. Clustering aims to estimate the subpopulation memberships given the
observed variables (i.e., the realization of Zi given (Xobs�

i ,R�
i )

�) without as-

sumption on the missingness mechanism (i.e., no assumption are made on the
conditional distribution of Ri | Xi,Zi). The probability distribution function
(pdf) of (X�

i ,R
�
i )

� for subpopulation k (i.e., Zik = 1) is denoted by gk(·). Us-
ing the pattern-mixture model, the pdf (X�

i ,R
�
i )

� is defined by the pdf of the
K-component mixture

g(xi,ri;θ) =
K

∑
k=1

πkgk(xi,ri;τk) with gk(xi,ri;τk) = gk(ri;τk)gk(xi | ri), (1)

where πk > 0, ∑K
k=1 πk = 1 and gk(·;τk) is pdf of component k. The couples

of variables (Xi j,Ri j)
� are assumed to be conditionally independent given Zi.

Thus, the distribution of Ri | Zi is a product of Bernoulli distributions and the
conditional density of Xi | Zi,Ri is defined as the product of univariate densi-
ties. Thus, from (1), the pdf of component k is also defined as

gk(ri;τk) =
d

∏
j=1

τri j
k j (1− τk j)

1−ri j and gk(xi | ri) =
d

∏
j=1

pri j
k j (xi j)q

1−ri j
k j (xi j),

where τk = (τk1, . . . ,τkd)
�, τk j is the probability that Xi j is observed given that

subject i belongs to subpopulation k, pk j(·) is the conditional density of Xi j
given Zik = 1 and Ri j = 1 and qk j(·) is the conditional density of Xi j given
Zik = 1 and Ri j = 0. Integrated out the unobserved variables Xmiss

i , we have

g(xobs
i ,ri;θ)=

K

∑
k=1

πkgk(xobs
i ,ri;τk), with gk(xobs

i ,ri;τk)= gk(ri;τk)
d

∏
j=1

pri j
k j (xi j),

where θ groups all the finite parameters (πk and τk) and all the infinite param-
eters pk j(·). For clustering, the pattern-mixture model should be preferred to
selection model because it does not require to specify the missingness mecha-
nism, allows this mechanism to be nonignorable and permits to easily obtain
the conditional probabilities of the subpopulation membership given the distri-
bution of the observed values defined by

P(Zik = 1 | xobs
i ,ri) =

gk(xobs
i ,ri;τk)

∑K
�=1 π�g�(xobs

i ,ri;τ�)
.

Note that we do not need to estimate qk j(·) for the clustering purpose but
that this implies that we are not able to estimate the distribution of Xi | Zi.
Thus, this approach does not permit to estimate the marginal distribution of
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this approach produces strong bias if the parametric assumptions (made on the
distribution of the variables or on the missingness mechanism) are violated.
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that this implies that we are not able to estimate the distribution of Xi | Zi.
Thus, this approach does not permit to estimate the marginal distribution of
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Xi | Zi without adding assumptions on the missing mechanism. This implies
that the proposed approach can be used for clustering but not for density esti-
mation. Model identifiability is obtained by extending Theorem 8 in Allman
et al. , 2009. Parameter estimation is performed by maximizing the smoothed
likelihood over θ via a MM algorithm like in Levine et al. , 2011. More details
are given in Du Roy de Chaumaray & Marbac, 2020.

3 Conclusion

The proposed method allows continuous data set with non-ignorable missing-
ness to be clustered with no more assumption than the independence within
components. Selecting the number of components is a difficult task that could
be achieved by extending the approach of Kasahara & Shimotsu, 2014 to the
mixed-type data. A procedure of bandwidth selection should be investigated.
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1 Introduction

The new 2019 coronavirus that has originated the COVID-19 disease spread
out quickly from the Chinese city of Wuhan worldwide giving rise to a pan-
demic whose huge effects on national health systems are still evident. It has
been well known that Italy, its Northern regions in particular, was the first
country facing the outbreak in February 2020 to such an extent that the Ital-
ian government needed to impose a nationwide lockdown (on 9 March 2020)
to dastrically reduce the incidence rate and the overfloading of the intensive
care units. Italy faced other two outbreak waves, in October 2020 and then in
March 2021, involving all territories, the Southern ones too. Three and then
five risk profiles have been identified by the Scientific committee engaged by
the national authorities to monitor pandemic’s dynamic in order to differen-
tiate the restrictive measures in the territories. At the beginning of 2021, the
COVID-19 vaccination campaign has been started and is ongoing to this day.
The Italian Civil Protection Department provides, daily, all information related
to the COVID-19 outbreak in Italy at the regional level and, for some variables,
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also at the provincial level even if data reliability is low due to misreporting
and lack of uniformity in the number of swabbed people per region. In this
study we focused on the daily time-series of the cumulative cases over popula-
tion (per 10000 inhabitants) and on the cumulative deaths over population (per
10000 inhabitants), spanning from 2020-02-24 to 2021-02-08, at a regional
level. The aim of the work is to cluster Italian regions based on the afore-
mentioned rates, separately. Being spatial time series, the proposed cluster-
ing appoaches embedded both the spatial and time components by including
a spatial penalization term in the objective function, as proposed by D’Urso
et al., 2019, and a suitable transformation of the time series onto (finite dimen-
sional) vectors of cubic B-splines basis coefficients. To deal with noisy data
and outliers, three robust approaches have been proposed, one based on a ex-
ponential transformation of the distance, the other two based on the trimming
and noise approach, respectively. The paper is structured as follows. Section 2
focuses on the proposed clustering models while Section 3 on the application
to COVID-19 data.

2 The Spatial-temporal clustering based on B-splines: robust meth-
ods

In a formal way, a spatial-time data matrix can be algebraically defined as
(D’Urso, 2000):

X ≡ {xi(t) : i = 1, . . . , I; t = 1, . . . ,T} (1)

where i indicates the generic spatial unit and t the generic time. The time series
{(t,xi(t))} could be seen as the result of collecting a variable X on unit i at the
T times {t = 1, . . . ,T}. We can model each time series by a simple linear
least-squares fit as:

xi(t) =
p

∑
s=1

bs
i Bs(t)+ εi, t = 1, . . .T

where {Bs(·)}p
s=1 are p-dimensional functional basis. For the I time series xi,

i= 1, . . . , I, we will have I vectors of fitted coefficients bi =(b1
i , . . . ,b

s
i , . . . ,b

p
i )

′,
i = 1, · · · , I. For sake of simplicity, we show the results with reference to the
Spatial-Temporal based on Exponential distance Fuzzy C-Medoids clustering
model (ST-BS-Exp-FCMd), even if the same problem can be addressed by
using the Spatial-Temporal Fuzzy Trimmed C-Medoids clustering model (ST-
BS-Tr-FCMd) and the Spatial-Temporal Fuzzy C-Medoids clustering model

with Noise Cluster (ST-BS-Noise-FCMd). The ST-BS-Exp-FCMd model is
defined as follows:

min :
I

∑
i=1

C

∑
c=1

um
ic[1− exp(−β‖bi − b̃c‖2)]+

γ
2

I

∑
i=1

C

∑
c=1

um
ic

I

∑
i′=1

∑
c′∈Cc

pii′um
i′c′

s.t.
C

∑
c=1

uic = 1, uic ≥ 0

(2)

where bi and b̃c are the vectors of coefficients of the B-spline representation of
the i-th spatial time series and of the c-th spatial medoid (c=1,. . . ,C) respec-
tively, while m > 1 is well-known fuzziness parameter. The β parameter is set
as the inverse of the variability of the data and appropriately tunes the distance
according to the variability of the data.
As far as the spatial penalty term is concerned, γ is the tuning parameter of
spatial information. The spatial proximity among the I objects, has been taken
into account by means of the contiguity matrix PI×I where the generic element
pii′ =1 if the object i is contiguous to the object i

′
, 0 otherwise. The uic is the

membership degree of the unit i belonging to the cluster c:

uic =

[
[1− exp(−β‖bi − b̃c‖2)]+ γ

I
∑

i′=1
∑

c′∈Cc

pii′um
i′c′

]− 1
m−1

C
∑

c′=1

[
[1− exp(−β‖bi − b̃′

c‖2)]+ γ
I
∑

i′=1
∑

c′′∈Cc′
pii′um

i′c′′

]− 1
m−1

(3)

For γ = 0, the ST-BS-Exp-FCMd model reduces to its no-spatial version, the
BS-Exp-FCMd clustering model, while the ST-BS-Tr-FCMd and ST-BS-Noise-
FCMd models to their no-spatial versions, the BS-Tr-FCMd and BS-Noise-
FCMd models, respectively.

3 Clustering of Italian regions - COVID-19 data

In this study, we show the results with reference to the ST-BS-Exp-FCMd
model applied to cluster the I=20 Italian regions during T =351 times repre-
sented by the days from 2020-02-24 to 2021-02-08. The optimal number of
clusters has been identified running the model, with γ = 0 and m = 1.5, and
choosing the number of groups that maximizes the Fuzzy Silhouette index.
Then fixed C, the optimal value of γ has been chosen according a heuristic
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procedure based on maximization of the spatial autocorrelation measure intro-
duced in Coppi et al., 2010. To assign each region to a specific cluster we
have set the cut-off value uic ≥ 0.6 (Maharaj & D’Urso, 2011). The clustering
results are reported in Table 1 for both models*. For each one, three clusters
have been selected, whose medoids are denoted in each column header. For the
Total cases over population, two fuzzy units has been identified, Basilicata and
Sicily, the latter characterized by an anomalous increase of infections during
the second wave. For the The total deaths over population due to COVID-
19 desease, two fuzzy units have been identified, Aosta Valley and Sicily; the
former is a global outlier, the latter a local one. We argue that the three clus-
ters matched with three risk levels, from the highest to the lowest one. The

Table 1. Total cases (columns 1-3) and Total deaths (columns 4-6) over population
(per 10000 inhabitants) - 3 clusters memberships

Model with no spatial penalty (γ = γopt) for Total cases over pop. Model with spatial penalty (γ = γopt) for Total deaths over pop.
Region Piedmont Lazio Calabria Trentino-South Tyrol Lazio Calabria

1 Piedmont 1.000 0.000 0.000 0.956 0.023 0.021
2 Aosta Valley 0.697 0.154 0.150 0.563 0.218 0.218
3 Lombardy 0.992 0.004 0.003 0.812 0.094 0.094
4 Trentino-South Tyrol 0.936 0.035 0.029 1.000 0.000 0.000
5 Veneto 0.849 0.083 0.068 0.975 0.014 0.011
6 Friuli-Venezia Giulia 0.688 0.222 0.089 0.850 0.095 0.055
7 Liguria 0.881 0.087 0.032 0.834 0.097 0.070
8 Emilia-Romagna 0.784 0.16 0.056 0.846 0.093 0.061
9 Tuscany 0.095 0.860 0.045 0.194 0.708 0.097
10 Umbria 0.031 0.953 0.016 0.004 0.99 0.007
11 Marche 0.019 0.964 0.017 0.173 0.748 0.079
12 Lazio 0.000 1.000 0.000 0.000 1.000 0.000
13 Abruzzo 0.000 0.999 0.000 0.011 0.978 0.011
14 Molise 0.013 0.943 0.044 0.000 1.000 0.000
15 Campania 0.020 0.964 0.015 0.001 0.997 0.002
16 Apulia 0.018 0.910 0.072 0.001 0.998 0.001
17 Basilicata 0.044 0.433 0.523 0.042 0.744 0.215
18 Calabria 0.000 0.000 1.000 0.000 0.000 1.000
19 Sicily 0.376 0.279 0.345 0.563 0.298 0.139
20 Sardinia 0.027 0.036 0.937 0.000 0.001 0.999

main advantages of this methodology consist in data reduction obtained by
using B-splines coefficients, in robustness by using the exponential, trimming
and noise approaches while spatial information is taken into account adding a
penalty term in the objective function.
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ing, classification and mixture modeling. The R package pivmet includes differ-
ent methods for extracting pivotal units from a dataset, to be exploited for a Markov
Chain Monte Carlo (MCMC) relabelling technique for dealing with label switching
in Bayesian estimation of mixture models. Moreover, consensus clustering based on
pivotal units may improve classical algorithms (e.g. k-means) by means of a careful
seeding.

KEYWORDS: pivotal unit, mixture model, relabelling, consensus clustering.

1 Introduction

The identification of some units which may be representative of the group they
belong to is often a matter of statistical importance and can help avoiding an
extra amount of work when processing the data. The advantage of such pivotal
units (hereafter called pivots) is that they are somehow chosen to be as far as
possible from units in the other groups and as similar as possible to the units
in the same group, and may be beneficial in many statistical frameworks, such
as clustering, classification, and mixture modeling.

The pivmet R package (Egidi et al., 2021) implements various pivotal
selection criteria, graphical tools and the relabelling method (Papastamoulis,
2016) described in Egidi et al., 2018 to deal with ‘label switching’ (Redner
& Walker, 1984), a well-known phenomenon causing nonidentifiability of the
mixture parameters during the MCMC sampling (Frühwirth-Schnatter, 2001).
Compared to other packages, it allows the user to fit their own mixture model
using data augmentation with component memberships either via the JAGS
(Plummer, 2018) or the Stan (Carpenter et al., 2017) software, by specifying
suitable prior distributions. Pivotal units are detected via the similarity matrix
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procedure based on maximization of the spatial autocorrelation measure intro-
duced in Coppi et al., 2010. To assign each region to a specific cluster we
have set the cut-off value uic ≥ 0.6 (Maharaj & D’Urso, 2011). The clustering
results are reported in Table 1 for both models*. For each one, three clusters
have been selected, whose medoids are denoted in each column header. For the
Total cases over population, two fuzzy units has been identified, Basilicata and
Sicily, the latter characterized by an anomalous increase of infections during
the second wave. For the The total deaths over population due to COVID-
19 desease, two fuzzy units have been identified, Aosta Valley and Sicily; the
former is a global outlier, the latter a local one. We argue that the three clus-
ters matched with three risk levels, from the highest to the lowest one. The

Table 1. Total cases (columns 1-3) and Total deaths (columns 4-6) over population
(per 10000 inhabitants) - 3 clusters memberships

Model with no spatial penalty (γ = γopt) for Total cases over pop. Model with spatial penalty (γ = γopt) for Total deaths over pop.
Region Piedmont Lazio Calabria Trentino-South Tyrol Lazio Calabria

1 Piedmont 1.000 0.000 0.000 0.956 0.023 0.021
2 Aosta Valley 0.697 0.154 0.150 0.563 0.218 0.218
3 Lombardy 0.992 0.004 0.003 0.812 0.094 0.094
4 Trentino-South Tyrol 0.936 0.035 0.029 1.000 0.000 0.000
5 Veneto 0.849 0.083 0.068 0.975 0.014 0.011
6 Friuli-Venezia Giulia 0.688 0.222 0.089 0.850 0.095 0.055
7 Liguria 0.881 0.087 0.032 0.834 0.097 0.070
8 Emilia-Romagna 0.784 0.16 0.056 0.846 0.093 0.061
9 Tuscany 0.095 0.860 0.045 0.194 0.708 0.097
10 Umbria 0.031 0.953 0.016 0.004 0.99 0.007
11 Marche 0.019 0.964 0.017 0.173 0.748 0.079
12 Lazio 0.000 1.000 0.000 0.000 1.000 0.000
13 Abruzzo 0.000 0.999 0.000 0.011 0.978 0.011
14 Molise 0.013 0.943 0.044 0.000 1.000 0.000
15 Campania 0.020 0.964 0.015 0.001 0.997 0.002
16 Apulia 0.018 0.910 0.072 0.001 0.998 0.001
17 Basilicata 0.044 0.433 0.523 0.042 0.744 0.215
18 Calabria 0.000 0.000 1.000 0.000 0.000 1.000
19 Sicily 0.376 0.279 0.345 0.563 0.298 0.139
20 Sardinia 0.027 0.036 0.937 0.000 0.001 0.999

main advantages of this methodology consist in data reduction obtained by
using B-splines coefficients, in robustness by using the exponential, trimming
and noise approaches while spatial information is taken into account adding a
penalty term in the objective function.
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1 Introduction

The identification of some units which may be representative of the group they
belong to is often a matter of statistical importance and can help avoiding an
extra amount of work when processing the data. The advantage of such pivotal
units (hereafter called pivots) is that they are somehow chosen to be as far as
possible from units in the other groups and as similar as possible to the units
in the same group, and may be beneficial in many statistical frameworks, such
as clustering, classification, and mixture modeling.

The pivmet R package (Egidi et al., 2021) implements various pivotal
selection criteria, graphical tools and the relabelling method (Papastamoulis,
2016) described in Egidi et al., 2018 to deal with ‘label switching’ (Redner
& Walker, 1984), a well-known phenomenon causing nonidentifiability of the
mixture parameters during the MCMC sampling (Frühwirth-Schnatter, 2001).
Compared to other packages, it allows the user to fit their own mixture model
using data augmentation with component memberships either via the JAGS
(Plummer, 2018) or the Stan (Carpenter et al., 2017) software, by specifying
suitable prior distributions. Pivotal units are detected via the similarity matrix
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derived from the MCMC sample—whose elements are the estimated proba-
bilities that any two units in the observed sample are drawn from the same
component—and used to relabel the chains. Such units may be fruitfully used
in Dirichlet process mixture models (DPMM) (Ferguson, 1973, Neal, 2000),
a class of models that naturally sorts data into clusters, and in data clustering
to guarantee a better final clustering solution starting from a careful seeding
based on well-separated statistical units.

The aim of the paper is to provide a quick overview of the computational
capabilities of our package in the field of Bayesian mixture models.

2 Finite mixtures of Gaussian distributions

Consider a multivariate mixture of Gaussian distributions, let yyyi ∈ Rd and as-
sume that

yyyi ∼
k

∑
j=1

η jNd(µµµ j,ΣΣΣ j), i = 1, . . . ,n, (1)

where µµµ j ∈Rd and ΣΣΣ j is a d×d positive definite covariance matrix. We assume
the following prior specification for the parameters in (1):

µµµ j ∼N2(µµµ0,S2), ΣΣΣ−1
j ∼ Wishart(S3,d +1)

η ∼Dirichlet(ααα),
(2)

where ααα is a k-dimensional vector and S2 and S3 are positive definite matrices.
We fix µµµ0 = 000, ααα = (1, . . . ,1) and assume S2 and S3 are diagonal matrices,
with diagonal elements equal to 105. We simulate a sample of size n = 150
from a bivariate Gaussian distribution with the function piv sim and we fit
the model using the JAGS option. From the bivariate traceplot chains for each
mean component µ j,1 and µ j,2 in Figure 1 we clearly note that label switch-
ing has occurred and the relabelling algorithm fixed it, by isolating the four
bivariate high-density regions.

3 Dirichlet Process Mixture Models

DPMM are useful tools for non-parametric density estimation, and, more gen-
erally, the choice of a Dirichlet process prior avoids the specification of an
inappropriate parametric form. The DPMM has the following form:

yi ∼ K(yi|θi), i = 1, . . . ,n,
θi ∼ F, F ∼ DP(α,G),

(3)
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Figure 1. Bivariate mixture data: scatterplot for the mean parameters obtained via
JAGS sampling (left plot) and relabelled estimates (right plot) via the maxsumdiff
pivotal criterion.

where K(·) is a parametric kernel function which is usually continuous, F is
an unknown probability distribution, DP is the nonparametric Dirichlet pro-
cess prior with concentration parameter α and base measure G, which encap-
sulates any prior knowledge about F . A common choice for K(·) is a Gaussian
mixture model, so that K(yi|θi) = N (µi,σ2

i ). The DPMM sorts the data into
clusters, corresponding to the mixture components. Thus, it may be seen as
an infinite dimensional mixture model which generalizes finite mixture mod-
els. Thus, pivotal units detection may be quite relevant for this class of models
in order to identify distinct groups characteristics. We generate n = 200 data
from a student−t distribution with 3 degrees of freedom and we draw poste-
rior samples for µ1,µ2, . . . ,µk via the dirichletprocess package. Figure
2 represents posterior density estimation for the simulated dataset along with
nine pivotal units (blue points). detected by pivmet via the maxsumdiff
pivotal criterion.
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from a student−t distribution. Blue points below the x-axis denote the pivotal units.
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ABSTRACT: Clustering is a widely used unsupervised method, which is char-
acterized by the lack of an outcome variable that supervises the analysis. In
literature, several indices have been developed to assess the goodness of cluster
partition. Nonetheless, they usually suffer from computational limitations and
therefore may not be appropriate in big data circumstances. We propose a
method that validates the outputs of multiple clustering algorithms and is scal-
able for large number of observations. It utilizes machine learning classifiers to
automatically rank the clustering outputs accounting for the coherence of the
partitions with the data patterns. We illustrate the performance of the proposed
method by applying it to simulated clustering datasets, as well as to big data
situations in health care fraud detection.
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ABSTRACT: Maximum likelihood estimators are typically robustified by using
impartial trimming. For robustifying mixture models’ estimators is necessary
to apply additionally constraints, for avoiding spurious solutions. We propose
robust estimators, based on the joint application of trimming and constraints, for
the classical collection of 14 parsimonious models of Celeux and Govaert. They
include different versions of constraints, for being jointly applied, in order to get
a more flexible methodology. Feasible algorithms for these estimators, EM and
ECM type, have been developed. Empirical evidences about the performance
of these estimators, when applied, both, to artificial and to real data will be
provided.

KEYWORDS: trimming, constrained estimation, mixture models
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ABSTRACT: In this paper we present a suitable measure of risk for data expressed
on an ordinal scale. The proposed indicator is based on the cumulative probabilities
of the ordinal variable that represents the level of severity for different risk events.
The method relies on the construction of a Criticality index which may be used as
an initial view of the level of risk, for comparisons among environments, to indicate
how risk changes over time, and to identify appropriate interventions. Along with the
description of the methodology, we present two examples of application in statistical
quality control field and in cyber risk evaluation.

KEYWORDS: categorical variables, risk measure, Criticality index, ordinal data.

1 Methodological proposal

The most common approach of risk modeling is a quantitative approach. When
data are available only on an ordinal scale, companies often use approaches
based on categorical data improperly treating the data as quantitative.

In this paper we propose a risk indicator which can exploit ordinal data
to rank risks by their “criticality”, so to prioritise preventive actions aimed at
mitigating and reducing their impact ex-ante rather than ex-post.

Let X ∼ {xk, pk;k = 1,2, . . . ,K} be a categorical random variable (r.v.)
with ordered categories xk and probabilities pk that represents a severity vari-
able. In the loss data framework, the severity is a continuous r.v., while in the
context of ordinal risk data, the severity is generally expressed on an ordinal
scale, characterised by K distinct levels, ordered according to the correspond-
ing magnitude. We define the Criticality Index as follows:

I =
1

K −1

K−1

∑
k=1

(K − k)pk (1)

It is a normalized index with values in [0,1], that provides a risk measure
easy to interpret, with extreme values univocally defined, and intermediate
values expressed as a percentage.



93 

ROBUST ESTIMATION OF PARSIMONIOUS FINITE
MIXTURE OF GAUSSIAN MODELS

Luis Angel Garcı́a-Escudero1, Agustı́n Mayo-Iscar1 and Marco Riani2

1 Universidad de Valladolid, (e-mail: lagarcia@uva.es,
agustin.mayo.iscar@uva.es)
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This index can be estimated by its empirical counterpart, replacing the
probabilities pk with their estimators p̂k = rk/n, where rk is the number of
observations in the sample equal to the category xk (rk ∈ N and ∑K

k=1 rk = n).
Henceforth, we use I to indicate the index defined in Equation (1), and Î =

1
K−1 ∑K−1

k=1 (K − k)p̂k to denote its estimator.
The Criticality Index estimator is an unbiased and consistent estimator for I

(Facchinetti & Osmetti, 2018). In fact, since every rk (k= 1,2, . . . ,K) follows a
binomial distribution with parameters (n, pk), the expression ∑K−1

k=1 (K−k) rk
n is

a mixture of binomial r.v.s (k = 1,2, . . . ,K −1). Therefore, since E(rk) = npk
and Var(rk) = npk(1− pk), the mean and the variance of Î are respectively:

E(Î) =
1

K −1

K−1

∑
k=1

(K − k)
E(rk)

n
=

1
K −1

K−1

∑
k=1

(K − k)pk = I (2)

Var(Î) =
1

n(K −1)2

[
K−1

∑
k=1

(K − k)2 pk(1− pk)−2
K−1

∑
k=1

(K − k)pk

k−1

∑
l=1

(K − l)pl

]

(3)
Finally, from (3), limn→∞Var(Î) = 0.
Moreover, a Kolmogorov–Smirnov test for discrete r.v.s (Facchinetti & Os-

metti, 2013) ensure that the Criticality Index estimator is asymptotically nor-
mally distributed, with the mean and variance given in (2) and (3).

2 Applications

In this section we present two examples of application of the Criticality Index.
First, in statistical quality control field, the proposed index appears naturally
suitable for measuring the risk of failure of a product in the testing and recall
phases of products, or in similar situations where quality is expressed on an or-
dinal scale. Second, in cyber risk evaluation, since the data are very sensitive
and it is unlikely that a private institution is willing to disclose them, we con-
sider a classification of cyber risk loss data into severity levels and we apply
the proposed methodology to measure cyber risks, using ordinal data.

2.1 Statistical quality control

We apply the Criticality Index on real data concerning severity, detection, and
the occurrence of defects in the component of hose assemblies (stripes, guard,
fitting, and hose) produced by a sales company of multinational manufacturer.

Severity is a measure of the gravity of a particular type of defect on a 3-
point scale (serious, medium, minor defect); detection is a measure of the ease
of identifying a failure mode on a 3-point scale (low, medium, high detection);
occurrence is the frequency of a particular type of defect in a product.

These information are typically available in companies that apply Failure
Mode and Effects Analysis (FMEA) to identify potential failures that could
affect the customer’s expectations of product quality or process performance
(Sellappan & Palanikumar, 2013).

To obtain a global measure of risk, we summarize the Criticality Indices
related to the severity and detection in a Criticality Impact Chart (Figure 1).

Figure 1. Criticality Impact Chart for severity and detection.

For each component of the product, we plot a ball with coordinates given
by the levels of risk (Î) for severity and for detection. The dimension of the
balls is related to the occurrence of each component. The lines represent the
locus of points with equal joint level of risk. We observe that hose is the com-
ponent with the highest joint level of risk. For guard, a situation of minimum
heterogeneity occurs and, thus, the indices assume their minimum value.

This graph may be very useful for companies wanting to prioritize inter-
ventions on the production line of a finite product, as well as those wanting to
improve related process controls.

2.2 Cyber risk

We apply our proposal to real data on serious cyber attacks occurs worldwide
in 2017, described by Clusit (Italian Association for Information Security) in
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This index can be estimated by its empirical counterpart, replacing the
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E(Î) =
1

K −1

K−1

∑
k=1

(K − k)
E(rk)

n
=

1
K −1

K−1

∑
k=1

(K − k)pk = I (2)

Var(Î) =
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We apply our proposal to real data on serious cyber attacks occurs worldwide
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its Report on ICT Security in Italy (Antonielli et al., 2018).
We consider for each type of attack the ordinal variable severity on a 3-

point scale (critical, high, medium severity). In Table 1, we report the Criti-
cality Index estimates, the standard errors and the associated 90% asymptotic
confidence intervals (Facchinetti & Osmetti, 2018).

Table 1. Criticality index estimates, standard errors and 90% CIs for type of attack.

Type of attack Î SE CI (90%)

Cybercrime 0.239 0.015 0.214-0.264
Hacktivism 0.342 0.045 0.268-0.416
Espionage/Sabotage 0.973 0.014 0.950-0.996
Information Warfare 0.952 0.027 0.908-0.995

From Table 1 we obtain that Espionage and Information Warfare dominate
Hacktivism in terms of severity, followed by Cybercrime. Our proposed mea-
sure can thus be employed as a simple and effective measurement to prioritise
cyber risk.

References

ANTONIELLI, A., BECHELLI, L., BOSCO, F., & BUTTI, G., ET AL. 2018.
Rapporto Clusit 2019 sulla Sicurezza ICT in Italia. Clusit.

FACCHINETTI, S., & OSMETTI, S.A. 2013. A goodness-of-fit test for maxi-
mum order statistics from discrete distributions. Electronic Journal of Ap-
plied Statistical Analysis: Decision Support Systems and Services Evalu-
ation, 4, 9–21.

FACCHINETTI, S., & OSMETTI, S.A. 2018. A risk index for ordinal variables
and its statistical properties: A priority of intervention indicator in quality
control framework. Quality and Reliability Engingeering International,
34, 265–275.

FACCHINETTI, S., GIUDICI, P., & OSMETTI, S.A. 2020. Cyber risk mea-
surement with ordinal data. Statistical Methods and Applications, 29,
173–185.

SELLAPPAN, N., & PALANIKUMAR, K. 2013. Modified Prioritization
Methodology for Risk Priority Number in Failure Mode and Effects Anal-
ysis. International Journal of Applied Science and Technology, 3, 27–36.

ADDITIVE QUANTILE REGRESSION VIA THE QGAM R
PACKAGE

Matteo Fasiolo1

1 University of Bristol, (e-mail: matteo.fasiolo@bristol.ac.uk)

ABSTRACT: Generalized additive models (GAMs) are flexible non-linear re-
gression models, which can be fitted efficiently using the approximate Bayesian
methods provided by the mgcv R package. While the GAM methods provided
by mgcv are based on the assumption that the response distribution is modelled
parametrically, in this talk I will discuss more flexible methods that do not entail
any parametric assumption. In particular, I will introduce the qgam package,
which is an extension of mgcv providing fast calibrated Bayesian methods for
fitting quantile GAMs (QGAMs) in R. QGAMs are based on a smooth version
of the pinball loss of Koenker (2005), rather than on a likelihood function,
hence jointly achieving satisfactory accuracy of the quantile point estimates and
coverage of the corresponding credible intervals requires adopting the special-
ized Bayesian fitting framework of Fasiolo et al. (2020), which is implemented
by the qgam package.

KEYWORDS: Bayesian quantile regression, generalized additive models, regres-
sion splines, calibrated Bayes, fast Bayesian inference.



97 

its Report on ICT Security in Italy (Antonielli et al., 2018).
We consider for each type of attack the ordinal variable severity on a 3-

point scale (critical, high, medium severity). In Table 1, we report the Criti-
cality Index estimates, the standard errors and the associated 90% asymptotic
confidence intervals (Facchinetti & Osmetti, 2018).

Table 1. Criticality index estimates, standard errors and 90% CIs for type of attack.

Type of attack Î SE CI (90%)

Cybercrime 0.239 0.015 0.214-0.264
Hacktivism 0.342 0.045 0.268-0.416
Espionage/Sabotage 0.973 0.014 0.950-0.996
Information Warfare 0.952 0.027 0.908-0.995

From Table 1 we obtain that Espionage and Information Warfare dominate
Hacktivism in terms of severity, followed by Cybercrime. Our proposed mea-
sure can thus be employed as a simple and effective measurement to prioritise
cyber risk.

References

ANTONIELLI, A., BECHELLI, L., BOSCO, F., & BUTTI, G., ET AL. 2018.
Rapporto Clusit 2019 sulla Sicurezza ICT in Italia. Clusit.

FACCHINETTI, S., & OSMETTI, S.A. 2013. A goodness-of-fit test for maxi-
mum order statistics from discrete distributions. Electronic Journal of Ap-
plied Statistical Analysis: Decision Support Systems and Services Evalu-
ation, 4, 9–21.

FACCHINETTI, S., & OSMETTI, S.A. 2018. A risk index for ordinal variables
and its statistical properties: A priority of intervention indicator in quality
control framework. Quality and Reliability Engingeering International,
34, 265–275.

FACCHINETTI, S., GIUDICI, P., & OSMETTI, S.A. 2020. Cyber risk mea-
surement with ordinal data. Statistical Methods and Applications, 29,
173–185.

SELLAPPAN, N., & PALANIKUMAR, K. 2013. Modified Prioritization
Methodology for Risk Priority Number in Failure Mode and Effects Anal-
ysis. International Journal of Applied Science and Technology, 3, 27–36.

ADDITIVE QUANTILE REGRESSION VIA THE QGAM R
PACKAGE

Matteo Fasiolo1

1 University of Bristol, (e-mail: matteo.fasiolo@bristol.ac.uk)

ABSTRACT: Generalized additive models (GAMs) are flexible non-linear re-
gression models, which can be fitted efficiently using the approximate Bayesian
methods provided by the mgcv R package. While the GAM methods provided
by mgcv are based on the assumption that the response distribution is modelled
parametrically, in this talk I will discuss more flexible methods that do not entail
any parametric assumption. In particular, I will introduce the qgam package,
which is an extension of mgcv providing fast calibrated Bayesian methods for
fitting quantile GAMs (QGAMs) in R. QGAMs are based on a smooth version
of the pinball loss of Koenker (2005), rather than on a likelihood function,
hence jointly achieving satisfactory accuracy of the quantile point estimates and
coverage of the corresponding credible intervals requires adopting the special-
ized Bayesian fitting framework of Fasiolo et al. (2020), which is implemented
by the qgam package.

KEYWORDS: Bayesian quantile regression, generalized additive models, regres-
sion splines, calibrated Bayes, fast Bayesian inference.



98 

GAUSSIAN MIXTURE MODELS FOR HIGH
DIMENSIONAL DATA USING COMPOSITE LIKELIHOOD

Michael Fop 1, Dimitris Karlis2, Ioannis Kosmidis3, Adrian O’Hagan1,
Caitriona Ryan4 and Isobel Claire Gormley1

1 School of Mathematics and Statistics, University College Dublin, Ireland. (e-mail:
michael.fop@ucd.ie, claire.gormley@ucd.ie)
2 Department of Statistics, Athens University of Economics and Business, Greece.
3 Department of Statistics, University of Warwick, UK.
4 Hamilton Institute, Maynooth University, Ireland.

ABSTRACT: The use of finite Gaussian mixture models (GMMs) is a well estab-
lished approach to performing model-based clustering. Despite its popularity, its
widespread use is hindered by its inability to transfer to high-dimensional data appli-
cations. This is often due to the difficulties related to dealing with high-dimensional
covariance matrices and joint densities. Here we propose a composite likelihood
framework to enable the use of GMMs for clustering high-dimensional data. The
framework is specified by approximating the likelihood of a GMM by means of a
block-pairwise composite likelihood, which allows the decomposition of the poten-
tially high-dimensional density into terms of smaller dimensions. A computationally
efficient expectation maximization algorithm is developed to facilitate estimation. Per-
formance of the approach is demonstrated through simulated and real data examples.
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1 Introduction

Model-based clustering of continuous data is routinely implemented by means
of Gaussian mixture models (GMMs). Despite the popularity of GMMs, their
widespread use is curtailed by their inability to transfer to settings where the
number of variables p is large compared to the sample size N. Difficulties
with storage and manipulation of the multivariate Gaussian distribution’s co-
variance matrix in such settings lead to increased computational cost, and it
often makes the approach impractical. Further, in settings where the number
of variables p > N, fitting a GMM with an unconstrained covariance matrix
is infeasible. To overcome these issues, parsimonious models based on co-

variance matrix factorization and/or strict independence restrictions have been
proposed (Bouveyron & Brunet-Saumard, 2014). Despite their advantages,
these methods still struggle in high-dimensional data settings (p � N) and
have several limitations in the case of highly correlated variables.

Recently, Ranalli & Rocci, 2016; Ranalli & Rocci, 2017 proposed the
use of composite likelihood (CL) to estimate the parameters of a finite mix-
ture model for ordinal and mixed mode data. The CL approach (see Varin
et al., 2011) uses smaller dimensional marginal and/or conditional pseudo-
likelihoods to estimate the parameters of the model. The use of CL avoids the
need to fully specify the underlying joint distribution and estimates parame-
ters from a product of lower dimensional likelihoods. Such an approximation
is very helpful when the full model is difficult to specify or manipulate. The
CL framework assists in avoiding the computational problems often arising
from the need to deal with a multi-dimensional joint distribution. In addition,
the specification of appropriate conditional likelihoods allows the modelling
of the dependence structure by means of lower dimensional terms.

Here the CL approach is exploited to enable clustering of high-dimensional
data using GMMs. Lower dimensional terms corresponding to Gaussian mul-
tivariate marginal distributions are involved in the construction of the pseudo-
likelihood, thus avoiding the use of high dimensional covariance matrices (and
their inversion), which is advantageous in p � N scenarios. We embed GMMs
in the CL framework to serve a dual purpose: to facilitate the use of GMMs
in high-dimensional scenarios, while capturing at the same time the complex
dependence structures which are often present in such settings.

2 Block-pairwise composite likelihood for GMMs

To deal with the complexities arising in high-dimensional settings (p � n),
we decompose the likelihood of a GMM into terms of tractable size, corre-
sponding to lower dimensional Gaussian distributions in which n is larger than
the number of variables involved in each term. To do so, we define a general
composite likelihood based on pairs of blocks of variables.

Suppose the vector X of p variables is partitioned into a set of K non-
overlapping blocks B = {B1, . . .B j, . . .BK}. For ease of exposition, we take
blocks having the same size b. Let S denote the set of all possible

(K
2

)
pairs

constructed using the blocks in B . The generic element Sl ∈ S is given by a
pair of blocks, such that Sl = B j ∪Bk, with j �= k, ∀ j,k = 1, . . . ,K. We then
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define the following block-pairwise composite likelihood (BCL)

BCL(ΘΘΘ) = ∏
Sl∈S

{
N

∏
i=1

G

∑
g=1

τgφ(xl
i;µµµl

g,ΣΣΣ
l
g)

}

=
K−1

∏
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∏
k> j

{
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∏
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G

∑
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τgφ
(
{x j

i ,x
k
i };µµµ( j,k)

g ,ΣΣΣ( j,k)
g

)}
,

(1)

where xl
i = {x j

i ,xk
i } is the observation i measured on the variables included in

the pair of blocks Sl = B j ∪Bk, φ(·) is the density of a multivariate Gaussian
of dimension 2b and µµµl

g and ΣΣΣl
g are the component parameters that relate to the

variables in the pair Sl . The second expression in (1) makes explicit that µµµ( j,k)
g

and ΣΣΣ( j,k)
g are the parameters of the joint Gaussian distribution of {x j

i ,xk
i }.

In (1), each product term in the curly brackets is the likelihood of a GMM
over the variables in the pair Sl . Hence, by setting b � n/2, the potentially
high-dimensional GMM likelihood is decomposed into a number of terms in-
volving lower dimensional Gaussian distributions, enabling computationally
efficient inference. As the BCL approach works with low dimensional Gaus-
sian distributions, estimation and inversion of large covariance matrices are
avoided, facilitating the use of GMMs in high-dimensional scenarios.

As long as 1 < b � n/2, there is computational advantage in the BCL
approach. However, for certain situations,

(K
2

)
can mean an intractable num-

ber of terms in the log-likelihood. To further reduce the complexity, instead
of looking at all possible 2b-dimensional marginal distributions, we define a
restricted subset S ∗ ⊂ S of pairs of blocks. In particular, we take this set as
a sequential enumeration of pairs of blocks: S ∗ =

⋃K−1
j=1 B j ∪B j+1. We then

define the following restricted block-pairwise composite likelihood (RBCL):

RBCL(ΘΘΘ) =
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(2)

Importantly, compared to the
(K

2

)
pairs of BCL, the number of pairs for RBCL

is linear in K. The formulation of the GMM in terms of BCL and RBCL signifi-
cantly reduces the complexity in computing and dealing with high-dimensional
likelihood terms and covariance matrices.

3 Estimation

The complete-data composite log-likelihood decomposes into the sum of a
number of standard GMM complete data log-likelihood terms, each related to
the marginal joint Gaussian distribution of the block pair xl

i = {x j
i ,xk

i }. How-
ever, these terms are not independent of each other due to the coupling of
the parameters in the factorization. Therefore, maximization of the BCL and
RBCL is carried out by means of an Expectation-Conditional-Maximization
algorithm (Meng & Rubin, 1993). In particular, the maximization step involves
a series of conditional maximization passes, where the pairs are scanned in a
sequential manner, such that the joint distribution of each pair is rewritten as
the product of a marginal distribution estimated at the previous step and the
conditional distribution of a block given the block of the previous step. The
optimization is based on the conditional estimation procedure outlined in Fop
et al., 2021. While the main purpose of employing the CL framework when
clustering high-dimensional data is computational efficiency, further work will
explore the statistical properties (e.g. consistency) of the resulting parame-
ter estimates. Performance of the CL approach and estimation procedure are
demonstrated through simulated and real data examples.
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1 Introduction

Unlike the classical clustering approaches such as agglomerative hierarchical
clustering and K-means clustering, which are largely heuristic and not based
on formal statistical models, model-based clustering takes a likelihood based
approach thus permitting inference to be drawn on the clusters. These tech-
niques are based on the finite mixture model theory (Fraley & Raftery, 2002),
where each mixture component corresponds to a cluster. However, fundamen-
tal concerns remain about robustness and in particular the choice of distribu-
tion representing the within cluster density. The Gaussian mixture models are
historically the most popular tool for model-based clustering. However, if the
distribution of the observed variable is characterized by asymmetry and pres-
ence of outliers, a Gaussian distribution may not be an appropriate within clus-
ter density. The direct link that exists between univariate quantile regression
approach and the Asymmetric Laplace Distribution (ALD) forms our basis of
introducing a clustering model based on finite mixture of ALDs to group indi-
viduals subject to heterogeneity due to regressor variables.

2 Methodology

We start by considering a vector, y = (y1, . . . ,yT )
′ of responses yt and the as-

sociated design matrix X = (x1, . . . ,xT )
′ that collects the vectors xt of L co-

variates. Further, let Qp(yt |xt), for 0 < p < 1, be the pth quantile regression
function of yt given xt which can be modelled as Qp(yt |xt) = x′tβ, where β is
a vector of unknown parameters to be estimated. The regression coefficient
estimate is obtained by minimizing (Koenker & Bassett, 1978)

β̂ = argmin
β

T

∑
t=1

ρp(yt − x′tβ) (1)

where ρp(·) is the check loss function defined by ρp(x) = x(p − I(x < 0))
and I(·) denotes the usual indicator function. Koenker and Machado (1999)
showed that there is a direct relationship between minimizing (1) and the max-
imum likelihood theory using independently distributed asymmetric Laplace
variable with density

ald(yt |β,σ, p) =
p(1− p)

σ
exp

{
−ρp

(
yt − x′tβ

σ

)}
(2)

where σ > 0 and 0 < p < 1 represents the skewness parameter that can be used
directly to model any quantile of interest.

According to the finite mixture framework theory we define the likelihood
of our mixture model for a single vector y as

L(ααα,βββ,σσσ, p|y) =
K

∑
k=1

αk

T

∏
t=1

ald1(yt |βk,σk, p) =
K

∑
k=1

αkALD(y|βk,σk, p) (3)

where βββ = (β′
1, ....,β′

K)
′, σσσ = (σ1, ...,σK)

′ and ααα = (α1, ...,αK)
′ is the vector

of the mixing proportions for the K clusters which satisfy the conditions 0 <
αk < 1 and ∑K

k=1 αk = 1.
We now consider a set Y = {yi, i = 1, ...,n} of n vectors yi = (yi1, ...,yiT )

′

of independent observations. and we want to split the data set Y into K clus-
ters. According the mixture model (3) the cluster membership ci ∈ {1, ...,K},
where ci = k indicates that the ith vector yi belongs to cluster k is a multinomial
random variable with parameter ααα.

We adopt a Bayesian approach to make inference on the model parameters
ψψψ = (ααα′,βββ′,σσσ′)′. Moreover it is possible to get the posterior probability of
membership of a single vector, Pr(ci = ·|Y ). In doing this we first note that
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Kozumi and Kobayashi (2011) represent the density (2) as a location scale
mixture of Gaussian distributions i.e.

yt = x′tβ+θwt +ω
√

σwtνt (4)

where νt ∼ N(0,1), and w is an exponential random variable with E(w) = σ.
Here ν and w are mutually independent and θ = (1 − 2p)/{p(1 − p)} and
ω2 = 2/{p(1− p)}.

Equation (4) constitutes the first stage of a hierarchical Bayesian model
where the prior distribution on the cluster specific parameters and as well as
the mixing proportions are specified as conjugate priors to having closed form
conditional posterior densities which are easy to sample from in a MCMC
algorithm.

A conjugate prior for the mixing proportions ααα=(α1, ...,αK)
′ is the Dirich-

let distribution, ααα ∼ D(ζ1, ...,ζK). A straightforward prior for βk is the multi-
variate Gaussian distribution, N (b0,Σ0) where by setting b0 = 0 and Σ0 = aI,
for a � 0, leads to an improper prior. Finally we propose the inverse gamma
distribution, IG(s0,d0), as the prior for σk where the shape and scale parame-
ters, s0 and d0 respectively, are known.

Musau (2021) gives a complete account on how we can devise an MCMC
algortihm for sampling from the posterior distribution of ψψψ.

3 Numerical results

We exemplify our proposal with a clustering problem for functional data. We
consider the well-known Canadian temperature dataset available in the R pack-
age fda. The dataset consists of the daily measured temperatures from 35
Canadian weather stations across the country.

Under functional data framework (Ramsay & Silverman, 2005), daily tem-
perature data, yt , can be described by a linear combination of L = 65 cubic
spline basis functions, yt � ∑L

j=1 β jB j(t) = x′tβ, with knots which are equally
distributed over the range of time.

The funHDDC clustering algorithm (Bouveyron & Jacques, 2011) on this
data selects K = 4 as the optimal number of clusters. Figure 1 (left panel)
summarize the resulted clusters.

For each of the 35 stations we randomly introduce outliers (yt=0) at 10%
of the total observation points. This distorts the general trend of the data, as
shown in right panel of Figure 1, making reconstruction of the clusters difficult.

We apply our mixture model setting p = 0.5, i.e. we consider a robust
median regression and we compare its performance in reconstructing the 4

Figure 1. Clustering of the 35 temperature curves as obtained by funHDDC algorithm
(left panel) and results with curves contaminated by outliers (right panel).

clusters with the previous algorithm, leading to a perfect agreement. These
results generally indicate a good performance of our proposed algorithm when
clustering data characterized by outlying observations.
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ABSTRACT: Accurate quantification of the impact of low socioeconomic position
(SEP) on selected no communicable diseases, including diabetes several cancers, is
needed. There is increasing evidence that low SEP is a strong determinant of morbid-
ity and premature mortality concerning cancer risk. This is mainly caused by a delay in
screening uptake and consequent timeliness of symptomatic presentation and lifestyle
(including diet, smoking habit and physical activity). The accurate quantification of
the relation between SEP and cancer risk is crucial to plan public health interventions
for cancer incidence and socioeconomic disparities reduction. The recent advent of
collaborative and interdisciplinary research by pooling a large amount of worldwide
epidemiological data in multi-institutional data consortia is the answer to this gap in
knowledge. In fact, data analyses of epidemiological consortia will allow to define
and quantify the associations of interest with a higher degree of accuracy, explore
subgroups of the population, and investigate the interactions between environmental,
genetic, and socioeconomic factors. The Stomach Cancer Pooling (StoP) Project and
the International Head and Neck Cancer Epidemiology (INHANCE) are two example
of large data consortia, in which the University of Milan is proactively involved. Their
large sample size allowed investigators to address the effects of education and house-
hold income on the onset and evolution of the disease. INHANCE findings suggested
that low education and low income are risk factors for head and neck cancer, indepen-
dent of tobacco smoking and alcohol consumption. The collaborative pooled analysis
within the StoP consortium showed a strong inverse relation between SEP indicators
and gastric cancer risk, with a 40% decreased risk among individuals with interme-
diate/high education status than less educated study subjects. In conclusion, social
epidemiology is crucial to understand the sociostructural factors related to health and
disease. In an era of fast inter-diffuse communication and data-sharing, large data
consortia are among the most effective strategies to create new social epidemiologi-
cal useful evidences. In these example of data consortia, SEP is strongly related to a
number of cancers. Health education campaigns targeting socioeconomically disad-
vantaged in vulnearal populations are probabily the most efficacious stategy to redurce
the cancer burden in the world.
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ABSTRACT: Due to the “big data” phenomenon, data is becoming increasingly
higher dimensional. As such, new techniques need to be developed to handle
higher dimensional data, and this is especially true in clustering. One such
clustering method for high dimensional data is co-clustering where the aim is
to cluster both rows and columns resulting in data blocks, or co-clusters, where
observations within each block are independent and identically distributed.
Although highly parsimonious, co-clustering can be quite inflexible. In this
talk, a method that clusters columns according to both means and variances,
while assuming normality, will be presented. The proposed model increases
flexibility while maintaining a high degree of parsimony. Both simulated and
real data will be used for illustration.
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ABSTRACT: High income inequality, accompanied by substantial regional differen-
tiation, is still a great challenge for social policy makers in many European countries.
One of the important elements of this phenomenon is inequality between income dis-
tributions of men and women. Using data coming from EU-SILC 2018, we com-
pare the distribution of income for Italy and Poland, and analyze gender gap in these
countries. We are interested here to uncover the socioeconomic factors that could
contribute to explain the differences observed in the income distribution for men and
women.

KEYWORDS: Income inequality, Gender gap, Gini index, new Zenga index, relative
distribution method, Dagum, Italy, Poland.

1 Introduction

Substantial regional disparities and income inequality is a great challenge for
policymakers in many European countries, nowadays. One of the critical el-
ements of this phenomenon is the inequality between income distributions of
men and women. The gender pay gap can be a problem from a public pol-
icy perspective because it reduces economic output and means that women are
more likely to be dependent upon welfare payments, especially in old age.

Many studies analyze income inequality across the European Union (EU)
countries and regions for social and economic policies. The focus of the
present paper is on income distributions across Poland and Italy, to compare
countries with different economic backgrounds. Poland still suffers the transi-
tion from a centrally-planned economy to a market-based economy, and Italy is
a former well-established market economy. Moreover, according to the Tárki

European Social Report (TÁRKI, 2008), a study on intolerance to income in-
equality across countries confirmed a markedly lower level of acceptance of
inequality in the post-socialist bloc than in the other European countries. The
calculations were based on microdata from the European Union Statistics on
Income and Living Condition (EU-SILC) (Eurostat, 2018).

Several methods can be applied to the measurement of the income discrep-
ancy between men and women. Among them, summary measures remain an
important tool for the comparison of distributional changes. However, to un-
cover the factors contributing to the gender discrepancy, it is useful to move
beyond the typical focus on average or median earnings differences, towards
a view on how the entire distribution of women’s earnings relative to men’s
compares. Indeed, inequality is a property of a distribution. A prominent fea-
ture of these methods is the use of the “relative distribution”, a transformation
of the data from two distributions into a single distribution that contains all
the information needed for scale-invariant comparison (Handcock & Morris,
2006). In a previous paper (Greselin & Jȩdrzejczak, 2020) the authors high-
lighted remarkable differences between Poland and Italy, especially related to
the discrepancy across regions between men and women. The next natural
step is hence to search for the socioeconomic factors that could explain the
differences observed in the income distribution for men and women.

2 Quantifying the covariates effects

Often there are covariates which vary systematically by the compared pop-
ulations, and the impact of these covariates is of interest. We will follow the
approach introduced by Handcock & Morris (2006). The overall relative distri-
bution is decomposed into a first component representing the effect of changes
in the marginal distribution of a covariate, and a second component defining
the residual changes. The first term is the composition effect, which mea-
sures the shift in the covariates from one population to the other. The second
term is obtained by adjusting the reference (men) population to have the same
marginal covariate composition as the comparison (women) population. By
holding the population composition constant across the gender groups, differ-
ences in the covariate-response relationships can be correctly identified.

Let (Y0,Z0) and (Y,Z) denote random vectors describing the reference and
comparison populations, where Yo and Y are the response variable, while Z0

and Z are the categorical covariates, with support 1,2, ...K. Let πk
K
k=1 and π0

k
K
k=1

be the probability mass function of Z and Z0, respectively. These probability
mass functions represent the population composition with respect to the co-
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ABSTRACT: High income inequality, accompanied by substantial regional differen-
tiation, is still a great challenge for social policy makers in many European countries.
One of the important elements of this phenomenon is inequality between income dis-
tributions of men and women. Using data coming from EU-SILC 2018, we com-
pare the distribution of income for Italy and Poland, and analyze gender gap in these
countries. We are interested here to uncover the socioeconomic factors that could
contribute to explain the differences observed in the income distribution for men and
women.
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1 Introduction

Substantial regional disparities and income inequality is a great challenge for
policymakers in many European countries, nowadays. One of the critical el-
ements of this phenomenon is the inequality between income distributions of
men and women. The gender pay gap can be a problem from a public pol-
icy perspective because it reduces economic output and means that women are
more likely to be dependent upon welfare payments, especially in old age.

Many studies analyze income inequality across the European Union (EU)
countries and regions for social and economic policies. The focus of the
present paper is on income distributions across Poland and Italy, to compare
countries with different economic backgrounds. Poland still suffers the transi-
tion from a centrally-planned economy to a market-based economy, and Italy is
a former well-established market economy. Moreover, according to the Tárki

European Social Report (TÁRKI, 2008), a study on intolerance to income in-
equality across countries confirmed a markedly lower level of acceptance of
inequality in the post-socialist bloc than in the other European countries. The
calculations were based on microdata from the European Union Statistics on
Income and Living Condition (EU-SILC) (Eurostat, 2018).

Several methods can be applied to the measurement of the income discrep-
ancy between men and women. Among them, summary measures remain an
important tool for the comparison of distributional changes. However, to un-
cover the factors contributing to the gender discrepancy, it is useful to move
beyond the typical focus on average or median earnings differences, towards
a view on how the entire distribution of women’s earnings relative to men’s
compares. Indeed, inequality is a property of a distribution. A prominent fea-
ture of these methods is the use of the “relative distribution”, a transformation
of the data from two distributions into a single distribution that contains all
the information needed for scale-invariant comparison (Handcock & Morris,
2006). In a previous paper (Greselin & Jȩdrzejczak, 2020) the authors high-
lighted remarkable differences between Poland and Italy, especially related to
the discrepancy across regions between men and women. The next natural
step is hence to search for the socioeconomic factors that could explain the
differences observed in the income distribution for men and women.

2 Quantifying the covariates effects

Often there are covariates which vary systematically by the compared pop-
ulations, and the impact of these covariates is of interest. We will follow the
approach introduced by Handcock & Morris (2006). The overall relative distri-
bution is decomposed into a first component representing the effect of changes
in the marginal distribution of a covariate, and a second component defining
the residual changes. The first term is the composition effect, which mea-
sures the shift in the covariates from one population to the other. The second
term is obtained by adjusting the reference (men) population to have the same
marginal covariate composition as the comparison (women) population. By
holding the population composition constant across the gender groups, differ-
ences in the covariate-response relationships can be correctly identified.

Let (Y0,Z0) and (Y,Z) denote random vectors describing the reference and
comparison populations, where Yo and Y are the response variable, while Z0

and Z are the categorical covariates, with support 1,2, ...K. Let πk
K
k=1 and π0

k
K
k=1

be the probability mass function of Z and Z0, respectively. These probability
mass functions represent the population composition with respect to the co-
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variate. The marginal density of Y can be written as f (y) := ∑K
k=1 πk fY |Z(y|k),

where fY |Z(y|k) denotes the conditional densities of Y given that Z = k, for
k = 1, . . . ,K. An analogous definition holds for f0(y) := ∑K

k=1 π0
k fY0|Z0(y|k).

Now any differences between f (y) and f0(y) are a result of the differences
in the conditional densities fY0|Z0(y|k) and fY |Z(y|k), for k = 1, . . . ,K. These
represent differences in the covariate-response relationship between the two
populations.

We can construct a counter-factual distribution for the compositional dif-
ference using these ideas. We define the distribution of Y0 composition-adjusted
to Y to be Y0C with density: f0C(y) := ∑K

k=1 πk fY0|Z0(y|k). It corresponds to a
counter-factual population with the covariate composition of the comparison
population and the covariate-response relationship of the reference population.
Comparisons of f0C(y) to f (y) hold the population composition constant, and
therefore isolate differences in the covariate-response relationship. By con-
trast, f0(y) and f0C(y) have the same covariate-response relationship and com-
parisons between them isolate the impact of the compositional shifts. Using
the composition-adjusted response distribution, we can decompose the over-
all relative distribution into a component that represents the effect of changes
in the marginal distribution of the covariate (the composition effect), and a
component that represents the residual changes. In terms of density ratios, we
have:

f (yr)

f0(yr)
=

f0C(yr)

f0(yr)
× f (yr)

f0C(yr)
(1)

Figure 1 graphically shows the decomposition of the relative income dis-
tribution of women in relation to men, assuming the position (managerial or
not, variable PL150: Managerial position) as the explanatory variable. The
first panel from the left shows the (uncorrected) relative density of income dif-
ferences between men and women, the middle panel represents the effects of
differences in the distributions of the explanatory variable, and the right panel
represents the counterfactual distribution - i.e. the expected relative density
for men’s and women’s income distributions with assuming the same profiles
of positions held in both groups. The comparison of the three relative den-
sities provides a useful tool for assessing the relative magnitude and nature
of the impact of individual components. It can be noticed that the distribu-
tion presented in the middle panel is U-shaped and in the central part close
to the uniform distribution. This means that the difference in the structure of
management positions observed between the two cohorts of the distribution in
central deciles has little effect on the observed income gap. On the other hand,
greater differences were observed in extreme decile groups, which suggests a
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Figure 1. The three plots for Polish data, to assess the effect of managerial position
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Figure 2. The three plots for Italian data, to assess the effect of managerial position

certain polarization of income of these groups in relation to the position held.
Women from the last decile occupy higher positions, which, however, does
not translate into their earnings. As a result, the income gap in these groups,
adjusted by the type of position held in the counterfactual distribution, widens
(right panel). On the other hand, results on Italian data are somehow different.

3 Conclusions and further research

We developed a first analysis on the covariate effects for studying gender gap.
Besides the univariate case, also the adjustment for multivariate covariate is
worth to be considered and is the object of ongoing work.

References
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variate. The marginal density of Y can be written as f (y) := ∑K
k=1 πk fY |Z(y|k),

where fY |Z(y|k) denotes the conditional densities of Y given that Z = k, for
k = 1, . . . ,K. An analogous definition holds for f0(y) := ∑K

k=1 π0
k fY0|Z0(y|k).

Now any differences between f (y) and f0(y) are a result of the differences
in the conditional densities fY0|Z0(y|k) and fY |Z(y|k), for k = 1, . . . ,K. These
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population and the covariate-response relationship of the reference population.
Comparisons of f0C(y) to f (y) hold the population composition constant, and
therefore isolate differences in the covariate-response relationship. By con-
trast, f0(y) and f0C(y) have the same covariate-response relationship and com-
parisons between them isolate the impact of the compositional shifts. Using
the composition-adjusted response distribution, we can decompose the over-
all relative distribution into a component that represents the effect of changes
in the marginal distribution of the covariate (the composition effect), and a
component that represents the residual changes. In terms of density ratios, we
have:
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=
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(1)

Figure 1 graphically shows the decomposition of the relative income dis-
tribution of women in relation to men, assuming the position (managerial or
not, variable PL150: Managerial position) as the explanatory variable. The
first panel from the left shows the (uncorrected) relative density of income dif-
ferences between men and women, the middle panel represents the effects of
differences in the distributions of the explanatory variable, and the right panel
represents the counterfactual distribution - i.e. the expected relative density
for men’s and women’s income distributions with assuming the same profiles
of positions held in both groups. The comparison of the three relative den-
sities provides a useful tool for assessing the relative magnitude and nature
of the impact of individual components. It can be noticed that the distribu-
tion presented in the middle panel is U-shaped and in the central part close
to the uniform distribution. This means that the difference in the structure of
management positions observed between the two cohorts of the distribution in
central deciles has little effect on the observed income gap. On the other hand,
greater differences were observed in extreme decile groups, which suggests a
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certain polarization of income of these groups in relation to the position held.
Women from the last decile occupy higher positions, which, however, does
not translate into their earnings. As a result, the income gap in these groups,
adjusted by the type of position held in the counterfactual distribution, widens
(right panel). On the other hand, results on Italian data are somehow different.

3 Conclusions and further research

We developed a first analysis on the covariate effects for studying gender gap.
Besides the univariate case, also the adjustment for multivariate covariate is
worth to be considered and is the object of ongoing work.
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ABSTRACT: We consider the problem of spatially dependent areal data, where for
each area independent observations are available, and propose to model the density of
each area through a finite mixture of Gaussian distributions. The spatial dependence is
introduced via a novel joint distribution for a collection of vectors in the simplex, that
we term logisticMCAR. We also discuss a generalization of the mixture model with
a random number of components, introducing a reversible jump algorithm to sample
from the full posterior. Through simulated data examples we check the performance
of our algorithm. Moreover, we present an application on a real dataset of Airbnb
listings in the city of Amsterdam, also showing how to easily incorporate for additional
covariate information in the model.

KEYWORDS: finite mixture models, spatial density estimation, logistic normal, mul-
tivariate CAR models, reversible jump.

1 Introduction

Mixture models (Frühwirth-Schnatter et al., 2019) provide a natural frame-
work for density estimation. Though mixtures are often used under the as-
sumption of exchangeable samples from a unique unknown distribution, such
models may be adopted to model data that show spatial dependence. In this
work we focus on areal data, considering the problem of modelling data from
I different groups, where each group corresponds to a specific areal location.
More in detail, we assume that the spatial domain Ω is divided into I areas and,
for each area, there is a vector of observations yyyi = (yi1, . . . ,yiNi) from the same
variable, each value yi j corresponding to a different subject j in area i. We fur-
ther assume that data, within each areal unit i, are independent and identically
distributed (i.i.d.) from an area-specific density fi; the problem we address
is the joint estimation of spatially dependent densities f1, . . . , fI . We take the

Bayesian viewpoint and we specify a prior for dependent densities ( f1, . . . , fI)
encouraging distributions associated to areas that are spatially close to be more
similar than those associated to areas that are far away.

In this paper, we consider first the same framework as in Beraha et al.,
2020, where we assume a finite mixture with a fixed number of components
H in each area I and introduce spatial dependence via a suitable prior on the
weights of the mixtures, i.e., the logistic multivariate CAR prior. We will
show how specific features of the proposed model include (i) a sparse mixture
specification as meant in Malsiner-Walli et al., 2016 and (ii) densities corre-
sponding to areal units which belong to two different connected components
in the proximity graph (=matrix) may behave differently.

As it happens with finite mixture models, the choice of the appropriate
number H of components is crucial. Under the Bayesian approach, it is straight-
forward to frame H random and compute the posterior distribution for all pa-
rameters, including H. In this case, Markov Chain Monte Carlo (MCMC)
algorithms for posterior inference are called transdimensional, and they are
not easy to design. Examples of such transdimensional MCMC algorithms
include the reversible jump MCMC sampler in Green, 1995 and the MCMC
algorithm based on birth-and-death processes in Stephens, 2000. Hence, we
extend the model above (see Beraha et al., 2020 for details) by assuming a prior
on the number H of components and we propose a transdimensional sampler
via a reversible jump MCMC algorithm. The approach we follow to design a
reversible jump move is based on Norets, 2021.

2 Details on the model and the reversible jump algorithm

As an extension of the model in Beraha et al., 2020 to a random number of
components, we assume the following:

yi j | wwwi,τττ,H
iid∼

H

∑
h=1

wih N (τττh) j = 1, . . . ,Ni (1)

τττh | H iid∼ P0 h = 1, . . . ,H

(www1, . . . ,wwwI) | ρ,σ 2,H ∼ logisticMCAR(000,ρ,σ 2I;G) (2)

σ2 ∼ inv-gamma(α,β ), ρ ∼ beta(a,b), H ∼ π(H)

Here τττh represents mean and variance of the Gaussian component in the mix-
ture (1), I is the (H −1)× (H −1) identity matrix, while wwwi = (wi1, . . . ,wiH)

T .
The distribution P0 is the normal–inv-gamma density that is conjugate to the
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ther assume that data, within each areal unit i, are independent and identically
distributed (i.i.d.) from an area-specific density fi; the problem we address
is the joint estimation of spatially dependent densities f1, . . . , fI . We take the

Bayesian viewpoint and we specify a prior for dependent densities ( f1, . . . , fI)
encouraging distributions associated to areas that are spatially close to be more
similar than those associated to areas that are far away.

In this paper, we consider first the same framework as in Beraha et al.,
2020, where we assume a finite mixture with a fixed number of components
H in each area I and introduce spatial dependence via a suitable prior on the
weights of the mixtures, i.e., the logistic multivariate CAR prior. We will
show how specific features of the proposed model include (i) a sparse mixture
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in the proximity graph (=matrix) may behave differently.

As it happens with finite mixture models, the choice of the appropriate
number H of components is crucial. Under the Bayesian approach, it is straight-
forward to frame H random and compute the posterior distribution for all pa-
rameters, including H. In this case, Markov Chain Monte Carlo (MCMC)
algorithms for posterior inference are called transdimensional, and they are
not easy to design. Examples of such transdimensional MCMC algorithms
include the reversible jump MCMC sampler in Green, 1995 and the MCMC
algorithm based on birth-and-death processes in Stephens, 2000. Hence, we
extend the model above (see Beraha et al., 2020 for details) by assuming a prior
on the number H of components and we propose a transdimensional sampler
via a reversible jump MCMC algorithm. The approach we follow to design a
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2 Details on the model and the reversible jump algorithm
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Gaussian distribution N (τττh) in (1). The spatial prior logisticMCAR is de-
fined through a logistic transformation of Gaussian multivariate CAR models
for auxiliary parameters w̃wwis. Parameters in (2) include the proximity matrix
G, in this paper fixed as gi j = 1 if areas i and j are neighbours and gi j = 0 oth-
erwise, a positive parameter ρ of the multivariate CAR specification – ρ = 0
corresponding to the transformed weights being independent – and a positive
parameter σ2 representing the conditional variance of the multivariate CAR
model. See Beraha et al., 2020 for the definition of such prior.

As mentioned above, when H has the prior distribution π(H) with support
{1,2, . . .}, such a model requires a transdimensional sampling scheme for pos-
terior inference. Reversible Jump MCMC samplers (Green, 1995) provide a
general framework for transdimensional simulation schemes. Given the cur-
rent state of the chain θθθ = (H,θθθ H), with θθθ H = (w̃ww1, . . . , w̃wwI,τττ1, . . . ,τττH), with
w̃wwi ∈ RH , the next state θθθ ′ = (H ′,θθθ H ′) is (i) sampled from a proposal distribu-
tion q(θθθ ,θθθ ′), and (ii) accepted with probability α(θθθ ,θθθ ′). Usually, the proposal
distribution is defined in two steps. If θθθ H ∈ RnH and θθθ ′ ∈ RnH′ , with nH ′ > nH
and d = nH ′ −nH , first a random vector uuu ∈ Rd is sampled from a distribution
qd(uuu) and then θθθ H ′ is defined as gH→H ′(θθθ H ,uuu) for a suitable mapping func-
tion gH→H ′ . Since both qd and gH→H ′ are arbitrary, the definition of a suitable
reversible jump move is usually a difficult task.

The approach we follow to design a reversible jump move is based on
Norets, 2021, who introduces auxiliary priors and proposals for generic nested
models indexed by H in {1,2, . . .} and a prior for (H,θθθ H) the form π(θθθ H |
H)π(H). Let θθθ ∞ denote the infinite vector of all parameters for the largest
model, i.e., the mixture model with infinite components, and let [θθθ ∞]H ′ be the
H ′-th entry of θθθ ∞, with H ′ > H. Since models are nested, the unknown param-
eters are nested as well, i.e., if H ′=H+1, [θθθ ∞]H+1 =(w̃1H+1, . . . , w̃IH+1,τττH+1).
The key point is the approximation of the conditional posterior distribution of
[θθθ ∞]H+1 with a multivariate Gaussian distribution centred at the mode of the
conditional posterior of [θθθ ∞]H+1 given yyy,H + 1,θθθ H . In this way, we sidestep
the artificial construction of proposal distributions and mapping functions whilst
ensuring quasi-optimal properties of the resulting sampler in terms of chain
mixing and sampler efficiency.

To illustrate our algorithm, we consider the case of I = 9 areas in a square
unit area domain and we simulate data for each area i from

yi j
iid∼ wi1N (−5,1)+wi2N (0,1)+wi3N (5,1) j = 1, . . . ,25. (3)

Note that the number of samples in each location is small, so that the sharing of
information between neighbouring mixtures is a key point. The true weights
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Figure 1: Posterior distribution (traceplot) of H.

wwwi, i = 1, . . . , I, are set to the inverse of the logistic transformation of w̃wwi by
definition, while the transformed weights w̃wwi are fixed as w̃i1 = 3(si − s̄) +
3(ti − t̄), w̃i2 = −3(si − s̄)− 3(ti − t̄), where (si, ti) are the coordinates of the
center of area i and (s̄, t̄) the coordinates of the grid center.

From Figure 1, which displays the posterior distribution of H (no burn-in
and no thinning), it is clear that the true value is recovered by our reversible
jump sampler.
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Gaussian distribution N (τττh) in (1). The spatial prior logisticMCAR is de-
fined through a logistic transformation of Gaussian multivariate CAR models
for auxiliary parameters w̃wwis. Parameters in (2) include the proximity matrix
G, in this paper fixed as gi j = 1 if areas i and j are neighbours and gi j = 0 oth-
erwise, a positive parameter ρ of the multivariate CAR specification – ρ = 0
corresponding to the transformed weights being independent – and a positive
parameter σ2 representing the conditional variance of the multivariate CAR
model. See Beraha et al., 2020 for the definition of such prior.
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tion q(θθθ ,θθθ ′), and (ii) accepted with probability α(θθθ ,θθθ ′). Usually, the proposal
distribution is defined in two steps. If θθθ H ∈ RnH and θθθ ′ ∈ RnH′ , with nH ′ > nH
and d = nH ′ −nH , first a random vector uuu ∈ Rd is sampled from a distribution
qd(uuu) and then θθθ H ′ is defined as gH→H ′(θθθ H ,uuu) for a suitable mapping func-
tion gH→H ′ . Since both qd and gH→H ′ are arbitrary, the definition of a suitable
reversible jump move is usually a difficult task.

The approach we follow to design a reversible jump move is based on
Norets, 2021, who introduces auxiliary priors and proposals for generic nested
models indexed by H in {1,2, . . .} and a prior for (H,θθθ H) the form π(θθθ H |
H)π(H). Let θθθ ∞ denote the infinite vector of all parameters for the largest
model, i.e., the mixture model with infinite components, and let [θθθ ∞]H ′ be the
H ′-th entry of θθθ ∞, with H ′ > H. Since models are nested, the unknown param-
eters are nested as well, i.e., if H ′=H+1, [θθθ ∞]H+1 =(w̃1H+1, . . . , w̃IH+1,τττH+1).
The key point is the approximation of the conditional posterior distribution of
[θθθ ∞]H+1 with a multivariate Gaussian distribution centred at the mode of the
conditional posterior of [θθθ ∞]H+1 given yyy,H + 1,θθθ H . In this way, we sidestep
the artificial construction of proposal distributions and mapping functions whilst
ensuring quasi-optimal properties of the resulting sampler in terms of chain
mixing and sampler efficiency.

To illustrate our algorithm, we consider the case of I = 9 areas in a square
unit area domain and we simulate data for each area i from

yi j
iid∼ wi1N (−5,1)+wi2N (0,1)+wi3N (5,1) j = 1, . . . ,25. (3)

Note that the number of samples in each location is small, so that the sharing of
information between neighbouring mixtures is a key point. The true weights
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Figure 1: Posterior distribution (traceplot) of H.

wwwi, i = 1, . . . , I, are set to the inverse of the logistic transformation of w̃wwi by
definition, while the transformed weights w̃wwi are fixed as w̃i1 = 3(si − s̄) +
3(ti − t̄), w̃i2 = −3(si − s̄)− 3(ti − t̄), where (si, ti) are the coordinates of the
center of area i and (s̄, t̄) the coordinates of the grid center.

From Figure 1, which displays the posterior distribution of H (no burn-in
and no thinning), it is clear that the true value is recovered by our reversible
jump sampler.
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1 Introduction

The Gaussian mixture model is probably the most popular approach to model-
based cluster analysis, see, e.g., McLachlan & Peel, 2000. Given the number of
mixture components, under suitable conditions (which obviously include that
the model holds), the maximum likelihood (ML) estimator is consistent for es-
timating the parameters of the Gaussian mixture model, see Redner & Walker,
1984. Occasionally it is claimed that ML in Gaussian mixtures requires the
mixture model to hold, whereas some other clustering methods are more uni-
versally applicable, because they are “nonparametric” and do not rely on model
assumptions. Sometimes k-means is referred to as nonparametric (despite the
fact that it can be derived as ML-estimator for a fixed partition model with
spherical Gaussian clusters, see Bock, 1996), based on the nonparametric con-
sistency theorem proved by Pollard, 1981, which shows that without assuming
any parametric model, under fairly general conditions, k-means converges to
its own canonical functional (population version).

Here we state that such a result can also be proved for the ML estimator
for Gaussian mixtures, without requiring that the data are in fact generated
from a Gaussian mixture. It is also of interest (and discussed in the conference
presentation) to what extent it can be made sure that under certain (not neces-
sarily Gaussian mixture) distributions with a clear clustering the value of the
Gaussian mixture ML canonical functional can be interpreted appropriately as
corresponding to the clusters in the population.

2 ML-estimation of Gaussian mixtures

The Gaussian mixture model is probably the most popular approach to model-
based cluster analysis, see, e.g., McLachlan & Peel, 2000. Data are modelled
as p ≥ 1-dimensional Euclidean random variables X1, . . . ,Xn i.i.d., where the
distribution of X1 has density

ψ(x;θ) =
G

∑
j=1

π jφ(x;µ j,Σ j), (1)

where G is the number of mixture components (considered fixed here), φ(·;µ,Σ)
is the p-variate Gaussian density with mean µ and covariance matrix Σ, π j ∈
[0,1] for j = 1,2, . . . ,G, ∑G

j=1 π j = 1. The parameter vector θ contains all
Gaussian parameters plus all proportion parameters.

The standard way of estimating θ is by maximum likelihood (ML). For
X̃n = (X1, . . . ,Xn), the log-likelihood is

ln(X̃n;θ) =
1
n

n

∑
i=1

logψ(Xi;θ). (2)

The ML-estimator is then

θn(X̃n) = argmax
θ∈ΘG

ln(X̃n;θ). (3)

The theory presented here will concern the global optimum θn(X̃n), whereas
algorithms used in practice such as the EM (McLachlan & Peel, 2000) cannot
guarantee that this is indeed found.

The parameter space ΘG cannot simply be the space of all parameter vec-
tors that are in principle possible in (1), because ln can degenerate if an eigen-
value of a component’s covariance matrix converges to zero.
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This can be dealt with constraining the ratio of any two of the eigenval-
ues of the within-component covariance matrices. See Garcı́a-Escudero et al.,
2018 for a discussion of eigenvalue constraints in Gaussian mixture modelling.
Let λ j,k be the kth eigenvalue of Σ j, define

Λ(θ) =
{

λ j,k : j = 1,2, . . . ,G; k = 1,2, . . . , p
}
,

λmin(θ) = min j,k{Λ(θ)},λmax(θ) = max j,k{Λ(θ)}.

Then, for given γ < ∞,

ΘG =

{
θ : π j ≥ 0 ∀ j ≥ 1,

G

∑
j=1

π j = 1;
λmax(θ)
λmin(θ)

≤ γ

}
. (4)

3 Consistency and the canonical functional

The canonical functional (population version) of an estimator is a functional
on the space of distributions that extends the estimator in a canonical manner
so that it reproduces the estimator when applied to the empirical distribution
of the dataset. Define

L(P;θ) = EP log(ψ(X ;θ)), LG(P) = sup
θ∈ΘG

L(θ)

(population version of the log-likelihood function and its supremum; Ep de-
notes the expected value assuming X ∼ P). Then, the canonical functional
corresponding to θn is defined as

θ�(P) = argmax
θ∈ΘG

L(P;θ). (5)

This definition (as well as (3)) implies existence and uniqueness of the argmax.
These are not trivial. Uniqueness is in fact violated, because for mixture mod-
els the order of the mixture components is not identified, and for G> 1 (in case
of existence) there are several maximisers of (3)) and (5). In this case, define
θn(X̃n) and θ�(P) as any maximiser, S(P;θ�(P)) as the set of all maximisers θ
with L(P;θ) = L(P;θ�(P)), and

K (P,ε) =

{
θ ∈ ΘG : inf

θ̇∈S(θ�(P))
‖θ− θ̇‖< ε

}
for any ε > 0.

The following assumptions are required:

A1 For every x1, . . . ,xG ∈ Rp : P{x1, . . . ,xG}< 1.
A2 LG(P) > LG−1(P) (implying LG(P) > −∞, which follows from existence

of second moments).

A1 stops all covariance matrices from degenerating simultaneously. A2 guar-
antees the existence of the involved covariance matrices, and prevents a pro-
portion parameter from being set to zero so that the corresponding mean and
covariance matrix could take any value without changing the likelihood. From
these it follows that

• θn(X̃n) exists with probability arbitrarily close to 1 for large enough n,
• θ�(P) exists,

and ultimately the nonparametric consistency result:

Theorem 1. Assume A1 and A2. Then for every ε > 0 and every sequence of
maximisers θn(X̃n) of ln:

lim
n→∞

P
{

θn(X̃n) ∈ K (P,ε)
}
= 1.

This can be proved adapting results in Coretto & Hennig, 2017 (where cor-
responding statements are showed for a version including an additional “noise
component”) to the Gaussian mixture case.

References

BOCK, H. H. 1996. Probabilistic models in cluster analysis. Computational
Statistics & Data Analysis, 23, 5–28.

CORETTO, P., & HENNIG, C. 2017. Consistency, breakdown robustness, and
algorithms for robust improper maximum likelihood clustering. Journal
of Machine Learning Research, 18, 1–39.
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ABSTRACT: In this paper we present robust weighting adjustments and imputation 
methods to compensate for selection bias in a nonprobability online web-survey taken 
from the WageIndicator (WI) programme (www.wageindicator.org). For the 
substantive study, we estimate the gender pay gap (GPG) using the 2016 WI survey 
data from the Netherlands. To calculate the adjustment weights, we use the 2016 EU-
SILC data as a reference sample.  Based on the study of GPG, we show that the 
combination of predictive mean matching and robust weighting adjustment techniques 
are able to compensate for the selection bias in the nonprobability web survey and 
ameliorate outcomes of the Blinder-Oaxaca decomposition model in terms of the 
degree of similarity relative to patterns found in representative probability samples in 
the Netherlands.   
 
KEYWORDS: Gender Pay Gap, Binder-Oaxaca decomposition, propensity score, predictive 
mean matching, sample matching   
 
1. Introduction 
 
One nonprobability web survey supported by the European Union’s Horizon 2020 
research and innovation programme under grant agreement No 730998 (InGRID-2 
Integrating Research Infrastructure for European expertise on Inclusive Growth 
from data to policy) is the WageIndicator (WI) programme 
(www.wageindicator.org). It was initiated in The Netherlands in 2001 as a platform 
for employees and employers looking for information about income. The 
respondents of these multilingual web-survey are volunteers recruited through 
national WI websites and a wide range of websites of WI partners. Apart from 
questions on real wage data, working conditions, and demographic characteristics, 
WI web surveys also cover a wide range of topics related to job and life satisfaction, 
work-life balance and health. However, one of the key issues is self-selection. 
     In this paper we present an application using the 2016 Netherlands WI data to 
measure the gender pay gap (GPG) using log hourly wage. We selected from this 
dataset those that are employed or self-employed. The minimum age in the data was 
17. We also deleted outliers with very small or very large log hourly wage which did 
not seem feasible since it is important to note that there is no interviewer screening 
of responses or edit checks to the web survey that are typically carried out as 
expected in a probability-based sample. The final sample size was 22,643. To adjust 
for the selection bias, it is necessary to identify a probability reference sample and 
for this purpose we used the 2016 Netherlands EU-SILC dataset. We selected only 
the employed and self-employed with a minimum of age of 17 to be consistent with 
the WI data. The EU-SILC sample size was 12,939. 
      

2. Adjustment Weights and Imputation in the 
WageIndicator Web survey  

 
We use quasi-randomisation approaches to account for the selection bias in the 2016 
Netherlands WI dataset where the two main techniques are sample matching and 
post-hoc adjustments using propensity scores.  
     Sample Matching: we calculate a propensity score to estimate the probability of 
participation for the nonprobability WI dataset. The WI dataset is stacked to the EU-
SILC dataset and we define    if i is in the WI dataset, otherwise   . 
Using a logistic regression model, we estimate a propensity score of participation:    

where  is a vector of covariates 
that are common in both datasets. The covariates are: age group (17-25, 26-35, 36-
45, 46-55, 56-65, 66+), sex (Males, Females), employment (Employed, Self-
employed), education  (Elementary, Secondary, Tertiary, Missing), occupation 
(Manager, Professional, Technician, Clerical, Service sales, Agricultural, 
Craft/trade, Operators, Elementary, Missing).  Then, within strata defined by sex and 
age group, we identify the record in the WI dataset and the record in the EU-SILC 
data having the closest propensity score and copied the WI log hourly wage to the 
EU-SILC record. We excluded those cases where WI log hourly wage was missing 
and allowed for up to 10 multiple donors from the WI dataset.  For the substantive 
analysis on GPG, sample weights and all covariates used were those of the EU-SILC 
data, but the response variable of log hourly wage is from the WI dataset.    
     Propensity Score Adjustment:  To calculate the propensity score, we use the    
method proposed in Chen, et al (2019) which utilizes the weights of the EU-SILC 
reference sample. The initial weight of the WI data di is the inverse propensity score. 
The final weight of the WI data is obtained by benchmarking to the EU-SILC 
weighted data using post-stratification and raking on the 5 covariates mentioned 
above: sex*age group*education and employment*occupation.   
     Missing Data: The calculation of adjustment weights for the WI dataset included 
item missing data and they were defined as separate categories for the variables 
education (16%) and occupation (21%). Besides these variables, there is missing 
data in log hourly wage (45%). Therefore, we carried out an imputation method 
whilst accounting for the adjustment weights to ensure that the imputation was 
applied on representative data. For this purpose we ran the MICE procedure with 
predicted mean matching (Van Buuren, et al. 2011) in R (package: 
mice.impute.pmm). Other variables in the imputation model with no missing data 
were sex, age group and urbanicity (Large cities, Small cities, Rural areas) and we 
also included the adjustment weight to account for the selection bias. We denote this 
approach by Weight/PMM.  In addition, we carried out a different approach 
assuming a single imputation approach.   We first imputed the WI dataset using a 
single iteration of the predictive mean matching and then   calculated the adjustment 
weights with no missing data categories (any missing data in the EU-SILC were 
deleted). We denote this approach by PMM/Weight.  A simulation study not shown 
here showed that both approaches provide similar point estimates of correlations and 
regression coefficients however the PMM/Weight approach had less variation 
compared to the Weight/PMM approach as is expected from  single imputation.   
 
3. Application Measuring the Gender Pay Gap 
 
The advantage of using the WI data to measure the GPG is that is has the variable 
log hourly wage. In contrast, the EU-SILC data has only annual income from wages 
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measure the gender pay gap (GPG) using log hourly wage. We selected from this 
dataset those that are employed or self-employed. The minimum age in the data was 
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the employed and self-employed with a minimum of age of 17 to be consistent with 
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2. Adjustment Weights and Imputation in the 
WageIndicator Web survey  

 
We use quasi-randomisation approaches to account for the selection bias in the 2016 
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where  is a vector of covariates 
that are common in both datasets. The covariates are: age group (17-25, 26-35, 36-
45, 46-55, 56-65, 66+), sex (Males, Females), employment (Employed, Self-
employed), education  (Elementary, Secondary, Tertiary, Missing), occupation 
(Manager, Professional, Technician, Clerical, Service sales, Agricultural, 
Craft/trade, Operators, Elementary, Missing).  Then, within strata defined by sex and 
age group, we identify the record in the WI dataset and the record in the EU-SILC 
data having the closest propensity score and copied the WI log hourly wage to the 
EU-SILC record. We excluded those cases where WI log hourly wage was missing 
and allowed for up to 10 multiple donors from the WI dataset.  For the substantive 
analysis on GPG, sample weights and all covariates used were those of the EU-SILC 
data, but the response variable of log hourly wage is from the WI dataset.    
     Propensity Score Adjustment:  To calculate the propensity score, we use the    
method proposed in Chen, et al (2019) which utilizes the weights of the EU-SILC 
reference sample. The initial weight of the WI data di is the inverse propensity score. 
The final weight of the WI data is obtained by benchmarking to the EU-SILC 
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mice.impute.pmm). Other variables in the imputation model with no missing data 
were sex, age group and urbanicity (Large cities, Small cities, Rural areas) and we 
also included the adjustment weight to account for the selection bias. We denote this 
approach by Weight/PMM.  In addition, we carried out a different approach 
assuming a single imputation approach.   We first imputed the WI dataset using a 
single iteration of the predictive mean matching and then   calculated the adjustment 
weights with no missing data categories (any missing data in the EU-SILC were 
deleted). We denote this approach by PMM/Weight.  A simulation study not shown 
here showed that both approaches provide similar point estimates of correlations and 
regression coefficients however the PMM/Weight approach had less variation 
compared to the Weight/PMM approach as is expected from  single imputation.   
 
3. Application Measuring the Gender Pay Gap 
 
The advantage of using the WI data to measure the GPG is that is has the variable 
log hourly wage. In contrast, the EU-SILC data has only annual income from wages 
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and therefore is dependent on confounders such as part-time work. To measure the 
GPG, we use the Blinder-Oaxaca decomposition (Oxaca, 1973, Blinder, 1973) 
which is available in the STATA package (Jann, 2008). The method explains the 
difference in the means of the log hourly wage by decomposing the gender gap into 
that part that is due to differences in the mean values of the independent variables in 
the model, and group differences in the effects (parameters) of the independent 
variables.  The method calculates the size and significance of the overall pay gap 
between men and women, and also divides the gap into a part that is explained by 
differences in determinants of wages and a part that cannot be explained by such 
group differences. Moreover, since our analysis include employees and self-
employed as reported by the respondents to the WI web survey, the Blinder-Oaxaca 
decomposition model is integrated with the Heckman’s selection model to correct 
for self-choice in the labour market. All methods in the analyses used weights 
described in Section 2. As a benchmark for the analysis, the 2016 GPG in the 
Netherlands was around 15.6% based on the Structure of Earnings survey.  
    Table 1 shows the results of the Blinder-Oaxaca decomposition of the difference 
between log hourly earnings of men and women. The upper section exhibits the 
overall pay gaps between men and women under the different approaches: original 
WI, Weight\PMM, PMM\Weight and sample matching. In addition, the overall 
explained part and the unexplained part are also expressed as a percentage of the 
difference between log hourly earnings of men and women. The subcomponents of 
the explained part are displayed in the lower section of Table 1. The explanatory 
variables included in the analysis are age, education, occupation, and urbanicity.   
 
Table 1: Oaxaca-Blinder decomposition of GPG with adjusted selection bias for men 
and women 

 
   All approaches in Table 1 suggest a pay gap between men and women in favour of 
men. With regard to the size of the GPG (the difference between log hourly wage of 
men and women), the GPG detected in the original WI data and the sample 
matching approaches appear to be smaller than those detected in Weight/PMM and 
PMM/Weight approaches. The GPG is 9% in the original WI dataset and even less 
in the sample matching of 4% (where the difference was found to be not significant). 
The Weight/PMM and the PMM/Weight approaches, with the use of adjustment 
weights and imputation as explained in Section 2, have a GPG of 18% and 16% 

 
Original WI 

(unweighted no 
missing data) 

Weight\ 
PMM 

PMM\ 
Weight 

Sample 
Matching (EU-
SILC weights 

Overall  
Men 2.67 3.16 3.12 2.72 
Women 2.43 2.70 2.62 2.61 
Difference 0.24* 0.46*** 0.50*** 0.11 
Total gap in logged 
hourly wage 9% 18% 16% 4% 

Explained% 7% 27% 34% 3% 
Unexplained% 93% 73% 66% 97% 

Detailed composition (%) of the explained gap 
Age Group 1% -2% -2% 18% 
Education  33%  42% 41% 36% 
Occupation 62% 64% 65% 40% 
Urbanicity 4% -4% -4% 7% 
n 10851 22,643 22,643 12,096 

respectively, and highly significant, which is approximately the expected level. We 
note that the results of this model are dependent on the explanatory variables that we 
have available.     
 
4. Conclusions 

 
   In this substantive study of estimating the 2016 GPG for the Netherlands based on 
the 2016 WI nonprobability web-survey, we provide important lessons for others 
working with this type of data on how to improve the reliability of nonprobability 
online data collection for carrying out general inference. We demonstrate that 
choosing a probability-based reference sample and applying the robust estimation 
for propensity score calculations according to Chen et al. (2019) with benchmarking 
on the inverse propensity scores to produce final weight adjustments, and using 
predictive mean matching to impute missing data, can be used to overcome potential 
biases in a nonprobability sample. We also demonstrated that sample matching did 
not produce credible results for this application. We also show two approaches for 
carrying out imputations of item missing data:  impute after the weighting 
adjustments and include the weight variable as a covariate in the imputation model; 
impute missing data within the nonprobability sample to obtain a complete dataset 
and then carry out the weighting adjustments. The approaches provide similar results 
albeit there is smaller variation in the impute/weight approach as it is typically based 
on a single imputation.  
     We note that none of the other studies using the online WI web-survey datasets 
attempt to adjust for the selection bias using a probability-based reference sample as 
we have shown here with the EU-SILC for the study of the GPG in the Netherlands. 
We provide evidence that we must undertake robust methods to improve the 
reliability of a web survey before carrying out statistical analyses, otherwise we can 
obtain severely biased results.  
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ABSTRACT: In this paper we propose a semi-Bayesian approach for the analysis of
categorical data with an ordered outcome when a scaling component is considered. A
recursive partitioning method yielding two trees –one for the location and one for the
scaling– is used for selecting covariates, then a Bayesian approach for model estima-
tion is implemented and an MCMC sampler is used to obtain posterior estimates. An
analysis on risk perception concerning Covid-19 pandemic is carried out to assess the
performance of the method.
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1 Background and preliminaries

Ordinal regression models based on a rating procedure are common in differ-
ent disciplines such as Economics, Marketing, Medicine and Psychology. If
unobserved heterogeneity of variances is present, scale effects in regression
structures with ordinal responses are needed. The modeling of scale effects
in ordinal regression was already considered by McCullagh, 1980, who intro-
duced the so-called location-scale model, extended in the Bayesian framework
because of the flexibility in specifying models and richness and accuracy in
providing parameter estimates (see Bürkner, 2017; Liddell & Kruschke, 2018).
Variable selection in this framework represents a challenge since typically it is
not known which variables contribute to the location and to the scaling com-
ponent. Tree-based methods offer a nonparametric solution to investigate the
interaction structure and automatically select variables (see Tutz & Berger,
2021). In our proposal we take into account covariates obtained for the two
components by separate trees and implement an ordinal logit model with pa-
rameters estimated through a Bayesian approach.

2 Model description

Let YYY = (Y1,Y2, . . . ,Yn)
′ be a random sample generated by an ordinal random

variable Y ∼ G(y) on the support {1, . . . ,k}, where k is a known integer. We
interpret Yi as the rating expressed by the i-th subject about a definite item. For
each subject, we collect information Ii = (yi,xxxi), for i = 1,2, . . . ,n, where yi is
the observed value of the rating and xxxi is a row vector of the matrix XXX which
includes all the appropriate covariates. We indicate with Y ∗

i the underlying
(continuous) latent variable such that,

α j−1 < Y ∗
i ≤ α j ⇐⇒ Yi = j , j = 1,2, . . . ,k ,

where −∞ = α0 < α1 < .. . < αk =+∞ are the thresholds of Y ∗.
Assume that p ≥ 1 covariates are relevant for explaining Y ∗ by the latent

regression model

Y ∗
i = xxxiβββ+σεi, i = 1,2, . . . ,n,

where σ is the standard deviation of the noise variable ε ∼ Fε(.). Then, the
probability mass function of Yi, for j = 1,2, . . . ,k, is:

Pr (Yi = j | θθθ,xxx) = Pr (α j−1 < Y ∗
i ≤ α j) = Fε

(α j − xxxiβββ
σ

)
−Fε

(α j−1 − xxxiβββ
σ

)
.

Common choices for Fε(.) are the Gaussian, the logistic, and the (comple-
mentary) log-log distribution, whose related models are named probit, logit,
and extreme value model, respectively. Here we focus on the logit link func-
tion. The parameter vector θθθ = (ααα′, βββ′,σ)′ is split into the intercept values
ααα = (α1, . . . ,αk−1)

′, the covariates coefficients βββ = (β1, . . . ,βp)
′ and the scale

parameter σ. The latter may depend on covariates yielding σi = zzziγγγ. Here zzzi is
a row vector of the matrix ZZZ which includes all the q ≥ 1 relevant covariates
and γγγ = (γ1, . . . ,γq)

′ the covariates coefficients. Since we do not have relevant
prior information, we use non informative priors on all parameters of interest,
letting the data guide the behaviour of the posterior distributions. We rely on
MCMC methods to obtain posterior samples.

3 Applicative section

We examine a set of data collected via a survey conducted in Italy during the
2020 COVID-19 lockdown (March 18 until May 3, 2020). The dataset consits
of 2224 observations on 21 variables. Respondents were asked to express on
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Figure 1. Tree structures for the location and scale term of the Covid-19 data set. The
parameter estimates are given in the terminal nodes.

a five-points scale how risky they evaluate Covid-19 infection for the society
(Risk).

The relevant covariates to include in the model are the ones reported in
the tree structures of Figure 1, obtained following the approach of Tutz &
Berger, 2021. In particular we examine the following covariates: Sex, gender
of the respondent (1=female, 0=male); Approve Directives, the respondents
were asked to evaluate their agreement with the government directive on a
scale from 1 (completely disagree) to 7 (completely agree); Covid News, the
respondents were asked to evaluate frequency of Covid news access and con-
sumption on a scale from 1 (seldom) to 7 (often); Age, a dichotomous variable
(0 if Age≤ 54, 1 otherwise).

The Bayesian estimates of the location and scale parameters are reported
in Table 1 (posterior mean, MCMC Standard Error and 95% credible inter-
vals). These results are obtained via the R package brms (Bayesian regres-
sion model using “Stan”); see Bürkner, 2017. The estimated thresholds are
α̂1 = −1.11(0.30), α̂2 = 1.00(0.27), α̂3 = 1.82 (0.28), and α̂4 = 3.39 (0.31).
We run in parrel 4 chains of 2000 iteration with a burnin period of 1000 iter-
ation each; as previously mentioned default non informative priors have been
used. Standard convergence diagnostics has been considered. The Bayesian
estimates of the latent variables standard deviations are obtained from the pos-
terior samples of log-disc (log-discrimination) with disc corresponding to the
inverse of the standard deviation.

In Figure 2 we provide a visual representation of the estimated relation-

Table 1. Bayesian estimates for the location-scale model

Estimate SE L-95% CI U-95% CI
Approve Directives 0.28 0.03 0.22 0.35
Covid19 News 0.25 0.04 0.17 0.33
Age 0.60 0.24 0.14 1.08
log disc Sex -0.21 0.06 -0.33 -0.09
sd disc Sex 1.24 0.08 1.09 1.39

Figure 2. Marginal effects of Age on Risk evaluation. Points indicate the posterior
mean estimates and error bars corresponds to the 95% Credible Intervals.

ship between Age and Risk. This figure displays the estimated probabilities of
the five response categories for the two age groups. We notice that older peo-
ple present a higher risk perception. The latter is also stated by respondents
who approve the directives expressed by Italian Government and usually read
and discuss Covid-19 news. Sex instead affects the scale component; higher
variability in expressing risk perception is reported for females.
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Table 1. Bayesian estimates for the location-scale model

Estimate SE L-95% CI U-95% CI
Approve Directives 0.28 0.03 0.22 0.35
Covid19 News 0.25 0.04 0.17 0.33
Age 0.60 0.24 0.14 1.08
log disc Sex -0.21 0.06 -0.33 -0.09
sd disc Sex 1.24 0.08 1.09 1.39

Figure 2. Marginal effects of Age on Risk evaluation. Points indicate the posterior
mean estimates and error bars corresponds to the 95% Credible Intervals.

ship between Age and Risk. This figure displays the estimated probabilities of
the five response categories for the two age groups. We notice that older peo-
ple present a higher risk perception. The latter is also stated by respondents
who approve the directives expressed by Italian Government and usually read
and discuss Covid-19 news. Sex instead affects the scale component; higher
variability in expressing risk perception is reported for females.
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of quantitative and qualitative explanatory variables on a binary response.
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1 Binary response models based on φ-divergence

In the context of regression modeling of the effects of p explanatory variables,
x1, . . . ,xp, on a binary response Y , we consider a sample of size n with Yi being
the response of the i-th observation, xxxi = (xi1, . . .xip) the associated values of
the explanatory variables, and we assume that Y1,Y2, . . . ,Yn are independent.
The most well-known model for modeling pi = P(Yi = 1) in terms of the ex-
planatory variables is the logistic regression model

pi = Pr(Yi = 1|xxxi) =
exp(β0 +∑p

j=1 β jxi j)

1+ exp(β0 +∑p
j=1 β jxi j)

, i = 1, . . . ,n. (1)

Kateri & Agresti, 2010 proved that in the above specified framework and in the
class of models with explanatory variables that have fixed value s j = ∑n

i=1 yixi j
for ∑n

i=1 pixi j, j = 1, . . . , p, the logistic regression model (1) is the closest to the
model of constant success probability P(Yi = 1|xxxi) = exp(β0)/[1+ exp(β0)] =
p(0), in terms of the Kullback-Leibler (KL) divergence.

Based on this property and considering the general family of φ-divergences,
which contains the KL as special case, Kateri & Agresti, 2010 introduced the
generalized binary regression model

F
(

pi

p(0)

)
−F

(
1− pi

1− p(0)

)
=

p

∑
j=1

β jxi j , i = 1, . . . ,n, (2)
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1 Institut de Neurosciences des Systèmes, Aix-Marseille University, Marseille, France,
(e-mail: jayantjha@gmail.com)

ABSTRACT: The quantiles of projections are discussed for spherical random
variables. The concept of best approach direction is defined for any quantile
based on the ordering of projections in different directions. The usefulness of
the concept is discussed when the preferred direction for a specified proportion
of observations is of interest. The variation of best approach directions with
quantiles is studied for different families of distributions on the sphere which
helps in gaining insights into the symmetry, uniformity, and multimodality
of the distributions. Exact polynomial-time algorithms are provided for the
computation of its estimate on circle and spheres. The connected highest sample
density regions for spherical observations can be directly derived from these
estimates. Inferential properties of the estimator are studied. Simulations and
real data analyses are performed to illustrate the results.

KEYWORDS: depth, directional data, quantiles, von Mises Fisher distribution

SIMPLE EFFECT MEASURES FOR INTERPRETING
GENERALIZED BINARY REGRESSION MODELS

Maria Kateri 1

1 Institute for Statistics, RWTH Aachen University, Germany
(e-mail: maria.kateri@rwth-aachen.de)

ABSTRACT: In a statistical information theoretical setup, the logistic regression model
has been extended to a family of binary regression models that are scaled through the
φ-divergence. This generalized model provides a great flexibility and enables a precise
fit but at the cost of not easily interpretable parameters. Here, we propose some sim-
ple measures that facilitate a straightforward and sound interpretation for the effects
of quantitative and qualitative explanatory variables on a binary response.

KEYWORDS: logistic regression, φ-divergence, ordinal data, odds ratio.

1 Binary response models based on φ-divergence

In the context of regression modeling of the effects of p explanatory variables,
x1, . . . ,xp, on a binary response Y , we consider a sample of size n with Yi being
the response of the i-th observation, xxxi = (xi1, . . .xip) the associated values of
the explanatory variables, and we assume that Y1,Y2, . . . ,Yn are independent.
The most well-known model for modeling pi = P(Yi = 1) in terms of the ex-
planatory variables is the logistic regression model

pi = Pr(Yi = 1|xxxi) =
exp(β0 +∑p

j=1 β jxi j)

1+ exp(β0 +∑p
j=1 β jxi j)

, i = 1, . . . ,n. (1)

Kateri & Agresti, 2010 proved that in the above specified framework and in the
class of models with explanatory variables that have fixed value s j = ∑n

i=1 yixi j
for ∑n

i=1 pixi j, j = 1, . . . , p, the logistic regression model (1) is the closest to the
model of constant success probability P(Yi = 1|xxxi) = exp(β0)/[1+ exp(β0)] =
p(0), in terms of the Kullback-Leibler (KL) divergence.

Based on this property and considering the general family of φ-divergences,
which contains the KL as special case, Kateri & Agresti, 2010 introduced the
generalized binary regression model

F
(

pi

p(0)

)
−F

(
1− pi

1− p(0)

)
=

p

∑
j=1

β jxi j , i = 1, . . . ,n, (2)
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with pi = p(xxxi) and F = φ′, where φ is a twice differentiable, strictly convex
real–valued function on [0,+∞), satisfying φ(1) = φ′(1) = 0, 0φ(0/0) = 0 and
0φ(x/0) = xφ∞ with φ∞ = limx→∞[φ(x)/x]. In the class of models with fixed
values s j = ∑n

i=1 yixi j for ∑n
i=1 pixi j, j = 1, . . . , p, model (2) under the con-

straints 0 < pi < 1, is the closest to the model of constant success probability,
pi = p(0) for all i, in terms of the φ–divergence.

For φ(x) = x log(x)−x+1, x > 0, the φ–divergence simplifies to the KL di-
vergence and model (2) reduces to (1). The Pearsonian divergence corresponds
to φ(x) = 1

2(x− 1)2, for which (2) simplifies to the linear probability model
pi = p(0)

[
1+(1− p(0))∑p

j=1 β jxi j
]
, with −1/(1− p(0))< ∑k

j=1 β jxi j < 1/p(0),
for all i. For φλ(x) = 1

λ(λ+1) [x
λ+1 − x− λ(x− 1)], x > 0, where λ is a real–

valued parameter, the φ–divergence becomes the power divergence of Cressie
and Read and (2) leads to

pi = p(0)
[
1+λ(β0i +

p

∑
j=1

β jxi j)
]1/λ

, i = 1, . . . ,n, (3)

with parameters β0i satisfying suitable constraints to ensure that pi ∈ (0,1).
When λ = 0, φ0(x) = limλ→0[φλ(x)] and model (3) becomes (1). It reduces
to the linear probability model for λ = 1. Model (3) can be expressed by the
simpler equivalent form

pi =
[
β̃0 +

p

∑
j=1

β̃ jxi j)
]1/λ

, i = 1, . . . ,n. (4)

2 Parameter interpretation and induced effect measures

The effect of any explanatory variable xk, quantitative or qualitative, is inter-
preted conditional on the value of all other covariates in terms of the corre-
sponding parameter βk in the model, as usual in regression models. In particu-
lar, for quantitative xk, the F-scaled odds ratio (OR)

[
F
( p(xxxi)

p(0)
)
−F

(1− p(xxxi)

1− p(0)
)]

−
[

F
( p(xxxi′)

p(0)
)
−F

(1− p(xxxi′)

1− p(0)
)]

(5)

opposing the F-scaled odds for any two covariate vectors xxxi and xxxi′ differing
only on their xk component, equals βk(xik − xi′k), where βk is the parameter in
model (2). Is xk categorical with c levels, then the associated parameters βk j,
j = 2, . . . ,c, equal the F-scaled ORs comparing level j to the reference level 1.

The necessity and practical importance of effect measures that are easy to
calculate and straightforward to interpret has been underlined among others

by Agresti & Kateri, 2017 and Agresti et al., 2021, for ordinal and binary re-
sponses, respectively. These sources discuss existing effect measures, review-
ing the related literature and propose new ones. The need for simple effect
measures is even more important for the case of generalized models of type
(2), for which the F-scaled ORs are by far more unattractive to deal with and
interpret. Here, we extend measures proposed in Agresti & Kateri, 2017 and
Agresti et al., 2021 for the parametric family of models (3). The adaption of
these measures for any other member of the φ–divergence based binary regres-
sion models family is straightforward.

For a quantitative covariate xk, a common choice of simple effect mea-
sure for the logistic regression model is the rate of change of the response
probability p = P(Y = 1|xxx = xxx∗) in xk when all other covariates in xxx are kept
fixed at value xxx∗, which is ∂p/∂βk = βk p(1− p) and is known as partial effect.
This rate depends on xxx and for given xxx = xxx∗ achieves its maximum βk/4 at
p = 0.5. The average partial effect over all xxxi in a sample or the partial ef-
fect at the mean xxx have been proposed as simple effect measures (s. Agresti
et al., 2021). These measures can also be defined for the generalized binary
regression models presented above. For the linear probability model this rate
equals ∂p/∂βk = βk p(0)(1− p(0)), independent of xxx, while for model (3) and
using the alternative definition (4) for p, we have ∂p/∂β̃k = β̃k p1−λ/λ. This
rate is increasing in βk for λ ∈ (0,1) and decreasing for λ < 0 or λ > 1. Sim-
ilar measures can be defined for a binary covariate xk, by replacing the rate of
change by the difference between p’s for xk = 0 and xk = 1, estimating these
differences over all xxxi’s and averaging them. In case of a categorical covariate,
this process can be followed for the differences between any pair of its levels.

3 Comparison of two ordinal responses

For the problem of comparing two independent groups of items based on their
response on an ordinal scale of c levels, the data form a 2× c contingency
table. Such cases can equivalently be analyzed by models treating the binary
variable as response. The data in Table 1 are from an experiment on the use
of drugs (sulfones and streptomycin) in the treatment of leprosy. The rows
group the patients according to the degree of infiltration (a measure of a cer-
tain type of skin damage) present at the beginning of the experiment. The
columns indicate the change in the overall clinical condition of the patient af-
ter 48 weeks of treatment. This data set has been analyzed by generalized
binary regression models by Kateri & Agresti, 2010, considering equidistant
scores for the response on clinical change. The corresponding logistic model
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fits well (G2 = 0.63), as does also the linear probability model (G2 = 0.26),
both with d f = 3. Fitting the power divergence model with λ as a parameter,
gives the best fit for λ̂ = 1.673 (G2 = 0.05, d f = 2). Kateri & Agresti, 2010
commented that generalized models of this type, though very flexible, have a
restricted scope for applications due to the lack of a simple interpretation.

Table 1. Change in Clinical Condition (C1: Worse, C2: Stationary, C3: Slight Im-
provement, C4: Moderate Improvement, C5: Marked Improvement) by Degree of In-
filtration in a study comparing two drugs against leprosy (Source: Cochran, 1954).

Degree of Clinical Change
Infiltration C1 C2 C3 C4 C5
High 1 13 16 15 7
Low 11 53 42 27 11

This drawback can be overcome by adopting for these models the mea-
sures for ordinal models introduced by Agresti & Kateri, 2017 (Section 5).
These are the ordinal superiority measures ∆ and γ, which in our case are
∆ = ∑ j>k π1 jπ2k −∑k> j π1 jπ2k and γ = ∑ j>k π1 jπ2k +∑ j π1 jπ2 j/2, ranging in
[−1,1] and [0, 1], respectively, where πi j is the (i, j) cell probability. For the
logistic, linear, and power divergence models fitted on Table 1, ∆ is estimated
as ∆̂0 = 0.229, ∆̂1 = 0.241 and ∆̂λ̂ = 0.231, respectively, while γ̂0 = 0.614,
γ̂1 = 0.620, and γ̂λ̂ = 0.616. Thus under all three models it is estimated that
there is about 62% change for a better clinical change at the high than the low
group.

The models discussed so far are based on local F-scaled ORs. Treating
the ordinal variable as response, we consider models and measures of ordinal
superiority that are based on cumulative F-scaled ORs, and compare them.
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erties of mixtures of Kato–Jones distributions. A key reparametrization is done to
achieve the identifiability of the proposed mixtures. With this reparameterazation, we
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ments and the maximum likelihood method. These methods are seen to be useful for
fitting the proposed mixtures to the traffic counter data set of interest.
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1 Introduction

Circular data are a set of observations which can be expressed as angles be-
tween [0,2π). For the modelling of circular data, a considerable number of
probability distributions have been proposed in the literature. Among them, a
flexible four-parameter family of distributions has been proposed by Kato &
Jones, 2015. It is given by the density

gKJ(θ;µ,γ,λ,ρ) =
1

2π

{
1+2γ

cos(θ−µ)−ρcosλ
1+ρ2 −2ρcos(θ−µ−λ)

}
, 0 ≤ θ < 2π,

where 0 ≤ µ < 2π, 0 ≤ γ < 1, and 0 ≤ ρ < 1 and 0 ≤ λ < 2π satisfy (ρcosλ−
γ)2 +(ρsinλ)2 ≤ (1− γ)2. This distribution, which will be called Kato–Jones
distribution, is unimodal, affords a very wide range of skewness and kurtosis,
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has clear interpretation of the parameters, and allows straightforward parame-
ter estimation by both method of moments and maximum likelihood.

Motivated by a multimodal skewed data set which appears in traffic engi-
neering, we consider the following mixtures of Kato–Jones distributions with
density

f (θ) =
m

∑
k=1

πkgKJ(θ;µk,γk,λk,ρk)

=
1

2π

m

∑
k=1

πk

{
1+2γk

cos(θ−µk)−ρk cosλk

1+ρ2
k −2ρk cos(θ−µk −λk)

}
, 0 ≤ θ < 2π,

(1)

where m∈N is the number of the components of the mixture and 0< π1, . . . ,πm <
1 are the mixing proportions satisfying ∑m

k=1 πk = 1.
Apart from our proposal (1), some mixtures of circular distributions have

been proposed in the literature. The most attention have been paid to mixtures
of the von Mises distributions (e.g., Wallace & Dowe, 2000; Mooney et al.,
2003; Banerjee et al., 2005; Mulder et al., 2020). The components of the
mixtures, the von Mises distributions, are symmetric distributions with two
parameters controlling location and mean resultant length. Recently, mixtures
of the sine-skewed distributions have been discussed by Miyata et al., 2020.
The sine-skewed distribution is an extension of a circular distribution which
can adopt a mildly asymmetric shape. However these existing models do not
seem to be appropriate for our traffic data because one of the clusters of our
data is strongly skewed.

In this short paper, we discuss two methods for parameter estimation for
the mixture (1), namely, a modified method of moments and the maximum
likelihood method. Then, using the proposed methods, we apply the proposed
mixture (1) to the traffic data which show bimodality and asymmetry.

2 Parameter estimation

Let Θ1, . . . ,Θn be independent and identically distributed from the mixture (1).
Note that, as it stands, the parameters, πk and γk, of the mixture (1) can not be
uniquely determined in parameter estimation and therefore the mixture (1) is
not identifiable. In order to circumvent this problem, we reparametrize the
parameters of the mixture (1). With this reparametrization, we discuss two
methods for parameter estimation.

The first method is a modified version of the method of moments based on
trigonometric moments. Kato & Jones, 2015, proposed a method of moments
based on trigonometric moments for Kato–Jones distribution or, equivalently,
the mixture (1) with m = 1. However their method can not be directly applied
to our mixture (1) with general m because the resulting estimates are not always
within the range of λk and ρk. In order to circumvent this problem, we propose
a function to evaluate the error between the empirical and theoretic trigonomet-
ric moments. Then the estimates are obtained as the minimizer of the proposed
function. An advantage of this method is that the estimates always belong to
the parameter space and therefore are well-defined. In particular, for a single
component mixture m = 1, this estimator converges to the method of moments
estimator of Kato & Jones, 2015, under certain conditions. Some asymptotic
properties such as the consistency and asymptotic normality also hold for the
proposed estimator.

Second we consider the maximum likelihood estimation. As is the case
for m = 1, there do not seem to be a closed-form expression for the maximum
likelihood estimator for general m as well. Therefore we consider a numerical
algorithm to estimate the maximum likelihood estimate of the mixture (1). We
apply the EM algorithm to estimate the parameters of the mixture (1). This
algorithm enables us to express the reparametrized mixing proportions of the
mixture (1) in closed form in each step. The other parameters of the mixture
need to be estimated numerically. However the estimation of these parameters
is equivalent to weighted maximum likelihood estimation for a single Kato–
Jones distribution and can be done in a similar manner as in Kato & Jones,
2015.

Our experiments suggest the following: The modified method of moments
estimation is faster than the maximum likelihood estimation. There is no great
difficulty in implementing the maximum likelihood estimation using the EM
algorithm. The modified method of moments estimate provides a useful initial
value of the EM algorithm for maximum likelihood estimation.

3 Application to traffic count data

Using the two proposed methods for parameter estimation, we fit the proposed
mixture (1) to a traffic data set. The data of interest are the timestamps of
all vehicles’ passing recorded by a traffic counter at 20.4 kilopost of Kobe
route, Hanshin Expressway, Japan. Kobe route is located in Osaka metropoli-
tan area and connects two large cities of Japan, Osaka and Kobe. The data of
the timestamps are converted from 24 hours to angles in [0,2π); for clarity, 0
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mixture (1) in closed form in each step. The other parameters of the mixture
need to be estimated numerically. However the estimation of these parameters
is equivalent to weighted maximum likelihood estimation for a single Kato–
Jones distribution and can be done in a similar manner as in Kato & Jones,
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Our experiments suggest the following: The modified method of moments
estimation is faster than the maximum likelihood estimation. There is no great
difficulty in implementing the maximum likelihood estimation using the EM
algorithm. The modified method of moments estimate provides a useful initial
value of the EM algorithm for maximum likelihood estimation.
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Using the two proposed methods for parameter estimation, we fit the proposed
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corresponds to midnight, π to midday, etc. Our data show bimodality and one
of the clusters of the data is strongly skewed.

In parameter estimation, we first estimate the parameters based on the mod-
ified method of moments. Then the maximum likelihood estimation is carried
out by using the modified method of moments estimates as the initial values of
the EM algorithm. The model estimated by the maximum likelihood method is
a two-component (m = 2) mixture of Kato–Jones distributions. The estimated
model provides a reasonable fit to the data including the strongly skewed clus-
ter of data. Details of the data analysis will be given in the talk.
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ABSTRACT: One way to specify a model in directional statistics is to look for an
exponential family which mimics the multivariate normal distribution under high con-
centration. However, in some important examples this strategy leads to an over-
specified model, with a spare parameter. This paper revisits two standard distributions,
the Fisher-Bingham distribution on the sphere and the bivariate von Mises distribution
on the torus, and takes a fresh look at guidelines to specify this parameter.
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1 Introduction

Directional statistics is concerned with data on circles, spheres and related
manifolds. For this paper, we focus on two particular cases: the unit sphere
Sp−1 in Rp , especially the case p = 3, and the torus (S1)

d , especially d = 2.
In each case it is possible to construct an exponential family which mimics
the multivariate normal distribution under high concentration. But there is
a problem. The models include one more parameter than necessary. Over-
parameterized models can lead to problems of interpretation and fitting. Hence,
if possible, it is usually better to choose a parameterization with the same num-
ber of parameters as the corresponding asymptotic multivariate normal distri-
bution. Various suggestions have been made in the literature to fix the spare
parameter, but these suggestions sometimes have severe limitations.

2 The Fisher-Bingham distribution

The 6-parameter Fisher-Bingham distribution (FB6) on the unit sphere S2 in
R3, after rotation to a standardized coordinate system, has the density

f (xxx) ∝ exp{κx3 +β1x2
1 +β2x2

2}, xxx ∈ S2 (1)

with respect to the uniform distribution on S2, where κ > 0, −∞ < β2 ≤ β1.
Here xxx = [x1, x2, x3]

T is a unit vector, xxxT xxx = 1, and the third coordinate axis
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corresponds to midnight, π to midday, etc. Our data show bimodality and one
of the clusters of the data is strongly skewed.
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can be viewed as the “north pole”. The parameters of the model are κ,β1,β2
plus two parameters for location and one parameter for orientation about the
north pole, making 6 parameters in all. Provided κ > 0 and 2β1 ≤ κ, 2β2 ≤
κ, the density is unimodal at the north pole. Under high concentration the
distribution is asymptotically bivariate normal, a 5-parameter family.

How should the parameters in FB6 be constrained to yield a 5-parameter
family? Two choices are:

(a) the balanced FB5 distribution (FB5b), with β2 = −β1 = β say, 0 ≤ β ≤
κ/2. It was introduced in Kent, 1982 (without the adjective “balanced”)
and is sometimes known as the Kent distribution.

(b) The extreme FB5 distribution (FB5e). Set β1 = 0, β2 = −δ, say, where
δ ≥ 0. It was introduced in Kent et al. , 2016.

The parameters β1 and β2 determine the eccentricity of the the distribution;
in the limiting bivariate normal case, the eccentricity describes the ratio of the
eigenvalues of the covariance matrix. Although both the balanced and extreme
FB5 distributions can accommodate high eccentricity under high concentra-
tion, the balanced distribution is much less able to describe high eccentricity
under low and moderate concentration. See Fig. 1 panels (a) and (b) for an
example with moderate concentration, where the mode has been moved to the
equator. Panel (a) gives the most eccentric choice possible with the FB5b dis-
tribution, and Panel (b) shows how FB5e can be much more eccentric.

3 Bivariate von Mises distribution

Represent points on the torus S1×S1 as a pair of angles θ1 and θ2. The bivariate
von Mises distribution, after a suitable rotation of each circle, has density

f (θ1,θ2) ∝ exp{κ1c1 +κ2c2 + vvvT
1 Bvvv2}, (2)

where B is a 2× 2 parameter matrix (not necessarily symmetric) Mardia &
Jupp, 1999; Mardia et al. , 2008; Kent et al. , 2008; Mardia et al. , 2012. Here
the shorthand notation c j = cosθ j,s j = sinθ j and vvv j = [c j, s j]

T , j = 1,2 for
the first order trigonometric functions has been used. The density is unimodal
with a mode at θ1,θ2 = 0, provided

κ1 +b11 > 0, κ2 +b11 > 0, b12 = b21 = 0, b2
22 ≤ (κ1 +b11)(κ2 +b11). (3)

After adding 2 parameters for location, the bivariate von Mises distribu-
tion, subject to the constraints in (3) forms a 6-parameter family (BVM6,
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Figure 1. Illustration of directional simulations. Panels (a) and (b) illustrate the FB5b
and FB5e distributions. Note the spread in longitude is similar for both distributions,
but FB5e has a much smaller spread in latitude than can be modelled by FB5b. Panels
(c) and (d) illustrate the BVMs and BVMc distributions. Note the marginal spreads in
θ1 and θ2 are similar to one another and similar for the two distributions. However,
BVMc shows a much higher correlation between the two angles than can be modelled
by BVMs.
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tribution, and Panel (b) shows how FB5e can be much more eccentric.
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Figure 1. Illustration of directional simulations. Panels (a) and (b) illustrate the FB5b
and FB5e distributions. Note the spread in longitude is similar for both distributions,
but FB5e has a much smaller spread in latitude than can be modelled by FB5b. Panels
(c) and (d) illustrate the BVMs and BVMc distributions. Note the marginal spreads in
θ1 and θ2 are similar to one another and similar for the two distributions. However,
BVMc shows a much higher correlation between the two angles than can be modelled
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say). Under high concentration BVM6 is asymptotically bivariate normal, a
5-parameter family. Just as in the last section, BVM6 is over-parameterized.

In this case there are two well-established ways to constrain the spare de-
gree of freedom:

(a) The bivariate von Mises sine model (BVM5s), by setting b11 = 0.
(b) The bivariate von Mises cosine model (BVM5c), by setting b22 = |b11|.

Under high concentration both the sine and cosine model can accommo-
date high correlation between θ1 and θ2. However, under low and moderate
concentration the cosine model accommodates high correlation more effec-
tively. See Fig 1, panels (c) and (d) for an example with moderate concen-
tration. Panel (c) gives the most highly correlated choice possible with the
BVMs distribution, and Panel (d) shows how BVMc can exhibit much higher
correlation.
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1 University of Ljubljana, School of Economics and Business, and Institute of Mathe-
matics, Physics and Mechanics (e-mail: simona.cerne@ef.uni-lj.si)
2 University of Ljubljana, Faculty of Medicine, Institute for Biostatistics and Medical
Informatics (e-mail: natasa.kejzar@mf.uni-lj.si)

ABSTRACT: Young population is generally considered to be very healthy, so
the most common causes of death in this population are often associated with
risky behaviours. In fact, in the population aged 20-39, external causes of death
account for more than half of the causes of death in EU countries (also in the
US), while by far the most common causes of death in the general population
are circulatory diseases and various cancers. The next most common causes
of death in the 20-39 age group in the US are suicides and homicides, both of
which are strongly associated with stress, therefore we examine them also for
EU countries. Our application is based on the 2016 data, which at this point is
the most recent complete data available, however the area is even more relevant
nowadays in the pandemic and post-pandemic period with many extraordinary
stressful situations.

In order to include as much information as possible from these data into our
cluster analysis, we use symbolic data methods. By considering for each age-
sex group not only the number of deaths but also their distribution among the
main causes of death, we can include internal variability (in our case, variability
by cause of death) in the analysis.

The main objective of the study is twofold: first, to identify groups of EU
countries with similar mortality patterns, taking into account two-level infor-
mation for each age and sex group, i.e. number of deaths and their distribution
among the main causes of death; and second, to describe clusters of mortality
patterns and to investigate possible links between the mortality patterns in the
obtained clusters and some other socio-demographic indicators. In our study,
we use a symbolic table for more informative data description and adaptations
of compatible hierarchical and non-hierarchical clustering methods for group
identification that allows us to consider this two-level information. To this end,
we have extended our R package clamix.
KEYWORDS: symbolic data analysis, main death causes, young population.
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say). Under high concentration BVM6 is asymptotically bivariate normal, a
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concentration the cosine model accommodates high correlation more effec-
tively. See Fig 1, panels (c) and (d) for an example with moderate concen-
tration. Panel (c) gives the most highly correlated choice possible with the
BVMs distribution, and Panel (d) shows how BVMc can exhibit much higher
correlation.

References

KENT, J. T. 1982. The Fisher-Bingham distribution on the sphere. Journal of
the Royal Statistical Society, Series B, 44, 71–80.

KENT, J. T., MARDIA, K. V., & TAYLOR, C. C. 2008. Modelling strate-
gies for bivariate circular data. Pages 70–73 of: BARBER, S., BAXTER,
P. D., GUSNANTO A., & MARDIA, K. V. (eds), The Art and Science of
Statistical Bioinformatics. Leeds University Press.

KENT, J. T., HUSSEIN, I., & JAH, M. K. 2016. Directional Distributions in
Tracking of Space Debris. Pages 2081–2086 of: Proceedings of the 19th
International Conference on Information Fusion (FUSION), Heidelberg,
Germany. IEEE.

MARDIA, K. V., & JUPP, P. E. 1999. Directional Statistics. New York: Wiley.
MARDIA, K. V., HUGHES, G., TAYLOR, C. C., & SINGH, H. 2008. A

multivariate von Mises distribution with applications to bioinformatics.
Canadian Journal of Statistics, 36, 99–109.

MARDIA, K. V., KENT, J. T., ZHANG, Z., TAYLOR, C. C., & HAMELRYCK,
T. 2012. Mixtures of concentrated multivariate sine distributions with
applications to bioinformatics. Journal of Applied Statistics, 39, 2475–
2492.

IDENTIFYING MORTALITY PATTERNS OF MAIN
CAUSES OF DEATH AMONG YOUNG EU POPULATION

USING SDA APPROACHES
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ABSTRACT: Young population is generally considered to be very healthy, so
the most common causes of death in this population are often associated with
risky behaviours. In fact, in the population aged 20-39, external causes of death
account for more than half of the causes of death in EU countries (also in the
US), while by far the most common causes of death in the general population
are circulatory diseases and various cancers. The next most common causes
of death in the 20-39 age group in the US are suicides and homicides, both of
which are strongly associated with stress, therefore we examine them also for
EU countries. Our application is based on the 2016 data, which at this point is
the most recent complete data available, however the area is even more relevant
nowadays in the pandemic and post-pandemic period with many extraordinary
stressful situations.

In order to include as much information as possible from these data into our
cluster analysis, we use symbolic data methods. By considering for each age-
sex group not only the number of deaths but also their distribution among the
main causes of death, we can include internal variability (in our case, variability
by cause of death) in the analysis.

The main objective of the study is twofold: first, to identify groups of EU
countries with similar mortality patterns, taking into account two-level infor-
mation for each age and sex group, i.e. number of deaths and their distribution
among the main causes of death; and second, to describe clusters of mortality
patterns and to investigate possible links between the mortality patterns in the
obtained clusters and some other socio-demographic indicators. In our study,
we use a symbolic table for more informative data description and adaptations
of compatible hierarchical and non-hierarchical clustering methods for group
identification that allows us to consider this two-level information. To this end,
we have extended our R package clamix.
KEYWORDS: symbolic data analysis, main death causes, young population.
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ABSTRACT: A semi-automatic procedure for regression models, which leads to iden-

tify the optimal number of clusters, in a large and complex data set, is discussed.

Robust methods usually suffer from high-computational load and we give practical

clues when using the TCLUST-REG with the FSDA toolbox in Matlab

KEYWORDS: FSDA, Outliers, TCLUST-REG.

1 Introduction and motivation

The purpose of this paper is to provide the user with a set of semi-automatic

tools in the context of regression clustering which can help to select the optimal

number of groups (or more generally to find a set of relevant solutions), give

insights about the optimal restriction factors among the variances of the esti-

mated residual variances and finally enable to estimate the optimal trimming

level keeping into account that it can depend on the chosen solution.

We made use of our Flexible Statistics for Data Analysis software pack-

age, the FSDA toolbox for MATLAB, which is available as “Add-On” inside

MATLAB or on github.

2 Technical machinery

Let the multivariate covariates X and the response variable Y be defined on Ω
with values in X ×Y ⊆ Rp−1 ×R. Then, {xi,yi}, i = 1,2, . . . ,n, represents

a i.i.d. random sample of size n drawn from (X ,Y ). Assume that Ω can be

partitioned into k groups, say Ω1, Ω2, . . ., Ωk. Then, the general formulation

of the regression clustering mixture model has a density which can be written

as

p(x,y,θ) =
k

∑
g=1

p(y|x,θy,g)p(x,θx,g)πg,
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where p(y|x,θy,g) is the conditional density of Y given x in Ωg which depends

on the vector of parameters θy,g, p(x,θx,g) is the marginal density of X in Ωg

which depends on the vector of parameters θx,g, and πg reflects the impor-

tance of Ωg in the mixture with the usual constraints πg > 0 and ∑k
g=1 πg = 1.

Vector θ denotes the full set of parameters θ = (θT
y,g θT

x,g)
T . It is customary

to assume that in each group g the conditional relationship between Y and x,

p(y|x,θy,g), has form Y = β0,g + xT βg + εg, with proper parameters for all g

components. Assuming normality and linearity implies the Gaussian Cluster

Weighted Model (CWM) of Gershenfeld et al. , 1999, and can be written as

p(x,y,θ) =
k

∑
g=1

φ(y;β0,g +βT
g x,σ2

g)φp−1(x,µg,Σg)πg.

This is linked to the clustering around regression that ignores the distribution of

X . To accommodate for such an unrealistic assumption, in the so-called classi-

fication framework of model based clustering, the classification log-likelihood

LCla(θ) =
n

∑
i=1

k

∑
g=1

zig(θ) log φ(yi|b0g,x
T
i bg,s

2
g)φp−1(xi,mg,Sg)pg. (1)

The target function (1) is unbounded when no constraints are imposed on the

scatter parameters. It is necessary therefore to impose constraints on the max-

imization on the set of eigenvalues of the scatter matrices.

In the literature of robust regression it is widely known the effect of both

vertical outliers in Y and outliers in X . Robustness can be achieved by dis-

carding in each step of the maximization procedure a proportion of units equal

to α, associated with the smallest contributions to the target likelihood. More

precisely, for example in the mixture modeling context, the Trimmed CWM

parameter estimates are based on the maximization of the following trimmed

likelihood function LMixt(θ|α,cy,cX) Garcı́a-Escudero et al. , 2017

LMixt(θ|α,cy,cX )=
n

∑
i=1

z∗(xi,yi) log

[
k

∑
g=1

φ(yi|b0,g,b
T
g x,s2

g)φp−1(xi,mg,Sg)pg

]
,

(2)

where z∗(·, ·) is a 0-1 trimming indicator function. A fixed fraction α of obser-

vations can be unassigned by setting ∑n
i=1 z(xi yi) = [n(1−α)]. The TCLUST-

REG Garcı́a-Escudero et al. , 2010 can be considered as a particular case of

TCWRM in which the contribution to the likelihood of φp−1(xi,mg,Sg) is set

equal to 1.
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Figure 1. Maximised likelihood for models Cla and Mixt (from left to right respec-

tively) with associated choices of restriction coefficient and number of groups

Often it is convenient to consider a further trimming step, which discards

a proportion αX of the units, after taking into account their degree of remote-

ness in the X space, among the observations which have survived the first

trimming operation. The observations surviving to the two trimming steps are

then used for updating the regression coefficients, weights and scatter matri-

ces. This modification of the algorithm is usually referred in the literature as

adaptive TCLUST-REG. In the sequel we contrast the performance of (adap-

tive) TCLUST-REG to a large data set to provide guidelines when complex big

data are available.

3 Data, results and further research

In the data analysed, kept anonymous for confidentiality, there are shopping

tracks of 24 month sales of non-food items. The number of customers is ap-

proximately 470000. The average sale of each customer in the time period is

the response variable Y from which we perform the clustering regression ap-

proach. The set of explanatory variables is given by the number of visits, the

number of items bought per visit, the percentage value bought with promo-

tion/sales, age and the gender of the customer. The optimal number of groups,

and the optimal constraint factor, are displayed for likelihoods 1 and 2 in Fig-

ure 1 (left and right panels respectively).

In all cases we obtained 3 groups with approximately 8% of customers

identified as outliers and un-allocated. The outliers in the data (roughly 40000

customers) are mostly characterized by occasional shops and low revenue for

the retailer. Broadly speaking in cluster 2 the customers spend more and buy

more articles compared to the average. Customers in cluster 1 tend to buy on

sales rather than full price and buy more compared to the other clusters. In
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Figure 2. Scatter plot of data and cluster membership for the optimal solution

cluster 3 people buy less expensive articles, but often.

We want to remark that the identification of these outliers is fully auto-

matic and not arbitrary, but comes as a by-product of an optimal model-based

algorithm. The cluster membership is displayed in Figure 2 and the overlap

of units would create troubles in many “standard” cluster methods. Further

details and comments will be provided during the Conference.
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ABSTRACT: Statistical matching attempts to combine the information obtained from different, 
non-overlapping samples, selected from the same target population, to form a matched sample 
containing the data in the different samples. The aim of this paper is to propose a 
nonparametric approach of handling statistical matching under informative sampling and not 
missing at random (NMAR) nonresponse, by use of empirical likelihood.
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1 Introduction

Statistical matching is becoming more and more popular in recent years. Information 
on a set of variables is often obtained from different data sources related to the same 
target population, each containing only some of the variables, with no joint 
observations on all the variables. 

Let A and B be two independent samples of size A
n and B

n respectively, 
selected from a population of N independent and identically distributed (i.i.d.) 
records, generated from some joint probability distribution function (pdf),

( , , )pf x y z of variables ( , , )X Y Z . Only ( , )X Y are observed for the units in 

sample A , and only ( , )X Z are observed for the units in sample B . Because of the 

lack of joint information, the joint pdf ( , , )pf x y z is not identifiable. Several 
alternative techniques have been proposed in the literature to overcome the 
identification problem. At first, techniques based on the conditional independence 
assumption (CIA) between Y and Z given X were considered. A second group of 
techniques uses external auxiliary information on the statistical relationship between 
Y and Z . Finally, a third approach consists of analysing the uncertainty regarding 
the joint distribution of ( , , )X Y Z , that is several alternative models for the joint 
distribution of ( , , )X Y Z , compatible with the distributions of ( , )X Y and ( , )X Z

in the samples A and B , are considered. See, D’Orazio et al. (2006), Conti et al.
(2016) and references therein.

In practice, the sample selection in survey sampling involves complex sampling 
designs based on different levels of clustering and differential inclusion 
probabilities. When the inclusion probabilities are related to the value of the target 
outcome variable even after conditioning on the model covariates, the observed 
outcomes are no longer representative of the population outcomes and the model 
holding for the sample data is then different from the model holding in the 
population. This, quite common phenomenon is known as informative sampling, see
Pfeffermann and Sverchkov (2009). The case of informative sampling designs in the 
statistical matching problem in a parametric setting assuming complete response is 
analysed in Marella and Pfeffermann (2019). However, in practice, not all the 
sampled units respond. When the response probabilities are correlated with the 
missing target outcomes, even after conditioning on the observed data (often, the 
model covariates), the missing data are not missing at random (NMAR). Valid 
inference under NMAR nonresponse requires therefore modelling the response 
mechanism. The problem in applying standard inferential procedures, which ignore 
the sampling process and nonresponse, is that the distribution holding for the data 
observed for the responding units can be very different from the distribution holding 
for the population data, which may result in large bias of estimators and affect other 
aspects of the inference process.

The aim of this paper is to propose an approach of handling statistical matching 
under informative sampling and NMAR nonresponse, by use of empirical likelihood
(EL). The main advantages of EL approach are: (i) it does not require to specify the 
population model; (ii) it facilities the use of calibration constraints.

2 Empirical likelihood approach for statistical matching

The empirical likelihood is essentially the likelihood of the multinomial distribution 
used in Hartley and Rao (1968), where the parameters are the point masses assigned 
to the distinct sample values. We assume that the sampling designs used for 
selecting the two samples A and B are informative for the corresponding joint 
population pdf, in the sense that the sample selection probabilities 

, ,
{ , }

i A i B
  are 

correlated with at least some of the variables ( , , )X Y Z , implying that the joint 
sample pdf is different from the corresponding population pdf. Additionally to 
informative sampling, we assume that A and B are subject to NMAR unit 

nonresponse. Let ( )A B

i i
I I be the sample indicator taking the value 1 if the i th 

population unit is drawn to the sample ( )A B and 0 otherwise. Let ( )A B

i i
R R define 

the response indicator, taking the value 1 if sample unit ( )i A i B  responds and 
0 otherwise. The response process is assumed to be independent between units. We 
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inference under NMAR nonresponse requires therefore modelling the response 
mechanism. The problem in applying standard inferential procedures, which ignore 
the sampling process and nonresponse, is that the distribution holding for the data 
observed for the responding units can be very different from the distribution holding 
for the population data, which may result in large bias of estimators and affect other 
aspects of the inference process.

The aim of this paper is to propose an approach of handling statistical matching 
under informative sampling and NMAR nonresponse, by use of empirical likelihood
(EL). The main advantages of EL approach are: (i) it does not require to specify the 
population model; (ii) it facilities the use of calibration constraints.

2 Empirical likelihood approach for statistical matching

The empirical likelihood is essentially the likelihood of the multinomial distribution 
used in Hartley and Rao (1968), where the parameters are the point masses assigned 
to the distinct sample values. We assume that the sampling designs used for 
selecting the two samples A and B are informative for the corresponding joint 
population pdf, in the sense that the sample selection probabilities 

, ,
{ , }

i A i B
  are 

correlated with at least some of the variables ( , , )X Y Z , implying that the joint 
sample pdf is different from the corresponding population pdf. Additionally to 
informative sampling, we assume that A and B are subject to NMAR unit 

nonresponse. Let ( )A B
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I I be the sample indicator taking the value 1 if the i th 

population unit is drawn to the sample ( )A B and 0 otherwise. Let ( )A B
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0 otherwise. The response process is assumed to be independent between units. We 
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assume that X can take K distinct values with probabilities P( )X

k k
p X x  ,

while Y and Z are continuous.
The basic idea of the EL approach is to approximate the population distribution with 
a multinomial model which support is given by the empirical observations. Under 

the CIA, the probabilities ( , , )XYZ

i i i i
p P x y z can be factorized as, 

             | |( , , ) ( ) ( | ) ( | )XYZ X Y X Z X

i i i i i i i i i k i i
p P x y z P x P y x P z x p p p   .         (2.1)                          

The parameters | |{ , , }X Y X Z X

k i i
p p p are unknown and need to be estimated from the 

samples A and B . By Bayes rule,

| |

, ,

( 1 | , , 1)
( | , 1, 1)

( 1 | , 1)A

A A
Y X A A Y Xi k i i
i R i k i i i AA A

i k i

P R x y I
p P y x I R p

P R x I

 
   

 
             (2.2)                    

, ,

( 1 | , 1)
( | 1, 1)

( 1 | 1)A

A A
X A A Xi k i
k R i k i i k AA A

i i

P R x I
p P x x I R p

P R I

 
   

 
                     (2.3)

where the sample models |

,

Y X

i A
p , ,

X

k A
p are defined as,

| |,

,

,

( | )
( | , 1)

( | , )
Y X A Y XA i A i

i A i i i i

A i A i i

E w x
p P y x I p

E w x y
   ,                                              (2.4)      

,

, |

,

( | )
( | 1)

( | )
xk

X A XA i A i

k A i i kY X

A j A j j
j A

E w x
p P x I p

E w x p


  


                                              (2.5)

and  :
xk i k

A i A x x   . Then, the sample models and the model for the 

response probabilities ( 1 | , , 1)A A

i k i i
P R x y I  define the model holding for the 

outcomes of the responding units. Notice that unless

( 1 | , , 1) ( 1 | , 1)A A A A

i k i i i k i
P R x y I P R x I     for all ( , )

k i
x y , the model 

(2.2) is different from the sample model |

,

Y X

i A
p (2.4), which in turn is different from 

the population model |Y X

i
p under informative sampling. Analagous expressions to 

(2.2)-(2.5) are obtained for the model holding for the responding units in B . Thus, 

assuming that the outcome, the sampling and the response are independent between 

units, the empirical respondents likelihood for the sample A B is given by,

, ,

, ,

| |

, , , ,
1 1

( ) ( )
X X

k A k B

A A B B

A k B k

K K
r rA B X Y X X Z X

Obs k R i R k R i R
k i R k i R

ERL p p p p

   

                                         (2.6)

where 
,A k

R (
,B k

R ) defines the group of respondents with k
X x in sample ( )A B

of size , ,( )X X
k A k Br r . The response probabilities in (2.6) are unknown and need to be 

modelled by a parametric model and estimated from the available data. Let A
 , B


be the unknown response models parameters postulated in the two samples, the 
likelihood (2.6) must be maximized with respect to [ | |{ , , }, ,X Y X Z X

k i i A B
p p p   ] under 

the constraints,

, ,

| | | |

1

0, 0, 0, 1, 1, 1
A k B k

K
X Y X Z X X Y X Z X

k i i k j j
k j R j R

p p p p p p
  

        .               (2.5)

An important advantage of the proposed approach is that it facilitates the use of 
calibration constraints. That is, auxiliary information on known population means 
for some auxiliary variables can be incorporated by placing additional constraints on 
the maximization process.
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An important advantage of the proposed approach is that it facilitates the use of 
calibration constraints. That is, auxiliary information on known population means 
for some auxiliary variables can be incorporated by placing additional constraints on 
the maximization process.
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1 Introduction

Bayesian estimation of item response theory (IRT) models via Markov chain Monte 
Carlo (MCMC) has been intensively applied due to its flexibility in arranging 
complex situations. Through posterior predictive model checking (PPMC; Rubin, 
1984). it is possible to define tools for evaluating the fit of the model. Considerable 
advantages of the method are that it does not rely on distributional assumptions, and 
it is relatively easy to implement, given that the entire posterior distribution of all 
parameters of interest is obtained through MCMC algorithms. 

The use of PPMC for IRT models received an increasing interest in assessing 
multidimensionality (Sinharay et al., 2006; Levy and Svetina, 2011). The PPMC 
method is based on the comparison between the observed and the replicated data of 
a given discrepancy measure D. PPMC is implemented first with graphical analyses 
and then with the estimation of the posterior predictive p-values (PPP-values). 
However, the PPP-value simply counts the number of times the replicated D is equal 
or higher than the realized D without addressing the magnitude of the difference 
between the two distributions. To overcome these limitations, in a previous paper 
(Matteucci and Mignani, 2020) it is proposed to measure the difference between the 
predictive and the realized distribution via the Hellinger distance, a suitable measure 

for improving the interpretation of results in applied settings and useful for model 
comparison purposes.

The main objective of this paper is to deepen the performance of the Hellinger 
distance in an over-fitting situation to evaluate the potential misfit of a IRT 
multidimensional model when the data are generated by a unidimensional approach. 
We explore our proposal by simulation to enrich the previous results of an under-
fitting scenario. 

2 The discrepancy measures

PPMC techniques are based on the comparison of observed data with replicated data 
generated or predicted by the model by using a number of diagnostic measures that 
are sensitive to model misfit (Sinharay et al., 2006). Substantial differences between 
the posterior distribution based on observed data and the posterior predictive 
distribution indicate poor model fit. Given the data y, let p(y|ω) and p(ω) be the 
likelihood for a model depending on the set of parameters ω and the prior 
distribution for the parameters, respectively. 

From a practical point of view, one should define a suitable discrepancy measure 
D(·) and compare the posterior distribution of D(y,ω), based on observed data, to the 
posterior predictive distribution of D(yrep,ω). Discrepancy measures should be 
chosen to capture relevant features of the data and differences among data and the 
model. It is possible to resort to the PPP-values defined as “the probability that the 
replicated data could be more extreme than the observed data, as measured by the 
test quantity”. The choice of a suitable discrepancy measure is crucial in PPMC. 
Effective diagnostic measures in checking for unidimensionality or 
multidimensionality are based on the association or on covariance/correlation among 
item pairs. In this paper we consider the model-based covariance (MBC; Reckase, 
1997) that depends on both data and model parameters. The MBC is found to be 
effective as it measures the covariance among item pairs by explicitly conditioning 
on the latent variable. If the local independence assumption holds, the MBC is close 
to zero. If the local independence does not hold, the MBC is greater than zero for
items loading on the same latent variable (PPP-values are close to zero) and smaller 
for items loading on different latent variables (PPP-values are close to one).

Lastly, Levy and Svetina (2011) proposed an overall measure, namely the 
generalized dimensionality discrepancy measure (GDDM) that is a unidirectional 
measure of average conditional covariance defined as the mean of the absolute 
values of MBC over unique item pairs. When the GDDM is equal to zero, a “weak” 
local independence for all the item pairs is assumed. If the assumption of local 
independence is violated, the GDDM is greater than zero and the PPP-value will be 
close to zero. 

3 The Hellinger distance

To quantify the difference between the realized and the predictive distribution 
within PPMC, Matteucci and Mignani (2020) propose to use the Hellinger (H)
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model. It is possible to resort to the PPP-values defined as “the probability that the 
replicated data could be more extreme than the observed data, as measured by the 
test quantity”. The choice of a suitable discrepancy measure is crucial in PPMC. 
Effective diagnostic measures in checking for unidimensionality or 
multidimensionality are based on the association or on covariance/correlation among 
item pairs. In this paper we consider the model-based covariance (MBC; Reckase, 
1997) that depends on both data and model parameters. The MBC is found to be 
effective as it measures the covariance among item pairs by explicitly conditioning 
on the latent variable. If the local independence assumption holds, the MBC is close 
to zero. If the local independence does not hold, the MBC is greater than zero for
items loading on the same latent variable (PPP-values are close to zero) and smaller 
for items loading on different latent variables (PPP-values are close to one).
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distance which is symmetric, it does obey the triangle inequality and its range is 0-1.
The direct calculation is computationally demanding and given the MCMC 
simulations, it is usually estimated by the normal kernel density. In order to check 
for local independence, we used the H distance with the MBC discrepancy measure 
(MBC-H) to take into account a fit measure for each item pair, and with the GDDM
measure (GDDM-H) to evaluate the overall fit based on item pairs. It is proposed to 
investigate the assumption of local independence for 2PNO models by focusing on 
multidimensional data analyzed with the unidimensional model. The main strengths 
of the H distance, compared to traditional approaches rely on the possibility a) to 
directly quantify the amount of misfit; b) to be used for model comparison purposes, 
c) to make more informative analyses on item pairs. Furthermore, it is demonstrated 
that, in practical applications, the MBC-H can be used to: a) leave out the models 
that show serious misfit by using the threshold of 0.5; b) compare the amount of 
misfit of different competing models and choose the model which fits the data best; 
c) identify, also through graphical plots, critical items that may involve misfit which 
are associated to high MBC-H in several pairs.

In this paper we confirm the strength of our proposal through a simulation study 
in an over-fitting setting, where unidimensional data are analyzed through different 
multidimensional models.

4 The simulation

A simulation study is conducted to examine the performance of the proposed MBC-
H and GDDM-H at detecting the misfit when data follow a two-parameter normal 
ogive (2PNO) unidimensional model and we fit a multi-unidimensional model and 
an additive model with two latent dimensions. Response data for tests with k=10 or 
k=20 items and a sample size of n=1,000 or n=2,000 are simulated. Two subtests are 
assumed for the multidimensional models (k1=k2=5 or k1=k2=10). The case of 
unidimensional data analyzed with the same model is also considered. A number of 
5,000 MCMC iterations are conducted, where 1,000 are used for PPMC. Finally, 
100 replications are done for each simulation condition. The parameters of the data-
analysis model are estimated via the Gibbs sampler. The over-fitting scenario is 
particularly meaningful for its implications in real situations. Although 
unidimensionality is quite unrealistic, especially with a high number of items, there 
are situations addressing a different point of view. For example, in the educational 
context, a test could be arranged under the assumption that groups of items refer to 
different cognitive domains. In this situation, a multidimensional model should be 
estimated to investigate the different domains, but one predominant dimension
should explain the most part of the variability.

The main results of the simulation study are reported in Table 1. We do not 
present PPP-values as they indicate lack of bad fit for all conditions. We found the 
more critical evidence for k=20 where the fitted models show, on average, MBC-H
higher than 0.5 meaning bad fit. The additive model seems to be the more 
appropriate, even when data are unidimensional, as it also includes an overall latent 
trait. For k=10, the goodness of fit improves but again the results of the H-distance 

are towards the additive model. Classical Bayesian indicators such as DIC confirm
these conclusions. The Hellinger distance seems to be an effective tool in 
highlighting the presence of possible misfit and determining plausible thresholds for 
classifying the misfit levels.

Table 1- Summary results for the 100 replications and for all item pairs.
k n DIC MBC-H GDDM-H

Mean Sd Min Max
Uni/multi-uni 10 1000 6600.27 0.427 0.086 0.275 0.605 0.352

20 1000 15312.89 0.546 0.047 0.396 0.656 0.475
10 2000 14671.31 0.446 0.068 0.312 0.618 0.376
20 2000 25302.47 0.542 0.061 0.375 0.644 0.456

Uni/additive 10 1000 6433.11 0.383 0.081 0.246 0.551 0.292
20 1000 15173.99 0.524 0.049 0.363 0.639 0.426
10 2000 14410.26 0.373 0.060 0.276 0.518 0.279
20 2000 25022.79 0.506 0.065 0.323 0.621 0.402

Uni/uni 10 1000 6614.53 0.450 0.082 0.295 0.619 0.376
20 1000 12702.39 0.552 0.057 0.400 0.653 0.479
10 2000 13180.96 0.447 0.083 0.283 0.643 0.339
20 2000 25306.66 0.554 0.059 0.377 0.664 0.475
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ABSTRACT: The measurement of complex phenomena, such as well-being, socio-

economic development, and competitiveness, is very difficult because they are 

characterized by a multiplicity of aspects or dimensions. Principal Component 

Analysis (PCA) is probably the most popular multivariate statistical technique for 

reducing data with many dimensions. Thus, often, socio-economic indicators are 

reduced to a single index by using PCA. However, PCA is implicitly based on a 

reflective measurement model that is not suitable for all types of indicators. In this 

paper, we discuss the use and misuse of PCA for measuring complex phenomena. 
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1 Introduction 

Socio-economic indicators are often analysed by multivariate statistical technique, 
such as Principal Components Analysis (PCA), in order to summarize the data and 
to construct composite indices. However, a fundamental distinction must be made 
between reducing dimensionality and constructing composite indices. 

Reducing dimensionality is a purely mathematical operation that consists in 
summarizing a set of individual indicators, so that most of the information in the 
data is preserved. Many techniques have been developed for this purpose, but PCA 
is one of the oldest and most widely used. Its idea is simple: reduce the 
dimensionality of a dataset, while preserving as much ‘variability’ as possible. This 
translates into finding new variables that are linear functions of the original ones, 
that successively maximize variance and that are uncorrelated with each other. 
Because the new variables are defined by the dataset at hand, and not a priori, PCA 
can be considered an adaptive data analysis tool.  

Constructing a composite index (or composite indicator) is a conceptual, as well 
as mathematical, operation that consists in summarizing (or aggregating as it is 
termed) a set of individual indicators, on the basis of a well-defined measurement 
model: formative or reflective. Therefore, a composite indicator is formed when 
individual indicators are compiled into a single index, on the basis of an underlying 
model of the multi-dimensional concept that is being measured. 

Obviously, a composite index can be obtained by reducing dimensionality (with 
an appropriate model of measurement), but not necessarily reducing dimensionality 



155 

provides a composite index. In this paper, we discuss the use of PCA for studying 
socio-economic indicators and we explain how and why it can be improperly used as 
a method for constructing composite indices. 

2 The measurement model 

As it is known, a model of measurement can be conceived through two different 

approaches: reflective or formative. 

The most popular approach is the reflective model, according to which 

individual indicators denote effects (or manifestations) of an underlying latent 

variable. Therefore, causality is from the concept to the indicators and a change in 

the phenomenon causes variation in all its measures. In this model, the construct 

exists independently of awareness or interpretation by the researcher, even if it is not 

directly measurable. Specifically, the latent variable R represents the common cause 

shared by all indicators Xi reflecting the construct, with each indicator 

corresponding to a linear function of the underlying variable plus a measurement 

error: 

    iii
εRλX +=     (1) 

where Xi is the indicator i, λi is a coefficient (loading) capturing the effect of R on Xi 

and εi is the measurement error for the indicator i. Measurement errors are assumed 

to be independent and unrelated to the latent variable. A typical example of 

reflective model is the measurement of the intelligence of a person. In this case, it is 

the ‘intelligence level’ that influences the answers to a questionnaire for measuring 

attitude, and not vice versa. Hence, if the intelligence of a person increased, this 

would be accompanied by an increase of correct answers to all questions. 

The second approach is the formative model, according to which individual 

indicators are causes of an underlying latent variable, rather than its effects. 

Therefore, causality is from the indicators to the concept and a change in the 

phenomenon does not necessarily imply variations in all its measures. In this model, 

the construct is defined by, or is a function of, the observed variables. The 

specification of the formative model is: 

    ζXλR +=∑
iii     (2) 

where λi is a coefficient capturing the effect of Xi on R, and ζ is an error term. A 

typical example of formative model is the measurement of well-being of society. It 

depends on health, income, occupation, services, environment, etc., and not vice 

versa. So, if any one of these factors improved, well-being would increase (even if 

the other factors did not change). However, if well-being increased, this would not 

necessarily be accompanied by an improvement in all factors. 

Note that (1) is a system of simple regression equations where each individual 

indicator is the dependent variable and the latent variable is the explanatory variable; 

whereas (2) represents a multiple regression equation where the latent variable is the 

dependent variable and the indicators are the explanatory variables. 
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Although the reflective approach dominates the psychological and management 

sciences, the formative view is common in economics and sociology. 

3 How and when to use PCA 

According to the “Handbook on Constructing Composite Indicators. Methodology 
and user guide” by OECD, PCA should be used to study the overall structure of the 
dataset, assess its suitability, and guide some methodological choices in constructing 
a composite index. Nevertheless, PCA can also be used for constructing composite 
indices. For this purpose, it is essential to define the model of measurement in order 
to describe relationships between the phenomenon to be measured (latent variable) 
and its measures (individual indicators). But above all, it is necessary to establish 
whether PCA is formative or reflective. To answer to this question it is important to 
distinguish between PCA and FA , since they are sometimes considered more or less 
interchangeable. 

PCA is a pure data reduction technique that aggregates the observed variables 
(indicators) in order to reproduce the most amount of variance with fewer variables 
(principal components or factors). PCA works without an explicit hypothesis on the 
latent structure of the variables, so that the observed variables are themselves of 
interest. This makes PCA similar to multiple regression in some ways, in that it 
seeks to create optimized weighted linear combinations of variables. 

FA is an explanatory model in which the observed variables (indicators) are 
assumed to be (linear) functions of a certain (fewer) number of unobserved variables 
(latent factors). FA hypothesizes an underlying latent structure of the variables and 
estimates latent factors influencing observed variables. 

On the basis of these features, PCA is often views as formative, whereas FA is a 
reflective measurement model. However, the question whether PCA is formative or 
reflective is not trivial. Indeed, although the definition of principal component as 
weighted sum of individual indicators suggests a formative model, some important 
issues are involved. In particular: 
1. In a PCA based index (e.g. the first factor), the weights depend on the 

correlations among indicators. But correlations among individual indicators are 
not relevant in a formative model and cannot be explained by it. Indeed, in a 
formative model, the indicators do not necessarily share the same theme and 
hence have no a preconceived pattern of intercorrelation. 

2. Individual indicators aggregated by a PCA based index (e.g. the first factor) are – 
by construction – highly correlated. But in a multiple regression, such as 
Equation 2, individual indicators should have little or no correlation among 
themselves in order to avoid multicollinearity. Indeed, an excessive collinearity 
among indicators makes it difficult to separate the distinct influence of the 
individual indicators on the latent variable. 

3. Under certain conditions, the principal components are equivalent to the factor 
scores obtained by FA and then they can be considered estimators of latent 
factors. But FA is a reflective measurement model, so PCA cannot be considered 
really formative.  
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In the light of the above, a composite index based on PCA looks more suited for 
a reflective approach than a formative one. In fact, PCA is commonly used for the 
evaluation of reflective measurement models and it is considered an appropriate 
method for examining the indicators’ underlying factor structure in order to check 
the content validity. 

4 Conclusions 

The construction of composite indices for measuring multidimensional 
phenomena is a central issue in data analysis. Researcher cannot solve this question 
simply by using PCA or related methods, such as Factor Analysis, since they are 
typically used for a reflective approach. 

Reducing dimensionality and constructing composite indicators are two separate 
issues that are repeatedly confused. Both the procedures aims to summarize a set of 
variables or individual indicators, but reducing dimensionality focuses on extracting 
the most important information from the data, whereas constructing composite 
indicators focuses on the use of  a measurement model that can be reflective or 
formative. Extracting the most important information from the data translates in 
summarizing correlated indicators, but correlations can indicate causal, non-causal 
(spurious) and coincidental relationships, making the principal components 
meaningless or difficult to interpret. On the contrary, defining a measurement model 
means assuming a specific direction of causality between the measures (individual 
indicators) and the latent variable (phenomenon to be measured). 

Measuring complex phenomena, such as development or well-being, requires a 
formative approach, where the index to be constructed does not exist as an 
independent entity, but it is a composite measure directly determined by a set of 
non-interchangeable individual indicators or pillars (e.g. the HDI by UNDP). 

In such a context, PCA can be recommended for various reasons. Firstly, PCA is 
a powerful tool for reducing complexity and visualizing data, so that the researcher 
can identify clusters of units (regions, provinces or countries) that have the same 
characteristics. Secondly, it allows for comparing empirical dimensions (factors) 
with theoretical dimensions (pillars), in order to evaluate any differences and to 
detect possible dimensions that had not previously been taken into account. Lastly, 
PCA makes it easy to study correlations among many individual indicators in order 
to find redundant and non-redundant indicators and to assess linkages with other 
relevant measures, such as GDP. Nevertheless, the use of PCA for constructing 
formative composite indices is not recommended, since it can give very misleading 
information about the latent variable of interest, being based exclusively on the 
covariance structure between the individual indicators. 
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1 Introduction and method 

It is well known that even with a higher educational level, women earn less than men 
do. The differences between men’ and women’ income on average are decreasing in 
the recent years but income parity has not yet been achieved. 

The purpose of this paper is to estimate the distribution of the ratio of females’ 
income over males’ income. The methodology used to study the ratio is based on the 
distribution of the ratio of two Dagum with three parameters (Pollastri and Zambruno 
2010). The distribution of this ratio studied in two different situations can reveal the 
gender inequality concerning income in different groups or times, accordingly the 
distribution of the ratio is analysed to reveal the gender inequality with applications 
to the income in different age classes, areas, and times. 

In literature we have many examples which confirm that the model proposed in 
1977 by Camilo Dagum fits very well to many distributions of economic variables. 
Supposing that 𝑋𝑋𝑋𝑋 is a type I Dagum, then 𝑋𝑋𝑋𝑋 𝑋  𝐷𝐷𝐷𝐷(𝑎𝑎𝑎𝑎, 𝑏𝑏𝑏𝑏,𝑝𝑝𝑝𝑝) with 𝑎𝑎𝑎𝑎, 𝑏𝑏𝑏𝑏,𝑝𝑝𝑝𝑝 > 0. The 
distribution function for 𝑥𝑥𝑥𝑥 > 0 is defined as (Kleiber and Kotz 2003): 

𝐹𝐹𝐹𝐹𝑋𝑋𝑋𝑋(𝑥𝑥𝑥𝑥) = �1 + �
𝑥𝑥𝑥𝑥
𝑏𝑏𝑏𝑏
�
−𝑎𝑎𝑎𝑎
�
−𝑝𝑝𝑝𝑝

 

While the density function for 𝑥𝑥𝑥𝑥 > 0 is: 

𝑓𝑓𝑓𝑓𝑋𝑋𝑋𝑋(𝑥𝑥𝑥𝑥) =
𝑎𝑎𝑎𝑎𝑝𝑝𝑝𝑝𝑥𝑥𝑥𝑥𝑎𝑎𝑎𝑎𝑝𝑝𝑝𝑝−1

𝑏𝑏𝑏𝑏𝑎𝑎𝑎𝑎𝑝𝑝𝑝𝑝 �1 + �𝑥𝑥𝑥𝑥𝑏𝑏𝑏𝑏�
𝑎𝑎𝑎𝑎
�
𝑝𝑝𝑝𝑝𝑝1  

The Dagum distribution parameters are estimated using the function dagum 
implemented in the VGAM package in the software R. This function estimates the 
parameters using the maximum likelihood estimation method proposed by Kleiber 
and Kotz (2003). Domanski and Jedrzejczak (1998) showed, through a simulation 
study, that estimation method performance is good for 𝑎𝑎𝑎𝑎 and 𝑝𝑝𝑝𝑝 when 𝑛𝑛𝑛𝑛 > 2000 or 
3000, while for the scale parameter 𝑏𝑏𝑏𝑏 the bias tends to 0 when 𝑛𝑛𝑛𝑛 > 4000. 

The purpose of this paper is to analyse the ratio:  

𝑈𝑈𝑈𝑈 =
𝑋𝑋𝑋𝑋
𝑌𝑌𝑌𝑌

 

where 𝑋𝑋𝑋𝑋 𝑋 𝑋𝑋𝑋𝑋(𝑎𝑎𝑎𝑎1, 𝑏𝑏𝑏𝑏1,𝑝𝑝𝑝𝑝1)  and  𝑌𝑌𝑌𝑌 𝑋 𝑋𝑋𝑋𝑋(𝑎𝑎𝑎𝑎2,𝑏𝑏𝑏𝑏2,𝑝𝑝𝑝𝑝2) with 𝑋𝑋𝑋𝑋 and 𝑌𝑌𝑌𝑌 independent. 
Following the definition of the density function of the ratio of two random variables 

in Mood, Graybill and Boes (1974), applying the independence of 𝑋𝑋𝑋𝑋 and 𝑌𝑌𝑌𝑌 and the 
density function of a type I Dagum, it is possible to obtain the density function for the 
ratio 𝑈𝑈𝑈𝑈: 

𝑓𝑓𝑓𝑓𝑈𝑈𝑈𝑈(𝑢𝑢𝑢𝑢) = � 𝑦𝑦𝑦𝑦𝑦
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Using the definition of the cumulative distribution function, it is possible to obtain: 

𝐹𝐹𝐹𝐹𝑈𝑈𝑈𝑈(𝑢𝑢𝑢𝑢) =
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In Pollastri and Zambruno (2010) a graphical analysis of this method performance 
is exposed comparing the empirical and the computed density function, where the 
empirical one is created with the ratios of all the possible couples. 

2 Applications to Survey on Household Income and Wealth 

We apply this method to the individual net incomes in 2016 from the Bank of Italy 
Survey on Household Income and Wealth (SHIW). We compare the ratio of the 
females’ and males’ income in different groups: 

• males and females divided in three age classes: young (𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 < 40), adult 
(40 ≤ 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 < 70) and old (𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 ≥ 70) 
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1 Introduction and method 

It is well known that even with a higher educational level, women earn less than men 
do. The differences between men’ and women’ income on average are decreasing in 
the recent years but income parity has not yet been achieved. 

The purpose of this paper is to estimate the distribution of the ratio of females’ 
income over males’ income. The methodology used to study the ratio is based on the 
distribution of the ratio of two Dagum with three parameters (Pollastri and Zambruno 
2010). The distribution of this ratio studied in two different situations can reveal the 
gender inequality concerning income in different groups or times, accordingly the 
distribution of the ratio is analysed to reveal the gender inequality with applications 
to the income in different age classes, areas, and times. 

In literature we have many examples which confirm that the model proposed in 
1977 by Camilo Dagum fits very well to many distributions of economic variables. 
Supposing that 𝑋𝑋𝑋𝑋 is a type I Dagum, then 𝑋𝑋𝑋𝑋 𝑋  𝐷𝐷𝐷𝐷(𝑎𝑎𝑎𝑎, 𝑏𝑏𝑏𝑏,𝑝𝑝𝑝𝑝) with 𝑎𝑎𝑎𝑎, 𝑏𝑏𝑏𝑏,𝑝𝑝𝑝𝑝 > 0. The 
distribution function for 𝑥𝑥𝑥𝑥 > 0 is defined as (Kleiber and Kotz 2003): 

𝐹𝐹𝐹𝐹𝑋𝑋𝑋𝑋(𝑥𝑥𝑥𝑥) = �1 + �
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While the density function for 𝑥𝑥𝑥𝑥 > 0 is: 

𝑓𝑓𝑓𝑓𝑋𝑋𝑋𝑋(𝑥𝑥𝑥𝑥) =
𝑎𝑎𝑎𝑎𝑝𝑝𝑝𝑝𝑥𝑥𝑥𝑥𝑎𝑎𝑎𝑎𝑝𝑝𝑝𝑝−1
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�
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The Dagum distribution parameters are estimated using the function dagum 
implemented in the VGAM package in the software R. This function estimates the 
parameters using the maximum likelihood estimation method proposed by Kleiber 
and Kotz (2003). Domanski and Jedrzejczak (1998) showed, through a simulation 
study, that estimation method performance is good for 𝑎𝑎𝑎𝑎 and 𝑝𝑝𝑝𝑝 when 𝑛𝑛𝑛𝑛 > 2000 or 
3000, while for the scale parameter 𝑏𝑏𝑏𝑏 the bias tends to 0 when 𝑛𝑛𝑛𝑛 > 4000. 

The purpose of this paper is to analyse the ratio:  

𝑈𝑈𝑈𝑈 =
𝑋𝑋𝑋𝑋
𝑌𝑌𝑌𝑌

 

where 𝑋𝑋𝑋𝑋 𝑋 𝑋𝑋𝑋𝑋(𝑎𝑎𝑎𝑎1, 𝑏𝑏𝑏𝑏1,𝑝𝑝𝑝𝑝1)  and  𝑌𝑌𝑌𝑌 𝑋 𝑋𝑋𝑋𝑋(𝑎𝑎𝑎𝑎2,𝑏𝑏𝑏𝑏2,𝑝𝑝𝑝𝑝2) with 𝑋𝑋𝑋𝑋 and 𝑌𝑌𝑌𝑌 independent. 
Following the definition of the density function of the ratio of two random variables 

in Mood, Graybill and Boes (1974), applying the independence of 𝑋𝑋𝑋𝑋 and 𝑌𝑌𝑌𝑌 and the 
density function of a type I Dagum, it is possible to obtain the density function for the 
ratio 𝑈𝑈𝑈𝑈: 

𝑓𝑓𝑓𝑓𝑈𝑈𝑈𝑈(𝑢𝑢𝑢𝑢) = � 𝑦𝑦𝑦𝑦𝑦
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Using the definition of the cumulative distribution function, it is possible to obtain: 

𝐹𝐹𝐹𝐹𝑈𝑈𝑈𝑈(𝑢𝑢𝑢𝑢) =
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In Pollastri and Zambruno (2010) a graphical analysis of this method performance 
is exposed comparing the empirical and the computed density function, where the 
empirical one is created with the ratios of all the possible couples. 

2 Applications to Survey on Household Income and Wealth 

We apply this method to the individual net incomes in 2016 from the Bank of Italy 
Survey on Household Income and Wealth (SHIW). We compare the ratio of the 
females’ and males’ income in different groups: 

• males and females divided in three age classes: young (𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 < 40), adult 
(40 ≤ 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 < 70) and old (𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 ≥ 70) 
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• males and females divided in three areas: North, Centre, and South and 
Islands 

• males and females in two different years: 2016 and 1998 
The dataset is composed of 11,844 subjects. Of these 50.98% are males, and 49.02% 

are females. Concerning the division by ages 15.21% are aged less than 40 years, 
54.41% are aged between 40 and 70 years, and 30.39% are aged equal or more than 
70 years. For the division by area, 43.90% of the subjects come from the North, 
22.40% from the Centre, and 33.70% from the South and the Islands. The 1998 
dataset, it is composed of 12,616 subjects, of these 56.52% are males and 43.48% are 
females. 

After estimating the Dagum parameters, we evaluate the cumulative distribution 
function and the deciles of the ratio of the females’ income over the males’ income, 
comparing the results of the ratio distributions for different ages, areas, and times. 

Comparing the ratio of the females’ income over males’ income in different age 
classes, we observe higher value of deciles for younger subject, lower for adult group, 
and even lower for the older group. This confirms that the income at the beginning of 
the career is similar between the two genders but increasing the age and the position 
achieved, the gap rises. 

For the deciles of ratio of the females’ income over males’ income comparing 
different areas, we observe close and higher value for the subjects that live in North 
and Centre of Italy, and lower value for the subjects that live in South and Islands. 
This can be related to the different economical and social situation in the Islands and 
in the South of Italy. 

We observe that the deciles of the ratio of the females’ income over males’ income 
are higher in 2016 with respect to the ratio in 1998. This confirms that the differences 
between men’ and women’ income are decreasing in the recent years, but income 
parity has not yet been achieved. 

3 Conclusions 

In this paper we propose to use the ratio of two type I Dagum random variables for 
analysing the difference of the income of females and males. We observe that this 
method gives us interesting conclusions and can be applied to different dataset 
comparing also the ratio of females’ over males’ income in different countries, in 
order to highlight the differences concerning gender gap. 
This method is used to analyse the Italian situation and to compare the ratio of 
females’ over males’ income in different ages, areas and times. As a matter of fact, in 
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ABSTRACT: For decades, Gaussian mixture models have been the most popular
mixtures in literature. However, the adequacy of the fit provided by Gaussian
components is often in question. Various distributions capable of modeling
skewness or heavy tails have been considered in this context recently. In
this paper, we propose a novel contaminated transformation mixture model
that is constructed based on the idea of transformation to symmetry and can
account for skewness, heavy tails, and automatically assign scatter to secondary
components.
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ABSTRACT: In this paper we develop the unconditional M-quantile regression for
modeling unconditional M-quantiles in the presence of covariates. Extending the
paper by Firpo et al. (2009), we assess the impact of small changes in the explanatory
variables on the M-quantile of the unconditional distribution of the dependent variable
by running a mean regression of the recentered influence function of the unconditional
M-quantile on the covariates. The proposed methodology is applied on the Survey of
Household Income and Wealth (SHIW) 2016 conducted by the Bank of Italy.

KEYWORDS: Influence function, M-estimation, RIF regression, Robust method

1 Introduction

Quantile Regression (QR), as proposed by Koenker & Bassett Jr (1978), has
proven to be a powerful tool to explore conditional distributions in many empir-
ical applications. However, if one is interested in how the whole unconditional
distribution of the dependent variable responds to changes in the covariates,
using the well-known QR would yield misleading inferences (see Firpo et al.
2009 and Borah & Basu 2013). Motivated by this interest, Firpo et al. (2009)
proposed the Unconditional Quantile Regression (UQR) approach for modeling
unconditional quantiles of a dependent variable as a function of the explana-
tory variables. This method builds upon the concept of Recentered Influence
Function (RIF) which originates from a widely used tool in robust statistics,
namely the Influence Function (IF) discussed in Hampel et al. (2011). The
RIF of a distributional statistic ν is obtained by adding back the statistic to the
IF and it can be thought of as the contribution of an individual observation
on ν. In the regression framework where covariates are available, Firpo et al.
(2009) proposed to replace the dependent variable with the RIF to model the
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unconditional quantiles of the response and evaluate the effect of changes in
the law of the covariates on unconditional quantiles. When the interest of
the research is concentrated on the entire distribution of a response variable,
in addition to the classical QR, a possible alternative is represented by the
M-quantile regression (MQR) approach proposed by Breckling & Chambers
(1988). This method provides a “quantile-like” generalization of the mean
regression based on influence functions, combining in a common framework
the robustness and efficiency properties of quantiles and expectiles (Newey &
Powell 1987), respectively.

In this article, we extend the UQR of Firpo et al. (2009) to the M-quantile
regression framework. We develop the Unconditional M-quantile Regression
(UMQR) to model the M-quantiles of the unconditional distribution of the
response variable. In order to analyze how the entire unconditional distribution
of the outcome is affected by changes in the distribution of explanatory variables,
we regress the RIF of the unconditional M-quantile on the covariates and denote
such effect as Unconditional M-Quantile Partial Effect (UMQPE).

2 Methodology

Let Y denote a scalar random variable with absolutely continuous distribution
function FY . The M-quantile of order τ ∈ (0,1) of Y is defined as the solution,
θτ ∈ R, of the following estimating equation:

∫
ψτ(y−θτ)dFY (y) = 0, (1)

where ψτ(u) =| τ− 1(u<0) | ψ(u/στ), with ψ being the first derivative of a
convex loss function ρ and στ is a suitable scale parameter. In this work, we
consider the well-known Huber influence function (Huber (1964)):

ψ(u) = u1(|u|≤c) + csign(u)1(|u|>c), (2)

where c denotes a tuning constant bounded away from zero that can be used to
trade robustness for efficiency in the model fit. In particular, M-quantiles nicely
include quantiles when c → 0, ψ(u) = sign(u), and expectiles when c → ∞,
ψ(u) = u.

To build the UMQR model, it follows from Firpo et al. (2009) and Hampel
et al. (2011) that the RIF of the M-quantile θτ is defined as:

RIF(y;θτ) = θτ + IF(y;θτ) = θτ +
ψτ(y−θτ)∫

ψ′
τ(y−θτ)dFY (y)

, (3)

where IF(y;θτ) is the IF of θτ and ψ′(u) = 1(|u|<c) is the derivative of ψ in (2).
In a regression framework when covariates X ⊂ Rk are available, from (3) we
define the UMQR model as follows:

E[RIF(Y ;θτ) | X = x] = θτ +E
[ ψτ(y−θτ)∫

ψ′
τ(y−θτ)dFY (y)

∣∣∣X = x
]
. (4)

Our objective is to identify how small changes in the distribution of X affect
the M-quantile of the unconditional distribution of Y . From (4) and Firpo
et al. (2009), the unconditional effect of the τ-th M-quantile, that we denote
Unconditional M-quantile Partial Effect, ατ, is formally defined as:

ατ =
∫ dE[RIF(Y ;θτ) | X = x]

dx
dFX(x)=

1
sτ

∫ dE[ψτ(Y −θτ) | X = x]
dx

dFX(x),
(5)

where FX is the distribution function of X and sτ =
∫

ψ′
τ(y− θτ)dFY (y). As

suggested by Firpo et al. (2009), we can estimate ατ in (5) via a mean re-
gression of the RIF(Y ;θτ) as dependent variable onto X by using a two-step
procedure. Specifically, an estimate θ̂τ of θτ is obtained by solving (1) via
Iterative Reweighted Least Squares, substitute θ̂τ in (3) and then regress the
RIF(Y ; θ̂τ) on X.

3 Application

We investigate the effect of economic and socio-demographic characteristics on
italian households’ log-consumption using data from the SHIW 2016. We fit
the UMQR at different points of the unconditional distribution of the response
and compare the results with standard conditional M-quantile regressions. The
tuning constant c in (2) has been set to 1.345 and 100. In the second case, we
obtain the Unconditional Expectile Regression (UER). The results in Table 1
highlight that the impact of income, gender, age and education is very different
on the conditional and unconditional distributions of consumption, especially in
the tails. This demonstrates the ability of the UMQR to extend mean regression
for estimating the effect of covariates, not only at the center, but also at different
parts of the unconditional distribution of interest.
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Variable MQR UMQR ER UER

τ 0.1 0.5 0.9 0.1 0.5 0.9 0.1 0.5 0.9 0.1 0.5 0.9
Log-Income 0.570 0.595 0.442 0.447 0.391 0.429 0.483 0.413 0.263 0.450 0.413 0.436

(0.011) (0.007) (0.010) (0.038) (0.032) (0.038) (0.011) (0.008) (0.011) (0.038) (0.033) (0.038)
Gender −0.019 −0.011 −0.043 −0.011 −0.024 −0.038 −0.023 −0.026 −0.046 −0.010 −0.026 −0.035

(0.016) (0.009) (0.014) (0.018) (0.012) (0.018) (0.016) (0.011) (0.016) (0.017) (0.012) (0.018)
Age −0.002 0.001 0.004 −0.013 0.006 0.013 −0.001 0.004 0.008 −0.011 0.004 0.011

(0.003) (0.002) (0.003) (0.003) (0.002) (0.003) (0.003) (0.002) (0.003) (0.003) (0.002) (0.003)
Marital status
never married −0.062 −0.084 −0.164 −0.094 −0.141 −0.187 −0.095 −0.138 −0.201 −0.101 −0.138 −0.176

(0.020) (0.012) (0.018) (0.025) (0.017) (0.022) (0.020) (0.014) (0.020) (0.024) (0.017) (0.022)
separated −0.066 −0.056 −0.127 −0.102 −0.151 −0.155 −0.111 −0.137 −0.207 −0.105 −0.137 −0.141

(0.025) (0.015) (0.022) (0.034) (0.024) (0.030) (0.025) (0.017) (0.026) (0.033) (0.024) (0.030)
widowed −0.040 −0.063 −0.119 −0.116 −0.136 −0.111 −0.074 −0.123 −0.193 −0.110 −0.123 −0.107

(0.022) (0.013) (0.020) (0.029) (0.019) (0.025) (0.022) (0.015) (0.022) (0.028) (0.019) (0.025)
Education level
elementary school 0.175 0.120 0.151 0.488 0.125 −0.037 0.188 0.161 0.187 0.446 0.161 −0.000

(0.039) (0.023) (0.035) (0.069) (0.024) (0.022) (0.039) (0.027) (0.040) (0.066) (0.027) (0.022)
middle school 0.240 0.203 0.316 0.645 0.269 0.060 0.281 0.294 0.398 0.590 0.294 0.094

(0.041) (0.024) (0.037) (0.070) (0.028) (0.029) (0.041) (0.028) (0.042) (0.067) (0.030) (0.028)
high school 0.248 0.235 0.383 0.652 0.355 0.147 0.313 0.363 0.500 0.598 0.363 0.168

(0.042) (0.025) (0.038) (0.072) (0.033) (0.037) (0.042) (0.029) (0.043) (0.069) (0.034) (0.036)
university 0.298 0.297 0.521 0.631 0.440 0.506 0.391 0.484 0.705 0.608 0.484 0.515

(0.045) (0.027) (0.040) (0.076) (0.040) (0.053) (0.045) (0.031) (0.046) (0.073) (0.042) (0.052)
Employment status
self-employed −0.087 0.010 0.083 −0.060 0.021 0.121 −0.058 0.023 0.081 −0.046 0.023 0.107

(0.024) (0.014) (0.022) (0.021) (0.019) (0.038) (0.024) (0.017) (0.025) (0.020) (0.018) (0.037)
not-employed 0.008 0.027 0.035 −0.046 0.037 0.037 −0.002 0.014 0.017 −0.052 0.014 0.031

(0.021) (0.013) (0.019) (0.025) (0.016) (0.025) (0.021) (0.015) (0.022) (0.024) (0.015) (0.024)

Table 1. M-quantile and Expectile regression results at τ = (0.1,0.5,0.9). Parameter
estimates are displayed in boldface when significant at the 5% level.
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ABSTRACT: Repulsive mixture models have recently gained popularity for Bayesian
cluster detection. Compared to more traditional mixture models, repulsive mixture
models produce a smaller number of well separated clusters. The most commonly
used methods for posterior inference either require to fix a priori the number of com-
ponents or are based on reversible jump MCMC computation. We present a general
framework for mixture models, when the prior of the ‘cluster centres’ is a finite re-
pulsive point process depending on a hyperparameter, specified by a density which
may depend on an intractable normalizing constant. By investigating the posterior
characterization of this class of mixture models, we derive a MCMC algorithm which
avoids the well-known difficulties associated to reversible jump MCMC computation.
In particular, we use an ancillary variable method, which eliminates the problem of
having intractable normalizing constants in the Hastings ratio. The ancillary variable
method relies on a perfect simulation algorithm, and we demonstrate this is fast be-
cause the number of components is typically small. In several simulation studies and
an application on sociological data, we illustrate the advantage of our new methodol-
ogy over existing methods, and we compare the use of a determinantal or a repulsive
Gibbs point process prior model.

KEYWORDS: birth-death Metropolis Hastings algorithm, cluster estimation, pairwise
interaction point process, intractable normalizing constant, normalized infinitely divis-
ible distribution, perfect simulation.
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Variable MQR UMQR ER UER

τ 0.1 0.5 0.9 0.1 0.5 0.9 0.1 0.5 0.9 0.1 0.5 0.9
Log-Income 0.570 0.595 0.442 0.447 0.391 0.429 0.483 0.413 0.263 0.450 0.413 0.436

(0.011) (0.007) (0.010) (0.038) (0.032) (0.038) (0.011) (0.008) (0.011) (0.038) (0.033) (0.038)
Gender −0.019 −0.011 −0.043 −0.011 −0.024 −0.038 −0.023 −0.026 −0.046 −0.010 −0.026 −0.035

(0.016) (0.009) (0.014) (0.018) (0.012) (0.018) (0.016) (0.011) (0.016) (0.017) (0.012) (0.018)
Age −0.002 0.001 0.004 −0.013 0.006 0.013 −0.001 0.004 0.008 −0.011 0.004 0.011

(0.003) (0.002) (0.003) (0.003) (0.002) (0.003) (0.003) (0.002) (0.003) (0.003) (0.002) (0.003)
Marital status
never married −0.062 −0.084 −0.164 −0.094 −0.141 −0.187 −0.095 −0.138 −0.201 −0.101 −0.138 −0.176

(0.020) (0.012) (0.018) (0.025) (0.017) (0.022) (0.020) (0.014) (0.020) (0.024) (0.017) (0.022)
separated −0.066 −0.056 −0.127 −0.102 −0.151 −0.155 −0.111 −0.137 −0.207 −0.105 −0.137 −0.141

(0.025) (0.015) (0.022) (0.034) (0.024) (0.030) (0.025) (0.017) (0.026) (0.033) (0.024) (0.030)
widowed −0.040 −0.063 −0.119 −0.116 −0.136 −0.111 −0.074 −0.123 −0.193 −0.110 −0.123 −0.107

(0.022) (0.013) (0.020) (0.029) (0.019) (0.025) (0.022) (0.015) (0.022) (0.028) (0.019) (0.025)
Education level
elementary school 0.175 0.120 0.151 0.488 0.125 −0.037 0.188 0.161 0.187 0.446 0.161 −0.000

(0.039) (0.023) (0.035) (0.069) (0.024) (0.022) (0.039) (0.027) (0.040) (0.066) (0.027) (0.022)
middle school 0.240 0.203 0.316 0.645 0.269 0.060 0.281 0.294 0.398 0.590 0.294 0.094

(0.041) (0.024) (0.037) (0.070) (0.028) (0.029) (0.041) (0.028) (0.042) (0.067) (0.030) (0.028)
high school 0.248 0.235 0.383 0.652 0.355 0.147 0.313 0.363 0.500 0.598 0.363 0.168

(0.042) (0.025) (0.038) (0.072) (0.033) (0.037) (0.042) (0.029) (0.043) (0.069) (0.034) (0.036)
university 0.298 0.297 0.521 0.631 0.440 0.506 0.391 0.484 0.705 0.608 0.484 0.515

(0.045) (0.027) (0.040) (0.076) (0.040) (0.053) (0.045) (0.031) (0.046) (0.073) (0.042) (0.052)
Employment status
self-employed −0.087 0.010 0.083 −0.060 0.021 0.121 −0.058 0.023 0.081 −0.046 0.023 0.107

(0.024) (0.014) (0.022) (0.021) (0.019) (0.038) (0.024) (0.017) (0.025) (0.020) (0.018) (0.037)
not-employed 0.008 0.027 0.035 −0.046 0.037 0.037 −0.002 0.014 0.017 −0.052 0.014 0.031

(0.021) (0.013) (0.019) (0.025) (0.016) (0.025) (0.021) (0.015) (0.022) (0.024) (0.015) (0.024)

Table 1. M-quantile and Expectile regression results at τ = (0.1,0.5,0.9). Parameter
estimates are displayed in boldface when significant at the 5% level.
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ABSTRACT: Repulsive mixture models have recently gained popularity for Bayesian
cluster detection. Compared to more traditional mixture models, repulsive mixture
models produce a smaller number of well separated clusters. The most commonly
used methods for posterior inference either require to fix a priori the number of com-
ponents or are based on reversible jump MCMC computation. We present a general
framework for mixture models, when the prior of the ‘cluster centres’ is a finite re-
pulsive point process depending on a hyperparameter, specified by a density which
may depend on an intractable normalizing constant. By investigating the posterior
characterization of this class of mixture models, we derive a MCMC algorithm which
avoids the well-known difficulties associated to reversible jump MCMC computation.
In particular, we use an ancillary variable method, which eliminates the problem of
having intractable normalizing constants in the Hastings ratio. The ancillary variable
method relies on a perfect simulation algorithm, and we demonstrate this is fast be-
cause the number of components is typically small. In several simulation studies and
an application on sociological data, we illustrate the advantage of our new methodol-
ogy over existing methods, and we compare the use of a determinantal or a repulsive
Gibbs point process prior model.

KEYWORDS: birth-death Metropolis Hastings algorithm, cluster estimation, pairwise
interaction point process, intractable normalizing constant, normalized infinitely divis-
ible distribution, perfect simulation.
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ABSTRACT: Factor-analytic Gaussian mixtures are often employed as a model-based
approach to clustering high-dimensional data. Typically, the numbers of clusters and
latent factors must be fixed in advance of model fitting. The pair which optimises
some model selection criterion is then chosen. For computational reasons, having the
number of factors differ across clusters is rarely considered.

Here the infinite mixture of infinite factor analysers (IMIFA) model is introduced.
IMIFA employs a Pitman-Yor process prior to facilitate automatic inference of the
number of clusters using the stick-breaking construction and a slice sampler.
Automatic inference of the cluster-specific numbers of factors is achieved using
multiplicative gamma process shrinkage priors and an adaptive Gibbs sampler. IMIFA
is presented as the flagship of a family of factor-analytic mixtures.

Applications to benchmark data, metabolomic spectral data, and a handwritten
digit example illustrate the IMIFA model’s advantageous features. These include
obviating the need for model selection criteria, reducing the computational burden
associated with the search of the model space, improving clustering performance by
allowing cluster-specific numbers of factors, and uncertainty quantification.

KEYWORDS: model-based clustering, factor analysis, Pitman-Yor process, multi-
plicative gamma process, adaptive Markov chain Monte Carlo.
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ABSTRACT: The angular halfspace depth is a nonparametric tool for the analysis
of directional data. That depth was proposed already in 1987, but its widespread use
has been hampered in practice by significant computational issues. We address these
problems by considering a simple projection scheme that allows reducing the compu-
tation of the angular depth to the task of evaluating a variant of the usual halfspace
depth in a linear space. Efficient algorithms for exact computation and approximation
of the angular halfspace depth are thus developed.

KEYWORDS: angular depth, computation, directional data analysis, projection.

1 Angular halfspace depth

Nonparametric analysis of data living in non-linear spaces is an exciting and
largely unexplored field of statistics. Statistical depths generalize quantiles,
ranks, and orderings to multivariate and non-Euclidean data, by evaluating
“centrality”, or the depth, of points with respect to a probability measure.

We consider directional data (Ley &Verdebout, 2017), that is, observations
naturally residing the unit sphere Sd−1 =

{
x ∈ R

d : �x�= 1
}

of the Euclidean
space R

d . For directional data, the angular halfspace depth was first intro-
duced by Small, 1987, and later substantially elaborated on by Liu & Singh,
1992. Just as many other depths, the angular halfspace depth is, however, dif-
ficult to compute, and no efficient algorithms for its computation are available
in dimensions d > 2. We use the gnomonic projection of Sd−1 to reduce this
problem to the computation of the usual halfspace depth in linear spaces Rd−1,
with respect to signed measures. This connection opens new possibilities for
construction of efficient computational tools for directional data.

*This work was supported by the grant 19-16097Y of the Czech Science Foundation, and by
the PRIMUS/17/SCI/3 project of Charles University. P. Laketa was supported by the OP RDE
project “International mobility of research, technical and administrative staff at the Charles
University” CZ.02.2.69/0.0/0.0/18 053/0016976.
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2 The depth on spheres and gnomonic projection

The angular halfspace depth is a mapping that to each point on a sphere as-
signs the smallest probability of a hemisphere that contains that point. More
precisely, denote by H0 the collection of all closed halfspaces in R

d whose
boundary passes through the origin in R

d . For a Borel probability measure P
on S

d−1 the angular halfspace depth of x ∈ R
d with respect to P is defined as

ahD(x;P) = inf
{

P(H) : H ∈ H0 and x ∈ H
}
. (1)

In this short paper we assume for simplicity that P is absolutely continuous
with respect to the spherical Lebesgue measure.* For ed = (0, . . . ,0,1) we
denote by

S
d−1
+ =

{
x ∈ S

d−1 : �x,ed�> 0
}
, S

d−1
− =

{
x ∈ S

d−1 : �x,ed�< 0
}
,

the northern and the southern hemisphere of Sd−1, respectively. We write

G =
{

x ∈ R
d : �x,ed�= 1

}

for the “horizontal” hyperplane that touches Sd−1 at ed .
We consider the gnomonic projection of Sd−1 to G, that is a mapping that

to each x ∈ S
d−1
+ assigns a point π(x) = x/�x,ed� from the hyperplane G. For

x ∈ S
d−1
− we define π(x) = π(−x); the mapping remains undefined if �x,ed�=

0. In the left panel of Figure 1 we present π in the plane R2 — two points, one
from the northern (n) and one from the southern (s) halfcircle of S1, together
with their gnomonic images are shown. A closed halfplane H ∈ H0 contains
both n and s. The intersection H ∩G is a closed halfline in G displayed as a
thick line. One observes that π(n) ∈ G∩H, while π(s) /∈ G∩H. A similar
illustration with the sphere S

2, the plane G and a halfspace from H0 in R
3 is

visualised in the right panel of Figure 1.
The gnomonic projection satisfies an important property— for any H ∈H0

it holds true that

π
(

H ∩S
d−1
+

)
= H ∩G, π

(
H ∩S

d−1
−

)
= G\ int(H) , (2)

where int(H) is the interior of H. We define a signed measure P± on G by

P± (H ∩G) = P
(

H ∩S
d−1
+

)
−P

(
S

d−1
− \H

)
. (3)

*This assumption is not made without loss of generality; the general theory is technical and
much more delicate. It will be presented elsewhere.
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Figure 1. Left: A halfplane H (coloured) that contains two points — n from the north-
ern and s from the southern halfcircle. We see that π(n) ∈ H ∩G, while π(s) /∈ H ∩G.
Right: Analogous illustration for d = 3, with a halfspace from H0 and the plane G.

The Cramér-Wold theorem asserts that P± is well defined. Due to the assump-
tion of P being absolutely continuous, (2) and (3) imply that

P(H) = P
(

H ∩S
d−1
+

)
+P

(
H ∩S

d−1
−

)
= P

(
S

d−1
−

)
+P± (H ∩G) . (4)

Equation (4) relates the probability of a halfspace H ∈ H0 with the value of the
signed measure of its projection H ∩G in G. Note that H ∩G is a closed half-
space in space G, unless H is orthogonal to ed . We denote by H the collection
of all closed halfspaces in G. From (4) it is straightforward to see that

ahD(x;P) = P
(
S

d−1
−

)
+ inf

{
P± (H) : H ∈ H and x ∈ H

}
, (5)

for any x ∈ S
d−1
+ . This formula draws connections of the angular halfspace

depth with the usual halfspace depth in linear spaces hD(x;Q), defined for a
point x ∈ R

d−1 with respect to a given probability measure Q in R
d−1 as the

infimum of Q(H) over all closed halfspaces in R
d−1 that contain x.

The last term in (5) may be considered as the usual halfspace depth of a
signed measure P± in R

d−1. This connection is at the core of our approach.
It opens ways of utilizing the highly developed algorithms for computing the
usual halfspace depth, and applying it to the analysis of directional data. The
main difference is that, for a probability measure Q, one may reduce atten-
tion only to those halfspaces that contain x on their boundary when computing
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hD(x;Q), which simplifies the computation substantially. The same is, how-
ever, not the case with signed measures, where all halfspaces that contain x
must be considered. At a slight increase in the computational complexity, it is
however possible to adopt the existing algorithms to resolve this issue.

3 Computation: An example

The depth hD(x;P) can be written as an infimum of one-dimensional half-
space depths hD(�x,u� ;Pu) of x ∈ R

d with respect to the projections Pu of P
onto the lines given by all directions u ∈ S

d−1. A standard approximation of
hD then consists of computing the minimum over hD(�x,u� ;Pu) for a collec-
tion U ⊂ S

d−1 of randomly chosen directions u ∈ U . A halfspace depth of a
signed measure P± has the same projection property, which may be used to
compute (5). This rather naive approximate algorithm is extremely simple, but
allows us to consider ahD also in dimensions d > 3.

For d = 3 we adopted a more sophisticated exact algorithm of Dyckerhoff
& Mozharovskyi, 2016, generalized it from hD to ahD, and implemented the
results in C++. As a benchmark, we use the implementation of ahD for d = 3
available as function sdepth from the R package depth. Detailed results of
our comparison are omitted from the present note due to the space restrictions,
but will be discussed during the conference talk. Here we only remark that
compared to the currently available programs, our new algorithms compute
ahD up to 10 000-times faster for standard datasets, deal with the exact depth
for tens of thousands of observations in S

2 within seconds, and approximate
algorithms allow fast evaluation of ahD also for d > 3. All this illustrates the
great potential of our projection method in the analysis of directional data.
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ABSTRACT: This paper investigates the heterogeneous and asymmetrical effect of
COVID-19 on the crude oil, S&P 500 index, EUR/USD exchange rate, and various
uncertainty measures. These assets reflect the overall health of the global financial and
economic system. For instance, S&P 500 is the most liquid financial index and partly
reflects the development of global financial system. Crude oil plays a fundamental
role in the developmental and economic activities of a country. Elevated prices of
energy commodities lead to a higher inflation and production cost, resulting in declined
demand, output, and trade in the economy. The COVID-19 pandemic has contributed
significantly to demand and supply shocks that has led to an unprecedented decline in
crude oil price. In addition, global geopolitics is triggering the volatility of the crude
oil market. The stability of the crude oil market is not only important for oil exporting
countries but also oil importing and industrialized countries in order to maintain the
price stability of goods. EUR/USD exchange rate is among the most liquid assets. This
study adds to the literature by examining the heterogeneous and asymmetric impact of
COVID-19 on these different asset classes. This would enable us to understand how
different asset classes react to such unique shocks.

The contribution of this paper is fourfold. First, we evaluated the impact of the
COVID-19 crisis on the interconnectedness of the financials, forex, and commodity
markets with a specific focus on risk dynamics. Second, in contrast to the previous
studies we consider high-frequency intraday data. This allows us to provide a deeper
insight into the dependencies at a daily level. Third, we quantify the dependence and
its dynamics using paired vine copulas. This class of copulas is highly flexible and can
allows for a convenient visualization of the dependence. Forth, we put a particular focus
on the crude oil returns as a function of several financial covariates using C- and D-vine
regressions. This approach allows us to model the whole conditional distribution within
a single day and to get insights the causal dependence in tails or at particular quantiles.
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ABSTRACT: We propose symbolic unsupervised anomaly detection methods to iden-
tify Internet traffic redirection attacks based on histogram principal component anal-
ysis. We obtain histogram-valued scores, by applying Moore’s based histogram alge-
braic structure. The symbolic means of the scores are the input for two unsupervised
anomaly detection methods used to successfully signal Internet attacks.

KEYWORDS: histogram principal component analysis, symbolic data analysis, Inter-
net data.

1 Introduction

Internet security is a major concern for users and Internet Service Providers
since successful attacks can produce substantial damage. These attacks may
be aimed at gaining access to sensitive information from the victim, monitoring
its online activity, causing network delay, among other motivations.

To identify traffic redirection attacks, we had access to measurements ob-
tained from a worldwide probing platform, designed to detect routing varia-
tions based on round-trip-time (RTT)* measurements from multiple and dis-
perse geographic locations (Salvador & Nogueira, 2014). At each timestamp,
various measurements are made that are summarized by a histogram. Thus,
we propose an anomaly detection method based on histogram principal com-
ponent analysis. To do so, we consider linear combinations of histogram-
valued data (according to a histogram algebraic structure, generalised from
the Moore’s interval algebraic structure, vide Moore et al., 2009) and use the

*Round-trip-time (RTT) is the length of time since a data packet is sent until an acknowl-
edgement of the packet is received back at the origin.

projected data on the first histogram principal component (PC) to successfully
detect traffic redirection attacks.

2 Histogram Principal Component Analysis

Principal component analysis (PCA) is frequently used as a dimensionality re-
duction method. Given the importance of PCA, various generalisations have
been proposed in the symbolic data analysis (SDA) framework. A common
generalisation relies on the so-called symbolic-conventional-symbolic approach,
where a symbolic covariance matrix is estimated, to which conventional PCA
is applied, followed by rewriting the original symbolic data into the space
spanned by the first eigenvectors of the covariance matrix. In the case of his-
togram PCA, Makosso-Kallyth & Diday, 2012 and Chen et al., 2015 use the
same definition of sample symbolic covariance, but differ on the way objects
are represented in the reduced space. In Le-Rademacher & Billard, 2017, an-
other definition of sample symbolic covariance matrix is used, and the original
objects are represented in the reduced space relying on a geometric construc-
tion of polytopes. Other approaches to generalise PCA to histogram-valued
data exist, but are not considered here.

To detect traffic redirection attacks, we project the original histogram-
valued data in the direction of the first PC, whose loadings are determined
by the first eigenvector of the chosen symbolic covariance matrix. In our case,
we use the same covariance matrix definition as used in Makosso-Kallyth &
Diday, 2012 and Chen et al., 2015. The loadings define a weighted sum of the
original observations leading to histogram-valued scores, by applying Moore’s
based histogram algebraic structure. The obtained symbolic means (vide Le-
Rademacher & Billard, 2017, eq. (2)) of the scores are the input for the (con-
ventional) unsupervised anomaly detection methods.

3 Detection of Traffic Redirection Attacks

The data set under analysis was gathered on a monitoring network that com-
prised 12 geographically dispersed servers (probes) that measured, at 120-
second intervals, the RTT to two hosts under surveillance (targets: Frankfurt1
and Hong Kong). When an attack was being perpetrated, traffic from 12 probes
to the target was diverted through an attacker (relay).

Each probe made 10 RTT measurements every 120 seconds, by sending
10 packets to the target, and the corresponding average, minimum, median,
and maximum over the 10 RTT measurements were obtained. These summary
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1 Introduction
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*Round-trip-time (RTT) is the length of time since a data packet is sent until an acknowl-
edgement of the packet is received back at the origin.
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Figure 1. Means of the first PC histogram-scores for target Hong Kong (black line)
and thresholds for the heuristic (blue line) and Tukey’s method (red line). Shaded
background bands signal the attack periods, with the corresponding relays indicated.

indicators can be taken as the features to be analysed, and conventional statis-
tical methods may be applied (Salvador & Nogueira, 2014, Subtil et al., 2018).
Alternatively, SDA provides a framework to address this problem taking into
account the intrinsic variability of the data. As such, we can consider, at every
timestamp, for each probe monitoring a target, a histogram with two subinter-
vals, whose bounds are the minimum, median, and maximum of the 10 RTT
measurements. Therefore, for each target, we have a symbolic data set with
p = 12 histogram-valued variables, with as many realisations as timestamps
where measurements were made.

We apply the described histogram PCA to each target data set. Given
the first PC scores, we calculate their symbolic means and use them as in-
put for two anomaly detection methods: the heuristic proposed by Salvador &
Nogueira, 2014 and Tukey’s method for outlier detection.

Salvador & Nogueira, 2014 proposed a heuristic to discriminate between
the RTTs of regular and redirected traffic. At every timestamp, the conven-
tional average RTT is compared with a decision threshold set at 1.2 times
the average of the past 480 observations that were not classified as attacks.
Additionally, the heuristic requires a minimum sequence of 10 observations
exceeding the threshold to signal attacks (rule-of-10). We apply this heuris-
tic, replacing the average RTT by the means of the first PC histogram-scores.
Tukey’s method defines boundaries based on the quartiles of the data and iden-
tifies as outliers the observations that lie outside these boundaries. Since the

first PC is an overall mean of the traffic volume going through the probes, we
merely compare their absolute values with the upper boundary Q3+3× IQR,
where IQR = Q3−Q1 is the interquartile range, Q1 and Q3 are, respectively,
the 1st and 3rd quartiles of the data. We also adopt the rule-of-10.

For the target Frankfurt, both the heuristic and Tukey’s method detect all
the attacks and no false positive results occur (recall=1, false positive rate=0,
precision=1). For Hong Kong, the heuristic is unable to detect attacks perpe-
trated by the relays Los Angeles (LA1) and Madrid (MAD), as shown in Figure
1. The failure to detect two of the four attacks leads to recall=0.5. Moreover,
for this target, the false positive rate is 0 and precision is 1. Tukey’s method
yields a small false positive rate (0.08), a recall of 1, and 0.79 precision.

4 Conclusions

This paper introduces novel symbolic unsupervised anomaly detection meth-
ods to identify Internet traffic redirection attacks based on histogram PCA,
using histogram means of the first PC. Results point out the superiority of the
symbolic Tukey’s method over the symbolic heuristic in detecting the attacks.
Overall, we show that PC histogram scores can be used as an interesting input
for further statistical analysis (conventional or symbolic).
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ABSTRACT: Item Response Theory models are widely used in many domains of ap-
plications to analyze questionnaires data, scaling categorical data into continuous con-
struct. Interpretable inference is often obtained relying on a set of assumptions for the
latent constructs, as for example normality for the unknown subject-specific latent
traits. This assumption can often be unrealistic and lead to biased results, hence we
consider more flexible models using Bayesian nonparametric mixtures for the individ-
ual latent traits. We study several identifiability constraints, and compare inferential
results and different Markov chain Monte Carlo strategies for posterior sampling.
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1 IRT models for binary responses

Let yi j denote the answer of an individual j to item i for j = 1, . . . ,N and
i = 1, . . . , I, with yi j = 1, when the answer is correct and 0 otherwise. Typi-
cally, different individuals are assumed to work independently, while responses
from the same individuals are assumed independent conditional to the latent
trait (local independence assumption). Hence each answer yi j, conditionally
to the latent parameters, is assumed to be a realization of a Bernoulli distribu-
tion, and the probability of a correct response is typically modeled via logistic
regression.

2 Semiparametric 2PL models

In the two-parameter logistic (2PL) model, the conditional probability of a
correct response is modeled as

Pr(yi j = 1|λi,βi,η j) =
exp{λi(η j −βi)}

1 = exp{λi(η j −βi)}
, i = 1, . . . , I, j = 1, . . . ,N. (1)

where η j represents the health status, or more in general latent trait, of
the j-th individual, while βi and λi encode item characteristics. The param-
eter λi > 0 is often referred to as discrimination, while βi is called difficulty

because for any fixed η j the probability of a correct response to item i is de-
creasing in βi. When λi = 1 for all i = 1, . . . , I, the model in 1 reduces to
the one-parameter logistic (1PL) model. Often, conditional log-odds in 1 are
reparametrized as λiηi + γi, with γi = −λi ×βi. Sometimes this is reffered to
as slope-intercept parameterization as opposed to the IRT parameterization in
considered traditionally for interpretation.

Traditional literature assumes that η j ∼ N (0,1) for j = 1, . . . ,N, but there
are situations in which such assumption can be too restrictive. We can ex-
tend the model in 1 to describe more flexible latent trait distributions using a
Dirichlet Process (DP) mixture of normal distributions

η j|G ∼ G, G ∼ DP(α,G0),

G0 ≡ N (0,σ2
0)× InvGamma(ν1,ν2) (2)

where α is the concentration parameter and G0 the base measure. Alter-
native representations of the DP are known as the Chinese Restaurant Process
(CRP) Blackwell et al., 1973 or the truncated stick-breaking (SB) Sethuraman,
1994.

3 Model estimation

Estimation of the model parameters is carried out in the Bayesian framework
via MCMC methods, using NIMBLE de Valpine et al., 2017, a R software
for hierarchical models. The NIMBLE system provides a suite of different
sampling algorithms along with the possibility to code user-defined samplers.
We compare results from the parametric and semiparametric 2PL model, using
NIMBLE’s default sampling configuration, that mixes conjugate samplers with
adaptive Metropolis Hastings algorithm.

Typically parameters of the 2PL model are not identifiable, so constraints
are either included in the model or one can post-process posterior samples
to meet the constraints. This last approach is typical of parameter-expanded
algorithms, which embed targeted models in a larger specification. We found
this last option to be the most efficient in terms on both MCMC mixing and
time.

In traditional literature on parametric 2PL model, identification is obtained
constraining the discrimination parameters λi, for i = 1, . . . , I to be positive,
when the latent trait distribution is assumed to be a standard normal. Since we
are relaxing the normal assumption on the latent traits, we considered sum-to-
zero constraints on the item parameters, i.e. ∑i βi = 0, ∑i log(λi) = 0.
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Typically parameters of the 2PL model are not identifiable, so constraints
are either included in the model or one can post-process posterior samples
to meet the constraints. This last approach is typical of parameter-expanded
algorithms, which embed targeted models in a larger specification. We found
this last option to be the most efficient in terms on both MCMC mixing and
time.

In traditional literature on parametric 2PL model, identification is obtained
constraining the discrimination parameters λi, for i = 1, . . . , I to be positive,
when the latent trait distribution is assumed to be a standard normal. Since we
are relaxing the normal assumption on the latent traits, we considered sum-to-
zero constraints on the item parameters, i.e. ∑i βi = 0, ∑i log(λi) = 0.
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4 Inferential results

We compare inferential results via simulation. We simulate data from two
different scenarios changing the distribution generating the latent traits. We
simulate responses from N = 3,000 individuals to I = 20 binary items. Values
for the discrimination parameters {λi}20

i=1 are sampled from a Uniform distri-
bution over the interval (0.5,2), while values for difficulty parameters {βi}20

i=1
are sampled from a Normal distribution with mean zero and variance 2.

In particular, we considered two different generating distribution for the
latent traits. A unimodal scenario, where η j are i.i.d. draws from a N (0,1)
and a multimodal scenario where

η j ∼ 0.4×N (−3,1)+0.2×N (−2,4)+0.4×N (2,1). (3)

We chose moderately vague priors for the item parameters, βi ∼ N (0,3)
and log(λi)∼ N (0.5,0.5). In the parametric model, η js are assumed to follow
N (0,1), while for DP we choose G0 ≡ N (0,3)× InvGamma(1.01,2.01). We
run the MCMC for 50,000 iterations using a 10% burn-in of 5000 iterations,
and check traceplots for convergence.
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Figure 1. Comparison of the latent trait density estimates, using a parametric 2PL
model (orange line) and a semiparametric 2PL model (green line). The dotted black
lines indicate the true distribution in (3).

Figure 1 compares density estimates of the latent trait distribution from the

parametric and semiparametric models, computed taking the posterior means
of the η js. It can be noticed that the parametric model leads to a flat distribu-
tion because of the underlying normal assumption, while the semiparametric
specification recover the true density structure. Better estimation of the latent
abilities helps to avoid bias in inference, for example when estimating item
parameters or item characteristics curves (ICC).

References

BLACKWELL, DAVID, MACQUEEN, JAMES B, et al. 1973. Ferguson distri-
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ABSTRACT: A graphical tool for investigating unimodality of hyperspherical data is
proposed. It is based on the notion of statistical data depth function for directional
data. Then “standard” global depth is compared to its local version by means of a
two-dimensional scatterplot. The proposal is illustrated on simulated data.
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1 Setting

Testing unimodality of a sample X1, . . . ,Xn of a random vector X supported
on the hypersphere Sq−1 := {x ∈ Rq : x′x = 1}, with q > 1, is one important
step in multivariate data analysis for which only the directions (and not the
magnitudes) are of interest – the so-called directional data. This kind of data
arise in many applied disciplines, such as astronomy, biology, etc.

The inspiration for this contribution comes from the center-outward order-
ing provided by statistical depth functions, which can be intended as a mul-
tivariate generalization of standard univariate rank. Specifically, information
about unimodality of hyperspherical distributions are obtained through data
depths, and they can be displayed and visualized in a simple two-dimensional
plot. Such graph is based on an analysis of the rankings derived from a data
depth function and its local counterpart, so that they can offer an easy inter-
pretable picture of the distributions.

The use of depth-induced rankings to investigate distributional features
has been already used for analyzing data in Rq by means of graphical tools.
Liu et al. , 1999 proposed the “sunburst plot” as a bivariate generalization of
the box-plot and the DD-(depth versus depth) plots. Rousseeuw et al. , 1999
proposed the bagplot, a bivariate generalization of the univariate boxplot by
exploiting the notion of halfspace location depth. Li et al. , 2012 used the DD-
plot to perform classification of data in Rq. A nonparametric classification
procedure based on the DD-plot was introduced also by Lange et al. , 2014.

The concept of data depth was also used to build control charts for monitoring
processes of multivariate quality measurement [11, 3]. However, despite the
great and increasing interest for multivariate data analysis in Rq, the adoption
of depth-based visualizations for the analysis of directional data has been ne-
glected so far, except for a recent work about the classification of data on the
unit circle through the DD-plot (Liu, 1995, Pandolfo et al. , 2021).

2 Data depth

Data depth function is an important nonparametric tool for the analysis of com-
plex data such as functional and directional data. It provides a center-outward
ordering of the data and leads to a ranking of data which can be exploited
for describing different features of the data distribution. Hence, a data depth
function is any function D(x,F) that measures the closeness or centrality of a
point x ∈ Sq−1 d with respect to a distribution function F . Thus, a depth func-
tion assigns to each x ∈ Sq−1 a nonnegative score as its center-outward depth
with respect to F . Observations close to the center of F receive high ranks
whereas peripheral observations receive low ranks. Such notion is limited to
data modeling with a unimodal distribution. For this reason, local versions
of depth functions were derived in order to deal with multimodal distributions
(see Agostinelli & Romanazzi, 2011 and Paindaveine & Van Bever, 2013).

Here, the notion of distance-based depths for directional data introduced
by Pandolfo et al. , 2018 is adopted along with its local version which is de-
rived by considering a neighborhood of each point x whose radius is the τ
parameter, which cannot goes to ∞, as it occurs for data in Rq, because of
the boundedness of the space. The usual definition is recovered when τ ap-
proaches its maximum, thus local depth includes ordinary depth as a particular
case. Hence local depth is a class of center-outward ranking functions serving
multiple purposes, according to the value of the tuning parameter: low values
describe centralness of the points of the space conditional on a small neighbor-
hood around them, higher values lead to wider windows and therefore produce
rankings which are more and more similar to “standard” global depth.

3 Plotting global and local depth rankings

The rankings produced by the notions of global and local depths can be com-
pared by means of a two-dimensional scatterplot, which can be exploited to
investigate unimodality of directional data. This is because for symmetric
unimodal distributions the rankings of the data provided by global and local
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(see Agostinelli & Romanazzi, 2011 and Paindaveine & Van Bever, 2013).

Here, the notion of distance-based depths for directional data introduced
by Pandolfo et al. , 2018 is adopted along with its local version which is de-
rived by considering a neighborhood of each point x whose radius is the τ
parameter, which cannot goes to ∞, as it occurs for data in Rq, because of
the boundedness of the space. The usual definition is recovered when τ ap-
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investigate unimodality of directional data. This is because for symmetric
unimodal distributions the rankings of the data provided by global and local



184 

depths should be exactly the same. On the contrary, the more the distribution
deviates from unimodality the greater the difference between the two rankings.
Such difference can be easily understood by a two-dimensional plot where the
x-coordinates are the global depth of the corresponding data point and the y-
coordinates are the local depth of the corresponding data point. If the distribu-
tion is unimodal and thus the set of the deeper local points does not substan-
tially differ from the corresponding set of the deeper global depth points, the
plot will exhibit a concentration on the upper-right corner. In case of strong
unimodality, the ranks of the two depth functions will coincide, and points on
the plot will roughly form a straight diagonal line. On the other hand, depar-
ture from unimodality will show different scenarios, obviously depending on
the kind of departure. Below, Figure 1 reports an example of the proposed
tool, where the arc distance depth in its global and local were adopted for a
unimodal von Mises-Fisher distribution in 5 dimensions with concentration
parameter equal to 20 (a) and a bimodal distribution in 5 dimensions obtained
trough a weighted mixture of two von Mises-Fisher distributions with means
90◦ far away from each other with 80% of the weight on the first component
and different concentrations, i.e. 5 and 2 (b). The sample size was set equal to
250. In the first case one can see that points do not deviate too much from the
straight line suggesting a strong unimodality. For the bimodal data, points are
more scattered around, and the deepest sample points according to the global
and local depth functions do not clearly lie on the upper-right quadrant, signal-
ing a departure from unimodality.
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Figure 1: Plot of global vs local depth-induced rankings of a von Mises-Fisher
distribution in 5 dimensions with concentration parameter κ = 5 (a), and of
a weighted mixture of two von Mises-Fisher distributions with means 90◦ far
away from each other (b). The normalized global and local arc depths were
used with τ equal to π/2.
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ABSTRACT: Many complex systems in nature (or man made) are represented
not by single networks but by sets of interdependent networks. Such networks
of networks (NoN) include the internet, airline alliances, biological networks,
and smart city networks. There is no doubt that NoN will be the next frontier
in network sciences. In my lecture I will address some recent developments
(robustness, diversity) and discuss some challenging problems in NoN.
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ABSTRACT: Latent autoregressive models are often employed for the analysis of in-
fectious disease data. However, the likelihood function of latent autoregressive models
is intractable and it is usually approximated by simulation-based methods. Through
such approximations the inferential problem becomes feasible, but at the price of a
high computational cost and difficulties in the assessment of the the quality of the nu-
merical approximation. We consider instead a weighted pairwise likelihood approach
and explore several computational and methodological aspects including estimation of
robust standard errors and the role of numerical integration. The suggested approach
is illustrated on monthly cases of invasive meningococcal disease in Italy.
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1 Pairwise Likelihood Inference for Latent Autoregressive Models

Let y1, . . . ,yn be an observed time series of length n and let ut = φut−1 + εt be
an unobserved autoregressive Gaussian model with εt ∼ N(0,σ2) and |φ|< 1.
Latent autoregressive models assume that conditionally on the unobserved ut ,
the observed counts yt are independent Poisson random variables with condi-
tional expectation E(yt |ut) = exp(xxxT

t βββ+ut), where xxxt is a vector of regressors
and βββ = (β0, . . . ,βp)

T the corresponding vector of regression coefficients. The
inclusion of the latent variable ut in the linear predictor induces both serial
correlation and overdispersion which is frequently observed in time series of
disease counts. Likelihood inference for the parameter vector θθθ = (βββT ,σ2,φ)T

of latent autoregressive models requires to approximate the n-fold integral

L(θ)=
∫

Rn
p(y1|u1;β)p(u1;σ2,φ)

n

∏
t=2

p(yt |ut ;β)p(ut |ut−1;σ2,φ)du1 . . .dun. (1)

Alternatively, the likelihood can be expressed as a series of n nested one-
dimensional integrals using the filtering algorirthm described in Cagnone &
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1 Pairwise Likelihood Inference for Latent Autoregressive Models

Let y1, . . . ,yn be an observed time series of length n and let ut = φut−1 + εt be
an unobserved autoregressive Gaussian model with εt ∼ N(0,σ2) and |φ|< 1.
Latent autoregressive models assume that conditionally on the unobserved ut ,
the observed counts yt are independent Poisson random variables with condi-
tional expectation E(yt |ut) = exp(xxxT
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T the corresponding vector of regression coefficients. The
inclusion of the latent variable ut in the linear predictor induces both serial
correlation and overdispersion which is frequently observed in time series of
disease counts. Likelihood inference for the parameter vector θθθ = (βββT ,σ2,φ)T

of latent autoregressive models requires to approximate the n-fold integral

L(θ)=
∫
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n

∏
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Alternatively, the likelihood can be expressed as a series of n nested one-
dimensional integrals using the filtering algorirthm described in Cagnone &
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Bartolucci, 2017. The algorithm is based on recursive evaluation of the nested
integrals, a process that can introduce propagation of the numerical error,
which is the main drawback of the filtering algorithm approach. Various sim-
ulation strategies for approximation of the likelihood (1) have been suggested
under the frequentist and Bayesian frameworks (Davis & Dunsmuir, 2016). In
this paper, we consider a weighted pairwise likelihood approach (Varin & Vi-
doni, 2009) which is based on replacement of the high-dimensional integral in
(1) with a limited set of double integrals. Consequently, a significant reduction
of the computational cost related to ordinary likelihood is achieved.

The pairwise log-likelihood of order d is defined as a weighted sum of the
form �d(θθθ) = ∑n

t=md+1 ∑md
i=1 wi log p(yt−i,yt ;θθθ), where md is a window length

parameter, wi are some non-negative weights, that are normalized, so that
∑md

i=1 wi = 1 (see Section 2 and Pedeli & Varin, 2020 for more details) and

p(yt−i,yt ;θθθ) =
∫

R2
p(yt |ut ;βββ)p(yt−i|ut−i;βββ)p(ut−i,ut ;σ2,φ)dut−idut .

The maximum pairwise likelihood estimator of order d is denoted as θ̂θθd and is
the solution of the pairwise score equations ψd(θ̂θθd) = ∑n

t=md+1 ψd,t(θ̂θθd) = 000,
where ψd,t(θθθ) = ∑md

i=1 wi
∂

∂θθθ log p(yt−i,yt ;θθθ) are the averaged pairwise scores.
It can be shown (Davis & Yau, 2011) that the limiting distribution of θ̂θθd is

normal with mean equal to the true value, θθθ∗, and asymptotic variance equal
to the inverse of the Godambe information Gd(θθθ∗) = Hd(θθθ∗)Jd(θθθ∗)

−1Hd(θθθ∗),

where Hd = E
{
− ∂

∂θθθ ψd,t(θθθ∗)
}

and Jd = ∑∞
k=−∞ E

{
ψd,t−k(θθθ∗)ψd,t(θθθ∗)

T
}

are
referred as the sensitivity and variability matrices, respectively. For the esti-
mation of Hd one can work with either the observed pairwise likelihood in-
formation or an outer-product estimator which derives from the second-order
Bartlett identity that holds for each specific pair of observations. Estimation of
Jd is more demanding. We consider an heteroskedasticity and autocorrelation
consistent (HAC) estimator (Newey & West, 1994) of the form

Ĵd =
r

∑
k=−r

(
1− |k|

r

) n

∑
t=md+1

{
1
n

ψd,t−k(θ̂θθd)ψd,t(θ̂θθd)
T
}
,

where the weights (1−|k|/r) correspond to the Bartlett kernel, although other
types of kernels might also be used. Empirical evidence suggests that the de-
fault lag length considered by autocorrelation functions of standard statistical
softwares can serve as a reliable choice for the window semi-length r. We thus
adopt the rule r = �10log10 n� corresponding to the number of lags used in the
acf() function of the R software (R Core Team, 2020).

2 Application

This section illustrates the proposed approach with an update of the application
considered in Pedeli & Varin, 2020. Data on the monthly number of meningo-
coccal disease cases in Italy for the years 1999-2018 have been obtained from
the Surveillance Atlas of the European Center of Disease Control (ECDC).
Thereafter, a latent autoregressive Poisson model is fitted to the period 1999-
2017 and then it is used to predict the disease cases in 2018. In the time series
plot of the data (left panel of Figure 1), it can be observed that the main fea-
ture of the series is a level shift corresponding to a reduction of the monthly
number of cases after March 2005. We therefore consider the latent autore-
gressive model E(yt |ut) = exp(ηt +ut) with ηt = β0+β1xt +β2 sin(2πt/12)+
β3 cos(2πt/12) , where xt is a binary indicator for observations before (xt = 1)
and after (xt = 0) March 2005. The Pearson residuals obtained by a standard
Poisson regression model with linear predictor ηt are non-spuriously autocor-
related at the first two lags. We thus fit the latent autoregressive model with
the pairwise likelihood of order two and trapezoidal weights, as suggested by
simulation results discussed in Pedeli & Varin, 2020. The trapezoidal weights
have a window length parameter md = 2d and are defined as

wi ∝




1, 1 ≤ i < d,
(2d − i)/d, d ≤ i < 2d,
0, i ≥ 2d.

Numerical integration for computation of the pairwise likelihood is performed
through Gauss-Hermite quadrature with 5, 10 and 20 nodes per dimension giv-
ing the same estimates and standard errors up to two decimal digits. Maximum
pairwise likelihood estimates are in close agreement with integrated nested
Laplace approximation (INLA) (Rue et al., 2009) and confirm the significant
level shift in the invasive meningitis cases after March 2015. The maximum
pairwise likelihood estimates and corresponding standard errors were obtained
after 0.164, 0.379 and 1.439 CPU seconds, with five, 10 and 20 quadrature
nodes per dimension, respectively, while INLA required 5.256 CPU seconds.

The observed and predicted cases of meningococcal infections in Italy and
the corresponding 95% upper bounds are illustrated in the right panel of Figure
1. Predictions were computed with 10,000 simulations from the fitted model.
The comparison of in-sample predictions with the observed disease counts in-
dicates a realistic model fitting and retrospectively identifies some periods of
excess disease cases. Out-of-sample predictions are also close to the observed
miningitis cases for the year 2018 indicating a good predictive ability.
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−1Hd(θθθ∗),

where Hd = E
{
− ∂

∂θθθ ψd,t(θθθ∗)
}

and Jd = ∑∞
k=−∞ E

{
ψd,t−k(θθθ∗)ψd,t(θθθ∗)

T
}

are
referred as the sensitivity and variability matrices, respectively. For the esti-
mation of Hd one can work with either the observed pairwise likelihood in-
formation or an outer-product estimator which derives from the second-order
Bartlett identity that holds for each specific pair of observations. Estimation of
Jd is more demanding. We consider an heteroskedasticity and autocorrelation
consistent (HAC) estimator (Newey & West, 1994) of the form

Ĵd =
r

∑
k=−r

(
1− |k|

r

) n

∑
t=md+1

{
1
n

ψd,t−k(θ̂θθd)ψd,t(θ̂θθd)
T
}
,

where the weights (1−|k|/r) correspond to the Bartlett kernel, although other
types of kernels might also be used. Empirical evidence suggests that the de-
fault lag length considered by autocorrelation functions of standard statistical
softwares can serve as a reliable choice for the window semi-length r. We thus
adopt the rule r = �10log10 n� corresponding to the number of lags used in the
acf() function of the R software (R Core Team, 2020).

2 Application

This section illustrates the proposed approach with an update of the application
considered in Pedeli & Varin, 2020. Data on the monthly number of meningo-
coccal disease cases in Italy for the years 1999-2018 have been obtained from
the Surveillance Atlas of the European Center of Disease Control (ECDC).
Thereafter, a latent autoregressive Poisson model is fitted to the period 1999-
2017 and then it is used to predict the disease cases in 2018. In the time series
plot of the data (left panel of Figure 1), it can be observed that the main fea-
ture of the series is a level shift corresponding to a reduction of the monthly
number of cases after March 2005. We therefore consider the latent autore-
gressive model E(yt |ut) = exp(ηt +ut) with ηt = β0+β1xt +β2 sin(2πt/12)+
β3 cos(2πt/12) , where xt is a binary indicator for observations before (xt = 1)
and after (xt = 0) March 2005. The Pearson residuals obtained by a standard
Poisson regression model with linear predictor ηt are non-spuriously autocor-
related at the first two lags. We thus fit the latent autoregressive model with
the pairwise likelihood of order two and trapezoidal weights, as suggested by
simulation results discussed in Pedeli & Varin, 2020. The trapezoidal weights
have a window length parameter md = 2d and are defined as

wi ∝




1, 1 ≤ i < d,
(2d − i)/d, d ≤ i < 2d,
0, i ≥ 2d.

Numerical integration for computation of the pairwise likelihood is performed
through Gauss-Hermite quadrature with 5, 10 and 20 nodes per dimension giv-
ing the same estimates and standard errors up to two decimal digits. Maximum
pairwise likelihood estimates are in close agreement with integrated nested
Laplace approximation (INLA) (Rue et al., 2009) and confirm the significant
level shift in the invasive meningitis cases after March 2015. The maximum
pairwise likelihood estimates and corresponding standard errors were obtained
after 0.164, 0.379 and 1.439 CPU seconds, with five, 10 and 20 quadrature
nodes per dimension, respectively, while INLA required 5.256 CPU seconds.

The observed and predicted cases of meningococcal infections in Italy and
the corresponding 95% upper bounds are illustrated in the right panel of Figure
1. Predictions were computed with 10,000 simulations from the fitted model.
The comparison of in-sample predictions with the observed disease counts in-
dicates a realistic model fitting and retrospectively identifies some periods of
excess disease cases. Out-of-sample predictions are also close to the observed
miningitis cases for the year 2018 indicating a good predictive ability.
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Figure 1. Left panel: Time series of the monthly number of invasive meningococcal
disease (IMD) cases in Italy for the years 1999–2018. Right panel: observed (◦) and
predicted (–) number of IMD cases. The vertical dotted line separates the data used
for model fitting from the data used for the prediction exercise.
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1 Introduction

For a multi-way contingency table, the traditional Pearson’s chi-square statistic
is obtained by comparing observed frequencies to the expected frequencies
under the null hypothesis. For a composite null hypothesis where the null distri-
bution depends on a vector of g unknown parameters βββ = (β1, . . . ,βg)

T , requires

the Pearson-Fisher statistic, X2
PF =∑s z2

s , where zs =
√

n(πs(β̂ββ))
− 1

2
(
p̂s−πs(β̂ββ)

)
.

Fisher (1924) gave the degrees of freedom, T −g−1. Orthogonal components
of X2

PF have been studied by many authors, including Lancaster (1969). Reiser,
Cagnone, and Zhu (2021) propose a new GFfit statistic for the purpose of
detecting lack of fit. The new statistic, GF f it(i j)

⊥ , is obtained by decomposing
the Pearson statistic from the full table into orthogonal components defined on
marginal distributions. GF f it(i j)

⊥ are the squared elements of γ̂γγ = n
1
2 F̂FF

′
eee, where

eee is a vector of residuals on marginals distributions, such as bivariate residuals,
FFF = (CCC ′)−1, where CCC is the Cholesky factor of ΩΩΩeee, and ΩΩΩeee is the covariance
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predicted (–) number of IMD cases. The vertical dotted line separates the data used
for model fitting from the data used for the prediction exercise.
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matrix of
√

neee.
In this paper, the performance of GF f it(i j)

⊥ is compared to adjusted residuals
(Reiser, 1996) and χ̄2

i j (Liu & Maydeu-Olivares, 2014) using simulations to
assess Type I error rate and power for models fit to binary cross-classified vari-
ables. The adjusted residual k for the second-order marginal is zi j = n

1
2 e(k)/σ̂(k)

e ,
where k = 1,2, · · · ,

(q
2

)
and corresponds to item pair ij, e(k) is an element of

eee, and σ̂(k)
e is the square root of a diagonal element of ΣΣΣeee where ΣΣΣeee = n−1Ω̂ΩΩeee.

χ̄2
i j = 2 µ̂1

µ̂2
χ2

i j, where µ̂1 and µ̂2 are the first and second asymptotic moments of
χ2

i j, and χ2
i j is the Pearson chi-square statistic calculated on a bivariate table.

2 Type I Error Study

The first simulation included eight manifest variables. One thousand data sets
were generated using Monte-Carlo methods related to a one factor model where
β′

1 = (0.1, 0.1, 0.1, 0.9, 0.9, 0.9, 0.2, 0.2). Three intercept settings were used.
Only results for a simulation with intercepts symmetric around zero are shown
below. A 2 PL item response model with one latent dimension was estimated
for each of these datasets, and empirical Type I error rates of the individual
orthogonal components were calculated. Since each individual orthogonal com-
ponent is distributed approximately as chi-square with one degree of freedom,
to calculate the empirical Type I error rate for each component, the sum of the
number of cases that exceed the chi-square critical value (at 5% significance
level) with one degree of freedom was divided by the number of datasets. Simi-
lar process was used to calculate the Type I error rates of the adjusted residual
and χ̄2

i j. This simulation was repeated for sample sizes 300 and 500.
Table 1 below indicates the empirical Type I error rates for q = 8 manifest

variables for symmetric intercept model. The Type I error rates outside of the
Monte-Carlo error interval 0.05±

√
0.05(0.95)/1000 = (0.0365,0.0635) are

bolded. When n=300, Type I error rates related to GF f it(i j)
⊥ (4,5) and (5,6)

were outside the Monte-Carlo error interval. Given that there are twenty eight
individual GF f it(i j)

⊥ , it is possible that one or two components may randomly
fall slightly outside the Monte-Carlo error interval. However, five χ̄2

i j and four
adjusted residuals were outside the Monte-Carlo error interval. This suggests,
when n=300, orthogonal components have better Type I error rates compared to
χ̄2

i j and adjusted residuals for q = 8 manifest variables for symmetric intercept

model. When n=500, all the GF f it(i j)
⊥ and most of the χ̄2

i j and adjusted residuals
were inside the Monte-Carlo error interval (0.0365,0.0635).

Table 1. Type I Error Study for Symmetric Intercept Model
n=300 n=500

Pair (i,j) GFfit⊥ Std. Residuals χ̄2
i j Gffit⊥ Std. Residuals χ̄2

i j
(1,2) 0.046 0.055 0.052 0.052 0.0590591 0.056
(1,3) 0.048 0.048 0.047 0.044 0.046046 0.046
(1,4) 0.044 0.057 0.054 0.051 0.0510511 0.047
(1,5) 0.044 0.034 0.03 0.042 0.043043 0.043
(1,6) 0.049 0.048 0.044 0.053 0.049049 0.047
(1,7) 0.051 0.063 0.06 0.043 0.045045 0.045
(1,8) 0.057 0.053 0.052 0.051 0.0530531 0.053
(2,3) 0.051 0.055 0.054 0.041 0.042042 0.043
(2,4) 0.039 0.046 0.049 0.038 0.047047 0.046
(2,5) 0.043 0.054 0.052 0.049 0.0500501 0.05
(2,6) 0.052 0.063 0.059 0.048 0.042042 0.042
(2,7) 0.043 0.059 0.06 0.048 0.049049 0.047
(2,8) 0.047 0.048 0.048 0.057 0.0530531 0.054
(3,4) 0.05 0.058 0.058 0.05 0.0520521 0.051
(3,5) 0.042 0.038 0.038 0.043 0.044044 0.042
(3,6) 0.049 0.06 0.056 0.051 0.046046 0.046
(3,7) 0.043 0.048 0.049 0.056 0.0500501 0.048
(3,8) 0.041 0.043 0.043 0.047 0.039039 0.04
(4,5) 0.074 0.08 0.079 0.064 0.07 0.069
(4,6) 0.062 0.079 0.077 0.057 0.068 0.067
(4,7) 0.037 0.054 0.052 0.037 0.0510511 0.049
(4,8) 0.05 0.042 0.042 0.048 0.042042 0.042
(5,6) 0.07 0.074 0.073 0.062 0.0630731 0.064
(5,7) 0.039 0.044 0.043 0.039 0.037 0.038
(5,8) 0.052 0.05 0.052 0.037 0.037 0.037
(6,7) 0.045 0.045 0.048 0.054 0.048048 0.05
(6,8) 0.037 0.044 0.044 0.049 0.037 0.038
(7,8) 0.052 0.04 0.036 0.041 0.037 0.04

3 Power Study for Eight Variables

Asymptotic and empirical power comparison for symmetric intercept models
are given in Table 2. Higher values for slopes were allocated to items 4, 5, and
6 on a second latent dimension, and higher power is expected for components
related to those item pairs. By examining the highlighted values in Table 2, it
is clear that the empirical power of second order marginal components (4,5),
(4,6) and (5,6) are significantly higher compared to other components. Thus,
these second order components were successful in detecting the source of a
poorly fit model. This process was repeated for n=300 and n=500. By the
results in these tables, it is clear that the empirical power will increase with the
sample size and the components were more successful in detecting the lack-of-
fit for larger sample sizes. However, when n=300, empirical power results were
somewhat lower compared to asymptotic power results. This indicates when
sample size is smaller empirical distribution may not close to the hypothesized
theoretical distribution. When n=500, empirical power results and asymptotic
power results were fairly close. This indicates when sample size increases the
empirical distribution approaches hypothesized theoretical distribution.
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(3,8) 0.041 0.043 0.043 0.047 0.039039 0.04
(4,5) 0.074 0.08 0.079 0.064 0.07 0.069
(4,6) 0.062 0.079 0.077 0.057 0.068 0.067
(4,7) 0.037 0.054 0.052 0.037 0.0510511 0.049
(4,8) 0.05 0.042 0.042 0.048 0.042042 0.042
(5,6) 0.07 0.074 0.073 0.062 0.0630731 0.064
(5,7) 0.039 0.044 0.043 0.039 0.037 0.038
(5,8) 0.052 0.05 0.052 0.037 0.037 0.037
(6,7) 0.045 0.045 0.048 0.054 0.048048 0.05
(6,8) 0.037 0.044 0.044 0.049 0.037 0.038
(7,8) 0.052 0.04 0.036 0.041 0.037 0.04

3 Power Study for Eight Variables

Asymptotic and empirical power comparison for symmetric intercept models
are given in Table 2. Higher values for slopes were allocated to items 4, 5, and
6 on a second latent dimension, and higher power is expected for components
related to those item pairs. By examining the highlighted values in Table 2, it
is clear that the empirical power of second order marginal components (4,5),
(4,6) and (5,6) are significantly higher compared to other components. Thus,
these second order components were successful in detecting the source of a
poorly fit model. This process was repeated for n=300 and n=500. By the
results in these tables, it is clear that the empirical power will increase with the
sample size and the components were more successful in detecting the lack-of-
fit for larger sample sizes. However, when n=300, empirical power results were
somewhat lower compared to asymptotic power results. This indicates when
sample size is smaller empirical distribution may not close to the hypothesized
theoretical distribution. When n=500, empirical power results and asymptotic
power results were fairly close. This indicates when sample size increases the
empirical distribution approaches hypothesized theoretical distribution.
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Table 2. Asymptotic and Empirical Power Comparison for Symmetric Intercept Model
n=300 n=500

Std. Asymptotic Std. Asymptotic
Pair (i,j) GFfit⊥ Residuals χ̄2

i j power* GFfit⊥ Residuals χ̄2
i j power*

(1,2) 0.068 0.07 0.073 0.05077 0.065 0.063 0.064 0.05128
(1,3) 0.073 0.073 0.071 0.05233 0.082 0.076 0.076 0.05389
(1,4) 0.054 0.064 0.063 0.05796 0.071 0.08 0.081 0.06331
(1,5) 0.064 0.072 0.072 0.05861 0.062 0.064 0.066 0.06439
(1,6) 0.072 0.064 0.064 0.05866 0.077 0.062 0.065 0.06448
(1,7) 0.056 0.058 0.06 0.05 0.051 0.055 0.055 0.05
(1,8) 0.063 0.063 0.062 0.05001 0.059 0.059 0.057 0.05002
(2,3) 0.076 0.079 0.077 0.05699 0.085 0.063 0.062 0.06169
(2,4) 0.06 0.058 0.055 0.06535 0.088 0.08 0.081 0.07572
(2,5) 0.064 0.062 0.067 0.06642 0.079 0.073 0.072 0.07752
(2,6) 0.067 0.053 0.054 0.06648 0.085 0.065 0.065 0.07763
(2,7) 0.041 0.061 0.061 0.05 0.03 0.052 0.05 0.05
(2,8) 0.051 0.052 0.048 0.05014 0.055 0.049 0.049 0.05023
(3,4) 0.08 0.064 0.066 0.08986 0.109 0.074 0.075 0.11717
(3,5) 0.104 0.056 0.055 0.09223 0.116 0.075 0.074 0.12118
(3,6) 0.121 0.048 0.049 0.09236 0.15 0.075 0.075 0.1214
(3,7) 0.062 0.056 0.057 0.05157 0.068 0.062 0.062 0.05262
(3,8) 0.044 0.07 0.064 0.05004 0.052 0.061 0.06 0.05007
(4,5) 0.531 0.601 0.599 0.60186 0.757 0.826 0.824 0.81689
(4,6) 0.482 0.553 0.553 0.56285 0.717 0.781 0.781 0.78068
(4,7) 0.044 0.047 0.049 0.05011 0.046 0.068 0.069 0.05019
(4,8) 0.055 0.065 0.065 0.05005 0.053 0.06 0.06 0.05008
(5,6) 0.539 0.562 0.562 0.62046 0.803 0.803 0.803 0.83304
(5,7) 0.048 0.059 0.057 0.05 0.035 0.054 0.055 0.05
(5,8) 0.054 0.054 0.056 0.05009 0.043 0.061 0.06 0.05015
(6,7) 0.046 0.056 0.055 0.05001 0.064 0.064 0.064 0.05002
(6,8) 0.043 0.066 0.064 0.05009 0.048 0.065 0.066 0.05015
(7,8) 0.064 0.07 0.072 0.05001 0.054 0.057 0.058 0.05001

Asymptotic power was calculated only for the orthogonal components.
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1 Introduction

Food security issues are going to focus our attention on the lower tail of the
yield distributions. At the regional level, the issue is co-dependence across
crop yields of the closest locations (Chavas et al. [2019]). At the national
level, the issue is co-dependence across locations per each crop where the role
of climate could emerge. Therefore, we attempt to explore the possible effect
of climate, modeling the joint tail behavior of yields among 7 Italian provinces
for each crop (corn and wheat). To estimate the yield distribution we propose
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of climate could emerge. Therefore, we attempt to explore the possible effect
of climate, modeling the joint tail behavior of yields among 7 Italian provinces
for each crop (corn and wheat). To estimate the yield distribution we propose
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a two-step estimation method which involves the use of copulas in a multivari-
ate framework. The first step relies on estimating a Quantile AutoRegressive
(QAR) model to shape the yield dynamics of each crop and location, taking
into account the dependence structure in terms of lagged quantiles. The sec-
ond step involves the parametric estimation of multivariate copulas among the
conditional quantiles of QAR model estimated in the first step, to measure the
whole dependence structure, that is the contemporaneous and the serial depen-
dence as well as the tail dependence of yields across locations per crop. Cop-
ulas can be considered as the suitable tool to model both co-dependence and
extreme dependence (see Nelsen [2006]). Findings reveal that tail dependence
coefficients are high among locations per crop, and such result induces to con-
sider climate as the possible common factor of yield joint behavior, specifically
both for higher and lower co-movements in some areas. The paper is organized
as follows. In Section 2, we provide a brief review of the QAR model and dis-
cuss the use of copulas. Finally, Section 3 develops the empirical analysis.

2 Methodology

Let Yt be the random variable denoting a crop yield at time t, yt (t = 1, . . . ,T ) a
sample of T observations and qt(θ) the corresponding quantiles at θ (with 0 <
θ < 1). The Quantile AutoRegression (QAR) model describes the dynamics of
the θ-th quantile as:

qt(θ) = c+
K

∑
k=1

ak(qt−k(θ))+
M

∑
m=1

b′mxt−m. (1)

where M and K are the possibly different number of lags and xt−m is a vector
of exogenous lagged values which affect yt . The parameters of the model are
estimated by regression quantiles, as introduced by Koenker [2005]. The con-
ditional quantiles of QAR model of each crop yield is then the input margin of
the joint distribution described by the copula function. Copulas allow to better
describe the dependence structure among variables and here among quantiles,
providing a flexible and well-suited specification of the joint distribution (see
Nelsen [2006]). According to the Sklar’s theorem (Sklar [1959]), the joint
distribution function H of q1, . . . ,qp can be expressed by a copula function C
defined in the unit interval as

H(q1(θ), . . . ,qp(θ)) =C(F1(q1(θ)), . . . ,Fp(qp(θ)))

where Fi(qi(θ)) (i = 1, ..., p) is the distribution function of the conditional
quantile in Eq. (1) and C is uniquely determined if F are continuous. An

important feature of copulas relies on modeling general form of dependen-
cies, also nonlinear as well as focused on the extreme values of variables. The
association between extreme values, known as tail dependence, is defined, re-
spectively, in the lower and upper tails, as the limit for a copula C of some h
variables with respect to remaining p−h (De Luca & Rivieccio [2012] for de-
tails). The specific behavior in the tails of the joint distribution can suggest the
copula to select among the parametric families. This feature allows to consider
nonlinear association among conditional quantiles.

3 Empirical Application

Data cover period from 1901 to 2017 and concern yearly crop yields of 7 Ital-
ian provinces (see Table 1) and 2 crops (wheat and corn). It also includes
the variables xt = (t0, t1, t2) where t0 is an overall time trend starting at 0 in
2000, t1 is a time trend starting at 0 in 1940, t2 is a time trend starting at 0
in 1980. The time trends capture technological and structural changes taking
place during the sample period. The best univariate QAR fitting model has 3
lags for each province and for both crop variety, wheat and corn, according
to BIC. Elliptical, Archimedean and mixture copulas were applied to model
the whole dependence structure of the selected seven provinces per each crop.
The most suitable 7-variate copula across provinces per each crop is the mix-
ture of Normal and Student-t copula (see Hu [2006] for details), where the
mixture weights are, respectively, 0.216 and 0.784 for wheat and 0.751 and
0.249 for corn. Accordingly, each tail dependence coefficient (λ) is a weighted
average of the coefficients of the two copulas, estimated by following Demarta
& McNeil [2005] (Table 1). Findings reveal that tail dependence coefficients
are high among locations of the same area, and such result induces to consider
climate as the common factor of yield joint behavior. In particular, northern re-
gions, generally characterized by a lower crop diversification, highlight higher
tail dependence, thus resulting more exposed to risk of climate effects.
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Table 1. Tail dependence estimates from a Normal-Student−t copula mixture across
the Italian provinces: Milan (1), Venice (2), Bologna (3), Florence (4), Rome (5),
Naples (6), Palermo (7).

Wheat Corn
Coefficient Estimate Coefficient Estimate
λ12 0.5693 λ12 0.5571
λ13 0.4828 λ13 0.5763
λ14 0.4801 λ14 0.5539
λ15 0.4798 λ15 0.5515
λ16 0.4346 λ16 0.4585
λ17 0.3789 λ17 0.3460
λ23 0.5002 λ23 0.5702
λ24 0.5124 λ24 0.6023
λ25 0.5245 λ25 0.5842
λ26 0.4626 λ26 0.4552
λ27 0.3578 λ27 0.3138
λ34 0.4776 λ34 0.5835
λ35 0.4754 λ35 0.5511
λ36 0.4969 λ36 0.4749
λ37 0.3724 λ37 0.3153
λ45 0.5023 λ45 0.6050
λ46 0.4403 λ46 0.4511
λ47 0.3496 λ47 0.3136
λ56 0.4751 λ56 0.4497
λ57 0.3658 λ57 0.3214
λ67 0.4422 λ67 0.3693
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ABSTRACT: Data anonymization is the process of de-identifying sensitive data while
preserving its format and data type (Venkataramanan & Shriram, 2016 Raghunathan,
2013), generally this procedure is achieved by masking one or multiple values in order
to hide some aspects of the data. In this paper, we propose a co-clustering model
for data anonimization based on topological co-clustering. Co-clustering which is a
simultaneous clustering of rows and columns of data matrix consists in interlacing
row clusterings with column clusterings at each iteration Govaert, 1995; co-clustering
exploits the duality between rows and columns which allows to effectively deal with
high dimensional data.
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1 Introduction

To mine collected data without security breaching, some rules related espe-
cially to the privacy of the people on the dataset have to be respected. The
process of preserving data privacy is called data anonymization and was used
for quite a while to statistical purposes.

k-anonymity is a global framework to evaluate the amount of privacy in
some dataset, as the elimination of key identifiers was proven to be inefficient,
microdata was disclosed using the microaggregation technique
(Domingo-Ferrer & Torra, 2001).

Li et al. Li et al., 2006 introduced the first algorithm that combines clus-
tering and anonymization. The algorithm forms equivalence classes from the
database by finding an equivalence class with records’ number less than k.
It measures the distance between the found equivalence class and the other
equivalence classes and merges it with the nearest equivalence class in order
to form a cluster of at least k elements with minimum information distortion.
This method gives good computational results but it is very time consuming.

The topological co-clustering approaches leads to a simultaneous cluster-
ing on the rows and columns of data matrix, as well as the projection of the
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clusters on a two-dimensional grid while preserving the topological order of
the initial data.

The co-clustering implicitly performs an adaptive dimensionality reduction
at each iteration, leading to better document clustering accuracy compared to
one side clustering methods (Dhillon, 2001). Co-clustering is also preferred
when there is an association relationship between the data and the features
(i.e., the columns and the rows) Ding et al., 2006.

In text mining field, (Dhillon, 2001) has proposed a spectral block cluster-
ing method by exploiting the duality between rows (documents) and columns
(words). In the analysis of microarray data, where data are often presented as
matrices of expression levels of genes under different conditions, block cluster-
ing of genes and conditions has been used to overcome the problem of choos-
ing the similarity on the two sets found in conventional clustering methods
(Cheng & Church, 2000). The aim of block clustering is to try to summarize
this matrix by homogeneous blocks.

2 The proposed algorithm

We propose to use the topological co-clustering in order to k-anonimyze a large
sparse dataset. This way, the curse of dimensionality is implicitly dealt with,
as the algorithm treats each part simultaneously and the results are proved to
be more accurate.

The proposed k-coTCA approach take in input the dataset OT to anon-
imyze and performs in output an anonymized datset AT having the same size.
The algorithm is composed from two steps : co-clustering and anonimization.

Topological co-clustering step:

1. Form the affinity matrix A
2. Define Dr and Dc to be the diagonal matrices

Dr = diag(A1) and Dc = diag(At1)

3. Find U ,V the (g−1) left-right largest eigenvectors of

Ã = D
− 1

2
r AD

− 1
2

c

4. From U and V , form the matrices Ũ , Ṽ and

D =

(
Ũ
Ṽ

)

5. Cluster the rows of D into g clusters by using SOM and compute the
prototypes w[ii]

6. Assign object i to cluster Rk if and only if the corresponding row di of
the matrix D was assigned to cluster Rk and assign attribute j to cluster
Ck if and only if the corresponding row d j of the matrix D was assigned
to cluster Ck.

Anonymization step
For each co-cluster Ck :

• Find the BMU of each object j in Rk using corresponding w jc where c is
the matching neuron:

(X [ii]
i −w[ii]

jc )

• Code each element j with its corresponding vector:
X ′

j ← [w[1]
jc(1)

,w[2]
jc(2)

, ...,w[P]
jc(q)

], where c(q) is the index of the cell associated
with element j.

To evaluate the co-clustering results, we use the Davies Bouldin index
which is a clustering evaluation indicator that reflects the quality of the clus-
tering, as a stopping criterion.

In order to compare the performances of our approach with other tradi-
tional unsupervised clustering algorithms, we use many text datasets, which
represent the frequency of words in documents. We used eight datasets for
document clustering. ”Classic30”, ”Classic150”, ”Classic300”, ”Classic400”
are an extract of Classic3 Dhillon, 2001 which contains three classes denoted
Medline, Cisi, Cranfield as their original database source.

The impact of co-clustering on the utility of anonymized data is quanti-
fied as the resulting accuracy of a machine learning model (Rodrı́Guez-Hoyos
et al., 2018). To quantify the utility of the dataset for further study and since
all the datasets used are labelled we thought that the best way to evaluate the
proposed approaches is to use an external evaluation i.e. the classification.
For this purpose, we designed a decision tree model and used it to see how
the anonymized data was classified by this model. We then compared the ac-
curacy of the results of both approaches to understand how much data quality
have we traded for the sake of anonymization. The obtained results, shows that
the accuracy doesn’t decrease after the anonymization and allows to maintain
the initial structure of the data.
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D =

(
Ũ
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3 Conclusions

In this paper, we introduced a new data anonymization approach based on
topological co-clustering which allows to use the prototypes as new values for
the anonymized data. The experiences shows that using an classification model
on the anonymized dataset, the accuracy doesn’t deacrease which means that
there is no loose of knowledge from the initial data.
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ABSTRACT: The diffusion of malaria is a complex phenomenon evolving over time
and space, driven by several aspects that include economical biological, behavioral
and environmental factors, which act and interact together. We consider as a case
study the Machadinho settlement project in Brazil, and provide a risk classification
for the households in the area. To accomplish this goal we estimate survey based
environmental and behavioral risk profiles via a mixed membership model. We then
validate the model comparing the predictive ability of the estimated risk profiles for the
crude malaria rate with the performances of standard machine learning (ML) tools.
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1 Introduction

The risk of malaria infection is favored by multiple and interacting causes that
are largely driven by human behaviors and their interaction with the surround-
ing environment. To evaluate the risk of malaria infection in a certain geo-
graphical area, biological and economical aspects juxtaposed with behavioral
and environmental factors should be evaluated. We focus on these last two
aspects providing a risk classification for the Machadinho Settlement Project,
located in the Rondônia state, Western Brazilian Amazon. The project was ap-
proved in 1982, with occupation starting in late 1984. The area was previously
a forest sparsely inhabited by rubber tappers (Castro et al., 2006).

Since the early phases of the settlement, malaria diffusion became a prob-
lem because of the proliferation of the Anopheles Darlingi mosquito, the main
malaria vector in the Amazon area. Spread of malaria in frontier settlements
can profoundly impact the ecosystem at different levels, and its quantification
is of primary importance to design effective measures of mitigation and pre-
vention.
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Crude malaria risk measures (e.g., number of malaria cases reported in
an households) can be adopted to determine risk profiles through regression
or classification models. However, for the Machadinho settlement these in-
dicators can lead to misleading results because of the presence of transient
individuals, responsible for high malaria rates in zones presenting low risk
conditions (see for example Castro et al., 2006). Unsupervised analysis is not
affected by this bias being only based on household features, and can lead
reliable findings for targeted stable populations in the settlement project.

We consider the risk classification provided in Russo et al., 2019 and pro-
vide a validation of their method. Specifically, we consider the prediction abil-
ity of the estimated risk classification of the crude malaria rate and compare
them with popular ML tools.

2 Model specification

We follow the model proposed in Russo et al., 2019. We observe categorical
variables Xi j ∈ {1, . . . ,d j} for household i = 1, . . . ,n and variable j = 1, . . . , p.
These variable are naturally partitioned in two groups: behavioral and envi-
ronmental variables. We indicate with ggg = (g1, . . . ,gp)

ᵀ the group for each of
the p variables, where g j ∈ {1,2}; the 1 codifies behavioral variables and the 2
the environmental ones. All households are endowed with 2 membership score
vectors (λλλ(1)

i ,λλλ(2)
i )ᵀ such that ∑H

h=1 λ(g)
ih = 1 for g = 1,2.

The proposed model can be expressed in the following hierarchical form:

Xi j | Zi j = h,ψψψ( j)
h ∼ Cat(ψ( j)

h1 , . . . ,ψ
( j)
hd j

),

Zi j | λλλ(g j)
i ∼ Cat(λ(g j)

i1 , . . . ,λ(g j)
iH ), (1)

(λλλ(1)
i ,λλλ(2)

i ) ∼ MLND(µµµ,ΣΣΣ).

Here Zi j ∈ {1, . . . ,H} are discrete latent variables that identify H latent groups.
The notation X ∼ Cat(π1, . . . ,πd) indicates a d-dimensional categorical ran-
dom variable, i.e. pr(X = k) = πk, for k = 1, . . . ,d, while MLND(µµµ,ΣΣΣ) is the
multivariate logistic normal distribution introduced in Russo et al., 2019.

Model (1) provides a low dimensional summary of the analyzed variables.
In fact, for a certain latent group h, {ψ( j)

h for j = 1, . . . , p} describe the h-th
group in terms of the observed variables. The scores λλλ(1)

i and λλλ(2)
i can be in-

terpreted as a degree of similarity of the i-th individual for the latent group h
(see figure 1 for a representation). Hence, partitioning the variables in behav-
ioral and environmental domains, and choosing H = 2, the scores λλλ(1)

i and λλλ(2)
i

can be interpreted as a summary of behavioral and environmental risks. We
refer to Russo et al., 2019 for additional details, prior specification and for a
description of the algorithm to approximate the posterior of model (1).

ψ( j)
1

ψ( j)
2

ψ( j)
3

· · · · · ·x

x

λλλ(1)
i λλλ(2)

i

ψ(p)
1

ψ(p)
2

ψ(p)
3

Figure 1. Representation of the risk profiles for subject i and the p variables. In
this example variable 1 is associated with domain 1 (behavioral) and variable p with
domain 2 (environmental)

3 Model validation

We consider an external validation of model (1), checking its performances in
the out-of-sample prediction of the crude malaria rate. We use 5-fold cross val-
idation, comparing the results with random forest, lasso prediction, and PCA
regression on the raw data. For the random forest and lasso we used the R
packages randomForest and glmnet, respectively. We refer to Castro
et al., 2006 for a detailed description of the data.

Note that crude malaria rates and the risk profiles estimated from model (1)
measure different aspect of risk. Therefore, they are expected to be related but
they are not expressed in the same scale. To overcome this issue, we assume
that the estimated risk are proportional to the malaria rate ri via:

ri = c1λ̂(1)
i + c2λ̂(2)

i ,

where λ̂(1)
i and λ̂(2)

i are the posterior mean of the behavioral and environmen-
tal risks estimated via (1). The coefficients c1 and c2 are estimated via least
squares on a training sample. To avoid over fitting in the considered ML mod-
els, for each fold we select tuning parameters with an additional cross valida-
tion.

Based on Table 1, multivariate mixed membership scores can predict malaria
rates with comparable out-of-sample predictive performance to black box ma-
chine learning algorithms, such as random forests. The ML algorithms and
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Table 1. 5 fold cross validation mean square prediction error (standard deviation)
divided by year.

1985 1986 1987 1995

Random Forest 0.104(0.026) 0.131(0.023) 0.108(0.011) 0.021(0.006)
lasso regression 0.104(0.026) 0.169(0.017) 0.123(0.005) 0.021(0.006)
PCA regression 0.101(0.030) 0.161(0.021) 0.121(0.005) 0.021(0.006)
Russo et al., 2019 0.099(0.024) 0.148(0.015) 0.105(0.003) 0.021(0.006)

other supervised approaches are subject to the selection bias issue mentioned
in Section 1. This result gives evidence that model (1) provides a reasonable
low dimensional representation in the considered context.
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ABSTRACT: Set estimation is focused on the reconstruction of a set (or the estima-
tion of any of its features such as its volume or its boundary) from a random sample
of points. Target sets to be estimated may appear in different contexts, but from a
distribution-based perspective, level set estimation is a problem of interest. Actually,
this theory is also linked to clustering methods: Hartigan (1975) defines the number of
population clusters as the number of connected components of density level sets. This
topic has received some attention in the literature specially for densities supported on
an Euclidean space. However, just as density level sets, this clustering approach can
be easily extended to more general settings such as the circle or the sphere.

The rationale for establishing the definition of cluster provided by Hartigan (1975) is
quite related with the notion of mode. In fact, several cluster algorithms are based on
the detection of modes noting that the number of modes (local maxima of the density
function) is rarely smaller than the number of clusters. Nevertheless, the concept of
cluster is easier to handle, since it has a global and geometrical nature, whereas the
local maxima depend on analytical properties.

In this work, we derive some methodology for estimating the number of directional
clusters as the number of connected components of directional level sets. From an em-
pirical perspective, directional level sets are estimated using a nonparametric plug-in
reconstruction (see, for instance, Saavedra-Nieves and Crujeiras, 2020). An extensive
simulation study shows the performance of this estimator for densities supported on
the unit circle and the sphere. Additionally, this methodology is applied to analyse a
real data set.

KEYWORDS: Connected components, density level sets, directional data.
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ABSTRACT: Finite mixture modeling and model-based clustering of matrix-
and tensor-variate data has recently gained a lot of attention. In this paper a
novel tensor regression mixture model has been proposed to analyze salary data
collected by the American Association of University Professors over a span
of thirteen years at several faculty rank and gender levels. Most of the studies
involving faculty remuneration employs linear regression models intended for
predicting individual salaries. Such models, however, are not suitable for devel-
oping strategies and policies at institutional level. The tensor regression mixture
framework adopted in this paper allows for an university level analysis of fac-
ulty remuneration by considering the heterogeneous, skewed, multi-way, and
temporal nature of the data. The developed model addresses several important
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ABSTRACT: Structural equation modeling (SEM) is a versatile statistical method
that can deal in principle with latent variables and composites. In practice,
however, researchers using SEM encounter problems incorporating compos-
ites into their models. To overcome this problem, I present a specification for
SEM that was recently sketched by Henseler (2021) to incorporate composites
in structural models. It draws from the same idea that was proposed by Oga-
sawara (2007) to conduct a canonical correlation analysis in SEM. Therefore,
the specification is dubbed Henseler-Ogasawara (H-O) specification. In the H-
O specification, a set of observed variables forming a composite is expressed
by a set of synthetic variables, which are labeled as emergent and excrescent
variables. An emergent variable is a linear combination of variables that is re-
lated to other variables in the structural model, whereas an excrescent variable
is a linear combination of variables that is unrelated to all other variables in
the structural model. This approach is advantageous over existing approaches,
as it offers the same flexibility in terms of model specification for modeling
with composites as SEM provides for modeling with latent variables. As a
consequence, the H-O specification makes all existing developments in SEM
available for modeling with composites, such as testing parameter estimates,
testing for overall model fit and dealing with missing values.
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ABSTRACT: Differential networks (DN) are important tools for modeling the changes
in conditional dependencies between multiple samples. A Bayesian approach for es-
timating DNs, from the classical viewpoint, is introduced with a computationally effi-
cient threshold selection for graphical model determination. The algorithm separately
estimates the precision matrices of the DN using the Bayesian adaptive graphical lasso
procedure. Synthetic experiments illustrate that the Bayesian DN performs exception-
ally well in numerical accuracy and graphical structure determination in comparison to
state of the art methods. The proposed method is applied to South African COVID-19
data to investigate the change in DN structure between various phases of the pandemic.
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ABSTRACT: Dual and multiple system estimation use the presence (‘capture’) of people 
in different data sources as the basis for estimation of the population size. Where further 
characteristics are also available, these can be used to provide estimates of the 
population size classified by these characteristics. We consider the situation that there 
are measurement errors in these classifying variables, but not in the linkage of people 
between data sources. We consider strategies to produce estimates of the population 
size and breakdown using a consistent, adjusted definition taking account of all the 
evidence in the collected data sources. 

KEYWORDS: capture-recapture, latent class analysis, ethnicity, population size estimation. 

1 Introduction 
Dual and multiple system estimation have a long history of use to estimate the size of 
populations which cannot be completely observed, and in recent years there have been 
many applications to estimating the size of human populations. In the simplest cases 
this may result from observing people on two sources, and using an assumption of 
independence between the sources to obtain an estimated population size. When there 
are more sources, interactions between the sources can be fitted, and an appropriate 
model needs to be fitted to the (implied) contingency table formed from the presence 
or absence of people in each source. In general this procedure assumes no errors of 
observation, and that no errors are made in linking people on the different sources. If 
an independent estimate of the linkage errors can be obtained, it can be used in an 
adjusted estimator (Zult et al. 2021). However, in this paper we work with the usual 
framework that assumes that linkage is made perfectly. 

Auxiliary information is often available on the different sources, in addition to the 
existence of a person (or record), and this information may be used in linkage where 
it corresponds to a stable characteristic. Other variables are of more substantive 
interest, and may be expected to vary between sources for a number of reasons: they 
may be characteristics which vary in time, or they may be measured in different ways 
in different data sources, leading to variations in the measurement. In this latter case 



212 

we may consider that there is an underlying ‘true’ variable, and that one or more of 
the sources that we are using observe a version of this variable with some added 
measurement error. The process of linking datasets means that some variables will not 
be observed for some records, and that no variables are observed for records in none 
of the sources, the number of which will nevertheless be estimated during population 
size estimation. 

In this paper we consider strategies for dealing with population size estimation, 
broken down using variables measured in one or more sources and subject to 
measurement error in this way. Section 2 deals with solutions based on explicit 
decisions about which measure is the best, and with simple combinations of variables, 
and Section 3 with the use of a latent class model to derive an underlying measure, 
which we consider to estimate the ‘true’ measure based on the available data. 

2 Population size estimation with a preferred covariate 
source  

First we consider that there are two sources, and both sources contain what is 
conceptually the same covariate, though we know or suspect that they are measured 
differently, or that their resulting quality is different because of the way they are 
collected. Van der Heijden et al. (2018) present an example where characteristics of 
accidents, specifically whether a motorised vehicle was involved, are recorded both 
by the police and by hospitals. It would be possible to treat these as the same variable, 
but investigation of the data where the ‘motorised vehicle’ variable is available from 
both sources shows that about 5% of cases have discrepancies. Instead we treat them 
as two different variables, and construct a four-way contingency table formed from 
presence/absence on the two sources and the motorised/non-motorised variables in 
the two sources. We then use loglinear modelling to choose a suitable model for this 
contingency table, and use this model together with the EM algorithm to produce a 
completed table (Table 1), which provides an estimate of the missing part of the 
population, and also estimates of the population sizes in each cell of the contingency 
table (where they are not observed). This allows us to add up in any way we want to 
achieve a set of consistent estimates. 

In the accidents example, we have reasonable confidence that the police register 
is better at recording whether a motorised vehicle is involved, as gathering this 
 

  B = 1 B = 0 Total   X2 = 1 X2 = 0 X2 = 1 X2 = 0 

A = 1 X1 = 1 5970.0 287.0 1289.0 62.0 7608.0 
X1 = 0 28.0 256.0 6.9 63.1 354.0 

A = 0 X1 = 1 2933.2 2177.6 633.3 470.2 6214.3 
X1 = 0 13.8 1942.4 3.4 478.8 2438.4 

Total 8945.0 4663.0 1932.6 1074.1 16614.7 
Table 1: Completed road accidents table. A is the police register, B the hospital 
register, X1 is the police record of motor vehicle involvement, and X2 the hospital 
record. 
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information is part of the police function. So we consider the classification of the total 
according to the variable X1 in the police register (whether observed or estimated) to 
be the correct one. And since the full dataset, cross-classified by both police and 
hospital versions of the motorised vehicle variable is available, we can make 
inferences about the measurement error in the hospital version. 

In a situation where the relative merits of the measurements are less clear, we 
could pragmatically use the average of the population size estimates under the 
different versions of the auxiliary variable. 

3 Latent class models 
A further approach is to treat the different measurements separately in the population 
size estimation, but then to embed them in a latent class model (LCM), which 
postulates an underlying, unobserved parameter related to all the separate 
measurements, and which can be interpreted as the true parameter. This approach can 
be considered when there are at least three measurements. It is conceptually different 
from using LCMs to deal with heterogeneity in the capture probabilities (as in 
Stanghellini & van der Heijden 2004). Van der Heijden et al. (2021) apply this 
approach in analysing four linked data sources in New Zealand – the population 
census, the health register, the birth registration register, and an education register 
(covering largely, but not only, tertiary education). Each of these sources includes an 
ethnicity variable, which we consider in a simplified version recoded to Māori or all 
other ethnicities. We would like to estimate both the size of the population in New 
Zealand and the size of the Māori population based on these sources. 

Two approaches are possible. In the first, we treat the four sources using multiple 
system estimation, fitting a loglinear model to the eight-way table formed by the 
inclusion or not in each source and Māori ethnicity or not. Some of the estimates from 
a saturated model go to infinity, so a reduced form of the model is needed to obtain 
parameter estimates with reasonable interpretation and stability. The estimates arising 
from this model (including the estimates of the size of the unobserved part of the 
population) are then used as the inputs to a latent class model with two latent classes. 
This gives a two-part procedure which has the advantage of being close to the original 
model for the 8-way contingency table. The model produces estimates of the size of 
the Māori population from one of the latent classes, which can be interpreted as the 
true Māori variable. It can also be used to give estimates of the errors in the four 
observed variables in measuring this underlying Māori concept. 

The second approach aims to include the latent class model directly in the 
modelling of the 8-way contingency table. The assumption of the latent class model 
is that the (unobserved) interactions between the observed variables and the latent 
variable explain all the interactions within the observed variables in the original data. 
Therefore we replace [abcd] in the original model with [aX][bX][cX][dX] with the 
latent variable X (where a, b, c and d label the ethnicity variables in the four data 
sources). This replaces all interactions of a, b, c, and d, so any terms containing two 
or more of these parameters are dropped from the model (which serves to make the 
loglinear model hierarchical with respect to interactions, and therefore more easily  
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   census DIA MOH DOE 
  

x  1|
a
r x   1|

b
r x   1|

c
r x   1|

d
r x   

two-step class 1  0.827 0.004 0.016 0.003 0.015 
class 2  0.173 0.937 0.937 0.826 0.922 

LCMSE class 1  0.834 0.007 0.014 0.004 0.016 
class 2  0.166 0.957 0.958 0.857 0.959 

Table 2: Estimates of probabilities from latent class models with two latent classes. 
Class r = 1 is interpreted as non-Māori, and class 2 as Māori. 

 
interpretable). This leaves a latent class model embedded in the multiple system 
estimation, and van der Heijden et al. (2021) call this the latent class multiple system 
estimation (LCMSE) model. 

In the application to data from the New Zealand Integrated Data Infrastructure 
(IDI-ERP), the LCMSE has a slightly lower estimate of the number of Māori and a 
slightly higher overall population estimate than the two-step procedure based on latent 
class estimation using the multiple system estimation results. The LCMSE therefore 
takes a more conservative approach to the definition of Māori in this dataset. 

The population census has been generally held to be the best measure of Māori 
ethnicity among the different sources available in New Zealand, and it has low values 
for measurement error in both Māori and non-Māori in both approaches (Table 2). 
The Health register has a low error for non-Maori, but the largest measurement error 
for Māori. The births and education registers are similar to the census in the estimated 
measurement error in the Māori class, but have more error in estimating the non-Māori 
class. Therefore overall our results support the conclusion that the census is the best 
overall measure of ethnicity. 
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ABSTRACT: High-dimensional highly correlated data exist in many application
domains which makes the classical classification methods like LDA and QDA
practically useless because they will suffer from the singularity problem if
the number of observed variables p exceeds the number of observations n. A
number of regularization techniques with the purpose to stabilize the classifier
and to achieve an improved classification performance have been developed and
there exist several studies comparing various regularization techniques trying
to facilitate the choice of a method. However, these methods are vulnerable to
the presence of outlying observations (outliers) in the training data set which
can influence the obtained classification rules and make the results unreliable.
On the other hand, the proposed in the literature high breakdown point versions
of discriminant analysis do not work or are not reliable in high dimensions. We
propose to utilize the recently introduced regularized versions of the minimum
covariance determinant (MCD) estimator – RMCD and MRCD - and thus
to combine high robustness to outliers, the possibility to be computed for
high dimensions and readily available software in R. Simulated and real data
examples show that the proposed method performs better than, or at least as
well as, the existing methods in a wide range of settings.
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ABSTRACT: Two families of parsimonious mixture models are used for model-based
clustering. They are based on the multivariate shifted exponential normal and the
multivariate tail-inflated normal distributions, heavy tailed generalizations of the mul-
tivariate normal. Parsimony is achieved via the eigen-decomposition of the component
scale matrices, as well as by imposing a constraint on the tailedness parameter. Two
variants of the expectation-maximization algorithm are used for parameter estima-
tion. Identifiability conditions are illustrated, and the advantages of our models with
respect to other existing parsimonious heavy-tailed mixture models are commented.
Our models are firstly tested via simulation studies, and then compared to some com-
peting models in real data applications.

KEYWORDS: mixture models, model-based clustering, parsimony, heavy-tailed dis-
tributions
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ABSTRACT: The problem of bi-clustering in the Functional Data Analysis framework
is considered, with the aim of simultaneously clustering the rows and columns of a
data matrix whose entries are functions, possibly taking values in a multidimensional
space. A definition of bi-cluster for functional data is given and a novel bi-clustering
method - called Functional Cheng and Church (FunCC) - is developed. The FunCC
method is a non parametric and very flexible technique able to discover bi-clusters,
based on a flexible modeling depending on the problem at hand.
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Nowadays, many systems are able to collect information with high frequency
recording multiple phenomena at the same time in an almost continuous way.
For this reason, researchers have put a lot of efforts into the development of
new statistical methods able to deal with this new type of data. In particular,
functional data analysis (FDA) is the branch of statistics that deals with ran-
dom variables taking values into an infinite dimensional functional space, see
Ramsay (2004) for more details.
In this contribution, we consider the problem of bi-clustering functional data
which has recently been addressed in the literature and we describe the meth-
ods we proposed in Galvani et al. (2021) and Torti et al. (2021). Bi-clustering
methods, commonly known thanks to the work of Cheng & Church (2000)),
allow to discover subgroubs of observations behaving in a similar way on a
subset of features or vice-versa. This is of particular interest when the data
are intrinsically ordered in a matrix structure and the aim is to simultaneously
group the rows and the columns of the data matrix without constraining the
rows (or the columns) of a data matrix to belong to only one group over all the
features (or the observations) as in the classical clustering methods. In the FDA
framework, there are just few works dedicated to the problem of bi-clustering
functional data framed in a matrix structure. Bouveyron et al. (2018) devel-
oped a parametric bi-clustering technique, based on the functional latent block
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model, to co-cluster different electricity consumption curves on different days.
Although, this approach needs to rely on strong modelling assumptions of the
data, which are hardly verified in the FDA framework, and only detect exhaus-
tive bi-clusters, i.e. discovering a checkerboard structure that does not always
fit with real data, for uni-variate functional data. An alternative extension of
bi-clustering to the functional realm is proposed by Di Iorio & Vantini (2019):
given a set of functions, they propose an algorithm to identify sub-domains of
the original functional domain where a subset of functions shows similar pat-
terns. In our work, we proceed along the same line introduced by Bouveyron
et al. (2018) and go a step further developing a non parametric algorithm able
to discover non exhaustive bi-clusters in a data matrix whose entries are func-
tions, possibly taking values in a multidimensional space. First, we introduce a
novel methodology based on the extension of the Cheng and Church algorithm,
called FunCC, by proposing an iterative procedure based on a non parametric
approach which allows to find flexible and non exclusive bi-clusters for uni-
variate functional data. Then, the FunCC algorithm is extended to the general
case of multivariate data, therefore bi-clustering data matrices whose entries
in each cell are multivariate functional data. In this way, we are able to deal
with bi-clustering problems where multiple aspects are observed at the same
time for each observation. For more details about the developed methodology
and the implemented algorithm see Galvani et al. (2021) and Torti et al. (2021).

Given a dataset arranged in a matrix A composed by n rows and m columns, the
aim of a bi-clustering technique is to find a submatrix B(I,J) ∈ A, correspond-
ing to a subset of rows I and a subset of columns J, with a similar behavior. In
particular, in the Cheng and Church algorithm (Cheng & Church (2000)), an
ideal bi-cluster is a set of rows I and a set of columns J such that each element
in the bi-cluster can be represented as the average value in the bi-cluster plus
a row and column components. A particular measure of goodness is evaluated
for each sub-matrix B(I,J) considering a similarity score - which is the Mean
Squared Residual between all the real values and their representative values in
the bi-cluster - and the sub-matrix B(I,J) is selected as bi-cluster if its similar-
ity score is lower than a threshold value.
Extending these concepts in the FDA framework, in each cell of the data matrix
A a function fi j(t) defined on a continuous domain T is contained.

Definition 0.1 Given a data matrix A, an ideal bi-cluster is a sub-matrix B(I,J)⊆
A, s.t. each element fi j with i ∈ I and j ∈ J can be expressed as

fi j(t) = µ(t)+aαi(t)+bβ j(t), ∀i ∈ I , ∀ j ∈ J with t ∈ T

with (a,b) ∈ {0,1}2 fixed by the analyst, µ defined for the bi-cluster B(I,J) as
µ(t) = 1

|I||J| ∑i∈I ∑ j∈J fi j(t) for t ∈ T , and αi and β j being the rows and columns
components, respectively, s.t. ∑i∈I αi = 0 and ∑ j∈J β j = 0.

Starting from Definition 0.1 (Galvani et al. (2021)), it is possible to obtain dif-
ferent kinds of ideal bi-clusters, associated to different application contexts, by
differently considering a and b. For example, setting (a,b) = (0,0) in the Defi-
nition 0.1, only the average value in the bi-cluster is considered, hence the ideal
bi-cluster is composed by a group of functions fi j all equal to the average value
µ of the bi-cluster. Moreover, while µ is evaluated as the average function of the
functions contained in B(I,J), the computation of the row and column compo-
nents αi and β j depends on their functional form. If αi and β j are assumed to be
functional objects, then, they can be evaluated as the average functional resid-
uals of rows and columns, respectively, with respect to the average function µ,
i.e. αi(t) = 1

|J| ∑ j∈J fi j(t)− µ(t) and β j(t) = 1
|I| ∑i∈I fi j(t)− µ. If instead, αi

and β j are assumed to be constant, then, they can be consistently evaluated as
the average value of the functional residuals of rows and columns, respectively,

with respect to the average function µ, i.e. αi =
1
|T |
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1
|J| ∑ j∈J fi j(t)−µ(t)

)
dt

and β j =
1
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∫
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(
1
|I| ∑i∈I fi j(t)− µ(t)

)
dt. In practice, we want to find sub-

matrices B(I,J) as similar as possible to an ideal bi-cluster, i.e. sub-matrices
B(I,J) which minimize a specific objective function. The so-called H-score
measures the deviation of the selected elements from an ideal bi-cluster (Cheng
& Church (2000)). In our case, we define the H-score of a sub-matrix B(I,J)
as

H(I,J) =
1

|I||J| ∑i∈I
∑
j∈J

∥∥ fi j − f 0
i j

∥∥2
L2

with f 0
i j(t) = µ(t) + aαi(t) + bβ j(t) being the template function of the bi-

cluster, where (a,b), µ,αi and β j are defined as in Definition 0.1.
Notice that, the definition just mentioned above can be generalised also in the
multivariate case, e.g. dealing with data matrices A whose entries are multi-
variate functional data fi jfi jfi j = ( f 1

i j, ..., f P
i j) with one-dimensional domain and a P-

dimensional codomain with P≥ 1. In this case, the definition of ideal bi-cluster
is re-defined in way such that each element of the bi-cluster can be expressed
on each p-dimension, with p ∈ {1, ...,P}, as in Definition 0.1. Consistently, a
measure of goodness of the bi-cluster can be trivially evaluated by estimating
the H-score of a sub-matrix B(I,J) as the average value of the single H-score
on each p-dimension. In both uni-variate and multivariate functional cases,
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the implemented algorithm starts considering the whole dataset and try to find
the biggest bi-cluster with a H-score value lower then a given threshold δ by
adding/removing rows/columns. Each time a row/column is added/removed,
the H-score is updated. For more details about the steps of the algorithm and
the choice of the treshold parameter δ see Galvani et al. (2021) and Torti et al.
(2021).

To bi-cluster a data matrix whose entries are functions possibly taking val-
ues in a multidimensional space, a bi-clustering technique - called Functional
Cheng and Church (FunCC) - is developed. The presented approach is non
parametric, thus no assumptions are made on the distribution generating the
data, and very flexible, allowing to discover non-exhaustive and different bi-
clusters depending on the problem at hand. During the presentation of this
contribution, we will show the performance of the developed methodology
both on simulated data and on real case studies stimulated by challenging re-
search questions related to mobility infrastructures.
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data. The objects to cluster are observed on a dependent character and on a set of
explanatory variables. A dependence relation is then assumed, which can be improved
by considering local structures among the data. The proposed algorithm is based on
the K-means clustering algorithm: the centroids of the clusters are linear regression
models and the objects are assigned to the clusters according to minimum sum of
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for distributional variables and on a K-means algorithm developed for similar data;
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1 Introduction

In this paper we propose a cluster-wise regression strategy for distributional-
valued data. Clusterwise Regression (CR) methods aim at identifying both the
partition of a set of data in a fixed number of clusters and regression models
as representative elements of the clusters. A pioneering paper for the search of
local models for clustered data is the Typological Principal Component Anal-
ysis (Diday, 1974). It carries out K sub-spaces of maximal inertia assigning
elements to the clusters according to the minimum distances from the local
factorial planes, until the convergence to a stable partition and to K final sub-
spaces. Späth (Späth, 1979, Späth, 1991) introduced a criterion for partition-
ing a set of objects into K classes establishing a regression model within each
class. Preda & Saporta, 2005 use PLS regression for solving an ill-posed prob-
lem in clusterwise regression. Morever, DeSarbo & Cron, 1988, Hennig, 2000
proposed mixture-model-based clusterwise regression. They assume that the
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response variable estimations, related to the clusters, are obtained as mixtures
of K conditional density distributions.

In this framework, we propose a Cluster-wise Regression method for Dis-
tributional data (CRD). The latter are a particular kind of multi-valued Sym-
bolic Data, like: intervals, multi-categoricals, histograms or continue distribu-
tions (Bock & Diday, 2000). Many exploratory statistical methods have been
extended to such data, especially considering them as suitable aggregated data.
These are assuming more and more relevance for the treatment of high dimen-
sional data. Among the methods proposed in Symbolic Data Analysis context,
a CR method for interval data was presented by De Carvalho et al., 2010. It
performs a double regression on the centers and on the radii of the intervals,
recalling a suitable strategy for interval data analysis. Recently De Carvalho
et al., 2021 have developed a non linear clusterwise regression which extends
the previous proposal. A prediction model based on CR for data aggregated as
empirical distributions was proposed by Suresh et al., 2020.

Our method aims at clustering distributional-valued data in K clusters ac-
cording to a local dependence structure between distributional variables. Con-
sistently with the K-means algorithm the centroids of the clusters are expressed
as ordinary least squares (OLS) regression models and the objects are assigned
to the clusters assuming as criterion the minimum increasing of sum of the
squared errors. Related to the type of variables, the generalised CR algorithm
is based on a linear regression model (Irpino & Verde, 2015) and on a K-means
algorithm (Irpino & Verde, 2007) for distributional data; both these methods
use the L2 Wasserstein distance (Wasserstein, 1969) as measure of distance be-
tween distributions. Moreover, we propose to determine the optimal number
of clusters K according to a criterion of global best fitting of the cluster regres-
sion models. In the same way, a selection of the best explanatory variables, for
each cluster regression model, is carried out in order to improve the prediction
of the dependent variable in each cluster. The final achieved cluster regression
models are evaluated using root-mean-square error (RMSE), goodness of fit
R2 index and the Pseudo-R2 index. For sake of brevity, we have omitted some
promising results obtained on real and synthetic distributional data sets.

2 Clusterwise Regression for Distributional-valued data (CRD)

Let W = {w1, . . . ,wN} be a set of N objects described by p+1 distributional-
valued variables. We assume that one of the p+ 1 distributional-valued vari-
ables, denoted by Y , is a dependent variable from the p explanatory variable
Xj ( j = 1, . . . , p). Each object wi (1 ≤ i ≤ N) is represented by p+1 distribu-

tions (or distributional-valued data): f y
i , f x

i j ( j = 1, . . . ,P). The CRD method
looks for clustering the data set W into K clusters according to the best fitting
regression model for each cluster. The regression model used to fit clustering
distributional data was introduced by Irpino & Verde, 2015, as follows:

yi(t) = β0 +
p

∑
j=1

β j x̄i j +
p

∑
j=1

γ jxc
i j(t)+ ei(t), ∀t ∈ [0,1] (1)

where: β0 is the constant, β j are the coefficients associated with the vectors of
the averages x̄i j of each distribution fi j; γ j are the coefficients of the centred
quantile functions xc

i j ( j = 1, . . . , p).
The Sum of Square Errors function (SSE), like in LS method, is computed

using the L2 Wasserstein distance.
Fixed the number K of clusters, CR algorithm seeks the better partition Pk =
{C1, . . . ,CK} and the best fitting models ŷk for each cluster Ck by minimising:

SSE(βk
0,β

k
j,γ

k
j|Pk) =

K

∑
k=1

∑
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1∫

0

[yk
i (t)− (βk

0 +
p

∑
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βk
jx̄i j +

p
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jx

c
i j(t))]

2dt (2)

An element wi is assigned to a cluster Ck according to the minimum squared
distance ê2

ik from the estimated regression model ŷk:

mink : ê2
ik =

1∫
0
[yi(t)− (β̂k

0 +
p
∑
j=1

β̂k
jx̄i j +

p
∑
j=1

γ̂k
jx

c
i j(t))]

2dt (3)

The convergence of the algorithm is guaranteed by the criterion decreasing
related to the improvement of the best fitting of the cluster regression models.

We consider two indexes to evaluate the goodness of fit of the clusterwise
regressions: the Ω index proposed by Dias & Brito, 2015, and the RMSEW
(Root Mean Square Error, according to the L2 Wasserstein distance), computed
for each cluster (denoted as Ωk and RMSEW (Ck)), and the total RMSEW (Pk) for
the entire partition Pk. To determine the best number K of clusters of the par-
tition Pk, we consider the Root Mean Square Error RMSEW (Pk) as a measure
of total within variability of the clusters. According to the elbow method, we
choose the number of clusters such that adding another cluster does not lead to
an important decrease of the total RMSEW (Pk). Finally, a forward selection of
the explanatory variables allows of defining the best cluster regression models
as well as the variables which affect the prediction of the response variable the
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response variable estimations, related to the clusters, are obtained as mixtures
of K conditional density distributions.

In this framework, we propose a Cluster-wise Regression method for Dis-
tributional data (CRD). The latter are a particular kind of multi-valued Sym-
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sional data. Among the methods proposed in Symbolic Data Analysis context,
a CR method for interval data was presented by De Carvalho et al., 2010. It
performs a double regression on the centers and on the radii of the intervals,
recalling a suitable strategy for interval data analysis. Recently De Carvalho
et al., 2021 have developed a non linear clusterwise regression which extends
the previous proposal. A prediction model based on CR for data aggregated as
empirical distributions was proposed by Suresh et al., 2020.

Our method aims at clustering distributional-valued data in K clusters ac-
cording to a local dependence structure between distributional variables. Con-
sistently with the K-means algorithm the centroids of the clusters are expressed
as ordinary least squares (OLS) regression models and the objects are assigned
to the clusters assuming as criterion the minimum increasing of sum of the
squared errors. Related to the type of variables, the generalised CR algorithm
is based on a linear regression model (Irpino & Verde, 2015) and on a K-means
algorithm (Irpino & Verde, 2007) for distributional data; both these methods
use the L2 Wasserstein distance (Wasserstein, 1969) as measure of distance be-
tween distributions. Moreover, we propose to determine the optimal number
of clusters K according to a criterion of global best fitting of the cluster regres-
sion models. In the same way, a selection of the best explanatory variables, for
each cluster regression model, is carried out in order to improve the prediction
of the dependent variable in each cluster. The final achieved cluster regression
models are evaluated using root-mean-square error (RMSE), goodness of fit
R2 index and the Pseudo-R2 index. For sake of brevity, we have omitted some
promising results obtained on real and synthetic distributional data sets.

2 Clusterwise Regression for Distributional-valued data (CRD)

Let W = {w1, . . . ,wN} be a set of N objects described by p+1 distributional-
valued variables. We assume that one of the p+ 1 distributional-valued vari-
ables, denoted by Y , is a dependent variable from the p explanatory variable
Xj ( j = 1, . . . , p). Each object wi (1 ≤ i ≤ N) is represented by p+1 distribu-

tions (or distributional-valued data): f y
i , f x

i j ( j = 1, . . . ,P). The CRD method
looks for clustering the data set W into K clusters according to the best fitting
regression model for each cluster. The regression model used to fit clustering
distributional data was introduced by Irpino & Verde, 2015, as follows:

yi(t) = β0 +
p

∑
j=1

β j x̄i j +
p

∑
j=1

γ jxc
i j(t)+ ei(t), ∀t ∈ [0,1] (1)

where: β0 is the constant, β j are the coefficients associated with the vectors of
the averages x̄i j of each distribution fi j; γ j are the coefficients of the centred
quantile functions xc

i j ( j = 1, . . . , p).
The Sum of Square Errors function (SSE), like in LS method, is computed

using the L2 Wasserstein distance.
Fixed the number K of clusters, CR algorithm seeks the better partition Pk =
{C1, . . . ,CK} and the best fitting models ŷk for each cluster Ck by minimising:
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0,β
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[yk
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p
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p

∑
j=1

γk
jx

c
i j(t))]

2dt (2)

An element wi is assigned to a cluster Ck according to the minimum squared
distance ê2

ik from the estimated regression model ŷk:

mink : ê2
ik =

1∫
0
[yi(t)− (β̂k

0 +
p
∑
j=1

β̂k
jx̄i j +

p
∑
j=1

γ̂k
jx

c
i j(t))]

2dt (3)

The convergence of the algorithm is guaranteed by the criterion decreasing
related to the improvement of the best fitting of the cluster regression models.

We consider two indexes to evaluate the goodness of fit of the clusterwise
regressions: the Ω index proposed by Dias & Brito, 2015, and the RMSEW
(Root Mean Square Error, according to the L2 Wasserstein distance), computed
for each cluster (denoted as Ωk and RMSEW (Ck)), and the total RMSEW (Pk) for
the entire partition Pk. To determine the best number K of clusters of the par-
tition Pk, we consider the Root Mean Square Error RMSEW (Pk) as a measure
of total within variability of the clusters. According to the elbow method, we
choose the number of clusters such that adding another cluster does not lead to
an important decrease of the total RMSEW (Pk). Finally, a forward selection of
the explanatory variables allows of defining the best cluster regression models
as well as the variables which affect the prediction of the response variable the
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most. It is worth noticing that the regression models can differ in the impor-
tance of the predictors from one cluster to another. The more different are the
estimated cluster regression models the more the linear relations in the clusters
of the partition are different for distinct observed data subsets
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SIO C.F. 2021. A clusterwise nonlinear regression algorithm for interval-
valued data. Information Sciences, 555, 357–385.

DESARBO, W.S., & CRON, W.L. 1988. A maximum likelihood methodology
for clusterwise linear regression. Journal of Classification, 5, 249–282.

DIAS, S., & BRITO, P. 2015. Linear regression model with histogram-valued
variables. Statistical Analysis and Data Mining, 8(2), 75–113.
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SPÄTH, H. 1991. Agorithm 48: A fast algorithm for clusterwise linear regres-

sion. Computing.
SURESH, N., BRITO, P., & DIAS, S. 2020. Prediction of pollution levels from

atmospheric variables A study using clusterwise symbolic regression. In:
Proc. RECPAD’20.

WASSERSTEIN, L. 1969. Markov processes over denumerable products of
spaces describing large systems of automata. rob. Inf. Transm., 5, 47–52.

A MACHINE LEARNING APPROACH FOR EVALUATING 
ANXIETY IN NEUROSURGICAL PATIENTS DURING THE 

COVID-19 PANDEMIC 

Vezzoli M.1, Doglietto F.2, Renzetti S.1, Fontanella M.M.2, Calza S.1 

1 Department of Molecular and Translational Medicine, University of Brescia, 
(e-mail: marika.vezzoli@unibs.it, stefano.renzetti@unibs.it, 
stefano.calza@unibs.it) 
2 Neurosurgery, Department of Medical and Surgical Specialties, Radiological Sciences and Public 
Health, University of Brescia, 

(e-mail: francesco.doglietto@unibs.it, marco.fontanella@unibs.it) 

ABSTRACT: In 2020, the COVID-19 pandemic has forced many countries into lockdown 
postponing nonurgent neurosurgical procedures. After the lockdown, neurosurgical patients 
admitted to eastern Lombardy hospitals, filled pre- and postoperative questionnaires which 
measured anxiety (State Anxiety Inventory) related to COVID-19, and safety perception during 
hospital admission. These data were merged with information on age, sex, primary pathology, 
and time on surgical waiting list. By means of Random Forest, Variable importance measure 
and Partial Dependence Plots, we identified which variables had a strong impact on anxiety, 
and safety perception. Results highlighted that worry about positivity to SARS-CoV-2 was 
associated with anxiety. Bed distance and hand sanitizer were associated with a feeling of 
safety. 

KEYWORDS: COVID-19, random forest, variable importance measure, partial dependence plot 

1 Introduction 

In 2020, the COVID-19 pandemic forced Italy and many other countries over the 
world into lockdown. In that period, in Lombardy nonurgent neurosurgical procedures 
were rescheduled from the end of May 2020. 
Although stress and anxiety during the COVID-19 pandemic is being investigated in 
general population (Gasteiger, 2021), no studies investigated anxiety in patients 
whose neurosurgery has been postponed. 
The aim of this study was to investigate anxiety in neurosurgical patients undergoing 
nonurgent surgical procedures in the post-lockdown phase of the COVID-19 
pandemic. Moreover, we inspected safety perception from SARS-CoV-2 infection 
during hospitalization. Data of various nature (qualitative and quantitative), including 
state anxiety, were collected in hospitals mainly located in eastern Lombardy, an area 
in Italy extremely affected by COVID-19. Since during COVID-19 period the 
percentage of anxious patients that must undergo surgery is 25%, the study will 
require 100 patients for estimating the expected proportion with 8.5% accuracy (95% 
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CI). The study was approved by the local ethics committee (Study n. 4290; COVID-
SAFENSG). 

2 Methods 

2.1 Inclusion criteria, questionnaires and clinical Data 

Inclusion criteria for the study were: adult patients (>18) undergoing nonurgent 
neurosurgical procedures who consented to study participation. Each patient filled in 
3 questionnaires: 2 before surgery and 1 after. The first questionnaire collected 
demographic data (age, sex, and highest academic degree), days of postponement of 
the surgery, fear related to disease, COVID-19 and hospitalization (measured on a 
Likert scale from 1 (not at all) to 10 (very)). 
The second questionnaire, widely used and validated in many languages, was the State 
Anxiety Inventory (STAI-State) (Spielberger, 2010), which contains 20 questions on 
a 4-point Likert scale. It measures the latent constructs of state anxiety related to an 
event in a specific moment, such as a surgical procedure. Each item belonging to this 
questionnaire has a range from a minimum of 1 to a maximum of 4 points, hence the 
score ranges from a minimum of 20 to a maximum of 80. In detail:  
• 20 ≤ STAI-State score < 48: Normal 
• 48 ≤ STAI-State score ≤ 52: Mild 
• 52 < STAI-State score ≤ 80: Severe 
The last questionnaire collected patients’ impressions (Likert scales from 1 (not at all) 
to 10 (very)) on safety from SARS-CoV-2 infection during hospitalization. First and 
third questionnaires were tested at the beginning of June 2020 on an external and 
independent sample of 30 subjects in order to improve the questions’ semantics and 
their comprehension. Answers were collected with REDCap, a secure web application 
for building and managing online surveys and databases. Clinical data, provided by 
the neurosurgeon in charge of the patient, included among others, prolongation of time 
on the waiting list and postponement of hospital admission. 

2.2 Machine learning approach 

Two different models were used to identify which covariates (X) have the greatest 
impact on the outcomes (Y1 and Y2 which are ordinal variables). Since variables were 
qualitative and quantitative, mostly asymmetrical, and related to Y by nonlinear 
relationships, the Random Forest (RF; Breiman, 2001) was applied, and, for each 
model, 10,000 regression trees were grown. In detail: 
1. RF1: STAI-State (Y1) was modeled to investigate which concerns (Table 1, 

column 1), in the preoperative questionnaire, have a primary role on it.  
2. RF2: The question “How much did you feel protected from the risk of being 

infected with Coronavirus during your hospital admission in Neurosurgery?” 
(Y2), collected on a Likert scale from 1 (not at all) to 10 (very), was modeled 
using items in the post-operative questionnaire (Table 1, column 2). 
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3 Results and discussion 

After exclusion of 11 patients due to significant missing data, 123 subjects (M/F, 
64/59; mean age 60.28 (SD=15.08) years were included in the study, for 114 variables. 
Modeling state anxiety (STAI-State, RF1 in Fig. 2 on the left), the patients’ condition 
was significantly associated with the worry of being positive for SARS-CoV-2. This 
was the first variable identified by VIM, followed by intuitive ones such as the 
concern for the primary pathology, surgery, and worsening of their condition, as well 
as waiting time. In fact, hospital admission to neurosurgery was postponed in mean 
of 49.72 days and it was due to organizational issues (83%) or, rarely, for positivity 
to SARS-CoV-2 (1.6%). Our data confirm that psychological support should be 
enhanced during outbreaks, possibly using novel solutions to provide follow-up care 
remotely during waiting times.  
This study also investigated the feeling of safety conveyed by different features that 
were activated in all Italian hospitals during the pandemic (RF2, in Fig. 2 on the right). 
Interestingly, the increased distance between surgical beds was the first factor 
associated with a feeling of safety from SARS-CoV-2, followed by the availability of 
hand sanitizers. These data might be interpreted as a result of the ongoing social media 
communication on the importance of social distancing; we believe they might be 
important for hospital managers and to optimize communication with patients during 
this pandemic. 

Figure 2: Results from RF1 and RF2 
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ABSTRACT: In many applications placing interest on large observations, usual
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value theory to predict an unobserved component of a random vector given
large observed values of the rest. This is achieved through the estimation of
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the model used for the angular measure is flexible enough to capture complex
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ABSTRACT: The purpose of this study is to explore how the multimode network ap-
proach can be used to analyse network patterns derived from student mobility flows.
We define a tripartite network based on a three-mode data structure, consisting of Ital-
ian provinces of residence, universities and fields of study, with student exchanges
representing the links between them. A comparison of algorithms for detecting com-
munities from tripartite networks based on modularity optimization is provided, re-
vealing relevant information about the phenomenon under analysis over time. The
findings are applied to a real dataset containing micro-level longitudinal information
on Italian university students’ careers.
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1 Introduction

The analysis of intra- and international student mobility has become a vibrant
research field in migration literature and a key concern for national policy-
making on tertiary education systems (Van Mol & Timmerman, 2014; Riaño
et al., 2018). Usually, European mobility in higher education is described
by considering the dynamics of the Erasmus programme. From a national
perspective, Italian student mobility from high school to bachelor and master
degrees is analysed as a crucial step in determining future migration choices.
Such analysis shows an unbalanced migration of students from the southern to
the northern regions of the country (Genova et al., 2019), which is influenced
by the attractiveness of universities, related to the socio-economic characteris-
tics and the job market opportunities in the geographic areas where they are lo-
cated (Giambona et al., 2017; Impicciatore & Panichella, 2019). Given the na-

ture of the student mobility data (i.e. flows of students connecting provinces of
residence and universities of destination), network analysis has been adopted
as one of the most appropriate methodological approach to interpret this phe-
nomenon (Santelli et al., 2019; Genova et al., 2019; Columbu et al., 2021).
Based on this theoretical framework and the intrinsic complexity of student
mobility flows, this study analyses the data at hand using the framework of
multimode networks (Fararo & Doreian, 1984). More specifically, we define
a tripartite network based on a three-mode data structure, consisting of Italian
provinces of residence, universities and fields of study, with student exchanges
representing the links between them. A comparison of algorithms for detect-
ing communities from tripartite networks or k-partite modularity (Neubauer &
Obermayer, 2009; Ikematsu & Murata, 2013; Melamed et al., 2013; Ignatov
et al., 2017; Feng et al., 2019), mainly based on modularity optimisation, is ap-
plied to reveal relevant information about the phenomenon under analysis. The
algorithms are applied to the MOBYSU.IT dataset which contains micro-level
longitudinal information on university students’ careers from 2008 to 2017 in
Italy.∗

2 Community detection algorithms in tripartite networks

Many real-world networks have a natural multimode network structure in which
vertices of different types are linked together. Without reducing generalisabil-
ity, in the case of tripartite networks, three types of vertices are defined and
links can be present only between vertices of distinct types (Fararo & Doreian,
1984). Several approaches can be pursued to disentangle the inherent com-
plexity of such kinds of data. Recently, Everett & Borgatti (2019) suggested
that, in the case of multimode data, the collection of all bipartite networks
should be examined.
In our case study, a tripartite network is considered in which VP is the set of
provinces of residence of Italian students enrolled in the first academic year
of any bachelor/master degree, VU is the set of public and private universities,
and VF is the set of educational fields of study. The tripartite network T can
be defined as consisting of a pair (V ,E ), being V = {VP,VU ,VF} the col-
lection of three sets of vertices, one for each mode, and being E = {EPUF},
EPUF ⊆ VP ×VU ×VF , with EPP,EUU ,EFF = /0, the collection of links among

∗This study was supported by the Italian Ministerial grant PRIN 2017 ‘From high school to
job placement: micro-data life course analysis of university student mobility and its impact on
the Italian North-South divide’, n. 2017HBTK5P - CUP B78D19000180001.
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the vertices belonging to the three modes. Given T , a unique supra-adjacency
matrix � could be defined by combining the sociomatrices in a block matrix
APU , AUF , and APF , where the links are the number of students enrolled, and
the corresponding bipartite networks are weighted. Thus, the related supra-
adjacency matrix is:

�=




0 APU APF
AT

PU 0 AUF
AT

PF AT
UF 0


 .

Over the past two decades, a growing number of studies have been devoted
to community detection algorithmic solutions in tripartite graphs. The first and
simplest proposed method consists of applying on the matrix �, or on its ver-
sion built up after matrices’ transformation, the usual community detection
algorithms (Melamed et al., 2013; Everett & Borgatti, 2019). Other methods
adopting an optimisation of tripartite networks (Neubauer & Obermayer, 2009;
Ikematsu & Murata, 2013), extending the idea of bipartite modularity.
Given the nature of our data, the approaches which maximise the bipartite
modularity seem more appropriate. A detailed comparison of proposed algo-
rithms could be of interest in understanding how tripartite community detec-
tion can be used to interpret the network patterns underlying the Italian student
mobility phenomenon.
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ABSTRACT: When predicting a response variable from a set of covariates, the or-
dinary least squares estimator (OLS) provides the best in-sample risk but with lim-
ited out-of-sample guarantees. Conversely, the causal parameters provide the best
out-of-sample guarantees but the worst in-sample risk. Based on the causal Dantzig
and Anchor Regression, we develop a causal regularization approach that interpo-
lates between then the OLS and the causal Dantzig solutions. As the regularization
is increased, we prove that causal regularization provides a solution that has better
out-of-sample risk guarantees at the cost of increasing the in-sample risk. Moreover,
we provide an efficient algorithm to recover the regularized solution for every tuning
parameter.

KEYWORDS: causal regularization, causal Dantzig, anchor regression, out-of-sample
risk.

1 Introduction

We will consider a causal graphical model, for example expressed by Figure 1a
(Pearl, 2009). As we are interested in uncovering the causal structure involving
a particular target variable Y , in particular, in identifying the causal parents of
Y and the associated causal parameters βPA.

Besides having access to observational data on the system, we will also
assume that we have data on the some intervened version of the same sys-
tem. We will refer to such intervened system as an environment. Formally,
given a causal DAG D, such as in Figure 1a, for a probability distribution P
over random variables (X ,Y ). The tuple (D,Pe,Xe,Y e,Ae) for e ∈ ε is called
an environment, where Ae is the set of shift-intervention variables in De, the
extended intervention graph of D for environment e, such as for example in
Figure 1b.

For simplicity, we focus on a particular structure of the distribution P, de-
scribed by means of a linear structural equation model (SEM), also known as
linear structural causal model. In particular, for e ∈ ε, let the distribution Pe of

X1 X2
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X4

X3

X1 X2

Y

X4

X3

A

(a) (b)

Figure 1. (a) Causal directed acyclic graph D associated with a causal graphical
model. (b) An extended intervention graph De associated with this causal GM.

(Xe,Y e,Ae) be determined by the solution of the system
[

Y e

Xe

]
= B︸︷︷︸

unknown
constant
structure

·
[

Y e

Xe

]
+ εe︸︷︷︸

noise

+ Ae︸︷︷︸
shift

intervention

(1)

where B ∈ R(p+1)×(p+1) is a constant matrix, and Xe ∈ Rp, Y e ∈ R, ε ∈ Rp+1

and Ae ∈ Rp+1 are random vectors. We require AeY ≡ 0, i.e., Ae =

[
0

AeX

]
,

that the target variable is not intervened on. Interventions and noise vari-
ables must be uncorrelated, Cor[Ae,εe] = 0, and have finite second moments
E[AeAeT ] < ∞ and Cor[εe] < ∞. Furthermore, εe is assumed to have zero-
mean, i.e. E[εe] = 0. Additionally, the noise random variables are assumed to
be identically distributed across environments, i.e., εe ∼ ζ. Moreover, for the
distribution to be well defined, we ask for the existence of (I −B)−1 so that[

Y e

Xe

]
= (I −B)−1(εe +Ae). This is guaranteed if the underlying graph D is a

directed acyclic graph.
Given that the structure B is fixed across environments, we can talk about

XS ⊆ X being a descendant or ancestor of Y without referring to the environ-
mental variables Y e and Xe. Moreover, since we are interested is estimating
the structural equation corresponding to Y e, it is useful to split B into

B =

[
0 βT

PA
βCH Bx

]
(2)
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Consequently, the structural equation of Y e would be

Y e = βT
PAXe + εe

Y (3)

where βPA are called the causal parameters since they are non-zero only for
Xe

pa(Y ). In the SEM context, the components of Ae are called shift-interventions
or interventions. If AeXi �≡ 0 for i ∈ {1, . . . , p}, we say that Xi is intervened.
Thus, note that assuming AeY ≡ 0 means that no interventions is performed on
the target, which is the equivalent of assuming E �∈ pa(Y ). When Ae ≡ 0, the
environment is called observational.

2 Discovering causes from inner-product invariance

Under the SEM in equation (3), the following distribution invariance holds
(Peters et al., 2016) ∀e ∈ ε : Y e −βT

PAXe = εe
Y ∼ ζ, which we call residual in-

variance. Furthermore, by left multiplying with Xe and taking the expectation,
we obtain,

∀e ∈ ε : E[Xe(Y e −βT
PAXe)] = PX(I −B)−1(E[εeεe

Y ]+E[Aeεe
Y ])

= PX(I −B)−1Cor[ζ,ζY ] constant over e

which yields inner-product invariance. By taking the difference between the
expected inner-product of an interventional environment (Xe,Y e) and an ob-
servational one (Xo,Y o), we obtain

E[Z −GβPA] = E[Z]−E[G]βPA = 0 (4)

where Z = XeY e−XoY o and G = XeXeT −XoXoT . Since ||α||∞ = 0 ⇐⇒ α =
0, we get ||E[Z]−E[G]βPA||∞ = 0. Thus, equation (4) gives a plausible method
for identifying βPA without having search over all possible subsets of X . That
is, to solve the following linear regression problem,

βCS ∈ arg min
β∈Rp

||E[Z]−E[G]β||∞, (5)

which is referred to as the unregularized causal Dantzig problem (Rothenhäusler
et al., 2019). Although βPA is a solution, depending on the rank of E[G], the
solution βCS may not be unique. We call Rinv(β) = ||E[Z −Gβ]||∞ the invari-
ance risk for β. Let Re(β) = E[(Y e − βT Xe)] be the risk in environment e
and Rpred(β) = Re(β)+Ro(β) the pooled risk of the in-sample environments,
then we remind the reader that the OLS problem minimizes the in-sample risk
βOLS ∈ argminβ∈Rp Rpred(β).

3 Causal regularization

We define causal regularization as an estimator that provides the best possible
in-sample risk for a certain out-of-sample risk guarantee, as follows:

βCR(t) = arg min
β∈Rp

Rpred(β) such that Rinv(β)≤ t (6)

Note that for t → ∞ we recover the OLS solution βOLS, whereas for t → 0 we
obtain the Causal Dantzig solution βCS.

Given the in-sample shift environment (Xe,Y e,Ae), we define a set of envi-
ronments Cγ such that their interventions only differ in magnitude to the ones
contained in the in-sample environment e,

Cγ = { f ∈ ε : E[A f A f T ]� γE[AeAeT ]}.

The causal regularizer has strong out-of-sample risk guarantees within Gγ.
Theorem. Causal regularization out-of-sample risk guarantees
For any CR estimator β ∈ βCR(t), we have the following risk bound

sup
f∈C1+τ

R f (β)≤ Rpred(β)+ τt||βPA −β||1, (7)

in particular, ∀β ∈ βCR(t) : sup f∈C1+1/t
R f (β)≤ Rpred(β)+ ||βPA −β||1︸ ︷︷ ︸

Constant

.

The theorem tells us that if we expect out-of-sample environments to have
interventions that are τ times stronger than in the in-sample environment e,
then setting t = τ−1 would provide an estimator that guarantees a bounded risk
on such environments. In other words, β∈ βCR(t) guarantees a bounded out-of-
sample risk for environments in C1+1/t . Particularly, βCS provides a bounded
out-of-sample risk for the biggest set of environments, i.e., C∞, while βOLS
guarantees a bounded out-of-sample risk for environments whose interventions
are at most as strong as the intervention present in environment e, i.e., C1.
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ABSTRACT: This paper proposes a model selection procedure to identify the number
of clusters and hidden states in discrete Mixture Hidden Markov models (MHMMs).
The model selection is based on a step-wise approach that uses, as score, information
criteria and an entropy criterion. By means of a simulation study, we show that our
procedure performs better than classical model selection methods in identifying the
correct number of clusters and hidden states or an approximation of them.

KEYWORDS: model selection, clusters, hidden states, entropy-based scores, informa-
tion criteria

1 Introduction

In many research fields, we deal with data whose independent units present one
or more categorical sequences that represent the evolution of a specific feature
over time (longitudinal data). Thus, it is necessary to define suitable meth-
ods capable of modelling an evolving process by describing some unknown
variables that influence the observed sequences. Latent class models such as
MHMMs can be used to analyse longitudinal data under the assumptions that
(i) the sequences follows a latent Markov process and that (ii) the popula-
tion is heterogeneous (Vermunt et al., 2008; Bartolucci & Pandolfi, 2015).
These models present two latent levels: one related to the hidden states of the
discrete-time Markov chain and one representing the population’s subgroups.
The identification of the number of clusters and hidden states can be achieved,
according to the literature on Mixture and Hidden Markov models, by fitting
different models to the data and then selecting the model by using the results of
information criteria (IC) such as AIC and BIC or classification criteria based
on entropy (Dias et al., 2009; Crayen et al., 2012). However, these criteria tend
to underestimate or overestimate these numbers (Wang & Chan, 2011). Here,
we define a model selection procedure that combines IC and an entropy crite-
rion to balance their limitations. Performing a simulation study, we show that
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the proposed procedure exhibits promising results compared to the classical
techniques.

2 Mixture Hidden Markov models

Let Yi =(Yi1,Yi2, . . . ,YiT ) be the generic i-th sequence of length T with card|Yi|=
R, Ui = (Ui1,Ui2, . . . ,UiT ) the i-th hidden random vector with card|Ui|= S and
assume n independent sequences. Let M = {M1,M2, . . . ,MK} be a set of Hid-
den Markov Models, where Θk = {πk,Ak,Bk} is the set of parameters for each
sub-models Mk, related to each sub-population k = 1, . . . ,K. For each sequence
Yi, we define the prior cluster probabilities that the model parameters are the
ones related to the k-th sub-model Mk as P(Mk) = wk. Then, the log-likelihood
is

�(Θ;Y ) =
n

∑
i=1

logP(Yi|Θ) =
n

∑
i=1

log

(
K

∑
k=1

wik ∑
u

πk
u1

bk
u1
(yi1)

T

∏
t=2

ak
ut−1,ut

bk
ut
(yit)

)
,

(1)
where the hidden state sequences u = (u1,u2, . . . ,uT ) take all possible com-
binations of values in the hidden state space S and where yit are the obser-
vations of subject i at time t, πk

u1
= P(u1 = s|Θk) with s ∈ {1, . . . ,Sk} is the

initial probability of the hidden state at time t = 1 in sequence u for cluster
k; ak

ut−1,ut
= P(ut = j|ut−1 = i,Θk) with i, j ∈ {1, . . . ,S} is the transition prob-

ability from the hidden state at time t − 1 to the hidden state at t in cluster
k; and bk

ut
(yit) = P(yit = r|ut = s,Θk) with s ∈ {1, . . . ,S} and r ∈ {1, . . . ,R}

is the probability that the hidden state of subject i at time t emits the ob-
served state at t in cluster k. Parameters can be estimated by means of the
Expectation-Maximization; and the log-likelihood is calculated by using the
forward-backward algorithm.

3 Proposed model selection procedure

Our proposed procedure combines IC and entropy for identifying MHMMs
models on the basis of both goodness-of-fit and degree of class separation.
Hence, the procedure consists of two stages. Firstly, we estimate models with
different number of clusters and states, for each model the IC value is calcu-
lated and the models having these values below a predetermined threshold (the
mean of the IC) are selected. At the second stage, an entropy criterion is used
to identify among the models selected at the first-stage the one with the best
degree of separation between classes (clusters and states). At the second stage,

when dealing with MHMMs, it is necessary to define a criterion that takes into
account two levels of entropy: the first En1(S) relating to the classification of
observations in latent states and the second En2(K) concerning the degree of
separation between clusters.

Enew(S,K) = 1− 1
2n

[
En1(S)
T logS

+
En2(K)

logK

]
(2)

where

En1(S) =
n
∑

i=1

T
∑

t=1

K
∑

k=1

Sk

∑
s=1

P(uit = s|Yi,Mk) logP(uit = s|Yi,Mk),

En2(K) =
n
∑

i=1

K
∑

k=1
P(Mk|Yi) logP(Mk|Yi).

P(Mk|Yi) is the posterior probability that the given i-th observed sequence
has been generated by the k-th model; P(uit = s|Yi,Mk) is the posterior prob-
ability that the t-th element in the i-th hidden sequence takes the s-th hidden
states given the observed sequence Yi and that the sequence has been generated
by the model related to the k-th cluster. The S = ∑K

k=1 Sk is the total number of
hidden states in all the K clusters. Enew takes value from 0 to 1. Values close
to 1 are related to low entropy and a good degree of class separation, values
close to 0 are related to a high entropy level and unreliable classification.

4 Simulation study

We compare our procedure of modeling selection to other methods such as
AIC, BIC, sample-size adjusted BIC (ssBIC) through a Monte Carlo simu-
lation study. We define 24 scenarios considering 4 models having different
number of clusters K and latent states (S1,S2, . . . ,SK), by varying the number
of sequences n ∈ {200,2000} and the state-dependent conditional probabili-
ties bk

ut
(yit) to represent low, medium, and high levels of uncertainty in hidden

states classification of observations. We generate 100 longitudinal datasets for
each scenario for a total of 2400 datasets, the analysis is carried out by using
the R package “seqHMM” (Helske & Helske, 2017). In Table 1 we report
methods’ success rate for n = 2000, where success means identifying a model
having the correct number of clusters K, and number of hidden states equal
to the exact number or one from this number. The last column report the re-
sults of our procedure considering the AIC as the IC used at the first stage as
it showed better results than other IC.
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classification
uncertainty (S1,S2, . . . ,SK) BIC AIC ssBIC Enew Our Procedure

LOW

(2,3) 1.00 - 0.91 (0.029) 0.96 (0.020) 0.85 (0.036) 0.85 (0.036)
(2,2,3) 0.62 (0.048) 0.40 (0.049) 0.58 (0.049) 0.62 (0.048) 0.66 (0.047)
(2,2,3,3) 0.30 (0.046) 0.37 (0.048) 0.34 (0.047) 0.21 (0.041) 0.60 (0.049)
(2,2,3,3,2) 0.19 (0.039) 0.38 (0.048) 0.24 (0.043) 0.19 (0.039) 0.48 (0.050)

MEDIUM

(2,3) 1.00 - 0.86 (0.035) 1.00 - 0.49 (0.050) 0.73 (0.044)
(2,2,3) 0.20 (0.040) 0.40 (0.049) 0.29 (0.045) 0.41 (0.049) 0.59 (0.049)
(2,2,3,3) 0.02 (0.014) 0.35 (0.048) 0.08 (0.027) 0.10 (0.042) 0.53 (0.049)
(2,2,3,3,2) 0.00 (0.000) 0.12 (0.032) 0.00 (0.000) 0.29 (0.045) 0.31 (0.046)

HIGH

(2,3) 1.00 - 0.58 (0.049) 1.00 - 0.46 (0.050) 0.62 (0.048)
(2,2,3) 0.10 (0.030) 0.40 (0.049) 0.14 (0.035) 0.42 (0.049) 0.59 (0.049)
(2,2,3,3) 0.00 (0.000) 0.00 (0.000) 0.00 (0.000) 0.10 (0.030) 0.28 (0.045)
(2,2,3,3,2) 0.00 (0.000) 0.00 (0.000) 0.00 (0.000) 0.19 (0.039) 0.25 (0.043)

Table 1: Results of the Monte Carlo study for n = 2000. Low, medium and
high level of uncertainty in hidden states classification scenario

As we can see, the proposed procedure has a better performance than the
classic IC-based model selection methods when the number of clusters is K >
2. We also note how, unlike these methods, it is less affected by an increase in
the uncertainty of hidden states’ classification.
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1 Introduction

Many fields have witnessed the increasing popularity of compositional data
(i.e., vectors representing parts of a whole), which are defined on the D-part
simplex S D =

{
y = (y1, . . . ,yD)

ᵀ : yd > 0,∑D
d=1 yd = 1

}
(Ongaro et al., 2020).

Due to the unit-sum constraint imposed by S D, standard statistical methods
are often unsuitable to deal with compositional data. Several ad-hoc proposals
have been prompted by mapping the simplex into a different (unconstrained)
space, but leaving the simplex often results in interpretative difficulties, espe-
cially when the relationship among variables is of interest. This is particularly
true in the classification context, where methods for compositional data still
present many unsolved issues (Gu & Cui, 2021). In this work, we define a
full mixture of experts model (fmem, Bouveyron et al., 2019) and use it to
implement a supervised classification algorithm for compositional data in the
presence of covariates. Since we adopt a Bayesian approach to inference, we
take advantage of posterior samples to measure the classification uncertainty.

2 Full mixture of experts model

A fmem is a generalization of a finite mixture model with G components where
the mixing weights p and (some of) the component-specific parameters can be
linked to a set of covariates through proper link functions. Since the random
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(2,2,3,3) 0.02 (0.014) 0.35 (0.048) 0.08 (0.027) 0.10 (0.042) 0.53 (0.049)
(2,2,3,3,2) 0.00 (0.000) 0.12 (0.032) 0.00 (0.000) 0.29 (0.045) 0.31 (0.046)

HIGH

(2,3) 1.00 - 0.58 (0.049) 1.00 - 0.46 (0.050) 0.62 (0.048)
(2,2,3) 0.10 (0.030) 0.40 (0.049) 0.14 (0.035) 0.42 (0.049) 0.59 (0.049)
(2,2,3,3) 0.00 (0.000) 0.00 (0.000) 0.00 (0.000) 0.10 (0.030) 0.28 (0.045)
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Table 1: Results of the Monte Carlo study for n = 2000. Low, medium and
high level of uncertainty in hidden states classification scenario

As we can see, the proposed procedure has a better performance than the
classic IC-based model selection methods when the number of clusters is K >
2. We also note how, unlike these methods, it is less affected by an increase in
the uncertainty of hidden states’ classification.
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1 Introduction

Many fields have witnessed the increasing popularity of compositional data
(i.e., vectors representing parts of a whole), which are defined on the D-part
simplex S D =

{
y = (y1, . . . ,yD)

ᵀ : yd > 0,∑D
d=1 yd = 1

}
(Ongaro et al., 2020).

Due to the unit-sum constraint imposed by S D, standard statistical methods
are often unsuitable to deal with compositional data. Several ad-hoc proposals
have been prompted by mapping the simplex into a different (unconstrained)
space, but leaving the simplex often results in interpretative difficulties, espe-
cially when the relationship among variables is of interest. This is particularly
true in the classification context, where methods for compositional data still
present many unsolved issues (Gu & Cui, 2021). In this work, we define a
full mixture of experts model (fmem, Bouveyron et al., 2019) and use it to
implement a supervised classification algorithm for compositional data in the
presence of covariates. Since we adopt a Bayesian approach to inference, we
take advantage of posterior samples to measure the classification uncertainty.

2 Full mixture of experts model

A fmem is a generalization of a finite mixture model with G components where
the mixing weights p and (some of) the component-specific parameters can be
linked to a set of covariates through proper link functions. Since the random
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vector Y belongs to the simplex S D, a mixture with Dirichlet components dis-
playing different means µµµ j ∈ S D ( j = 1, . . . ,G) and a common precision pa-
rameter φ > 0 is a proper choice. Thus, we can define the fmem probability
density function (pdf) as

fY(yi|xi,µµµ(xi),p(xi),φ) =
G

∑
j=1

p j(xi) f D (
yi;µµµ j(xi),φ

)
, i = 1, . . . ,n (1)

where f D (·; ·, ·) is the Dirichlet pdf, p(xi)= (p1(xi), . . . , pG(xi))
ᵀ ∈ S G, µµµ j(xi)∈

S D for any fixed xi, xi is the (K+1)-dimensional vector of covariates, and n is
the sample size. Since both p and µµµ j belong to the simplex, we suggest to take
advantage of the multinomial logit link function, so that:

p j(xi) =
exp

(
xᵀi γγγ j

)

1+∑G−1
r=1 exp

(
xᵀi γγγr

) , µd, j(xi) =
exp

(
xᵀi βββd, j

)

1+∑D−1
r=1 exp

(
xᵀi βββr, j

) ,

( j = 1, . . . ,G;d = 1, . . . ,D), where γγγ j and βββd, j are (K + 1)-dimensional vec-
tors, with γγγG = βββD, j = 0. Although considering a common (and constant) φ
keeps the model simple, one can further generalize the model linking it to
some covariates through a proper link function. Note that the above proposed
approach allows to avoid any transformation of compositional data, so that
regression coefficients deserve an easy and meaningful interpretation.

3 Estimation and classification issues

Let us consider a supervised classification problem, where we want to learn a
classifier on a training set, so that we can assign a label to new observations.
More specifically, suppose we have observed a compositional vector Yi ∈ S D, a
vector of covariates xi, and a discrete variable Si, i = 1, . . . ,n. Si can assume G
different labels, denoted by 1, . . . ,G, and Si = j if the i-th observation belongs
to the j-th group/label. Therefore, Si is the target in the classification task. Our
training set consists in a vector S = (S1, . . . ,Sn)

ᵀ and two matrices Y and X,
with generic i-th row Yi and xi, respectively. Here, the mixture components
represent the G groups encoded by S. This means that we know which mixture
component generated a specific training data point, and thus we can resort to
the complete-data likelihood, which can be written as

LC(ηηη;y,x,s) =

[
G

∏
j=1

∏
i:Si= j

f D (
yi;µµµ j(xi),φ

)]
·

[
G

∏
j=1

∏
i:Si= j

p j(xi)

]
, (2)

where ηηη = (βββ∗
1, . . . ,βββ

∗
D,γγγ∗,φ)ᵀ, and βββ∗

j and γγγ∗ are matrices obtained concate-
nating by row the vectors βββ1, j, . . . ,βββD, j and γγγ1, . . . ,γγγG, respectively. Following
a Bayesian approach to inference, we have to specify a joint prior distribution
for ηηη. We select a multivariate normal with zero mean vector and diagonal co-
variance matrix with “large” values of the variances as non-informative prior
for the regression parameters βββd, j and γγγ j, for any proper choice of d and j.
For the precision parameter φ, we adopt a Gamma(g,g) prior distribution, with
rate parameter g “small” enough to induce a large variability. We simulate
samples from the posterior distribution through the Hamiltonian Monte Carlo
algorithm in the Stan language. Please note that we do not face label switch-
ing problems because we know the true allocations of training observations to
the mixture components. Once we have drawn B samples from the simulated
posterior distribution of ηηη (namely, ηηη(1), . . . ,ηηη(B)), we can use them to classify
a new observation for which we observe only (yu,xu), u > n. Indeed, Bayes’
theorem enables to compute the posterior probability that unit u arises from
group j given its observed value yu and xu, b = 1, . . . ,B, that is:

ẑ(b)u, j = P
(

Su = j|Yu = yu,xu;ηηη(b)
)
=

p(b)j (xu) · f D
(

yu;µµµ(b)j (xu),φ(b)
)

G

∑
l=1

p(b)l (xu) · f D
(

yu;µµµ(b)l (xu),φ(b)
) , (3)

where µµµ(b)j and p(b)j are computed based on ηηη(b). Although a Bayesian clas-
sification rule can be defined by allocating to group j whenever the mean of
the simulated ẑ(b)u, j is the highest ( j = 1, . . . ,G), the purpose of this contribution
is to take advantage of the (simulated) posterior distribution of the probability
of each category to measure the classification uncertainty, as we discuss in the
next section.

4 Application on plants data

We consider an application based on a compositional dataset regarding n= 500
plants (Douma & Weedon, 2019). The composition is defined by the propor-
tion of biomass in roots (RMF), stems (SMF), and leaves (LMF). We aim to
classify the species of a plant (D. flexuosa or H. lanatus, so that G = 2) based
on the biomass composition, as well as two covariates represented by the ni-
trate supply level (high or low), and a measure of the total amount of biomass
(TDM). Since we have neither a validation nor a test set, we use V -fold cross-
validation to assess the performance of the classification rule. Thus, we ran-
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vector Y belongs to the simplex S D, a mixture with Dirichlet components dis-
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variance matrix with “large” values of the variances as non-informative prior
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We consider an application based on a compositional dataset regarding n= 500
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tion of biomass in roots (RMF), stems (SMF), and leaves (LMF). We aim to
classify the species of a plant (D. flexuosa or H. lanatus, so that G = 2) based
on the biomass composition, as well as two covariates represented by the ni-
trate supply level (high or low), and a measure of the total amount of biomass
(TDM). Since we have neither a validation nor a test set, we use V -fold cross-
validation to assess the performance of the classification rule. Thus, we ran-
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domly divide the dataset into V = 4 parts and classify each fold using the re-
maining three parts as the training set. The estimated overall misclassification
error rate (MER) (defined as the average of the fold-specific MERs.) resulted
in 0.238. Fig. 1 shows the simulated distribution of the posterior probability of
being classified as D. flexuosa for eight randomly selected plants. Classifying
as D. flexuosa every plant with a mean (or median) posterior probability greater
than 0.5, we misclassify two plants (2/8 ≈ 0.238). The range of each subject-
specific posterior probability distribution helps in assessing the classification
uncertainty. For example, the distribution of the posterior probability for plant
6 is very wide and centered close to 0.5, suggesting that its classification could
be unreliable, while the reverse holds for the other plants.
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Figure 1. Boxplots of the posterior probability of being classified as D. flexuosa for 8
randomly selected plants. Colors represent the true label of each plant.
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ABSTRACT: The covariate adjusted glasso is one of the most used estimators for inferring
genetic networks. Despite its diffusion, there are several fields in applied research where
the limits of detection of modern measurement technologies make the use of this estimator
theoretically unfounded, even when the assumption of a multivariate Gaussian distribution is
satisfied. In this paper we propose an extension to censored data.
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1 Introduction
An important aim in genomics is to understand interactions among genes, character-
ized by the regulation and synthesis of proteins under internal and external signals.
These relationships can be represented by a genetic network, i.e., a graph where nodes
represent genes and edges describe the interactions among them. Gaussian graphical
models (GGM, Lauritzen (1996)) have been widely used for reconstructing a genetic
network from expression data. The reason of such diffusion relies on the statistical prop-
erties of the multivariate Gaussian distribution which allow the topological structure of
a network to be related with the non-zero elements of the concentration matrix, i.e., the
inverse of the covariance matrix. Thus, the problem of network inference can be recast
as the problem of estimating a concentration matrix. The covariate adjusted glasso
estimator (Yin & Li, 2011) is a popular method for estimating a sparse concentration
matrix, based on the idea of adding an �1-penalty function to the likelihood function
of the multivariate Gaussian distribution. Despite the widespread literature on the
covariate adjusted glasso estimator, there is a great number of fields in applied research
where the use of the graphical model is theoretically unfounded. For example in some
cases data are left- or right-censored. In this paper we propose an extension of the
covariate adjusted glasso estimator that takes into account the censoring mechanism of
the data explicitly.

2 The covariate adjusted censored Gaussian graphical model
Let YYY = (Y1, . . . ,Yp)

� be a p-dimensional random vector. Graphical models allow
to represent the set of conditional independencies among these random variables by
a graph G = {V ,E}, where V is the set of nodes associated to YYY and E ⊆ V ×V
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estimator (Yin & Li, 2011) is a popular method for estimating a sparse concentration
matrix, based on the idea of adding an �1-penalty function to the likelihood function
of the multivariate Gaussian distribution. Despite the widespread literature on the
covariate adjusted glasso estimator, there is a great number of fields in applied research
where the use of the graphical model is theoretically unfounded. For example in some
cases data are left- or right-censored. In this paper we propose an extension of the
covariate adjusted glasso estimator that takes into account the censoring mechanism of
the data explicitly.

2 The covariate adjusted censored Gaussian graphical model
Let YYY = (Y1, . . . ,Yp)

� be a p-dimensional random vector. Graphical models allow
to represent the set of conditional independencies among these random variables by
a graph G = {V ,E}, where V is the set of nodes associated to YYY and E ⊆ V ×V
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is the set of ordered pairs, called edges, representing the conditional dependencies
among the p random variables (Lauritzen (1996)). The covariate adjusted Gaussian
graphical model (CGGM) is an extension of the classical GGM based on the assumption
that the conditional distribution of YYY given a q-dimensional vector of predictors, say
XXX = (X1, . . . ,Xq)

�, follows a multivariate Gaussian distribution with expected value:
µµµ(βββ) = βββ�xxx, where βββ = (βhk) is a matrix q× p coefficient matrix, and covariance
matrix denoted by Σ = (σhk). Denoting with Θ = (θhk) the concentration matrix, i.e.,
the inverse of the covariance matrix, the conditional density function of YYY can be
written as follows:

φ(yyy | xxx;βββ,Θ) = (2π)−p/2|Θ|1/2 exp[−1/2{yyy−µµµ(βββ)}�Θ{yyy−µµµ(βββ)}]. (1)

As shown in Lauritzen (1996), the off-diagonal elements of the concentration matrix
are the parametric tools relating the pairwise Markov property to the factorization of
the density (1), i.e., two random variables, say Yh and Yk, are conditionally independent
given all the remaining variables if and only if θhk is equal to zero.

As done in Augugliaro et al. (2020), we assume that YYY is a (partially) latent
random vector with density function (1). In order to include the censoring mechanism
inside our framework, let us denote by lll = (l1, . . . , lp)

� and uuu = (u1, . . . ,up)
�, with

lh < uh for h = 1, . . . , p, the vectors of known left and right censoring values. Thus,
Yh is observed only if it is inside the interval [lh,uh] otherwise it is censored from
below if Yh < lh or censored from above if Yh > uh. Using the approach for missing
data with nonignorable mechanism (Little & Rubin (2002)) we denote the quantity
R(YYY ; lll,uuu), to encode the censoring patterns, such that the hth element of R(YYY ; lll,uuu)
is defined as R(Yh; lh,uh) = I(Yh > uh)− I(Yh < lh), where I(·) denotes the indicator
function. By construction R(YYY ; lll,uuu) is a discrete random vector with support the set
{−1,0,1}p and probability function Pr{R(YYY ; lll,uuu) = rrr}=

∫
Drrr

φ(yyy | xxx;βββ,Θ)dyyy, where
Drrr = {yyy ∈Rp : R(yyy; lll,uuu) = rrr}. Given a censoring pattern, we can simplify our notation
by partitioning the set I = {1, . . . , p} into o = {h ∈ I : rh = 0},c− = {h ∈ I : rh =−1}
and c+ = {h ∈ I : rh = +1} and, in the following of this paper, we shall use the
convention that a vector indexed by a set of indices denotes the corresponding subvector.
As done in Augugliaro et al. (2020), the probability distribution of the observed data,
denoted by ϕ({yyyo,rrr} | xxx;βββ,Θ), can be defined as follows:

ϕ({yyyo,rrr}|xxx;βββ,Θ) =
∫

φ({yyyo,yyyc}|xxx;βββ,Θ)Pr{R(YYY ; lll,uuu) = rrr|YYY = yyy}dyyyc, (2)

where c = c− ∪ c+. Density (2) can be simplified by observing that Pr{R(YYY ; lll,uuu) =
rrr | YYY = yyy} is equal to one if the censoring pattern encoded in rrr is equal to the pattern
observed in yyy, otherwise it is equal to zero, hence ϕ({yyyo,rrr} | xxx;βββ,Θ) can be rewritten
as

ϕ({yyyo,rrr}|xxx;βββ,Θ) =
∫

Dc

φ({yyyo,yyyc}|xxx;βββ,Θ)dyyycI(lllo ≤ yyyo ≤ uuuo), (3)

where Dc = (−∞, lllc−)× (uuuc+ ,+∞). Using density (3), the covariate adjusted censored
Gaussian graphical model (CCGGM) is defined as the set {YYY ,R(YYY ; lll,uuu),ϕ({yyyo,rrr} |
xxx;βββ,Θ),G}, where ϕ({yyyo,rrr}|xxx;βββ,Θ) factorizes according to the undirected graph G .

3 The covariate adjusted censored glasso estimator
Suppose we have a sample of size n independent observations drawn from a CCGGM.
For ease of exposition, we shall assume that lll and uuu are fixed across the n observations.
To simplify our notation the set of indices of the variables observed in the ith observation
is denoted by oi = {h ∈ I : rih = 0}, while c−i = {h ∈ I : rih = −1} and c+i = {h ∈
I : rih =+1} denote the sets of indices associated to the left and right-censored data,
respectively. Denoting by rrri the realization of the random vector R(YYY i; lll,uuu), the ith
observed data is the vector (yyy�ioi

,xxx�i ,rrr
�
i )

�. Using the density function (3), the observed
log-likelihood function can be written as

�(βββ,Θ) =
n

∑
i=1

log
∫

Dci

φ({yyyioi
,yyyici

}|xxxi;βββ,Θ)dyyyici
=

n

∑
i=1

logϕ({yyyioi
,rrri}|xxxi;βββ,Θ), (4)

where Dci = (−∞, lllc−i
)× (uuuc+i

,+∞) and ci = c−i ∪ c+i . Although inference about the
parameters of this model can be carried out via the maximum likelihood method, the
application of this inferential procedure to real datasets is limited.

We propose to estimate the parameters of the CCGGM by generalizing the approach
proposed in Yin & Li (2011), i.e., by maximizing a new objective function defined
by adding two lasso-type penalty functions to the observed log-likelihood (4). The
resulting estimator, called covariate adjusted censored glasso estimator, is formally
defined as

{β̂ββ
λ
,Θ̂ρ}= arg max

βββ,Θ�0

1
n

n

∑
i=1

logϕ({yyyioi
,rrri}|xxxi;βββ,Θ)−λ∑

h,k
|βhk|−ρ ∑

h�=k
|θhk|, (5)

where λ and ρ are two non-negative tuning parameters. The lasso penalty on βββ
introduces sparsity in β̂ββ

λ
, while the tuning parameter ρ controls the amount of sparsity

in the estimated concentration matrix Θ̂ρ = (θ̂ρ
hk).

4 Simulation study
In this section, we compare our proposed estimator with MissGlasso (Städler &
Bühlmann, 2012), which performs �1-penalized estimation under the assumption that
the censored data are missing at random, and with the covariate adjusted glasso estima-
tor (Yin & Li, 2011), where the empirical covariance matrix is calculated by imputing
the missing values with the censoring values. These estimators are evaluated in terms
of both recovering the structure of the true graph. We use the method implemented
in the R package huge (Zhao et al., 2020), to simulate a sparse concentration matrix
with a random structure for YYY . We set the probability of observing a link between two
nodes to k/p, where p is the number of responses and k is used to control the amount of
sparsity in ΘΘΘ. Moreover, we set the right censoring value to 40 for any variable and the
sample size n to 100. The predictors matrix XXX is sampled from a multivariate gaussian
distribution with zero expected value and sparse covariance matrix simulated as done
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for YYY . Each column of the true matrix of predictors βββ contains only two non-zero
regression coefficients sampled from a uniform distribution on the interval [0.3,0.7].
The values of the intercepts are chosen in such a way that H response variables are
right censored with probability equal to 0.40. The quantities k, p, q and H are chosen
according to the following cases:

• Scenario 1: k = 3, p = 50, q = 10 and H = 25. This setting is used to evaluate
the effects of the number of censored variables on the behavior of the proposed
estimators when n > p.

• Scenario 2: k = 3, p = 150, q = 10 and H = 75. This setting is used to evaluate
the impact of the high dimensionality on the estimators (p > n).

For each scenario, we simulate 50 samples and in each simulation, we compute the
coefficients path using cglasso, MissGlasso, and glasso. Each path is computed using
an equally spaced sequence of ρ and λ-values. Moreover, the precision-recall curves
and the area under the curves (AUCs) are computed for each Scenarios. Table 1 shows
how cglasso gives a better estimate of the concentration and coefficient matrices in
terms of AUCs, for any given value of the tuning parameters. We report only five
evenly spaced values of λ and ρ.

Table 1. Mean area under the curves across the sequence of ρ and λ-values under the specifica-
tion of the two Scenarios (see row blocks). The first column block refers to the concentration
matrix (ΘΘΘ) when λ is fixed and the second refers to the coefficient matrix (βββ) when ρ is fixed. In
the first column (1), (2) and (3) refer to cglasso, MissGlasso and glasso algorithms, respectively.

λ/λmax ρ/ρmax

0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00

(1) 0.546 0.429 0.139 0.103 0.101 0.844 0.877 0.883 0.882 0.885
(2) 0.239 0.199 0.086 0.073 0.073 0.745 0.764 0.766 0.767 0.768
(3) 0.414 0.218 0.097 0.092 0.091 0.813 0.847 0.864 0.866 0.866

(1) 0.418 0.094 0.037 0.035 0.035 0.794 0.930 0.931 0.929 0.933
(2) 0.329 0.098 0.033 0.031 0.030 0.753 0.830 0.831 0.830 0.831
(3) 0.321 0.040 0.033 0.032 0.031 0.751 0.902 0.906 0.907 0.907
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1 Motivating framework of data analysis

Most unsupervised fraud detection methods look for anomalies in the data.
Therefore, all of these techniques assume that the available data have been gen-
erated by an appropriate contamination model. Any parameter of the distribu-
tion that models the “genuine” part of the data, say F0, must then be estimated
in a robust way, in order to avoid the well-known masking and swamping ef-
fects due to the anomalies themselves (Cerioli et al., 2019b). In the context of
fraud detection in international trade, where the value of an individual import
transaction X originates from the product of the traded amount v with the unit
price β, the available anti-fraud tools are derived from the theory of outlier
identification in robust regression; see, e.g., Perrotta et al., 2020b. Under this
approach it is then assumed that non-fraudulent transactions for a specific good
are generated according to the distribution function

F0(x) = Φ
(

x−βv
b

)
, (1)

where Φ is the distribution function of a standard Normal random variable.
In model (1), the regression slope β corresponds to unit price and b > 0 de-
fines the (usually unknown) model variability, which is taken to be constant.

Robust and efficient estimation of β in model (1) may lead to the definition
of a “fair” unit price for the good under consideration, against which individ-
ual or aggregate transaction prices can be contrasted. Transactions well below
the “fair” price may correspond to revenue frauds leading to substantial un-
dervaluation of goods imported into the European Union; see, e.g., European
Anti-Fraud Office, 2018, p. 26. The normality assumption in model (1) has
proven to be satisfactory in the case of monthly-aggregated trade data (Per-
rotta et al., 2020b). However it may become less adequate when analyzing
individual customs declarations, where multiple populations often occur and a
skew distribution may seem more appropriate for the definition of F0 (Perrotta
et al., 2020a). An alternative contamination model based on Benford’s law
then becomes very useful in such a framework: see Cerioli et al., 2019a.

2 Benford’s law

Benford’s law (BL, for short) is a fascinating phenomenon which rules the
pattern of the leading digits in many types of data. Informally speaking, the
law states that the digits follow a logarithmic-type distribution in which the
leading digit 1 is more likely to occur than the leading digit 2, the leading digit
2 is more likely than the leading digit 3, and so on. Indeed, the first-digit form
of BL gives the probability that the first leading digit equals d, for d = 1, . . . ,9,
as
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Another, perhaps even less intuitive, property of Benford’s law concerns sum
invariance. Given an absolutely-continuous random variable X , in the first digit
setting of (2), this property states that, for d = 1, . . . ,9,
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First-digit sum invariance thus means that the expected value (3) does not de-
pend on d when X is a Benford random variable. Although (2) and (3) are not
equivalent when only the first digit is concerned, they are both implied by the
full form of BL, which states that
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(

x−βv
b

)
, (1)
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with U a Uniform random variable on [0,1[. We refer to Berger & Hill, 2020
for a recent survey of the mathematical properties of BL and to Barabesi et al.,
2021 for a thorough study of the relationship between (2) and (3).

3 Tests of the Benford hypothesis

In the motivating framework sketched in §1, Cerioli et al., 2019a investigate
the conditions under which Benford’s law may yield a reasonable approxima-
tion for the first-digit distribution of customs declarations. If Benford’s law
is expected to hold for genuine transactions, then deviations from the law can
be taken as evidence of possible data manipulation. Several exact tests of the
Benford hypothesis exist according to which characterization is considered.
Those that follow have proven to be useful under a variety of circumstances:

• The chi-square test of the first-digit distribution (2) considered by Barabesi
et al., 2018, say χ2;

• The Hotelling-type test of the sum-invariance property (2) proposed by
Barabesi et al., 2021, say Q;

• The Kolmogorov-Smirnov test of the Benford property (4) described in
Barabesi et al., 2021, say KS.

Barabesi et al., 2021 show that the combination of χ2 and Q provides a test
which is consistently close to the best solution provided by either χ2 or Q. We
further develop this strategy in two directions. First, we derive the asymptotic
joint distribution of χ2 and Q under Benford’s law. This result gives theoret-
ical substance to the observed empirical behavior of the combined test. We
then extend our combination strategy to include KS. The proposed extension
is extremely relevant in view of the motivating framework of §1, since the per-
formance of the individual tests may vary considerably according to the actual
digit generating process when Benford’s law does not hold. Our combined
test thus provides a powerful, yet robust, solution when the type of departure
from Benford’s law is unknown, as it happens in anti-fraud applications. Some
preliminary simulation results for a sample size of n = 100 observations are
shown in Table 1, where Lχ2,Q,KS denotes the newly developed combined test.
The alternative data generating models for X are a Lognormal random vari-
able of scale parameter 1 and shape parameter 0.5, and a Generalized Benford
random variable of parameter -0.6.

Table 1. Estimated power of tests of the Benford hypothesis for sample size n = 100.

Alternative χ2 Q KS Lχ2,Q,KS
Lognormal 0.903 0.926 0.899 0.940
Generalized Benford 0.446 0.466 0.853 0.785
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A classifier, then, is trained on the lines of the invoices for each subset generated by
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1 Introduction

The issue of unbalanced classification is known to affect different domains of
application when a machine learning classifier is trained on real world data. If
a dataset presents a lot of classes to predict, these classes often are not equally
distributed, leading to an unbalanced problem which needs ad hoc analyses.
Different methods have been proposed in literature to implement the possible
solutions to this problem (Santos et al., 2018; Ganganwar, 2012). However, in
case of large datasets and a high number of classes, one suggested methodol-
ogy is the possibility of splitting data in smaller subsets which contain similar
observations and develop a single classifier for each subset of data to have
simpler classification algorithms to manage and a lower number of classes per
each cluster to predict (Tsoumakas et al., 2008).

The classification of electronic invoices in the accounting process, using
accounts which are part of Chart of Accounts, is a multiclass classification
problem characterized by a high number of classes and unbalanced distribu-
tions. Nowadays, the interest in the automation of this task is really high
(Bardelli et al., 2020; Beļskis et al., 2020). This is considered a repetitive
and monotonous routine activity which can be easily replaced by a machine

learning model giving the possibility for the accountants to focus on more
stimulating projects. This classification task presents different challenges, due
to the nature of the problem and to the high number of accounts employed in
the classification. In this work we address this issue exploiting the hierarchical
structure of the invoices documents to cluster them into smaller subsets easier
to manage in terms of classification task. A single classifier is then trained on
each subset. The results of this two-step methodology are compared with the
performance of a single classifier trained on the entire dataset.

2 Data and method

The dataset analyzed in this work consists of 13.605 supplier and customer
invoices for a total of 121.946 lines of invoices to classify. This data are part
of the accountability database of a single business company. The total number
of different classes to predict is 42, with the frequency of the majority class
equal to 87.513.

Given the information about a single line of an invoice and the generic
characteristics of the invoice, the aim is to predict the accounting code related
to the line. For the sake of simplicity, we assume that lines inside an invoice
are independent ignoring the grouping term which could influence the predic-
tive output. In future works, this grouping information can be included in the
features space too. In our classification task, we construct the prediction rule
given the training sample {(yi,xi)}N

i=1 with:

• yi, i = 1, ...,N, categorical observations which represent the accounting
codes associated to the i-th line of invoice

• xi, the vector of predictors related to the content of the invoice and the
line

Thanks to the hierarchical structure of the invoice, which is composed by
an header and the description lines, we apply a two-step approach: first of all,
we exploited the information of the header of the invoice to cluster data in
smaller datasets, and secondly, we train a classifier on the lines of the invoices
for each cluster of data. We compare this two-step approach with a direct ap-
proach that develops a single classification model on the entire original dataset
combining predictors both from the header and lines of the invoice.

The classification algorithm used in this work is the xgboost model, known
to be very efficient in case of large dataset. To process the textual description
of lines of invoices we apply the Word2vec model. Clusters of invoices are
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computed using the k-means algorithm. The number of clusters suggested by
the Elbow method and used in the analysis is 4.

3 Results

We describe the results of the two different approaches providing some indexes
of accuracy computed on the test set (the original dataset has been split into
80% for training set and 20% for test set preserving the class proportions in the
split). In Table 1 we report the values of macro and weighted recall. As we can
observe, the two approaches show similar values in terms of recall, meaning
that splitting the original dataset into small clusters of data does not affect the
overall performance of the model.

Table 1. Macro and weighted recall computed on the test set fort the two approaches

Methodology Macro recall Weighted recall
Direct approach 82.5% 98.2%

Two-step approach 83.3% 98.5%

The most interesting result is obtained for the accuracy of some classes
which have low frequencies in the original data. Figure 1 reports the values
of recall of the least 10 frequent classes of the dataset. Most of the classes
improves its recall values, in particular the accounting codes 680203024 and
680203010 show recall values from 0 of the direct approach to 80% and 62%
with the two-step approach, respectively. The invoices related to these ac-
counts belong all to the same cluster which can be identified as group of sup-
plier invoices related to the purchase of materials. On the other hand, high
frequencies classes preserve same values of accuracy in both the approaches.

4 Conclusions

The challenge of unbalanced dataset with high number of classes is to de-
velop accurate classification model able to correctly predict classes with low
frequencies (minority classes). The problem we addressed allows us to ex-
ploit the hierarchical structure of the invoice document to divide the original
dataset in smaller clusters, based on characteristics of invoice headers. Thanks
to this procedure, the original classification problem has been split into simpler
classification tasks with a smaller number of classes in each cluster.
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Figure 1. Recall values for the 10 least frequent classes of the dataset.

The results obtained in this analysis encourage deeper studies, trying to
completely automate the classification of invoices into accounting codes which
is an expensive and demanding task for the accountant work.
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of the scientific community after the 2008 global financial crisis. A number of aspects
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1 Introduction

The European Central Bank requires banks to adapt their organization, pro-
cesses and IT infrastructure in order to give an integrated answer to the non-
performing loans problem. Banks can mitigate their credit risk in several steps
of the loan life-cycle, for example by foreseeing liquidity problems for those
customers which already have a debt to the bank. A timely detection of the
transition to financial distress is pivotal, and it will be addressed it in this work
leveraging on statistical models and bank data.
Recently, a number of contributions (see, e.g., Dolfin et al. , 2019) focused on
introducing information on the supply chain connections in credit risk models
based on the evidence of trade credit use in European markets. The main idea
is that liquidity distress can flow along these connections, and a firm experienc-

ing a period of liquidity distress can delay payments towards its commercial
partners, that can consequently experience liquidity distress. The supply chain
is seen as a complex network in these studies, but it can also be represented as
an adjacency matrix with proper assumptions (Lamieri & Sangalli, 2019).
In this work, we set up a predictive model leveraging Bayesian conditionally
auto-regressive (CAR) models for areal data (Banerjee et al. , 2003). Specifi-
cally, inference is based on a sample of firms from a trade network in a given
month, and the predictive performance of a CAR model is tested by estimat-
ing the probability of default for both a different sample of firms and for the
same sample in the future. Although spatial CAR models have been widely
used in ecology, environmental science, biology and medicine, to the best of
our knowledge they have not yet been fully exploited in econometrics when
dealing with hundreds of thousands of data points interacting in a dynamic
complex network (e.g., firms or natural persons).

2 Methodology

With some due simplifications, the monthly goal for a lending bank is to red
flag those borrowing firms that have the greatest probability of default (delay
in paying their debts to the bank) in the following 3 months. In this paper, we
analyse a proprietary dataset of Intesa Sanpaolo collected in a given month, for
a total of n = 944 firms. Our response variable is a binary indicator such that
Yk = 1 if firm k switches to a liquidity distress state in the next 3 months.

The trade network can be represented as a link matrix W ∈ Rn ×Rn, with
binary entries wk j = 1 if k �= j and k supplier, j customer in the previous year.
The link matrix W represents a complex network with a scale free structure
(Barabási & Albert, 1999). Further, the Bank database stores several credit and
trend information on each specific customer firm, but for the sake of simplicity
here we only consider two possible covariates xxxk for each firm k. The first
covariate, x1

k , represents the used amount of credit over the granted amount
among all Italian financial institutions, while the second, x2

k , represents the
maximum number of days of payment delay recorded in the past 3 months.

We fit a proper CAR specification (Banerjee et al. , 2003) to our data as
follows:

Yk ∼ Bernoulli(θk)

logit(θk) = βββxxxk +φk (1)

φk|φ−k,α,τ,W ∼ N
(

α∑n
i=1 wkiφi

∑n
i=1 wki

,τ−1
)
,
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Here φk is a firm-specific spatial random effect incorporating the information
contained in the network of relationships W . Conditionally on W , φk is mod-
elled as a Markov random field, meaning that the value of φk only depends
on the value of its neighbours. Indeed, we expect the probability of default of
firm k to increase (decrease) if one of more firms connected with k are (not)
in default. Parameters α and τ represent the strength and the precision of the
autocorrelation, respectively. The CAR specification is chosen because the in-
formation arising from the network (incorporated through φk) can help explain
those default events that are not ubiquitously captured by the linear covariates.
Standard priors are placed on α, τ, and β0,β1,β2, and estimation of model
parameters proceeds via MCMC (Banerjee et al. , 2003).

3 Results and conclusions

Testing model (1) on real data, we notice that the posterior distributions of the
linear parameters obtained with the CAR model are coherent with those of a
standard GLM, which considers covariates xxxk only. The overlap between the
credible intervals of the linear parameters from the two models implies that the
spatial random effects estimated by the CAR model contribute to explain a part
of the default phenomenon not entirely captured by firm-specific information.
Further, we record very good in-sample performance in terms of area under
the curve (AUC), as the GLM has a 0.79 AUC while the CAR specification
reaches a 0.89 AUC. Furthermore, model (1) helps in identifying defaulted
firms through the spatial random effects. Indeed, Figure 1 (left panel) shows
that, for most truly defaulted firms (red dots), the estimated probability that the
spatial effect is positive, computed as �̂(φk > 0) = 1

T−B ∑T
g=B+1�(φ

g
k > 0), is

strictly greater than 50%. Here T is the total number of MCMC iterations, and
B denotes the burn-in.

Further, we test the predictive power of the model on a disjoint sample
drawn from the network seen at the same timestamp of the training sample
(out-of-sample set composed of unseen firms), and on the training dataset but
seen six months later (out-of-time set composed of future observations of the
same firms used in training). In line with the original aim of spatial CAR mod-
els, which are intended to fit data referring to static maps, the model does not
generalise in the out-of-sample case. This is an unfortunate result for our credit
risk application, as one can instead expect the liquidity distress contagion dy-
namics to spread with similar strength (α) and precision (τ) in different areas
of the trade network. In the out-of-time case, the CAR model shows slightly
better predictive performance with respect to the simple GLM, as shown in

Figure 1 (right panel).
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Figure 1. Left: Estimated probability of a strictly positive spatial effect (i.e., �̂(φk > 0)) for each firm.
Red dots are defaulted firms (Yk = 1) with estimated probability of strictly positive spatial effects greater
than 50%. Black dots indicate all other firms. Right: ROC curves and AUC for a GLM considering only
covariates xxxk (black) and CAR model (blue) for the prediction six-months ahead with respect to training.

To conclude, the application of disease mapping methods to a scale free
network represents a novelty at present. The encouraging results on the out-
of-time set suggest to further investigate spatial modelling of trade networks.
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ABSTRACT: A semiparametric finite mixture of regression models is defined, with
concomitant information assumed to influence both the component weights and the
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a smooth function represented by cubic splines. A Bayesian estimation procedure is
proposed and an empirical analysis of the baseball salaries dataset is illustrated.
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1 Introduction

Mixture models provide a useful tool to account for unobserved heterogeneity.
In order to gain additional flexibility, some model parameters can be expressed
as functions of concomitant covariates, introducing the Mixture of Experts
(MoE) framework. In this Paper, a semiparametric MoE regression model is
proposed, where component weights and conditional means are smooth func-
tions of a univariate covariate. Estimation is carried out within the Bayesian
paradigm: a new Gibbs sampler algorithm is developed, exploiting data aug-
mentation to express the effect of the covariate on the component weights, as in
Früwirth-Schnatter et al. (2012). Bayesian P-splines (Lang & Brezger, 2004)
are used to achieve a parsimonious representation of the smooth functions.

2 Model specification

Suppose that {yi}, i = 1, . . . ,n is a random sample from a population clustered
into G components. It is assumed that the conditional distribution of yi, given
a concomitant covariate xi, is represented by the following MoE model:

f (yi|xi) =
G

∑
g=1

πg(xi) fN
(
µg(xi),σ2

g
)
. (1)

Each component g = 1, . . . ,G is modelled by a normal density function fN (·),
and has weight πg(xi) > 0, such that ∑G

g=1 πg(xi) = 1, for i = 1, . . . ,n. The
conditions for identifiability of Model (1) can be deduced by the ones Huang
et al. (2013) provide for their nonparametric mixture of regression models.
Jacobs et al. (1991) model the component weights πg(xi) using a multinomial
logistic regression model, thus expressing the log-odds of these probabilties,
with respect to the reference one (e.g., the G-th), as linear functions of the
covariate xi. In this Paper, each of these G− 1 linear predictors is replaced
with an additive structure, defined as a linear combination of m cubic B-spline
bases Bρ(·) and coefficients γgρ:

log
πg(xi)

πG(xi)
= ηg(xi) =

m

∑
ρ=1

Bρ(xi)γgρ, for i = 1, . . . ,n. (2)

In the Bayesian framework, Lang & Brezger (2004) suggest a high number
of knots to ensure enough flexibility, and to define priors for the regression
parameters γg1, . . . ,γgm in terms of a random walk:

γgρ = γg,ρ−1 +wgρ, wgρ ∼ N(0,δ2
g). (3)

The amount of smoothness is controlled by the additional variance parameters
δ2

g. Their presence protect against possibile overfitting when a large number of
knots is chosen. The multinomial model in Equation (2) can be conveniently
represented as a binary formulation in the partial difference random utility
model (dRUM) representation proposed by Früwirth-Schnatter et al. (2012),
conditional on knowing each λg(xi) = exp(ηg(xi)):

zgi = ηg(xi)− log

(
∑
l �=g

λl(xi)

)
+ εgi, Dgi = 1(zgi > 0); (4)

where zgi is a latent variable, Dgi is the allocation indicator and εgi, i = 1, . . . ,n,
are i.i.d. errors following a logistic distribution. To avoid any Metropolis-
Hastings (MH) step, Früwirth-Schnatter et al. (2012) approximate the logistic
distribution of the error terms εgi by a finite scale mixture of normal distribu-
tions with parameters drawn with fixed probabilities.

Regarding the components’ normal densities, each mean µg(·) is assumed
to be an unknown smooth function of covariate x, represented by Bayesian
P-splines:

µg(xi) =
m

∑
ρ=1

Bρ(xi)βgρ, βgρ = βg,ρ−1 +ugρ, ugρ ∼ N(0,τ2
g). (5)
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Figure 1. Estimated posterior effects (and pointwise 95% posterior credible bands) of
the number of runs on the log-odds η1(x) (left plot) and conditional means µ1(x) and
µ2(x) (right plot), in green and blue respectively.

The proposed Gibbs sampler requires the number of components G to be fixed.
The optimal number of components can be selected according to the Akaike’s
Information Criterion for MCMC samples (AICM) proposed by Raftery et al.
(2007). Finally, to obtain a hard clustering, observations can be allocated into
the G components using the maximum-a-posteriori (MAP) rule once the algo-
rithm completes the prefixed number of iterations.

3 Application: Baseball salaries

Watnik (1998) provides a dataset consisting of information about players for
the 1992 Major League Baseball season. The following analysis evaluates the
effect of the number of runs (x), taken as a measure of a player’s contribution
to the team, on the log-salary (y). Number of components G ranging from 1
to 4 has been considered; the optimal value resulted to be equal to 2 for the
proposed model, according to AICM. The left plot of Figure 1 shows a lack
of monotonicity in the effect of the number of runs on the log-odds of the
mixture weight η1(x). However, the overall decreasing trend indicates a lower
prior probability of belonging to Cluster 1, rather than Cluster 2 (i.e. the ref-
erence one), for players providing better performances in terms of number of
runs. Players’ allocations, with respect to x and y, are depicted in the right plot
of the same Figure, where it can also be noticed a nonlinear effect of the num-

ber of runs on the log-salary for Cluster 2 (the upper one, in blue), while the
bands does not exclude a linear effect for Cluster 1 (the lower one, in green).
These two clusters appear quite well separated, apart from the region with low
values of both x and y. Group 1 might be broadly interpreted as the cluster
of “underrated” (or “underpaid”) baseball players. In fact, while it is obvious
that players with better performances get paid more, as is comfirmed by the
increasing trends of both means, there seems to be a group of players whose
salary is substantially lower than that of players with similar performances (in
terms of number of runs), belonging to the upper group (in blue). Indeed, the
two estimated function for µ1(x) and µ2(x) in the right plot of Figure 1 appear
almost parallel.
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Figure 1. Estimated posterior effects (and pointwise 95% posterior credible bands) of
the number of runs on the log-odds η1(x) (left plot) and conditional means µ1(x) and
µ2(x) (right plot), in green and blue respectively.

The proposed Gibbs sampler requires the number of components G to be fixed.
The optimal number of components can be selected according to the Akaike’s
Information Criterion for MCMC samples (AICM) proposed by Raftery et al.
(2007). Finally, to obtain a hard clustering, observations can be allocated into
the G components using the maximum-a-posteriori (MAP) rule once the algo-
rithm completes the prefixed number of iterations.

3 Application: Baseball salaries

Watnik (1998) provides a dataset consisting of information about players for
the 1992 Major League Baseball season. The following analysis evaluates the
effect of the number of runs (x), taken as a measure of a player’s contribution
to the team, on the log-salary (y). Number of components G ranging from 1
to 4 has been considered; the optimal value resulted to be equal to 2 for the
proposed model, according to AICM. The left plot of Figure 1 shows a lack
of monotonicity in the effect of the number of runs on the log-odds of the
mixture weight η1(x). However, the overall decreasing trend indicates a lower
prior probability of belonging to Cluster 1, rather than Cluster 2 (i.e. the ref-
erence one), for players providing better performances in terms of number of
runs. Players’ allocations, with respect to x and y, are depicted in the right plot
of the same Figure, where it can also be noticed a nonlinear effect of the num-

ber of runs on the log-salary for Cluster 2 (the upper one, in blue), while the
bands does not exclude a linear effect for Cluster 1 (the lower one, in green).
These two clusters appear quite well separated, apart from the region with low
values of both x and y. Group 1 might be broadly interpreted as the cluster
of “underrated” (or “underpaid”) baseball players. In fact, while it is obvious
that players with better performances get paid more, as is comfirmed by the
increasing trends of both means, there seems to be a group of players whose
salary is substantially lower than that of players with similar performances (in
terms of number of runs), belonging to the upper group (in blue). Indeed, the
two estimated function for µ1(x) and µ2(x) in the right plot of Figure 1 appear
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ABSTRACT: Interrater agreement for classifications on nominal scales is usually 
evaluated by overall measures across subjects like the Cohen’s kappa index. In this
paper, the homogeneity index for a qualitative variable is proposed to evaluate the 
agreement between raters for each single case (subject or object), and to obtain also a 
global measure of the interrater agreement for the whole group of cases evaluated. The 
subject-specific and the global measures proposed do not depend on a particular 
definition of agreement (simultaneously between two, three or more raters) and are not 
influenced by the marginal rater distributions of the scale like most of the kappa-type 
indexes.
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1 Introduction

In behavioral and biomedical sciences classifications of subjects or objects into 
predefined classes or categories and the analysis of their agreement are a rather 
common activity. For instance, agreement between clinical diagnoses provided by 
more physicians (raters) is considered for identifying the best treatment for the patient,
and the extent to which the diagnoses coincide, the rating procedure (or scale) can be 
used with confidence. Hence, in this type of applications it is important to analyse
interrater absolute agreement, that is the extent that raters assign the same (or very 
similar) values on the rating scale.

Agreement between two raters who rate each of a sample of subjects (objects) on 
a nominal scale is usually assessed with Cohen’s kappa (Cohen 1960). 
Generalizations of kappa for the case of more than two raters and for the case where 
raters assessing one subject are not always the same have been proposed by many 
authors (e.g., Fleiss, 1971, Conger 1980). These indexes are used to analyse the 
agreement between multiple raters for a whole group of subjects. Moreover, methods 
to detect subsets of raters who demonstrate a high level of interobserver agreement 
were considered, for instance, by Landis & Koch (1977). Less frequently agreement 
on a single subject has been considered (O’Connell & Dobson, 1984), in spite of the 
fact that having evaluations of the agreement on the single case is particularly useful, 

for example, in situations where the rating scale is being tested, and it is necessary to 
identify any changes to improve it, or to request the raters for a specific comparison 
on the single case in which agreement is poor.

In the next sections an index to measure the interrater agreement on a single 
subject is proposed based on a measure of dispersion for nominal variables. 
Furthermore, a global measure of agreement on the whole group of subjects obtained 
as the arithmetic average of the subject values of the index will be also considered and 
applied to a data set concerning the cause of death of 35 hypertensive patients.

2 Method

O’Connell and Dobson (1984) proposed a chance-corrected measure of agreement for 
several raters using nominal (or ordinal) categories on a single subject i (i=1,2, ….,N),
given by

𝑆𝑆𝑖𝑖 = 1 − 𝐷𝐷𝑖𝑖/𝛥𝛥,

where 𝐷𝐷𝑖𝑖 is the overall disagreement on the whole response profile i and ∆ is the 
disagreement expected by chance (see O’Connell and Dobson (1984), equation (6)). 
The measure takes the value 1 when there is perfect agreement; it is positive when the 
agreement is better than chance, and negative otherwise. Besides, an overall measure 
of agreement across subjects Sav can be obtained as the arithmetic average of the 𝑆𝑆𝑖𝑖
individual values. The index 𝑆𝑆𝑖𝑖 has some drawbacks: 1) it cannot be computed for 
only one observation, because in that case the disagreement expected by chance ∆ is 
not defined; 2) it is formulated in terms of agreement statistics based on all pairs of 
raters, but some authors argued that simultaneous agreement among three or more 
raters can be alternatively considered (e.g., see Warrens, 2012); 3) agreement 
expected by chance depends on the observed proportions of subjects allocated to the 
categories of the scale by each rater, and this imply that the measure of agreement 
depends on the marginal distributions of the categories of the scale observed for each 
rater (for this aspect see, e.g., Marasini et al., 2016).

A different approach is proposed here that is based on the largely known
homogeneity index to measure the dispersion of a qualitative variable (e.g., Leti 
1983). For a classification in K categories the index is given by 

 𝑂𝑂 = ∑ 𝑓𝑓𝑗𝑗
2,𝐾𝐾

𝑗𝑗=1

where 𝑓𝑓𝑗𝑗 is the proportion of ratings in category j (j=1,2,…,K). The index is equal to 
1 in the case of maximum homogeneity (perfect agreement), and 1/𝐾𝐾 in the case of 
maximum heterogeneity (total disagreement, for each category j is 𝑓𝑓𝑗𝑗 = 1/𝐾𝐾). O
depends on the number of categories, so the normalization in the interval [0,1] is given 
by

𝑂𝑂𝑟𝑟𝑟𝑟𝑟𝑟 = (𝐾𝐾 𝑂𝑂 − 1)/(𝐾𝐾 − 1).
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2 Method
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given by
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where 𝐷𝐷𝑖𝑖 is the overall disagreement on the whole response profile i and ∆ is the 
disagreement expected by chance (see O’Connell and Dobson (1984), equation (6)). 
The measure takes the value 1 when there is perfect agreement; it is positive when the 
agreement is better than chance, and negative otherwise. Besides, an overall measure 
of agreement across subjects Sav can be obtained as the arithmetic average of the 𝑆𝑆𝑖𝑖
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only one observation, because in that case the disagreement expected by chance ∆ is 
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categories of the scale by each rater, and this imply that the measure of agreement 
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Thus, 𝑂𝑂𝑟𝑟𝑟𝑟𝑟𝑟 : 1) is equal to zero for total disagreement and one for perfect agreement;
2) can be computed also for only one observation; 3) does not depend on the definition 
of pairwise agreement; 4) does not depend on the observed proportions of subjects 
allocated to the categories of the scale.

A global measure of agreement on the whole group (indicated with �̅�𝑂𝑟𝑟𝑟𝑟𝑟𝑟) can be 
easily obtained as the arithmetic average of the individual values of 𝑂𝑂𝑟𝑟𝑟𝑟𝑟𝑟 .

3 Application

Data considered are about a study with seven nosologists assessing the cause of death 
of 35 hyperthensive patients by using the death certificates (Woolson, 1987). The 
scores were assigned by the following categories: 1=Arteriosclerotic disease, 2= 
cerebrovascular disease, 3=other hearth disease, 4=renal disease, 5=other disease. The 
marginal proportions of ratings for the five categories were 0.21, 0.17, 0.19, 0.27 and 
0.16, respectively. Some preliminary results are presented for the method based on 
the 𝑂𝑂𝑟𝑟𝑟𝑟𝑟𝑟 index. 

The subjective values of 𝑂𝑂𝑟𝑟𝑟𝑟𝑟𝑟 allowed to detect low level of agreement for many 
evaluations (28.6% of the 𝑂𝑂𝑟𝑟𝑟𝑟𝑟𝑟 values less than 0.4), that call for a possible revision 
of the assessment procedure. It can be also interesting to analyse some descriptive 
statistics provided in Table 1 for the comparison of 𝑆𝑆𝑖𝑖 and  𝑂𝑂𝑟𝑟𝑟𝑟𝑟𝑟. The mean values for 
the global agreement are Sav=0.48 and �̅�𝑂𝑟𝑟𝑟𝑟𝑟𝑟=0.56. 𝑆𝑆𝑖𝑖 values show higher dispersion 
respect to the 𝑂𝑂𝑟𝑟𝑟𝑟𝑟𝑟 values. The measures are almost perfectly correlated (r=0.99).

Table 1: Some descriptive statistics for Si and Orel values

N Mean Std. Dev. CV
𝑆𝑆𝑖𝑖 35 0.48 0.27 56.5

𝑂𝑂𝑟𝑟𝑟𝑟𝑟𝑟 35 0.56 0.23 42.1

We also add that the value of the average Cohen’s kappa coincides with Sav and the 
value of Fleiss kappa (Fleiss, 1971) is also approximately equal to 0.48. 

It is interesting to point out that if we increase the level of agreement between 
raters by collapsing the five categories in the two strongly unbalanced categories 
cerebrovascular disease (marginal proportion 0.17) and all other diseases (marginal 
proportion 0.83), the values of Sav, average Cohen’s kappa and Fleiss kappa remain 
almost the same, while the new value of �̅�𝑂𝑟𝑟𝑟𝑟𝑟𝑟 increases to 0.75, accordingly to the new 
high level of agreement. It is not uncommon in applications to have highly unbalanced 
categories, this happens, for example, when a diagnostic category is rare or when for 
some reasons the raters use almost exclusively very few levels of the scale.

4 Conclusion

A descriptive approach to the analysis of absolute interrater agreement has been 
proposed that presents some advantages respect to the approach by kappa-type 

measures based on pairwise agreement between raters. The index proposed is mainly 
considered as a measure of size of the interrater agreement, therefore future 
developments may concern the definition of reliable thresholds useful in the 
application. Finally, we notice that a measure of interrater agreement for ordinal data 
recently proposed and applied in educational studies follow an approach similar to the 
present proposal (Bove et al. 2020), where a measure of dispersion for ordinal 
variables is considered instead of the homogeneity index.
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1 Introduction

The latent linear correlation (LLC), also called polychoric correlation, is a
measure of linear association which is usually adopted when dealing with cat-
egorical variables or statistics such as frequency or contingency tables. Given
a set of J variables, LLC is computed pairwise for each pair ( j,k) of variables
by considering their joint frequencies N( j,k)

R×C = (n( j,k)
11 , . . . ,n( j,k)

rc , . . . ,n( j,k)
RC ) over

a R jk ×Cjk partition space of the variables’ domain. The general idea is to
adopt a bivariate Gaussian distribution with correlation ρ jk as a latent statis-
tical model underlying the observed frequency table N( j,k)

R×C, which maps the
R jk ×Cjk space to the real domain of the bivariate density via a threshold-
based approach. There are several contexts in which LLCs have been applied,
including covariance structural analysis (e.g., CFA) and dimensionality reduc-
tion techniques (e.g., PCA, EFA). In this contribution, we generalize the prob-
lem of estimating polychoric correlations from fuzzy frequency tables, which
are of particular utility when observed data are classified using fuzzy categories
as done, for example, in socio-economic studies, images/videos classification,
and content analysis. In all these cases, the R jk ×Cjk space of the variables’
domain constitutes a fuzzy partition and observed counts in N( j,k)

R×C are no longer
natural numbers. In order to deal with this issue, in this paper we describe a
novel way to compute fuzzy frequency tables and provide a way to estimate
ρ jk when observed frequencies are fuzzy. In what follows, we will set R = C
and J = 2 for the sake of simplicity.

2 Fuzzy frequencies

A fuzzy subset Ã of a universal set A is defined by means of its characteris-
tic function ξÃ : A → [0,1]. Let A ⊂ R without loss of generality and con-
sider (X ,Y ) a pair of random variables taking values on A. Then A can
conveniently be partitioned into a collection of fuzzy subsets, namely C j =
{C̃1, . . . ,C̃r, . . . ,C̃R} and Ck = {C̃1, . . . ,C̃c, . . . ,C̃C}. The random realizations
x = (x1, . . . ,xI) and y = (y1, . . . ,yI) can partially or fully be classified into C j
or Ck. The evaluation of the amount of sample realizations over C̃ j or C̃k is
called cardinality. This is a natural number or crisp count (i.e., nrc ∈ N0)
when the observations fully belong to subsets of C̃ j or C̃k. On the oppo-
site case, it is a fuzzy natural number ñrc ∈ F(N), with F(N) being the set
of all generalized natural numbers (Bodjanova & Kalina, 2008). Let C̃rc be
an element of the fuzzy Cartesian product C̃ j ×̃ C̃k. Then a fuzzy count
ñrc is a fuzzy set with membership function ξñrc : N0 → [0,1] being com-
puted as follows: ξñrc(n) = min(νrc(n),µrc(n)), with νrc(n) = FGC(εεεrc) and
µrc(n)= FLC(εεεrc) ∀ n∈{0,1, . . . , I}⊂N0. In this context, FGC(.) and FLC(.)
are the fuzzy counting functions as defined by Zadeh (1983) whereas εεεrc =
min(ξC̃r

(x j),ξC̃c
(yk)) contains the joint degrees of inclusion of the sample ob-

servations x and y w.r.t. the fuzzy categories. More details can be found in
Bodjanova & Kalina (2008). Finally, the fuzzy frequency table ÑR×C can be
computed by applying the above calculus over r = 1, . . . ,R and c = 1, . . . ,C.

3 LLCs for fuzzy frequency tables

The latent statistical model underlying the sample realizations is bivariate Gaus-
sian (X∗,Y ∗) ∼ N (0,ρ) under the constraints that (X ∈ C̃r) ∧ (Y ∈ C̃c) iif
(X∗,Y ∗)∈ (τX

r−1,τX
r ]×(τY

c−1,τY
c ]⊂R2 for all r = 1, . . . ,R and c= 1, . . . ,C. The

thresholds τττX and τττY are defined so that τ0 =−∞ and τR = ∞ for both X and Y
variables. Note that (X∗,Y ∗) are unobserved pairs of latent variables. Follow-
ing Olsson (1979), the parameters θθθ = {ρ,τττX ,τττY} ∈ [−1,1]×RR−1 ×CC−1

can be estimated using a two step-approach. In particular, given the filtered
counts at the current iteration, thresholds are estimated using the cumulative
marginals of N̂R×C (first step). Then, ρ is estimated by maximizing the log-
likelihood implied by the model conditioned on τ̂ττX and τ̂ττY (second step):

lnL(θθθ;N) ∝
R

∑
r=1

C

∑
c=1

nrc ln
∫ τX

r

τX
r−1

∫ τY
c

τY
c−1

φ(x,y;ρ) dxdy (1)
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and content analysis. In all these cases, the R jk ×Cjk space of the variables’
domain constitutes a fuzzy partition and observed counts in N( j,k)
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natural numbers. In order to deal with this issue, in this paper we describe a
novel way to compute fuzzy frequency tables and provide a way to estimate
ρ jk when observed frequencies are fuzzy. In what follows, we will set R = C
and J = 2 for the sake of simplicity.

2 Fuzzy frequencies

A fuzzy subset Ã of a universal set A is defined by means of its characteris-
tic function ξÃ : A → [0,1]. Let A ⊂ R without loss of generality and con-
sider (X ,Y ) a pair of random variables taking values on A. Then A can
conveniently be partitioned into a collection of fuzzy subsets, namely C j =
{C̃1, . . . ,C̃r, . . . ,C̃R} and Ck = {C̃1, . . . ,C̃c, . . . ,C̃C}. The random realizations
x = (x1, . . . ,xI) and y = (y1, . . . ,yI) can partially or fully be classified into C j
or Ck. The evaluation of the amount of sample realizations over C̃ j or C̃k is
called cardinality. This is a natural number or crisp count (i.e., nrc ∈ N0)
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servations x and y w.r.t. the fuzzy categories. More details can be found in
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computed by applying the above calculus over r = 1, . . . ,R and c = 1, . . . ,C.
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The latent statistical model underlying the sample realizations is bivariate Gaus-
sian (X∗,Y ∗) ∼ N (0,ρ) under the constraints that (X ∈ C̃r) ∧ (Y ∈ C̃c) iif
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thresholds τττX and τττY are defined so that τ0 =−∞ and τR = ∞ for both X and Y
variables. Note that (X∗,Y ∗) are unobserved pairs of latent variables. Follow-
ing Olsson (1979), the parameters θθθ = {ρ,τττX ,τττY} ∈ [−1,1]×RR−1 ×CC−1

can be estimated using a two step-approach. In particular, given the filtered
counts at the current iteration, thresholds are estimated using the cumulative
marginals of N̂R×C (first step). Then, ρ is estimated by maximizing the log-
likelihood implied by the model conditioned on τ̂ττX and τ̂ττY (second step):

lnL(θθθ;N) ∝
R

∑
r=1

C

∑
c=1

nrc ln
∫ τX

r

τX
r−1

∫ τY
c

τY
c−1

φ(x,y;ρ) dxdy (1)
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with φ(x,y;ρ) being the bivariate Gaussian density centered at zero. In what
follows, we will focus on estimating ρ as estimation of thresholds follows
straightforwardly from Olsson (1979). As we observe fuzzy frequencies ÑR×C,
we solve the maximization problem via the fuzzy EM algorithm proposed by
Denoeux (2011), which in this case requires the computation of the following
quantity:

Eθθθ′

[
lnL(θθθ;N)|Ñ

]
∝

R

∑
r=1

C

∑
c=1

Eθθθ′ [Nrc|ñrc] ln
∫ τY

r

τX
r−1

∫ τY
c

τY
c−1

φ(x,y;ρ) dxdy (2)

given a candidate estimate θθθ′. The quantity Nrc|ñr,c is a random variable con-
ditioned on a fuzzy event:

Eθθθ′ [Nrc|ñrc] = ∑
n∈N0

ξñrc(n) fNrc(n;πrc(θθθ))
∑n∈N0 ξñrc(n) fNrc(n;πrc(θθθ))

n (3)

where fNrc(n;πrc(θθθ)) = Bin(n;πrc(θθθ)), with πrc(θθθ) =
∫ τY

r
τX

r−1

∫ τY
c

τY
c−1

φ(x,y;ρ) dxdy.

Note that n̂rc = Eθθθ′ [Nrc|ñrc] denotes the reconstructed rc-th count. The fuzzy
EM algorithm proceeds by alternating between the computation of Eq. (3) and
the maximization of Eq. (1) once n̂rc has been obtained.

4 Simulation study

The aim of this Monte Carlo study is twofold. First, we will evaluate the
performances of fuzzy-EM estimator for ρ jk when fuzzy frequency data are
available. Second, we will assess whether the standard maximum likelihood
estimator for polychoric correlations performs as good as the proposed method
if applied on max-based and mean-based defuzzified data. The case J = 2 was
considered for the sake of simplicity.

Design. The design involved two factors, namely (i) I ∈ {150,250,500},
and (ii) ρ ∈ {0.15,0.50,0.85}, which were varied in a complete factorial de-
sign. For each combination, B = 5000 samples were generated.

Data generation. For each condition of the simulation design, data were
generated according to a two-step procedure. First, a crisp frequency table
NR×C was computed using the approximation nrc = I · πrc (r = 1, . . . ,R; c =
1, . . . ,C), with τττX = τττY = (−2,−1,0,1,2). Second, each element of NR×C
was fuzzified via the following probability-possibility transformation: ξξξñrc

=

fGd(n;αrc,βrc)
/

max fGd(n;αrc,βrc), αrc = 1+m1βs1 , βs1 = 1+ (m1 +m2
1 +

4s2
1)

1
2 /2s2

1, βrc =(m1+m2
1+4s2

1)
1
2
/

2s2
1, m1 ∼Gammad(αm1 ,βm1) where αm1 =

1+ nrcβm1 , βm1 = (nrc + n2
rc + 4s2

1)
1
2
/

2s2
1, s1 ∼ Gammad(αs1 ,βs1), αs1 = 1+

m0βs1 , βs1 = (m0 +m2
0 +4s2

0)
1
2
/

2s2
0, m0 = 1 and s0 = 0.15. Note that fGd is the

density of the discrete Gamma random variable Gammad.
Outcome measures. For each condition of the simulation design, sample

results were evaluated using bias of estimates and root mean square error.
Results. Table 1 shows the results of the study. As expected, fEM outper-

formed standard ML applied on both max-based and mean-based defuzzified
data in terms of bias and root mean square errors. This is mainly due to the fact
that ρfEM estimator weights the observed fuzzy data ξñrc with the probabilistic
model for the unobserved nrc.

fEM dML (max) dML (mean)

bias rmse bias rmse bias rmse

ρ = 0.15
I = 150 0.0358 0.0881 -0.0105 0.1142 -0.0402 0.0846
I = 250 0.0043 0.0514 -0.0284 0.0817 -0.0403 0.0683
I = 500 0.0099 0.0297 0.0020 0.0416 -0.0082 0.0335

ρ = 0.50
I = 150 0.0103 0.0747 -0.0933 0.1545 -0.1797 0.1956
I = 250 -0.0363 0.0626 -0.1216 0.1488 -0.1706 0.1800
I = 500 -0.0006 0.0264 -0.0457 0.0689 -0.0828 0.0903

ρ = 0.85
I = 150 0.0013 0.0441 -0.2150 0.2525 -0.3274 0.3354
I = 250 -0.0028 0.0269 -0.1707 0.1967 -0.2580 0.2642
I = 500 -0.0009 0.0145 -0.1034 0.1211 -0.1630 0.1672

Table 1. Monte Carlo study: Estimating ρ via fuzzy-EM (fEM) and standard ML (dML) on
max-based and mean-based defuzzified frequency tables.
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ABSTRACT: In recent years we are witnessing to an increased attention towards meth-
ods for clustering matrix-valued data. In this framework, matrix Gaussian mixture
models constitute a natural extension of the model-based clustering strategies. Regret-
tably, the overparametrization issues, already affecting the vector-valued framework
in high-dimensional scenarios, are even more troublesome for matrix mixtures. In
this work we introduce a sparse model-based clustering procedure conceived for the
matrix-variate context. We introduce a penalized estimation scheme which, by shrink-
ing some of the parameters towards zero, produces parsimonious solutions when the
dimensions increase. Moreover it allows cluster-wise sparsity, possibly easing the
interpretation and providing richer insights on the analyzed dataset.
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1 Introduction

Model-based clustering represents a well established framework to cluster mul-
tivariate data. When dealing with continuous data, the generative mechanism
is routinely described by means of Gaussian Mixture Models (GMMs). Par-
titions are obtained by exploiting the one-to-one correspondence between the
groups and the components of the mixture. This approach has been used in
many different applications; nonetheless GMMs tend to be over-parameterized
in high-dimensional settings where their usefulness might be jeopardized.

This problem complicates even further in three-way data scenarios, where
multiple variables are measured on different occasions for the considered units.
Here matrix-variate distributions have often been used and embedded in the
mixtures framework, thus providing a valid solution when partitions of matri-
ces are required (Viroli, 2011). In spite of its strenght points, this approach

is dramatically over-parameterized even in moderate dimensions. Therefore,
we propose a penalized model-based clustering strategy in the matrix-variate
framework. Our approach reduces the number of parameters to be estimated,
by shrinking some of them towards zero, and possibly leads to a gain in terms
of interpretability. The rest of the paper is organized as follows. In Section 2
we introduce matrix Gaussian mixture models (MGMMs) and we outline our
proposal. An application to real world data is reported in Section 3 alongside
with some concluding remarks and possible future research directions.

2 Penalized matrix-variate mixture model

Let X = {X1, . . . ,Xn} be a set of n matrices with Xi ∈Rp×q. MGMM provides
an extension of the GMM when clustering of matrices are needed. The density
of Xi is then expressed as follows

f (Xi;Θ) =
K

∑
k=1

τkφ(p×q)(Xi;Mk,Ωk,Γk) (1)

where Θ = {τk,Mk,Ωk,Γk}K
k=1, τk’s are the mixing proportions, with τk > 0

and ∑k τk = 1. On the other hand φ(p×q)(Xi;Mk,Ωk,Γk) denotes the density of
a p× q matrix normal distribution where Mk ∈ Rp×q is the mean of the k-th
component while Ωk ∈ Rp×p and Γk ∈ Rq×q represent respectively the rows
and the columns component precision matrices.

In (1) the number of parameters to estimate scales quadratically with both
p and q, endangering the pratical usefulness of the model. Recently some
solutions have been proposed, trying to overcome this issue (see Wang & Mel-
nykov, 2020 and Sarkar et al. , 2020). These approaches present some draw-
backs as they are computationally intensive and as they implement a rigid way
to induce parsimony. Therefore in this work we take a different path, adopting
a penalized estimation approach which implicitly assumes that Mk,Ωk,Γk, for
k = 1, . . . ,K, possess some degree of sparsity.

To this aim, we introduce a penalized likelihood strategy to obtain Θ̂. The
log-likelihood function to be maximized is defined as

�(Θ;X) =
n

∑
i=1

log

{
K

∑
k=1

τkφp×q(Xi;Mk,Ωk,Γk)

}
− pλ1,λ2,λ3(Mk,Ωk,Γk) (2)

with the penalization term pλ1,λ2,λ3(Mk,Ωk,Γk) equals to

pλ1,λ2,λ3(Mk,Ωk,Γk) =
K

∑
k=1

λ1||P1 ∗Mk||1+
K

∑
k=1

λ2||P2 ∗Ωk||1+
K

∑
k=1

λ3||P3 ∗Γk||1
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ABSTRACT: In recent years we are witnessing to an increased attention towards meth-
ods for clustering matrix-valued data. In this framework, matrix Gaussian mixture
models constitute a natural extension of the model-based clustering strategies. Regret-
tably, the overparametrization issues, already affecting the vector-valued framework
in high-dimensional scenarios, are even more troublesome for matrix mixtures. In
this work we introduce a sparse model-based clustering procedure conceived for the
matrix-variate context. We introduce a penalized estimation scheme which, by shrink-
ing some of the parameters towards zero, produces parsimonious solutions when the
dimensions increase. Moreover it allows cluster-wise sparsity, possibly easing the
interpretation and providing richer insights on the analyzed dataset.
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1 Introduction

Model-based clustering represents a well established framework to cluster mul-
tivariate data. When dealing with continuous data, the generative mechanism
is routinely described by means of Gaussian Mixture Models (GMMs). Par-
titions are obtained by exploiting the one-to-one correspondence between the
groups and the components of the mixture. This approach has been used in
many different applications; nonetheless GMMs tend to be over-parameterized
in high-dimensional settings where their usefulness might be jeopardized.

This problem complicates even further in three-way data scenarios, where
multiple variables are measured on different occasions for the considered units.
Here matrix-variate distributions have often been used and embedded in the
mixtures framework, thus providing a valid solution when partitions of matri-
ces are required (Viroli, 2011). In spite of its strenght points, this approach

is dramatically over-parameterized even in moderate dimensions. Therefore,
we propose a penalized model-based clustering strategy in the matrix-variate
framework. Our approach reduces the number of parameters to be estimated,
by shrinking some of them towards zero, and possibly leads to a gain in terms
of interpretability. The rest of the paper is organized as follows. In Section 2
we introduce matrix Gaussian mixture models (MGMMs) and we outline our
proposal. An application to real world data is reported in Section 3 alongside
with some concluding remarks and possible future research directions.

2 Penalized matrix-variate mixture model

Let X = {X1, . . . ,Xn} be a set of n matrices with Xi ∈Rp×q. MGMM provides
an extension of the GMM when clustering of matrices are needed. The density
of Xi is then expressed as follows

f (Xi;Θ) =
K

∑
k=1

τkφ(p×q)(Xi;Mk,Ωk,Γk) (1)

where Θ = {τk,Mk,Ωk,Γk}K
k=1, τk’s are the mixing proportions, with τk > 0

and ∑k τk = 1. On the other hand φ(p×q)(Xi;Mk,Ωk,Γk) denotes the density of
a p× q matrix normal distribution where Mk ∈ Rp×q is the mean of the k-th
component while Ωk ∈ Rp×p and Γk ∈ Rq×q represent respectively the rows
and the columns component precision matrices.
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p and q, endangering the pratical usefulness of the model. Recently some
solutions have been proposed, trying to overcome this issue (see Wang & Mel-
nykov, 2020 and Sarkar et al. , 2020). These approaches present some draw-
backs as they are computationally intensive and as they implement a rigid way
to induce parsimony. Therefore in this work we take a different path, adopting
a penalized estimation approach which implicitly assumes that Mk,Ωk,Γk, for
k = 1, . . . ,K, possess some degree of sparsity.

To this aim, we introduce a penalized likelihood strategy to obtain Θ̂. The
log-likelihood function to be maximized is defined as

�(Θ;X) =
n

∑
i=1

log

{
K

∑
k=1

τkφp×q(Xi;Mk,Ωk,Γk)

}
− pλ1,λ2,λ3(Mk,Ωk,Γk) (2)

with the penalization term pλ1,λ2,λ3(Mk,Ωk,Γk) equals to

pλ1,λ2,λ3(Mk,Ωk,Γk) =
K

∑
k=1

λ1||P1 ∗Mk||1+
K

∑
k=1

λ2||P2 ∗Ωk||1+
K

∑
k=1

λ3||P3 ∗Γk||1
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Table 1. Adjusted Rand Index (ARI) and number of free estimated parameters for three
clustering procedures.

Sparsemixmat Sarkar et al. , 2020 GMM
ARI 0.7883 0.7772 0.3841
# of parameters 218 275 850

P1,P2,P3 are matrices with non-negative entries, ||A||1 = ∑ jh |A jh|, λ1,λ2,λ3
are the penalization parameters while ∗ denotes the element-wise product.
To estimate Θ, we devise an ad-hoc EM-algorithm which maximizes the pe-
nalized complete data log-likelihood associated with (2). The E-step computes
class membership a posteriori probabilities via the standard updating formula.
On the other hand the M-step consists of three partial optimization cycles. An
estimate for Mk is obtained by means of a cell-wise coordinate ascent algorithm
while, to estimate Ωk and Γk, we propose a suitable modification of the graphi-
cal LASSO (Friedman et al. , 2008). The resulting model, inducing sparsity in
the precision matrices, accounts for cluster-wise conditional independence pat-
terns, which might ease the interpretation of the results, and possibly provides
indications about irrelevant variables. Moreover the number of parameters is
reduced without imposing rigid structures.

3 Application and concluding remarks

We employ the procedure outlined in Section 2 to obtain a partition of the
Landsat satellite data, where n = 845 matrices, with dimensions 4× 9, com-
ing from three different classes are available (see Viroli, 2011 for a detailed
description). In Table 1 we report the results obtained with the proposed pro-
cedure (Sparsemixmat) and with two plausible competitors being the approach
by Sarkar et al. , 2020 and the standard GMM applied to the unfolded two-way
representation of the data. Our model outperforms the competitors, when re-
covering the true clustering structure is the aim. Furthermore, we provide the
most parsimonious solution, displaying the lowest number of non zero esti-
mated parameters. The retrieved sparse matrix structures are graphically dis-
played, for the three classes, in Figure 1. While the clustering is mainly driven
by the different patterns in Mk’s, the Γk’s are the ones showing the highest
degree of sparsity, with different intensities for the three classes.

The promising results obtained in the application demonstrate how the pe-
nalized matrix-variate mixture model proposed in this work might alleviate
the flaws of standard three-way data clustering in high-dimensional scenarios.
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Figure 1. Sparsely estimated Mk (upper plots), Ωk (middle plots) and Γk (lower plots)
for k = 1,2,3. Entries that are shrunk to 0 by the estimator are highlighted with an ×.

Our proposal is able to effectively reduce the number of parameters to esti-
mate while, at the same time, flexibly accounting for different relationships
among the variables and for different level of sparsity across the groups. Fu-
ture research directions would focus on the derivation of an appropriate model
selection procedure, determining jointly reasonable values for the penalty co-
efficients as well as for the number of mixture components.
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ABSTRACT: Depending on the selected hyper-parameters, cluster weighted modeling
may produce a set of diverse solutions. Particularly, the user can manually specify the
number of mixture components, the degree of heteroscedasticity of the clusters in the
explanatory variables and of the errors around the regression lines. In addition, when
performing robust inference, the level of impartial trimming enforced in the estimation
needs to be selected. This flexibility gives rise to a variety of “legitimate” solutions. To
mitigate the problem of model selection, we propose a two stage monitoring procedure
to identify a set of “good models”. An application to the benchmark tone perception
data showcases the benefits of the approach.

KEYWORDS: Cluster-weighted modeling, Outliers, Trimmed BIC, Eigenvalue con-
straint, Monitoring, Constrained estimation, Model-based clustering.

1 Introduction and model preliminaries

Assume to have observed a dataset {xi,yi}n
i=1 of n i.i.d. samples, where the

regression on Y varies across G groups, based on a vector X of explanatory
variables with values in Rd . Within this framework, the Gaussian Cluster
Weighted Robust Model (Garcı́a-Escudero et al., 2017) is based on the con-
strained maximization of the trimmed log-likelihood:

�trimmed(Θ|X,Y ) =
n

∑
i=1

z(xi,yi) log

[
G

∑
g=1

πgφ(yi;b′
gxi +b0

g,σ
2
g)φd(xi;µg,Σg)

]
,

(1)

subject to: λl1(Σg1)≤ cX λl2(Σg2) for every 1≤ l1 �= l2 ≤ d, 1≤ g1 �= g2 ≤G and
σ2

g1
≤ cyσ2

g2
for every 1 ≤ g1 �= g2 ≤ G. The 0-1 trimming indicator function

z(·, ·) tells us whether observation (xi,yi) is trimmed off, with trimming level
α% of observations being left unassigned by setting ∑n

i=1 z(xi,yi)= �n(1−α)�.
The set {λl(Σg)}l=1,...,d denotes the eigenvalues of the scatter matrices Σg and
the constants cX and cy are respectively finite real numbers such that cX ≥ 1
and cy ≥ 1.

2 Tone perception data application
The tone perception dataset (De Veaux, 1989) is employed as a case study to
illustrate the proposed two-step monitoring procedure. In the first step, ded-
icated graphical and exploratory tools are employed for determining one or
more plausible values for the trimming level α. Specifically, group proportion
(black bars denote the trimmed units), total sum of squares decomposition (In-
grassia & Punzo, 2020), regression coefficients, standard deviations, cluster
volumes and Adjusted Rand Index (ARI) between consecutive cluster alloca-
tions are monitored within a grid of αs, as reported in Figure 1. For each
trimming level, the best model is selected according to a novel penalized like-
lihood criterion tailored for the CWRM framework, building upon the proposal
developed in Cerioli et al., 2018 for Gaussian mixtures. As it is clearly visible
for the plots in Figure 1, model parameters stabilize as soon as α is set higher
than 0.08, a value sufficient to trim off the level of contamination known to be
present in this dataset (Garcı́a-Escudero et al., 2017).

In the second stage, conditioning on the α selected in the previous step,
solutions stability and validity are fully investigated varying hyper-parameters
in E0 = {(G,cX ,cy) : G = 1, ...,4,cX ,cy = 21, ...,25}, as reported in Figure 2.
Darker and lighter opacity cells respectively indicate the sets of Bt best and
St stable solutions, for each optimal solution t, t = 1 . . . ,4, where optimality
is in the sense of the penalized criterion. The former set includes solutions
ARI-similar to the optimal and not worse than the next optimal, while the lat-
ter encompasses all solutions ARI-similar to the optimal, such that Bt ⊆ St .
In this example, solutions are assumed to be ARI-similar if the ARI between
the estimated partitions is higher than 0.7. It is interesting to notice that the
CWRM favors models with higher number of clusters with respect to the ac-
cepted truth of G = 2 (fourth optimal solution, stable in the entire grid of cX
and cy). The reason being that, contrarily to the standard mixture of regres-
sion, the CWRM treats the covariate as random, thus allowing the learning of
group-wise different distributions in the explanatory variable (Figure 3).

We have demonstrated the adequacy of our monitoring procedure in aiding
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Figure 1: Step 1, monitoring the choice of a plausible trimming level α, tone
perception data.
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Figure 2: Step 2: monitoring optimal solutions, in terms of validity and stabil-
ity. Trimming level α = 0.08, tone perception data.

practitioners in the hyper-parameters selection when fitting CWRM. Further-
more, by exploring the space of solutions a deeper understanding of the data
structure is achieved, uncovering sometimes unexpected yet valuable results.
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Figure 3: Estimated density on the explanatory variable, first optimal solution.
Trimming level α = 0.08, tone perception data.
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Figure 1: Step 1, monitoring the choice of a plausible trimming level α, tone
perception data.
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practitioners in the hyper-parameters selection when fitting CWRM. Further-
more, by exploring the space of solutions a deeper understanding of the data
structure is achieved, uncovering sometimes unexpected yet valuable results.
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Trimming level α = 0.08, tone perception data.
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ABSTRACT: This paper shows the preliminary results of a simulation study devoted
to comparing, in a multi-class classification setting, three classifiers that transform the
probabilities produced by a probabilistic classifier into a single class: the usual Bayes
Classifier and the new Max Difference Classifier and Max Ratio Classifier. As well
known, the Bayes Classifier has some limits with rare classes, whereas the proposed
Max Difference and Max Ratio Classifiers seem to represent better alternatives.

KEYWORDS: categorical classifier, polytomous variable, Bayes classifier

1 The proposed categorical classifiers and preliminary results

In machine learning, when dealing with a classification problem, it is possi-
ble to distinguish two aspects. The first one concerns the identification of a
so-called probabilistic classifier, which corresponds to a suitable method that
assigns a probability to all the categories that can be assumed by the target
variable. The second one regards the so-called categorical classifier, which
transforms the probabilities produced by the probabilistic classifier into a sin-
gle category. There is a large literature concerning how to find the best prob-
abilistic classifier in both the dichotomous and polytomous contexts, whereas
less attention was paid to the choice of the criterion to be used to pass from
the probabilistic to the categorical classifier. The Bayes Classifier (BC), which
assigns, based on the probabilistic classifier, a unit to the most likely cate-
gory, minimizes, on average, the test error rate (James et al., 2013), so it is
the optimal criterion if one is interested in the accuracy of the classification.
Nevertheless, this classifier favors the prevalent category most and in situa-
tions in which there is not a category of interest but all the categories have the
same relevance, the BC can not be the best choice. In previous papers (see,
for example, Golia & Carpita, 2020) the authors investigated the performances
of different categorical classifiers and they found one of them promising. In
this study this classifier, called Maximum Difference Classifier, is considered

jointly to a new proposal, denoted as Maximum Ratio Classifier. Both clas-
sifiers are based on the comparison between the predicted probabilities and
the sample frequencies. Let pri be the predicted probability of the category ai
(i = 1,2, . . . ,k) of the variable A, and let f ri be the corresponding frequency
computed from observed data. The Maximum Difference Classifier (MDC)
computes the deviations of pri from f ri and takes the category correspond-
ing to the maximum difference, that is: argmaxi∈(a1,a2,...,ak)(pri − f ri). This
classifier represents the extension of what proposed by Cramer (1999) for the
dichotomous case. The Maximum Ratio Classifier (MRC) computes the rel-
ative deviations of pri from f ri and takes the category corresponding to the
maximum ratio, that is: argmaxi∈(a1,a2,...,ak)(pri/ f ri). In order to evaluate the
predictive performance of a classifier, some indicators computed from the con-
fusion matrix can be used. In this study they are: the Sensitivity (Sen) and
the Specificity (Spe) of each category, the Maximum Distance Between Sensi-
tivities (MDBSen) and the Maximum Distance Between Specificities (MDB-
Spe), the Overall Accuracy (OvAc) and the Macro Average F1 score (MAF1)
(Raschka & Mirjalili, 2019). Seni (Spei) expresses how well the classifier rec-
ognizes a unit belonging (not belonging) to the category ai. MDBSen and
MDBSpe highlight the balanced or unbalanced ability of the classifier to as-
sign a unit to the right category, the lower the MDBSen and MDMSpe, the
more balanced the classification. The OvAc is the rate of correct classification
and it is the indicator maximized by BC. The MAF1 is another indicator to
measure the accuracy of the classifier and it is obtained as the average of the
F1 scores class-by-class. The choice of MAF1 instead of the weighted average
F1 score, is linked to the will to attribute the same relevance to all classes.

This study originates from a real classification problem related to the pre-
diction of the result of a soccer match from the home-team side (Golia &
Carpita, 2020), so the target variable admits three possible categories, which
own a natural order. However, wanting to consider a more general framework,
the variable to be predicted, considered in the present study, will be nominal.
In order to simulate the probability distribution of this nominal variable, the
trivariate Dirichlet random variable (r.v.) was used. This r.v. is determined
by three parameters, αA,αB and αC. Table 1 reports the values chosen in the
simulation study which is described below and the values of the mean and the
skewness of the marginals. The chosen sample size is 1200, which implies
that in the balanced case each category gets around 400 units. This sample
size is high, and the reason lies in the aim to investigate the performance of
the analyzed categorical classifiers in a less problematic framework, given that
they are working in a context of big samples. For each of these 1200 units the
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Table 1. Parameters of the Dirichlet r.v. and mean and skewness of the marginals

Condition αA αB αC M. XA M. XB M. XC Sk. XA Sk. XB Sk. XC
C1 10 10 10 0.333 0.333 0.333 0.246 0.246 0.246
C2 2 5 10 0.118 0.294 0.588 1.060 0.404 -0.160
C3 5 5 10 0.250 0.250 0.500 0.481 0.481 0.000
C4 2 10 10 0.091 0.455 0.455 1.137 0.073 0.073

probability distribution of the target variable is simulated from the trivariate
Dirichlet r.v. The use of the set of these three probabilities was twofold; first,
a realization of this random variable was extracted and it represents the actual
(observed) value of the target variable, second, the same set of probabilities
was considered as the output of a probabilistic classifier for the target variable.
Then, the BC, MDC and MRC were applied, the predicted classifications for
the 1200 units were obtained and the performance indicators previously de-
scribed were calculated. This scheme was repeated 1000 times and the mean
values of the indicators, with standard deviation in parenthesis, are reported in
Table 2. When all the three categories are equally represented in the popula-
tion, as in condition C1, the three categorical classifiers perform in the same
way. When one category is rare, as in conditions C2 and C4, BC is not able
to recognize it, whereas MDC and MRC have a certain ability in doing it, and
in general, Sen and Spe are more balanced when MDC and MRC are used.
Moreover, as expected, BC performs better for OvAc, but MDC and MRC
have higher MAF1. So, concluding, this first simulation study reveals that, in
a multi-class setting, giving equal importance to all the classes (i.e. different
types of mis-classification do not involve different costs) both MDC and MDR
are preferable to BC.
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Table 2. Mean values of the indicators, with standard deviation in parenthesis

SenA SenB SenC MDBSen
BC 0.425 (0.03) 0.424 (0.03) 0.425 (0.03) 0.042 (0.02)

MDC 0.423 (0.06) 0.424 (0.06) 0.424 (0.06) 0.120 (0.06)
MRC 0.423 (0.07) 0.424 (0.06) 0.424 (0.06) 0.131 (0.07)

SpeA SpeB SpeC MDBSpe
BC 0.712 (0.02) 0.713 (0.02) 0.712 (0.02) 0.030 (0.02)

C1 MDC 0.712 (0.05) 0.711 (0.05) 0.712 (0.05) 0.103 (0.05)
MRC 0.712 (0.05) 0.711 (0.05) 0.712 (0.05) 0.112 (0.06)

OvAc MAF1
BC 0.425 (0.01) 0.424 (0.01)

MDC 0.422 (0.01) 0.421 (0.01)
MRC 0.421 (0.01) 0.420 (0.02)

SenA SenB SenC MDBSen
BC 0.015 (0.01) 0.150 (0.02) 0.939 (0.01) 0.924 (0.01)

MDC 0.444 (0.06) 0.489 (0.05) 0.483 (0.05) 0.109 (0.06)
MRC 0.572 (0.07) 0.458 (0.05) 0.403 (0.05) 0.189 (0.08)

SpeA SpeB SpeC MDBSpe
BC 0.997 (0.00) 0.936 (0.01) 0.139 (0.02) 0.858 (0.02)

C2 MDC 0.789 (0.03) 0.703 (0.04) 0.699 (0.04) 0.122 (0.05)
MRC 0.700 (0.04) 0.720 (0.04) 0.759 (0.04) 0.100 (0.05)

OvAc MAF1
BC 0.598 (0.01) 0.331 (0.02)

MDC 0.479 (0.02) 0.434 (0.02)
MRC 0.437 (0.03) 0.413 (0.02)

SenA SenB SenC MDBSen
BC 0.135 (0.02) 0.136 (0.02) 0.895 (0.01) 0.770 (0.02)

MDC 0.443 (0.05) 0.445 (0.05) 0.459 (0.05) 0.107 (0.06)
MRC 0.470 (0.06) 0.472 (0.06) 0.405 (0.05) 0.134 (0.07)

SpeA SpeB SpeC MDBSpe
BC 0.942 (0.01) 0.942 (0.01) 0.205 (0.02) 0.742 (0.02)

C3 MDC 0.734 (0.04) 0.732 (0.04) 0.702 (0.05) 0.090 (0.05)
MRC 0.711 (0.05) 0.710 (0.05) 0.744 (0.04) 0.101 (0.05)

OvAc MAF1
BC 0.514 (0.02) 0.359 (0.02)

MDC 0.449 (0.02) 0.436 (0.02)
MRC 0.436 (0.02) 0.429 (0.02)

SenA SenB SenC MDBSen
BC 0.004 (0.01) 0.586 (0.02) 0.588 (0.02) 0.595 (0.02)

MDC 0.409 (0.06) 0.476 (0.05) 0.482 (0.06) 0.131 (0.06)
MRC 0.590 (0.07) 0.401 (0.05) 0.407 (0.05) 0.224 (0.09)

SpeA SpeB SpeC MDBSpe
BC 0.999 (0.00) 0.574 (0.02) 0.573 (0.02) 0.438 (0.02)

C4 MDC 0.806 (0.03) 0.681 (0.05) 0.675 (0.05) 0.166 (0.05)
MRC 0.682 (0.05) 0.736 (0.05) 0.731 (0.04) 0.107 (0.06)

OvAc MAF1
BC 0.534 (0.01) 0.320 (0.09)

MDC 0.471 (0.02) 0.422 (0.02)
MRC 0.419 (0.03) 0.393 (0.02)
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ABSTRACT: Estimating the size of animal populations in a given area is of particular
interest in ecological studies on wildlife conservation, and this task is commonly
handled via capture-recapture methods. A recent work (Pace et al., 2021) adopts a
two-step approach for identifying groups of animals with similar site-fidelity patterns -
according to specific metrics - and estimating the abundance of bottlenose dolphins
between 2017 and 2020 at the Tiber Estuary (Mediterranean Sea, Rome, Italy). In this
work, we aim at simultaneously classifying individuals and estimating their abundance
in the study area, by introducing finite mixtures within the Open-Population Jolly-Seber
framework. In capture-recapture analyses, finite mixture models allow to account for
groups heterogeneity and to reduce the bias in the final abundance estimates (Pledger,
2005).

KEYWORDS: Capture-recapture analysis, Wildlife population, Finite mixture models,
Unsupervised classification, Applied statistics

1 Introduction

Capture-recapture methods are widely employed in estimating the size of
wildlife populations, whose units are subject to multiple captures across several
occasions. We will use the terms capture and recapture in accordance with
the classical literature (Seber, 1986), but animals are not necessarily captured:
nowadays, non-invasive ways of keeping trace of a wild animal over time are
successfully employed. In that spirit, for example, Pace et al. (2021) employs

photo-identification for identifying bottlenose dolphins from natural markings
present on their bodies. In the same paper an interesting characteristic of this
type of animals is illustrated: marked individuals may show a different level of
site-fidelity. This point introduces the need of defining a statistical protocol or a
specific model accounting for the different probabilities of capture among the
categories. Here, we propose a method that allows both to differentiate between
resident and non-resident individuals and to estimate the population abundance
in a common modelling framework. This improves on the original multi-
step protocols (see Pace et al., 2021) in guaranteeing the correct uncertainty
propagation of the two estimation processes.

2 The model

We consider the Schwarz & Arnason (1996)’s formalization of the Jolly-Seber
model, which assumes the existence of a super-population, representing the
set of individuals potentially available in the study area between the first and
the last sampling period. In Jolly-Seber-type models, captures are assumed to
be independent across individuals and along time. Moreover, the population
is assumed to be open, meaning that individuals can either enter (e.g. birth or
immigration) or exit (e.g. death or emigration) the population during the study.
Notably, we assume that individuals leaving the population cannot come back
in it. Here, we adopt the Bayesian framework illustrated by Royle & Dorazio
(2012), where the super-population size (Nsuper) is provided with a discrete
uniform distribution in the interval {0, ...,M}, with M sufficiently large. The
hyperparameter M can be seen as an upper bound for the super-population size
and it implies the use of an augmented dataset of M individuals. Moreover, we
consider a sampling scheme divided in T periods and, for each time t = 1, . . . ,T ,
a number Jt of capture sessions. Thus, the augmented data matrix Y = [yit ] has
M rows and T columns and contains the capture frequency of each individual
in each period. If D is the number of individuals that have been observed at
least once, the matrix contains M−D rows of zeros: among them, Nsuper −D
rows correspond to individuals which belong to the super-population but have
never been captured, while M−Nsuper correspond to pseudo-individuals which
do not belong to the super-population.

Recruitment and survival process Population dynamics consisting in re-
cruitment and survival can be expressed through the following latent binary
variables:

• rit which is equal to 1 iff individual i is recruitable at time t;
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ABSTRACT: Estimating the size of animal populations in a given area is of particular
interest in ecological studies on wildlife conservation, and this task is commonly
handled via capture-recapture methods. A recent work (Pace et al., 2021) adopts a
two-step approach for identifying groups of animals with similar site-fidelity patterns -
according to specific metrics - and estimating the abundance of bottlenose dolphins
between 2017 and 2020 at the Tiber Estuary (Mediterranean Sea, Rome, Italy). In this
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in the study area, by introducing finite mixtures within the Open-Population Jolly-Seber
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2005).
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1 Introduction
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nowadays, non-invasive ways of keeping trace of a wild animal over time are
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photo-identification for identifying bottlenose dolphins from natural markings
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be independent across individuals and along time. Moreover, the population
is assumed to be open, meaning that individuals can either enter (e.g. birth or
immigration) or exit (e.g. death or emigration) the population during the study.
Notably, we assume that individuals leaving the population cannot come back
in it. Here, we adopt the Bayesian framework illustrated by Royle & Dorazio
(2012), where the super-population size (Nsuper) is provided with a discrete
uniform distribution in the interval {0, ...,M}, with M sufficiently large. The
hyperparameter M can be seen as an upper bound for the super-population size
and it implies the use of an augmented dataset of M individuals. Moreover, we
consider a sampling scheme divided in T periods and, for each time t = 1, . . . ,T ,
a number Jt of capture sessions. Thus, the augmented data matrix Y = [yit ] has
M rows and T columns and contains the capture frequency of each individual
in each period. If D is the number of individuals that have been observed at
least once, the matrix contains M−D rows of zeros: among them, Nsuper −D
rows correspond to individuals which belong to the super-population but have
never been captured, while M−Nsuper correspond to pseudo-individuals which
do not belong to the super-population.

Recruitment and survival process Population dynamics consisting in re-
cruitment and survival can be expressed through the following latent binary
variables:

• rit which is equal to 1 iff individual i is recruitable at time t;
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• zit which is equal to 1 iff individual i belongs to the population at time t.
Let φt be the probability of remaining in the population at time t, being in
the population at time t −1, and let ρt be the probability of belonging to the
super-population and being recruited into the population at time t. Without loss
of generality, in this context we assume these two parameters to be constant
over time, i.e. φt = φ and ρt = ρ. Following Royle & Dorazio (2012), it can be
proved that, for i = 1, . . . ,M, ri1 = 1 and zi1 ∼ Bern(ρ) , and

rit = min{ri,t−1,1− zi,t−1}, t > 1

zit |zi,t−1,rit ∼ Bern(φ · zi,t−1 +ρ · rit), t > 1.

Notice that when an individual becomes part of the population, it cannot be
recruitable any more: for t > 1, rit and zit cannot simultaneously be equal to 1.

Detection process In this work, we consider a finite mixture model in order
to model the different propensity to the capture among different groups of
individuals. The generic element of the augmented data matrix is such that

yit |zit ,ci = g ∼ Binom(Jt , pg · zit), g = 1 . . . ,G ,

with pg being the capture probability of individuals in group g and P(ci = g) =
wg being the probability that the i-th individual belongs to the g-th mixture
component. Notice that yit = 0 almost surely when zit = 0, so that the previous
model corresponds to a finite mixture of zero-inflated binomial distributions.

Abundance estimation The population size at time t and the super-population
size can be estimated through the latent variables z’s, namely, Nt = ∑M

i=1 zit and
Nsuper = ∑M

i=1 1{∑T
t=1 zit>0} .

3 Illustration

A graphical visualization of the main components of the model is provided by
the DAG in Figure 1. The model is used to estimate the abundance of bottlenose
dolphins between 2017 and 2020 at the Tiber Estuary (Mediterranean Sea,
Rome, Italy) and identifying groups of animals with different propensities to
the capture: individuals with a low detection probability are considered non-
resident, while the others are considered resident. The model is implemented
using JAGS (Plummer, 2003) and the results will be shown in details during the
conference.
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Figure 1. Bayesian DAG with the main components of the model. White rhombi repre-
sent deterministic variables. White circles represent latent variables and parameters.
Grey circles represents observable variables.
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ABSTRACT: Complex multidimensional concepts are often explained by a tree-shape
structure by considering nested partitions of variables, where each variable group is
associated with a specific concept. Recalling that relations among variables can be
detected by their covariance matrix, this paper introduces a covariance structure that
reconstructs hierarchical relationships among variables highlighting three features of
the variable groups. We finally present an application of the latter covariance structure
to the model-based clustering.
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1 Introduction

The main goal of Factor Analysis (FA, Spearman, 1904) is to reconstruct the
covariance matrix of variables by computing a reduced number of factors
while preserving as much information as possible. However, since FA is
unable to reconstruct hierarchical relations, a model with a hierarchical form is
therefore required. Among several models based on the sequential application
of FA addressing the same problem, Cavicchia et al. (2020) proposed a model
to reconstruct a nonnegative correlation matrix via an ultrametric one. The
model results in a simultaneous procedure which is able both to detect the best
variable partition in a reduced number of groups and build the hierarchy upon
them. The latter model ensues particularly suitable for complex hierarchical
multidimensional concepts due to the one-to-one relation between a hierarchy
of concepts and an ultrametric correlation matrix (Dellacherie et al., 2014).
Our paper overcomes the limitations of the model presented by Cavicchia et al.
(2020) extending the same idea to a general covariance matrix and applies
this special covariance structure in the Gaussian Mixture Models (GMMs)
framework.

Since GMMs can easily fall into the so-called “curse of dimensionality”
because of the large number of parameters dedicated to covariance structures,
in the specialized literature several different parametrizations are present. One
of the most used is the eigen-decomposition (Banfield & Raftery, 1993) of the
form ΣΣΣ = λDAD′, where λ is a scalar determining the cluster volume, A is a
diagonal matrix controlling the cluster shape, and D is an orthogonal matrix
which specifies the cluster orientation. Another parameterization is proper of
the mixture of factor analyzers (Ghahramani & Hilton, 1997) and assumes a
cluster covariance structure of the form ΣΣΣ = ΛΛΛΛΛΛ′+ΨΨΨ, where p is the number of
variables, Q is the number of factors, ΛΛΛ is the p×Q factor loading matrix and ΨΨΨ
is the p-dimensional diagonal covariance matrix of the error. Our proposal aims
to implement a new parameterization of a covariance matrix via a hierarchical
covariance one for each cluster that can be extremely parsimonious.

2 Features of the covariance structure

Multidimensional phenomena are often composed of nested dimensions charac-
terized by distinct levels of abstraction. Each dimension is uniquely connected
to a group of variables and represents a specific concept. Merging two dimen-
sions together gives rise to a broader dimension up to the general one such
that the hierarchical structure underlying a multidimensional phenomenon is
detected. In order to model the hierarchical relationships among the dimen-
sions, we introduce three main features of a variable group: the variance of
the variable group, the covariance within the variable group, which measures
the internal concordance among variables belonging to the same group, and
the covariance between concepts associated with the variable groups. These
features are constrained to be “ordered” such that the variance of the groups is
greater (in the absolute sense) than the covariance within or between groups,
whereas the covariance within groups must be in turn larger than the covariance
between groups. These constraints allow to define a hierarchical structure of
concepts, from the most concordant to the most discordant. The last aggrega-
tions in the hierarchy may occur between: (i) concordant concepts defining a
general one; (ii) discordant concepts with negative between-group covariance;
(iii) uncorrelated concepts.

Given the number of specific dimensions Q which underlie the multidimen-
sional phenomenon, each level q = Q, . . . ,1 of the hierarchy is characterized
by: (i) the p×q membership matrix Vq, which pinpoints the membership of
each variable to a group; (ii) the diagonal matrix SV

q of order q, whose main
diagonal represents the variance of each group; (iii) the diagonal matrix SW

q
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of order q, whose main diagonal represents the covariance within each group;
(iv) the ultrametric matrix SB

q of order q, whose diagonal entries are set to zero
and off-diagonal ones represent the hierarchical relationships between pairs of
concepts. Given Vq, the estimates of the matrices SV

q , SW
q and SB

q are

Ŝ
V
q = (V̂

′
qV̂q)

−1V̂
′
qdiag(S)V̂q, (1)

Ŝ
W
q = [(V̂

′
qV̂q)

2 − V̂
′
qV̂q]

−1diag
[
V̂
′
q

(
S−diag(V̂qŜ

V
q V̂

′
q)
)

V̂q

]
, (2)

Ŝ
B
q = V̂

+

q S(V̂
′
q)

+, (3)

respectively, where S represents the p× p observed covariance matrix, Ip is
the identity matrix of order p and diag(·) denotes the diagonal matrix whose
diagonal elements are those of a parenthesized one.

We implement the parameterization of the covariance matrix based on the
aforementioned quantities into the GMMs in order to simultaneously detect ho-
mogeneous clusters of units and a hierarchical definition of a multidimensional
phenomenon.

3 Application

Our proposal is applied on the “Human Development Index” dataset* which
consists of 167 countries and 9 variables. The optimal model in terms of
Bayesian Information Criterion (BIC, Schwarz, 1978) considers 3 clusters of
countries (Fig. 1) and 3 groups of variables. It is worth highlighting that
the model requires 71 parameters to be estimated, of which only 14 for each
covariance structure. The first cluster is characterized by the countries with
high income, gdp per capita and very low child mortality. The second cluster
is constituted by the poorest countries with low life expectancy and income,
whereas the third one is composed by countries with median performances.
Each cluster is characterized by a different hierarchy of the latent concepts
associated with the three groups of variables. The group made by the economic
variables (income, gdp, exports and imports) in Cluster 1 is the one with the
highest value of internal variance, whereas the same group in Cluster 3 is
merged with the group considering child mortality and fertility and has the
highest covariance within the group. Notwithstanding the latent concepts and
their hierarchical relationships are specific per cluster, all the hierarchies end

*https://www.kaggle.com/rohan0301/unsupervised-learning-on-country-data

Figure 1: Clusters of countries: Cluster 1 (red), Cluster 2 (yellow) and Cluster
3 (blue)

with a negative between-group covariance highlighting the absence of a unique
concordant general concept.

4 Conclusions

This paper proposes a parsimonious GMM which aims at modeling multidi-
mensional phenomena, usually defined by hierarchically nested latent concepts.
The application of the method on real data shows its potentialities.
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V
q V̂

′
q)
)

V̂q

]
, (2)

Ŝ
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curve. Indeed, Lorenz curve and its derivative, the so-called share density, provides
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1 Lorenz curve and share density

In economic literature, Lorenz curve is a well-known and widely used tool for
analysing income inequality. Since its proposal, in 1905 (Lorenz, 1905), a lot
of investigation has been suggested among statisticians and economists, gen-
erating a fertile field of study. Conversely, Lorenz density is rarely explicitly
mentioned. One of the few reference to Lorenz density can be found in Farris,
2010, where this curve is referred as share density. Afterwards, the concept of
Lorenz density is resumed in Zizler, 2014, in Kämpke & Radermacher, 2015
and Shao, 2021. Actually, it is known that each Lorenz curve L(u) (u ∈ [0,1])
can be viewed as a distribution function on the unit interval, therefore it is
possible to consider it’s derivative with respect to u, l(u) = L′(u), as a den-
sity function. It is worth to note that, this density function furnishes different
information regarding income inequality, as suggested by Rohde, 2008, who
has shown that the two well-known Theil’s inequalities indexes, L and T , can
be directly obtained from l(u). In particular, Theil’s T index coincides with
Shannon entropy, changed in sign, of l(u). In this perspective, it arises natural
to compare different groups of income earners in terms of inequality, by quan-
tifying the dissimilarity between share densities through a proper measure.

2 Jensen-Shannon divergence between share densities

The Jensen-Shannon divergence (JSD), also called total divergence to the aver-
age, is a well known measure of dissimilarity among probability distributions.
It can be obtainined starting from the Kullback–Leibler divergence, consider-
ing K densities f1, ..., fK and their mixture m = ∑K

k=1 πk · fk with πk ∈ [0,1], as
follows:

DJS( f1, ..., fK) =
K

∑
k=1

πk ·DKL( fk||m) (1)

where

DKL ( fk||m) =
∫

X
fk (x) log

fk (x)
m(x)

dx. (2)

Alternatively, expression (1) can be rewritten in terms of Shannon entropy H,
as follows:

DJS( f1, ..., fK) = H(m)−
K

∑
k=1

πkH( fk) (3)

where H ( fk)=−
∫

X fk (x) log fk (x) dx. It is easy to prove that DJS( f1, ..., fK)≥
0 and equality holds when f1 = f2 = ...= fK . In addition, for two densities, it is
symmetric, i.e. DJS( f1|| f2) = DJS( f2|| f1), and then it is a bonafide measure of
dissimilarities between f1 (·) and f2 (·). Now, with the aim to analyse existing
differences among various groups of income earners, this dissimilarity mea-
sure will be considered in connection with the Lorenz density. Let L1, ...,LK
be the Lorenz curves corresponding to K different groups of income earners
and l1, ..., lK the corresponding derivatives with respect to u. Hence, the JSD
among lk densities (k = 1, ...,K) is given by:

DJS(l1, ..., lK) = H(lm)−
K

∑
k=1

πkH(lk) (4)

where lm = ∑K
k=1 πklk(u). To define the lm mixture density, the decomposi-

tion of Lorenz curve proposed by Bishop et al., 2003 is considered, so that πk
represents the income share for the k− th group. From (4), it is evident that
the JSD takes into account, for each share density, the whole function and its
entropy, so that it will be influenced by existing differences in tail inequality
among groups, as well as in concentration around the center of income dis-
tribution. Therefore, clustering procedures based on JSD will exploit these
discrepancies.
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3 Clustering income data: an application

In this section, data from the Survey on Households Income and Wealth (SHIW),
carried out by Bank of Italy in 2016, are considered. To take into account the
composition of households, equivalent income are obtained, using the OECD-
modified equivalent scale. The Dagum distribution (Dagum, 1977) is used to
model income and to obtain the expressions of Lorenz curves, Lk(u), and share
densities, lk(u), for each region (k = 1, ...,20). For this model, a closed expres-
sion for H(lk) function is obtained. This result (not reported for space reason)
agrees, unless the sign, with that reported in Chotikapanich et al., 2018 for
Theil’s T index, confirming the relation between T and H(l). Table 1 shows,

Table 1. Fitted means, entropy, Gini index and membership cluster for Italian regions

Regions µ̂k −Ĥ(lk) Ĝk Cluster

Piedmont 2.0797 0.1277 0.2751 1
Aosta Valley 2.3134 0.1195 0.2663 1
Veneto 1.9739 0.1244 0.2706 1
Friuli 2.3140 0.1226 0.2693 1
Emilia Romagna 2.3971 0.1141 0.2602 1
Tuscany 2.3648 0.1131 0.2588 1
Abruzzo 1.9542 0.1237 0.2717 1
Calabria 1.3472 0.1425 0.2910 1
Sardinia 1.5772 0.1361 0.2843 1
Lombardy 2.4798 0.1632 0.3064 2
Molise 1.7789 0.1873 0.3294 2
Campania 1.3461 0.1815 0.3252 2
Apulia 1.4558 0.1557 0.3026 2
Basilicata 1.5191 0.1850 0.3287 2
Sicily 1.4610 0.1633 0.3071 2
Trentino 2.2247 0.1008 0.2408 3
Liguria 2.2482 0.1356 0.2782 3
Umbria 1.9897 0.1024 0.2456 3
Marche 2.1809 0.1053 0.2475 3
Lazio 1.9972 0.1437 0.2883 3

for each Italian region, the estimates for average income (µ̂k, in tens of thou-
sands of euros), entropy (Ĥ(lk)) and Gini index (Ĝk). Furthermore, the mem-

bership cluster is reported. In order to obtain this partition, elements DJS(li, l j)
(i, j = 1, ...,20) of dissimilarity matrix D are computed from expression (4).
Here, numerical integration method is used to compute H(lm). Then, a hierar-
chical clustering based on matrix D has been conducted, considering complete
agglomeration method and a final number of groups equal to 3. As we can
see from the results, clusters seem clearly characterized, with regions having
generally lower concentration of income belonging to cluster 1 and 3 and re-
gions with higher concentrations levels included in cluster 2. Furthermore, by
analysing more in depth the obtained results, it appears that this method allows
to gather together regions with similar behaviour in tail inequality (results not
reported), as well as similar values of Theil’s and Gini indexes.
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ABSTRACT: We present a Bayesian nonparametric group-dependent mixture model
for clustering. This is achieved by building a hierarchical structure, where the discrete-
ness of the shared base measure is exploited to cluster the data, between and within
groups. We study the properties of the group-dependent clustering structure based on
the latent parameters of the model. Furthermore, we obtain the joint distribution of
the clustering induced by the hierarchical mixture model and define the complete pos-
terior characterization of interest. We construct a Gibbs sampler to perform Bayesian
inference and measure performances on simulated and a real data.
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1 Introduction

In several statistical settings there is the need to model data organized in groups,
allowing for sharing of information across them. In the Bayesian framework,
this is achieved by hierarchical modeling, where the joint distribution of group-
specific parameters accounts for such dependence. For instance, in Bayesian
nonparametrics, the seminal work of Teh et al. , 2006 considered a mixture
model within each group j, where the group-specific parameter is the mixing
measure Pj and whose joint law is defined by an extra layer of hierarchy, yield-
ing to the hierarchical Dirichlet process. This approach has been extended to
the class of NRMI (Regazzini et al. , 2003) by Camerlenghi et al. , 2019 and
Argiento et al. , 2020. In the cited works, the mixing measure is infinite di-
mensional.

In this work, we propose a hierarchical model where the group-specific
mixing distribution belongs to the class of almost surely finite dimensional
distributions introduced by Argiento & Iorio, 2019. We assign the joint law
of the group-specific parameter such that the random measures within each
group share the same support. In this framework, it is possible to define a

group-dependent clustering as follows. First, an latent parameter θθθ j,i ∼ Pj for
individual i and group j is introduced. Second, since Pj is almost surely dis-
crete, ties within are expected, leading to a group-specific clustering. Finally,
since the Pj’s share same support, we expect also ties between groups, provid-
ing a global clustering. We are able to derive the joint law of the group-specific
clustering as well as the one of the global clustering. Such results allows to
build up a posterior sampling strategy based on the Gibbs sampler.

2 Model developments

Let y ji be the observed variable for group j, j = 1, . . . ,d, and individual i,
i = 1, . . . ,n j. We assume that the data in each group j come from a mixture of
M components, that is

y j1, . . . ,y jn j | w jl,τττl,M ∼
M

∑
l=1

w jl f (y ji | τττl), (1)

where f (y ji | τττl) is called kernel and is a parametric density over the sam-
pling space, w jm are the group-specific mixing weights and τττl are the ker-
nel parameters that are shared across groups. We assign a prior distribution
on the mixing weights by normalization, namely we define w jl =

S jl
Tj

, where

Tj = ∑M
l=1 S jl . Also, we assume a prior distribution on the number of compo-

nents, i.e., M ∼ q(m). Conditionally on M, S jl are independent positive random
variables with distribution h j(s), while τττl follows a prior distribution over Θ,
the parameter space of the kernel, that we denote p0(τττ).

As in Argiento & Iorio, 2019, the model can be framed in a Bayesian non-
parametric fashion. Indeed, q(M), h j(s) and p0(τττ) define the joint distribution
of a vector of almost sure discrete random measures P1, . . . ,Pd with support ΘΘΘ,
where

Pj =
M

∑
l=1

S jl

Tj
δτττl (θθθ), j = 1, . . . ,d (2)

with θθθ ∈ ΘΘΘ. We refer the joint distribution of P1, . . . ,Pd to as the Vector Nor-
malized Independent weights, i.e., V −NIw(q,h j, p0). Model (1) and the priors
described above can be rewritten in a hierarchical form as follows:

y ji | θθθ ji
ind∼ f (y ji | θθθ ji)

θθθ j1, . . . ,θθθ jn j | Pj
iid∼ Pj (3)

P1, . . . ,Pd | q,h, p0 ∼V −NIw(q,h j, p0).
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In this work, the kernel f (y | θθθ) represents the density of a univariate normal
distribution with parameter θθθ = (µ,σ2)⊤. We assume q(m) to be the p.m.f. of
a 1−shifted Poisson distribution with parameter Λ and h j(s) is the density of a
gamma distribution with shape parameter γi and rate equal to 1. Finally, p0(τττ)
is the density of a conjugate normal inverse gamma prior with parameters µ0,
κ0, ν0 and σ2

0.

3 Group-dependent clustering

The hierarchical model in (3) allows to define a group-dependent clustering
based on the latent variables θθθ ji. First, we introduce latent allocation variables
c ji such that c ji = m if θθθ ji = τm. Then, we denote M (a) the set of couples
( j,m) such that ∃i for which ci j = m and we define the number of allocated
columns as

M(a) = #
!

m : there exists one couple( j,m) ∈ M (a), j = 1, . . . ,d
"
.

We denote M (na) the complement of M (a). Hence, for every pair ( j,m), we
define n jm = #{( j, i) : c ji = m}. Note that
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{1, . . . ,M} such that ( j,c∗k) ∈ M (a).
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. . . ,A jM(a)}, where A jk = {( j, i) : ( j,c∗ki) ∈ M (a)} and k = 1, ...,M(a). In other
words, A jk is the set of data points of group j belonging to the k-th cluster.
Note that, a distinctive feature of our setting, is that A jk can be an empty set.
Nevertheless, if A jk = /0 appears in ρ j, it means that there is at least another
group j̃ such that A j̃k is not empty.

We build upon the work Argiento & Iorio, 2019 and James et al. , 2009 to
derive the joint distribution of the clustering ρ1, . . . ,ρd , induced by the hierar-

chical mixture model (3). This turns out to be:
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where ψγ j(u j) =
1

(u j+1)γ j is the Laplace transform of a gamma distribution with

shape γ j and rate equal to 1, while κγ j(n jk,u j) =
Γ(γ j+n jk)

Γ(γ j)
1

(u j+1)n jk+γ j is its rela-
tive cumulant function. The joint distribution in (4) enables us to build a Gibbs
sampler for sampling from the full posterior distribution. We omit here the
details for brevity. We will illustrate the performance of our model over a set
of simulated and real data.
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1 Introduction

In this work, we propose a novel technique in stock risk management through
the construction of an appropriate pure alpha strategy. To do this, we exploit
the Arbitrage Pricing Theory (APT) (Ross, 1976) that, given a market made
up of M stocks Ω = {1, ...,M}, explain the stocks returns X ( j), j ∈ Ω with
a collection of standard random variables common to all stocks called risk
factors Fi with i = 1, ...,n. So, let’s α( j) be the intercept and ε( j) the error:

X ( j) = α( j) +β( j)
1 F1 + ...+β( j)

n Fn + ε( j) (1)

So, the task is to identify an appropriate set of risk factors. In literature, there
are mainly two approaches: macroeconomic, which searches outside of the
data; statistical, which extracts the risk factors from the data itself. We fol-
low the statistical approach. A work of this type is that of Ladrón de Gue-
vara Cortés et al., 2019 that is the starting point for our model in that it uses

the hierarchical Neural Network Principal Component Analysis (hNNPCA).
As for time series clustering, we report the survey of Aghabozorgi et al., 2015.
In the second section, we show the data analysis techniques that we exploit. In
the third section, we propose our methodology for clustering and investment.
In the fourth section, we test our strategy on the Italian stock market.

2 Data Analysis Tools

2.1 Hierarchical Neural Network Principal Component Analysis

The hNNPCA is a technique of dimensionality reduction based on a neural
network (NN) with 5 layers, such that both input and output are Xt = [X ( j)

t ] j∈Ω.
The central layer has dimension n, equal to the number of series to be extracted,
known as principal components (PCs), and its neurons give us their value.
The loss function is E = ∑n

k=1 Ek, where Ek is the Mean Square Error (MSE)
calculated on the sub-NN obtained considering only the first k PCs.

2.2 Adaptive Least Absolute Shrinkage and Selection Operator

The Adaptive Least Absolute Shrinkage and Selection Operator (A-LASSO) is
a feature selection technique that adjusts the LASSO estimator weighting the
contribution of each coefficient, when computing the l1 norm, with a weight
that can be obtained from an Ordinary Least Squares (OLS) regression. Namely,
given a linear model with K observations and n inputs: X ( j) = ∑n

i=1 Fi,tβ
( j)
i +

ε( j)
t , the A-LASSO estimates the coefficients β( j) as the argmin of:

[
1
K

K

∑
t=1

(X ( j)
t −

n

∑
i=1

Fi,tβ
( j)
i )+λ

n

∑
i=1

|β( j)
i vi| ] vi = |β̂OLS,i|−τ, λ > 0, τ > 0 (2)

The A-LASSO is exploited only for feature selection, so its final results is
A j = {i ∈ {1, ...,n} s.t. β( j)

i �= 0}. As for the regression, we exploit that of
Fama and MacBeth (FMB) that is performed by dividing the train data into
subsets and averaging the OLS coefficients obtained in the subsets.

3 The Methodology
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3.1 Stocks Clustering

Firstly, we use the hNNPCA to obtain n PCs that, after the standardization
process, are used as risk factors in equation 1. The underlying idea is that not
all PCs affect the returns of all the stocks, so we apply the A-LASSO to per-
form feature selection. The hyperparameters λ and τ are set with grid-search
searching to minimize the estimate of the MSE provided by the 3-fold nested
cross-validation. In this stage we discard the combinations of hyperparameters
that save less than 2 or more than 4 PCs, to prevent strong regularizations or
complex models. So, for each stock j, we have a subset of PCs A j that re-
ally affects j returns. After introducing the equivalence relationship between
stocks j ∼ l ⇐⇒ A j = Al , the clusters are the equivalence classes of ∼.
Two strengths of our strategy are that we don’t need to know in advance the
number of clusters to create and we don’t need to establish a similarity mea-
sure between the considered time series. These are, according to Aghabozorgi,
difficult points in the traditional clustering algorithms. However, we have to
set λ and τ, and not all the obtained clusters are usable in practice.

3.2 Pure Alpha Strategy

Now, we use the clustering to obtain an investment strategy. Fix a class Ã ,
assume that |Ã | = n and consider a portfolio (equation 3) made up by n+
1 stocks in Ã (without loss of generality 0, ...,n + 1). The coefficients are
estimated with FMB and the weights γ( j) indicate the exposition on the stocks.

X (Port) =
n

∑
j=0

γ( j)X ( j) =
n

∑
j=0

γ( j)α( j) + ∑
i∈Ã

( n

∑
j=0

γ( j)β( j)
i

)
Fi +

n

∑
j=0

γ( j)ε( j) (3)

A pure alpha strategy is a portfolio (designed to reduce the riskiness) s.t. the
total exposition on the Fi is nil. Furthermore, for the law of large numbers, we
can neglect the contribution of the ε( j). So, to determine the weights, we im-
pose the l1 norm of Γ equal to 1 and we find that there are only two admissible
vectors of weights. We chose the one with the higher expected return.
If we have more than n+1 stocks in Ã , then we still consider portfolios made
up by n+1 stocks and we chose the one that maximizes the expected return.

4 A Real Application in Italian Stock Market

Now, we propose a real application in the Italian stock market. Ω is made up
of 30 stocks, whose time series are supplied by mercati.ilsole24ore.com. The

data are from 2010-10-26 to 2020-08-31 (train set) and from 2020-09-01 to
2020-12-31 (test set). We extract 6 PCs from the train set and we obtain 16
clusters (only 3 usable in the investment methodology). Then, the results of
the pure alpha strategy in the test set are compared with those of the Italian
Index FTSE MIB, see figure 1.

Figure 1. Portfolio (blue) vs FTSE MIB (orange) in the period 01/09/20 - 31/12/20

From the figure, we can see that the proposed investment methodology is quite
good. In fact, it achieves a profit (even if it isn’t as big as the FTSE MIB one),
and it seems to be safer than the index, with quite constant growth and less
downward peaks.
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1 Introduction

Segmentation trees have been attracting a great deal of attention as model com-
parison tools, with research mainly motivated by the fact that segmentation
trees allow identification of partitions of data characterised by different de-
pendency structures. Few algorithms have been proposed by the statistical
community that combine model estimation and segmentation trees, outside the
MOdel-based recursive partitioning (MOB) procedure proposed by Zelies et
al. (2008). In a new approach we generalize the pathmox algorithm developed
by Lamberti et al. (2016) to the context of linear regression models, using
a model comparison test to identify the most significant partitions (i.e., sub-
groups) in data. Further developments of the proposed approach will involve
extensions to other contexts such as quantile regression.

2 State-of-the-art

Analysis of a dependency model can be furthered by assessing whether a
model and/or the impact of regressors on dependent variables differ if hetero-
geneity is observed. In other words, it may be interesting to assess differences

between a global model estimated on the whole set of observations and mod-
els nbased on sub-groups identified on the basis of known categorical variables
external to the model. These variables may identify partitions characterised by
a dependency structure heterogeneity. The most popular approaches to com-
paring regression models rely on comparative statistical testing or on recursive
methods. The comparison approach consists of comparing coefficients related
to a model common to all the data (i.e., a restricted model representing a ho-
mogeneous situation) and another model that reflects the interactions between
categorical and predictor variables (i.e., an unrestricted model corresponding
to a heterogeneous situation). The comparison approach, which allows for
analysis of one categorical variable at a time, is reflected in the F-tests devel-
oped by Chow (1960) and Lebart et al. (1979), based on an assumption of the
normality of the residuals of the two models. Comparison is done by calcu-
lating restricted deviance (SSR0) and unrestricted deviance (SSR1). The latter
will be lower if interaction between categorical and predictor variables is sig-
nificant. Under the null hypothesis, if both types of deviance are equal, then
the categorical variables produce no differences in model coefficients. This
null hypothesis is tested by computing an F–statistic:

F =
(SSR0 −SSR1)/(n−2p)

SSR1/p
(1)

The recursive approach, based on multiple model comparisons, ranks vari-
ables that produce differences in the model coefficients. The outcome is a tree
where each node represents a model. Partitions are obtained by comparing the
effect of each categorical variable on the model coefficients and choosing the
partitions that produce the biggest differences. This approach requires a cri-
terion to quantify differences in the model coefficients. In case of the MOB
procedure this criterion is based on a fluctuation test that measures coefficient
instability (Zelies and Hornick, 2007) as caused by a categorical variable. High
instability points to a significant effect of the variable. Tree partitions are de-
fined according to the variables that produce the highest instability.

3 Pathmox in a nutshell

Pathmox (Lamberti et al., 2016), developed to detect heterogeneity in models,
is a recursive algorithm based on segmentation trees. While pathmox was in-
troduced in the context of partial least square structural equation modelling, it
can be generalized to other contexts when a suitable test for comparing models
is available. The algorithm applies binary segmentation principles to produce
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1 Introduction

Segmentation trees have been attracting a great deal of attention as model com-
parison tools, with research mainly motivated by the fact that segmentation
trees allow identification of partitions of data characterised by different de-
pendency structures. Few algorithms have been proposed by the statistical
community that combine model estimation and segmentation trees, outside the
MOdel-based recursive partitioning (MOB) procedure proposed by Zelies et
al. (2008). In a new approach we generalize the pathmox algorithm developed
by Lamberti et al. (2016) to the context of linear regression models, using
a model comparison test to identify the most significant partitions (i.e., sub-
groups) in data. Further developments of the proposed approach will involve
extensions to other contexts such as quantile regression.

2 State-of-the-art

Analysis of a dependency model can be furthered by assessing whether a
model and/or the impact of regressors on dependent variables differ if hetero-
geneity is observed. In other words, it may be interesting to assess differences

between a global model estimated on the whole set of observations and mod-
els nbased on sub-groups identified on the basis of known categorical variables
external to the model. These variables may identify partitions characterised by
a dependency structure heterogeneity. The most popular approaches to com-
paring regression models rely on comparative statistical testing or on recursive
methods. The comparison approach consists of comparing coefficients related
to a model common to all the data (i.e., a restricted model representing a ho-
mogeneous situation) and another model that reflects the interactions between
categorical and predictor variables (i.e., an unrestricted model corresponding
to a heterogeneous situation). The comparison approach, which allows for
analysis of one categorical variable at a time, is reflected in the F-tests devel-
oped by Chow (1960) and Lebart et al. (1979), based on an assumption of the
normality of the residuals of the two models. Comparison is done by calcu-
lating restricted deviance (SSR0) and unrestricted deviance (SSR1). The latter
will be lower if interaction between categorical and predictor variables is sig-
nificant. Under the null hypothesis, if both types of deviance are equal, then
the categorical variables produce no differences in model coefficients. This
null hypothesis is tested by computing an F–statistic:

F =
(SSR0 −SSR1)/(n−2p)

SSR1/p
(1)

The recursive approach, based on multiple model comparisons, ranks vari-
ables that produce differences in the model coefficients. The outcome is a tree
where each node represents a model. Partitions are obtained by comparing the
effect of each categorical variable on the model coefficients and choosing the
partitions that produce the biggest differences. This approach requires a cri-
terion to quantify differences in the model coefficients. In case of the MOB
procedure this criterion is based on a fluctuation test that measures coefficient
instability (Zelies and Hornick, 2007) as caused by a categorical variable. High
instability points to a significant effect of the variable. Tree partitions are de-
fined according to the variables that produce the highest instability.

3 Pathmox in a nutshell

Pathmox (Lamberti et al., 2016), developed to detect heterogeneity in models,
is a recursive algorithm based on segmentation trees. While pathmox was in-
troduced in the context of partial least square structural equation modelling, it
can be generalized to other contexts when a suitable test for comparing models
is available. The algorithm applies binary segmentation principles to produce
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a tree with different models in each node. It starts by fitting a global model
to all the data (i.e., the tree root) and identifies models with the most signif-
icant differences in child nodes. The most different models are identified by
minimizing the sum of the squares of the residuals of the models estimated
in each child node. The available data are recursively partitioned according
to categorical variables – not included in the model – that yield the most sig-
nificant differences in the child nodes. Partitions are identified using a test
that determines the degree of difference between two compared sub-models.
Finally, pathmox avoids overfitting using stopping rules based on maximum
depth, minimum node size and non-significance of the partitioning criterion.
As the partitioning criterion we propose the hypothesis test as proposed by
Lebart et al. (1979) and Chow (1960) to compare two linear regression mod-
els.

4 Employee satisfaction: a pathmox application

Using data referring to an organizational study of 2,000 employees in a Spanish
financial institution, we applied the pathmox approach in an empirical analy-
sis of the impact of work climate satisfaction on overall employee satisfaction.
Overall satisfaction and specific work climate aspects (empowerment, com-
pany reputation, supervisor leadership, pay and work conditions) were scored
on a 5-point Likert scale. The following categorical variables, reflecting spe-
cific employee characteristics, were considered as potential sources of hetero-
geneity: age (<31, 31-45, >45 years), gender, marital status (married, not
married), education (secondary, graduate, post-graduate), job grade (low, in-
termediate, high) and antiquity in the organization (<2004, 2005-2009, 2009-
2014, >2014).

Pathmox analysis results are reported in Figure 1 and Table 1. We set
maximum depth to two levels, bounded the final number of segments to a
maximum of four and set the minimum admissible node size to 10% of the
total sample. The significance threshold for the partitioning algorithm was
p=0.05. The pathmox algorithm identified job grade as the variable with the
greatest power, distinguishing between low-intermediate grade and high grade
employees (LM1 and LM2, respectively). LM1 (low-intermediate grade) was
further differentiated according to antiquity. On the basis of job grade com-
bined with antiquity, we could characterise partitions and assign labels to sub-
groups. Thus, LM2 can be defined as the group of managers, LM3 as senior
employees and LM4 as junior employees. Finally, the global model coeffi-
cients were compared with the coefficients for the three models estimated for

the sub-samples identified by the terminal nodes (Table 1), showing that, in
terms of satisfaction, managers primarily valued empowerment followed by
company reputation, senior employees valued empowerment, while junior em-
ployees mainly valued pay and leadership.
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Figure 1. Pathmox tree

Table 1. Coefficient comparison for global
and terminal nodes.

LM β coefficients
Empowerment Company Supervisor Pay Work

reputation leadership conditions
Global model 0.328 0.190 0.158 0.169 0.181
LM2: managers 0.267 0.209 0.116 0.118 0.191
LM4: senior 0.517 0.247 0.142 0.120 0.201
LM3: junior 0.271 0.052NS 0.333 0.342 0.121
NS indicates non-significance according to the t-test

Our results suggest that pathmox can be used to compare regression mod-
els, opening up a future research line in other contexts such as quantile regres-
sion. While the algorithm allows partitions to be identified where differences
between model coefficients are greatest, it has the limitation that no overall
significance criterion is considered once each partition is identified. This im-
portant aspect needs to be considered in a future version of the algorithm. Note
that pathmox aims to identify the most significantly different sub-groups, un-
like a classic decision tree where the objective is to obtain the best prediction
based on splitting observations into sub-groups. Therefore, the only similar
method is the MOB proposed by Zelies et al. (2008), which, however, uses
a different criterion to identify the best partitions. A comparison of both ap-
proaches will be a natural next step in our research.
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ABSTRACT: Directional data lies on the surface of the unit sphere. Exploiting new
results on the computation and the properties of the angular halfspace depth, we in-
troduce the spherical version of the bagdistance, applicable to directional data. A
bagdistance-based classification method for directional data is considered. The pro-
posed method will be compared with other directional classifiers by means of a simu-
lation study.
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1 Introduction

Depth functions are nonparametric tools that assess how “centrally located”, or
“inner” is a point with respect to (w.r.t.) a given probability distribution. They
have been successfully adopted in supervised classification analysis. However,
many depths suffer when evaluating points that lie in the tails of the distribu-
tion. This is because the depth functions are typically not robust at their lowest
values, and also because they can easily assign constant zero depth to many
points when evaluated w.r.t. datasets (the so-called outsider issue). An ex-
ample of an important depth sharing all these shortcomings is the standard
halfspace depth defined in Euclidean spaces ℜq, q ≥ 1.

Contrary to the depths, distance functions are much more powerful when
dealing with points at the extremes of the distribution. Nevertheless, they gen-
erally suffer from robustness issues as well (unless some robustified versions

*The work of H. Demni and G.C. Porzio has been partially funded by the BiBiNet
project (grant H35F21000430002) within the POR-Lazio FESR 2014-2020. The work of S.
Nagy was supported by the grant 19-16097Y of the Czech Science Foundation, and by the
PRIMUS/17/SCI/3 project of Charles University.

are adopted), and for a fruitful use of the distances in classification, certain as-
sumptions on the data distribution typically need to be imposed (e.g., ellipticity
of the underlying distribution in the case of the Mahalanobis distance).

For these reasons, and to introduce a supervised classification rule for Eu-
clidean data, Hubert et al., 2017 proposed to combine the information from
these two approaches to obtain the so-called bagdistance, a function which
joins the depth and the distance to obtain a measure of how close/inner is a
point w.r.t. a given distribution. Bagdistances are robust, nonparametric, and
able to manage information in the tails of the distribution.

In this work, we introduce the bagdistance for directional data. To do
so, we use the angular halfspace depth, being the directional analogue of the
standard halfspace depth from ℜq. We also evaluate the performance of the
bagdistance within the setting of supervised classification for directional data.

Our short paper is organized as follows. Section 2 provides some back-
ground on the bagdistance in the Euclidean case, while in Section 3, the spher-
ical bagdistance and a directional classifier based on it are introduced.

2 The bagdistance for Euclidean data

Let Y be a random variable in ℜq with distribution PY , and let θ be its half-
space median (the point that maximizes the halfspace depth w.r.t. PY , or the
barycentre of the set of such points if not a singleton). Denote by B(Y ) ⊂ ℜq

the smallest halfspace depth central region of PY (i.e., an upper level set of the
halfspace depth of PY ) that contains at least 50 % of the PY -probability mass.
The bagdistance of x to Y is given by the ratio of the Euclidean distances of x
to θ , and c(x) to θ :

BD(x,PY ) :=

{
0 if c(x) = θ ,
‖x−θ‖/‖c(x)−θ‖ otherwise,

where c(x) is the intersection of the boundary of the bag B(Y ) and the ray from
the halfspace median θ passing through x.

3 The spherical bagdistance and a classification rule

Directional data can be viewed as realizations of a random variable X whose
support is the unit hyper-sphere S(q−1) := {x ∈ ℜq : ‖x‖= 1}. For directional
data, the spherical bagdistance can be introduced in complete analogy with the
bagdistance for Euclidean data.
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We first define the directional variant of the halfspace depth. Let X be a
directional random variable with distribution PX . The angular halfspace depth
ahD of a point x ∈ S(q−1) w.r.t. PX can be defined considering the collection
H0 of closed halfspaces in ℜq whose boundary contains the origin:

ahD(x,PX) := inf{PX(H) : H ∈ H0, x ∈ H} ∈ [0,1].

Denote by aB(X) ⊂ S(q−1) the angular bag of X , defined as the smallest
angular depth central region containing at least 50 % of the PX -probability
mass. Such a region always exists; its properties are detailed in the contribution
of P. Laketa and S. Nagy in the present book of short papers. The spherical
bagdistance from x ∈ S(q−1) to X is defined as the ratio of the arc distance
between x and the angular halfspace median θ̃ (a maximizer of the angular
halfspace depth of X), and the arc distance between caB(x) and θ̃ . Here, caB(x)
is the intersection between the boundary of the angular bag aB(X) and the
geodesic from θ̃ to x. Altogether, we define

SBD(x,PX) :=

{
0 if caB(x) = θ̃ ,
arccos(xTθ̃)/arccos(caB(x)Tθ̃) otherwise.

Similarly as the usual bagdistance in ℜq, the spherical bagdistance can be
exploited for supervised classification of directional objects. Formally, consid-
ering K directional distributions on S(q−1), a directional classifier is defined as
the function class : S(q−1) → {1, . . . ,K}. Given a training set composed of K
empirical distributions P̂Xi , i = 1, ...,K, the directional bagdistance classifier is
then defined as the rule classbag such that:

classbag(x) := u(SBD(x; P̂X1), ...,SBD(x; P̂Xi), ...,SBD(x; P̂XK )),

where u : ℜK → {1, ..., i, ...,K} is some discriminating function. That is, the
classifier is a rule defined on a Euclidean space given by the bagdistances of the
training set values w.r.t the directional distributions defined on a Riemannian
manifold. For the choice of the discriminating function, we refer to the lit-
erature available for depth based classifiers, which includes the linear (LDA),
quadratic (QDA) and k-NN classifiers (see e.g., Demni et al., 2021).

In line with such a strategy, a simulation study with data generated accord-
ing to a Kent distribution for each group has been performed. First results
are promising: the spherical bagdistance classifier reaches the same level of
correct classification as achieved by the empirical Bayes, at least under some
circumstances. To exemplify, boxplots of the misclassification rates of the pro-
posed classifier and of the empirical Bayes classifier under Kent are reported

in Figure 1. The two Kent distributions have equal locations and ovalness, and
different concentrations (the simulation setting described in Setup 2 in Demni
& Porzio, 2021 has been adopted). The training set size is 400 (200 from
each group), while the size of the testing set is 200; the number of replications
is 100. Misclassification errors are essentially equivalent, with some prefer-
ence to be given to the LDA and QDA solution. Performances under other
simulation settings and comparison with other directional classifiers are under
investigation.

Figure 1: Misclassification rates of the empirical Bayes under Kent (EBk), and
the spherical Bagdistance classifier (BD) when associated with the LDA, QDA,
and k-NN classification rule. Data generated according to Kent distributions.
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1 Introduction

Several machine learning algorithms cannot handle directly categorical variables and,
in any case, categorical data can pose a serious problem if they have too many 
categories. Postal code is a good example of a categorical variable with high 
cardinality. This paper starts with some considerations on the currently used 
approaches, then an efficient encoding method is proposed for supervised neural 
networks when categorical variables with high cardinality need to be analyzed.

2 Approaches to quantify categorical features

Several methods have been proposed to encode categorical variables (a recent review
is Hancock et al. 2020). From our point of view, they can be classified as:
1- Methods that do not use the target variable. In this category we find rather crude 

methods, such as the Label Encoder or the Hashing Encoder. The quantifications 
obtained are essentially arbitrary.

2- Methods that use only the target variable. The Target Encoder (TE) replaces the 
categorical variable with the conditional means of the target variable. This 
method often produces data leakage, to limit this inconvenience the Leave one 
out Encoder or the Catboost Encoder have been proposed.

3- Methods based on One Hot Encoding (OHE). In this approach a new binary 
variable is introduced for each category, indicating the presence or absence of 
that category. The eventual exclusion of one category is due to the 

multicollinearity problem (the dummy variable trap), but applying machine
learning models, as the neural networks, it is necessary to include all the 
categories, otherwise we would never consider the omitted category.

3 Single and multiple quantifications by OHE

One Hot Encoding is the most used method. The coding in dummies does not depend 
directly on the target. Despite its great use, some drawbacks of OHE are well known:
the tendency of dummy variables to cause overfitting; the introduction of many new 
orthogonal variables, which can slow down or affect learning; memory problems.

The encoding of categorical variables has been extensively studied in the approach 
based on Optimal Scaling (OS, Gifi 1990) where the embedding of the categories in a 
p-dimensional space was proposed. Given a categorical variable X which can assume 
the values  1 2, ,..., ka a a , with k the number of categories, n the number of
observations, then  1 2, ,..., kG g g g= is the indicator matrix with dimension n × k. Let 
c a vector of k real values, the quantification of X is the vector:

1

k

h h
h

c
=

= =Gc gx              (1)

The values of c are the quantifications of the k categories and have to be estimated. 
The vector of the quantified data x is a linear combination of the indicator variables,
which are an orthogonal base of Rk, then is defined in a subspace of Rk. To obtain 
ordered quantifications in the OS, the order indicator matrices, with non-negativity 
constraints on the coefficients, can be used (Gifi 1990).

In expression (1) we considered a single quantification for a categorical variable. 
There are several reasons that may lead to consider two or more quantifications of the 
same variable (Di Ciaccio 2020). Considering a regressive problem, in OS 
(MORALS, Young et al. 1976) it is possible to obtain a multiple quantification by 
means of copies of the variables (Gifi 1990). After choosing the number p of 
quantifications, we can extend (1) as:

           
1 11

k

h hn k k p n pp hn    =

= = G C g cX (2)

In neural network applications, fixing a low p, equal to 2 or 3, is usually enough
for a good quantification of categorical variables even with high cardinality.

To introduce quantification (2) in a neural network it is necessary to define, for 
each categorical variable, a distinct input and a dense layer with p neurons without 
bias and with linear activation function. In the next layer the outputs, coming from all 
the variables, must be concatenated. For example, given 3 input categorical variables,
each with 100 categories, and one hidden layer containing 512 neurons, using this 
approach we must estimate (considering a regression problem and p=2) 4.697 weights. 
Given t=512, p=2, m=3, kj=100 for each j, the Neural Network can be written:
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where ( ). is the activation function of the hidden layer, r
jc is the quantification of 

the j-th variable on the r-th dimension. Conversely, in the classical OHE encoding:

0 0
1 1 1

ˆ
jkt m

s j jrs s
s j r

w w  
= = =

 
= + +  

 
 y G (4)

obtaining 154.625 weights to estimate.
Gj can be very big sparse matrices (sparsity equal to 1 1 jk− ), but we can avoid 

building such an inefficient coding estimating the dense matrix of quantifications Cj

of expression (3) without building the sparse matrix Gj.
In the first step, for a categorical variable X, the k-dimensional 'vocabulary' V of 

the categories have to be created and indexed. Then all the categories in the data will 
be substituted by the corresponding numerical index in the vocabulary, in a similar 
way to what the Label Encoder does. Call ia the modality assumed by the categorical 
variable, and [ ]iav the index in the vocabulary corresponding to this modality. The i-
th row of the ( )n p matrix of the quantified variable X can be expressed as:

[ [ ]]ii a=C vx (5)
Each line of the quantification matrix C can be seen as the p-dimensional 

representation of one category. Inspired by Natural Language Processing, Guo & 
Berkhahn's (2016) entity embedding technique takes a similar approach. To obtain the 
estimate of C in a supervised neural network, the gradient descent and the 
backpropagation can be used, where the matrix C is initialized with random values 
taken from a standardized normal and subsequently updated through an iterative 
procedure to minimize the loss function, which in the case of regression is the classic 
Sum of Square Error. We call this technique LEE, Low Embedding Encoder, and to
illustrate the proposed approach, a small simulation for a regression problem was 
build. Given three qualitative variables 1 2 3, ,X X X with 200 categories each (coded 
as the integers between 1 and 200), for each variable 20,000 observations were
extracted randomly from a uniform distribution, then Y was computed by the rules:
( 1 2X X and 3 100X  )→ ( )20,1.5Y N
( 1 2X X and 3 100X  )→ ( )10,1.5Y N else ( )1,1.5Y N

There are only 3 expected values 1 2 3( | , , )E Y x x x , i.e. (1, 10, 20), so an optimal 
regressive model should predict these values. Note that the expected value of Y
depends on the interaction of the three categorical variables and that the three 
conditional distributions of Y overlap in the tails. The dataset was then splitted as
training-set (50%) and test-set (50%). Regression algorithms such as MORALS or 
Regression Tree cannot make a satisfactory prediction on this data unless introducing
explicitly the interaction terms into the model, producing thousands of dummy 
variables. On the contrary, neural networks are able to autonomously detect the 
interactions, then a small neural network was chosen to predict the target Y in our 
simulation. The network includes an input layer, two hidden layers with 8 and 3 
neurons (elu activation function), and 1 output neuron with linear activation function. 
With the LEE approach, each categorical variable is considered a separate input and 
one dense layer with 2 neurons (p = 2) and no bias, for each categorical variable, is 
added to the input. If we want to avoid sparse matrices, an embedding layer can be

added, for each original categorical variable, using (5). It was also checked that the 
results obtained did not improve, on the test-set, by changing the size of the network 
or the number of iterations. Although the Target Encoder was applied also with a 
bigger neural network, with 32 neurons in each hidden layer, the result is very poor
even on the training-set, as this encoding prevents interactions from being identified.

Table 1. Comparison between three approaches

MSE - train MSE - test       n. parameters
OHE 2.11 6.18 4839
LEE 2.55 4.82 1287
Target Encoder 61.47 61.48 1217

Figure 1. OHE on the test-set Figure 2. LEE on the test-set

        

4 Conclusions
The proposed method LEE allows to apply neural networks to categorical variables 
with high cardinality, reducing the number of parameters and memory resources. The 
results obtained show an increased predictive capacity of the neural network thanks 
to the more efficient architecture.
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ABSTRACT: In this work we introduce a new dissimilarity measure based on the Ali-
Mikhail-Haq copula, motivated by the empirical issue of detecting low correlations
and discriminating variables with very similar rank correlation. This issue arises from
the analysis of panel data concerning the district heating demand of the Italian city
Bozen-Bolzano. In the hierarchical clustering framework, we empirically investigate
the features of the proposed measure and compare it with a classical dissimilarity
measure based on Kendall’s rank correlation.
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1 Introduction

Copula-based measures of association have been employed in clustering pro-
cedures in a variety of applied contexts, since they allow to describe com-
plex multivariate dependence structures and address specific features of the
joint distribution of random variables, such as asymmetries and tail depen-
dence (Durante & Sempi, 2015). For instance, the copula approach made it
possible to define pairwise dissimilarities in terms of concordance or tail de-
pendence measures (see, e.g., Fuchs et al., 2021, and the references therein).

While many contributions in this context have focused on detecting high
association between extremely low/high values, in this paper we focus on mod-
eling weak correlation and the ability to discriminate objects with low and very
similar degree of dependence. This issue comes from the features of the dis-
trict heating (DH hereafter) demand from residential users of the Italian city
of Bozen-Bolzano. We thus propose a new dissimilarity measure based on the

Ali-Mikhail-Haq (AMH hereafter) copula, and empirically compare it with a
classical dissimilarity measure based on Kendall’s τ coefficient.

The contribution is organized as follows. First, we introduce the copula-
based dissimilarity measures (Sect. 2). Second, we present the cluster analysis
performed to compare the proposed AMH-based dissimilarity with the one
based on Kendall’s τ (Sect. 3). Finally, Sect. 4 summarizes the main findings.

2 Kendall’s τ- and AMH-based dissimilarity

Here, we want to perform an agglomerative hierarchical clustering (AHC here-
after) of m continuous random variables (X1, . . . ,Xm) defined on the same prob-
ability space by taking into account their stochastic dependence. A typical
dissimilarity measure used in the AHC algorithm can be defined in terms of
Kendall’s τ coefficient as follows

dτ
j j′ =

√
2(1− τ j j′) ∈ [0,2] (1)

where τ j j′ , j, j′ ∈ {1, . . . ,m}, is computed from n observations of the pair
(Xj,Xj′). From a different perspective, one can assume a specific copula func-
tion, motivated by its ability to capture some features of the joint behaviour ob-
served from the data. Here we focus on the AMH copula function C(u1,u2) =
(u1u2)/(1− θ(1− u1)(1− u2)), where θ ∈ [−1,1]. The AMH copula is very
suitable for modeling low degree of association since the corresponding range
for τ is [−0.1817,0.3333]. Hence, we introduce a new dissimilarity measure

dAMH
j j′ =

√
2(1−θ j j′) ∈ [0,2] (2)

where θ j j′ is the dependence parameter of the AMH copula that can be esti-
mated via one of the methods in the literature (see, e.g., Gunky et al., 2007).

3 Application to district heating demand

We analyse time series data concerning the heat demand (in kWh) of m = 41
residential users connected to the DH of Bozen-Bolzano, which has been iden-
tified as a key technology for the development of sustainable cities. We con-
sider n = 150 hourly observations in the period Jan 1–Jan 14, 2016. We first
tackle serial dependence in the original time series by adopting a dynamic
panel regression model (Wooldridge, 2002), that takes into account the rela-
tionships between DH demand and meteorological variables, such as temper-
ature and solar radiation. Then, the residual time series are used to estimate
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1 Faculty of Economics and Management, Free University of Bozen-Bolzano, Bozen-
Bolzano, Italy, (e-mail: marta.dilascio@unibz.it)
2 Faculty of Science and Technology, Free University of Bozen-Bolzano, Bozen-
Bolzano, Italy, (e-mail: andrea.menapace@unibz.it)
3 Department of Economics, Business, Mathematics and Statistics “B. de Finetti”, Uni-
versity of Trieste, Italy, (e-mail: rpappada@units.it)

ABSTRACT: In this work we introduce a new dissimilarity measure based on the Ali-
Mikhail-Haq copula, motivated by the empirical issue of detecting low correlations
and discriminating variables with very similar rank correlation. This issue arises from
the analysis of panel data concerning the district heating demand of the Italian city
Bozen-Bolzano. In the hierarchical clustering framework, we empirically investigate
the features of the proposed measure and compare it with a classical dissimilarity
measure based on Kendall’s rank correlation.

KEYWORDS: Ali-Mikhail-Haq copula; cluster analysis; dissimilarity measure; low
correlation.

1 Introduction

Copula-based measures of association have been employed in clustering pro-
cedures in a variety of applied contexts, since they allow to describe com-
plex multivariate dependence structures and address specific features of the
joint distribution of random variables, such as asymmetries and tail depen-
dence (Durante & Sempi, 2015). For instance, the copula approach made it
possible to define pairwise dissimilarities in terms of concordance or tail de-
pendence measures (see, e.g., Fuchs et al., 2021, and the references therein).

While many contributions in this context have focused on detecting high
association between extremely low/high values, in this paper we focus on mod-
eling weak correlation and the ability to discriminate objects with low and very
similar degree of dependence. This issue comes from the features of the dis-
trict heating (DH hereafter) demand from residential users of the Italian city
of Bozen-Bolzano. We thus propose a new dissimilarity measure based on the

Ali-Mikhail-Haq (AMH hereafter) copula, and empirically compare it with a
classical dissimilarity measure based on Kendall’s τ coefficient.

The contribution is organized as follows. First, we introduce the copula-
based dissimilarity measures (Sect. 2). Second, we present the cluster analysis
performed to compare the proposed AMH-based dissimilarity with the one
based on Kendall’s τ (Sect. 3). Finally, Sect. 4 summarizes the main findings.

2 Kendall’s τ- and AMH-based dissimilarity

Here, we want to perform an agglomerative hierarchical clustering (AHC here-
after) of m continuous random variables (X1, . . . ,Xm) defined on the same prob-
ability space by taking into account their stochastic dependence. A typical
dissimilarity measure used in the AHC algorithm can be defined in terms of
Kendall’s τ coefficient as follows

dτ
j j′ =

√
2(1− τ j j′) ∈ [0,2] (1)

where τ j j′ , j, j′ ∈ {1, . . . ,m}, is computed from n observations of the pair
(Xj,Xj′). From a different perspective, one can assume a specific copula func-
tion, motivated by its ability to capture some features of the joint behaviour ob-
served from the data. Here we focus on the AMH copula function C(u1,u2) =
(u1u2)/(1− θ(1− u1)(1− u2)), where θ ∈ [−1,1]. The AMH copula is very
suitable for modeling low degree of association since the corresponding range
for τ is [−0.1817,0.3333]. Hence, we introduce a new dissimilarity measure

dAMH
j j′ =

√
2(1−θ j j′) ∈ [0,2] (2)

where θ j j′ is the dependence parameter of the AMH copula that can be esti-
mated via one of the methods in the literature (see, e.g., Gunky et al., 2007).

3 Application to district heating demand

We analyse time series data concerning the heat demand (in kWh) of m = 41
residential users connected to the DH of Bozen-Bolzano, which has been iden-
tified as a key technology for the development of sustainable cities. We con-
sider n = 150 hourly observations in the period Jan 1–Jan 14, 2016. We first
tackle serial dependence in the original time series by adopting a dynamic
panel regression model (Wooldridge, 2002), that takes into account the rela-
tionships between DH demand and meteorological variables, such as temper-
ature and solar radiation. Then, the residual time series are used to estimate



326 

the 41×41 dissimilarity matrices based on Eqs. (1) and (2) to use in the AHC
algorithm. The crucial point is that all pairs of users have a quite low Kendall’s
τ (the minimum is −0.2, the highest value is 0.39). Thus, in principle, dAMH

should be able to better distinguish objects with low and very similar degree
of association. On the basis of both the informativeness of the final clusters
and the separation index by Akhanli & Hennig, 2020, we decide to adopt the
complete linkage method and cut the dendrogram at k = 3 for both the dissim-
ilarities.

Fig. 1 displays the mean daily pattern of each user (hourly heat demand
over daily average heat demand (Menapace et al., 2019)) by cluster, according
to dτ and dAMH. As can be seen, a certain degree of internal homogene-
ity is obtained in both cases, denoting an overall good quality of the results.
However, by using static features of the buildings, such as heating surface (in
m2), age class (in years), and energy class (in yearly kWh/m2), we can high-
light the diversity between the obtained partitions. The clusters based on dτ

are quite similar in terms of heating surface with median values in the range
(3656,4076), and even though are better separated in terms of age class and
energy class, they also present a source of variability. Indeed, the 75% of
buildings in cluster 1 was built between 1961 and 1990, in cluster 2 almost
the 70% of buildings is dated after 1981), while cluster 3 has a larger variabil-
ity, and contains both recently-constructed and old energy-renovated build-
ings, with relatively low energy class (the third quartile is equal to 120). On
the contrary, the dAMH produces groups that are different in terms of heating
surface (the medians are 3969, 5382, and 3102, respectively) and show within-
homogeneity with respect to the energy and age class (e.g. buildings in cluster
3 are old, i.e. mostly dated before 1990, and non-efficient with first and third
quartiles of energy class equal to 120 and 145, respectively).

4 Conclusions

We have introduced a new dissimilarity measure based on the Ali-Mikhail-
Haq copula and empirically showed its ability to detect low correlations and
discriminate among them. The application to district heating demand illus-
trates that the proposed measure seems to produce clusters that have a clear
interpretation in terms of the relevant features, thus leading to a valuable tool
to support the management and planning of a district heating system.
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1 Introduction

In the twenty-first century the system of Higher Education (HE) in Italy has 
undergone profound, structural changes with a substantial increase in the number of 
higher education institutions (HEIs). The Bologna Process has brought significant 
changes in the education system, increasing student mobility and expanding
available options of education and training. Thus, an academic degree may no longer 
be sufficient to access the most prestigious and remunerative occupational positions 
(Breen & Goldthorpe,1997). According to Rostan and Stan (2017) Italian graduates’ 
employment conditions can be explained according to two main points. Firstly, even 
if Italy is one of the most industrialised country in Europe, its production system is 
characterized by small and medium size firms, poorer capacity for innovation and 
private and public sectors less developed than in other advanced economies.
Moreover, R&D investments are insufficient and, in the last two decades, public 
sector lost its capacity of being the major employer of Italian graduates
(ANVUR,2014). In addition, access to the liberal professions is limited by the high 

degree of entry regulation and the proportion of graduates employed in professional 
and managerial jobs has declined since 1990 (Ballarino et al., 2016). In few words, 
the national economy seems to lack the characteristics to valorise and reward 
qualified human capital (Rostan e Stan, 2017). Secondly, the expansion of HE in 
Italy is often not associated with the demand of skilled workers and can be explained 
by other factors, such as the increase of family income, the pressure of some social 
classes to obtain or maintain education advantages and the role of state and academy
(Rostan e Stan, 2017). In this perspective, the growth of the education system has 
led to an oversupply of graduates, especially in some fields, worsening the 
employment and working conditions of degree holders (Rostan e Stan, 2017). As 
underlined by Assirelli et al. (2018), the 2015 unemployment rate among individuals 
aged 25 to 34 was higher than the corresponding value for upper secondary
graduates.

In this contribution, we aim at studying in deep the topic at issue, relying on two 
main sources of data: the Mandatory Notices (MN) of the Italian Ministry of Labour
and the administrative database of the University of Florence (UNIFI). In particular,
we focus on detecting the determinants of two main variables of interest: (i) the 
probability of being employed and (ii) conditionally on being employed, the 
probability of having a permanent job.

2 Data

The analysis is based on the integration of the MN database and the UNIFI 
administrative archive. 

The MN database is provided by the Ministry of Labour and collects information 
on the job contracts signed by graduates in the years after graduation, such as type of 
contracts (open-ended, fixed term, short term, permanent, etc.), number of working 
days per contract, contract effective date, graduate age and gender, economic sector.
Self-employment jobs are not included in the MN database.
The UNIFI administrative archive allows us to integrate the MN dataset with 
information about graduates, such as enrolment date, graduation date, graduation 
mark, type of high school, high school graduation mark, description of the degree 
course, level of degree course (i.e., bachelor vs. master degree), and field of study.
The two datasets were merged using a probabilistic record linkage approach. The
archive contains data on about 262,250 contracts signed by 46,931 UNIFI graduates
from 1 January 2008 to 31 December 2016. All the information refers to UNIFI 
students that obtained their degree between 2008 and 2016. Overall, more than 60% 
of contracts were signed after graduation, the 37.17% within 3 years from
graduation and almost the 29% more than 3 years after graduation.
Focusing on the contract signed after graduation and on those signed while studying
(or during university) the most common contract among UNIFI students (bachelor 
and master level graduates and five-years masters) was the temporary one (59.13%);
only the 10.35% of contracts were permanents. The 19.81% of contracts belongs to 
the category “Others” that includes “atypical” or “non standard” contracts. More in 
detail, permanent contracts were, respectively, the third (8.77%) and the fourth 
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(8.59%) most common type of contract among bachelor and master degree 
graduates, respectively.

3 Preliminary analyses

As preliminary analyses, we estimated two logistic regression models to detect the 
determinants of the probability to get the first job one year after graduation (Table 1)
and the probability, one years after graduation, to obtain a permanent job contract
(Table 2).

Table 1 Logistic regression results (Y=obtain the first job one year after graduation)
Variable Bachelor graduates Master graduates

Estimate SE Estimate SE
Intercept -1.8040 0.0730*** 0.3320 0.0879***
Gender (Ref:” Female”) 
Gender: Male -0.0498 0.0388 -0.0193 0.0636
Age at first job (Ref=23-26) 
Age at first job: 20-23 3.2130 0.0754*** -2.4416 0.1428***
Age at first job: 26-30 4.2089 0.0831*** 0.8063 0.0646***
Age at first job: 30+ 3.9773 0.0990*** 1.0651 0.0855***
Final grade (Ref:”106-110”) 
Final grade: 75-95 -0.6303 0.0583*** 0.0928 0.0944

Final grade: 96-100 -0.2899 0.0571*** 0.0788 0.0914
Final grade: 101-105 -0.1794 0.0547** 0.0541 0.0830
Study area (Ref: Literature) 
Study area: Scientific 0.3496 0.0471*** 0.2049 0.0751**
Study area: Social 0.5700 0.0479*** 0.3174 0.0724***
Outside of prescribed time (Ref: “No”) 
Outside of prescribed time: Yes -1.6370 0.0562*** -0.7235 0.0728***
Honours (Ref: “No”) 
Honours: Yes 0.1543 0.0700* -0.0536 0.0854

Table 2 Logistic regression results (Y=obtain a permanent job contract one year after graduation)
Variable Bachelor graduates Master graduates

Estimate SE Estimate SE
Intercept 3.1912 0.1173*** 3.6304 0.2020***
Gender (Ref:” Female”) 
Gender: Male -0.0163 0.07437 -0.2781 0.1231*
Age at first job (Ref=23-26) 
Age at first job: 20-23 0.0491 0.1095 -0.1897 0.2109
Age at first job: 26-30 -0.2141 0.0800** -0.0822 0.1387
Age at first job: 30+ -0.6456 0.1140*** -0.5268 0.1564***

Final grade (Ref:”106-110”) 
Final grade: 75-95 -0.2175 0.1123 -0.5843 0.1862*
Final grade: 96-100 -0.1871 0.1102 -0.2413 0.1942
Final grade: 101-105 -0.0990 0.1070 -0.4297 0.1725**
Study area (Ref: Literature) 
Study area: Scientific -0.0363 0.0899 -0.3276 0.1558*
Study area: Social 0.0968 0.0915 -0.1453 0.1543
Outside prescribed time (Ref: “No”) 
Outside prescribed time: Yes -0.1631 0.0916 -0.1619 0.1507
Honours (Ref: “No”) 
Honours: Yes -0.0692 0.1315 -0.0256 0.1934

Looking at the results of these preliminary analyses, it seems that age at first job,
the final graduation mark, the study area, and being outside of the prescribed degree
path play an important role in predicting professional achievements of bachelor’s 
and master’s graduates.

4 Further developments

The preliminary analyses above displayed represent a first step of our study. These 
analyses are static, because they refer to the job condition of graduates a year after 
the degree. To allow a dynamic analysis that takes into account the longitudinal 
structure of data, we intend to estimate a bivariate random-effect probit model. In 
particular, we will model, at any time occasion, the employment status (employed
vs. unemployed) and the type of job contract (permament vs. temporary), given the 
employment status.
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ABSTRACT: Gaussian graphical models are widely used to learn the conditional in-
dependence structure of a set of random variables. This is done through the nonzero
elements of its precision matrix. In many practical situations, one needs to estimate
multiple graphical models due to a group structure of the data. We propose a neigh-
bourhood approach to jointly learn multiple Gaussian graphical models. Our method
estimates the edge set of each graph through joint lasso regression, and a constrained
maximum likelihood method is then used to obtain precision matrices. The estimation
procedure can be refined with prior information about relations among groups.

KEYWORDS: Gaussian graphical models, graphical lasso, joint lasso, multiple graphs

1 Introduction

Graphical models represent conditional independence relations among a set of
random variables via a graph. The graph structure recovery of a concentra-
tion graph model is equivalent to find the zero elements of a precision matrix
(Lauritzen, 1996).

Several recent proposals have focused on estimating Gaussian graphical
models when data come from more than one distinct subpopulations. In par-
ticular, Guo et al., (2011) suggested a hierarchical penalty that forces a similar
sparsity pattern across classes with no shrinking non zero elements. Danaher
et al., (2014) proposed a direct extension of Glasso (Friedman et al., 2008)
using two different convex penalties to force precision matrices to be similar.
Dondelinger & Mukherjee (2018) developed a lasso type penalty to handle
observations divided into groups in a regression setting.

In this work, we propose a nodewise regression approach to jointly es-
timate multiple Gaussian graphical models using a penalty similar to the one
proposed by Dondelinger & Mukherjee (2018) for inducing similarities in zero

entries of regression coefficients. A full estimate of the precision matrices is
then obtained via constrained maximum likelihood approach in each group.

2 Nodewise multiple graphical models

Meinshausen & Bühlmann (2006) firstly proposed the idea of neighbourhood
selection based on penalized linear regressions. Their proposal consists in
performing d lasso regression procedures, one for each variable as response,
given the other d−1 variables in the graph. To extend this procedure for group
structured data, consider Y = (Y (1), . . . ,Y (K))′ from K different groups, where
Y (k) is a nk × d matrix. Within each group, we assume observations to be
independent and identically distributed as Y (k) ∼ Nd(0,Σk).

To extend neighbourhood selection to multiple graphs, we propose to adopt
a penalty term similar to the one used in the joint lasso by Dondelinger &
Mukherjee (2018). Estimation is achieved minimizing

Θ̂i = argmin
(θi,1,...,θi,K)

K

∑
k=1

(
1
nk
||Y (k)

i −Y (k)
−i θi,k||22+λ||θi,k||1+γ ∑

k′>k
τk,k′ ||θi,k−θi,k′ ||1

)
,

(1)
where λ, γ and τττ = {τk,k′ : k′ > k} are tuning parameters. The last term of
Equation (1) allows exact equality between coefficient from different groups
where τττ allows to weight differently each couple of groups. The vector τττ
allows to attribute a specific shrinkage only on some pairs of parameters and
is set to 111 in the rest of the paper.

Similarly to Meinshausen & Bühlmann (2006), we use Equation (1) node-
wise. The neighborhood of node i for the kth group is then n̂e(k)i = { j ∈
{1, . . . ,d} : θ̂i,k

j �= 0}, while the selected edge set is given by Ê(k) = {(i, j) :

i ∈ n̂e(k)j ∧ j ∈ n̂e(k)i }. To obtain an estimate of the precision matrix for each
group, we adopt a two-step approach. We first learn the edge set, and then we
use constrained maximum likelihood method with given zero elements. Let
S+

Ê(k) = {Ω : Ω � 0∧ωi j = 0,∀(i, j) /∈ Ê(k)} be the set of positive definite ma-

trices with support defined by Ê(k). The precision matrix estimate is
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)
∀k ∈ {1, . . . ,K}.

This two-step procedure assures a positive definite estimate. However, using
the same data for model selection and parameter estimation is known to lead
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1 Introduction
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(1)
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Table 1. Monte Carlo summary of performance

Method EL FL FNR FPR

Structure learning 0.2673 0.0823
Data Carving 3.0059 0.5516 0.3087 0.0767
Data Splitting 3.1110 0.5590 0.4080 0.0700

to not valid inference (Tian & Taylor, 2018). Thus, post-selection inference,
such as data splitting or carving procedures, needs to be used.

Nodewise regression relies on the selection of tuning parameters λ and γ.
We used a slightly modified version of StARS (Stability Approach to Regular-
ization Selection) algorithm proposed by Liu et al., (2010).

For a chosen b, 1 < b < n, we draw N random subsamples X1, . . . ,XN from
Y each of size b. Given a value of λ and γ, we apply nodewise joint estimation
in each subsample. Let D̂(λ,γ) be the maximum among groups of the average
of instability for each edge across subsamples. We use a Bayesian optmization
technique based on Gaussian Processes (Snoek et al., 2012) to obtain optimal
values of tuning parameters, minimizing the instability measure |D̂(λ,γ)−β|
with β to be set. The performance of the proposed procedure is illustrated in
the next section.

3 Monte Carlo simulations

This Monte Carlo study reports a simple setting with only two groups (K = 2).
We generate a random graph structure with d = 15 nodes and the correspond-
ing precision matrix Ω(1)as described in Danaher et al., (2014). To generate
Ω(2), we randomly change some entries of Ω(1) adding edges, removing them
or varying partial correlation coefficients.

We simulate 50 datasets of dimension n= 150 from Y = (Y (1),Y (2))′ where
Y (i) ∼ N(0,Σi), Σi being the inverse of Ω(i) and i = 1,2. Then we use tuning
parameter selection with β = 0.1 and N = 30 to optimize the nodewise selec-
tion algorithm in three different situations: structure estimation only, precision
matrix estimation using data carving (p = 0.9), precision matrix estimation us-
ing data splitting (p = 0.5), where p is the proportion of data using to estimate
structure. We evaluate the edge selection performances using false negative
rate (FNR) and false positive rate (FPR), while the estimate of the precision
matrices is compared using entropy loss (EL) and Frobenius loss (FL). Simu-
lation results are summarized in Table 1.

To summarize, if one is mainly interested in structure learning, our pro-
posal a slightly better performance, in comparison with the other existing pro-
cedures, not reported here, mostly because of fewer false negative errors. If the
aim is to estimate the precision matrix through a two-step procedure, it seems
that data carving is a better option than data splitting.
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ABSTRACT: The contribution aims to study the evolutionary aspects of a well-being
indicator in European countries. To this end, an evolutionary indicator is proposed by
considering the indicator as a function and integrating the information provided by
the well-being curve with its temporal dynamic reflected by the first derivative. Then,
functional cluster analysis is considered to derive groups of geographical areas that
account not only for the indicator’s level, but also for its evolution.
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1 Introduction

Well-being indicators are commonly used to support decision making and
to assess the performance of countries. However, well-being indicators are
generally considered from a static point of view, disregarding their temporal
dynamics. Our aim is to exploit the evolutionary aspect of a well-being indicator.
To this end, temporal sequences of well-being indicators are analyzed from a
functional point of view. Thus, indicators are considered as functions rather
than scalar vectors. This is a novel perspective in well-being processing, which
allows to introduce new analytical tools, such as derivatives. Since the latter
quantify a function’s behavior in an evolutionary perspective, we suggest to
integrate the information provided by the well-being curve with the information
concerning its first order derivative. Specifically, we focus on the problem
of clustering well-being curves using the functional k-means algorithm under
different distances in order to identify specific common patterns among the
countries. The procedure is applied to a real data set regarding the annual time
series of the Human Development Index (HDI) for 44 European countries. We
compare the clusters obtained by functional k-means algorithm with the clusters
derived in a non-functional environment via a k-means algorithm applied to
raw data of an evolutionary integrated HDI, say EHDI. The latter is defined
as EHDI = HDI[1+ f ′(x)] and integrates HDI with the information provided

by its first derivative, f ′(x), in order to discount for a decreasing or increasing
evolution of the HDI.

2 Functional distances

To identify common patterns among the HDI curves, the functional k-means
algorithm (Tarpey & Kinateder, 2003) is considered using the following dis-
tances:

d0

(
fi(t), f j(t)

)
=

∫

T

(
fi(t)− f j(t)

)2
dt, ∀i �= j; i, j = 1,2, ...,n; (1)

where fi(t) =∑K
k=1 aikφk(t), is expanded in terms of K cubic B-splines functions

(Ramsay & Silverman, 2005);

d0+1

(
fi(t), f j(t)

)
=

√∫

T

(
fi(t)− f j(t)

)2
dt +

∫

T

(
f ′i (t)− f ′j(t)

)2
dt, (2)

where f ′i (t) denotes the smoothing estimate of the first derivative of fi(t). The
distances in (1) and (2) are the norm and the semi-norm in the Hilbert space,
respectively. The semi-norm d0+1 accounts both for the level of the well-being
curve and for its evolutionary dynamic.

3 Application

The prosed method is applied to the annual time series of the HDI indexes
from 2000 to 2019 for 44 European countries. Functional cluster analysis is
applied to HDI data, converted into a sample of smooth functions using K = 5
cubic B-splines basis, chosen by cross validation (left-hand side of Figure 2).
Distances in (1) and (2) are considered choosing three clusters, correspond-
ing to high, medium and low human development countries. The clustering
results are the same, except for France and Italy which, by means of d0+1, are
assigned to the high human development cluster rather than the medium one.
The clustering algorithm is also applied to the smoothed version of EHDI using
d0 as a distance. The resulting configuration is the same as that obtained with
d0+1 on the functional HDI. The high development group is characterised by
the countries of Western and Northern Europe: Austria, Belgium, Germany,
Liechtenstein, Luxembourg, Netherlands, Switzerland, United Kingdom, Den-
mark, Finland, Iceland, Ireland, Norway and Sweden. This group also includes
Slovenia, the only country in South-Eastern Europe. The medium development
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ing to high, medium and low human development countries. The clustering
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assigned to the high human development cluster rather than the medium one.
The clustering algorithm is also applied to the smoothed version of EHDI using
d0 as a distance. The resulting configuration is the same as that obtained with
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Slovenia, the only country in South-Eastern Europe. The medium development
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group includes mainly Southern and Eastern European countries, plus France
and 3 Northern countries: Estonia, Latvia and Lithuania. The low human devel-
opment group is characterised by the countries of Eastern and South-Eastern
Europe: Armenia, Azerbaijan, Georgia, Ukraine, Albania, Bosnia and Herze-
govina, Republic of Moldova, North Macedonia and Turkey. Table 1 displays
the cluster sizes and the average silhouette value for each scenario. To provide

Table 1. Clustering Results from k-means algorithm with different distances.

Cluster d0 d0+1 Raw EHDI
High 15 17 16
Medium 20 18 15
Low 9 9 13
Mean Sil. 0.5 0.5 0.6

an insight on the role of the first derivative of the curve, the results are compared
with those obtained in a non-functional framework. Specifically, the k-means
algorithm is applied on the raw EHDI. Figure 1 shows the centroids obtained
with the k-means algorithm and different distances. We remark that the right-
hand side of Figure 1 shows the sequences of raw EHDI across the years, not
the smoothed functions. Comparing the clusters obtained in the functional and

2000 2010

0.
6

0.
7

0.
8

0.
9

1.
0

d0

year

2000 2010

0.
6

0.
7

0.
8

0.
9

1.
0

d0+1

year

2000 2010

0.
6

0.
7

0.
8

0.
9

1.
0

Raw EHDI

year

High
Med
Low

Figure 1. Cluster centroids: k-means with different distances.

the non-functional contexts, only six countries are assigned differently. Specif-
ically, the non-functional algorithm downgrades Bulgaria, Romania, Russian
Federation and Serbia, classifying them as low development countries. Indeed,
as we can see from the right-hand side of Figure 2, Bulgaria presents a first

derivative with a decreasing trend, but with high values especially in the first
part of the domain. Romania has a first derivative with a fluctuating trend:
strongly increasing until 2005, decreasing until 2015, increasing subsequently.
Russian Federation and Serbia have flat first derivatives but with high values.
Viceversa the non-functional algorithm upgrades France and Italy, including
them in the high development cluster. However it is a partial upgrade, only with
respect to the classification provided by d0 (the d0+1 distance assigned both
these countries to the high development cluster).

2000 2010

0.
6

0.
7

0.
8

0.
9

1.
0 Functional HDI

year

2000 2010

−0
.0

1
0.

01
0.

03

First derivatives

year

Bulgaria
France
Italy
Romania
Russian F.
Serbia

Figure 2. Functional HDI and First derivatives of the European countries.

4 Conclusions

FDA is a useful methodological framework for the analysis of well-being indi-
cators as it allows to evaluate their evolution with additional tools. Specifically,
the joint analysis of the level of well-being curves and their first derivatives can
provide useful insight in countries’ well-being improvement or worsening. In
our application, the range of the first derivatives is very limited, thus the addi-
tional information concerning the indicator’s trend has little effect on countries’
classification.
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FDA is a useful methodological framework for the analysis of well-being indi-
cators as it allows to evaluate their evolution with additional tools. Specifically,
the joint analysis of the level of well-being curves and their first derivatives can
provide useful insight in countries’ well-being improvement or worsening. In
our application, the range of the first derivatives is very limited, thus the addi-
tional information concerning the indicator’s trend has little effect on countries’
classification.
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1 Bayesian MFMs & Telescoping Sampling

Mixture models are a versatile model class which can be used for model-based
clustering as well as density estimation. A finite mixture model is given by a
convex combination of several distributions or models and hence any statistical
model may be embedded within the mixture framework. In the following only
mixture models with fixed component weights are considered, i.e., where the
component sizes do not depend on any covariates, while parameteric distribu-
tions as well as regression models are covered for the components.

The application of finite mixture models in practice usually requires for es-
timation to fix the number of components a-priori and to then perform model
selection to decide on a suitable number of components. In particular in
Bayesian analysis, such a model selection step is complicated by the fact that

*The authors gratefully acknowledge support from the Austrian Science Fund (FWF):
P28740; and through the WU Projects grant scheme: IA-27001574.

the number of components in a finite mixture model does not necessarily cor-
respond to the number of filled components given the observed data. As an al-
ternative, Escobar & West (1995) consider Dirichlet process mixtures (DPMs)
where the number of components is infinite and only inference on the number
of filled components is performed. Malsiner-Walli et al. (2016) suggest sparse
finite mixtures (SFMs), where the parameter for the prior on the weights is
selected to imply that the number of components will be higher than the num-
ber of filled components, in this way allowing for posterior inference of the
number of filled components.

Richardson & Green (1997) propose to use the specification of a mixture
of finite mixtures (MFM) model where a prior on the number of components is
included, to obtain posterior estimates for the number of components, the num-
ber of filled components and the parameter estimates. Richardson & Green
(1997) also indicate the estimation of this model class using a reversible jump
Markov chain Monte Carlo (RJMCMC) algorithm. Alternative approaches to
perform Bayesian inference of the MFM model were considered by Stephens
(2000) who suggests to use a Markov birth-death process and Miller & Har-
rison (2018) who re-use Chinese restaurant process (CRP) methods proposed
for DPMs to sample the partitions.

Frühwirth-Schnatter et al. (2020) develop the telescoping sampler to per-
form inference for any kind of MFM where arbitrary component distributions
or models as well as hierarchical priors may be included without complicating
the sampling. They build on the data augmentation scheme suggested for finite
mixtures by Diebolt & Robert (1994) and include a sampling step for the num-
ber of components. This implies that the telescoping sampler is straightfor-
ward to implement given that a MCMC sampling scheme for the components
is available.

2 Empirical Demonstrations

Frühwirth-Schnatter et al. (2020) already present the application of the tele-
scoping sampler on mixtures of univariate Gaussian distributions, which al-
lows them to benchmark their sampler against RJMCMC and CRP sampling,
on mixtures of multivariate Gaussian distributions and on latent class anal-
ysis models applied to multivariate categorical data. Following Frühwirth-
Schnatter & Malsiner-Walli (2019), it is straightforward to investigate the use
of the telescoping sampler also for mixtures of Poisson distributions, mixtures
of generalized linear models and mixtures of skew normal and skew-t distribu-
tions and compare the performance to DPMs and SFMs. Section 2.1 presents
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Figure 1. Eye tracking data. Histogram of the observations.

the results obtained with telescoping sampling for Poisson mixtures using the
eye tracking data.

2.1 Poisson Mixtures: Eye Tracking Data

Figure 1 visualizes the count data on eye tracking anomalies in 101 schizo-
phrenic patients studied among others by Frühwirth-Schnatter & Malsiner-
Walli (2019). The overdispersion and the excess number of zeros present in
the data set are clearly visible in the plot showing the frequency of counts.
The MFM is fitted using the same hierarchical specification for the component
means λk as used in Frühwirth-Schnatter & Malsiner-Walli (2019) when fitting
SFMs and DPMs: λk ∼ G(a0,b0) and b0 ∼ G(g0,G0), where the parameters
of the gamma distribution are given by a0 = 0.1, g0 = 0.5 and G0 = g0ȳ/a0
with ȳ the mean of the observations. In addition the dynamic specification for
the Dirichlet weights is used, i.e., the weights are a-priori drawn from a K-
dimensional symmetric Dirichlet distribution DirK(α/K), with α having a hy-
perprior F-distribution F(6,3). Four different priors on the number of compo-
nents are considered: the discrete uniform prior on {1,2, . . . ,150}, the shifted
beta-negative-binomial priors BNB(1,1,1) and BNB(1,4,3) and the geomet-
ric prior Geo(0.1). These priors vary in their prior mean, their regularization
of additional components and the mass assigned to the tail.

The posterior distributions of the number of components K and the number
of filled components K+ obtained with telescoping sampling are summarized
in Table 1. The influence of the prior on K is particularly noticeably for the
posterior of K and a much less pronounced influence on the posterior of K+

is discernible. Clearly results for all priors on K indicate that heterogeneity is

Table 1. Posterior inference for K+ and K. The posteriors are summarized by their
modes, followed by the 1st, 2nd and 3rd quartiles.

p(K) p(K+|yyy) p(K|yyy)
U(1,150) 13 [12, 16, 21] 119 [50, 83, 118]

BNB(1,1,1) 10 [9, 12, 16] 11 [12, 21, 41]
Geo(0.1) 9 [9, 11, 15] 13 [12, 17, 25]

BNB(1,4,3) 6 [6, 8, 10] 7 [7, 9, 13]

present and a mixture with several components is needed to approximate the
distribution of counts.
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ABSTRACT: Graphical models provide an effective tool to represent conditional in-
dependences among variables. While this class of models has been extensively studied
in the Gaussian and categorical settings separately, literature which combines the two
types of variables is narrow. However, mixed data are extremely diffuse in many ap-
plications where both continuous and categorical measurements are available. In this
paper we propose a Bayesian framework for the analysis of mixed data. Specifically,
we specifiy a likelihood function for n observations following a conditional Gaussian
distribution, and assign suitable priors for the model parameters. Our end-result is
a closed form espression for the marginal data distribution. The latter provides a pri-
mary input for the computation of the marginal likelihood under graph (independence)
constraints and the development of an MCMC strategy for graph structural learning.
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els, marginal likelihood, mixed variables

1 Introduction

Graphical models are particularly effective to represent conditional depen-
dency structures in multivariate distributions (Lauritzen, 1996). In particular,
inferring the unknown graph generating model from the data is possible using
structural learning methodologies. In this contribution we focus on directed
acyclic graphs (DAGs) where conditional dependencies between variables are
represented through parent-child relationships.

Several works for structural learning of graphical models given continu-
ous (Gaussian) or discrete/categorical data (Ising model) are available in the
literature.

However, literature oriented to DAG structural learning given mixed data
is extremely narrow. In the Bayesian framework, a unified approach which
jointly models categorical and continuous data is also still lacking. The scope
of this study is to develop a Bayesian methodology for DAG learning in the
presence of mixed observations. Our ultimate goal is the development of an
MCMC algorithm, along the lines of Castelletti et al., 2018 and Castelletti &
Peluso, 2021 for, respectively, the Gaussian and categorical case. In the next
sections we illustrate some preliminary results relative to general Bayesian
models for mixed variables together with some possible extensions to DAG-
constrained models.

2 Model development

Our starting point is represented by the notion of Conditional Gaussian (CG)
distribution introduced by Lauritzen & Wermuth, 1989. Let V be a finite set
of nodes indexing a collection random variables Z = (Z1, . . . ,Z|V |)

T , which
comprises both discrete and continuous quantities indexed by ∆∪Γ = V re-
spectively. The authors defined a general class of probability distributions of
the form

f (z) = f (s,y) = exp
{

g(s)+h(s)T y− 1
2

yT K(s)y
}

(1)

where s and y correspond to the level assumed by the categorical and con-
tinuous variables respectively. A probability distribution of the form (1) has
CG-distribution if and only if ZΓ|Z∆ = s ∼ Nq(K(s)−1h(s),K(s)−1) and the
marginal distribution of the discrete variables is

θ(s) = (2π)−
q
2 |K(s)|−

1
2 exp

{
g(s)+

1
2

h(s)T K(s)−1h(s)
}
, (2)

for each level s assumed by Z∆. Moreover, if K(s) =K the distribution is called
homogeneous. An alternative representation of a CG-distribution, hereinafter
adopted, is given in terms of moment-characteristics parameters (θθθ,ξ,Σ).

Specifically, let (X1, . . . ,Xp) be p categorical variables, (Y1, . . . ,Yp) q con-
tinuous variables. Let also I be the space of all possible configurations of the p
categorical variables and θθθ = {θ(s),s ∈ I}) where θ(s) = Pr(X1 = s1, . . .Xp =
sp) is the probability to observe configuration s = (s1, . . . ,sp). Under the CG
assumption we can write for each s ∈ I

Y1(s), . . . ,Yq(s) | µµµ(s),ΩΩΩ ∼ Nq(µµµ(s),ΩΩΩ−1). (3)
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We now consider a collection of n independent observations xxxi =(xi,1, . . . ,xi,p)
T ,

yyyi = (yi,1, . . . ,yi,q)
T , i = 1, . . . ,n. Categorical data {xxxi, i = 1, . . . ,n}, can be

equivalently represented as a contingency table of counts NNN with elements
n(s) ∈ NNN satisfying ∑s∈I n(s) = n. Following Frydenberg & Lauritzen, 1989,
the likelihood function can be written as

f (NNN,yyy1, . . . ,yyyn |θθθ,{µµµ(s)}s∈I,ΩΩΩ) = ∏
s∈I

θ(s)n(s)∏
s∈I

∏
i∈d(s)

φ(yyyi |µµµ(s),ΩΩΩ−1)

∝ ∏
s∈I

θ(s)n(s)∏
s∈I

∏
i∈d(s)

|ΩΩΩ|
1
2 exp

{
−1

2
(yyyi −µµµ(s))T ΩΩΩ(yyyi −µµµ(s))

}
, (4)

where d(s) is the set of observations among i = 1, . . . ,n with observed con-
figuration s and φ is the Gaussian density. We then proceed by assigning the
following prior distributions

θθθ ∼ Dirichlet(AAA), µµµ(s) | ΩΩΩ ∼ Nq(mmm(s),(aµΩΩΩ)−1), ΩΩΩ ∼ Wq(aΩ,UUU), (5)

where in particular Wq(aΩ,UUU) denotes a Wishart distribution having expec-
tation aΩUUU−1, aΩ > q− 1 and UUU is a s.p.d. matrix. Under prior parameter
independence, the posterior distribution is written after some calculations as

p(θθθ,{µµµ(s)}s∈I,ΩΩΩ |NNN,yyy1, . . . ,yyyn) ∝ ∏
s∈I

θ(s)a(s)+n(s)−1

· ∏
s∈I

{
|ΩΩΩ|

1
2 |exp

{
−1

2
(n(s)+aµ)(µµµ(s)− m̄mm(s))T ΩΩΩ(µµµ(s)− m̄mm(s))

}

· |ΩΩΩ|
aΩ+n−q−1

2 exp
{
−1

2
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sample means of (Y1, . . . ,Yq) relative to observations i ∈ d(s). It follows that
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where YYY denotes the (n,q) data matrix, row-binding of the yyyi’s. Because of
conjugacy, the marginal data distribution
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can be computed as the ratio of prior/posterior normalizing constants. Care
will be posed on score-equivalence (same marginal likelihood) for Markov
equivalent DAGs; see also Peluso & Consonni, 2020.

3 Conclusion and further steps

We obtained a closed-form expression for the marginal likelihood of a com-
plete (unconstrained) Bayesian model given mixed data. The subsequent step
requires the computation of the marginal likelihood for a subset of (mixed)
variables, e.g. {Xj| j ∈ C ⊆ {1, . . . , p}} ∪ {Yk|k ∈ D ⊆ {1, . . . ,q}}. To this
end we will adopt the procedure for prior parameter elicitation introduced by
Geiger & Heckerman, 2002. The computation of the marginal likelihood of
a given DAG will be at the basis of an MCMC algorithm for DAG structural
learning.
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ABSTRACT: Road casualties represent the leading cause of death among young peo-
ple worldwide, especially in poor and developing countries. This paper introduces a
Bayesian hierarchical model to analyse car accidents on a network lattice that takes
into account measurement error in spatial covariates. We exemplified the proposed
approach analysing all car crashes that occurred in the road network of Leeds (UK)
from 2011 to 2019. Our results show that omitting measurement error considerably
worsens the fit of the model and attenuates the effects of spatial covariates.
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1 Introduction

As reported by World Health Organisation in 2018, car crashes are responsible
for more than 1.35 million casualties each year, representing the leading cause
of death among people aged 5-29 years, particularly those living in developing
countries. In the last years, several authors developed sophisticated statistical
models to analyse the spatial distribution of car crashes at the areal level (e.g.
cities or census wards) and help the local authorities define safety measures.

Nevertheless, road casualties represent a classic example of events occur-
ring on a linear network. This paper presents a Bayesian hierarchical model for
car crashes developed on a network lattice that takes into account measurement
error (ME) in spatial covariates. In particular, a Conditional Auto-Regressive
(CAR) prior is introduced to adjust for ME in estimating road traffic volumes
within the classical ME model paradigm. The Integrated Nested Laplace Ap-
proximation (INLA) framework is adopted for inference. This approach was
found particularly convenient for large networks, as the one considered in
this paper, while MCMC techniques may be challenging and time-consuming
(Muff et al., 2015).

2 Road network and car crashes

The statistical analysis introduced in Section 3 requires a specific data structure
that was obtained after several preprocessing steps briefly described hereafter.

The road network was built using data extracted from Open Street Map
(OSM), an online database that provides open-access geographic rich-attribute
data worldwide. We downloaded the street segments that pertain to the most
important* roads of Leeds and created a matrix of segments representing the
elementary units of the statistical model.

A street network can also be seen as a graph object whose edges represent
the road network segments and whose vertices are placed at junctions, inter-
sections, and boundary points (Barthélemy, 2011). We took advantage of the
graph representation to contract the street network removing redundant nodes,
edges loops, duplicated roads, and several isolated clusters of segments that
may create numerical problems (Gilardi et al., 2020). Furthermore, we cal-
culated the weighted edge betweenness centrality, a graph measure correlated
with the spatial distribution of commercial activities, which is usually adopted
to analyse congestion problems as a proxy for urban traffic (Barthélemy, 2011).
Finally, we derived the edges’ adjacency matrix, an essential ingredient for the
CAR prior used below.

We analysed all car crashes involving personal injuries that occurred in the
city of Leeds from 2011 to 2019 and became known to the Police Forces within
thirty days from their occurrence. First, we downloaded the data from UK’s
official road traffic casualty database. Then, we excluded those car crashes
that occurred farther than fifty metres from the closest road segment, and, fi-
nally, we projected the events to the nearest point of the network and counted
the occurrences for each segment. The final sample included 15826 events
distributed over 4253 segments covering approximately 1170 km.

3 Statistical methods

Let yi, i = 1, . . . ,n represent the number of car crashes that occurred on the ith
road segment. Following a classical hypothesis in the road safety literature, we
assume that yi|λi ∼ Poisson(eiλi), where λi represents the car crashes rate and
ei is an exposure parameter equal to the geographical length of each segment.

*More precisely, we selected only those segments whose classification range from Au-
tostrada (i.e. Motorway) to Strada Comunale (i.e. Tertiary Road).
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In the first level of the hierarchy, we define a log-linear structure on λi, i.e.

log(λi) = β0 +βzzi +βxxi +θi +φi; i = 1, . . . ,n, (1)

where β0 denotes the intercept, zi is an error free covariate representing the
road-type of each segment, xi is an unobservable error prone covariate repre-
senting the traffic volumes, while βx and βz are the corresponding coefficients.
Finally, θi and φi denote spatially structured and unstructured random effects
that are modelled using a reparametrisation and a network re-adaptation of
Besag-York-Mollié (BYM) prior (Riebler et al., 2016, Gilardi et al., 2020).

The classical spatial ME model assumes that xi can be observed only via a
proxy, say wi, such that

wi = xi +ui +ϕi; i = 1, . . . ,n.

The terms ui and ϕi represent the ME and denote, respectively, spatially struc-
tured and unstructured random effects that are also modelled using the BYM
prior. In particular, parameter ϕi adds a spatial smoothing effect to the un-
observed covariate xi. In this paper, we assume that the edge betweenness
centrality measure can approximate the unobservable traffic volumes.

At the second stage of the hierarchy, we specified an exposure model that
relates xi with the error-free predictor:

xi = α0 +αzzi + εi; i = 1, . . . ,n. (2)

The parameter α0 denotes the intercept, αz is the coefficient of the error-free
covariate, and εi is a normally distributed error component. Furthermore, we
assigned independent N(0,103) priors to β0, βz, α0, and αz, i.e. the intercepts
and the coefficients assigned to zi in equations (1) and (2).

The third level completes the specification of the hierarchical model elic-
iting a N(0,100) prior for βx, i.e. the coefficient of the error-prone covariate, a
Gamma(1,5e-05) prior on the precision of ui and ϕi, and Penalised Complex-
ity priors for the parameters of BYM’s re-adaptation (Simpson et al., 2017).

4 Results and conclusions

We estimated the statistical model described in Section 3 using INLA method-
ology and compared the results with two simpler models: the first one com-
pletely ignores ME, while the second one adopts a classical ME without spatial
smoothing effects. We found that omitting ME greatly attenuates the impor-
tance of traffic volumes, and excluding the spatial smoothing terms worsens

No ME ME Spat. ME
βx 0.01 1.064 2.95
β0 -5.307 -9.90 -15.441
βprimary 0.61 0.56 0.40
βsecondary 0.57 0.68 1.05
DIC 33126 30466

Table 1. Summary of DIC, posterior means
of fixed effects, and error-prone covariate.

Pred. Counts

0.0 to 3.9

3.9 to 12.0

12.0 to 23.6

23.6 to 38.3

38.3 to 64.5

64.5 to 95.8

95.8 to 122.2

122.2 to 151.4

151.4 to 168.6

Figure 1. Map displaying the 
posterior means of car crashes counts.

the fit of the model. Motorways were found less prone to car crashes than the
other road types, while the posterior distributions of fixed effects and com-
mon hyperparameters were found stable among the three models. We report in
Table 1 a short summary of fixed effects’ posterior means, while Figure 1 dis-
plays the posterior means of predicted counts. We can notice that it highlights
a few road segments close to the city centre that would require a more detailed
statistical analysis.
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ABSTRACT: Control charts are used to identify non-random behaviours of a manu-
facturing process by monitoring changes in the distribution of the quality characteris-
tics of the tested product. Process monitoring of related variables is usually referred
to as a multivariate quality control problem. In many applications there is not enough
information to justify the assumption of a specific form for the underlying process
distribution. Thus, a non-parametric approach is a valid tool in a quality control pro-
cess. Among possible non-parametric statistical techniques, data depth functions are
gaining increasing interest in multivariate quality control. The aim of this work is to
investigate the behaviour of a non-parametric approach based on the notion of the Lp

depth in the statistical process control.
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1 Introduction

Nowadays, industries collect a large amount of data on more than one variable.
Hence in a quality control process there is more than one quality variable to
be monitored simultaneously. A traditional control chart monitoring a single
variable is not useful for detecting the overall quality of a process, as it is de-
termined by the interaction of several related variables (Liu, 1995, Idris et al.,
2019). For this reason, multivariate analysis is becoming increasingly impor-
tant within the statistical process control approaches (Woodall & Montgomery,
1999). Multivariate control charts are needed when dealing with more than one
quality variable as overcome the drawback of obtaining incorrect control lim-
its when dealing with related variables. As a matter of fact, the multivariate
procedure takes into account the association between the components of a mul-
tivariate process.

Multivariate quality control studies was first conducted by Hotteling, 1947.
For a more detailed description please refer to Montgomery, 2007.
Woodall, 2000 distinguishes the techniques of the control chart processing in
Phase I (also called retrospective or preliminary phase) and in Phase II. Phase I
uses charts with the purpose of defining whether a process is statistically under
control when the first group are processed. In Phase II, the charts are used to
check if the process is in control when future subgroups were being processed.
In this last phase, it is assumed that the distribution of the process is known and
most of the classical applications require the hypothesis that the process under
consideration follows a multivariate normal distribution. However, in most in-
dustrial applications the distribution of a parametric multivariate control chart
is difficult to estimate for processes with multiple quality characteristics. As
such, all observations are considered as d-dimensional vector and therefore
used to detect possible shifts in the d-dimensional distributions of the quality
process. A statistical process control (SPC) procedure set up in a multivariate
framework is more effective than a joint monitoring system consisting of a se-
ries of traditional univariate control charts (Crosier, 1988).
The most popular multivariate statistical process control charts are based on the
Hotelling’s T 2 statistics, that are a multivariate extension of Shewart’s chart (or
X̄ control chart). Like the univariate counterparts, also the multivariate control
charts can be distinguished into parametric and non-parametric types accord-
ing to the distributive assumption underlying a control charts (e.g. normality)
are verified or not. When the assumption of normality is not verified, the use of
conventional (multivariate) control charts for process monitoring is question-
able. Non-parametric control charts do not require distributive assumptions
on process data and generally enjoy greater robustness, namely they are less
sensitive to outliers than parametric control schemes. A survey of parametric
multivariate SPC charts can be found in Bersimis et al., 2007, while a review
of non-parametric multivariate control charts can be found in Chakraborti &
Graham, 2019.
Statistical depth functions are largely used in non-parametric statistics for the
analysis of multivariate data. These are non-parametric functions that can pro-
vide a dimension reduction to high-dimensional problems. In this work, we
will focus on Lp data depth to build a control chart. The Lp data depth have
additional advantages over other existing depth based control charts already
introduced in a multivariate SPC (i.e. they ensure an ease of computation even
in high dimensions).
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able. Non-parametric control charts do not require distributive assumptions
on process data and generally enjoy greater robustness, namely they are less
sensitive to outliers than parametric control schemes. A survey of parametric
multivariate SPC charts can be found in Bersimis et al., 2007, while a review
of non-parametric multivariate control charts can be found in Chakraborti &
Graham, 2019.
Statistical depth functions are largely used in non-parametric statistics for the
analysis of multivariate data. These are non-parametric functions that can pro-
vide a dimension reduction to high-dimensional problems. In this work, we
will focus on Lp data depth to build a control chart. The Lp data depth have
additional advantages over other existing depth based control charts already
introduced in a multivariate SPC (i.e. they ensure an ease of computation even
in high dimensions).
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2 Our proposal

Depth-based methodology to construct control charts can be interpreted as a
multivariate generalization of standard univariate. A depth function aims at
providing the degree of centrality of a point x with respect to a distribution F in
Rd , denoted by D(x,F). Hence, higher values of D(x,F) correspond to deeper
(more central) while smaller values indicate less central points (i.e. further
away from the center with respect to F). Hence, a center-outward ranking of
the data is provided. There are several notions of data depth function available
in the literature. The halfspace, simplicial, Mahalanobis and Lp depths are
some of the most popular ones. In this work, we adopt the notion of Lp depth
introduced by Zuo, 2004 because of its ease of computation and (local and
global) robustness properties. The depth is defined as follows:

LpD(x,F) =
1

1+E(‖x−X‖p)
,

where X ∼ F , ‖·‖ denotes the Lp-norm (when p = 2 the Euclidean norm is
derived) and E (·) is its expected value.
We conducted a Montecarlo simulation study to evaluate the performance of
the Q-type control charts based on the Lp data depth in comparison with the
Mahalanobis depth-based Q-type charts. The Q-type control chart is the mul-
tivariate analogue of the average univariate chart X̄ . We set p = 2 for the com-
putation of the Lp depth. The simulation study was designed as an analysis to
evaluate the chart performances under multiple settings, defined with regard to
the number of variables to be monitored (i.e., the dimension), the size of the
reference sample, the size of the sub-group, and by considering different distri-
butional settings (Normal, Skew-Normal and Cauchy). We considered both the
in-control and out-of-control cases. Specifically, three out-of-control scenarios
were evaluated including shift in the mean vector, change in the variance and
a combination of both variance change and shift in the mean. We evaluated
the performances in terms of average run length (ARL) and its standard de-
viation. ARL is defined as the expected number of samples required to get a
first out-of-control signal, and it can be obtained by taking reciprocal of false
alarm probability. Moreover, ARL is one of the performance measures used
for comparing the control charts. Results obtained from both in-control and
out-of-control cases indicate that Q-type charts based on L2D perform better
than those based on Mahalanobis regardless of the process distribution, the
dimensionality and the size of both the reference and the sub-group samples.

3 Conclusion

In a statistical process control framework, we proposed to use control charts
based on the Lp data depth. Our approach is fully non-parametric, meaning that
the obtained charts are valid without parametric assumptions on the process
distribution. In addition, these charts allow for the simultaneous detection of
both the location change and the scale increase in a process. The performance
of our proposal is investigated via a simulation study. The results show that
the Lp depth based control charts are a promising alternative to the well-known
Mahalanobis depth. Moreover, Lp depth is particularly appealing because of
its computational ease even in high multidimensional spaces.
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1 Angular halfspace depth

Statistical depth is a remarkable tool for ordering multivariate data. For a prob-
ability measure P in the Euclidean space R

d , d ≥ 1, the depth describes how
much “centrally located” a point x ∈ R

d is with respect to P. The arguably
most important depth in R

d is the halfspace depth that to each x ∈ R
d assigns

hD(x;P) = inf
{

P(H) : H ∈ H and x ∈ H
}
∈ [0,1], (1)

for H =
{

Hy,v : y ∈ R
d ,v ∈ R

d \{0}
}

the set of all closed halfspaces Hy,v ={
z ∈ R

d : �z− y,v� ≥ 0
}

in R
d . Here we deal with directional data (Ley &

Verdebout, 2017), meaning data generated from P whose support lies on the
unit sphere S

d−1 =
{

x ∈ R
d : �x�= 1

}
. For most such P, the depth (1) is

trivially zero on S
d−1, and is therefore of no use. In that situation, it is more

natural to consider an angular variant of the halfspace depth introduced by
Small, 1987. Let H0 ⊂ H be the collection of those halfspaces H0,v ∈ H

whose boundary contains the origin 0 ∈ R
d . The angular halfspace depth of

x ∈ S
d−1 with respect to a probability measure P on S

d−1 is defined as

ahD(x;P) = inf
{

P(H) : H ∈ H0 and x ∈ H
}
∈ [0,1]. (2)

*This work was supported by the grant 19-16097Y of the Czech Science Foundation, and by
the PRIMUS/17/SCI/3 project of Charles University. P. Laketa was supported by the OP RDE
project “International mobility of research, technical and administrative staff at the Charles
University” CZ.02.2.69/0.0/0.0/18 053/0016976.
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The similarity of the depths (1) and (2) is obvious — one restricts to halfspaces
from H0 when considering the angular depth. Many properties of the angular
halfspace depth were explored by Liu & Singh, 1992. Here we first revise
some of those known results, and then derive an array of new properties of the
upper level sets of the function (2) for general probability measures on S

d−1.

2 A hemisphere of constant depth

A peculiar property of the angular halfspace depth is that it has to be constant
on a hemisphere of S

d−1, for any P on S
d−1. More precisely, Proposition

4.6 of Liu & Singh, 1992 says that there exists a hemisphere with a constant
angular depth equal to α0 = infx∈Sd−1 ahD(x;P). That result is given without
a proof and from the context it appears to be claimed for a closed hemisphere.
In our first example we demonstrate that for general measures P one has to be
cautious when formulating this statement.

Consider the probability measure P on the circle S
1 in R

2 (left panel of
Figure 1) defined as a mixture of a uniform distribution on the upper halfcircle
S

1
+ =

{
(x1,x2) ∈ S

1 : x2 > 0
}

and an atom at a = (1,0) with equal weights
1/2. For each n = 1,2, . . . consider a halfspace (beige region in Figure 1)

−1 0 1

−1
0

1

a
Hn

−1 0 1

−1
0

1

Figure 1. Left: For P a mixture of uniform distribution on S
1
+ (grey arc) and an atom

at point a (black point) a closed hemisphere of constant depth does not exist. Right: A
measure P with five atoms such that ahD(·;P) is constant on S

1 and equal to α0= 2/5.

Hn =
{
(x1,x2) ∈ R

2 : x1 cos(π/2−1/n)+ x2 sin(π/2−1/n)≤ 0
}
∈ H0



358 

not containing a at an angle θn =−1/n with the x1-axis. Since limn→∞ θn = 0,
surely limn→∞ P(Hn) = 0, meaning that ahD(x;P) = 0 for any point x in the
lower halfcircle S1

− =
{
(x1,x2) ∈ S

1 : x2 < 0
}
. We obtain α0 = 0. On the other

hand, P(H)≥ 1/2 for every H ∈H0 that contains a, implying that ahD(a;P)≥
1/2>α0. Also, any H ∈H0 that contains points from S

1
+ is of positive P-mass.

Overall we obtain that the angular depth is positive exactly in the set S1
+∪{a},

and there is no closed halfcircle of S1 of depth α0 = 0.
In our example there exists an open hemisphere S

1
− with constant depth

α0. That is not a coincidence — an analogous result for an open hemisphere
of constant depth is possible to be proved* for any measure P on S

d−1. It is
however interesting to note that it may also happen that the depth (2) is constant
on the whole sphere S

d−1, and therefore equal to α0 everywhere, see Figure 1.

3 Central regions of the angular halfspace depth

While for any P on S
d−1 there always exists an open hemisphere Smin ⊂ S

d−1 of
minimal depth, its complement Sd−1 \Smin typically contains points of higher
depth (2). The upper level sets of the angular halfspace depth therefore form
a basis for generalizations of quantiles and inter-quantile regions to S

d−1, in
the same way as the level sets of the halfspace depth (1) do in R

d . The central
region of P at level α≥ 0 is given by

Dα =
{

x ∈ S
d−1 : ahD(x;P)≥ α

}
. (3)

The smallest non-empty region Dα presents a natural analogue of the median
applicable to directional data. In analogy with the corresponding properties
well established for the standard halfspace depth (1) in R

d , it is possible to
show that also regions (3) posses several attractive traits — they are closed
and spherically convex sets in Sd−1 that can be represented as intersections of
closed spherical halfspaces (sets of the form H0∩S

d−1). Formal proofs of the
following statements will appear in our comprehensive treatment of the theory
of the angular halfspace depth that is currently in preparation. In each of the
statements P is a Borel probability measure on S

d−1.
Upper semi-continuity. The mapping S

d−1 → [0,1] : x �→ ahD(x;P) is
upper semi-continuous, i.e. for any x ∈ S

d−1 and a sequence {xn}
∞
n=1 ⊂ S

d−1

that converges to x it holds limsupn→∞ ahD(xn;P) ≥ ahD(x;P). As a conse-
quence, all depth regions (3) are closed sets.

*The proof of this claim is not difficult, but due to the limited available space we will present
it elsewhere, together with all the other technical derivations outlined in the rest of this note.
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Intersection of halfspaces. For any α> α0 we can write

Dα =
⋂{

int(H) : H ∈ H0 and P(int(H))> 1−α
}
∩
(
S

d−1 \Smin

)
,

where int(H) denotes the interior of H, which is an open halfspace. This
result is weaker than the one for the usual halfspace depth (Proposition 6 of
Rousseeuw & Ruts, 1999), where one can write a central region as an intersec-
tion of closed halfspaces from H . As a consequence of our result we obtain
that each Dα with α> α0 is an intersection of a convex set in R

d and a hemi-
sphere. The case α= α0 gives trivially the whole sphere Dα0 = S

d−1.

4 Refinements for smooth measures

We say that a probability measure P on S
d−1 is smooth if P(∂H) = 0 for any

boundary hyperplane ∂H of H ∈ H0. It is satisfied for any P that has a density
with respect to the spherical Lebesgue measure on S

d−1. For smooth P one
obtains stronger results about the central regions of ahD(x;P):

• the minimizing hemisphere Smin may be chosen to be closed, and satisfies
the additional condition P(Smin) = α0;

• the depth ahD(x;P) is continuous as a function of x ∈ S
d−1;

• Dα =
⋂{

H : H ∈ H0 and P(H)> 1−α
}
∩
(
S

d−1 \Smin
)
.

A useful application of these results is the construction of bagdistances for
directional data presented by H. Demni in this book of short papers. In that
contribution, bagdistances are used with success in a comprehensive simula-
tion study of nonparametric classification of points in Sd−1.

References

LEY, CHRISTOPHE, & VERDEBOUT, THOMAS. 2017. Modern directional
statistics. Chapman & Hall/CRC Interdisciplinary Statistics Series. CRC
Press, Boca Raton, FL.

LIU, REGINA Y., & SINGH, KESAR. 1992. Ordering directional data: con-
cepts of data depth on circles and spheres. Ann. Statist., 20(3), 1468–
1484.

ROUSSEEUW, PETER J., & RUTS, IDA. 1999. The depth function of a popu-
lation distribution. Metrika, 49(3), 213–244.

SMALL, CHRISTOPHER G. 1987. Measures of centrality for multivariate and
directional distributions. Canad. J. Statist., 15(1), 31–39.



360 

CLUSTERING PRODUCTION INDEXES FOR
CONSTRUCTION WITH FORECAST DISTRIBUTIONS

Michele La Rocca 1, Francesco Giordano1 and Cira Perna1

1 Department of Economics and Statistics, University of Salerno, (e-mail:
larocca@unisa.it, giordano@unisa.it, perna@unisa.it)

ABSTRACT: In this paper we focus on a recent proposal for clustering nonlinear time
series data in which dissimilarities are computed according to time series forecast
distributions. The aim is to evaluate the impact of COVID-19 pandemic on the con-
struction sector for a set of 21 European countries.

KEYWORDS: Feedforward neural networks, bootstrap, nonlinear time series.

1 Introduction

In the last decades there has been a growing interest in time series clustering.
Some recent approaches rely on the use of distance criteria which compare the
forecast densities estimated by using a resampling method combined with a
nonparametric kernel estimator (see Alonso et al., 2006 and Vilar et al., 2010).
More recently, La Rocca et al., 2021, have proposed a novel approach for clus-
tering nonlinear autoregressive time series based on the use of a class of neural
network models to approximate the original nonlinear process, combined with
the pair bootstrap as a resampling device. The aim of this paper is to discuss
the novel approach and to evaluate the impact of COVID-19 pandemic on the
production index for construction, an important business cycle indicator, for a
set of 21 European countries.

2 The clustering procedure in a nutshell

Let {Yt , t ∈ Z} be a real valued stationary stochastic process modeled as a non-
linear autoregressive (NAR) model of the form Yt = g(xt−1)+εt , where g(·) is
an unknown (possibly) nonlinear regression function, x′t−1 = (Yt−1, . . . ,Yt−p)

and {εt} are iid error terms, with E[εt ] = 0 and E[ε2
t ] > 0. Let

(
y(1), . . . ,y(S)

)
be S observed time series of length T generated from a DGP of the previous
class, where y(i) =

(
Y (i)

1 , . . . ,Y (i)
T

)
. The aim is to cluster time series based on

their full forecast distribution at a specific future time T +h, with h ≥ 1.

This approach accounts for the future dynamic behaviour of the time series,
by using the Lr-norm distance Dr,i j =

∫ ∣∣∣Fi
T+h|T (y)−F j

T+h|T (y)
∣∣∣
r

dy r = 1,2,

where Fi
T+h|T (·), i = 1, . . . ,S is the forecast distribution function at a given fu-

ture point T +h, of the series y(i), conditioned on the information set available
up to time T . Since the Lr-norm distance previously defined cannot be com-
puted directly, La Rocca et al., 2021 have proposed a strategy in which the
unknown distributions are consistently estimated by using a feed forward neu-
ral network estimator and the pair bootstrap approach. In particular, given the
forecast horizon h, the unknown function g(·) can be approximated by using
the network

fmh (xt−h;θ) =
m

∑
k=1

ckψ
(
w′

kxt−h +wk0
)
+ c0 (1)

with θ = (c0,c1, . . . ,cm,w1, . . . ,wm,w10, . . . ,wm0), where m is the hidden layer
size, wk are the vectors of weights for the connections between input layer and
hidden layer, ck, k = 1, . . . ,m are the weights of the link between the hidden
layer and the output; wk0 and c0 are the bias terms; ψ(·) is a proper chosen
activation function and x′t−h = (Yt−h, . . . ,Yt−h−p+1).

The general procedure is summarized in the following Algorithm.

Algorithm
1: Fix the forecast horizon h ≥ 1. Let X = {(Yt ,x′t−h), t = p+h, . . . ,T}
2: Fix the hidden layer size m and the lag structure p and estimate the weights

of the network as θ̂h = argminθ
1

T−p−h+1 ∑T
t=p+h (Yt − fmh(xt−h;θ))2 .

3: Compute the residuals from the estimated network defined as: ε̂t = Yt −
fmh

(
xt−h; θ̂h

)
4: Compute the centered residuals: ε̃t = ε̂t − 1

T−p−h+1 ∑T
t=p+h ε̂t .

5: Resample {(Y ∗
t ,x′∗t−h) = (Y ∗

t ,Y
∗

t−h, . . . ,Y
∗

t−h−p+1), t = p+ h, . . . ,T}, as an
iid sample from the set of tuples X .

6: Get the bootstrap estimate of the neural network weights:
θ̂∗

h = argminθ
1

T−p−h+1 ∑T
t=p+h

(
Y ∗

t − fmh
(
x∗t−h;θ

))2
.

7: Compute Ŷ ∗
T+h = fmh

(
YT ,YT−1, . . . ,YT−p+1; θ̂∗

h

)
+ ε∗T+h where ε∗T+h is a

random sample from the centered residuals {ε̃t}.
8: The bootstrap forecast distribution F∗

T+h|T is given by the law of Ŷ ∗
T+h con-

ditioned on X .

Note that, as usual, the bootstrap distribution can be approximated by
Monte Carlo simulations repeating B times steps 5-7, and then computing the
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T
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∣∣∣
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activation function and x′t−h = (Yt−h, . . . ,Yt−h−p+1).
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+ ε∗T+h where ε∗T+h is a

random sample from the centered residuals {ε̃t}.
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T+h|T is given by the law of Ŷ ∗
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Note that, as usual, the bootstrap distribution can be approximated by
Monte Carlo simulations repeating B times steps 5-7, and then computing the
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empirical cumulative distribution function (ECDF) of Ŷ b
T+h, b = 1,2, . . . ,B.

As a resampling device, the pair bootstrap has been implemented, a suitable
choice in the context of neural network models. Moreover, being the data gen-
erating process nonlinear, a direct multi-step forecasting approach is consid-
ered, where a separate neural network model is estimated for each forecasting
horizon, and forecasts are computed only conditioning on the observed data.

3 An application to the European construction sector

The proposed procedure has been used to cluster the production index for
construction (seasonally and calendar adjusted) for 21 European countries ob-
served from January 2000 to December 2020 (base year 2015). The production
index measures the activity in the building and construction industry, and it is
considered a critical business cycle indicator. The dataset is available from
the Eurostat website. The aim here is to identify the different group structure
induced by the COVID-19 pandemic by using the forecast one-step ahead dis-
tribution for January 2020 (so excluding any observations from the COVID-
19 pandemic), the forecast twelve-step ahead distribution for January 2021,
the forecast one-step ahead distribution for January 2021 (we have trained all
models up to December 2020).

Apparently, the group structure would have been almost identical without
the impact due to the COVID-19 pandemic, showing a somewhat stable eco-
nomic evolution of all the countries considered in the application (see panels
a and b). On the contrary, when based on models that include the year 2020
in the training period, where all countries experienced severe contractions in
their economic activities, the dataset shows a pretty different group structure,
indicating different routes and timelines for economic recovery (see panel c).
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Figure 1: Construction indexes clustering based on h-step ahead forecast dis-
tributions and L1-norm distance.
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Figure 1: Construction indexes clustering based on h-step ahead forecast dis-
tributions and L1-norm distance.
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ABSTRACT: In the framework of precision medicine, we investigate the similarity of
diabetic kidney disease (DKD) patients through longitudinal data clusters. Starting
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1 Introduction

Precision medicine aims to find individualized therapeutic treatments accord-
ing to patients’ specific characteristics. To make accurate predictions it is cru-
cial to retrieve information on the long-term reactions of patients to given treat-
ments, investigating time trajectories of the disease progress (Karpati et al.,
2018). Each patient is identified by demographic and clinical variables at dif-
ferent time points. The similarity of behavior of patients across time can be
accounted by clusters of trajectories. The final aim of this research is to build
clusters of longitudinal data to identify the optimal treatment rule. Therefore,
we intend to build patient clusters according to distances between patients at
each time point, and distances of the same patient between time points. We
can consider distance as a transformation, and distance variation as a trans-
formation between transformations. Because the concept of transformations
between transformations is the starting point of mathematical category the-

ory* (Grandis, 2020), we can exploit its concepts for cluster analysis (Carlsson
& Mémoli, 2013). We introduce comparisons between patient trajectories ac-
cording to their shapes. Here, we compare patients’ trajectories building clus-
ters of shapes using the Fréchet distance (Genolini et al., 2016), which takes
into account shape variations. The novelty of our study is an integrative ap-
proach joining categories, clusters, and shape trajectories. For each patient
we observe demographic and clinical variables, treatments, and response to
the different treatments. This approach is derived for a real dataset concern-
ing patients with diabetic kidney disease (DKD) from the DC-ren project.†

Clustering is based on the response to the treatment, that is evaluated from
the estimated glomerular filtration rate (eGFR). The identification of different
evolution patterns can shed light on the best individualized drug combination.
The paper is structured as follows: in Section 2 we introduce some theoretical
concepts and the methodology we adopted, and in Section 3 we analyze the
results of our study.

2 Methodology

Let us consider a dataset composed of n patients characterized by p observ-
able variables at four time points t0, t1, t2, t3. Each patient is characterized as
a triplet (Xi(tk), D(tk), Yi(tk)), where i is the individual (the patient); tk is the
time point k = 0,1,2,3; Xi(tk) is a set of variables characterizing the individ-
ual; Yi(tk) is the value of the response variable Y at tk; D(tk) stands for the
given drug. We indicate the distance between patients i, i′ with respect to the
variable Y and time k as dY

i,i′(tk), and the distance between values observed at
times tk, tk′ of the variable Y for the same individual i as dY

i (tk, tk′). We thus
obtain an enriched double category with metrics in R (Grandis, 2020), having
xY

i (tk), k = 0, ...3, i = 1, ...,n, as objects, and dY
i,i′(tk), dY

i (tk, tk′) as morphisms.
The comparison of trajectories of different patients involves both of these dis-
tances. The time trajectory of the i-th patient is indicated as pathY

i . Clustering
is a functor Fa : pathY

i →< patha,Y
ι >, ι = 1, ...,n′ < n, where n′ is the number

of significative curves, which groups similar trajectories in the same cluster.

*A category is constituted by objects (points) and morphisms (arrows). A functor maps
objects and morphisms of a category into objects and morphisms of another category. Natural
transformations map functors to functors.

†https://dc-ren.eu/. The project focuses on type 2 diabetes.
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ments, investigating time trajectories of the disease progress (Karpati et al.,
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ferent time points. The similarity of behavior of patients across time can be
accounted by clusters of trajectories. The final aim of this research is to build
clusters of longitudinal data to identify the optimal treatment rule. Therefore,
we intend to build patient clusters according to distances between patients at
each time point, and distances of the same patient between time points. We
can consider distance as a transformation, and distance variation as a trans-
formation between transformations. Because the concept of transformations
between transformations is the starting point of mathematical category the-

ory* (Grandis, 2020), we can exploit its concepts for cluster analysis (Carlsson
& Mémoli, 2013). We introduce comparisons between patient trajectories ac-
cording to their shapes. Here, we compare patients’ trajectories building clus-
ters of shapes using the Fréchet distance (Genolini et al., 2016), which takes
into account shape variations. The novelty of our study is an integrative ap-
proach joining categories, clusters, and shape trajectories. For each patient
we observe demographic and clinical variables, treatments, and response to
the different treatments. This approach is derived for a real dataset concern-
ing patients with diabetic kidney disease (DKD) from the DC-ren project.†

Clustering is based on the response to the treatment, that is evaluated from
the estimated glomerular filtration rate (eGFR). The identification of different
evolution patterns can shed light on the best individualized drug combination.
The paper is structured as follows: in Section 2 we introduce some theoretical
concepts and the methodology we adopted, and in Section 3 we analyze the
results of our study.

2 Methodology

Let us consider a dataset composed of n patients characterized by p observ-
able variables at four time points t0, t1, t2, t3. Each patient is characterized as
a triplet (Xi(tk), D(tk), Yi(tk)), where i is the individual (the patient); tk is the
time point k = 0,1,2,3; Xi(tk) is a set of variables characterizing the individ-
ual; Yi(tk) is the value of the response variable Y at tk; D(tk) stands for the
given drug. We indicate the distance between patients i, i′ with respect to the
variable Y and time k as dY

i,i′(tk), and the distance between values observed at
times tk, tk′ of the variable Y for the same individual i as dY

i (tk, tk′). We thus
obtain an enriched double category with metrics in R (Grandis, 2020), having
xY

i (tk), k = 0, ...3, i = 1, ...,n, as objects, and dY
i,i′(tk), dY

i (tk, tk′) as morphisms.
The comparison of trajectories of different patients involves both of these dis-
tances. The time trajectory of the i-th patient is indicated as pathY

i . Clustering
is a functor Fa : pathY

i →< patha,Y
ι >, ι = 1, ...,n′ < n, where n′ is the number

of significative curves, which groups similar trajectories in the same cluster.

*A category is constituted by objects (points) and morphisms (arrows). A functor maps
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transformations map functors to functors.

†https://dc-ren.eu/. The project focuses on type 2 diabetes.



366 

The < patha,Y
ι >, ∀ι is the representative curve of each cluster.‡ Most of the

existing research uses the Euclidean distance to compare trajectories. How-
ever, because we aim to compare trajectory shapes, we determine the Fréchet
distance, and, according to this distance, we build patient clusters. The Fréchet
distance is based on the comparison between pairs of points following the pro-
files of the curves they belong to. We analyzed the response to the treatment,
measured according to the eGFR variable. We build patient clusters deriving
the mean of eGFR trajectories. We then investigate the characteristics of pa-
tients, in relationship with demographic and clinical variables which charac-
terize each patient. We evaluated the behavior of 241 DKD patients observed
in a 4-year period, according to the DC-ren project. Computationally, we used
an extension of the longitudinal k-means, kmlShape (Genolini et al., 2016),
with time scale 0.5.

3 Results

In this study, which involves clusters based on shapes of individual trajec-
tories, without assuming a particular shape, we obtained a grouping of pa-
tients according to their similarity of eGFR behavior. Trajectories are evaluated
upon the Fréchet distance between them, computed on the continuous variable
eGFR. We obtain 8 patient clusters with similar eGFR shape of individual tra-
jectories. In Figure 1a, we represent the obtained clusters. In the Table (Figure
1b), we show the behavior of clusters achieved with the Fréchet distance, with
standard deviations at each time point. We find three main patients’ subgroups:
patients with decreasing eGFR (clusters 1, 3, 8); low decreasing eGFR (cl. 2,
4), and stable/increasing eGFR (cl. 5, 6, 7). To explain these behaviors, we
consider some relevant clinical characteristics of patients, which are the ratio
of urinary albumin and creatinine (mean UACR) and the glycated hemoglobin
(HbA1c), shown in the Table (Figure 1b). Mean UACR is decreasing in cluster
6, while it is increasing in cluster 8. Decreasing or stable values of HbA1c,
which characterize DKD patients (Karpati et al., 2018), are shown by patients
in cl. 6, while increasing values of HbA1c are shown by patients in cl. 8. We
notice that there is a relationship between non-decreasing eGFR and stable
HbA1c. Patients can receive different treatments, such as D1, D2, D3, D4. In
cluster 3 most of the patients that change drug (D1 → D1+D2) show a positive
response to the treatment. However, patients in cluster 2 who change the drug

‡A different clustering method Fb gives us similar representative paths < pathb,Y
ι >. Natural

transformation αa,b : Fa → Fb maps clustering methods.

do not have a positive response. In cluster 7, all patients are keeping the same
drug (D1), and most of them show a positive response. Patients in clusters 6
and 7 display the best eGFR behavior; most of the patients in these clusters
keep in fact a stable behavior and a positive response to the treatment. Patients
in clusters 1 and 6 start from close eGFR values, but different UACR values;
given D1 +D2, their response is different. Patients in clusters 1, 2, 5 change,
receiving D1 +D3 and D1 +D4. These results will be considered in building a
predictive system to envisage the best treatment for each individual.
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Figure 1: Shape clusters (a) and Table of mean values (b).
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The < patha,Y
ι >, ∀ι is the representative curve of each cluster.‡ Most of the

existing research uses the Euclidean distance to compare trajectories. How-
ever, because we aim to compare trajectory shapes, we determine the Fréchet
distance, and, according to this distance, we build patient clusters. The Fréchet
distance is based on the comparison between pairs of points following the pro-
files of the curves they belong to. We analyzed the response to the treatment,
measured according to the eGFR variable. We build patient clusters deriving
the mean of eGFR trajectories. We then investigate the characteristics of pa-
tients, in relationship with demographic and clinical variables which charac-
terize each patient. We evaluated the behavior of 241 DKD patients observed
in a 4-year period, according to the DC-ren project. Computationally, we used
an extension of the longitudinal k-means, kmlShape (Genolini et al., 2016),
with time scale 0.5.

3 Results

In this study, which involves clusters based on shapes of individual trajec-
tories, without assuming a particular shape, we obtained a grouping of pa-
tients according to their similarity of eGFR behavior. Trajectories are evaluated
upon the Fréchet distance between them, computed on the continuous variable
eGFR. We obtain 8 patient clusters with similar eGFR shape of individual tra-
jectories. In Figure 1a, we represent the obtained clusters. In the Table (Figure
1b), we show the behavior of clusters achieved with the Fréchet distance, with
standard deviations at each time point. We find three main patients’ subgroups:
patients with decreasing eGFR (clusters 1, 3, 8); low decreasing eGFR (cl. 2,
4), and stable/increasing eGFR (cl. 5, 6, 7). To explain these behaviors, we
consider some relevant clinical characteristics of patients, which are the ratio
of urinary albumin and creatinine (mean UACR) and the glycated hemoglobin
(HbA1c), shown in the Table (Figure 1b). Mean UACR is decreasing in cluster
6, while it is increasing in cluster 8. Decreasing or stable values of HbA1c,
which characterize DKD patients (Karpati et al., 2018), are shown by patients
in cl. 6, while increasing values of HbA1c are shown by patients in cl. 8. We
notice that there is a relationship between non-decreasing eGFR and stable
HbA1c. Patients can receive different treatments, such as D1, D2, D3, D4. In
cluster 3 most of the patients that change drug (D1 → D1+D2) show a positive
response to the treatment. However, patients in cluster 2 who change the drug

‡A different clustering method Fb gives us similar representative paths < pathb,Y
ι >. Natural

transformation αa,b : Fa → Fb maps clustering methods.

do not have a positive response. In cluster 7, all patients are keeping the same
drug (D1), and most of them show a positive response. Patients in clusters 6
and 7 display the best eGFR behavior; most of the patients in these clusters
keep in fact a stable behavior and a positive response to the treatment. Patients
in clusters 1 and 6 start from close eGFR values, but different UACR values;
given D1 +D2, their response is different. Patients in clusters 1, 2, 5 change,
receiving D1 +D3 and D1 +D4. These results will be considered in building a
predictive system to envisage the best treatment for each individual.
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ABSTRACT: Random-coefficients linear models can be considered as a particular
case of linear mixed models, in which the random effects depend on the model fixed-
effects design matrix. A Redundancy Analysis of estimates of the multivariate random-
effects may be able to capture the leading contribution to this correlation. Starting
from the standardized multivariate best linear predictors, we introduce the random ef-
fects reduced space by a weighted least-squares closed-form solution. The application
shows the effect of the linear dependence of the random-effects in the space of the
predictor variables.

KEYWORDS: Redundancy analysis, linear mixed model, empirical best linear unbi-
ased predictor, restricted maximum likelihood estimator.

1 Introduction

Random-coefficients linear regression models (RCM) represent a special case
of linear mixed models (LMM, Demidenko, 2004), where the vector of re-
gression coefficients for the subjects (e.g. repeated observations) is modeled
in a second stage linear regression equation. In order to specify this type of
models, it is convenient to define a two-stage hierarchical linear model, with a
first stage that models within-subject observations, and as second stage we use
a linear model for the random regression coefficients. Although in the basic
linear mixed models the random effects are not correlated with the modeled
response variables (unlike the fixed-effects with the random effects estimates),
in the RCM this correlation depends on the fixed-effects design matrix of the
regression model. Since this happens, one can be interested to know in which
components of a multivariate model the random effects are related to the sub-
space spanned by the model covariates. In the same way, what components of
the multivariate vector seem to be orthogonal to that subspace. Redundancy

Analysis (RDA) was originally introduced in order to capture the effect onto a
reduced space of the linear dependence by a set of criterion variables from a
set of predictors. A RDA of the predicted criterion variables by the best linear
unbiased predictor may be quite representative (Marcis & Salvatore, 2020).
This paper uses a RDA by a least-squares solution for an optimal fixed-effects
estimate from the data provided by the random-coefficients linear model pre-
dictors of the criterion variables. The application study performs the method
introduced on the official data by the Italian Equitable and Sustainable Well-
being indicators.

2 Redundancy Analysis: model estimation and application study

Given a q-variate random vector Y , consider the case when Y is partitioned
in n subjects (groups), each of them with ni individuals (i = 1, ...,m, ; j =
1, ...,ni;s = 1, ...,q). We assume that the population model for the n sub-
jects is yi|q×1 = B′

q×pxi|q×1 +Ai|q×rzi|r×1, where B is the matrix of fixed re-
gression coefficients. Ai is a matrix of q-variate r-dimensional vectors of
random-effects, with ai = vec(A′

i) ∼ N(0,Σa), Σa = cov(vec(A′
i)) = {Σa,ss′},

and Σa,ss′ = cov(vec(A′
i,ss′)), where s,s′ = 1, ...,q, the r×r blocks of Σa . When

r = p, the population model is a multivariate RCM, with zi = xi. Given a sam-
ple of N = ΣiΣ jni j units (e.g. repeated measurements), then the model struc-
ture is YN×q = X+

N×pBp×q +Z+
N×pmApm×q +EN×q, with X+ the matrix of data

covariates, Z+ the design matrix of random effects, and E the matrix of re-
gression within-subject errors, cov(vec(E)) = R. Assuming both Y and X+

as columnwise centered and standardized, we get in the general RCM setup
cov(asi,ysi) = DZ′

i = DX ′
si. If F = Ỹ ∗∗var(ỹ)−

1
2 −X+B,Ỹ ∗∗ = Ỹ −E(Ỹ ), and

β̂ = (X ′Σ−1X)−1X ′Σ−1ỹ∗, β = vec(B), Σ = var(ỹ) = E
{
(ỹ∗s′ − y∗s′)

′(ỹ∗s − y∗s )
}

,

the singular value decomposition of ̂̃Y
∗∗
=Y =X+β̂ gives the common rescaled

predictor’s coordinates, UY ΛYV ′
Y , further noticing that U∗

Ỹ ∗∗ = ỸV−1ΛY con-

tains the row joint reduced coordinates in the space of Ỹ ∗∗. In accordance
with recent law reforms, the Equitable and Sustainable Well-being indicators
(BES) - annually provided by the Italian Statistical Institute(ISTAT, 2017) -
are designed to define the economic policies which largely act on some fun-
damental aspects of the quality of life. In order to highlight the result of the
proposed RDA, we use 12 BES indicators relating to the years 2013-2016, col-
lected at NUTS-2 level. In particular the variables are S8 (Age-standardised
mortality rate), IF3 (People with tertiary education), L12 (Satisfaction with
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job), REL4 (Social participation), POL5 (Trust in institutions), SIC1 (Homi-
cide rate), BS3 (Positive judgment for future perspectives), PATR9 (Presence
of Parks/Gardens), AMB9 (Satisfaction for life), INN1 (Percentage of R&D
expenditure), Q2 (Childhood services) and LBE1 (logarithm of per-capita ad-
justed disposable income). We use the latter as the predictor variable in the
RCM, while the remaining 11 variables are dependent variables. The appli-
cation uses the restricted maximum likelihood estimation, inside a SAS/IML
code. To simplify the estimation process, we assume equicorrelation between
the multivariate components of random effects. The linear mixed model with
random coefficients highlights its analytical capabilities in the Figure 1. The
plot features the standardized best predictors (STDP) and the original criterion
variables in the space of the latter. As an example, while there is no correlation
between INN1 (R&D expenditure) and AMB9 (satisfaction for the environ-
ment), the same best predictor variables register an inverse correlation. This
evidence is supported by arguments, such as critical differences among North-
ern and Southern Italian Regions. Figure 2 shows the constrained RDA, in
which the major contribution is given by the variables IF3, Q2, REL4, and
AMB9. Interpreting the correlation between random effects and the LBE1
model covariate, this dependence is mainly explained indeed by the amount of
the population that completed tertiary education (IF3). This means that most
of the differences between Italian Regions reflect the dependence of the IF3
variable on the disposable income.
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ABSTRACT: In the big data context, it is very frequent to manage the analysis of
missing values. This is especially relevant in the field of statistical analysis, where
this represents a thorny issue. This study proposes a strategy for data enrichment in
presence of sparse matrices. The research objective consists in the evaluation of a
possible distinction of behaviour among observations in sparse matrices with missing
data. After selecting among the multiple imputation methods, an innovative technique
will be presented to impute missing observations as a negative position or a neutral
opinion. This method has been applied to a dataset measuring the interaction between
users and social network pages for some Italian newspapers.

KEYWORDS: Social network data, Missing values, Multiple imputations

1 Introduction

The treatment of missing values is still a neglected phase in the field of quan-
titative analysis. In not statistical contexts, the most abused solution is the row
elimination, that is to say the deletion of the observation with missing values.
This operation could result misleading and the treatment of missing observa-
tions is more complex procedure. Firstly, it is necessary to conduct some pre-
liminary analysis about the nature of this lack of information and to recognize
the mechanism of the missing data. This relationship aims to evaluate the link
between the observed value and the missing one. This lead to the well-known
classification of Little and Rubin (Little, 1988) in MCAR (Missing Completely
At Random) data, MAR (Missing at Random) data o NMAR (Not Missing At
Random) data. Only after the identification of these mechanism, it is possible
to find the best solution to solve the problem of missing values. If the complete
case analysis has not been considered as a valid alternative, it is necessary to
proceed with the imputation of the missing observation.

In this study, an innovative technique to discern the missing value from a
behaviour for some individuals has been proposed using two steps. In the first

step, the substitution of missing values is implemented using a threshold based
on the number of expressed “Likes”. In particular, a missing value is consid-
ered as a “Dislike” only when a user has expressed a percentage of “Likes”
that is higher than a selected threshold. Alternatively, if the percent of “Likes”
is less than the threshold, a missing “Like” is imputed as a “Nothing”. The
second step has been pursued using a multiple imputation technique known as
MIMCA method (Multiple Imputation with Multiple Correspondence Analy-
sis) (Audigier et al., 2017). This procedure is applied to social media data from
the official pages of 7 Italian newspapers.

2 The MIMCA approach

Multiple Imputation with Multiple Correspondence Analysis represents an avail-
able alternative as imputation technique for qualitative data. This approach al-
lows to impute data sets with incomplete categorical variables. The principle of
MI with MCA, as well as all the other multiple imputation techniques, consists
in creating M different datasets to reflect the uncertainty on imputed values. In
this context, each dataset is obtained with an algorithm called iterative MCA,
which is useful to impute qualitative data. The iterative MCA algorithm con-
sists in recoding the incomplete dataset as an incomplete disjunctive table Z,
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weights assigned to individuals. After a first step of imputation, the proce-
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reached. In many cases, due to overfitting problems, a regularized version of
this algorithm is used (Josse et al., 2012).



373 

THE USE OF MULTIPLE IMPUTATION TECHNIQUES IN
SOCIAL MEDIA DATA

Paolo Mariani 1, Andrea Marletta 1 and Matteo Locci 1

1 Department of Economics, Management and Statistics, Univer-
sity of Milano-Bicocca, (e-mail: andrea.marletta@unimib.it,
paolo.mariani@unimib.it, m.locci2@campus.unimib.it )

ABSTRACT: In the big data context, it is very frequent to manage the analysis of
missing values. This is especially relevant in the field of statistical analysis, where
this represents a thorny issue. This study proposes a strategy for data enrichment in
presence of sparse matrices. The research objective consists in the evaluation of a
possible distinction of behaviour among observations in sparse matrices with missing
data. After selecting among the multiple imputation methods, an innovative technique
will be presented to impute missing observations as a negative position or a neutral
opinion. This method has been applied to a dataset measuring the interaction between
users and social network pages for some Italian newspapers.

KEYWORDS: Social network data, Missing values, Multiple imputations

1 Introduction

The treatment of missing values is still a neglected phase in the field of quan-
titative analysis. In not statistical contexts, the most abused solution is the row
elimination, that is to say the deletion of the observation with missing values.
This operation could result misleading and the treatment of missing observa-
tions is more complex procedure. Firstly, it is necessary to conduct some pre-
liminary analysis about the nature of this lack of information and to recognize
the mechanism of the missing data. This relationship aims to evaluate the link
between the observed value and the missing one. This lead to the well-known
classification of Little and Rubin (Little, 1988) in MCAR (Missing Completely
At Random) data, MAR (Missing at Random) data o NMAR (Not Missing At
Random) data. Only after the identification of these mechanism, it is possible
to find the best solution to solve the problem of missing values. If the complete
case analysis has not been considered as a valid alternative, it is necessary to
proceed with the imputation of the missing observation.

In this study, an innovative technique to discern the missing value from a
behaviour for some individuals has been proposed using two steps. In the first

step, the substitution of missing values is implemented using a threshold based
on the number of expressed “Likes”. In particular, a missing value is consid-
ered as a “Dislike” only when a user has expressed a percentage of “Likes”
that is higher than a selected threshold. Alternatively, if the percent of “Likes”
is less than the threshold, a missing “Like” is imputed as a “Nothing”. The
second step has been pursued using a multiple imputation technique known as
MIMCA method (Multiple Imputation with Multiple Correspondence Analy-
sis) (Audigier et al., 2017). This procedure is applied to social media data from
the official pages of 7 Italian newspapers.

2 The MIMCA approach

Multiple Imputation with Multiple Correspondence Analysis represents an avail-
able alternative as imputation technique for qualitative data. This approach al-
lows to impute data sets with incomplete categorical variables. The principle of
MI with MCA, as well as all the other multiple imputation techniques, consists
in creating M different datasets to reflect the uncertainty on imputed values. In
this context, each dataset is obtained with an algorithm called iterative MCA,
which is useful to impute qualitative data. The iterative MCA algorithm con-
sists in recoding the incomplete dataset as an incomplete disjunctive table Z,
randomly imputing the missing values, estimating the principal components
and loadings from the completed matrix and then, using these estimates to
impute missing values according to the following reconstruction formula:
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reached. In many cases, due to overfitting problems, a regularized version of
this algorithm is used (Josse et al., 2012).
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This approach is part of the family of joint modelling MI method, which
means that it is more computationally efficient than conditional models. In
fact, this MI technique is based on Multiple Correspondence Analysis and then
the number of parameters estimated is small. Another advantage of MI with
MCA is the goodness of estimation even if the number of individuals is small.
Finally, MI with MCA well represents less frequent categories in the step of
imputation. This last is another property that derives from MCA.

3 Application on Italian newspaper social pages

The dataset used for this application is represented by users that expressed at
least one “Like” in social media pages, websites, and forums concerning drugs
and health. The research was conducted on 2,795 Italian subjects considering
all interactions between people and brands and between products and services
on Facebook. The selected category for Facebook pages is Italian newspapers.
Each column of the dataset is a dummy variable that represents the presence
or absence of a “Like.” The 7 Italian newspapers are: La Repubblica, Corriere
della Sera, Il Fatto Quotidiano, Il Sole 24 Ore, La Gazzetta dello Sport, Il
Messaggero, La Stampa.

Before performing the MIMCA approach, the entire dataset has been di-
vided into training and validation set. In particular, a number of cells equiva-
lent to 30% of the cells observed has been set to “missing value”. In order to
create a validation set similar to the original data set, the proportion of each
category (“Like”, “Dislike” and “Nothing”) has been maintained. The number
of multiple data sets generated is equal to 100. The category to be imputed is
selected by the majority rule. In other terms, among 100 imputations for each
cell of the validation set, the category imputed at least 34 times is selected.

In order to evaluate the performances of MI with MCA, a confusion matrix
has been created and summarized through an index of accuracy. This approach
imputes more than 81% of the cells considered. Then, the performance of this
technique is satisfactory.

Once the goodness of MIMCA has been proved, the process of data enrich-
ment about cells without a category observed or imputed can be completed. In
order to achieve this goal, M = 100 data sets have been imputed with MIMCA
and, for each cell with a missing value, only those where a “Dislike” or a
“Nothing” has been imputed are considered. Moreover, in order to minimize
the simulation error due to the application of a bootstrap procedure, a threshold
has been introduced. More specifically, considering only the data sets where a
“Dislike” or a “Nothing” has been imputed, the imputation rule for each cell is

the following:

• if the proportion of “Dislike” imputed is greater than or equal to 60%,
then a “Dislike” is imputed;

• if the proportion of “Dislike” imputed is less than or equal to 40%, then
a “Nothing” is imputed;

• if the proportion of “Dislike” is between 40% and 60%, then neither a
“Dislike” nor a “Nothing” is imputed.

Table 1. Distribution of “Like”, “Dislike” and “Nothing” after MI with MCA.

La Repubblica Corriere della Sera Il Fatto Quotidiano Il Sole 24 Ore

“Like” 299 244 268 158

“Dislike” 24 8 57 47

“Nothing” 149 235 139 197

Missing Values 24 9 32 94

La Gazzetta dello Sport Il Messaggero La Stampa Total

“Like” 116 66 86 1237

“Dislike” 221 255 200 812

“Nothing” 155 169 170 1214

Missing Values 4 6 40 209

As can be noted from the table 1, few missing values are still present. In
fact, in some cases the number of “Dislike” imputed in a specific cell is very
similar to the number of “Nothing”. In particular, this behaviour is manifested
when the proportion of “Dislike” (or “Nothing”) is between 40% and 60%.
Even if there are some cases where missing values are not imputed, MI with
MCA works well. In fact, the proportion of missing values is now equal to 6%.
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ABSTRACT: The prediction of gene expressions from DNA sequences is a relevant
problem in biology. While most of the existing methods dedicated to this task use
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ties, which have a clearer biological interpretation. This novelty, however, introduces
new challenges for modelling, which we address leveraging on Bayesian non-linear
modelling techniques.
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1 Introduction

Scientists are often interested in predicting differences in the expression of a
gene in different individuals solely from the DNA sequence of the individu-
als. The predicted expression can then be used in place of the real one when
measuring the latter is too expensive, and the learnt relationship between DNA
and expression can lead to a better understanding of how genes are regulated
(Manor & Segal, 2013). The expression of a gene is the amount of RNA
molecules it produces. Humans have two independent sets of DNA molecules,
one coming from the father and one from the mother, therefore there are two
copies of each gene. When measuring the expression, one simply sums the
molecules produced by each copy.

When associating DNA to gene expressions, the first problem we face is
how to encode the DNA (a 3-billion letter string from the alphabet {A,C,G,T})

Person log Expr.
of EGFR

Affinity of TF 1
for copy 1
of region 1

. . .
Affinity of TF l

for copy 2
of region r

Alice 3.5 8.4 . . . 1.1
Bob 4.1 7.7 . . . 0.6
Craig 3.3 9.4 . . . 0.5
Dave 3.8 10.2 . . . 0.8
Eve 3.4 8.1 . . . 1.2
Frank 4.2 9.5 . . . 0.5

EE︸︷︷︸
Response (log y)

AAAAAAAAAAAAAAAAAA︸ ︷︷ ︸
Predictors (A)

Figure 1. Left: Humans have two copies of DNA in each cell; the expression of a gene is the amount of
RNA it produces. Transcription factors bind the DNA at the regulatory regions from where they activate or
inhibit the expression of their target gene. Right: A plausible instance of our data set.

into numbers to be used in a regression model. Most existing methods rely on
genotypes (discrete variables taking values 0, 1, or 2 encoding single-letter
differences in the DNA of different people), which do not allow for easy inter-
pretation (e.g., “If the DNA has an ‘A’ instead of a ‘T’, the expression of the
gene will be higher”). Our first goal is to develop a more interpretable model.

Gene expression is mainly controlled by specialised proteins called tran-
scription factors, which bind the DNA at particular locations (regulatory re-
gions) by establishing weak chemical bonds. Different DNA sequences will
have, therefore, different chemical affinities for the transcription factors. Since
different individuals have different DNA sequences, it is possible to use the
affinities for transcription factors as numerical (continuous) predictors in the
predictive model of gene expression. Affinities have a far superior interpre-
tation, exemplified by statements such as “If the affinity for this transcription
factor is higher, the expression will be higher.”

However, one needs to make an assumption about the relationship (e.g.,
linear) between affinities and gene expression. de Boer et al. , 2020 models
the logarithm of the expression as a linear function of the affinities. The model
is developed for a type of yeast and achieves a good performance, but is still
too simple for our application. Indeed, yeast has two important distinguishing
features: 1) it is haploid, meaning that it has only one copy of DNA, whereas
humans have two; and 2) its genes are regulated primarily by one regulatory
region, whereas human genes typically have more than one.

In this paper, we set up a predictive model for the expression of the EGFR
(Epidermal Growth Factor Receptor) gene, and explicitly address both limita-
tions in de Boer et al. , 2020. Figure 1 provides a schematic of our application.
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2 Methodology and results

Our dataset consists in the expression values of the EGFR gene for n = 414
individuals (from The GTEx Consortium, 2020), and in the affinity of each
regulatory region for all transcription factors, for a total of p = 358 predictors.

We can take multiple regulatory regions into account (goal 2 above) via
a straightforward modification of the model in de Boer et al. , 2020, which
becomes: log(y) = β0 +∑r

g=1 ∑l
f=1 A f gβ f g. Here y denotes the gene expres-

sion, {A f g}l,r
f=1,g=1 are the affinities, and βββ= (β0, . . . ,βrl)

� is a vector of model
parameters. Similarly to de Boer et al. , 2020, we sum over all transcriptions
factors, indexed by f , but now also along the regulatory regions, g, of the gene.

Accommodating for both copies of DNA (goal 1 above) is more challeng-
ing. Biologically, we know that the effects of the two copies should be additive
in the original scale of the expression, not in the log-transformed expression.
At the same time, working with the expression in the original scale can be
troublesome, for it is often not normally distributed. Therefore, we propose
the following model for the expression of a single gene:

log(yyy)∼ mvnormal
(

log
(

eAAA(1)βββ + eAAA(2)βββ
)
,σ2III

)
. (1)

Here yyy is an n-vector of expression values (one for each individual), AAA(i),
with i ∈ {1,2}, is the n× rl affinity matrix for copy i, where each column
represents a transcription factor-regulatory region pair (r is the number of re-
gions, l the number of transcription factors), and vector βββ (lr×1) encapsulates
the coefficients of the affinities. By computing the exponential of AAA(i)βββ, with
i ∈ {1,2}, we obtain the effect of copy i on the expression in the original scale.
We subsequently sum the two effects, and take the log of the sum to go back
to the log-scale response. Importantly, the coefficient of a given transcription
factor in a given regulatory region is the same for the two copies of DNA. We
notice that for this reason our model does not fall in the class of generalised
linear models (at least not obviously), as each coefficient β j appears two times
independently for two different predictors.

Model (1) is embedded in a Bayesian framework by placing a normal prior
(with mean zero and variance τ) on all coefficients βββ independently, and a non-
informative Jeffreys prior on σ2. The Bayesian framework is chosen for two
primary reasons: 1) Although in our specific application p < n, generally in
genomics p � n and regularisation is needed. Regularisation can be thought
of as imposing a Bayesian prior on the underlying parameters. Specifically,
the ridge regression estimator can be viewed as the Bayesian posterior mean

Table 1. Results of the nested-cross validation. MSE is the mean squared error, ρ the correlation between
true and predicted expression; averages and standard deviations of these quantities are computed across
the 5-folds. Avg R2 is the average of the squared correlations. Z is the Z-score computed via Stouffer’s
method, which combines the ρ of the five folds, and pval Z is the p-value of the Z-score.

Gene Avg MSE Sd MSE Avg ρ Sd ρ Avg R2 Z pval Z

EGFR 0.011 0.003 0.199 0.065 0.043 4.030 2.8e-5

estimator of βββ when imposing a Gaussian prior on βββ. 2) Ability to encode
knowledge via priors distributions. For example, we can exploit existing bio-
logical data about which transcription factors are bound to a region of DNA by
giving the corresponding variables a less stringent regularisation.

To carry out an unbiased evaluation of the performance, we implemented
a 5-fold cross-validation strategy. Table 1 summarises the results. While the
average R2 may seem small, we emphasise that low values are common in the
prediction of gene expression and our model outperforms recently published
genotype-based models (the R2 achieved by Nagpal et al. , 2019 is only 0.005).

Thus, our method can model the underlying biological problem in a real-
istic way and provide meaningful results thanks to its interpretable predictors.
In the future, it could be improved by considering interactions between tran-
scription factors, which are also biologically important. Nevertheless, for the
time being, we hope that non-linear models will find their way in the field of
gene expression prediction, which currently is dominated by genotype-based
linear models.
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(

eAAA(1)βββ + eAAA(2)βββ
)
,σ2III

)
. (1)

Here yyy is an n-vector of expression values (one for each individual), AAA(i),
with i ∈ {1,2}, is the n× rl affinity matrix for copy i, where each column
represents a transcription factor-regulatory region pair (r is the number of re-
gions, l the number of transcription factors), and vector βββ (lr×1) encapsulates
the coefficients of the affinities. By computing the exponential of AAA(i)βββ, with
i ∈ {1,2}, we obtain the effect of copy i on the expression in the original scale.
We subsequently sum the two effects, and take the log of the sum to go back
to the log-scale response. Importantly, the coefficient of a given transcription
factor in a given regulatory region is the same for the two copies of DNA. We
notice that for this reason our model does not fall in the class of generalised
linear models (at least not obviously), as each coefficient β j appears two times
independently for two different predictors.

Model (1) is embedded in a Bayesian framework by placing a normal prior
(with mean zero and variance τ) on all coefficients βββ independently, and a non-
informative Jeffreys prior on σ2. The Bayesian framework is chosen for two
primary reasons: 1) Although in our specific application p < n, generally in
genomics p � n and regularisation is needed. Regularisation can be thought
of as imposing a Bayesian prior on the underlying parameters. Specifically,
the ridge regression estimator can be viewed as the Bayesian posterior mean

Table 1. Results of the nested-cross validation. MSE is the mean squared error, ρ the correlation between
true and predicted expression; averages and standard deviations of these quantities are computed across
the 5-folds. Avg R2 is the average of the squared correlations. Z is the Z-score computed via Stouffer’s
method, which combines the ρ of the five folds, and pval Z is the p-value of the Z-score.

Gene Avg MSE Sd MSE Avg ρ Sd ρ Avg R2 Z pval Z

EGFR 0.011 0.003 0.199 0.065 0.043 4.030 2.8e-5

estimator of βββ when imposing a Gaussian prior on βββ. 2) Ability to encode
knowledge via priors distributions. For example, we can exploit existing bio-
logical data about which transcription factors are bound to a region of DNA by
giving the corresponding variables a less stringent regularisation.

To carry out an unbiased evaluation of the performance, we implemented
a 5-fold cross-validation strategy. Table 1 summarises the results. While the
average R2 may seem small, we emphasise that low values are common in the
prediction of gene expression and our model outperforms recently published
genotype-based models (the R2 achieved by Nagpal et al. , 2019 is only 0.005).

Thus, our method can model the underlying biological problem in a real-
istic way and provide meaningful results thanks to its interpretable predictors.
In the future, it could be improved by considering interactions between tran-
scription factors, which are also biologically important. Nevertheless, for the
time being, we hope that non-linear models will find their way in the field of
gene expression prediction, which currently is dominated by genotype-based
linear models.
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ABSTRACT: An important challenge in complex vegetation systems is the classifica-
tion of vegetation since it represents a useful tool for summarizing our knowledge of
vegetation patterns and, consequently, for nature conservation, landscape mapping and
land-use planning. It typically requires standard clustering methods that are capable of
identifying groups of plots characterized by dominant and diagnostic species. When
the data are high-dimensional, however, efficient clustering methods have to be con-
sidered. In this paper, we consider a robust model-based clustering, called Gaussian
mixture models for high-dimensional data (HD-GMM) which takes into account for
the specific subspace around which each cluster is located and, consequently, provides
parsimonious modeling. Results are encouraging and deserve further discussion.
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1 Introduction

Improving actions for nature conservation, landscape mapping and land-use
planning is a key point in vegetation Science. The need for ecologists to de-
velop appropriate management and conservation strategies has been widely
recognized. The identification of homogeneous vegetation communities pro-
vides a useful way of summarizing our knowledge of vegetation in a certain
area. Clustering represents an important tool to discover such communities
and, in general, to draw insights from vegetation data. Summary of vegetation
clustering methods can be found in several proposals that focus on this disci-
pline (Sun et al., 1997). Attorre et al. (2020) propose a finite mixture model
(FMM) for classifying georeferenced vegetation plots present in the Italian
peninsula, including the two main islands (Sicily and Sardinia), but excluding
the Alps and the Po plain, according to species composition and environmen-
tal variables. Previously, FMM has been applied to identify marine bioregions

on the Western Australian continental margin (Woolley et al., 2013) and forest
physiognomic types in Italy (Attorre et al., 2014). However, when we face
with high-dimensional vegetation data, FMM, or more specifically, standard
model-based clustering techniques, may show a disappointing behavior. This
is mainly due to the fact that the number of parameters to be estimated usu-
ally depends on the dimension of the observed space and such approaches may
therefore suffer from the so-called curse of dimensionality (Bellman, 1957).
In this paper, we suggest the use of a robust model-based clustering, named
Gaussian mixture models for high-dimensional data (HD-GMM) proposed by
Bouveyron et al. (2007). We examine a database of 7955 georeferenced plots
and 3181 plant species of evergreen forest vegetation, created in TURBOVEG
by storing published and unpublished phytosociological plots collected over
the last 30 years. These plant communities are scattered along the Mediter-
ranean coastal area, whose main and distinctive ecological feature is the pro-
longed aridity in summer and rainfall mainly concentrated during winter and
spring. Making use of HD-GMM, we assume that high-dimensional vetegation
data live in subspaces with a dimensionality lower than the dimensionality of
the original plant species space, limiting the number of parameters to estimate
and, consequently, the computational time. Finally, as in the FMM framework,
the plots are classified based on their plant species composition through a pos-
teriori specific-plot probability and the clusters are defined to be homogeneous
in that they include plots that show similar vegetation.

2 The model

Let Y = (Y1, . . . ,Yn) be the abundance data matrix, where the generic ele-
ment yi j represents the value of the measure of abundance for the j-th tree
species, namely the percentage of biomass of a certain species with respect
to the total biomass of vegetation, observed in the i-th plot of the study area,
(i = 1, . . . ,n, j = 1, . . . , p). FMM assumes that each plot yi is drawn from a
mixture of K components in some unknown mixing proportions π1, . . . ,πK ,
with ∑K

k=1 πk = 1. Each component identifies a cluster. When a (multivariate)
Gaussian density is used to describe the component-specific distribution of ob-
served plant species cover, the component is identified by a specific center,
defined by the mean vector (as the observed values are on abundance scale,
we may hypothesize that similar plots will be characterized by similar values
of abundance of the same species), and a specific shape, summarized by the
covariance matrix, which allows for varying dependence between cover values
corresponding to different plant species for plots in that component. In other
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words, yi has density function defined by:

f (yi|Ψ) =
K

∑
k=1

πkφ(xi | µk,Σk) , (1)

where φ(·) represents the cluster-specific p-variate Gaussian density with vec-
tor mean µk and covariance matrix Σk, for k= 1, . . . ,K, and Ψ=(π1, . . . ,πK ,µ1,
. . . ,µK ,Σ1, . . . ,ΣK) denotes the overall parameter vector. Unfortunately, FMM
requires the estimation of a very large number of parameters (proportional to
p2) and therefore faces numerical problems in high-dimensional spaces. In
this respect, HD-GMM assumed that high-dimensional data live around sub-
spaces with a dimension lower than the considered species number, limiting to
estimate the specific subspace and the cluster-specific intrinsic dimension. For-
mally, HD-GMM considers the following eigen-decomposition of the cluster-
specific covariance matrix Σk:

Σk = Dt
kAkDk (2)

where Dk is a (p× p) orthogonal matrix having as columns the eigenvectors
of Σk and Ak is a (p× p) diagonal matrix which contains the associated eigen-
values (sorted in decreasing order), k = 1, . . . ,K. It follows that, Ak represents
the cluster-specific covariance matrix in the eigenspace of Σk. Moreover, it
is assumed that Ak is reparametrized as a diagonal matrix having only qk + 1
different eigenvalues:

Ak = diag(ak1, . . . ,akqk ,bk, . . . ,bk), (3)

with ak j > bk, j = 1, . . . ,qk, qk ∈ {1, . . . , p− 1}. In this way, the parameters
ak j describe the cluster-specific variance of the original data, while the unique
parameter bk models the variance of the noise which is isotropic and contained
in a subspace, which is orthogonal to the subspace of the k-th cluster. The
dimension qk is unknown and represents the dimension of the cluster-specific
subspace Ek which is spanned by the qk first columns of Dk, i.e. by the qk first
eigenvectors corresponding to the eigenvalues ak j, with µk ∈ Ek. Notice that,
if qk = p−1 for all k = 1, . . . ,K then HD-GMM reduces to FMM. Following
the classical parsimony strategy, a family of 28 parsimonious HD-GMMs is
defined by constraining some (or all) parameters to vary within and between
clusters. The more general HD-GMM is denoted by [ak jbkDkqk].

3 Conclusion

Thanks to the significant reduction of the number of parameters to be esti-
mated, HD-GMM seems to be a promising approach when dealing with the
analysis of high-dimensional complex vegetation systems data. This mod-
elling may effectively highlight specific subspaces in the geographical patterns
helping the interpretation of the clustering results.
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ABSTRACT: A measure for outlier detection of multivariate histogram-valued vari-
ables based on the Mallows (SDO2

M) distance is proposed. A case study with distri-
butional data of repeated measurements of 10 patients’ hematocrit and hemoglobin is
presented. The Q3+3(Q3−Q1) criteria and, P95 and P97.5 of a Chi-Square distribution
with p-degrees of freedom (p number of variables) are used as cut-offs. Overall, the
SDO2

M along with the P95 cut-off are able to detect outliers in most analysed situations.
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1 Introduction

Symbolic data were introduced to better describe and analyse data with in-
trinsic variability. Descriptive statistics (e.g., mean, median) and multivariate
data analysis methods (e.g.,linear regression) for histogram-valued data anal-
ysis have been developed. Outlier analysis has first been addressed by Verde
et al., 2014. Following a different approach, we introduce a method for multi-
variate outlier analysis based on the Mallows distance. We define outlier as a
data unit which is far apart from the center of the data cloud, here the barycen-
ter. Results on a case study are presented.

2 Methods

Let S = {s1, . . . ,sn} be the set of entities under analysis, B the set of proba-
bility of frequency distributions over a set of sub-intervals {Ii1, . . . , IiKi} of an

underlying domain O ⊆ R, a histogram-valued variable is defined by a map-
ping Y : S → B. Each realisation i of the histogram-valued variable, Y (si), may
be represented by the histogram

HY (si) =
{[

Ii1, Īi1
[
, pi1; . . . ,

[
IiKi

, ĪiKi

]
, piKi

}
, (1)

where pi1 + · · ·+ piKi = 1. Also, it is assumed that within each sub-interval
[Ii�, Īi�

[
the values of variable Y (si) are uniformly distributed. Another repre-

sentation of the histogram-valued variables is the quantile function,

φi(t) =





Ii1 +
t

wi1
ri1 if 0 ≤ t ≤ wi1

Ii2 +
t−wi1

wi2−wi1
ri2 if wi1 ≤ t ≤ wi2

...
IiKi

+
t−wiKi−1
1−wiKi−1

riKi if wiKi−1 ≤ t ≤ 1,

(2)

where wih =
h
∑
�=1

pi�, h = 1, . . . ,Ki and ri� = Īi� − Ii� for � = {1, . . . ,Ki}. The

quantile functions are piecewise linear and even though the space of the quan-
tile functions is only a semi-vector space, the arithmetic operations are simpler
with this representation, which is preferred to represent histogram-valued data.

To identify multivariate outliers we propose a measure based on the Mal-
lows distances to the multivariate means of quantile functions. The Mal-

lows distance (dM) is defined as dM
(
φi(t),φ j(t)

)
=

√∫ 1
0
(
φi(t)−φ j(t)

)2dt,
and the multivariate mean of quantile functions is the barycenter (φ̄b), which

is the solution of the minimisation problem: Min
n

∑
i=1

∫ 1

0
(φi− φ̄b)

2dt, leading to

φ̄(t) = 1
n

n
∑

i=1
φi(t), t ∈ [0,1]. To easily implement this method, the approach by

Hubert et al., 2015 is adopted and, an outlyingness measure based on a one-
dimensional projection of the observed data is computed. Thus, the Mallows
outlyingness measure is

SDOM2
i
= sup

||v||=1

d2
M

(
φi(t)v, 1

n

n
∑
j=1
j �=i

φ j(t)v

)

1
n−1

n
∑

i=1
d2

M

(
φi(t)v, 1

n

n
∑
j=1
j �=i

φ j(t)v

) , (3)
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where v = (a1, . . . ,ap,b1, . . . ,bp) runs through a set of 2p-dimensional vectors
(for p variables) that project the histogram-valued data into a one-dimensional
space, using the definition of linear combination proposed by Dias & Brito,
2015, that solves the problem of the semi-linearity of the space:

φŴi
(t) = a1φX1i(t)−b1φX1i(1− t)+ · · ·+apφXpi

(t)−bpφXpi
(1− t), (4)

where φX1i(t), . . . ,φXpi
(t) are the quantile functions of the observed histograms

and φX1i(1− t), . . . ,φXpi
(1− t) are the quantile functions of the corresponding

symmetric histograms, au,bu ≥ 0,u ∈ {1, . . . , p}, and t ∈ [0,1].
To flag observations as outliers, possible alternative cut-offs for SDOM2

i

are Tukey’s boxplot Q3 +3(Q3 −Q1) criterion, and, by analogy with the clas-
sical case where the Mahalanobis distance to the mean is used (see Filzmoser
et al., 2005), the P95 or the P97.5 of a Chi-Square distribution with p-degrees of
freedom (p = number of variables).

3 Case Study

An analysis of SDO2
M using distributional data of repeated measurements of

the hematocrit (Y ) and hemoglobin (X) values for 10 patients (Billard & Diday,
2006) was conducted. First, univariate outliers were considered, by perturbing
the distribution of variable X for the first unit, in seven different ways (Out1
to Out7). SDO2

M was computed for the original hemogloblin distributions and
for the seven situations where unit 1 is now an outlier. Then, bivariate outliers
were considered, by perturbing the distributions of both variables for the first
unit. SDO2

M was computed for all seven cross-situations between outliers of
variables X and Y.

3.1 Results and Discussion

The ability of SDO2
M to detect outlier observations was studied, using all three

cut-offs mentioned above. Overall, P95 is the cut-off that works the best to
identify outliers in both cases. In the univariate case this cut-off fails to identify
Out5 only and, in the bivariate case it fails to identify both Out5 and Out6 (Fig.
1). Note that in the bivariate case the outlier unit 1 for variable Y is fixed (only
one perturbation considered). The Q3 +3(Q3 −Q1) seems to be the worst, but
this may reflect the fact that n = 10, which means that sample size is small to
compute the quantiles. In fact, preliminary studies with larger n, suggest that

this is the best cut-off (data not shown). In conclusion, SDO2
M with the P95 cut-

off (and the Tukey’s criterion) seem a promising approach to detect outliers in
histogram-valued data.

Figure 1. SDO2
M measure for univariate and bivariate outliers and cut-offs P95, P97.5

and Q3 +3(Q3 −Q1). Red dots represent the outlier observation (unit 1).
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ABSTRACT: We propose a nonparametric test for the significance of a mode, with
the aim of evaluating whether a region of relatively high observed density reflects
the actual presence of a mode in the true distribution underlying a set of data. The
method leverages on the correspondence between the the mathematical framework of
Morse theory and the tools provided by gradient ascent approximation. This allows for
building a sequence of asymptotically Normal realisations of the sample distribution
of an estimated mode and the definition of a chi-squared test statistic.
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1 Introduction

Although often overlooked with respect to location measures as mean and me-
dian, inference on the modes of a distribution plays a central role in data anal-
ysis. In fact, modes represent informative summaries of a distribution, espe-
cially when data exhibit non-Gaussian features as, multimodality, skewness, or
heavy tails. One question of interest typically arises when somewhat clumped
data are observed, often at the tails of the empirical distribution, possibly in-
ducing to wonder if they are real or just a spurious effect of sample variability.
Similarly, in many applications where clustering is the final aim, one wishes
to evaluate significance of detected groups. In astronomy, for example, a main
goal is to establish if clusters of photon emissions are evidence of the presence
of celestial energy sources or just express a strong background contamination.
This problem has been often neglected by the inherent literature, mostly ad-
dressing related aims as the one of testing unimodality of a density function or
the number of the modes (Chacón, 2020). Few contributions in the direction
of interest are Duong et al., 2008 and Genovese et al., 2016.

In this work we propose a test to evaluate if a specific point is a true mode
of the - unknown - probability density function underlying an observed set
of data. We take advantage of formal definitions and theory underlying the
modal concept of cluster (Chacón, 2015). The rationale we follow relies on
the correspondence between the mathematical framework of Morse theory and

the tools provided by gradient ascent algorithms. This allows us to define a
sequence of realisations shown to be asymptotically normal, to approximate
the sample distribution of an estimated mode.

2 Modes as critical points of the density

While intuitively clear, the problem of testing mode significance is firstly defi-
nitional. The concept of mode itself is, indeed, ambiguous, as for example the
Uniform distribution can be regarded to as both unimodal or without modes. To
overcome this problem and formalise our framework without any elusiveness,
we shall restrict the analysis to smooth distributions, and exclude non-standard
ones as, for example, functions with plateau. For our purpose, we resort to the
framework provided by Morse Theory, a branch of differential topology which
draws the relationship between the stationary points of a smooth real-valued
functions on a manifold, and its global topology (Matsumoto, 2002).

Let (x1, . . . ,xn)
′ be a sample of realisations from a random variable X with

unknown probability density f :Rd →R, which we shall assume to be a Morse
function, i.e. a function whose critical points are non-degenerate. We can
define the autonomous system identified by the the gradient ∇ f , to be dx(t)

dt =

∇ f (x(t)). Given an initial value x ∈ Rd , the integral curve νx : R �→ Rd of the
negative gradient −∇ f is the solution of the initial value problem

νx(0) = x ν′
x(t) =−∇ f (νx(t)), (1)

namely, starting at a point x, its integral curve moves it according to the gradi-
ent of f , to eventually reach, except for a set of null measure, the destination
limt→∞ νx(t). By the Morse theory, the set of destinations Θ = {θ ∈ Rd : θ =
limt→∞ νx(t),x ∈ Rd} is the set of distinct modes of f . Since integral curves
never intersect except at critical points, Θ allows to identify a unique partition
{Dθ}θ∈Θ of Rd in distinct regions Dθ = {x : limt→∞ νx(t) = θ} which represent
the “basins of attraction” of each mode θ and include all points whose integral
curve having them as starting points has destination θ.

In the lack of information about the true modal structure of f , testing the
significance of a mode recasts to defining the system of hypotheses

H0 : θ0 ∈ Θ vs H1 : θ0 /∈ Θ, (2)

for some θ0 ∈ Rd . While apparently composite, the null hypothesis is fact a
simple one, as the - yet unknown - partition of Rd in the set {D(θ)}θ∈Θ allows
us to intend H0 as “θ0 is the mode of the domain D(θ) where it belongs”;
hence, under the null hypothesis, it holds: θ0 = argminx∈D(θ0)− f (x).
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Gradient descent algorithms find iterative solutions to general optimisation
problems with suitable smoothness properties. In the current framework, the
problem can be faced via the discretisation of the integral curve (1)

θ(t+1) = θ(t) +η∇ f (θ(t)), (3)

where η is the step size, usually selected to guarantee convergence. In our
framework, the target function f may be suitably replaced by a nonparametric
kernel estimate f̂ = 1

n ∑n
i=1 K( x−xi

h ), with bandwidth h > 0 and kernel K which
we take to be a symmetric probability density; hence, the estimated gradient
∇̂ f (x) = 1

n ∑n
i=1 ∇Kh(x−xi) is plugged into the (3).

Under regularity conditions, the asymptotic distribution of the kernel gra-
dient estimator (Duong et al., 2008) is shown to be ∇ f̂ (x)∼̇N

(
∇ f (x), 1

n Σ∇
)
,

with Σ∇ = [h−d+2R(∇K) f (x)] and R(∇K) a constant depending on the kernel.
In order to develop a test statistic for the (2), we adapt to the current framework
the rationale of Liang & Su, 2019, which discuss moment-adjusted stochastic
gradient descent for optimisation in statistical inference, so that the (3) gets:

θ(t+1) = θt +η∇ f̂ (θ(t))−η[∇ f̂ (θ(t))−E(∇ f̂ (θ(t)))]

= θ(t) +ηh
d+2

2 R(∇K)−
1
2

∇ f̂ (θ(t))√
f (θ(t))

− η√
n

ε(t)

where the last step comes from a classic standardisation idea and ε(t)∼N(0, Id).

Starting from θ(0) = θ̂, which under H0 we expect to lie in D(θ0), we may then
produce a random sequence θ(1), . . . ,θ(T ) of sample modes by simply generat-
ing an artificial sample of ε(t) ∼ N(0, Id) and applying the update mechanism
(4), where f is replaced by f̂ . H0 is afterwards rejected for large values of the
asymptotically chi-squared distributed test statistic

(θ−θ0)
�Σ̂−1

θ (θ−θ0)
·∼ χ2

d ,

where θ and Σ̂θ are respectively the mean and covariance matrix of the se-
quence of sample modes θ(1), . . . ,θ(T ).

3 Empirical study

A simulation study has been run to evaluate the behaviour of the proposed test
with respect to the Type-I probability error and the power. The simple rule of
thumb of selecting h as asymptotically optimal for Normal data has been used,
and T has been set to 500.

Figure 1 displays the results - associated to the best value of η - obtained
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Figure 1. Contour plot of a density and associated estimated Type I error probability
for a nominal α = 0.05 and power for increasing distance from H0.

by drawing 500 samples of size n = 1000 from a bivariate skew distribution.
The test shows an overall good control of type I error, with a slight tendency
to be anti-conservative. The power rightly increases as the true mode departs
from θ0, with higher values associated to the steepest side of the density, and
lower ones to the most gentle side. This confirms that the testing problem is
strictly related to the local curvature around the true mode, and hence to the
eigenvalues of the Hessian. For brevity, further results are not reported here,
broadly confirming the illustrated behaviour. More challenging settings, such
as multimodal ones with overlapping modal regions, in general require a higher
sample size to guarantee the control of Type I probability error.

Further discussion is needed to provide insights about the test in higher
dimensional settings, along with the sensitivity to different choices of η and h.
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ABSTRACT: Language has been traditionally considered as a qualitative phenomenon that 
mainly requires hermeneutical methodologies in order to be studied, yet in recent decades 
thanks to advances in data storage, processing and visualization - there has been a growing 
and fertile interest in analysing language by relying on statistics and quantitative methods. In 
light of these motivations, we think it is worthwhile to try to explore databases made up of 
transcripted infant children spoken language in order to verify whether and how underlying 
patterns and recurrent sequences of learning stages work during acquisition. So, we think that 
the Expectation Maximization clustering method combined with an innovative graphical 
visualization can be useful to evaluate the development of linguistic structures over time in a 
reliable way. 

KEYWORDS: first language acquisition, EM clustering, graphical visualization, phonetic 
variation rate, POS Tags. 

1 General Framework 

First language acquisition can be studied and modelled by using statistical tools: 
experiments have shown how specific innately biased statistical learning 
mechanisms are activated during in vitro settings where children easily learn how to 
keep memory of the transitional probability between syllables to spot word' 
boundaries [6]. Statistical and computational methods have contributed to important 
advances in the understanding of language acquisition: corpus analysis is one of the 
most rigorous ways to account for pattern, regularities and learning stages in a sound 
and replicable procedure [2]. In a very abstract form, first language acquisition could 
be viewed as a mixture of deterministic and random processes. It is deterministic 
because rules and constraints applied to human cognition are partly known. It is 
partly a random process because the amount of variability between children and 
within a single child is largely acknowledged and represents at the same time what is 
interesting and what is di cult in modelling child language studies. Romberg and 

Saffran [4] assert that in language acquisition, the term `statistical learning' is most 
closely associated with tracking sequential statistics in word segmentation or 
grammar learning tasks. Knowing these rules and constraints does not allow us to 
predict the outcome of a child beginning to be immersed in his/her native language. 
All we know is that around the age of 5/6, she/he will master his/her own 
language/s. We know approximately the learning stages, the date of his/her first 
word, and the rough order of consonant acquisition. Interesting theories have been 
developed about the patterns of errors (e.g. phonetic variation) that the child will 
most likely make, but it is to date vary hard to model language acquisition. The 
types of patterns tracked by a statistical learning mechanism could be quite simple, 
such as a frequency count, or more complex, such as conditional probability [4]. In 
other words, learning a language (here conceived as a statistical structure of the 
environment) is in some ways a process that bring a child to minimize long-term 
prediction error. Clustering text is an important phase in data analysis. The common 
task in text clustering is to handle text in a multidimensional space, and to partition 
corpora into groups, where each group contains sentences that are similar to each 
other according to some grammatical indicators. Considering the above, in this 
paper we propose a new statistical strategy to evaluate the development of child 
linguistic structures over time in a reliable way based on clustering and visualization 
of words. The clusters are sufficiently explanatory for understanding first language 
acquisition as well as seem efficient for clustering performance. The paper is 
organized as follows: section 2 describes the data structure and the model applied; 
section 3 briefly provides the analysis strategy, the principal elaborations and visual 
interface for clustering.  

2 Data Structure and Model 

CoLaJE is a database composed of seven children that have been videorecorded 
in vivo approximately one hour every month from their first year of life until they 
were five (see https://www.ortolang.fr/). In this exploratory research, statistical 
treatments have been tested only on two children (Adrien and Madeleine) because 
the transcriptions obtained from these corpora are the most complete. Code for the 
Human Analysis of Transcripts (CHAT) provides a standardized format for 
producing computerized transcripts of conversational interactions. By analyzing, 
cleaning, filtering and normalizing all the available original CHAT transcripts we 
aimed at producing two corpora composed of the overall amount of what the 
children said through the years. A total of 8214 and 7168 database annotated 
sentences containing more than 100 variables were collected1. Some useful 
measures have been calculated such as: child age in years (Time) and Sentence 
Phonetic Variation Rate (SPVR) [1]: the SPVR is obtained by comparing mod and 
pho in order to measure how the relation between varied and correct form evolves 
over time. In the single sentence i (with 1....i N= ),  

1 Due to lack of space in this paper we present the results for the Adrein dataset only. All other 
calculations are available on request. 
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where TNPV is the Total Number of Phonetic Variations of the words - total 
number of the difference between what the child really says (called “pho”) and what 
he should have said according to the adult norm called (“mod”) - and CTWT is the 
Child Total Words Tokenized. Hence, SPVR can assume the value 0% when the 
child does not make any error and 100% when the child does not pronounce all the 
words contained in the sentence correctly. Then, we applied Part-Of-Speech Tagger 
(POS Tags), a software that reads text in a given language and assigns parts of 
speech to each word such as noun, verb, adjective. We used Stanza Core NLP 
engine [22] to tag all CHI words by using Universal Dependencies as a standard of 
reference for part-of-speech classification [7]. Considering the nature of the 
variables (count data), we use finite multivariate Poisson mixtures in the EM 
procedure. We recall that EM clustering is an iterative method relying on the 
assumption that the data is generated by a mixture of underlying probability 
distributions, where each component represents a separate group, or cluster. The 
method provides the optimal number of clusters in any empirical situation, by using 
a two step iterative algorithm [3]. According to this approach to estimate mixture 
parameters we computing the maximum likelihood estimate (MLE) with the EM 
algorithm. In the next paragraph we will see the results of the principal estimates 

3 Principal Results 

To extend previous research [1], we divide our database in nine strata 
considering 3 different age classes of the child (L=1.97-2.64; M= 2.71-3.39 H=3.46-
4.33 expressed in years and months) and 3 classes of SPVR (L= 33; M=>33 and 66; 
H>66 expressed in percent). In total we get 9 strata (from LL to HH). By framing 
the analysis in this way, we turn EM clustering algorithm into a potentially 
interesting method that could provide a reliable way to observe linguistic structures 
development over time. In tables 1 we summarize the main results obtained from 
clustering through a overview on the most influential POS tags for each strata and its 
related clusters for the dataset examined. In addition, the means of the POS are 
calculated in each strata (data not shown). We can observe that VERB occupies an 
increasing important role in development: it is almost absent in Adrien (dataset 1) 
during the earlier ages strata, it develops sharply in median age strata while it is 
present in almost any sentence in the upper age strata. It is clear that VERB causes 
an increase in the SPVR, as their values are higher in higher error rate strata (more 
than 33 percent). We can also observe that the parts of speech such as PRON 
(pronoun), VERB, SCONJ (subordinating conjunction) - which could be considered 
as markers of longer sentences - increase their importance. For visualization of 
clusters, we propose an interactive and visual interface to better this analysis. It has 
been designed considering a list of requirements defined in regards of the data 
structures and variables extracted by the clustering technique and the tasks one 
should be able to perform on such data. These are the main features: 1) visualize the 
clusters by age and SPVR; 2) visualize the distribution of POS tags in the clusters; 

3) visualize the different values characterizing the clusters (age, SPVR, number of 
POS tags, number of sentences) and the POS tags (number of occurrences in a 
cluster, percentage, mean, Fisher coefficient, p-value); 4) visualize the list of 
sentences of a cluster; 5) visualize the relative and absolute evolution of the number 
of POS tags when child grows up (see the following link for all the details 
http://advanse.lirmm.fr/EMClustering/). In conclusion, we would suggest that these 
preliminary results represent a fair attempt to visualize child language development 
through clusters of words grouped by several criteria (age, grammatical properties, 
correct pronunciation). We can cautiously say that in this first stage of research the 
EM algorithm can provide us some mild descriptions in the classification of POS 
tags. 

 
Table 1. EM clustering results by strata - Dataset 1 (Adrien) (# - clusters number in 
brackets - POS sorted for ANOVA post-hoc F-test (in bold) p <0.05) (First 10 POS) 

Ordered 
POS LL (3) LM (2) LH (4) ML (5) MM (3) MH (3) HL (4) HM (5) HH (5) 

POS1 INTJ VERB PRON CCONJ ADP PRON PRON NOUN AUX 
POS2 DET PROPN ADV PRON ADV AUX DET DET NOUN 
POS3 ADP ADV DET NOUN DET NOUN VERB PRON VERB 
POS4 NOUN NOUN VERB AUX SCONJ DET NOUN ADJ DET 
POS5 SYM INTJ NOUN VERB CCONJ ADP SCONJ AUX PRON 
POS6 ADV PRON INTJ NUM INTJ ADV ADP VERB NUM 
POS7 PROPN DET PROPN SYM NOUN PROPN AUX ADP ADJ 
POS8 PRON AUX AUX ADV ADJ SCONJ ADV ADV ADP 
POS9 VERB NUM ADJ DET NUM VERB ADJ SCONJ ADV 
POS10 X CCONJ SCONJ PROPN PROPN INTJ CCONJ X X 
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ABSTRACT: Bivariate Poisson models are appropriate for modelling paired count
data. However, the bivariate Poisson model does not allow for a negative dependence
structure. Therefore, it is necessary to consider alternatives. A natural way is to con-
sider copulas to generate various bivariate discrete distributions. While such models
exist in the literature, the issue of choosing a suitable copula has been overlooked so
far. Different copulas lead to different structures and any copula misspecification can
render the inference useless. In this work, we consider bivariate Poisson models gen-
erated with a copula and investigate its robustness under outliers contamination and
model misspecification. Particular focus is on the robustness of copula related param-
eters. English Premier League data are used to demonstrate the effectiveness of our
approach.

KEYWORDS: copula, dependence, outliers, robustness.

1 Introduction

Bivariate Poisson models are appropriate for modelling paired count data ex-
hibiting correlation. Paired count data arise in a wide context including, for
example, sports (e.g. the number of goals scored by each one of the two op-
ponent teams in soccer). Several models are available that can incorporate dif-
ferent structures and marginal properties, see for example Karlis & Ntzoufras,
2003. See also the work in Nikoloulopoulos, 2013 for defining models with
copulas. While several extensions and models have been proposed, up to our
knowledge, issues of robustness have been overlooked. Following da Fonseca
& Fieller, 2006, there are two kinds of achieved robustness that one should
consider. The first one refers to contamination from outlier observations or,
better, from observations that are unexpected under a certain model. The sec-
ond one refers to model deviation, i.e. a researcher would like to fit the model

with such a method that even if the model is not correct the method would
protect from deriving inconsistent results.

In this work, we consider a copula based bivariate Poisson distribution.
We apply a minimum distance estimation methodology using Hellinger dis-
tance. We investigate its robustness under outliers contamination and model
misspecification. Particular focus is given on the robustness of copula related
parameters that measure the association exhibited by paired count data. The
effectiveness of this methodology is examined on data from English Premier
League 2013-2014.

2 Copulas

Copula are functions that join multivariate distributions to their marginal distri-
butions (Nelsen, 2007). They describe the dependence structure existing across
marginal random variables. In this way we can consider bivariate distributions
with dependency structures different from the linear one that characterizes the
multivariate Gaussian distribution.

A bivariate copula C : I2 → I, with I = [0,1], is the cumulative bivariate
distribution function of the random variables (U,V ) with uniform marginal
distributions in [0,1]. It is define as:

C(u,v;θ) = P(U ≤ u,V ≤ v;θ), 0 ≤ u ≤ 1 0 ≤ v ≤ 1 (1)

where θ is a parameter measuring the dependence between U and V .
Let (Y1,Y2) be a bivariate random vector with marginal cdfs FY1(y1) and

FY2(y2) and joint cdf FY1,Y2(y1,y2;θ). There always exists a copula function
C(·, ·;θ) such that

FY1,Y2(y1,y2;θ) =C
(
FY1(y1),FY2(y2);θ

)
, y1,y2 ∈ IR. (2)

This result states that each joint distribution can be expressed in terms of
two separate but related issues, the marginal distributions and the dependence
structures between them. The dependence structure is explained by the copula
function C(·, ·;θ).

When Y1 and Y2 are discrete random variables taking values on some lat-
tice, Ω, the copula C is unique in (y1,y2) ∈ Ω but not elsewhere. Thus, in
the discrete case the mapping from two marginals and a copula {F1,F2,C}
to a bivariate distribution F(Y1,Y2) is not one-to-one. However, this is not-
uniqueness is of no consequence as the region outside Ω is not of interest in
the discrete case (Nelsen, 2007).
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marginal random variables. In this way we can consider bivariate distributions
with dependency structures different from the linear one that characterizes the
multivariate Gaussian distribution.

A bivariate copula C : I2 → I, with I = [0,1], is the cumulative bivariate
distribution function of the random variables (U,V ) with uniform marginal
distributions in [0,1]. It is define as:

C(u,v;θ) = P(U ≤ u,V ≤ v;θ), 0 ≤ u ≤ 1 0 ≤ v ≤ 1 (1)

where θ is a parameter measuring the dependence between U and V .
Let (Y1,Y2) be a bivariate random vector with marginal cdfs FY1(y1) and

FY2(y2) and joint cdf FY1,Y2(y1,y2;θ). There always exists a copula function
C(·, ·;θ) such that

FY1,Y2(y1,y2;θ) =C
(
FY1(y1),FY2(y2);θ

)
, y1,y2 ∈ IR. (2)

This result states that each joint distribution can be expressed in terms of
two separate but related issues, the marginal distributions and the dependence
structures between them. The dependence structure is explained by the copula
function C(·, ·;θ).

When Y1 and Y2 are discrete random variables taking values on some lat-
tice, Ω, the copula C is unique in (y1,y2) ∈ Ω but not elsewhere. Thus, in
the discrete case the mapping from two marginals and a copula {F1,F2,C}
to a bivariate distribution F(Y1,Y2) is not one-to-one. However, this is not-
uniqueness is of no consequence as the region outside Ω is not of interest in
the discrete case (Nelsen, 2007).
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3 Bivariate count models based on copulas

For count data, a common starting point is to use the Poisson distribution for
the marginals:

f (y;µ j) = µy
je
−µ j/y!, j = 1,2 y = 0,1, . . . (3)

where µ j > 0. Models based on copulas in the case of bivariate counts offer the
advantage of allowing easy generalization to several different models which is
not easy in general. Take, for instance, the Frank copula:

C(u,v;γ) =−γ−1 log
[

1+
(exp−γu−1)(exp−γv−1)

exp(−γ)−1

]
, γ ∈ R−{0}, u,v ∈ [0,1]. (4)

Then

F(y1,y2;µ1,µ2,γ)≡C(F(y1;µ1),F(y2;µ2);γ), (5)

is a well defined distribution function with a dependence structure. It’s prob-
ability mass function is

P(Y1 = y1,Y2 = y2;µ1,µ2,γ) = F(y1,y2;µ1,µ2,γ)−F(y1 −1,y2;µ1,µ2,γ) (6)

−F(y1,y2 −1;µ1,µ2,γ)+F(y1 −1,y2 −1;µ1,µ2,γ)

In the present work we focus on bivariate models. For a review of discrete
valued models based on copulas see Nikoloulopoulos, 2013.

4 Minimum distance estimation

In discrete data, model robustness and efficiency can be achieved almost at the
same time, by defining distances that downweight some observations Lind-
say, 1994. The minimum distance estimators can be interpreted as weighted
likelihood estimators, the weights are determined by some kind of distance
between observed and expected frequencies. For example, consider Minimum
Hellinger distance estimators based on minimizing

∑
x

(
d(x)1/2 −mβ(x)

1/2
)2

where d(x) is the observed relative frequency and mβ(x) is the probability
mass at x with the assumed model with parameters of interest β. It turns out
that this quantity leads to estimating equations of the form

∑
x

(
d(x)

mβ(x)

)1/2
∂mβ(x)

∂β
= 0

directly comparable to the ML estimating equations

∑
x

d(x)
mβ(x)

∂mβ(x)
∂β

= 0

which actually implies that we weight the observations differently (see Lind-
say, 1994).

In this work we extend the approach for bivariate count models defined
by copulas aiming at deriving robust estimators for both the marginal and the
copula parameters. Now x implies a pair of observations. Also, in our case the
parameters β to estimate are those of the marginal distribution plus the copula
parameter(s).We have also developed an iterative algorithm that facilitates the
estimation. In the bivariate case we are interested in the relative frequencies are
still reasonable estimators of the underlying probabilities but we need larger
sample sizes for that. As we move on higher dimensions, problems similar to
that of the regression setting may occur.

5 Application

Bivariate count models are widely used for modelling the outcome of a football
game. The two counts refer to the number of goals scored by each team. It
seems natural to assume some dependence between the goals to represent the
competitive nature of soccer. Our data refer to all scores from English Premier
League 2013-2014 where a series of unexpectedly large scores have occurred.
We apply a robust approach to estimate the parameters of the model to reduce
the effect of the large scores.
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ABSTRACT: In order to provide simulation inputs for investigations on diffuse water
pollution and support rural land management policy on soil and water management, a
turbidity time series recorded in a Scottish stream for more than a year, along with two
covariates, is considered. Turbidity time series have complex dynamics because they
are non-linear, non-Normal, non-stationary, with a long memory, and present missing
values. Given these issues the turbidity process is analysed by Markov switching
autoregressive models under the Bayesian paradigm using novel evolutionary Monte
Carlo algorithms. Hence, it is possible to efficiently fit the actual data, reconstruct the
sequence of hidden states, restore the missing values, and classify the observations
into a few regimes, providing new insight on turbidity dynamics.

KEYWORDS: non-homogeneous hidden Markov chain; path sampling; population
Markov chain MonteCarlo; water quality; Wemyss catchment.

1 Introduction and Data

Evidence of the effectiveness of diffuse pollution control measures is needed to
support rural land management policy on soil and water management. For key
pollutants (e.g., suspended sediment or particulate phosphorus), such evidence
is difficult to obtain, because of the cost of sampling and chemical analysis of
storm event driven changes in concentrations and loads in streams and rural
drainage features. Some works have investigated the use of continuous auto-
mated turbidity as a proxy to estimate particulate phosphorus, fine sediment or
hydrophobic pollutant loads using site specific calibrations of turbidity versus
the pollutant of interest, with some success. The turbidity trace along with
discharge and other data may contain hidden temporal patterns (Birkel et al.

(2012)), that can be used to understanding of sources and processes delivering
them to surface waters.

In order to provide simulation inputs for further investigations on diffuse
pollution, a time series of turbidity data recorded in the Wemyss catchment
(Scotland) from 1st January 2011 (00:00) to 5th January 2012 (15:15) is anal-
ysed here. Measurements (in NTU) were taken every 15 minutes; thus, the
length of the series is 35,486 points, with 470 missing values (1.38% of the to-
tal number of observations). Two time series of explanatory variables are also
available, without missing values and recorded with the same time resolution
of turbidity: stage height (in cm) and rainfall (in mm).

A few complex issues need to be taken into account when modelling tur-
bidity time series: non-Normality, non-linearity, non-stationarity, and long
memory. Non-Normality is observed when the data density is multimodal or
asymmetric or kurtic and the data cannot be considered as realizations from a
Gaussian process. Non-linearity is assumed when the whole series does not
show the same statitical peculiarities over all the observations, but they can
be classified into a few homogeneous groups. Non-linearity can also be as-
sumed when the series exhibits asymmetries. Weak non-stationarity is caused
by generating processes having time-varying means and autocovariances. Fi-
nally, when the series shows high autocorrelations at the higher lags, with a
slow decay, the observations are realizations from a long-memory process.

Because of these issues the turbidity time series considered here was anal-
ysed by Markov switching autoregressive models (MSARMs). This class of
models is a popular tool within the econometrics community to model com-
plex time series. Although they are extremely powerful, MSARMs have been
considered quite rarely in other disciplines. Among the few applications in
environmental sciences see Spezia et al. (2004) and Paroli and Spezia (2008)
for air pollutant concentrations; Birkel et al. (2012) for isotope signatures;
Montbet and Ailliot (2017) for air temperatures; Ailliot and Montbet (2012)
for wind time series.

2 Model and Inference

MSARMs are pairs of discrete-time stochastic processes, one observed and
one latent, or hidden. The hidden process is a finite-state Markov chain,
whereas the observed process, given the Markov chain, is conditionally au-
toregressive. The dynamics of the observed process is driven by the dynamics
of the latent one, so that each observation depends on the contemporary state
of the Markov chain. By this theoretical structure, MSARMs allow: i) mod-
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toregressive. The dynamics of the observed process is driven by the dynamics
of the latent one, so that each observation depends on the contemporary state
of the Markov chain. By this theoretical structure, MSARMs allow: i) mod-
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elling non-linear and non-Normal time series by assuming that different au-
toregressions, each one depending on a hidden state, alternate according to the
Markovian regime switching; ii) modelling a long-memory process; iii) clas-
sifying the observations into a small number of homogeneous groups, labelled
as the regimes of the Markov chain.

Covariates, i.e. stage height and rainfall, were also incorporated into the
model through both the hidden Markov chain (the transition probabilities are
time-varying and dependent on the two dynamic exogenous variables) and the
observed process (the two state-dependent exogenous variables are added to
the past observations). Thus, we have time-varying means and autocovari-
ances, and hence, a non-stationary model. Finally, the slow decay of the au-
tocorrelation function is due to both the non-linearity of the series and the
automatic recording of the data at a high temporal frequency. Non-linear time
series with structural changes produce realizations that appear to have long
memory. Given that structural changes can be efficiently described by stochas-
tic regime switching models, we adopted MSARMs to highlight the changes
in the turbidity dynamics, classify the observations into a few states, and fit the
long memory process of the turbidity dynamics.

Because of the multimodal posterior density an efficient simulation-based
evolutionary Monte Carlo (EMC) method is developed to better traverse the
posterior surface and, so, fit the actual data and classify temporal correlated
observations into a few homogeneous groups. EMC is a Markov chain Monte
Carlo method which processes a population of chains in parallel, exchanging
information one another. An advanced EMC algorithm is proposed here for
Bayesian inference and model choice. This original EMC algorithm and its
application to MSARMs represent a further methodological contribution of
the paper. We introduce novel random walk crossover operators and made the
EMC algorithm more efficient by flattening the likelihood only, and not the
posterior, as in common practice. Thus, the same algorithm can be run for
both model choice and parameter estimation (including the fitted values, the
hidden states, and the missing values).

3 Results

The Bayesian analysis was developed in two steps: model choice and pa-
rameter estimation. The choice of the best model among the many available
which differed for the number of states of the hidden Markov chain (m) and
the autoregressive order (p), was performed computing the logarithms of the
marginal likelihoods by EMC via the power posteriors, for any m = 1, . . . ,4

and p = 0, . . . ,6. The best model was characterized by three hidden states
(m = 3) and autoregressions of the fourth order (p = 4).

Given the dimensions of the model and the identifiability constraint, the
whole set of parameters was estimated. They show that covariates in the ob-
served process have a positive coefficient, that is the level of turbidity increases
when stage height and/or rainfall increase. On the other hand, the covariates
in the hidden process have a negative coefficient, that is the probabilities of
state transitions decrease when stage height and/or rainfall increase, while the
diagonal probabilities of the transition matrices increase.

The model fit was very satisfactory, as shown by the comparison of ac-
tual and fitted values. The model performance was assessed by the root mean
square error and the mean absolute error, which are very low. They are 0.164
(2% of the range of the data) and 0.282 (3%), respectively. All observations
were within the 99% credibility interval.

This methodology will be generalized and used in a further study based on
turbidity observations recorded in several catchments. In fact, a hierarchical
linear regression model will be developed in a longitudinal study by taking the
different sequences of hidden states and state-dependent parameters from each
model associated with any of the several catchments as explanatory variables
for the analysis of particulate phosphorus.
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ABSTRACT:
The paper investigates the relationship between students’ university choices and their
secondary school background. The main aim is to assess the effect that secondary
schools have in advising university applications toward local or non local institutions,
also on the light of the tertiary education supply in students’ area of residence. For
this sake, four typologies of students have been identified and a multilevel model has
been adopted to jointly consider the secondary schools effect on the probability to
belong to one specific category conditional upon students’ subject of study, and the
characteristics of their local areas. Moreover, we provide a robust definition of local
and non local universities by defining multiple criteria for the definition of non local
universities and taking into account the uncertainty in the definition of the catching
areas.
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1 Introduction

In the last decade there has been an increasing interest in Italian students’ mo-
bility choices for university studies as phenomenon which mirrors the inequal-
ities in socioeconomic conditions between origin and destination areas and
contributes in widening the already sharp disparities existing in the country
(see Ciriaci, 2014; D’Agostino et al., 2019; Attanasio & Enea, 2019). Despite
the similar contexts, the literature is characterized by a high level of hetero-
geneity in the definition of local or non local universities for students, and
consequently on the classification of students as mover or stayer, and on meth-
ods to account for distances between origin and destination places, with stud-

*This paper has been supported from Italian Ministerial grant PRIN 2017 “From high school
to job placement: micro-data life course analysis of university student mobility and its impact
on the Italian North-South divide.”, n. 2017HBTK5P - CUP B78D19000180001.

ies which mainly focus on the mobility between macro-geographic areas, with
emphasis on South-North trajectory, and other which also investigate the mo-
bility patterns within macro-geographical areas. Starting from this evidence,
our contribution is twofold. First, we investigate how secondary schools back-
ground affects students’ preferences towards local or non local universities. To
our knowledge, this is the first attempt to use data on Italian students to shed
light on the role that secondary school have in students’ location decision pro-
cess. Our second contribution is to provide a robust definition of local and non
local university choices by using multiple criteria based on students’ traveled
distance, the supply of education services in their local area and the uncertainty
in the assignment of the local catchment area to each university.

2 Data and Methods

Our analysis relies on the administrative data collected from the Italian Na-
tional Student Archive (NSA)* and the open database of the Italian Ministry of
University and Research (MUR). We consider all Italian high-school leavers
enrolled in an Italian university between a.y. 2016/2017 and a.y. 2018/2019
in a bachelor’s programme. We define our dataset according to two rules.
First, we do not consider the students enrolled in programs accessible with a
national entry test since their choices are likely to depend on their ranking po-
sition rather than their preferences. Secondly, since we have information on
high schools only from the a.y. 2016/2017, we retain in our sample only the
students that left their high-school after 2015. Thus, starting from a popula-
tion of 815,614 pupils, our data consists of 700,024 students, cross classified
in 5,887 secondary schools and 297 university-city pairs.

Students’ university choices are classified depending on: (i) the tertiary ed-
ucation supply in their local area, (ii) the chosen subject of study and (iii) the
minimum travel time needed to reach the nearest university. At this aim, we
define travel time as the minimum distance by car between two cities obtained
by combining the ISTAT matrices on Italian cities with the data available on
Google Maps. Then, we define two thresholds: duniv, given by the distance be-
tween students’ city and the nearest university, and d f ield , defined considering
only universities providing programmes in students’ field of study. To avoid
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arbitrary assumptions on these thresholds and to assess results’ sensitivity to
the deterministic choice of the cut points, we apply Rubin’s rule (Rubin, 1987)
to combine the results obtained by using different thresholds. In particular,
we generate multiple cut points values by increasing duniv and d f ield by a ran-
dom amount of time δ ∈ [30;90]. Thus, from students perspective, we have
four categories of university choices: local, forced non local, free non local,
and telematic. Universities are classified as ‘local’ when hosted in city closer
than duniv minutes of travel from students’ residence. Non local universities
are considered as ‘forced’ if the chosen university is the nearest one providing
a programme in students’ field of study (i.e. located closer than d f ield), and
as ‘free’ when students exceed both thresholds. The last category refers to
students enrolled in distance-learning telematic universities.

The effect of secondary school background on students’ university choices
is estimated by specifying two cross-classified Multinomial Logit models which
consider (a) the cross-classification of students in secondary schools and uni-
versity city pairs and (b) the cross-classification of students in secondary schools
and disciplinary fields. To take into account of the several curricula offered
by secondary schools, we define the first level of clustering as the interaction
between the high schools and the type of curricula offered. Moreover, we ac-
count for students’ choice determinants by controlling for students’ gender,
macro area of residence, diploma grade, year of enrollment, years of delay in
finishing the high school and an indicator that takes value 1 if the student has
attended a lyceum.

3 Results and Discussion

Table 1 reports the results related to the model (b) which considers the clus-
tering of students according to secondary school-curricula combinations and
students’ field of study, with the δ parameter set equal to 60. The results con-
cerning the variance of the random terms suggest a clear effect of schools
in students’ choices to attend local or non local universities when account-
ing for differences in their field of study. Indeed, the variability of the high
school-curricula effect is relevant in all the categories. The posterior predic-
tions regarding the school random terms provide evidences on the role that
schools have in orienting students’ choices towards local, non local and telem-
atic universities. Moreover, the results concerning the control variables in the
fix effect component show that students’ educational background and socio-
economic characteristics affect the probability to make different choices in
terms of selection of local and non local universities.

Table 1. Cross-Classified Multinomial Logit

Forced Non Local Free Non Local Telematic
Constant -4.079 -4.214 -1.678

[-4.198;-3.935] [-4.359;-4.005] [-2.199;-1.185]
Controls Yes Yes Yes

Random effect parameters:
High School × Curriculum 5.379 2.008 1.637

[5.157;5.611] [1.928;2.096] [1.522;1.758]
Field of study 2.694 0.659 10.31

[1.320;5.263] [0.319;1.337] [4.070;23.962]
Observations 700068

In conclusion, the approach proposed in this work allowed us to assess the
effect that secondary schools have in advising university applications toward
local or non local institutions by accounting for the choice of the disciplinary
field. Further analyses are still in progress to take into account of the uncer-
tainty related to a deterministic definition of δ parameter. At this aim, multiple
values of δ have been generated to assess results’ sensitivity to the choice of
the cut points. This uncertainty in thresholds definitions is taken into account
by using Rubin’s rules to combine the results.
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DATABASE MOBYSU.IT [MOBILITÀ DEGLI STUDI UNIVERSITARI IN
ITALIA]. Research protocol MUR - Universities of Cagliari, Palermo,
Siena, Torino, Sassari, Firenze, Cattolica and Napoli Federico II. Sci-
entific Coordinator Massimo Attanasio (UNIPA). Data Source ANS-
MUR/CINECA.

RUBIN, D. B. 1987. Multiple Imputation for Nonresponse in Surveys. Wiley,
New York.



408 

SEMI-CONSTRAINED MODEL-BASED CLUSTERING OF
MIXED-TYPE DATA USING A COMPOSITE

LIKELIHOOD APPROACH

Roberto Rocci1 and Monia Ranalli2

1 Department of Statistical Sciences, Sapienza University of Rome
(roberto.rocci@uniroma1.it)
2 Department of Statistical Sciences, Sapienza University of Rome
(monia.ranalli@uniroma1.it)

ABSTRACT: We propose a class of semi-constrained models for clustering ordinal
and continuous data. Ordinal variables are assumed to be a discretization of some la-
tent continuous variables jointly distribuited with the observed continuous variables as
a finite mixture of Gaussians. Parsimonious modeling is obtained by reparameterizing
the covariance matrices in terms of factor analysis models semi-constrained across
the components. Parameter estimation is carried out using a EM-type algorithm to
maximize a composite log-likelihood. The proposal is evaluated through a simulation
study and an application to real data.
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1 Introduction

Complex data structures are characterized by the presence of heterogeneity
and a large number of features of mixed type, i.e. ordinal and continuous.
To capture heterogeneity, clustering methods are used to find subgroups in the
population. The literature has been mainly developed for continuous variables
with methods distance-based (e.g. k-means, Ward) or model-based. In the
latter, finite Gaussian mixture models are the most commonly used (Hennig
et al., 2015). In order to reduce the large number of parameters caused by
the high dimensionality of the data, parsimonious modelling is needed like in
factor analysis modelling. The challenge to model ordinal data is mainly due
to the lack of metric properties. Ordinal variables can be modeled properly
adopting the underlying variable approach (Jöreskog, 1990) where the ordinal
variables are assumed to be generated by thresholding some latent continu-
ous variables. This allow us to model the dependence between ordinal and

continouous variables by modeling the dependence between the latent and the
observed continuous variables.

Taking these aspects into account, i.e. heterogeneity, high dimensional
and mixed type data, we propose a Gaussian mixture model with a factor de-
composition on component-specific covariance matrices. Parameters may be
constrained to be equal or unequal across mixture components (McNicholas &
Murphy, 2010) obtaining different degrees of parsimony. The ordinal variables
corresponds to some variates of the mixture that are partially observed through
a discretization (see e.g. Ranalli & Rocci, 2017).

Inference could be carried out through the likelihood function. However,
the presence of ordinal variables requires the computation of many high dimen-
sional integrals. This makes the evaluation of the likelihood computationally
demanding, or prohibitive, as the number of ordinal variables increases. To
solve the problem, the likelihood is replaced with a surrogate function, that is
the composite likelihood, defined as the product of m-dimensional marginals
or conditional events (Lindsay, 1988). Under some regularity conditions the
corresponding estimators are consistent, asymptotically unbiased and normally
distributed (see Ranalli & Rocci, 2017, and references therein). In general they
are less efficient than the maximum likelihood estimators, but much more effi-
cient in terms of computational complexity. In the current work, the composite
likelihood is based on the product of all possible sub-likelihoods composed of
two ordinal and all continuous variables. The computation of parameter esti-
mates is carried out through an EM-type algorithm.

A simulation study as well as a real data analysis is presented in the ex-
tended version of the paper.

2 Model

Let yŌ = [y1, . . . ,yŌ] and x = [xŌ+1, . . . ,xP] be Ō continuous variables and
O = P− Ō ordinal variables, respectively. Each ordinal variable has the asso-
ciated categories ci = 1, . . . ,Ci with i = Ō+1, . . . ,P. Following the underlying
response variable approach, the observed ordinal variables x are considered as
a discretization of some continuous latent variables yO = [yŌ+1, . . . ,yP]. The
relationship between x and yO is

γ(i)ci−1 ≤ yi < γ(i)ci ⇔ xi = ci,

where −∞ = γ(i)0 < γ(i)1 < .. . < γ(i)Ci−1 < γ(i)Ci
= +∞ are the non observable

thresholds defining the Ci categories. In our proposal y = [yŌ,yO] follows a
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finite mixture of factor analyzers (McNicholas & Murphy, 2010)

f (y) =
G

∑
g=1

pgφ(µµµg,ΛΛΛgΛΛΛ′
g +ΨΨΨg)

where φ is the multivariate normal density, ΛΛΛg is the P×K matrix of factor
loadings, and ΨΨΨg is the diagonal matrix of uniqueness that could be assumed
of the isotropic form ψgI. Each term may be constrained to be equal or un-

Table 1: The covariance structure of parsimonious Gaussian mixture models
with a constrained (C), semiconstrained (S) or unconstrained (U) factor load-
ings matrix.

Model ID ΛΛΛg ΨΨΨg Isotropic ΣΣΣg
CCC C C C ΛΛΛΛΛΛ′+ψIP
CCU C C U ΛΛΛΛΛΛ′+ΨΨΨ
CUC C U C ΛΛΛΛΛΛ′+ψgIP
CUU C U U ΛΛΛΛΛΛ′+ΨΨΨg

SCC S C C ΛΛΛL2
gΛΛΛ′+ψIP

SCU S C U ΛΛΛL2
gΛΛΛ′+ΨΨΨ

SUC S U C ΛΛΛL2
gΛΛΛ′+ψgIP

SUU S U U ΛΛΛL2
gΛΛΛ′+ΨΨΨg

UCC U C C ΛΛΛgΛΛΛ′
g +ψIP

UCU U C U ΛΛΛgΛΛΛ′
g +ΨΨΨ

UUC U U C ΛΛΛgΛΛΛ′
g +ψgIP

UUU U U U ΛΛΛgΛΛΛ′
g +ΨΨΨg

equal across mixture components. The result of imposing, or not, such con-
straints generates the family of eight parsimonious Gaussian mixture models,
described in Table 1, ΛΛΛg type C and U, and introduced by McNicholas & Mur-
phy (2010) in the context of continuous data. Each member of this family has a
number of covariance parameters that grows linearly with the data dimension-
ality. By assuming a common covariance structure, even more parsimonious
models are obtained. Some identifiability constraints are imposed on thresh-
olds and factor loadings. They are not discussed here for sake of space.

With respect to the proposal of McNicholas & Murphy (2010), we intro-
duce four semi-constrained models to add some extra flexibility, with a certain
degree of parsimony (see Table 1, ΛΛΛg type S). The flexibility is achieved by as-
suming that the matrix of factor loadings can be written in the form ΛΛΛg = ΛΛΛLg,

where Lg is a positive definite diagonal matrix of factor saliences. They can
be considered as constrained cases between the first and the last four models
of Table 1. The latent factors in each cluster are the same but with different
variances recorded by the matrices L2

g. This is a particular form of factorial
invariance firstly introduced by Cattell (1944) and then developed by several
authors, e.g. in the context of three-way analysis (see Giordani et al., 2020,
and references therein). A nice feature of the semi-constrained models is that,
under mild conditions, the factors are unique. In other terms, it is not possible
to rotate the factors as in the classical factor analysis model.

Our proposal has been tested by a simulation study and an application on
real data not shown here for sake of space. In the first, the effectiveness of the
composite likelihood approach has been investigated under various settings,
such as different numbers of observations, groups and latent factors, in terms
of estimates precision and ability of recovering the true partition. In the second,
the model has been used to find latent groups in a dataset taken from the survey
on academic graduates’ vocational integration carried out by ISTAT in 2015.
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of the isotropic form ψgI. Each term may be constrained to be equal or un-

Table 1: The covariance structure of parsimonious Gaussian mixture models
with a constrained (C), semiconstrained (S) or unconstrained (U) factor load-
ings matrix.
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CCU C C U ΛΛΛΛΛΛ′+ΨΨΨ
CUC C U C ΛΛΛΛΛΛ′+ψgIP
CUU C U U ΛΛΛΛΛΛ′+ΨΨΨg

SCC S C C ΛΛΛL2
gΛΛΛ′+ψIP

SCU S C U ΛΛΛL2
gΛΛΛ′+ΨΨΨ

SUC S U C ΛΛΛL2
gΛΛΛ′+ψgIP

SUU S U U ΛΛΛL2
gΛΛΛ′+ΨΨΨg

UCC U C C ΛΛΛgΛΛΛ′
g +ψIP

UCU U C U ΛΛΛgΛΛΛ′
g +ΨΨΨ

UUC U U C ΛΛΛgΛΛΛ′
g +ψgIP

UUU U U U ΛΛΛgΛΛΛ′
g +ΨΨΨg

equal across mixture components. The result of imposing, or not, such con-
straints generates the family of eight parsimonious Gaussian mixture models,
described in Table 1, ΛΛΛg type C and U, and introduced by McNicholas & Mur-
phy (2010) in the context of continuous data. Each member of this family has a
number of covariance parameters that grows linearly with the data dimension-
ality. By assuming a common covariance structure, even more parsimonious
models are obtained. Some identifiability constraints are imposed on thresh-
olds and factor loadings. They are not discussed here for sake of space.

With respect to the proposal of McNicholas & Murphy (2010), we intro-
duce four semi-constrained models to add some extra flexibility, with a certain
degree of parsimony (see Table 1, ΛΛΛg type S). The flexibility is achieved by as-
suming that the matrix of factor loadings can be written in the form ΛΛΛg = ΛΛΛLg,

where Lg is a positive definite diagonal matrix of factor saliences. They can
be considered as constrained cases between the first and the last four models
of Table 1. The latent factors in each cluster are the same but with different
variances recorded by the matrices L2

g. This is a particular form of factorial
invariance firstly introduced by Cattell (1944) and then developed by several
authors, e.g. in the context of three-way analysis (see Giordani et al., 2020,
and references therein). A nice feature of the semi-constrained models is that,
under mild conditions, the factors are unique. In other terms, it is not possible
to rotate the factors as in the classical factor analysis model.

Our proposal has been tested by a simulation study and an application on
real data not shown here for sake of space. In the first, the effectiveness of the
composite likelihood approach has been investigated under various settings,
such as different numbers of observations, groups and latent factors, in terms
of estimates precision and ability of recovering the true partition. In the second,
the model has been used to find latent groups in a dataset taken from the survey
on academic graduates’ vocational integration carried out by ISTAT in 2015.
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1 Introduction

To impede the progress of the COVID-19 pandemic, the scientific world has
raced to identify and understand the immune response to SARS-CoV-2 infec-
tion. Many efforts have been directed towards the development of the vaccines
to curtail the novel coronavirus. Currently, among the EU authorized COVID-
19 vaccines, with greater than 90% efficacy to reduce the symptomatic infec-
tion risk, there are the Pfizer/BioNTech and AstraZeneca. So far, post infection
immunity to SARS-CoV-2 is still unclear and much work needs to be carried
out to characterize the immune response to the virus. This knowledge is crucial
to give insights into the disease pathogenics and into the usefulness of bridge
therapies. In this study, we analysed anti-S1 spike IgG levels in a cohort of

89 individuals: 39 people have received one dose of the Pfizer vaccine and 50
one dose of AstraZeneca. In order to identify the main covariates associated
with immunoglobulin antibodies, we followed an analytic strategy based on
Bayesian Profile Regression (Molitor et al., 2010) conceived as a non paramet-
ric dimension reduction technique, set in a Bayesian framework, for clustering
responses and covariates simultaneously. The remainder of this paper proceeds
as follows. In section 2, we provide details of the theoretical background of the
Bayesian Profile Regression technique. Section 3 considers the available data
whereas the main results of the statistical analysis are presented in Section 4.

2 Bayesian Profile Regression

The Bayesian Profile Regression (BPR), is a Bayesian dimension reduction
and clustering technique to jointly modeling an outcome variable and a num-
ber of potentially correlated predictors (Molitor et al., 2010). This technique,
links non parametrically a response variable to covariate data through clus-
ter membership, so that the outcome and the clusters mutually inform each
other (Hastie et al., 2013). To deal with these joint effects, the BPR approach
adopts as unit of inference a profile, formed from a sequence of covariates val-
ues. In what follows, for each unit i, yi denotes the outcome of interest while
Xi=(xi1 , , . . . ,xiP) represents the covariate profile that consists of p covariates
that we are interested in studying. Additionally, wi are the fixed effects which
are constrained to only have a global (i.e. non-cluster specific) effect on the
response yi and φp

c (xip) indicate the probability that the p-th variable in clus-
ter c is equal to xip. The model of interest here can be described by two key
components: a covariate model which assigns individual profile to clusters
and a response model which links cluster of profiles to an outcome of interest
via a regression model. The full data are then jointly modelled leading to the
following likelihood

f (xi,yi|θzi,wi,ψ) = ∑
c

ψc f (xi|zi = c,φc) f (yi|zi = c,θc,Λ,wi) (1)

where zi =c is the allocation variable that indicates the cluster to which a unit i
belongs, ΛΛΛ is a vector of global (i.e., non-cluster specific) parameters, finally,
ψc are the mixture weights. The mixture weights corresponding to a maxi-
mum of C clusters, denoted as ψc,c = 1, , . . . ,C, will be modeled according
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to a “stick-breaking” representation of a Dirichlet process prior. Owing to the
complexity of the model, inference is facilitated by Markov Chain Monte Carlo
(MCMC) methods. A detailed description of the BPR can be found in Molitor
et al., 2010.

3 Data

In this paper, we refer to a longitudinal research carried out by the Center of
Advanced Studies and Technology (CAST) of University “G. d’Annunzio” of
Chieti-Pescara (Italy). This study looked at antibody response of 89 individu-
als who received the first dose of mRna vaccines Pzifer or AstraZeneca. IgG
antibodies to SARS-CoV-2 were measured by a fully automated solid phase
DELFIA (time-resolved fluorescence) immunoassay in a few drops of blood
collected by finger prick and let dry on filter paper card. Subjects involved in
the analysis were re-called at 7, 10, 15 days after the first injection of vaccine
for re-determination of IgG levels, recoded according to the quartiles. All par-
ticipants were also surveyed regarding post-vaccination symptoms, including
presence (coded with 1) or absence (coded with 0) of distinct symptom types,
such as: fatigue, headache, chills, muscle pain, fever and joint pain. Age, re-
coded in two classes (20-40 and 40-65 years) and gender of vaccinated people
have been also determinated (0=Male and 1=Female).

4 Main results

The BPR estimation, performed through the R package PreMium (Liverani
et al., 2015), has produced a partition of anti-S1 spike IgG levels after 21
days from injection, recoded using the median as cut-off, and some potential
explanatory variables (IgG levels at previous at different times, type of vac-
cine, side effects after vaccination, age, gender) into 3 clusters. Each group
is characterized by similar covariate profiles, as well as by the same amount
of the antibodies. The posterior distribution of all clusters specific parameters
are represented in Fig.1. The left panel of each figure displays the MCMC
posterior draws of the anti-S1 spike IgG levels after 21 days for the identified
clusters; conversely the right panel of each figure shows the posterior distri-
butions of the probability that an explanatory variable appears with one of the
discrete categories across the identified groups. In the typical profile of the
cluster 3 (red boxplot in Fig.1), associated with the highest amount of anti-
bodies produced, there is a prevalence of people aged 20-40 years, who have

Figure 1. Summary plot of the posterior distribution of parameter φc, for c = 1,2,3

received the first dose of Pfizer vaccine. Furthermore, the majority of individ-
uals belonging to this group has not experienced side effects while for them
we observe a greater amount of anti-S1 spike IgG levels after 10 days from
injection. Specular results characterize the first two clusters associated with a
lower immunity response.
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1 Modeling RNA Sequencing Data

RNA sequencing of time-course experiments leads to three-way count data
where the dimensions are the genes, the time points and the biological units.
Cluster analysis is used to group genes in dependence of their expression levels
taking the development over time and across the biological units into account.
Model-based clustering methods allow to embed the clustering problem within
a statistical framework and the mixture models used may be adapted in a flexi-
ble way to the data structure and clustering aims by specifying suitable models
for the components of the mixture.

The Poisson distribution is obvious to use for modeling count data. How-
ever, assuming independence between the time points and/or the biological

units might be questionable. Silva et al. (2019) propose to use mixtures of
multivariate Poisson-lognormal distributions to account for possible depen-
dency structures via a latent multivariate normal distribution after transforming
the data to a two-way format where the genes are in one dimension and time
points and biological units are crossed out for the second dimension. Subedi
& Browne (2020) also consider mixtures of multivariate Poisson-lognormal
distributions for two-way data, but following Fraley & Raftery (2002) they
propose parsimonious specifications of the variance-covariance matrix result-
ing from the decomposition into volume, shape and orientation. Taking the
three-way structure into accout, Silva et al. (2018) also arrive at a more parsi-
monious parameterization of the variance-covariance matrix.

In all these contributions, maximum likelihood estimation of the finite mix-
ture model for a fixed number of components is performed and a suitable
model is selected based on information criteria such as BIC, AIC and ICL.
The expectation-maximization (EM) algorithm is used for estimation with the
cluster memberships as well as the latent multivariate normal observations are
viewed as missing data. The EM algorithm is an iterative procedure where each
iteration consists of an E- and an M-step. The expectation of the complete-data
log-likelihood which results from combining the observed with the missing
data conditional on current parameter estimates and the observed data is deter-
mined in the E-step. In the M-step the expected complete-data log-likelihood is
maximized with respect to the parameters and new parameter estimates are ob-
tained. In each iteration the log-likelihood is increased, ensuring that the algo-
rithm converges to a fixed point if the log-likelihood is bounded. For mixtures
of multivariate Poisson-lognormal distributions, the M-step is straighforward.
However, the E-step is complicated. Silva et al. (2019) and Silva et al. (2018)
use Bayesian Markov chain Monte Carlo methods to obtain an estimate for the
expectation. Subedi & Browne (2020) propose to use a variational E-step.

2 The Mixture Model for Three-Way Data

Following Silva et al. (2018), a finite mixture model of multivariate Poisson-
lognormal distributions implies the following data generating process for the
observations yi, jt , with i the gene index, j the biological unit index and t the
time point index:

Si ∼ M (ηηη),
ΘSi |Si ∼ M N (MMMSi ,UUUSi ,VVV Si),

yi, jt |Si ∼ P (b j exp(ΘSi,i j)),
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where Si is the component membership of gene i, M (ηηη) is the multinomial dis-
tribution with success probabilities vector ηηη, M N (MMMSi ,UUUSi ,VVV Si) is the matrix
normal distribution which is equivalent to

vec(ΘSi)|Si ∼ N (vec(MMMSi),UUUSi ⊗VVV Si),

with vec() the vectorization operator and ⊗ the Kronecker product. A suitable
constraint needs to be imposed on UUUSi and VVV Si to ensure identifiability. P (λ) is
the univariate Poisson distribution with parameter λ given by the exponentiated
i jth element of the latent normal variable ΘSi multiplied with a biological unit
specific offset b j.

Taking the specific three-way data structure into account the following
model specifications might be considered:

(a) The mean matrix for each component MMM has dimension number of biolog-
ical units times the number of time points. Assuming additive biological
units and time point effects, this mean matrix would be given by:

MMM = ααα⊗βββ,

where ααα are the mean biological effects and βββ are the mean time point
effects. Additional interaction effects would indicate the need for a general
MMM.

(b) A more parsimonious specification of the mean vectors is possible if co-
variates are available to characterize the biological units using a regression
model.

(c) The variance-covariance matrix VVV capturing time dependence could be
specified in a more parsimonious way by assuming for example an under-
lying auto-regressive process, e.g., an AR(1) process.

(d) Assuming a correlation between the biological units might be questionable
and the identity matrix could be specified for UUU .

(e) Inspired by Fraley & Raftery (2002), different sets of parameters might
either be assumed to be group-specific or the same across groups, thus
allowing for a more parsimonious specification and easier interpretation
of the fitted model.

3 Data

The available RNA sequencing data contains 4523 genes, 17 biological units
and 4 time points for three biological replicates. The median value across

the three biological replicates is used for analysis. Data pre-preprocessing
reduces the number of genes by eliminating those which are not differentially
expressed. The number of time points will also be reduced by using the first
time point as baseline level. The biological units are characterized as wildtype
or recombinant.

The mixture model can be fitted in R using the R package PLNmodels
(Chiquet et al., 2021a), available from the Comprehensive R Archive Network.
The package implements the variant of the EM algorithm using a variational
E-step, has been developed for modelling joint species abundances (Chiquet
et al., 2021b) and may be extended to cover the model specifications of interest
for modeling three-way RNA sequencing data.
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1 Introduction

Ensemble learning is a broad term referring to meta-learning methods that
combine predictions provided by multiple learners or models to obtain a pre-
diction that often is more accurate than any single prediction. Typically, en-
semble learning is applied in supervised learning tasks, such as in regression
and classification (Rokach, 2010). In this contribution we propose an algo-
rithm for ensemble learning using Gaussian mixtures as base learners for clas-
sification tasks.

2 EDDA Gaussian mixture models for classification

Consider a training dataset D = {(xxxi,yi)}n
i=1 for which both the features vector

xxxi and the true class yi ∈ {C1, . . . ,CK} are known. Mixture-based classification
models assume that the density within each class follows a Gaussian mixture
distribution:

f (xxx|Ck) =
Gk

∑
g=1

πgkφ(xxx;µµµgk,ΣΣΣgk), (1)

where Gk is the number of components within class k, πgk are the mixing
probabilities for class k, such that πgk > 0 and ∑Gk

g=1 πgk = 1, and µµµgk and ΣΣΣgk
are, respectively, the mean vectors and the covariance matrices of component
g within class k. Since this model is highly flexible, (i) parameter estimates
are subject to high uncertainty unless a very large dataset is available, and
(ii) it may easily lead to overfit. For these reasons a parsimonious mixture-
based classification model, termed Eigenvalue Decomposition Discriminant

Analysis (EDDA) model, has been proposed (Bensmail & Celeux, 1996). This
assumes that (i) the density for each class can be described by a single Gaussian
component, i.e. Gk = 1 for all k in equation (1), and (ii) the class covariance
structure is factorised as ΣΣΣk = λkUUUk∆∆∆kUUU�

k .
The EDDA family contains 14 different models (see Scrucca et al., 2016,

Table 3), some of which are popular discriminant analysis models. For in-
stance, if each class has the same covariance matrix, that is ΣΣΣk = λUUU∆∆∆UUU� for
all k, then EDDA is equivalent to the classical Linear Discriminant Analy-
sis (LDA) model. If the class covariance matrices are unconstrained, that is
ΣΣΣk = λkUUUk∆∆∆kUUU�

k for all k, then EDDA is equivalent to the Quadratic Discrim-
inant Analysis (QDA) model. Finally, assuming the matrix of eigenvectors UUU
is the identity matrix, features are conditional independent within each class
and the so-called Naïve-Bayes models are obtained.

Classification of observation xxx can be obtained according to the MAP
(maximum a posteriori) principle, that is by assigning an observation to the
class with the largest posterior class probability computed via Bayes’ theorem

Pr(Ck|xxx) =
τk f (xxx|Ck)

∑K
g=1 τg f (xxx|Cg)

,

where f (xxx|Ck) are the class-conditional densities, and τk = Pr(Ck) are the prior
class probabilities for each class Ck (k = 1, . . . ,K).

Estimation of unknown parameters (τ1, . . . ,τK ,µµµ1, . . . ,µµµK ,ΣΣΣ1, . . . ,ΣΣΣK) for
EDDA models can be obtained with a single M-step from the EM algorithm for
Gaussian mixtures, with the conditional probabilities zik set to 1 if observation
i belongs to class k and 0 otherwise.

3 Stacking EDDA for ensemble classification

In this section we propose a form of stacking, called Super Learner algorithm
(Wolpert, 1992; Van der Laan et al., 2007), which uses EDDA models as base
learners. Let M = {1, . . . ,M} be the set of EDDA models. The conditional
probabilities of classifying an observation xxxi to class Ck according to model
m ∈ M estimated using training data D (the level-zero data) is indicated as
pikm = Pr(Ck|xxxi;m,D), for i = 1, . . . ,n observations, k = 1, . . . ,K classes, and
m = 1, . . . ,M. Base learners can be used to generate cross-validation predic-
tions, typically using V -fold cross-validation with V = 10, to get

p̂CV
ikm = P̂r

(
Ck|xxxi;m,D(−v(i))

)
,
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where v(i) indicates the fold containing the ith observation, and D(−v(i)) is the
training set given by all the observations except those in the vth fold. The cross-
validated predicted probabilities, along with the vector of original classes, is
referred to as the level-one data.

The ensemble classifier or metalearner defines predicted classification prob-
abilities as the convex linear combination of the base learners predictions:

P̂r(Ck|xxxi;ααα) = p̂ik =
M

∑
m=1

αm p̂CV
ikm,

where ααα = (α1, . . . ,αM) are the ensemble weights, such that αm ≥ 0 and
∑M

m=1 αm = 1. To completely specify the ensemble classifier the optimal com-
bination of base learners is required. This can be achieved by minimizing the
cross entropy loss function:

L(ααα) =−1
n

n

∑
i=1

K

∑
k=1

yik log(p̂ik), (2)

where yik = 1 if the ith observation is from class k and 0 otherwise, and p̂ik is
the estimated probability that the ith observation belongs to class k.

The optimization of the loss function in (2) is a constrained minimization
problem which can be solved in different ways. One efficient approach is to
remove the constraints on the ensemble weights by reformulating the problem
as an unconstrained optimization using a different parameterization.

Let ααα= (α1, . . . ,αM)∈ S M :=
{

ααα ∈ [0,1]M,∑M
m=1 αm = 1

}
be the (M−1)-

dimensional unit simplex vector. Define the Unit Simplex Transform function
which maps S M �→ Θ ∈ RM−1 as

θm = logit

(
αm

1−∑m−1
m′=0 αm′

)
+ log(M−m) for m = 1, . . . ,M−1,

where logit(x) = log(x/(1− x)) and α0 = 0. Backward transformation can be
obtained via the Inverse Unit Simplex Transform defined as




α1 = z1

αm =

(
1−

m−1

∑
m′=1

αm′

)
zm for m = 2, . . . ,M−1

αM = 1−
M−1

∑
m=1

αm

where zm = logit−1{θm − log(M−m)}, and logit−1(x) = 1/(1+ exp(−x)).
Thus, the unconstrained minimization of the cross entropy loss function

in (2) can be pursued with respect to the parameters θθθ = (θ1, . . . ,θm−1), and
optimal stacking weights ααα = (α1, . . . ,αM) are obtained via the inverse unit
simplex transformation of the solution of such optimization. Numerical algo-
rithms, such as the BFGS quasi-Newton method, typically require initialization
of parameters. A natural choice is to consider αm = 1/M for all m = 1, . . . ,M,
which amounts to assign the same weight to all the models in the ensemble,
and it is equivalent to set θm = 0 for m = 1, . . . ,M−1. To improve exploration
of the search space and to avoid getting trapped in local minima, a multiple
restarts strategy can be implemented by generating uniformly distributed val-
ues on the M-simplex space, i.e. randomly drawn from a Dirichlet(1, . . . ,1)
distribution.

4 Conclusion

In this contribution we have proposed an ensemble approach to classification
based on stacking with Gaussian EDDA mixtures as base learners. The pro-
posal has been applied to both simulated and real datasets (not included here
due to space constraints), demonstrating that it is able to improve the over-
all classification accuracy compared to the best single model among the base
learners.
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ABSTRACT: We propose a quantile tree making use of the one-way quantile ANOVA
to check whether two groups of observations of an ordinal response variable differ
significantly in a group of quantiles. Specifically, at each node, a quantile ANOVA
checks, for each of the available covariates, if the implied split induces significant dif-
ferences in (at least one of) the selected quantiles. If several splits are significant, the
final split will be that with the highest number of significant differences in quantiles,
and among them, the one with the strongest overall effects. Since at each step, a mul-
tiple testing is applied, the selection of the split is based on the adjusted p–values with
the Hochberg correction. An application to the profiling of voting probabilities is used
to show the potentiality of the quantile tree for ordinal responses.
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1 Introduction and motivation

Decision trees (Breiman et al., 1984) are supervised learning methods aiming
at modeling and predicting the value of a response variable based on several
explanatory variables. Since they mostly employ an ordinary least squares loss
(OLS) function as splitting criterion, the corresponding decision rule is sensi-
tive to outliers and/or skewness in the distribution of the response variable.
Moreover, in compliance with classical OLS interpretative rules, results are to
be read in light of the effect the predictors exert on the conditional mean of the
response. Breiman et al., 1984 extended the regression tree to the median tree
through the use of least absolute deviations (LAD) as splitting criterion. Quan-
tile regression trees represent the natural evolution to inspect the conditional
quantiles of the response. The proposals in literature differ in the splitting
criterion, the used quantiles (a fixed quantile for the whole tree vs different

quantiles at the various splits), the type of approach (descriptive vs inferen-
tial). In case of a categorical response, the modal value of the terminal node is
commonly used to assign the predictive value. However, modal values might
not be unique and, in case of an ordinal response, these values perform poorly,
since the modal value does not consider the ordering of the categories.

This paper addresses the case of ordinal dependent variables through a
robust quantile tree. Given that quantiles can be always defined for ordinal
rating data and do not need any scoring rule for categories, we introduce a
tree methodology to study the effects of covariates on an ordinal response, ex-
ploiting quantile ANOVA (Wilcox, 2017), which is an effective approach to
analyze the quantiles of an ordinal distribution. We implemented the recur-
sive partitioning algorithm to detect significant differences in possibly many
quantiles, given splitting covariates, at each partitioning level. Our approach
is based on inference, i.e. it assesses whether the subgroups are significantly
different from each other.

2 A quantile–based classification tree

This section briefly describes the proposed approach to grow a tree through a
sequence of splits best discriminating the response variable in terms of a se-
lected grid of quantiles. We refer to an ordinal response variable, even if the
generalization to the continuous case is fairly straightforward. Several steps
are needed when growing a tree, namely the splitting criterion, the classifica-
tion rule, the stopping rule, the accuracy measure, among others. Due to the
limited space, we discuss here only the splitting criterion, being the originality
of the proposals.

Let R be a rating response collected on a support with m ordered cate-
gories, labelled using the first m natural numbers, without loss of general-
ity. The splitting criterion enables to identify subgroups (child nodes) signifi-
cantly different with respect to the quantiles, i.e. the selected location measure.
Moreover, the goodness of fit of the decision rule is assessed using a mea-
sure that takes into account solely the ordinal nature of the dependent variable.
Let S(q) denote the set of quantiles of interest, S(q) = {qτr1

, . . . ,qτrh
}, where

qτ is the quantile of order τ. At each node k, a quantile ANOVA (Wilcox,
2017) is carried out for each of the available covariate to check if the im-
plied binary split induces significant differences in (at least one of) the se-
lected quantiles S(q). At a given node k, and for each candidate binary split-
ting variable D, whose levels are coded as 0 and 1, let q(l)τ and q(r)τ the two
quantiles of order τ of the conditional response distributions (R | D = 0) and
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(R | D = 1) associated to the left and right descendants, respectively. The pro-
cedure will test the null: H0 : q(l)τ = q(r)τ , ∀qτ ∈ S(q), against the alternative
H1 : at least one qτ ∈ S(q),q(l)τ �= q(r)τ . The chosen split will select the candi-
date split so that it is one of those with the highest number of significant differ-
ences in quantiles, and with the lowest p-value among the competitor splitting
variables with the same number of significant differences. The p-vales in this
step are adjusted with the Benjamini-Hochberg correction for multiple testing
(Benjamini & Hochberg, 1995).

3 An application to German vote data

The performances of the proposed quantile tree for ordinal rating data are
illustrated through an application to response profiles for the probability to
vote for competing German parties. Data are taken from the GESIS ALLBUS
German Social survey (GESIS ALLBUS Leibniz Institute for the Social Sci-
ences, 2012). On a rating scale ranging from 1 = “very unlikely”, to 10 =
“very likely”, respondents were asked to rate “How likely it is that you would
ever vote for this German party?”. Here we refer to interviewees collected in
2008, and we shall focus on probability to vote for Social Democratic Party
(SPD). In the assessment of the electorate belief and behavior, the collection
of ratings on the probability to vote for each of the candidate running in an
upcoming electoral competition is a much more valuable source of informa-
tion than the one based on classical voting intentions collected on nominal
scales, as it allows to design targeted campaign and to locally understand and
predict the electorate behavior. The splitting variables are related to the pres-
ence or absence of a series of personal or political-related characteristics of
the interviews: participation of the respondent in the previous federal election
(votelast), supporter of a particular political party (supportpp), marital status
(marital), signing a petition (petition), gender, religion (norel), catholic, past
use of a vote for protest a party (demo), past refuse to vote in some election
out of a protest (refusevote). We use the following setting for growing up the
tree: a maximum depth of 4, a nominal level α = 0.05 for the testing proce-
dure of the splitting phase, a minimum samples sizes of 250 at a node for a
split to be attempted, and a minimum sample size of 50 required to children
of a candidate split to be admissible. The final tree obtained using the grid of
quantiles S(q) = {q0.1,q0.25,q0.5,q0.75,q0.9} is shown in Figure 1: it includes
nine terminal nodes and seven splitting variables out of the nine candidates
(the splitting variables that determine the major number of effects are demo

and petition). It is worth of notice that the extreme quantiles 0.1 and 0.9
are never chosen as the best quantiles and differences at the first decile are
never significant. By following the different paths of the tree from the root to
the terminal nodes it is possible to identify different profiles of respondents.
For sake of space, results related to the distribution of the dependent variable
in the terminal nodes are not shown but a further deepening of the analysis can
be achieved by exploring the homogeneity of each profile of respondents.

Figure 1. Quantile tree for rating probabilities for SPD party
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1 Introduction

Often, before purchasing a product or service, consumers ask for the opinion
of their peers who already purchased it. This is commonly referred to as word-
of-mouth (WOM). A positive opinion among WOM networks is regarded by
marketing experts as a valuable and powerful source of reputation for brands.
Online rating platforms, or ‘review aggregators’, are a case of technological
innovation for electronic word-of-mouth (eWOM): by browsing a review ag-
gregator, a consumer can read opinions of people who already purchased items
(i.e., evaluands, such as products, services, place to visits, etc).

Aggregators take this name from the service of recommendation (i.e., a
recommender system) they offer. They ask their registered users for submitting
a numerical score in a constrained multipoint scale, and then summarise the
scores into ratings and rankings (Tomaselli & Cantone, 2020). Scores collected
in experimental settings respect methodological assumptions or normality (i.e.,
independence of observations) but scores collected in online (open) platforms
are subject to two biases:

• Purchasing bias, people review what they purchase but they purchase
what is already reviewed or, at least, already popular (a case of ‘Matthew

Effect’);
• Under-reporting bias, people review when they are extremely satisfied or

unsatisfied.

The consequence of these biases is a J-shaped distribution of scores in online
ratings (Hu et al., 2017; Smironva et al., 2020). These biases make easier
to fraud the network of eWOM by injection of fake reviews submitted by the
so-called ‘sock puppet’ accounts. Experimental results confirm that positive
fake reviews have an impact on the success of online business (van de Rijt
et al., 2014). A consensus on the impact of negative fake reviews has not been
reached yet.

Some recommender systems have information if the reviewer purchased
the item (e.g., Amazon) but recommender systems generally do not know how
much the user is experienced about the item (e.g., how much time spent inter-
acting with that). This issue is related to the fake reviews: one could ask an un-
interested friend with an account in the system to rig a review of a item. Should
a case like this be considered fake? To overcome such issues, researchers
have adopted the broader perspective of ‘spam reviews’ attack (Hussain et al.,
2019). Spam is not necessarily fake but it is an excess of information which is
undesired or harmful for the purposes of the system. According to Aggarwal,
2016, a good spam attack, hard to detect, is deployed slowly in the time, so
that the sock puppet mimicries the behaviour of a regular user.

Recently, another type of review spam attack has emerged, known as ‘Re-
view Bomb’, occurring when a massive amount of accounts reviews, usually
negatively, attack a single product to make its reputation slump (Tomaselli
et al., 2021). During a ‘Review Bomb’, is often unclear how many accounts
are sock puppets and how many accounts are people ideologically driven to
review the specific item, but most of them involved lack a history of previous
reviews/ratings in the system (cold-start problem).

2 Dataset

The dataset includes N = 59k English reviews on the video game The Last of
Us Part II (TLOU2). TLOU2 was ‘review bombed’ since its publication date
(June 19th, 2020) for ideological reasons (Tomaselli et al., 2021). These re-
views were written by registered users on the online platform metacritic.
com.
From each review, the following metadata are extracted: i) username; ii) the
date the current review was written; iii) text of the review; iv) score, in a scale
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[1:10]; v) number of upvotes (i.e., likes) assigned to the review from users,
vi) number of downvotes (i.e., dislikes) assigned to the review from users; vii)
number of past ratings that a user provided on Metacritic; viii) number of past
reviews that a user wrote on metacritic.com. Once collected data, the labelling
procedure, consisting of assigning a binary class label whether the review was
legitimate (0) or related to the bombing phenomenon (1), is performed.

3 Methods

In the present paper, we propose a methodology for analysing data from a real
dataset of TLOU2 reviews, focusing on the online review bomb phenomenon.
The data pre-processing stage (data cleaning and handling of missing values)
consists of reducing noise words by removing all parts of text which are not
relevant for the scope, i.e., punctuation, symbols, and stopwords. Simple Bag-
Of-Words and weighted strategy such as Term Frequency-Inverse Document
Frequency (TF-IDF) measures are applied to determine term’s representative-
ness. In terms of review’s content, some statistical features (e.g., number of
punctuation marks, number of unique words, words per sentences) are also ex-
tracted.
Techniques for detecting spammer activities on online social networks (Abke-
nar et al., 2020) and online review platforms (Liu et al., 2017; Harris, 2018) al-
low to identify accounts involved in review bombing within this dataset. Extra
engineered features, therefore, are created to better discriminate not legitimate
reviews from legitimate one by looking at users’ features, such as username
length, username starting with/containing numbers among others.
To reduce the dimensionality of the data and improve the results of the analysis,
the most relevant features are selected to enter the model. Popular statistical
tests, such as Pearson’s test and Chi-squared, are used for this purpose, since
they can handle numerical and categorical variables, respectively.
Once got the most important features, these ones are then passed into the clas-
sification algorithms to produce a range of models to predict not legitimate
reviews. A k-Fold Cross Validation technique is considered to compare dif-
ferent machine learning algorithms ((e.g., Logistic Regression, Naive Bayes,
Random Forest, Support Vector Machine); Nematzadeh et al., 2015), gener-
ally used in spam (Al-Zoubi et al., 2021) and fake news/reviews detection.
Finally, model performance is evaluated by scoring the outcomes from a test
set, using precision, accuracy, recall, and F1 score (Zheng et al., 2015) metrics.
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ABSTRACT: A novel clustering model for three-way data concerning a set of objects on which 
variables are measured by different subjects is proposed. The main aim of the model is to 
summarize the objects through a limited number of clusters. In order to exploit the three-way 
structure of the data, such clusters are assumed to be common to all subjects and variables and 
subjects are summarized through the PARAFAC model.
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1 Introduction

Nowadays, it is very frequent to analyze data corresponding to variables measured 
on some objects by a set of subjects. Such three-way data can be stored in a (three-
way) array or tensor. It can be interesting to discover clusters of homogeneous 
objects with respect to the variables measured by the subjects. However, classical 
(two-way) clustering techniques are usually inadequate to handle three-way data. To 
this purpose, several three-way extensions have been developed following the 
model-based (see, e.g., Viroli, 2011) or least-squares approaches. Here, we propose 
a new clustering model for three-way data according to the least-squares approach.
It can be seen as a three-way extension of the well-known k-Means algorithm 
(MacQueen, 1967) where, in particular, the three-way nature of the model is 
exploited by considering the so-called PARAFAC model, independently developed
by Carroll & Chang (1970) and Harshman (1970). In the PARAFAC model, data are 
summarized by a limited number of components. As such, the PARAFAC model 
represents a three-way extension of classical Principal Component Analysis.

The paper is organized as follows. In the next section, we briefly review 
alternative clustering models for three-way data. Section 3 deals with the proposed 
model. Some final comments are made in Section 4.

2 Related works

The clustering problem of three-way data has received a great deal of attention 
over the last few years. We can roughly distinguish two main classes of techniques 
aiming at partitioning the entities referring to a single way or to more ways
simultaneously. A common case is referred to as bi-clustering or co-clustering when 

two ways, usually objects and variables, are clustered (for a comprehensive review
see Madeira & Oliveira, 2004). In this paper, we are going to focus on the first class 
of models, seeking, without loss of generality, a partition of objects.

Wilderjans & Ceulemans (2013) introduced the so-called Clusterwise 
PARAFAC, where objects are assigned to a limited number of clusters and, 
simultaneously, a standard PARAFAC model is applied within each cluster. In other 
words, within each cluster, objects, variables and subjects are summarized through a 
limited number of components. Therefore, the main idea of the Clusterwise 
PARAFAC model is that objects assigned to the same clusters have the same 
component structure, whereas objects belonging to different clusters have different
underlying components.

A different approach is followed by Rocci & Vichi (2005). First of all, the 
PARAFAC model is replaced by the Tucker3 model (Tucker, 1966). Tucker3 is 
more general than PARAFAC. In fact, the standard Tucker3 model allows for 
different numbers of components for objects, variables and subjects. Unfortunately, 
the Tucker3 solution suffers from rotational indeterminacy. On the contrary, the 
PARAFAC solution is unique (up to scaling and permuting the components) under 
mild conditions. Rocci & Vichi (2005) suggested to summarize only variables and
subjects through components, whilst objects are partitioned into a reduced number 
of clusters. It follows that objects are analyzed asymmetrically with respect to 
variables and subjects. Specifically, objects are assigned to clusters following a K-
Means-type procedure where the cluster prototypes lie onto the low-dimensional 
space spanned by the components for the variables and the subjects. The partition of 
the objects and the dimensionality reduction of both variables and subjects is 
performed simultaneously in such a way that the components explain the between-
cluster variability. In this respect, Rocci & Vichi (2005) is actually a generalization
of the Reduced K-Means method for standard two-way data (De Soete & Carroll,
1994).

In the next section, we present a new clustering model for three-way data, which 
takes inspiration from the previously mentioned proposals. Namely, consistently 
with Rocci & Vichi (2005), objects play an asymmetric role with respect to variables 
and subjects, and consistently with Wilderjans & Ceulemans (2013), the PARAFAC 
model is used for its simplicity and the uniqueness property. As we shall see, it can 
be interpreted as a K-Means type clustering model for three-way data.

3 The clustering model

Let us suppose J variables are measured on N objects by H subjects. Such data are 
stored in the three-way array X of order (N × J × H), whose generic element is xnjh,
expressing the measurement of object n (n = 1, …, N) with respect to variable j (j =
1, …, J) made by subject h (h = 1, …, H). The array X can be seen as a collection of 
matrices, one for every subject. Therefore, matrix Xh (h = 1, …, H) of size (N × J),
usually referred to as slice, contains all measurements from subject h.

The most general model can be fully specified as follows:
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Xh = UhYh + Eh, h = 1, …, H, (1)

where Eh is the error term for subject h and Uh is the membership matrix of order (N
× K) for objects into clusters, being K the number of clusters. Matrix Uh is binary 
with only one entry equal to 1 per row and identifies a partition of the N objects into 
K disjoint clusters for subject h (h = 1, …, H). Matrix Yh (h = 1, …, H) of order (K ×
J) is the subject-specific prototype matrix. Thus, the model assumes a different
partition among the slices referring to the subjects. In other words, separate
partitions are sought by means of a K-means-type model for every subject.

In order to exploit the three-way structure of the data, i.e., to properly take into 
account that the same variables are observed on the same objects by the subjects, 
constrained versions of model (1) can be derived. For instance, we may assume that
Uh = U, h = 1, …, H. Then, we get

Xh = UYh + Eh, h = 1, …, H. (2)

Matrix U is the allocation matrix, fulfilling the same constraints as for Uh.
Therefore, model (2) identifies a common partition across subjects. As in model (1), 
different prototype matrices Yh are assumed allowing for possible differences among 
subjects. Model (2) is therefore a K-means-type model with a consensus partition
specified by U.

Model (2) can be further extended by considering the PARAFAC model. 
Specifically, setting Yh = DhB, model (2) can be rewritten as

Xh = UDhB + Eh, h = 1, …, H, (3)

where Dh (h = 1, …, H) is the diagonal matrix of order (K × K) with diagonal 
elements giving subject-specific weights for the K clusters. Matrix B of order (K ×
J) measures the relevance of the variables for the K clusters. The three-way structure 
of the data is captured by the matrices Dh (h = 1, …, H) and B. In fact, since the 
same matrix B is assumed across subjects, the underlying idea of model (3) is that
the slices are described by the same matrices U and B, but in different proportions
because B is weighted differently through the subject-specific matrices Dh (h = 1, 
…, H).

The proposed model is a PARAFAC model with binary constraints on U. It is a 
special case of the so-called NMFA/GENNCLUS model, mentioned by Carroll &
Chaturvedi (1995). The solution is unique up to scaling and cluster labeling, as it 
holds for PARAFAC. Such a solution can be found according to the least-squares 
approach by minimizing the loss function

h || Eh ||2, (4)

with respect to U, Y and Dh (h = 1, …, H), being ||  || the Frobenius norm of 
matrices. For this purpose, an Alternating Least-Squares algorithm has been 
implemented.

Model (3) can be extended along various directions. For instance, it might be 
fruitful to introduce subject-specific weights for the variables tuning their 
importance in the clustering process. Such weights might be objectively estimated 
by minimizing loss function (4).

4 Concluding remarks

The paper introduced a novel K-Means type clustering model for three-way data
involving the PARAFAC decomposition. The effectiveness of the proposal will be 
illustrated with simulated and real applications and its possible extensions will be 
presented during the meeting.
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1 Introduction

Sentiment analysis is aimed at classifying texts into sentiments with a polarity 
(positive or negative) using different approaches. The lexicon-based approach is based 
on a dictionary, i.e. a base tool where hundreds or thousands of words are associated 
with a polarity (negative/positive). In order to classify the polarity of a text, each word 
is searched in the dictionary. If the word is present, the value assigned to that word 
will contribute to the overall text sentiment (along with the other words present both 
in the text and in the dictionary). To obtain a single value representative of the whole 
text a summarizing function (e.g. average or sum) is applied. An important challenge 
in sentiment analysis is the definition of weights to attribute to words, i.e. to have 
instruments to define which words should be assigned greater importance. In this 
sense, the eye tracking technology, which allows to measure the exact position of the 
eyes during the visualization of texts, images or other visual stimuli, can be of help to 
understand which words might be able to gain more attention from a reader and are 
thus potentially more relevant. 

Aim of the present method is to develop a new dictionary for sentiment analysis 
using eye-tracking data as weights to attribute a different relevance to the words in a 
text, based on the attention they might receive.

2 Materials and methods

2.1 Development of the Eye-dictionary
To develop a dictionary based on eye tracking data, we focus on two main aspects: 
weights and polarities. Weights have been computed based on the ProvoCorpus, a 
large corpus including eye tracking data for 55 paragraphs taken from various sources 
(e.g. news articles, science magazines and public domain works of fiction). Each 
paragraph was read by an average of 40 participants. Across all texts, eye tracking 
data in the form of dwell time for each word (i.e. total reading time calculated as the 
summation of the duration across all fixations on a given word) are available for a 
total of 2,689 words (1,191 of which are unique). For each word w included in the 
corpus of eye tracking data, the average dwell time based on the total number of 
occurrences of the word in the corpus is calculated as in Eq. (1)

1
𝑛𝑛 ∑ 𝑑𝑑𝑖𝑖

𝑤𝑤
𝑛𝑛

𝑖𝑖=1
(1)

where n is the number of occurrences of a word w in the dataset and 𝑑𝑑𝑤𝑤 is the dwell 
time for the word w. The average global dwell time for any word in the dataset is 
computed as in Eq. (2)

1
𝑚𝑚 ∑ 𝑑𝑑𝑖𝑖

𝑚𝑚

𝑖𝑖=1
(2)

where m is the number of all occurrences of all words observed in the dataset and 𝑑𝑑𝑖𝑖
is the dwell time for the occurrence i of a word in the dataset. Each weight 𝑣𝑣 for each 
word w is then calculated as the ratio in Eq. (3)

𝑣𝑣𝑤𝑤 =  
1
𝑛𝑛 ∑ 𝑑𝑑𝑖𝑖

𝑤𝑤𝑛𝑛
𝑖𝑖=1

1
𝑚𝑚 ∑ 𝑑𝑑𝑖𝑖

𝑚𝑚
𝑖𝑖=1

    (3)

and these values have been normalized using the min-max normalization. Polarities 
are computed using a large dataset of movie reviews including 50,000 texts, labeled 
as positive and negative reviews (Maas et al., 2011). To assess if a word has a positive 
or negative polarity, we compute a probability in the form of Eq. (4):

𝑃𝑃(𝑤𝑤𝑝𝑝𝑝𝑝𝑝𝑝) =
𝑁𝑁𝑤𝑤𝑝𝑝𝑝𝑝𝑝𝑝

𝑁𝑁𝑤𝑤
       𝑃𝑃(𝑤𝑤𝑛𝑛𝑛𝑛𝑛𝑛) =

𝑁𝑁𝑤𝑤𝑛𝑛𝑛𝑛𝑛𝑛

𝑁𝑁𝑤𝑤 (4)

where 𝑃𝑃(𝑤𝑤𝑝𝑝𝑝𝑝𝑝𝑝) is the probability that the word w is positive, 𝑁𝑁𝑤𝑤𝑝𝑝𝑝𝑝𝑝𝑝 is the number of
occurrences of the word w in positive labeled texts and 𝑁𝑁𝑤𝑤 is the number of 
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is searched in the dictionary. If the word is present, the value assigned to that word 
will contribute to the overall text sentiment (along with the other words present both 
in the text and in the dictionary). To obtain a single value representative of the whole 
text a summarizing function (e.g. average or sum) is applied. An important challenge 
in sentiment analysis is the definition of weights to attribute to words, i.e. to have 
instruments to define which words should be assigned greater importance. In this 
sense, the eye tracking technology, which allows to measure the exact position of the 
eyes during the visualization of texts, images or other visual stimuli, can be of help to 
understand which words might be able to gain more attention from a reader and are 
thus potentially more relevant. 

Aim of the present method is to develop a new dictionary for sentiment analysis 
using eye-tracking data as weights to attribute a different relevance to the words in a 
text, based on the attention they might receive.

2 Materials and methods

2.1 Development of the Eye-dictionary
To develop a dictionary based on eye tracking data, we focus on two main aspects: 
weights and polarities. Weights have been computed based on the ProvoCorpus, a 
large corpus including eye tracking data for 55 paragraphs taken from various sources 
(e.g. news articles, science magazines and public domain works of fiction). Each 
paragraph was read by an average of 40 participants. Across all texts, eye tracking 
data in the form of dwell time for each word (i.e. total reading time calculated as the 
summation of the duration across all fixations on a given word) are available for a 
total of 2,689 words (1,191 of which are unique). For each word w included in the 
corpus of eye tracking data, the average dwell time based on the total number of 
occurrences of the word in the corpus is calculated as in Eq. (1)
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𝑛𝑛 ∑ 𝑑𝑑𝑖𝑖
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𝑛𝑛
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(1)

where n is the number of occurrences of a word w in the dataset and 𝑑𝑑𝑤𝑤 is the dwell 
time for the word w. The average global dwell time for any word in the dataset is 
computed as in Eq. (2)
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where m is the number of all occurrences of all words observed in the dataset and 𝑑𝑑𝑖𝑖
is the dwell time for the occurrence i of a word in the dataset. Each weight 𝑣𝑣 for each 
word w is then calculated as the ratio in Eq. (3)
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    (3)

and these values have been normalized using the min-max normalization. Polarities 
are computed using a large dataset of movie reviews including 50,000 texts, labeled 
as positive and negative reviews (Maas et al., 2011). To assess if a word has a positive 
or negative polarity, we compute a probability in the form of Eq. (4):

𝑃𝑃(𝑤𝑤𝑝𝑝𝑝𝑝𝑝𝑝) =
𝑁𝑁𝑤𝑤𝑝𝑝𝑝𝑝𝑝𝑝

𝑁𝑁𝑤𝑤
       𝑃𝑃(𝑤𝑤𝑛𝑛𝑛𝑛𝑛𝑛) =

𝑁𝑁𝑤𝑤𝑛𝑛𝑛𝑛𝑛𝑛

𝑁𝑁𝑤𝑤 (4)

where 𝑃𝑃(𝑤𝑤𝑝𝑝𝑝𝑝𝑝𝑝) is the probability that the word w is positive, 𝑁𝑁𝑤𝑤𝑝𝑝𝑝𝑝𝑝𝑝 is the number of
occurrences of the word w in positive labeled texts and 𝑁𝑁𝑤𝑤 is the number of 
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occurrences of the word w. The same computation is made for negatives. Given the 
probabilities in Eq. (4) we assign a polarity 𝑝𝑝 to each word w as in Eq. (5)

𝑝𝑝𝑤𝑤 = {
1 𝑖𝑖𝑖𝑖 𝑃𝑃(𝑤𝑤𝑝𝑝𝑝𝑝𝑝𝑝) > 𝑃𝑃(𝑤𝑤𝑛𝑛𝑛𝑛𝑛𝑛)
0 𝑖𝑖𝑖𝑖 𝑃𝑃(𝑤𝑤𝑝𝑝𝑝𝑝𝑝𝑝) = 𝑃𝑃(𝑤𝑤𝑛𝑛𝑛𝑛𝑛𝑛)

−1 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑤𝑤𝑖𝑖𝑒𝑒𝑒𝑒
(5)

Therefore, we assign the word w a positive (+1) or negative value (-1) in case 𝑃𝑃(𝑤𝑤𝑝𝑝𝑝𝑝𝑝𝑝)
is greater or lower than 0.5, respectively. If the probability is exactly 0.5 the word w
is assigned 0 (neutral). For each word, a final value s is then computed as the product 
of weights and polarities as in Eq. (6)

𝑒𝑒𝑤𝑤 = 𝑣𝑣𝑤𝑤 ∙ 𝑝𝑝𝑤𝑤 (6)

2.2 Assessment of the performance of the Eye dictionary and comparison with 
existing dictionaries
The performance of the dictionary based on eye tracking data in the classification of 
sentiment polarity of texts has been assessed using two independent collections of 
labeled texts: 1,000 consumer reviews from Amazon (McAuley et al., 2013) and 1,000 
consumer reviews from Yelp (Yelp dataset). For these texts, the performance of the 
Eye dictionary in the classification of sentiment polarity is compared with four 
existing dictionaries: Loughran-McDonald (2,702 words), SentiWordNet 3.0 (20,093 
words), SO-CAL Google (3,290 words) and Hu Liu (6,874 words) extracted from the 
Lexicon package in R (Rinker, 2018). For each text, a polarity value is calculated as 
the algebraic sum of signed values assigned to each word by a dictionary. Finally, the 
number of texts correctly classified using the different dictionaries is compared.  

3 Results

A total of 1,185 words for which weights and polarities were computed are included 
in the Eye dictionary (619 positive, 466 negative and 100 neutral). Table 1 shows the 
performance of the Eye dictionary and four other dictionaries in terms of precision, 
recall, F1-score and accuracy for the Yelp dataset (similar results were obtained using 
the Amazon dataset).

The Eye dictionary showed the best precision for positive texts, best recall for 
negative texts and the second-best accuracy after the Hu Liu dictionary. The Eye 
dictionary was able to correctly classify a higher number of texts compared to two of 
the four dictionaries (Loughran and Socal Google) in the Amazon dataset and three 
of the four dictionaries (Loughran, Sentiword and Socal Google) in the second dataset. 
Hu Liu was the only dictionary to show a better performance in both datasets. 

Overall, all dictionaries only showed a modest performance in this preliminary 
analysis, which could be improved with the application of rules for handling cases 
such as presence of negations, amplifiers and downtoners. Notably, the Eye dictionary 

was able to achieve a performance similar or better compared to most of the other 
dictionaries even if it includes a much lower number of words.

Table 1. Comparison between Eye dictionary and four other dictionaries
Eye 
dictionary

Loughran-
McDonald

SentiWord
Net

SO-CAL 
Google Hu Liu

Pos Neg Pos Neg Pos Neg Pos Neg Pos Neg
Precision 0.60 0.55 0.38 0.30 0.54 0.56 0.48 0.42 0.58 0.68
Recall 0.39 0.74 0.46 0.23 0.63 0.46 0.74 0.19 0.81 0.41
F1-score 0.47 0.63 0.41 0.26 0.58 0.51 0.58 0.27 0.67 0.51
Accuracy 0.56 0.35 0.55 0.46 0.61

4 Conclusions

In this work we present a new sentiment analysis dictionary built by leveraging eye 
tracking data to assign weights to words based on their ability to gain attention from 
a reader. To this aim, dwell time is used as a measure of relevance of a word. Future 
developments include the expansion of the number of words included in the dictionary 
as well as evaluation of its performance in the classification of text using rules to 
handle cases in which classification is particularly challenging, such as sentences 
including negations, amplifiers and downtoners.
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